八年级下数学期末试卷及答案
八年级数学(下)期末试卷含答案
ABCDEF八年级数学(下)期末试卷考生注意:本试卷共120分,考试时间100分钟.一、选择题:本大题共10小题,每小题3分,共30分.每小题只有一个正确选项,将此选项选择题(每题3分,本大题共30分)1、下列根式中,与3 是同类二次根式的是( ) A 、8 B 、0.3 C 、23D 、12 2、 若2(3)3a a -=-,则a 与3的大小关系是( )A 、 3a <B 、3a ≤C 、3a >D 、3a ≥3.、若实数a 、b 满足ab <0,则一次函数y =ax +b 的图象可能是( )A .B .C .D .4、已知P 1(-1,y 1),P 2(2,y 2)是一次函数1y x =-+图象上的两个点,则y 1,y 2的大小关系是( )A 、12y y =B 、12y y <C 、12y y >D 、不能确定 5、平行四边形, 矩形,菱形,正方形都具有的性质是( ) A 、对角线相等 B 、对角线互相平分 C 、对角线平分一组对角 D 、对角线互相垂直6、2022年将在北京张家口举办冬季奥运会,很多学校开设了相关的课程如表记录了某校4名同学短道速滑选拔赛成绩的平均数与方差:队员1 队员2 队员3 队员4 平均数 51 50 51 50 方差根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应选择A. 队员1B. 队员2C. 队员3 D. 队员47、如图,直线l 1 : y = 4x - 2 与l 2 : y = x +1的图象相交于点 P ,那么关于 x ,y 的二元一次方程组 4x - y = 2的解是 ( ) x-y=-18. 在平面直角坐标系中,一次函数 y = kx + b 的图象与直线 y = 2x 平行,且经过点A (0,6).则一次函数的解析式为 ( )A 、y=2x-3B 、y=2x+6C 、y=-2x+3D 、y=-2x-6 9.如图,在正方形ABCD 的外侧,作等边三角形ADE ,AC 、BE 相交于点F ,则∠BFC 为( )A 、75︒B 、60︒C 、55︒D 、45︒10.甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y (m)与挖掘时间x (h )之间的关系如图5所示.根据图象所提供的信息,下列说法正确的是( ) A .甲队开挖到30 m 时,用了2 h B .开挖6 h 时,甲队比乙队多挖了60 mC .乙队在0≤x ≤6的时段,y 与x 之间的关系式为y =5x +20D .当x 为4 h 时,甲、乙两队所挖河渠的长度相等 二、填空题(每题3分,本大题共24分) 11、函数y=12xx-+中,自变量x 的取值范围为 . 12、若函数y = -2x m +2 +n -2正比例函数,则m 的值是 ,n 的值为________.243221323+⨯-÷13、 如图,菱形ABCD 的对角线AC 和BD 相交于点O ,过点O 的直线分别交AB 和CD 于点E 、F ,BD=6,AC=4,则图中阴影部分的面积和为 .14.、一组数据1,6,x ,5,9的平均数是5,那么这组数据的中位数是______,方差是______.15、将矩形纸片ABCD 沿直线AF 翻折,使点B 恰好落在CD 边的中点E 处,点F 在BC 边上,若CD =6,则FC = .16、如图,直线y =x +b 与直线y =kx +6交于点P (3,5),则关于 x 的不等式kx +6<x +b 的解集是_____________.17、如图所示,四边形OABC 是正方形,边长为4,点A 、C 分别在x 轴、y 轴的正半轴上,点D 在OA 上,且D 点的坐标为 (1,0),P 是OB 上一动点,则PA +PD 的最小值为 .18.、如图,平行四边形 ABCD 的周长是 52cm ,对角线 AC 与 BD 交于点 O ,AC ⊥AB ,E 是BC 中点,△AOD 的周长比 △AOB 的周长多 6cm ,则 AE 的长度为 .三、解答题(本大题共66分) 19、计算.(每小题4分,共计8分)(1)(2)20、(7分)已知a ,b ,c 满足|a -8|+b -5+(c -18)2=0. (1)求a ,b ,c 的值;并求出以a,b,c 为三边的三角形周长; (2)试问以a ,b ,c 为边能否构成直角三角形?请说明理由。
数学八年级下册数学期末试卷测试卷附答案
数学八年级下册数学期末试卷测试卷附答案数学八年级下册数学期末试卷及答案一、选择题1.下列各式中,一定是二次根式的是()A。
aB。
1/a^2C。
-a^2D。
a^2+12.下列数组中,能构成直角三角形的是()A。
1.1.3B。
2.3.5C。
0.2.0.3.0.5D。
1/11.1/45.1/33.如图,在ABCD中,点E,F分别在边BC,AD上。
若从下列条件中只选择一个添加到图中的条件中,那么不能使四边形AECF是平行四边形的条件是()A。
AE//CFB。
AE=CFC。
BE=DFD。
∠BAE=∠DCF4.某次数学趣味竞赛共有10组题目,某班得分情况如下表。
全班40名学生成绩的众数是人数。
成绩(分)5.1370.6080.7390.100A。
75B。
70C。
80D。
905.如图,顺次连接四边形ABCD各边中点得四边形EFGH,要使四边形EFGH为矩形,应添加的条件是()A。
AB//DCB。
AC=BDC。
AC⊥BDD。
AB=DC6.如图,在菱形ABCD中,AB=4,∠BAD=120°,O是对角线BD的中点,过点O作OE⊥CD于点E,连结OA。
则四边形AOED的周长为()A。
9+√23B。
9+√3C。
7+√23D。
87.如图,在ABC中,D,E分别是AB,AC的中点,AC=20,F是DE上一点,连接AF,CF,DF=4.若∠AFC=90°,则BC的长度为()A。
24B。
28C。
20D。
128.一个内有进水管和出水管,开始4min内只进水不出水,在随后的8min内既进水又出水,第12min后只出水不进水。
进水管每分钟的进水量和出水量每分钟的出水量始终不变,内水量y(单位:L)与时间x(单位:min)之间的关系如图所示。
根据图象有下列说法:①进水管每分钟的进水量为5L;②4≤x≤12时,y=x+15;③当x=12时,y=30;④当y=15时,x=3,或x=17.其中正确说法的个数是()A。
1个B。
2023-2024学年天津市南开区八年级(下)期末数学试卷及答案解析.
2023-2024学年天津市南开区八年级(下)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,有一项是符合题目要求的)1.(3分)下列x的取值中,可以使有意义的是()A.13B.10C.7D.42.(3分)下列长度的线段中,能构成直角三角形的一组是()A.5,12,13B.6,8,12C.3,4,6D.8,15,163.(3分)直线y=﹣x﹣2不经过()A.第一象限B.第二象限C.第三象限D.第四象限4.(3分)的倒数是()A.B.C.D.5.(3分)一个四边形的四边长依次为a,b,c,d,且(a﹣c)2+|b﹣d|=0,则这个四边形一定()A.平行四边形B.矩形C.菱形D.正方形6.(3分)骑行某共享单车前a公里1元,超过a公里的,按每公里2元收费,若要使骑行该共享单车的50%的人只花1元钱,那么a应该取所收集数据的()A.平均数B.众数C.方差D.中位数7.(3分)将直线向上平移3个单位长度,得到新的直线解析式为()A.B.C.D.8.(3分)甲、乙两名同学本学期五次引体向上的测试成绩(单位:个)如图所示,则下列判断正确的是()A.乙的最好成绩比甲高B.甲的成绩的平均数比乙大C.乙的成绩比甲稳定D.甲的成绩的中位数比乙大9.(3分)如图,在Rt△ABC中,分别以这个三角形的三边为边长向外侧作正方形,面积分别记为S1,S2,S3.若S1=10,S3=24.则图中阴影部分的面积为()A.14B.C.7D.10.(3分)如图,将矩形ABCD沿对角线BD所在直线折叠,点C落在同一平面内,落点记为C′,BC′与AD交于点E,若,BC=2,则DE的长为()A.B.1C.D.211.(3分)如图,直线与x轴、y轴分别交于点A,B.按照如下尺规作图的步骤进行操作:①以点A为圆心,以AB为半径画弧,交x轴负半轴于点C,连接BC;②分别以点B,C为圆心,以大于长为半径画弧,两弧交于点D;③连接DA并延长,交y轴于点E.则下列结论中错误的是()A.点A的坐标为(﹣6,0)B.点B的坐标为(0,8)C.点C的坐标为(﹣16,0)D.点E的坐标为(0,﹣8)12.(3分)如图,在平面直角坐标系中,点A(0,4),点B在x轴正半轴上,点C在y轴负半轴上,直线AB,BC的解析式分别为y1=﹣2x+a和y2=kx+b(其中a,k,b均为常数).有下列结论:①点B的坐标为(2,0);②方程组的解为;③不等式﹣2x+a≥kx+b的解集为x≥2;④若点P(4,m),点Q(4,n)分别在直线y1=﹣2x+a和y2=kx+b上,则n﹣m+b=4.其中,正确的结论个数是()A.1B.2C.3D.4二、填空题(本大题共6小题,每小题3分,共18分.请将答案直接填在答题纸中对应的横线上)13.(3分)直线y=kx(k≠0)过点(﹣4,2),则k的值为.14.(3分)计算的结果为.15.(3分)在▱ABCD中,若∠B+∠D=200°,则∠B为(度).16.(3分)如图,边长为1的正方形OABC的边OC落在数轴上,点C表示的数为1,点P表示的数为﹣1,以P点为圆心,PB长为半径画弧与数轴交于点D,则点D表示的数为.17.(3分)如图,正方形ABCD的边长为4,点E在边AB上,点F在边AD的延长线上,且BE=DF=.点M,N分别在边AD,BC上,MN与EF交于点P,且∠MPF=45°,则MN的长为.18.(3分)如图,在每个小正方形的边长为1的网格中,每个小正方形的顶点叫做格点.平行四边形ABCD 的顶点A,D均在格点上,B,C均在网格线上.(Ⅰ)线段AD的长为;(Ⅱ)在直线CD上找一点P,连接BP,使得BP平分∠ABC.请用无刻度的直尺在如图所示的网格中,画出点P,并简要说明点P的位置是如何找到的(不要求证明).三、解答题(本大题共6小题,共46分.解答应写出文字说明、演算步骤或推理过程)19.(6分)计算:(Ⅰ);(Ⅱ).20.(8分)某部门为了解工人的生产能力情况,进行了抽样调查,随机抽取了a名工人每人每天加工零件的件数(单位:件),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)填空:a的值为,图①中的m值为;(Ⅱ)求统计的这组工人加工零件数据的平均数、众数和中位数.21.(6分)如图,正方形ABCD中,点F为CD的中点,点E为BC上一点,且,设CE的长为a(a>0).(Ⅰ)用含有a的式子表示AF和EF;(Ⅱ)求∠AFE的大小.22.(8分)菱形ABCD的对角线AC,BD相交于点O,取OC中点F,连接BF并延长,使得BF=FE,连接CE,DE.(Ⅰ)如图1,求证:四边形OCED为矩形;(Ⅱ)如图2,若∠EBD=15°,BE=16,连接DF.求:△BED的面积和菱形ABCD的面积.23.(8分)已知甲、乙、丙三地依次在一条直线上,丙地距离甲地480km,乙地距离甲地300km.张师傅驾车从甲地出发匀速行驶了5h到达乙地,在乙地休整了1h,然后继续以原来的速度匀速行驶到达丙地.当张师傅从甲地出发时,王师傅驾车从丙地出发匀速行驶到达甲地后,立即以原速返回丙地,结果他比张师傅提前1h到达丙地.给出的图象反映了这个过程中两位师傅离甲地的距离y(单位:km)与他们行驶的时间x(单位:h)之间的对应关系.请结合相关信息,解答下列问题:(Ⅰ)填表:张师傅行驶的时间(单位:h)156a=张师傅离甲地的距离(单位:km)300300480(Ⅱ)请直接写出王师傅离甲地的距离y(单位:km)与他行驶的时间x(单位:h)之间的函数解析式;(Ⅲ)填空:①在王师傅返回丙地的过程中,他与张师傅相遇时距离乙地km;②两位师傅从出发到张师傅到达丙地的整个过程中,他们相距100km时,x为(h).24.(10分)在平面直角坐标系中,O为原点,平行四边形ABCD的顶点A(6,0),B(10,0),D(0,6),矩形OBEF的顶点.(Ⅰ)如图1,EF与AD,BC交于点G,H.①直接写出直线BC的解析式和点H的坐标;②求证:四边形ABHG为菱形;(Ⅱ)如图2,将矩形OBEF沿水平方向向右平移,得到矩形O′B′E′F′,点O,B,E,F的对应点分别为O′,B′,E′,F′.设OO′=t(t>0),矩形O′B′E′F′与平行四边形ABCD重合部分图形的周长为L.①在平移过程中,当矩形O′B′E′F′与平行四边形ABCD重合部分为四边形时,直接用含有t的式子表示L,并直接写出t的取值范围;②如图3,若F′O′的中点为M,矩形O′B′E′F′对角线的交点为N,连接MA,NB.在平移过程中,当MA+NB最小时,直接写出此时L的值.2023-2024学年天津市南开区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,有一项是符合题目要求的)1.【分析】直接利用二次根式有意义的条件得出x的取值范围.【解答】解:∵要使根式有意义,∴6﹣x≥0,解得:x≤6,故它的值可以为:4.故选:D.【点评】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.2.【分析】根据勾股定理的逆定理可以判断各个选项中的三条线段能否构成直角三角形,本题得以解决.【解答】解:A、52+122=132,故选项A符合题意;B、62+82≠122,故选项B不符合题意;C、32+42≠62,故选项C不符合题意;D、82+152≠162,故选项D不符合题意.故选:A.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.3.【分析】直接根据一次函数的性质进行判断即可.【解答】解:∵直线y=﹣x﹣2中,k=﹣1<0,b=﹣2<0,∴此函数的图象在二、三、四象限.故选:A.【点评】本题考查的是一次函数的图象与系数的关系,熟知一次函数y=kx+b(k≠0)中,当k<0,b <0时函数的图象在二、三、四象限是解答此题的关键.4.【分析】根据倒数的定义即可得出答案.【解答】解:﹣的倒数是﹣;故选:D.【点评】此题主要考查了倒数,倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.5.【分析】根据(a﹣c)2+|b﹣d|=0这个方程可求出四边的关系,即对边相等,从而判断四边形形状.【解答】解:∵(a﹣c)2+|b﹣d|=0,∴a=c,b=d.∴这个四边形是平行四边形.故选:A.【点评】本题考查绝对值和偶次幂,掌握平行四边形的判定是解题的关键.6.【分析】由于要使使用该共享单车50%的人只花1元钱,根据中位数的意义分析即可.【解答】解:要使骑行该共享单车的50%的人只花1元钱,即要一半的人骑行该共享单车只花1元钱,只要知道骑行该共享单车的人骑行路程的中位数即可.故选:D.【点评】本题考查了中位数意义.解题的关键是正确的求出这组数据的中位数.7.【分析】根据“上加下减”的平移规律解答即可.【解答】解:将直线向上向上平移3个单位长度后得到的直线解析式为:将直线y=x+1.故选:B.【点评】本题考查一次函数图象与几何变换,掌握“左加右减,上加下减”的平移规律是解题的关键.8.【分析】分别计算出两人成绩的平均数、中位数、方差可得出答案.【解答】解:甲同学的成绩依次为:8、9、8、7、8,从小到大依次排列为:7、8、8、8、9,则其中位数为8,平均数为8,方差为×[(7﹣8)2+3×(8﹣8)2+(9﹣8)2]=0.4;乙同学的成绩依次为:6、7、10、8、9,从小到大依次排列为:6、7、8、9、10,乙的最好成绩比甲高,则其中位数为8,平均数为8,方差为×[(6﹣8)2+(7﹣8)2+(8﹣8)2+(9﹣8)2+(10﹣8)2]=2,∴甲的成绩比乙稳定,甲、乙的平均成绩和中位数均相等,甲的最好成绩比乙低,故选:A.【点评】本题考查了折线统计图,方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了中位数,平均数.9.【分析】由勾股定理得S1+S2=S3,再由S3﹣S1=S2求出S2=14,即可解决问题.【解答】解:在Rt△ABC中,由勾股定理得:AC2+AB2=BC2,即S1+S2=S3,S2=S3﹣S1=24﹣10=14,∴S2=14,由图形可知,阴影部分的面积=S2,∴阴影部分的面积=7,故选:C.【点评】本题考查了勾股定理以及正方形的面积,由勾股定理得出S1+S2=S3是解题的关键.10.【分析】由翻转变换的性质得到∠EBD=∠CBD,根据平行线的性质得到∠EDB=∠CBD,得到EB=ED,设DE=x,根据勾股定理列方程,解方程即可.【解答】解:由翻转变换的性质可知,∠EBD=∠CBD,∵AD∥BC,∴∠EDB=∠CBD,∴∠EDB=∠EBD,∴EB=ED,设DE=x,则BE=x,AE=2﹣x,在Rt△ABE中,x2=()2+(2﹣x)2,解得x=,故选:C.【点评】本题考查翻折变换(折叠问题),矩形的性质,解答本题的关键要明确翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.11.【分析】如图,设AD交CB于点K.根据直线AB的解析式,求出A,B两点坐标,再根据AB=AC=5,判断出点C的坐标,再利用相似三角形的性质求出BE可得结论.【解答】解:如图,设AD交CB于点K.∵直线与x轴、y轴分别交于点A,B,∴A(﹣6,0),B(0,8),故选项A,B正确.∴OA=6,OB=8,∴AB===10,由作图可知DE垂直平分线段BC,∴AC=AB=10,∴OC=10+6=16,∴C(﹣16,0),故选项C正确.∴BC===8,∴CK=DK=4,∵∠COB=∠EKB=90°,∠CBO=∠EBK,∴△COB∽△EKB,∴=,∴=,∴BE=20,∴OB=BE﹣OB=20﹣8=12,∴E(0,﹣12).故选项D错误.故选:D.【点评】本题考查作图﹣基本作图,一次函数的性质,一次函数图象上的点的坐标特征,解题的关键是理解题意,灵活运用所学知识解决问题.12.【分析】把点A(0,4)代入y1=﹣2x+a得a=4,求得y1=﹣2x+4,当y=0时,得到B(2,0),故①正确;根据两直线的交点坐标即为方程组的解得到,故②错误;根据函数的图象得到不等式﹣2x+a≥kx+b的解集为x≤2,故③错误;把B(2,0)代入y2=kx+b得2k+b=0,求得y2=﹣x+b,把点P(4,m),点Q(4,n)分别代入y1=﹣2x+4和y2=﹣x+b,得到m=﹣4,n=﹣b,于是得到n﹣m+b=﹣b+4+b=4,故④正确.【解答】解:(1)把点A(0,4)代入y1=﹣2x+a得a=4,∴y1=﹣2x+4,当y=0时,0=﹣2x+4,∴x=2,∴B(2,0),故①正确;∵直线AB,BC的解析式分别为y1=﹣2x+a和y2=kx+b交于B,∴方程组的解为,故②错误;∵当x≤2时,y1=﹣2x+a的图象在y2=kx+b的上面,∴不等式﹣2x+a≥kx+b的解集为x≤2,故③错误;把B(2,0)代入y2=kx+b得2k+b=0,∴k=﹣,∴y2=﹣x+b,∵点P(4,m),点Q(4,n)分别在直线y1=﹣2x+4和y2=﹣x+b上,∴m=﹣4,n=﹣b,∴n﹣m+b=﹣b+4+b=4,故④正确;故选:B.【点评】本题考查了一次函数与二元一次方程组,待定系数法求函数的解析式,一次函数与一元一次不等式,正确地理解题意是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分.请将答案直接填在答题纸中对应的横线上)13.【分析】将点(﹣4,2)代入直线y=kx中,即可求出答案.【解答】解:将点(﹣4,2)代入直线y=kx中,即2=﹣4k,解得:k=﹣.故答案为:﹣.【点评】本题主要考查一次函数图象上点的坐标特征,理解点在直线上的定义是解题的关键.14.【分析】应用平方差公式计算即可.【解答】解:,故答案为:﹣1.【点评】本题考查二次根式的混合运算,平方差公式等知识,解题的关键是掌握平方差公式的应用.15.【分析】根据平行四边形的对角相等即可得出∠B的度数.【解答】解:如图所示:∵四边形ABCD是平行四边形,∴∠B=∠D,∵∠B+∠D=200°,∴∠B=∠D=100°,故答案为:100.【点评】本题考查平行四边形的性质,解答本题的关键是掌握平行四边形的对角相等.16.【分析】根据勾股定理求出PB的长,即PD的长,再根据两点间的距离公式求出点D对应的数.【解答】解:由勾股定理知:PB===,∴PD=,∴点D表示的数为﹣1.故答案为:﹣1.【点评】此题考查了正方形的性质,勾股定理和实数与数轴,得出PD的长是解题的关键.17.【分析】连接CF、CE,先求出CF的长度,再判定四边形CFMN是平行四边形,得出.【解答】解:如图,连接CF、CE,∵四边形ABCD是正方形,∴AD=BC=CD=AB=4,∠A=∠B=∠ADC=90°,FM∥CN,∴∠CDF=90°,∵AE=AB﹣BE=,AF=AD+DF=,∴==,同理可求:,EF2=AF2+AE2==36,∴CE=CF,CF2+CE2=EF2,∴△CEF是等腰直角三角形,∴∠CFE=∠MPF=45°,∴CF∥MN,∴四边形CFMN是平行四边形,∴,故答案为:.【点评】本题主要考查了正方形的性质,平行四边形的判定和性质,掌握勾股定理是解题的关键.18.【分析】(Ⅰ)利用勾股定理求解;构造等腰三角形CBP即可;(Ⅱ)构造等腰三角形CBP即可.【解答】解:(Ⅰ)AD==5.故答案为:5;(Ⅱ)如图,连接AC,BD交于点O,在AB的延长线上取一点T,使得AT=5,连接TO,延长TO交直线CD于点P,点P即为所求.由△AOT≌△COP,得到CP=AT=5,∵BC==5,CP=5,∴BC=CP,∴∠P=∠CBP,∵AB∥CP,∴∠P=∠ABP,∴∠ABP=∠CBP,即BP平分∠ABC.故答案为:如图,连接AC,BD交于点O,在AB的延长线上取一点T,使得AT=5,连接TO,延长TO交直线CD于点P,点P即为所求.【点评】本题考查作图﹣复杂作图,角平分线的性质,勾股定理,平行四边形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.三、解答题(本大题共6小题,共46分.解答应写出文字说明、演算步骤或推理过程)19.【分析】(Ⅰ)先去括号,再把各二次根式化为最简二次根式,合并同类二次根式即可;(Ⅱ)先算乘方,除法,再算加减即可.【解答】解:(Ⅰ)=++﹣=2+2+﹣=3+;(Ⅱ)=4﹣(6+3+2)=4﹣(9+6)=4﹣9﹣6=﹣9﹣2.【点评】本题考查的是二次根式的混合运算,熟知二次根式混合运算的法则是解题的关键.20.【分析】(Ⅰ)根据生产120个零件的人数是4人,占调查人数的20%,即可求出a的值,进而求出生产130个零件的工人所占的百分比,确定m的值;(Ⅱ)根据加权平均数、中位数、众数的计算方法进行计算即可.【解答】解:(Ⅰ)a=4÷20%=20,∵m%=5÷20×100%=25%,∴m=25;故答案为:20,25;(Ⅱ)由条形统计图中的数据可得,平均数为=124,车间工人生产零件数量出现次数最多的是130个,共有5人,因此众数是130,将这20名工人生产零件数从小到大排列,第10个和第11个数分别是120和130,因此中位数是=125,答:这组工人加工零件数据的平均数是124、众数是130和中位数是125.【点评】本题考查条形统计图、扇形统计图以及平均数、中位数、众数,理解两个统计图中数量之间的关系以及平均数、中位数、众数的计算方法是正确解答的关键.21.【分析】(1)由正方形的性质得AD=CD=BC=4a,∠C=∠D=90°,由勾股定理得EF=,AF=,即可求解;(2)连接AE,由勾股定理得AE2=AB2+CE2=25a2,可得EF2+AF2=AE2,即可求解.【解答】解:(1)∵CE=BC,CE=a∴BC=4a,∵四边形ABCD是正方形,∴AD=CD=BC=4a,∠C=∠D=90°,∵F是CD的中点,∴CF=DF=2a,∴EF===a,AF===2a,∴EF=a,AF=2a;(2)如图,连接AE,∵四边形ABCD是正方形,∴∠B=90°,由(1)得AB=4a,∴BE=BC−CE=3a,∴AE2=AB2+BE2=(4a)2+(3a)2=25a2,由(1)得:EF2=5a2,AF2=20a2,∴EF2+AF2=AE2,∴△AFE是直角三角形,∴∠AFE=90°.【点评】本题考查了正方形的性质,勾股定理及其逆定理,掌握正方形的性质,勾股定理及其逆定理是解题的关键.22.【分析】(Ⅰ)由菱形的性质得OB=OD,OA=OC,AC⊥BD,再证明OF是△BDE的中位线,得OF ∥DE,OF=DE,则OC=DE,然后证明△OCED是平行四边形,即可得出结论;(Ⅱ)过点D作DG⊥BE于点G,由矩形的性质得OC=DE,∠ODE=90°,再由三角形的外角性质得∠DFG=∠FDB+∠EBD=30°,则DG=DF=4,进而由勾股定理得FG=4,DE=4﹣4,BD=4+4,然后由三角形面积公式和菱形面积公式列式计算即可.【解答】(Ⅰ)证明:∵四边形ABCD是菱形,∴OB=OD,OA=OC,AC⊥BD,∴∠COD=90°,∵F是OC的中点,∴OF是△BDE的中位线,OF=CF=OC,∴OF∥DE,OF=DE,∴OC=DE,∴△OCED是平行四边形,又∵∠COD=90°,∴平行四边形OCED为矩形;(Ⅱ)解:如图2,过点D作DG⊥BE于点G,则∠DGF=∠DGE=90°,∵BF=FE,BE=16,∴BF=FE=8,由(1)可知,四边形OCED是矩形,∴OC=DE,∠ODE=90°,∴DF=BE=BF=8,∴∠FDB=∠EBD=15°,∴∠DFG=∠FDB+∠EBD=30°,∴DG=DF=4,∴FG===4,∴EG=FE﹣FG=8﹣4,∴DE===4﹣4,∴OC=DE=4﹣4,∴AC=2OC=8﹣8,BD===4+4,∴△BED的面积=BD•DE=×(4+4)(4﹣4)=32,菱形ABCD的面积=BD•AC=×(4+4)(8﹣8)=64.【点评】本题考查了矩形的判定与性质、三角形中位线定理、平行四边形的判定与性质、菱形的性质、直角三角形斜边上的中线性质、勾股定理以及三角形面积等知识,熟练掌握矩形的判定与性质是解题的关键.23.【分析】(Ⅰ)由图象可得张师傅驾车的速度为300÷5=60(km/h),即可求解;(Ⅱ)设王师傅驾车的速度为bkm/h,由等量关系式:张师傅所用的时间﹣王师傅所用的时间=1h,可求出王师傅的速度,分段当0≤x<4时,当4≤x≤8时,列出函数关系式,即可求解;(Ⅲ)①由待定系数法可求王师傅回来时的直线关系式为y=120x﹣480,张师傅休整后行驶的图象直线的解析式为y=60x﹣60,联立即可求解;②分阶段讨论当0≤x≤时,当<x≤4时,当4<x≤6时,当6<x≤9时,即可求解.【解答】(Ⅰ)解:由题意得张师傅驾车的速度为300÷5=60(km/h),当x=1时,60×1=60(km),∴a =+1=9(h );故答案为:60,9.(Ⅱ)设王师傅驾车的速度为b km /h ,则有+1﹣×2=1,解得:b =120,经检验:b =120是所列方程的解,且符合实际意义,∴=4(h ),∴×2=8(h ),当0≤x <4时,y =480﹣120x ,当4≤x ≤8时,y =120(x ﹣4)=120x ﹣480,=120x ﹣480,∴y =.(Ⅲ)①设王师傅回来时的直线关系式为y =kx +b ,经过(4,0),(8,480),则有,解得:,∴y =120x ﹣480,同理可求,张师傅休整后行驶的图象直线的解析式为y =60x ﹣60,∴联立得,解得:,360﹣300=60(km ).故答案为:60.②60x +120x =480,解得:x =,当0≤x ≤时,60x +120x +100=480,解得:x =,当<x≤4时,120x+60x=480+100,解得:x=,当4<x≤6时,300﹣(120x﹣480)=100,解得:x=,当6<x≤9时,480﹣60(x﹣1)=100,解得:x=,此时王师傅还没有到达丙地,故舍弃,综上所述:x为或或.故答案为:或或.【点评】本题考查了一次函数的应用,找得等量关系是解题的关键.24.【分析】(1)①B(10,0),C(4,6),利用待定系数法求出BC解析式,将y=代入函数中,求出点H的坐标;②先证明四边形ABHG是平行四边形,再根据AB=BH得出四边形ABHG是菱形;(2)①时,重叠部分是菱形ABHG,当<t≤10﹣时,重叠部分是四边形,分类讨论即可;②当E,N,Q三点共线时,AM+BN取得最小值,此时L的值为:.【解答】解:(1)①∵A(6,0),B(10,0),∴AB=10﹣6=4,∵平行四边形ABCD,D(0,6)∴得到AB=CD=4,AB∥CD,∴点C与点D的纵坐标相同即C(4,6),设直线BC的解析式为y=kx+b,,解得,故BC的解析式为y=﹣x+10,∵矩形OBEF的顶点,设点,代入解析式y=﹣x+10,得,解得,∴点;②过点H作HQ⊥BA于点Q,∵平行四边形ABCD,∴AG∥BH,∵矩形OBEF,∴HG∥AB,∴四边形ABHG为平行四边形,∵,∴,根据勾股定理,得,∵AB=4,∴AB=BH,∴四边形ABHG为菱形;(2)①∵A(6,0),D(0,6),设直线AD的解析式为y=mx+n,,解得,故AD的解析式为y=﹣x+6,∵矩形OBEF的顶点,设点,代入解析式y=﹣x+6,得,解得,故点,过点G作GP⊥BA于点P,则,时,重叠部分是菱形ABHG,此时L=4AB=16;过点H作HN⊥BA于点N,∵A(6,0),,当<t≤10﹣时,重叠部分是四边形,此时BO′=10﹣t,,,BH=4;此时,∴L=;②根据题意,得F′O′的中点为M,矩形O′B′E′F′对角线的交点为N,则直线MN是矩形O′B′E′F′的对称轴,∴BN=EN,∵B(10,0),∴OB=10,∴O′B′=10,∴MN=5,MN∥O′B′,过点N作QN∥MA,交O′B′于点Q,则四边形QNMA是平行四边形,∴AQ=MN=5,AM=NQ,∴BQ=AQ﹣AB=1,∴AM+BN=NQ+NE,∵NQ+NE≥EQ,∴当E,N,Q三点共线时,AM+BN取得最小值,设MN与BE的交点为R,根据题意,得CN=BN=NQ,ER=BR,∴,∴MR=4.5,∵四边形MO′BR是矩形,∴O′B=4.5,O′A=0.5,OO′=5.5,过点H作HP⊥OB于点P,则四边形F′O′PH是矩形,∴FH=O′P=4.5﹣,AB=BH=4,∵A(6,0),D(0,6),∴OA=OD,∴∠OAD=45°,∴,,此时L 的值为:.【点评】本题考查了一次函数的性质,菱形的性质等,掌握一次函数的性质是解题的关键。
八年级数学下学期期末测试卷(含答案)
八年级数学下学期期末测试卷题号一二三总分得分注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. 木工师傅想利用木条制作一个直角三角形,那么下列各组数据不符合直角三角形的三边长的是( )A. 3,4,5B. 6,8,10C. 5,12,13D. 7,15,172. 要使二次根式√ 2x−4在实数范围内有意义,则x的取值范围是( )A. x>2B. x≥2C. x<2D. x=23. 下列各式计算正确的是( )A. √ 2+√ 3=√ 5B. 2+√ 2=2√ 2C. 3√ 2−√ 2=2√ 2D. √ 12−√ 10=√ 6−√ 524. 数形结合是解决数学问题常用的思想方法.如图,直线y=x+5和直线y=ax+b相交于点P,根据图象可知,方程x+5=ax+b的解是( )A. x=20B. x=5C. x=25D. x=155. 甲、乙、丙、丁四位同学3次数学成绩的平均分都是120分,方差分别是S2甲=8.6,S2乙=2.6,S2丙=5.0,S2丁=7.2,则这四位同学3次数学成绩最稳定的是()A. 甲B. 乙C. 丙D. 丁6. 下列不能确定四边形ABCD为平行四边形的是( )A. ∠A=∠C,∠B=∠DB. ∠A=∠B=∠C=90∘C. ∠A+∠B=180∘,∠B+∠C=180∘D. ∠A+∠B=180∘,∠C+∠D=180∘7. 棱形ABCD中,对角线AC=5,BD=12,则棱形的高等于()A. 1513B. 3013C. 6013D. 308. 如图,矩形ABCD中,AC、BD交于点O,M、N分别为BC、OC的中点,若∠ACB=30°,AB=8,则MN的长为()A. 2B. 4C. 8D. 169. 如图,在矩形ABCD中,AB=6,AD=4,DM=2,动点P从点A出发,沿路径A→B→C→M 运动,则△AMP的面积y与点P经过的路径长x之间的函数关系用图像表示大致是()A. B.C. D.10. 如图,在正方形ABCD中,E是BC边上的一点,BE=4,EC=8,将正方形边AB沿AE 折叠到AF,延长EF交DC于G,连接CF,现在有如下4个结论:①∠EAG=45°;②FG=FC;③FC//AG;④S△GFC=14其中正确结论的个数是()A. 1B. 2C. 3D. 4二、填空题(本大题共6小题,共18.0分)11. 在数轴上表示实数a的点如图所示,化简√ (a−5)2+|a−2|的结果为.12. 计算:(√ 3+√ 2)2−√ 24=______.13. 如图,在△ABC中,∠ACB=90°,以它的三边为边分别向外作正方形,面积分别为S1,S2,S3,已知S1=5,S2=12,则S3=________.14. 将直线y=2x+1的图象向下平移3个单位长度后所得直线的解析式是.15. 观察下列等式:①3−2√ 2=(√ 2−1)2,②5−2√ 6=(√ 3−√ 2)2,③7−2√ 12=(√ 4−√ 3)2,…请你根据以上规律,写出第6个等式______.16. 春耕期间,市农资公司连续8天调进一批化肥,并在开始调进化肥的第七天开始销售.若进货期间每天调进化肥的吨数与销售期间每天销售化肥的吨数都保持不变,这个公司的化肥存量s(单位:吨)与时间t(单位:天)之间的函数关系如图所示,则该公司这次化肥销售活动(从开始进货到销售完毕)所用的时间是______ 天.三、解答题(本大题共8小题,共52.0分。
八年级数学下册期末试卷(附含答案)精选全文完整版
可编辑修改精选全文完整版八年级数学下册期末试卷(附含答案)(满分:120分;考试时间:120分)一、选择题(共10小题,每小题3分,满分30分) 1、使1x -有意义的x 的取值范围是( )A x >1B x >-1C x ≥1D x ≥-1 2、在根式xy 、12、2ab 、x y -、2x y 中,最简二次根式有( )A 1个B 2个C 3个D 4个 3、下列计算正确的是( )A 20210=B 5630⨯=C 2236⨯=D 2(3)3-=- 4、一元二次方程x (x-2)=2-x 的根式( )A -1B 2C 1和2D -1和2 5、下列命题中,真命题的个数有( )①对角线互相平分的四边形是平行四边形; ②两组对角分别相等的四边形是平行四边形; ③一组对边平行,另一组对边相等的四边形是平行四边形;A 3个B 2个C 1个D 0个 6、在△ABC 中,三边长分别为a 、b 、c ,且a+c=2b ,c-a=12b ,则△ABC 是( )A 直角三角形B 等边三角形C 等腰三角形D 等腰直角三角形 7、某公司为了解职工参加体育锻炼情况,对职工某一周平均每天锻炼 (跑步或快走)的里程进行统计(保留整数),并将他们平均每天锻炼 的里程数据绘制成扇形统计图,关于他们平均每天锻炼里程数据 下列说法不正确的是( )A 平均每天锻炼里程数据的中位数是2B 平均每天锻炼里程数据的众数是2C 平均每天锻炼里程数据的平均数是2.34D 平均每天锻炼里程数不少于4km 的人数占调查职工的20% 8、疫情期间居民为了减少外出时间,更愿意使用APP 在线上购物,某购物APP 今年二月份用户比一月份增加了44%,三月份用户比二月份增加了21%,则二、三两个月用户的平均每月增长率是( )A 28%B 30%C 32%D 32.5% 9、有两个一元二次方程:M :ax 2+bx+c=0,N :cx 2+bx+a=0,以下四个结论中,错误的是( ) A 如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根 B 如果方程M 有两根符号相同,那么方程N 也有两根符号相同 C 如果5是方程M 的一个根,那么15是方程N 的一个根D 如果方程M和方程N有一个相同的实数根,那么这个跟必是x=110、△ABC中,∠C=30°,AC=6,BD是△ABC的中线,∠ADB=45°,则AB=()二、填空题(共6小题,每小题3分,满分18分)11的结果是12、已知关于x的一元二次方程x2-bx+8=0,一个根为2,则另一个根是13、有一棵9米高的大树,如果大树距离地面4米处这段(没有断开),则小孩至少离开大树米之处才是安全的。
八年级下册数学期末试卷及答案-数学期末八下
八年级下册数学期末试卷及答案-数学期末八下八年级下册数学期末试卷及答案一、选择题(本题共10小题,满分共30分)1.二次根式 $\sqrt{1}$,$2$,$12$,$30$,$x+2$,$40x^2$,$x^2+y^2$ 中,最简二次根式有()个。
A。
1个 B。
2个 C。
3个 D。
4个2.若式子 $\frac{x-2}{x-3}$ 有意义,则 $x$ 的取值范围为()。
A。
$x≥2$ B。
$x≠3$ C。
$x≥2$ 或$x≠3$ D。
$x≥2$ 且$x≠3$3.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是()A。
7,24,25 B。
1,1,1 C。
3,4,5 D。
11,13,244.在四边形 $ABCD$ 中,$O$ 是对角线的交点,能判定这个四边形是正方形的是()A。
$AC=BD$,$AB\parallel CD$,$AB=CD$ B。
$AD\parallel BC$,$\angle A=\angle C$C。
$AO=BO=CO=DO$,$AC\perp BD$ D。
$AO=CO$,$BO=DO$,$AB=BC$5.如下左图,在平行四边形 $ABCD$ 中,$\angle B=80°$,$AE$ 平分 $\angle BAD$ 交 $BC$ 于点 $E$,$CF\parallelAE$ 交 $AE$ 于点 $F$,则 $\angle 1=$()第7题)A。
40° B。
50° C。
60° D。
80°6.表示一次函数$y=mx+n$ 与正比例函数$y=mnx$($m$,$n$ 是常数且$mn≠0$)图象是()A。
直线 B。
双曲线 C。
抛物线 D。
指数函数7.如图所示,函数 $y_1=\frac{x}{2}$ 和$y_2=\frac{14}{x+3}$ 的图象相交于($-1$,$1$),($2$,$2$)两点.当 $y_1>y_2$ 时,$x$ 的取值范围是()A。
八年级下册数学期末试卷及答案
八年级下册数学期末试卷及答案、选择题(本题共10小题,满分共30分)1. 二次根式\ 2、空12、. 30、 x+2、•... 40X 、彳x 2亠y 2中,最简二次根 式有()个。
A 、1个B 、2个C 、3个D 、4个2. 若式子止2有意义,则x 的取值范围为().xdA 、x 》2B 、x 工3C 、x 或x 工3D 、x 且x 工33 .如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是()4、在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的是()A . 7,24,253-,4-,5B . 2 2 2C . 3,4, 54,7£,8三 D . 2 2(A ) AC=BD ,AB / CD AB=CD (C) AO=BO=CO=DO ,AC 丄BD(B) AD// BC / A=/C(D) AO=CO ,BO=DO ,AB=BC 5、如下左图,在平行四边形ABCD 中, ZB = 80 ° AE 平分/BAD 交BC 于点E ,CF/AE 交 A . 40 ° B . 50 °C . 60 ° AE 于点F ,则/1 =( )D . 80 °6、表示一次函数7•如图所示,函数 i |1 4y 1 = x 和 y x 的图象相交于(一1,1),(2, 2)两点.当y1 y3 3时,x 的取值范围是(y = mx+ n 与正比例函数 y = mnx (m 、 n 是常数且mn 工0图象是(y()D.、填空题(本题共10小题,满分共30分)12 .边长为6的大正方形中有两个小正方形, 若两个小正方形的面积分别为S 1, S 2,则S 1+S 2的值为()13.平行四边形 ABCD 的周长为20cm ,对角线AC 、BD 相交于点0,若厶BOC 的周长比△ AOB 的周长大2cm ,贝U CD = ______________ cm 。
八年级数学下册期末考试试卷(答案解析版)
八年级数学下册期末考试试卷(答案解析版)一.选择题1.下列各点中,位于直角坐标系第二象限的点是()A. (2,1)B. (﹣2,﹣1)C. (2,﹣1)D. (﹣2,1)2.在①平行四边形,②矩形,③菱形,④正方形中,既是轴对称图形,又是中心对称图形的是()A. ①②③④B. ②③C. ②③④D. ①③④3.如图,在Rt△ABC中,∠C=90°,如果AB=5,BC=3,那么AC等于()A. B. 3 C. 4 D. 54.下列条件中,能判定两个直角三角形全等的是()A. 一锐角对应相等B. 两锐角对应相等C. 一条边对应相等D. 两条直角边对应相等5.如图,如果CD是Rt△ABC的中线,∠ACB=90°,∠A=50°,那么∠CDB等于()A. 100°B. 110°C. 120°D. 130°6.如图,在▱ABCD中,对角线AC、BD相交于点O,点E是AD的中点,如果OE=2,AD=6,那么▱ABCD的周长是()A. 20B. 12C. 24D. 87.若一个多边形的内角和等于900°,则这个多边形的边数是()A. 8B. 7C. 6D. 58.如图,在四边形ABCD中,对角线AC与BD交于点O,下列条件中不一定能判定这个四边形是平行四边形的是()A. AB∥DC,AD=BCB. AD∥BC,AB∥DCC. AB=DC,AD=BCD. OA=OC,OB=OD9.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在0.15和0.45,则口袋中白色球的个数可能是()A. 28B. 24C. 16D. 610.对于函数y=x﹣1,下列结论不正确的是()A. 图象经过点(﹣1,﹣2)B. 图象不经过第一象限C. 图象与y轴交点坐标是(0,﹣1)D. y的值随x值的增大而增大11.函数y=2x和y=ax+4的图象相交于点A(m,3),则关于x的不等式2x<ax+4的解集为()A. x<B. x<C. x>﹣D. x<﹣12.如图,在矩形ABCD中,AB=2,AD=3,BE=1,动点P从点A出发,沿路径A→D→C→E运动,则△APE 的面积y与点P经过的路径长x之间的函数关系用图象表示大致是()A. B. C. D.二.填空题13.如图,四边形ABCD是菱形,如果AB=5,那么菱形ABCD的周长是________.14.点P(2,3)关于x轴的对称点的坐标为________.15.将直线y=2x向上平移4个单位,得到直线________.16.在一次函数y=﹣x+2的图象上有A(x1,y1),B(x2,y2)两点,若x1>x2,那么y1________y2.17.如图所示,已知△ABC的周长是18,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,则△ABC的面积是________.18.如图,在边长为4的正方形ABCD中,点E是边CD的中点,AE的垂直平分线交边BC于点G,交边AE 于点F,连接DF,EG,以下结论:①DF= ,②DF∥EG,③△EFG≌△ECG,④BG= ,正确的有:________(填写序号)三.解答题19.如图,在▱ABCD中,AE=CF.(1)求证:△ADE≌△CBF;(2)求证:四边形BFDE为平行四边形.20.如图,四边形草坪ABCD中,∠B=90°,AB=24m,BC=7m,CD=15m,AD=20m.(1)判断∠D是否是直角,并说明理由.(2)求四边形草坪ABCD的面积.21.某校为了解八年级学生的视力情况,对八年级的学生进行了一次视力调查,并将调查数据进行统计整理,绘制出如下频数分布表和频数分布直方图的一部分.视力频数(人)频率4.0≤x<4.3 20 0.14.3≤x<4.6 40 0.24.6≤x<4.9 70 0.354.9≤x<5.2 a 0.35.2≤x<5.5 10 b(1)在频数分布表中,a=________,b=________;(2)将频数分布直方图补充完整;(3)若视力在4.6以上(含4.6)均属正常,求视力正常的人数占被调查人数的百分比是多少?22.我国是一个严重缺水的国家.为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过6吨时,水价为每吨2元,超过6吨时,超过的部分按每吨3元收费.该市某户居民5月份用水x吨,应交水费y元.(1)若0<x≤6,请写出y与x的函数关系式.(2)若x>6,请写出y与x的函数关系式.(3)如果该户居民这个月交水费27元,那么这个月该户用了多少吨水?23.△ABC在平面直角坐标系中的位置如图所示,△ABC的顶点均在格点上,其中每个小正方形的边长为1个单位长度,将△ABC绕原点O旋转180°得△A1B1C1.(1)在图中画出△A1B1C1;(2)写出点A1的坐标________;(3)求出点C所经过的路径长.24.如图,AC是矩形ABCD的对角线,过AC的中点O作EF⊥AC,交BC于点E,交AD于点F,连接AE,CF.(1)求证:四边形AECF是菱形;(2)若AB= ,∠DCF=30°,求四边形AECF的面积.(结果保留根号)25.甲,乙两辆汽车分别从A,B两地同时出发,沿同一条公路相向而行,已知甲车匀速行驶;乙车出发2h 后休息,与甲车相遇后继续行驶,结果同时分别到达B,A两地.设甲、乙两车与B地的距离分别为y甲(km),y乙(km),甲车行驶的时间为x(h),y甲,y乙与x之间的函数图象如图所示,结合图象解答下列问题:(1)当0<x<2时,求乙车的速度;(2)求乙车与甲车相遇后y乙与x的关系式;(3)当两车相距20km时,直接写出x的值.26.如图,在平面直角坐标系xOy中,已知直线AB:y= x+4交x轴于点A,交y轴于点B.直线CD:y=﹣x﹣1与直线AB相交于点M,交x轴于点C,交y轴于点D.(1)直接写出点B和点D的坐标;(2)若点P是射线MD上的一个动点,设点P的横坐标是x,△PBM的面积是S,求S与x之间的函数关系;(3)当S=20时,平面直角坐标系内是否存在点E,使以点B、E、P、M为顶点的四边形是平行四边形?若存在,请直接写出所有符合条件的点E的坐标;若不存在,说明理由.答案解析部分一.<b >选择题</b>1.【答案】D【考点】点的坐标【解析】【解答】A、(2,1)在第一象限,A不符合题意;B、(﹣2,﹣1)在第三象限,B不符合题意;C、(2,﹣1)在第四象限,C不符合题意;D、(﹣2,1)在第二象限,D符合题意.故答案为:D.【分析】依据第二象限各点的横坐标为负数,纵坐标为正数解答即可.2.【答案】C【考点】中心对称及中心对称图形【解析】【解答】①只是中心对称图形;②、③、④两者都既是中心对称图形又是轴对称图形;故答案为:C.【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,然后依据上述方法进行判断即可.3.【答案】C【考点】勾股定理【解析】【解答】∵在Rt△ABC中,∠C=90°,AB=5,BC=3,∴AC= = =4.故答案为:C.【分析】依据勾股定理可得到AC=,然后将AB、BC的值代入计算即可.4.【答案】D【考点】直角三角形全等的判定【解析】【解答】两直角三角形隐含一个条件是两直角相等,要判定两直角三角形全等,起码还要两个条件,故可排除A、C;而B构成了AAA,不能判定全等;D构成了SAS,可以判定两个直角三角形全等.故答案为:D.【分析】判定两个直角三角形全等的方法有:SAS、SSS、AAS、ASA、HL五种,然后结合题目所给的条件进行判断即可.5.【答案】A【考点】直角三角形斜边上的中线【解析】【解答】∵CD是Rt△ABC的中线,∠ACB=90°,∴DC=DA,∴∠DCA=∠A=50°,∴∠CDB=∠DCA+∠A=100°,故答案为:A.【分析】首先依据在直角三角形中,斜边上的中线等于斜边的一半得到DC=DA,接下来,再依据等边对等角的性质得到∠DCA=∠A=50°,最后,依据三角形的外角的性质进行计算即可.6.【答案】A【考点】三角形中位线定理,平行四边形的性质【解析】【解答】∵▱ABCD对角线相交于点O,E是AD的中点,∴AB=CD,AD=BC=6,EO是△ABD的中位线,∴AB=2OE=4,∴▱ABCD的周长=2(AB+AD)=20.故答案为:A.【分析】首先依据平行四边形的性质可得到O为BD的中点,然后依据三角形的中位线的性质可得到AB=OE=4,然后再依据平行四边形的性质得到各边的长,最后再求得其周长即可.7.【答案】B【考点】多边形内角与外角【解析】【解答】设这个多边形的边数是n,则:(n﹣2)180°=900°,解得n=7故答案为:B.【分析】设这个多边形的边数是n,然后依据多边形的内角和公可得到180°(n﹣2)=900°,最后,再解这个关于n的方程即可.8.【答案】A【考点】平行四边形的判定【解析】【解答】A、“一组对边平行,另一组对边相等”是四边形也可能是等腰梯形,故本选项符合题意;B、根据“两组对边分别平行的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意;C、根据“两组对边分别相等的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意;D、根据“对角线互相平分的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意;故答案为:A.【分析】首先结合图形确定出其中的已知条件,然后再依据平行四边形的判定定理逐项进行判断即可. 9.【答案】C【考点】利用频率估计概率【解析】【解答】∵多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在0.15和0.45,∴摸到红色球、黑色球的概率分别为0.15和0.45,∴摸到白球的概率为1﹣0.15﹣0.45=0.4,∴口袋中白色球的个数可能为0.4×40=16.故答案为:C.【分析】先求得摸到白球的频率,最后依据频数=总数×频率进行计算即可.10.【答案】B【考点】一次函数的性质【解析】【解答】A、当x=﹣1时,y=x﹣1=﹣1﹣1=﹣2,则图象经过点(﹣1,﹣2),A不符合题意;B、由于k>0,b<0,则图象经过第一、三、四象限,B符合题意;C、当x=0时,y=﹣1,则图象与y轴交点交点坐标是(0,﹣1),C不符合题意;D、由于k=1>0,所以y的值随x值的增大而增大,D不符合题意.故答案为:B.【分析】对于A,将(-1,-2)代入直线的解析式进行判断即可;对于B,依据题意可知k>0,b<0,然后再依据一次函数的图像和性质进行判断即可;对于C,当x=0时,求得对应的y值,从而可得到直线与y轴交点的坐标;对于D,依据一次函数的图像和性质进行判断即可.11.【答案】B【考点】一次函数与一元一次不等式【解析】【解答】把A(m,3)代入y=2x得2m=3,解得m= ,把A(,3)代入y=ax+4得3= a+4,解得a=﹣,解不等式2x<﹣x+4得x<.故答案为:B.【分析】将点A的坐标代入两直线的解析式可求得m、a的值,然后将a的值代入不等式,得到关于x的一元一次不等式,最后,再解这个不等式即可.12.【答案】A【考点】分段函数,一次函数的图象,根据实际问题列一次函数表达式【解析】【解答】∵在矩形ABCD中,AB=2,AD=3,∴CD=AB=2,BC=AD=3,∵BE=1,∴CE=BC﹣BE=2,①点P在AD上时,△APE的面积y= x•2=x(0≤x≤3),②点P在CD上时,S△APE=S梯﹣S△ADP﹣S△CEP,形AECD= (2+3)×2﹣×3×(x﹣3)﹣×2×(3+2﹣x),=5﹣x+ ﹣5+x,=﹣x+ ,∴y=﹣x+ (3<x≤5),③点P在CE上时,S△APE= ×(3+2+2﹣x)×2=﹣x+7,∴y=﹣x+7(5<x≤7),故答案为:A.【分析】分为点P在AD上、点P在CD上、点P在CE上三种情况列出三角形的面积与x的关系,即y与x的关系式,然后依据关系可得到函数的大致图像,故此可得到问题的答案.二.<b >填空题</b>13.【答案】20【考点】菱形的性质【解析】【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD=5,∴菱形的周长为20,故答案为20【分析】依据菱形的四条边相等可得到BC=AB=CD=AD=5,然后再求得菱形的周长即可.14.【答案】(2,﹣3)【考点】关于x轴、y轴对称的点的坐标【解析】【解答】解:∵点P(2,3)∴关于x轴的对称点的坐标为:(2,﹣3).故答案为:(2,﹣3).【分析】依据关于x轴对称点的横坐标互为相反数,纵坐标相等进行解答即可.15.【答案】y=2x+4【考点】一次函数图象与几何变换【解析】【解答】解:直线y=2x向上平移4个单位后得到的直线解析式为y=2x+4.故答案为:y=2x+4.【分析】当直线y=kx+b(k≠0)平移时k不变,当向上平移m个单位,则平移后直线的解析式为y=kx+b+m.16.【答案】<【考点】一次函数的性质【解析】【解答】解:∵﹣1<0,∴直线y=﹣x+2上,y随x的增大而减小,∵x1>x2,∴y1<y2.故答案为:<.【分析】已知k=-1<0,一次函数的性质可知y随x的增大而减小,然后依据两点的横坐标的大小可得到它们纵坐标的大小关系.17.【答案】36【考点】角平分线的性质【解析】【解答】解:如图,过点O作OE⊥AB于E,作OF⊥AC于F,∵OB、OC分别平分∠ABC和∠ACB,OD⊥BC,∴OE=OD=OF=4,∴△ABC的面积= ×18×4=36.故答案为:36.【分析】过点O作OE⊥AB于E,作OF⊥AC于F,依据平分线的性质可得到OE=OD=OF,然后将三角形ABC 的面积转化为△ABO、△BCO、△ACO的面积之和求解即可.18.【答案】①④【考点】全等三角形的判定与性质,线段垂直平分线的性质,正方形的性质【解析】【解答】解:如图,设FG交AD于M,连接BE.∵四边形ABCD是正方形,∴AB=BC=CD=AD=4,∠ADC=∠C=90°,∵DE=EC=2,在Rt△ADE中,AE= = =2 .∵AF=EF,∴DF= AE= ,故①正确,易证△AED≌△BEC,∴∠AED=∠BEC,∵DF=EF,∴∠FDE=∠FED=∠BEC,∴DF∥BE,∵BE与EG相交,∴DF与EG不平行,故②错误,∵AE⊥MG,易证AE=MG=2 ,由△AFM∽△ADE,可知= ,∴FM= ,FG= ,在Rt△EFG中,EG= = ,在Rt△ECG中,CG= = ,∴BG=BC﹣CG=4﹣= ,故④正确,∵EF≠EC,FG≠CG,∴△EGF与△EGC不全等,故③错误,故答案为①④.【分析】设FG交AD于M,连接BE.对于①先依据勾股定理求得AE的长,然后依据直角三角形斜边上中线依据斜边的一半可得到DF的长;对于②,先证明DF∥BE,然后依据过一点有且只有一条直线与已知直线平行进行判断即可;对于③,依据全等三角形的判定定理可对③作出判断;对于④,先依据相似三角形的性质可求得FM和FG的长,然后依据勾股定理可求得EG和CG的长,最后依据BG=BC﹣CG可求得BG的长.三.<b >解答题</b>19.【答案】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,在△ADE和△CBF中,,∴△ADE≌△CBF(SAS)(2)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∵AE=CF,∴DF=EB,∵DF∥EB,∴四边形BFDE是平行四边形.【考点】全等三角形的判定与性质,平行四边形的判定与性质【解析】【分析】(1)首先依据平行四边形的性质可得到AD=BC,∠A=∠C,然后再根据SAS证明即可;(2)依据平行四边形的性质得到DC∥AB,DC=AB,然后再依据等式的性质可得到DF=BE,最后,再依据一组对边平行且相等的四边形为平行四边形进行证明即可.20.【答案】(1)解:∠D是直角,理由如下:连接AC,∵∠B=90°,AB=24m,BC=7m,∴AC2=AB2+BC2=242+72=625,∴AC=25(m).又∵CD=15m,AD=20m,152+202=252,即AD2+DC2=AC2,∴△ACD是直角三角形,或∠D是直角(2)解:S四边形ABCD=S△ABC+S△ADC= •AB•B C+ •AD•DC=234(m2).【考点】勾股定理的应用【解析】【分析】(1)连接AC,先根据勾股定理求出AC的长,再依据勾股定理的逆定理得到∠D是直角;(2)由题意可知S四边形ABCD=S△ABC+S△ADC,然后将四边形ABCD的面积转化为两个直角三角形的面积之和求解即可.21.【答案】(1)60;0.05(2)解:频数分布直方图如图所示,(3)解:视力正常的人数占被调查人数的百分比是×100%=70%.【考点】频数(率)分布表,频数(率)分布直方图【解析】【解答】解:(1)总人数=20÷0.1=200.∴a=200×0.3=60,b=1﹣0.1﹣0.2﹣0.35﹣0.3=0.05,故答案为60,0.05.(2)频数分布直方图如图所示,(3)视力正常的人数占被调查人数的百分比是×100%=70%.故答案为:(1)1;2;(2)见解答过程;(3)70%.【分析】(1)依据总数=频数÷频率可求得总人数,然后依据频数=总数×频率,频率=频数÷总数求解即可;(2)依据(1)中结果补全统计图即可;(3)依据百分比=频数÷总数求解即可.22.【答案】(1)解:根据题意可知:当0<x≤6时,y=2x;(2)解:根据题意可知:当x>6时,y=2×6+3×(x﹣6)=3x﹣6(3)解:∵当0<x≤6时,y=2x,y的最大值为2×6=12(元),12<27,∴该户当月用水超过6吨.令y=3x﹣6中y=27,则27=3x﹣6,解得:x=11.答:这个月该户用了11吨水.【考点】一次函数的应用【解析】【分析】(1)当0<x≤6时,根据“水费=用水量×2”可得出y与x的函数关系式;(2)当x>6时,根据“水费=6×2+(用水量-6)×3”可得出y与x的函数关系式;(3)当0<x≤6时,y≤12,由此可知这个月该户用水量超过6吨,将y=27代入y=3x-6中,得到关于x的一元一次方程,然后求得x的值即可.23.【答案】(1)解:如图所示,△A1B1C1即为所求;(2)(2,﹣4)(3)解:由勾股定理可得,CO=∴点C所经过的路径长为:×2×π× = π.【考点】图形的旋转,旋转的性质,作图-旋转变换【解析】【解答】解:(1)如图所示,△A1B1C1即为所求;(2)由图可得,点A1的坐标为(2,﹣4),(3)由勾股定理可得,CO= 10∴点C所经过的路径长为:×2×π× = π.故答案为:(1)见解答过程;(2)(2,﹣4);(3)π.【分析】(1)根据旋转角度、旋转方向、旋转中心,确定出对应点的位置,然后顺次连结对应点可得到△A1B1C1;(2)根据点A1在坐标系中的位置可得到点A1的坐标;(3)点C所经过的路径为以O为圆心,为半径的半圆,然后再依据弧长公式进行计算即可.24.【答案】(1)证明:∵O是AC的中点,且EF⊥AC,∴AF=CF,AE=CE,OA=OC,∵四边形ABCD是矩形,∴AD∥BC,∴∠AFO=∠CEO,在△AOF和△COE中,,∴△AOF≌△COE(AAS),∴AF=CE,∴AF=CF=CE=AE,∴四边形AECF是菱形(2)解:∵四边形ABCD是矩形,∴CD=AB= ,在Rt△CDF中,cos∠DCF= ,∠DCF=30°,∴CF= =2,∵四边形AECF是菱形,∴CE=CF=2,∴四边形AECF是的面积为:EC•AB=2【考点】菱形的判定,矩形的性质【解析】【分析】(1)首先根据线段垂直平分线的性质得到AF=CF,AE=CE,OA=OC,然后再证明△AOF ≌△COE,则可得AF=CE,从而可得到四边形的四条边都相等,故此可作出判断;(2)由四边形ABCD是矩形,易求得CD的长,然后利用三角函数求得CF的长,最后依据菱形的面积=底×高求解即可.25.【答案】(1)解:200÷2=100(km/h).答:当0<x<2时,乙车的速度为100km/h.(2)解:甲车的速度为(400﹣200)÷2.5=80(km/h),甲、乙两车到达目的地的时间为400÷80=5(h).设乙车与甲车相遇后y乙与x的关系式为y乙=kx+b,将点(2.5,200)、(5,400)代入y乙=kx+b,,解得:,∴乙车与甲车相遇后y乙与x的关系式为y乙=80x(2.5≤x≤5).(3)解:根据题意得:y乙= ,y甲=400﹣80x(0≤x≤5).当0≤x<2时,400﹣80x﹣100x=20,解得:x= >2(不合题意,舍去);当2≤x<2.5时,400﹣80x﹣200=20,解得:x= ;当2.5≤x≤5时,80x﹣(400﹣80x)=20,解得:x= .综上所述:当x的值为或时,两车相距20km.【考点】一次函数的应用【解析】【分析】(1)先根据函数图像确定乙车行驶2小时所行驶的路程,然后再根据速度=路程÷时间求解即可;(2)依据函数图像可得到甲车行驶2.5行驶的路程,然后根据速度=路程÷时间可求出甲车的速度,由时间=路程÷速度可求出甲、乙两车到达目的地的时间,再结合二者相遇的时间,利用待定系数法即可求出乙车与甲车相遇后y乙与x的关系式;(3)根据数量关系,找出y甲、y乙关于x的函数关系式,分0≤x<2、2≤x<2.5和2.5≤x≤5三种情况,列出关于x的一元一次方程,最后解关于x的一元一次方程即可.26.【答案】(1)解:∵点B是直线AB:y= x+4与y轴的交点坐标,∴B(0,4),∵点D是直线CD:y=﹣x﹣1与y轴的交点坐标,∴D(0,﹣1);(2)解:如图1,∵直线AB与CD相交于M,∴M(﹣5,),∵点P的横坐标为x,∴点P(x,﹣x﹣1),∵B(0,4),D(0,﹣1),∴BD=5,∵点P在射线MD上,即:x≥0时,S=S△BDM+S△BDP= ×5(5+x)= x+ ,(3)解:如图,由(1)知,S= x+ ,当S=20时,x+ =20,∴x=3,∴P(3,﹣2),①当BP是对角线时,取BP的中点G,连接MG并延长取一点E'使GE'=GE,设E'(m,n),∵B(0,4),P(3,﹣2),∴BP的中点坐标为(,1),∵M(﹣5,),∴= ,=1,∴m=8,n= ,∴E'(8,),②当AB为对角线时,同①的方法得,E(﹣9,6),③当MP为对角线时,同①的方法得,E''(﹣2,﹣),即:满足条件的点E的坐标为(8,)、(﹣9,6)、(﹣2,﹣).【考点】直线与坐标轴相交问题【解析】【分析】(1)将x=0代入函数解析式得到对应的y值,从而可得到点B和点D的坐标;(2)将所求三角形的面积转为△BDM和△BDP的面积之和,然后依据三角形的面积公式列出函数关系式即可;(3)分三种情况利用对角线互相平分的四边形是平行四边形和线段的中点坐标的确定方法即可得出结论.。
八年级下册数学期末试卷测试卷附答案
八年级下册数学期末试卷测试卷附答案一、选择题1.函数3y x =+中,自变量x 的取值范围是( ) A .x >3 B .x ≥3 C .x >﹣3 D .x ≥﹣3 2.下列各组数中,不能构成直角三角形的一组是 ( )A .7,24,25B .41,4,5C .3,4,5D .4,5,63.下列说法中:①一组对边平行,另一组对边相等的四边形是平行四边形 ②对角线相等的四边形是矩形 ③有一组邻边相等的矩形是正方形④对角线互相垂直的四边形是菱形,正确的个数是( ).A .1个 B .2个 C .3个D .4个4.一年级(1)班部分同学背诵课文《人之初》的时间(单位:s )26,42,30,40,29,29,27,29,28,30,设平均数为P ,众数为Z ,中位数为W ,则( ) A .P= ZB .P=WC .Z=WD .P= Z=W5.在 △ABC 中, AC = 9 , BC = 12 , AB = 15 ,则 AB 边上的高是( ) A .365B .1225C .94D .3346.如图,点E 为ABCD 边AD 上一点,将ABE △沿BE 翻折得到FBE ,点F 在BD 上,且EF DF =.52C ∠=︒那么ABE ∠的度数为( )A .38°B .48°C .51°D .62°7.如图所示,2AB =,则数轴上点C 表示的数为( )A .3B .5C 13D 58.如图1,在矩形ABCD 中,E 是CD 上一点,动点P 从点A 出发沿折线AE →EC →CB 运动到点B 时停止,动点Q 从点A 沿AB 运动到点B 时停止,它们的速度均为每秒1cm .如果点P 、Q 同时从点A 处开始运动,设运动时间为x (s ),△APQ 的面积为ycm 2,已知y 与x 的函数图象如图2所示,以下结论:①AB =5cm ;②cos ∠AED =35 ;③当0≤x ≤5时,y=225x ;④当x =6时,△APQ 是等腰三角形;⑤当7≤x ≤11时,y =55522x +.其中正确的有( )A .2个B .3个C .4个D .5个二、填空题9.若26x -有意义,则x 的取值范围是____________.10.菱形的两条对角线分别是6cm ,8cm ,则菱形面积为_________.11.如图一根竹子长为8米,折断后竹子顶端落在离竹子底端4米处,折断处离地面高度是________米.12.如图,在Rt ABC △中,90ACB ∠=︒,CD AB ⊥于点D ,3ACD BCD ∠=∠,点E 是斜边AB 的中点,若2CD =,则CE 的长为_____.13.若直线y=2x+1平移后过点(-1,2),则平移后直线的解析式为___________________.14.如图,已知矩形ABCD 中(AD >AB),EF 经过对角线的交点O ,且分别交AD ,BC 于E ,F ,请你添加一个条件:______,使四边形EBFD 是菱形.15.如图,直线142y x =-+与坐标轴分别交于点A ,B ,点P 是线段AB 上一动点,过点P作PM ⊥x 轴于点M ,作PN ⊥y 轴于点N ,连接MN ,则线段MN 的最小值为_________.16.如图,四边形ABCD是矩形纸片,AD=10,CD=8.在CD边上取一点E,将纸片沿AE 翻折,使点D落在BC边上的点F处.则AF=__;CF=__;DE=__.三、解答题17.计算:(1)80205-+;+-.(2)(53)(53)18.我国古代数学著作《九章算术》中“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,折断后竹子顶端落地,离竹子底端3尺处.折断处离地面的高度是多少?(1丈=10尺)19.如图,方格纸中的每个小正方形的边长均为1,小正方形的顶点称为格点.已知A、B、C都是格点.∠是直角,请在图1补全他的思路;(1)小明发现图2中ABC(2)请借助图3用一种不同于小明的方法说明ABC ∠是直角. 20.如图,在正方形ABCD 中,点E ,F 在AC 上,且AF CE =.求证:(1)BE DE =. (2)四边形BEDF 是菱形. 21.阅读下列材料,然后回答问题:在进行类似于二次根式231+的运算时,通常有如下两种方法将其进一步化简:方法一:222(31)2(31)3131(31)(31)(3)1--===-++-- 方法二:2231(3)1(31)(31)3131313131--+-====-++++(1)请用两种不同的方法化简:253+; (2)化简:111142648620202018++++++++.22.甲、乙两家采摘园的草莓品质相同,销售价格都是每千克50元,两家均推出了“周末”优惠方案,甲采摘园的优惠方案是:游客进园需购买100元的门票,采摘的草莓六折优惠;乙采摘园的优惠方案是:游客进园不需要购买门票,采摘的草莓超过6千克后,超过部分五折优惠.优惠期间,设某游客的草莓采摘量为x (x >6)千克,在甲采摘园所需总费用为y 1元,在乙采摘园所需总费用为y 2元. (1)求y 1、y 2关于x 的函数解析式; (2)如果你是游客你会如何选择采摘园? 23.图1,在正方形ABCD 中,,P 为线段BC 上一点,连接,过点B 作,交CD 于点Q .将沿所在直线对折得到,延长交于点N .(1)求证:.(2)若,求AN 的长.(3)如图2,延长交BA 的延长线于点,若,记的面积为,求与x 之间的函数关系式.24.如图,在平面直角坐标系xOy 中,直线384y x =-+分别交x 、y 轴于点A 、B ,将正比例函数2y x =的图像沿y 轴向下平移3个单位长度得到直线l ,直线l 分别交x 、y 轴于点C 、D ,交直线AB 于点E .(1)直线l 对应的函数表达式是__________,点E 的坐标是__________; (2)在直线AB 上存在点F (不与点E 重合),使BF BE =,求点F 的坐标; (3)在x 轴上是否存在点P ,使2PDO PBO ∠=∠?若存在,求点P 的坐标;若不存在,请说明理由.25.已知,△ABC 为等边三角形,BC 交y 轴于点D ,A (a ,0)、B (b ,0),且a 、b 满足方程269-10a a b +++=.(1)如图1,求点A 、B 的坐标以及CD 的长.(2)如图2,点P 是AB 延长线上一点,点E 是CP 右侧一点,CP=PE ,且∠CPE =60°,连接EB,求证:直线EB必过点D关于x轴的对称点.(3)如图3,若点M在CA延长线上,点N在AB的延长线上,且∠CMD=∠DNA,试求AN-AM的值是否为定值?若是请计算出定值是多少,若不是请说明理由.【参考答案】一、选择题1.D解析:D【分析】根据二次根式的意义,被开方数是非负数即可求解.【详解】解:根据题意得:x+3≥0,解得x≥﹣3.故自变量x的取值范围是x≥﹣3.故选D.【点睛】本题主要考查了二次根式有意义的条件,自变量的取值范围,解题的关键在于能够熟练掌握二次根式有意义的条件.2.D解析:D【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个三角形就不是直角三角形.【详解】解:A、72+242=252,能构成直角三角形,故此选项不符合题意;B、42+52=2,能构成直角三角形,故此选项不符合题意;C、32+42=52,能构成直角三角形,故此选项不符合题意;D、52+42≠62,不能构成直角三角形,故此选项符合题意.故选:D.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.3.A解析:A【解析】【分析】分别对各个结论进行判断,即可得出答案.【详解】解:一组对边平行,另一组对边相等的四边形可能是平行四边形或梯形,故①错误;对角线相等的平行四边形是矩形,,故②错误; 有一组邻边相等的矩形是正方形,故③正确; 对角线互相垂直平分的四边形是菱形,故④错误; 故选:A . 【点睛】本题主要考查平行四边形的判定、矩形的判定、正方形的判定、菱形的判定;熟练掌握特殊四边形的判定方法是解题的关键.4.C解析:C 【解析】 【分析】分别求出这组数据的平均数,中位数,众数进行判断即可. 【详解】解:由题意得:平均数264230402929272928303110P +++++++++==把这组数据重新排列如下:26,27,28,29,29,29,30,30,40,42, ∴处在最中间的两个数为29、29, ∴中位数2929292W +==, ∵29出现了3次,出现的次数最多, ∴众数29Z =, ∴Z W =, 故选C . 【点睛】本题主要考查了求中位数,众数和平均数,解题的关键在于能够熟练掌握三者的定义.5.A解析:A 【分析】首先由题目所给条件判断△ABC 是直角三角形,再按照面积法求解即可. 【详解】解:∵222291281144225AC BC +=+=+=,2215225AB ==, ∴222AC BC AB +=.∴△ABC 是直角三角形且90C =∠. ∴由直角三角形面积的计算方法1122S AC BC AB h ==,可知AB 边上的高是91236155⨯=. 故选A. 【点睛】本题考查了勾股定理的逆定理和用面积法求直角三角形斜边上的高的知识,属于基础题型.6.C解析:C 【解析】 【分析】由平行四边形的性质和折叠的性质得出∠BFE =∠A =52°,∠FBE =∠ABE ,由等腰三角形的性质和三角形的外角性质得出∠EDF =∠DEF =12∠BFE =26°,由三角形内角和定理求出∠ABD =102°,即可得出∠ABE 的度数. 【详解】解:∵四边形ABCD 是平行四边形, ∴∠A =∠C =52°,由折叠的性质得:∠BFE =∠A =52°,∠FBE =∠ABE , ∵EF =DF ,∴∠EDF =∠DEF =12∠BFE =26°, ∴∠ABD =180°-∠A -∠EDF =102°, ∴∠ABE =12∠ABD =51°, 故选:C . 【点睛】本题考查了平行四边形的性质、折叠的性质、等腰三角形的性质、三角形的外角性质、三角形内角和定理;熟练掌握平行四边形的性质和等腰三角形的性质是解决问题的关键.7.C解析:C 【解析】 【分析】根据题意得OB OC =,在Rt ABO 中,利用勾股定理可得13OB =,从而得到13OC OB ==,即可求解.【详解】 解:如图,由题意知:3OA =,2AB =,BA OC ⊥,OB OC =.90BAO ∴∠=︒.在Rt ABO 中,90BAO ∠=︒,22223213OB OA AB ∴=++13OC OB ∴=∴数轴上点C 13故选:C . 【点睛】本题主要考查了勾股定理,数轴与实数,尺规作图——作一条线段等于已知线段,熟练掌握相关知识点是解题的关键.8.B解析:B 【分析】根据图中相关信息即可判断出正确答案. 【详解】解:图2知:当57x ≤≤ 时y 恒为10,∴当5x =时,点Q 运动恰好到点B 停止,且当57x ≤≤ 时点P 必在EC 上, 5AB cm ∴=,故①正确; ∵当57x ≤≤ 时点P 必在EC 上,且当7x > 时,y 逐渐减小, ∴当7x = 时,点Q 在点B 处,点P 在点C 处,此时10y =,47BC cm AE EC cm ∴+=,=,设EC acm =,则7AE a cm =(﹣), 5DE a cm =(﹣), 在Rt ADE ∆ 中,由勾股定理得:222457a a +(﹣)=(﹣),解得:2a =,235EC cm DE cm AE cm ∴=,=,=, 35DE cos AED AE ∴∠==,故②正确; 当05x ≤≤ 时,由5AE cm = 知点P 在AE 上,过点P 作PH AB ⊥,如图:35DE cos EAB cos AED AE ∠∠===, 45sin EAB ∴∠=,AP AQ xcm ==,45PH xcm ∴=,212•25y AQ PH y ∴===x ,故③正确;当6x = 时,5AQ AB cm ==,172PQ cm AP cm =,=, APQ ∴∆ 不是等腰三角形,故④不正确;当711x ≤≤时,点P 在BC 上,点Q 和点B 重合,115555(74)2222y AQ PQ x x ==⨯⨯+-=-+ 故⑤ 不正确; 故选B . 【点睛】本题主要考查了动点问题的函数图像,理解题意,读懂图像信息,灵活运用所学知识是解题关键,属于中考选择题中的压轴题.二、填空题 9.3x ≥【解析】 【分析】根据被开方数大于或等于0,列式计算即可得解. 【详解】解:∵∴2x -6≥0, 解得x ≥3. 故答案为:x ≥3. 【点睛】本题考查二次根式有意义的条件.解题的关键是明确二次根式的被开方数是非负数. 10.24cm 2 【解析】 【分析】根据菱形面积的计算公式,即可求解. 【详解】解:菱形面积为对角线乘积的一半,可得菱形面积168242⨯⨯=(cm 2)故答案为24cm 2. 【点睛】此题主要考查了菱形面积的计算,掌握菱形面积的计算公式是解题的关键. 11.3 【解析】 【分析】竹子折断后刚好构成一直角三角形,设竹子折断处离地面x 米,则斜边为(8-x )米.利用勾股定理解题即可. 【详解】解:设竹子折断处离地面x 米,则斜边为(8-x )米, 根据勾股定理得:x 2+42=(8-x )2 解得:x=3.∴折断处离地面高度是3米,故答案为:3.【点睛】此题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题.12.2【分析】根据角之间的关系求得45DEC ∠=︒,从而求得CE 的长.【详解】解:∵3ACD BCD ∠=∠,90ACB ∠=︒∴22.5BCD ∠=︒又∵CD AB ⊥∴9022.5BCD B BAC ∠=︒-∠=∠=︒,90CDE ∠=︒又∵点E 是斜边AB 的中点∴CE AE =∴22.5ECA BAC ∠=∠=︒∴45BEC ∠=︒∴CDE △为等腰直角三角形 ∴2CE故答案为2.【点睛】此题主要考查了直角三角形的有关性质,熟练掌握勾股定理、斜边中线等于斜边一半等性质是解题的关键.13.2 4.y x =+【分析】由平移的性质可设平移后的解析式为:2y x b =+,再利用待定系数法求解即可得到答案.【详解】解:设平移后的解析式为:2y x b =+,把()1,2-代入2y x b =+得:()212,b ⨯-+=4,b ∴=所以平移后的解析式为:2 4.y x =+故答案为:2 4.y x =+【点睛】本题考查的是一次函数的图像的平移,及利用待定系数法求解函数解析式,掌握一次函数的平移的特点是解题的关键.14.E解析:EF ⊥BD【分析】通过证明△OBF ≌△ODE ,可证四边形EBFD 是平行四边形,若四边形EBFD 是菱形,则对角线互相垂直,因而可添加条件:EF ⊥BD .【详解】当EF ⊥BD 时,四边形EBFD 是菱形.理由:∵四边形ABCD 是矩形,∴AD ∥BC ,OB=OD ,∴∠FBO=∠EDO ,在△OBF 和△ODE 中EDO FBO BO DOEOD FOB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△OBF ≌△ODE (ASA ),∴OE=OF ,∴四边形EBFD 是平行四边形,∵EF ⊥BD ,∴四边形EBFD 是菱形.故答案为:EF ⊥BD.【点睛】本题考查了矩形的性质,平行四边形的判定,菱形的判定,以及全等三角形的判定方法,熟练掌握性质及判定方法是解答本题的关键.15.【分析】如图,连接,依题意,四边形是矩形,则,当时,最小,底面积法求得即可.【详解】如图,连接,PM ⊥x 轴,PN ⊥y 轴,四边形是矩形,,当时,最小,直线与坐标轴分别交于点A ,B ,【分析】如图,连接OP ,依题意,四边形OMPN 是矩形,则OP MN =,当OP AB ⊥时,OP 最小,底面积法求得OP 即可.【详解】如图,连接OP ,PM ⊥x 轴,PN ⊥y 轴,90AOB ∠=︒∴四边形OMPN 是矩形,∴OP MN =,∴当OP AB ⊥时,OP 最小, 直线142y x =-+与坐标轴分别交于点A ,B , 令0,4x y ==,)4(0,A ∴令0,8y x ==,(0,8)B ∴4,8OA OB ∴==,22224845AB OA OB ∴=++=当OP AB ⊥时,1122ABC S OA OB OP AB =⨯=⨯△, 8545OA OB OP AB ⨯∴=== ∴MN OP ==85. 85. 【点睛】 本题考查了矩形的性质,勾股定理,垂线段最短,找到MN OP =是解题的关键. 16.4 5【分析】先根据矩形的性质得AB=CD=8,在RtΔABF 中,利用勾股定理计算BF=6,再根据矩形的性质得AD=CB=10 ,则CF=BC−BF=4;设DE=x ,则EF=x解析:4 5【分析】先根据矩形的性质得AB=CD=8,在RtΔABF 中,利用勾股定理计算BF=6,再根据矩形的性质得AD=CB=10 ,则CF=BC−BF=4;设DE=x ,则EF=x , EC=8−x ,然后在 RtΔECF 中根据勾股定理得到42+(8−x)2=x 2 ,再解方程即可得到DE 的长.【详解】解:根据折叠可得AF =AD =10,∵四边形ABCD 是矩形,∴BC=AD=10,在Rt△ABF中, AB2+FB2=AF2,∴FB=6.∴FC=10﹣6=4,设DE=x,则EF=x,EC=8﹣x,在Rt△ECF中,∵CE2+FC2=EF2,∴42+(8﹣x)2=x2,解得x=5.则DE=5.故答案为:10,4,5.【点睛】本题考查了图形的折叠,矩形的性质和勾股定理,关键是掌握折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.三、解答题17.(1)3;(2)2【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用平方差公式计算即可.【详解】解:(1)原式=(2)原式=5﹣3=2.【点睛】本题考查的是二次根式解析:(1)2)2【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用平方差公式计算即可.【详解】解:(1)原式==(2)原式=5﹣3=2.【点睛】本题考查的是二次根式的加减运算,二次根式的混合运算,掌握利用平方差公式进行简便运算是解题的关键.18.55尺【分析】竹子折断后刚好构成一直角三角形,设竹子折断处离地面x尺,则斜边为(10﹣x )尺,利用勾股定理解题即可.【详解】设竹子折断处离地面x 尺,则斜边为(10﹣x )尺,根据勾股定理得:解析:55尺【分析】竹子折断后刚好构成一直角三角形,设竹子折断处离地面x 尺,则斜边为(10﹣x )尺,利用勾股定理解题即可.【详解】设竹子折断处离地面x 尺,则斜边为(10﹣x )尺,根据勾股定理得:x 2+32=(10﹣x )2.解得:x =4.55,答:折断处离地面的高度为4.55尺.【点睛】此题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题.19.(1)见解析;(2)见解析【解析】【分析】(1)先利用勾股定理求出三角形三边的长,然后用勾股定理的逆定理进行判断即可;(2)过A 点作于,过作于,然后证明≌,得到,在证明即可得到答案.【详解解析:(1)见解析;(2)见解析【解析】【分析】(1)先利用勾股定理求出三角形三边的长,然后用勾股定理的逆定理进行判断即可; (2)过A 点作AD BE ⊥于D ,过C 作CE DB ⊥于E ,然后证明ADB △≌BEC △,得到ABD BCE ∠=∠,在证明90ABD EBC ∠+∠=即可得到答案.【详解】解:(1)∵AB221310BC ,AC ∴222AB BC AC +=, ∴ABC 是直角三角形,∴90ABC ∠=.(2)过A 点作AD BE ⊥于D ,过C 作CE DB ⊥于E ,由图可知:AD BE =,BD CE =,90ADB BEC ∠=∠=,在ADB △和BEC △中,AD BE ADB BEC BD CE =⎧⎪∠=∠⎨⎪=⎩, ∴ADB △≌BEC △(SAS ),∴ABD BCE ∠=∠,在BEC △中,180BEC BCE EBC ∠+∠+∠=,∴18090BCE EBC BEC ∠+∠=-∠=,∴90ABD EBC ∠+∠=,∵D ,B ,E 三点共线,∴180ABD EBC ABC ∠+∠+∠=,∴()18090ABC ABD EBC ∠=-∠+∠=.【点睛】本题主要考查了勾股定理和勾股定理的逆定理,全等三角形的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.20.(1)见解析;(2)见解析【分析】(1)根据边角边证明全等即可得出结论;(2)同理可得,然后证明,即可得出,结论可得.【详解】解:(1)∵四边形是正方形,∴,,在和中,,∴,∴解析:(1)见解析;(2)见解析【分析】(1)根据边角边证明ABE ADE ≅△△全等即可得出结论;(2)同理可得BFC DFC ≅△△,然后证明()ABE CBF SAS ≅△△,即可得出BE BF DE DF ===,结论可得.【详解】解:(1)∵四边形ABCD 是正方形,∴AB AD CD BC ===,45DAE BAE BCF DCF ∠=∠=∠=∠=︒,在ABE △和ADE 中,AB AD BAE DAE AE AE =⎧⎪∠=∠⎨⎪=⎩, ∴()ABE ADE SAS ≅△△,∴BE DE =.(2)同理可得BFC DFC ≅△△,可得BF DF =,∵AF CE =,∴AF EF CE EF -=-,即AE CF =,在ABE △和CBF 中,AB BC BAE BCF AE CF =⎧⎪∠=∠⎨⎪=⎩, ∴()ABE CBF SAS ≅△△,∴BE BF =,∴BE BF DE DF ===,∴四边形BEDF 是菱形.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,菱形的判定等知识点,熟练掌握全等三角形的判定定理是解本题的关键.21.(1);(2)【解析】【分析】(1)首先理解题意,根据题目的解析,即可利用两种不同的方法化简求得答案;(2)结合题意,可将原式化为(-+-+-+…+-),继而求得答案.【详解】解:(1)解析:(12【解析】【分析】(1)首先理解题意,根据题目的解析,即可利用两种不同的方法化简求得答案;(2)结合题意,可将原式化为12,继而求得答案.【详解】解:(1)2()()222-(2)原式=1212. 故答案为2. 【点睛】 此题考查了分母有理化的知识.此题难度较大,解题的关键是理解题意,掌握分母有理化的两种方法.22.(1),;(2)当采摘量等于10千克时,在甲、乙两采摘园所需费用相同;当采摘量超过10千克时,选择乙采摘园;当采摘量超过6千克且少于10千克时,选择甲采摘园【分析】(1)根据题意列出关系式,化简解析:(1)130100y x =+,225150y x =+;(2)当采摘量等于10千克时,在甲、乙两采摘园所需费用相同;当采摘量超过10千克时,选择乙采摘园;当采摘量超过6千克且少于10千克时,选择甲采摘园【分析】(1)根据题意列出关系式,化简即可得到结论;(2)分别令12y y =,12y y >,12y y <求出对应x 的值或取值范围,从而得出结论.【详解】解:(1)由题意可得:1100500.630100y x x =+⨯=+,2506(6)500.525150y x x =⨯+-⨯⨯=+,即1y 关于x 的函数解析式是1230100,y x y =+关于x 的函数解析式是225150y x =+; (2)当12y y =时,即:3010025150x x +=+,解得10x =,即当采摘量等于10千克时,在甲、乙两采摘园所需费用相同;当12y y >时,即:3010025150x x +>+,解得10x >,即当采摘量超过10千克时,选择乙采摘园;当12y y <时,即:3010025150x x +<+,解得10x <,即当采摘量超过6千克且少于10千克时,选择甲采摘园;由上可得,当采摘量等于10千克时,在甲、乙两采摘园所需费用相同;当采摘量超过10千克时,选择乙采摘园;当采摘量超过6千克且少于10千克时,选择甲采摘园.【点睛】本题考查了一次函数的实际应用,正确理解题意列出函数关系式是解题的关键. 23.(1)证明见解析;(2);(3).【分析】(1)先证,再据ASA 证明△ABP ≌△BCQ ,可证得BP=CQ ;(2)连接,先证,得到,设AN=x ,用x 表示出ND ;再求出DQ 和的值,再在RT △NDQ解析:(1)证明见解析;(2);(3). 【分析】(1)先证,再据ASA 证明△ABP ≌△BCQ ,可证得BP=CQ ; (2)连接,先证,得到,设AN=x ,用x 表示出ND ;再求出DQ 和的值,再在RT △NDQ 中用勾股定理列方程求解;(3)作QG ⊥AB 于G ,先证MB=MQ 并设其为y ,再在RT △MGQ 中用勾股定理列出关于x 、y 的方程,并用x 表示y ;用y 表示出△MBQ 的面积,用x 表示出△的面积.最后据用x 、y 表示出S ,并把其中的y 用x 代换即可.【详解】(1)在正方形ABCD 中,,,,,,,.(2)在正方形ABCD 中连接,如下图:由折叠知BC=,又AB=BC,∠BAN=90°∴,,,,,,,设,,,,,.(3)如下图,作,垂足为G,由(1)知∵∠MBQ=∠CQB=∠MQB∴BM=MQ设,则.,,,故.【点睛】此题综合考查了正方形性质、三角形全等,勾股定理等知识点,其关键是要熟练掌握相关知识,能灵活应用.24.(1),;(2)存在,;(3)或【解析】【分析】(1)根据一次函数平移的方法求出直线l 对应的函数表达式,再联立两个直线解析式求出交点坐标;(2)作轴于M ,轴于N ,利用,得到F 点的横坐标,再代解析:(1)23y x =-,()4,5;(2)存在,()4,11F -;(3)()4,0P 或()4,0-【解析】【分析】(1)根据一次函数平移的方法求出直线l 对应的函数表达式,再联立两个直线解析式求出交点坐标;(2)作EM y ⊥轴于M ,FN y ⊥轴于N ,利用()EBM FBN AAS ≌,得到F 点的横坐标,再代入解析式求出F 点纵坐标即可;(3)在y 轴正半轴上取一点Q ,使3OQ OD ==,利用等腰三角形的性质得PBO BPQ ∠=∠,即可求出5PQ BQ ==,再由勾股定理求出OP 的长,得到点P 坐标. 【详解】解:(1)正比例函数2y x =的图像沿y 轴向下平移3个单位长度,得23y x =-, 联立两个直线解析式,得38423y x y x ⎧=-+⎪⎨⎪=-⎩,解得45x y =⎧⎨=⎩, ∴()4,5E ,故答案是:23y x =-,()4,5;(2)如图,作EM y ⊥轴于M ,FN y ⊥轴于N ,∴4EM =,90EMB FNB ∠=∠=︒,∵BE BF =,EBM FBN ∠=∠,∴()EBM FBN AAS ≌,∴4FN EM ==, 在384y x =-+中,当4x =-时,11y =, ∴()4,11F -;(3)易知()0,8B ,()0,3D -,∴8OB =,3OD =,如图,在y 轴正半轴上取一点Q ,使3OQ OD ==,∵90POB ∠=︒,OQ OD =,∴PQ PD =,∴PDO PQO PBO BPQ ∠=∠=∠+∠,∵2PDO PBO ∠=∠,∴PBO BPQ ∠=∠,∴5PQ BQ ==,∴由勾股定理得:4OP =,∴()4,0P 或()4,0-.【点睛】本题考查一次函数综合,解题的关键是掌握一次函数解析式的求法,以及利用数形结合思想解决一次函数与几何综合问题.25.(1)A (﹣3,0),B (1,0),CD =2;(2)证明见详解;(3)6,理由见详解;【分析】(1)由题意可知:a=-3,b=1,OA =3,OB =1,AB =BC =AC =4,在Rt △ODB 中,求出解析:(1)A (﹣3,0),B (1,0),CD =2;(2)证明见详解;(3)6,理由见详解;【分析】(1)由题意可知:a =-3,b =1,OA =3,OB =1,AB =BC =AC =4,在Rt △ODB 中,求出OD ,DB 即可解决问题.(2)如图2中,连接EC ,设BE 交PC 于K .由△ACP ≌△BCE (SAS ),推出∠APC =∠CEB ,可证∠KBP =∠KCE =60°勾股定理求出OF ,可得D ,F 关于x 轴对称,即可解决问题;(3)如图3中,作DH ⊥AC 于H .想办法证明△DHM ≌△DON 即可解决问题;【详解】解:(1)∵269-10a a b +++=∴23-10a b ++=()∴a =-3,b =1,∴A (﹣3,0),B (1,0),如图1中,∵△ABC 是等边三角形,∴∠ABC =60°,AB =BC =AC ,∵A (﹣3,0),B (1,0),∴OA =3,OB =1,∴AB =BC =AC =4,在Rt △ODB 中,30,ODB ∠=︒2,BD ∴=∴CD =BC ﹣BD =2.(2)如图2中,连接EC ,设BE 交PC 于K .∵CP=PE,∠CPE=60°,∴△CPE是等边三角形,∴∠PCE=60°,CP=CE,∵△ABC是等边三角形,∴∠ACB=∠PCE=60°,∴∠ACP=∠BCE,∵CA=CB,CP=CE,∴△ACP≌△BCE(SAS),∴∠APC=∠CEB,∵∠PKB=∠EKC,∠ECK+∠CKE+∠CEK=180°,∠KBP+∠PKB+∠KPB=180°,∴∠KBP=∠KCE=60°,∴∠OBF=∠PBK=60°,∵∠BOF=90°,OB=1,∴BF=2∴OF=22413-=-=,BF OB∵223,=-=OD BD OB∴OD=OF,∴D,F关于x轴对称,∴直线EB必过点D关于x轴的对称点.(3)是定值,理由如下:如图3中,作DH⊥AC于H.在Rt△CDH中,∵∠CHD=90°,∠C=60°,CD=2,∴CH=1,∴DH=∴AH=3,∵OD∴DH=OD,∵∠DHM=∠DON,∠M=∠DNO,∴△DHM≌△DON(AAS),∴HM=ON,∴AN﹣AM=OA+ON﹣(HM﹣AH)=3+3=6.【点睛】本题属于三角形综合题,考查了等边三角形的性质和判定,解直角三角形,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。
八年级数学下册期末试卷(附答案解析)
八年级数学下册期末试卷(附答案解析)学校:___________姓名:___________班级:_____________一、单选题(每题3分,共27分)1( )A B .C D 2.下列图形中,不是中心对称图形的是( )A .B .C .D .3.下列表达式中,y 是x 的函数的是( )A .2y x =B .||1y x =+C .||y x =D .221y x =-4.下列几组数中,能作为直角三角形三边长度的是( )A .2,3,4a b c ===B .5,6,8a b c ===C .5,12,13a b c ===D .7,15,12a b c === 5.下列运算中正确的是( )AB =C 2±D =6.下列说法不正确的是( )A .数据0、1、2、3、4、5的平均数是3B .选举中,人们通常最关心的数据是众数C .数据3、5、4、1、2的中位数是3D .甲、乙两组数据的平均数相同,方差分别是S 甲2=0.1,S 乙2=0.11,则甲组数据比乙组数据更稳定 7.如图①,正方形ABCD 在平面直角坐标系中,其中AB 边在y 轴上,其余各边均与坐标轴平行,直线:1l y x =-沿y 轴的正方向以每秒1个单位的速度平移,在平移的过程中,该直线被正方形ABCD 的边所截得的线段长为m (米),平移的时间为t (秒),m 与t 的函数图象如图①所示,则图①中b 的值为( )A .B .C .D .8.在下列给出的条件中,能判定四边形ABCD 是平行四边形的是( )A .//AB CD ,AD BC =B .A B ∠=∠,CD ∠=∠ C .//AD BC ,AD BC = D .AB AD =,CD BC =9.下列哪个点在一次函数34y x =-上( ).A .(2,3)B .(-1,-1)C .(0,-4)D .(-4,0)10.如图,菱形ABCD 的对角线AC 、BD 交于点O ,将①BOC 绕着点C 旋转180°得到B O C '',若AC =2,AB ='AB 的长是( )A .4B .C .5D .二、填空题(每题5分,共25分)11在实数范围内有意义,则x 应满足的条件是_____.12.一个正方形的面积是5,那么这个正方形的对角线的长度为_______.13.新定义[a ,b ]为一次函数y =ax +b (其中a ≠0,且a ,b 为实数)的“关联数”,若“关联数”[3,m +2]所对应的一次函数是正比例函数,则关于x 的方程1111x m+=-的解为____. 14.如图,已知面积为1的正方形ABCD 的对角线相交于点O ,过点O 任作一条直线分别交AD BC ,于E F ,,则阴影部分的面积是________.15.在平面直角坐标系中,若点P(x﹣2,x+1)关于原点的对称点在第四象限,则x的取值范围是_____.三、解答题16.(6分)计算:;)031+;17.在数轴上表示a、b、c三数点的位置如下图所示,化简:|c||a-b|.18.(6分)如图,四边形ABCD是平行四边形,AE①BC于E,AF①CD于F,且BE=DF.(1)求证:四边形ABCD是菱形;(2)连接EF,若①CEF=30°,BE=2,直接写出四边形ABCD的周长.19.(10分)2019年10月1日是新中国成立七十周年,某校为庆祝国庆,组织全校学生参加党史知识竞赛,从中抽取200名学生的成绩(得分取正整数,满分100分)进行统计,绘制了如图尚不完整的统计图表.200名学生党史知识竞赛成绩的频数表请结合表中所给的信息回答下列问题:(1)频数表中,a = ,b = ,c = ;(2)将频数直方图补充完整;(3)若该校共有1500名学生,请估计本次党史知识竞赛成绩超过80分的学生人数.20.(10分)某校有一露天舞台,纵断面如图所示,AC 垂直于地面,AB 表示楼梯,AE 为舞台面,楼梯的坡角①ABC =45°,坡长AB =2m ,为保障安全,学校决定对该楼梯进行改造,降低坡度,拟修新楼梯AD ,使①ADC =30°.(1)求舞台的高AC (结果保留根号);(2)求DB 的长度(结果保留根号).21.(10分)如图,直线6y kx =+与x 轴、y 轴分别交于点E 、点F ,点E 的坐标为()8,0-,点A 的坐标为()6,0-.(1)求一次函数的解析式;(2)若点(),P x y 是线段EF (不与点E 、F 重合)上的一点,试写出OPA ∆的面积S 与x 的函数关系式,并写出自变量x 的取值范围;(3)在(2)的条件下探究:当点P 在什么位置时,OPA ∆的面积为278,并说明理由. 22.(10分)如图,矩形ABCD 的对角线相交于点O ,分别过点C 、D 作//CE BD 、//DE AC ,CE 、DE 交于点E .(1)求证:四边形OCED 是菱形;(2)将矩形ABCD 改为菱形ABCD ,其余条件不变,连结OE .若10AC =,24BD =,则OE 的长为多少?23.(10分)某汽车运输公司根据实际需要计划购买大、中型两种客车共20辆,已知大型客车每辆62万元,中型客车每辆40万元,设购买大型客车x(辆),购车总费用为y(万元).(1)求y 与x 的函数关系式(不要求写出自变量x 的取值范围);(2)若购买中型客车的数量少于大型客车的数量,请你给出一种费用最省的方案,并求出该方案所需费用. 24.(10分)如图,ABC 中,D 是AB 边上任意一点,F 是AC 中点,过点C 作CE ①AB 交DF 的延长线于点E ,连接AE ,CD .(1)求证:四边形ADCE 是平行四边形:(2)若4BC =,45CAB ∠=︒,AC =AB 的长.参考答案与解析:1.D=故答案为:D .【点睛】本题考查了无理数化简的问题,掌握无理数化简的方法是解题的关键.2.B【分析】根据中心对称图形的概念对各选项分析判断即可得解.【详解】解:A 、是中心对称图形,故本选项错误;B 、不是中心对称图形,故本选项正确;C 、是中心对称图形,故本选项错误;D 、是中心对称图形,故本选项错误.故选:B .【点睛】本题考查中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.C【分析】根据函数的定义:在某一变化过程中有两个变量x 与y ,如果对x 的每一个值,y 都有唯一确定的值与之对应,那么就说x 是自变量,y 是x 的函数,进行求解即可.【详解】解:A 、2y x =,对于一个x ,存在有两个y 与之对应,例如:当x =1时,y =±1,y 不是x 的函数,故此选项不符合题意;B 、||1y x =+对于一个x ,存在有两个y 与之对应,例如:当x =1时,y =±2,y 不是x 的函数,故此选项不符合题意;C 、||y x =对于一个x ,对于任意的x ,y 都有唯一的值与之对应,y 是x 的函数,故此选项符合题意;D 、221y x =-对于一个x ,存在有两个y 与之对应,例如:当x =0时,y =±1,y 不是x 的函数,故此选项不符合题意;故选C .【点睛】本题主要考查了函数的定义,解题的关键在于能够熟记定义.4.C【分析】由勾股定理的逆定理逐一分析各选项,从而可得答案.【详解】解:22222223134,a b c +=+=≠= 故A 不符合题意;22222256618,a b c +=+=≠= 故B 不符合题意;22222251216913,a b c +=+=== 故C 符合题意;22222271219315,a c b +=+=≠= 故D 不符合题意;故选:.C【点睛】本题考查的是勾股定理的逆定理,掌握“利用勾股定理的逆定理判断三角形是不是直角三角形.”是解题的关键5.D【分析】根据二次根式的加法、混合运算以及二次根式的化简等知识逐一进行分析即可得.【详解】A.,故A 选项错误;B.42=-=2,故B 选项错误;C.2=,故C 选项错误;D.故选D.【点睛】本题考查了二次根式的混合运算以及二次根式的化简等知识,熟练掌握各运算的运算法则是解题的关键.6.A【详解】试题分析:A 、数据0、1、2、3、4、5的平均数是16×(0+1+2+3+4+5)=2.5,此选项错误; B 、选举中,人们通常最关心的数据是得票数最多的,即众数,此选项正确;C 、数据3、5、4、1、2从小到大排列后为1、2、3、4、5,其中位数为3,此选项正确;D 、①S 甲2<S 乙2,①甲组数据比乙组数据更稳定,此选项正确;故选A .考点:平均数;众数;中位数;方差.7.D【分析】先根据图①分析a 和b 的含义,先求出a 后再利用勾股定理求出b 即可.【详解】解:由图①可知,当直线l 运动a 秒时,m 的值最大为b ,当直线l 运动10秒时,m 的值又变为0,①可以得出直线l 运动到经过A 点时用了a 秒,经过D 点时用了10秒,①55a AB ==,,即正方形边长为5,①AC = ①b =故选:D .【点睛】本题考查了正方形的性质、勾股定理、一次函数的图象与性质等知识,解题关键是理解图象中的点的含义.8.C【分析】根据平行四边形的判定条件判断即可;【详解】根据分析可得当//AD BC ,AD BC =时,根据一组对边平行且相等的四边形是平行四边形能证明;故答案选C .【点睛】本题主要考查了平行四边形的判定,准确判断是解题的关键.9.C【详解】A 选项:①当x=2时,y=3×2-4=2≠3,①点(2,3)不在此函数的图象上,故本选项错误; B 选项:①当x=-1时,y=3×(-1)-4=-7≠-1,①点(-1,-1)不在此函数的图象上,故本选项错误; C 选项:当x=0时,y=0-4=-4,①点(0,-4)在此函数的图象上,故本选项正确;D 选项:当x=-4时,y=3×(-4)-4=-16≠0,①点(-4,0)不在此函数的图象上,故本选项错误. 故选C .10.C【分析】利用菱形的性质求出OB 的长度,再利用勾股定理求出'AB 的长即可.【详解】解:①菱形ABCD ,①BD ①AC ,AB =BC ,AO =OC =1在Rt①OBC 中,4OB =,①旋转,①OB O B ''=,90O '∠=︒,在Rt①AO B ''中,'5AB =,故选:C .【点睛】本题主要考查菱旋转和形的性质,能够利用勾股定理结合性质解三角形是解题关键.11.x ≥5.【分析】直接利用二次根式的定义分析得出答案.x﹣5≥0,解得:x≥5.故答案为:x≥5.【点睛】本题考查二次根式有意义的条件以及绝对值的性质,解题关键是掌握二次根式中的被开方数是非负数.12【详解】解:设正方形的对角线长为x,由题意得,12x2=5,解得13.5 3【详解】试题分析:根据“关联数”[3,m+2]所对应的一次函数是正比例函数,得到y=3x+m+2为正比例函数,即m+2=0,解得:m=-2,则分式方程为11112x-=-,去分母得:2-(x-1)=2(x-1),去括号得:2-x+1=2x-2,解得:x=53,经检验x=53是分式方程的解.考点:1.一次函数的定义;2.解分式方程;3.正比例函数的定义.14.1 4【详解】依据已知和正方形的性质及全等三角形的判定可知△AOE①①COF,则得图中阴影部分的面积为正方形面积的14,因为正方形的边长为1,则其面积为1,于是这个图中阴影部分的面积为14. 故答案为14. 15.﹣1<x <2【分析】根据题意可得点P 在第二象限,再利用第二象限内点的坐标符号可得关于x 的不等式组,然后解不等式组即可.【详解】解:①点P (x ﹣2,x +1)关于原点的对称点在第四象限,①点P 在第二象限,①2010x x -<⎧⎨+>⎩, 解得:﹣1<x <2,故答案为:﹣1<x <2.【点睛】此题主要考查了关于原点对称点的坐标,关键是掌握第二象限内点的坐标符号.16.(1)(2)4【分析】(1)根据二次根式的加减运算法则即可求出答案;(2)原式利用二次根式的除法,绝对值的意义,以及0指数幂的法则计算即可的到结果.(1==(2)031+(31=-+31+=4 【点睛】本题考查二次根式的混合运算,以及0指数幂,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.17.2a【分析】首先根据数轴可以确定,,a b c 的符号,以及各个绝对值数内的数的大小,然后即可去掉绝对值符号,从而对式子进行化简.【详解】解:根据数轴可以得到:0c a b <<<,且a b c <<,①c a b -()(),c c a b b a =-+++--,c c a a =-+++=2a .18.(1)见解析(2)16【分析】(1)根据平行四边形的性质可得①B =①D ,进而易证△ABE ≌△ADF (ASA ),即得出AB =AD ,进而即可求证结论:▱ABCD 是菱形;(2)由菱形的性质可知BC =CD ,进而可得CE =CF ,再由等腰三角形的性质和三角形内角和定理即可求出①ECF =120°,即求出①B =60°,最后利用含30°角的直角三角形的性质即可求出AB 的长,进而即可求出菱形的周长.(1)证明:①四边形ABCD 是平行四边形①①B =①D ,①AE ①BC ,AF ①CD ,①①AEB =①AFD =90°,在①AEB 和①AFD 中,B D BE DFAEB AFD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ①①AEB ①①AFD (ASA ),①AB =AD ,①四边形ABCD 是菱形.(2)如图,由(1)可知BC =CD ,①BE =DF ,①CE =CF ,①①CFE =①CEF =30°,①①ECF =180°−2①CEF =120°,①①B =180°−①ECF =60°,在Rt①ABE中,①BAE=30°,①24==,AB BE⨯=.①菱形ABCD的周长为4416【点睛】本题考查平行四边形的性质,菱形的判定和性质,全等三角形的判定和性质,等腰三角形的判定和性质以及含30°角的直角三角形的性质等知识.利用数形结合的思想是解答本题的关键.19.(1)20,80,0.32;(2)补全的频数分布直方图见解析;(3)本次党史知识竞赛成绩超过80分的学生有1080人.【分析】(1)根据频数表可直接进行求解;(2)由(1)可直接进行作图;(3)由(1)、(2)可得成绩超过80分的学生人数的频率,然后直接列式求解即可.【详解】(1)a=200×0.10=20,b=200×0.40=80,c=64÷200=0.32,故答案为:20,80,0.32;(2)由(1)知,a=20,b=20,补全的频数分布直方图见右图;(3)1500×(0.40+0.32)=1500×0.72=1080(人),即本次党史知识竞赛成绩超过80分的学生有1080人.【点睛】本题主要考查频数与频率,熟练掌握频数与频率是解题的关键.20.(2)m【分析】(1)在Rt △ABC 中,根据①ABC =45°,得到AC =BC =AB •sin45°=; (2)根据Rt △ADC 中,①ADC =30°,得到CD=tan AC ADC=∠推出BD =CD ﹣BC =)m . (1)解:①AC ①BC ,①①ACB =90°,①在Rt △ABC 中,AB =2m ,①ABC =45°,①①BAC =90°-①ABC =45°,①AC =BC =AB •sin45°=2×2m ),答:舞台的高ACm ; (2)在Rt △ADC 中,①ADC =30°,则CD=tan AC ADC==∠①BD =CD ﹣BC =)m ,答:DBm . 【点睛】本题考查了解直角三角形,熟练运用含30°角的直角三角形性质和含45°角的直角三角形的性质,是解决本题的关键.21.(1)364y x =+;(2)9184s x =+;80x -<<;(3)当P 的坐标为139,28⎛⎫- ⎪⎝⎭时,OPA ∆的面积为278,见解析【分析】(1)把点E 的坐标为(-8,0)代入6y kx =+求出k 即可解决问题;(2)△OP A 是以OA 长度6为底边,P 点的纵坐标为高的三角形,根据1••2PAO y SOA P =, 列出函数关系式即可;(3)利用(2)的结论,列出方程即可解决问题;【详解】解:(1)把()8,0E -代入6y kx =+中有086k =-+ ①34k = ①一次函数解析式为364y x =+ (2)如图:①OPA ∆是以OA 为底边,P 点的纵坐标为高的三角形①()6,0A -①6OA = ①1139666182244s y x x ⎛⎫=⨯⨯=⨯+=+ ⎪⎝⎭ 自变量x 的取值范围:80x -<<(3)当OPA ∆的面积为278时,有9271848x += 解得132x =-把132x =-代入一次函数364y x =+中,得98y = ①当P 的坐标为139,28⎛⎫- ⎪⎝⎭时,OPA ∆的面积为278 【点睛】本题考查一次函数综合题、三角形的面积、一元一次方程等知识,解题的关键是熟练掌握待定系数法确定函数解析式,学会构建一次函数或方程解决实际问题.22.(1)见解析;(2)13【分析】(1)先证明四边形OCED 是平行四边形,再根据矩形性质证明OC=OD ,即可证得结论;(2)根据菱形的性质和勾股定理可得到CD =13,再根据矩形的判定和性质即可得到OE 的长.【详解】(1)证明:①//DE AC 、//CE BD ,①四边形OCED 是平行四边形,①四边形ABCD 是矩形,①AC BD =,12OC AC =,12OD BD =, ①OC OD =,①四边形OCED 是菱形;(2)解:①四边形ABCD 是菱形,①AC BD ⊥,152OC AC ==,1122OD BD ==,①13CD ,①//DE AC 、//CE BD ,①四边形OCED 是平行四边形,①AC BD ⊥,①四边形OCED 是矩形,①13OE CD ==.【点睛】本题考查矩形的判定与性质、平行四边形的判定、菱形的判定与性质、勾股定理,熟练掌握相关知识的联系与运用是解答的关键.23.1)22800y x =+;(2)购买大型客车11辆,中型客车9辆时,购车费用最省,为1 042万元.【详解】试题分析:(1)根据购车的数量以及价格根据总费用直接表示出等式;(2)根据购买中型客车的数量少于大型客车的数量,得出y=22x+800,中x 的取值范围,再根据y 随着x 的增大而增大,得出x 的值.试题解析:(1)因为购买大型客车x 辆,所以购买中型客车(20)x -辆.()62402022800y x x x =+-=+.(2)依题意得< x . 解得x >10.① 22800y x =+,y 随着x 的增大而增大,x 为整数,① 当x=11时,购车费用最省,为22×11+800="1" 042(万元).此时需购买大型客车11辆,中型客车9辆.答:购买大型客车11辆,中型客车9辆时,购车费用最省,为1 042万元.考点:一次函数的应用24.(1)证明见解析(2)2【分析】(1)根据平行线的性质得到CAD ACE ∠=∠,ADE CED ∠=∠.根据全等三角形的性质得到AD CE =,于是得到四边形ADCE 是平行四边形;(2)过点C 作CG AB ⊥于点G ,根据等腰三角形的性质和勾股定理即可得到结论.(1)证明:①AB CE ,①CAD ACE ∠=∠,ADE CED ∠=∠.①F 是AC 中点,①AF CF =.在AFD △与CFE 中,CAD ACE ADE CED AF CF ∠∠⎧⎪∠∠⎨⎪=⎩==,①AFD CFE AAS ≌(),①AD CE =.①AB CE ,①四边形ADCE 是平行四边形;(2)解:过点C 作CG AB ⊥于点G ,在ACG 中,=90AGC ∠︒,4BC =,45CAB ∠=︒,AC =由勾股定理得(22228CG AG AC +===,①2CG AG ==,在BCG 中,90BGC ∠=︒,2CG =,4BC =,①BG =①2AB AG BG =+=.【点睛】本题考查了平行四边形的判定和性质,全等三角形的判定和性质,解直角三角形,正确的识别图形是解题的关键.。
新人教版八年级(下)数学期末试卷及答案
新人教版八年级(下)数学期末试卷及答案八年级下期末考试数学试题一、选择题(本小题共12小题,每小题3分,共36分)1、如果分式 $\frac{1}{x-1}$ 有意义,那么 x 的取值范围是A、$x>1$B、$x<1$C、$x\neq1$D、$x=1$2、已知反比例数 $y=\frac{k}{x}$ 的图象过点(2,4),则下面也在反比例函数图象上的点是A、(2,-4)B、(4,-2)C、(-1,8)D、(16,1)3、一直角三角形两边分别为3和5,则第三边为A、4B、$\frac{3}{4}$或$\frac{4}{3}$C、4或$\frac{4}{3}$ D、24、用两个全等的等边三角形,可以拼成下列哪种图形A、矩形B、菱形C、正方形D、等腰梯形5、菱形的面积为2,其对角线分别为 x、y,则 y 与 x 的图象大致为无法确定,需补充题意)6、小明妈妈经营一家服装专卖店,为了合理利用资金,小明帮妈妈对上个月各种型号的服装销售数量进行了一次统计分析,决定在这个月的进货中多进某种型号服装,此时小明应重点参考A、众数B、平均数C、加权平均数D、中位数7、王英在荷塘边观看荷花,突然想测试池塘的水深,她把一株竖直的荷花(如右图)拉到岸边,花柄正好与水面成60夹角,测得 AB 长60cm,则荷花处水深 OA 为A、120cmB、60$\sqrt{3}$cmC、60cmD、20$\sqrt{3}$cm8、如图,□ABCD的对角线 AC、BD 相交于 O,EF 过点O 与 AD、BC 分别相交于 E、F,若 AB=4,BC=5,OE=1.5,则四边形 EFCD 的周长为A、16B、14C、12D、109、如图,把菱形 ABCD 沿 AH 折叠,使 B 点落在 BC 上的 E 点处,若∠B=70,则∠EDC 的大小为A、10B、15C、20D、3010、下列命题正确的是A、同一边上两个角相等的梯形是等腰梯形;B、一组对边平行,一组对边相等的四边形是平行四边形;C、如果顺次连结一个四边形各边中点得到的是一个正方形,那么原四边形一定是正方形。
2023-2024学年浙江省杭州市上城区八年级(下)期末数学试卷及答案解析
2023-2024学年浙江省杭州市上城区八年级(下)期末数学试卷一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(3分)下列方程中是一元二次方程的是()A.x+y2=2B.x+4=2C.x2+4x=2D.2.(3分)下列电视台标志是中心对称图形的是()A.B.C.D.3.(3分)下列运算正确的是()A.B.C.D.4.(3分)一个多边形的内角和是外角和的2倍,这个多边形是()A.三角形B.四边形C.五边形D.六边形5.(3分)在平面直角坐标系中,反比例函数的图象如图所示,则k的值可能..是()A.﹣2B.1C.3D.56.(3分)我们从电视上看到一些大型比赛,通常有若干个评委现场打分,在公布得分时,主持人会说:“去掉一个最高分,去掉一个最低分,×××的最后得分是…”根据你的经验,去掉一个最高分和一个最低分之后,统计量一定不会发生变化的是()A.平均数B.众数C.方差D.中位数7.(3分)用反证法证明:等腰Rt△ABC中,∠C=90°,∠B>∠A,则∠A<45°,第一步应假设()A.∠A<45°B.∠A>45°C.∠A≤45°D.∠A≥45°8.(3分)如图,在▱ABCD中,DB=DC,AE⊥BD于点E,则()A.∠BAE+∠C=90°B.∠C﹣∠BAE=90°C.2∠C﹣∠BAE=90°D.2∠C+∠BAE=180°9.(3分)反比例函数,,当a≤x≤b(b,a为常数,且b>a>0)时,y1的最小值为m,y2的最大值为n,则的值为()A.﹣2B.C.﹣或﹣2D.10.(3分)在菱形ABCD中,点O为对角线BD的中点,点E、F分别为线段AB、AD上的点,EO的延长线交线段CD于点H,FO的延长线交线段CB于点G,连接EG、GH、HF、FE.以下结论:①EF =GH;②若EG⊥BD,则AE=CG;③存在无数个点E,使得四边形EFHG为菱形;④若四边形EFHG 为矩形,则AE=AF,其中正确的结论是()A.①②③B.③④C.①②④D.①②③④二、填空题;本大题有6个小题,每小题3分,共18分。
2023-2024学年八年级第二学期期末考数学试卷附答案
第1页(共23页)2023-2024学年八年级下学期期末考数学试卷
一、选择题(本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)
1.(3分)下列图形是中心对称图形但不是轴对称图形的是()
A .
B .
C .
D .2.(3分)若−2在实数范围内有意义,则x 的取值范围(
)A .x ≥2B .x ≤2C .x >2
D .x <23.(3分)下列调查中,适合采用全面调查方式的是(
)A .对大运河水质情况的调查B .对端午节期间市场上粽子质量情况的调查
C .对某班40名同学体重情况的调查
D .对江苏省中小学的视力情况的调查
4.(3分)下列各式中,与2是同类二次根式的是()A .24B .18C .4
D .125.(3分)下列式子从左到右变形不正确的是()A .33=B .−=−C .2+2r
=a +b D .K11−=−16.(3分)已知点A (﹣2,y 1)、B (1,y 2)、C (3,y 3)三点都在反比例函数y =(k <0)的图象上,则下列关系正确的是(
)A .y 2<y 3<y 1B .y 3<y 2<y 1C .y 1<y 3<y 2D .y 1<y 2<y 3
7.(
3分)如图,已知四边形ABCD 是平行四边形,下列结论中错误的是(
)A .当AB =BC 时,它是菱形
B .当A
C ⊥B
D 时,它是菱形C .当AC =BD 时,它是矩形D .当∠ABC =90°时,它是正方形
8.(3分)如图,矩形ABCD 的对角线AC 、BD 交于点O ,∠AOD =60°,AD =
3,则BD 的长为()。
八年级下册数学期末试卷测试卷附答案
八年级下册数学期末试卷测试卷附答案 一、选择题 1.式子10x -在实数范围内有意义,则x 的取值范围是( )A .x ≥10B .x ≠10C .x ≤10D .x >10 2.以下列三段线段的长为三边的三角形中,不能构成直角三角形的是( ) A .6,8,10 B .5,12,13 C .111,,345 D .9,40,413.在下列条件中,不能判定四边形为平行四边形的是( )A .对角线互相平分B .一组对边平行且相等C .两组对角分别相等D .对角线互相垂直 4.比赛中给一名选手打分时,经常会去掉一个最高分,去掉一个最低分,这样的评分方式一定不会改变选手成绩数据的( )A .众数B .平均数C .中位数D .方差5.如图,将△ABC 放在正方形网格中(图中每个小正方形边长均为1)点A ,B ,C 恰好在网格图中的格点上,那么∠ABC 的度数为( )A .90°B .60°C .30°D .45°6.如图,在Rt ABC 中,90ABC ∠=︒,点D 在边AC 上,2AB =,BD CD =,2BC AB =.若ABD △与EBD △关于直线BD 对称,则线段CE 的长为( )A .655B .755C .855D .9557.如图,将长方形纸片ABCD 沿AE 折叠,使点D 恰好落在BC 边上点F 处,若AB =3,AD =5,则EC 的长为( )A .1B .53C .32D .438.如图,直线m 与n 相交于点()1,3C ,m 与x 轴交于点()2,0D -,n 与x 轴交于点()2,0B ,与y 轴交于点A .下列说法错误的是( ).A .m n ⊥B .AOB DCB ∆∆≌C .BC AC =D .直线m 的函数表达式为3333y x =+ 二、填空题9.当代数式241x x --有意义时,x 应满足的条件_____. 10.已知菱形的两条对角线长分别为1和4,则菱形的面积为______.11.由四个全等的直角三角形组成如图所示的“赵爽弦图”,若直角三角形两直角边边长的和为3,面积为1,则图中阴影部分的面积为____________ .12.如图,在△ABC 中,点D ,E 分别是边AB ,AC 的中点,点F 是线段DE 上的一点.连接AF ,BF ,∠AFB =90°,且AB =10,BC =16,则EF 的长是_______13.在平面直角坐标中,点A (﹣3,2)、B (﹣1,2),直线y =kx (k ≠0)与线段AB 有交点,则k 的取值范围为___.14.如图,矩形ABCD 中,直线MN 垂直平分AC ,与CD ,AB 分别交于点M ,N .若DM =2,CM =3,则矩形的对角线AC 的长为_____.15.如图,将一块等腰直角三角板ABC 放置在平面直角坐标系中,90,ACB AC BC ∠=︒=,点A 在y 轴的正半轴上,点C 在x 轴的负半轴上,点B 在第二象限,AC 所在直线的函数表达式是22y x =+,若保持AC 的长不变,当点A 在y 轴的正半轴滑动,点C 随之在x 轴的负半轴上滑动,则在滑动过程中,点B 与原点O 的最大距离是_______.16.如图,矩形ABCD 中,AB=8,AD=5,点E 为DC 边上一个动点,把△ADE 沿AE 折叠,点D 的对应点D ’落在矩形ABCD 的对称轴上时,DE 的长为____________.三、解答题17.计算: ①33118(3)2⨯+-; ②2(32)24-+.18.如图,一根直立的旗杆高8米,一阵大风吹过,旗杆从点C 处折断,顶部(B )着地,离旗杆底部(A )4米,工人在修复的过程中,发现在折断点C 的下方1.25米D 处,有一明显裂痕,若下次大风将旗杆从D 处吹断,则距离旗杆底部周围多大范围内有被砸伤的危险?19.如图,每个小正方形的边长都为1,AB 的位置如图所示.(1)在图中确定点C ,请你连接CA ,CB ,使CB ⊥BA ,AC =5;(2)在完成(1)后,在图中确定点D ,请你连接DA ,DC ,DB ,使CD =10,AD =17,直接写出BD 的长.20.如图,ABCD 的对角线AC 的垂直平分线与AD 、BC 分别交于E 、F ,垂足为点O .(1)求证:四边形AFCE 是菱形. (2)若2AE ED =,6AC =,4EF =,则ABCD 的面积为 .21.阅读下列材料,然后回答问题:31+的运算时,通常有如下两种方法将其进一步化简: 22(31)2(31)3131(31)(31)(3)1--==++-- 2(3)1(31)(31)3131313131-+-====++++ (153+ (242648620202018++++++ 22.振兴加工厂中甲,乙两组工人同时加工某种零件,乙组在工作中有一段时间停产更换设备,更换设备后,乙组的工作效率是原来的2.5倍.两组各自加工零件的数量y (件)与时间x (时)之间的函数图象如图所示.(1)求甲组加工零件的数量y 与时间x 之间的函数解析式;(2)求出图中a 的值及乙组更换设备后加工零件的数量y 与时间x 之间的函数解析式.23.如图1,在一个平面直角三角形中的两直角边的平方之和一定等于斜边的平方。
八年级下期末数学试卷(解析版)
八年级(下)期末数学试卷姓名成绩一、选择题(本题有10个小题.每小题3分.共30分)1.在4(x﹣1)(x+2)=5.x2+y2=1.5x2﹣10=0.2x2+8x=0.=x2+3中.是一元二次方程的个数为()A.2个 B.3个 C.4个 D.5个2.下列四组线段中.能组成直角三角形的是()A.a=1.b=2.c=3 B.a=2.b=3.c=4 C.a=2.b=4.c=5 D.a=3.b=4.c=53.函数y=kx+b的图象如图所示.则()(4题)A.k>0.b>0 B.k>0.b<0 C.k<0.b>0 D.k<0.b<04.如图.把矩形ABCD沿EF对折后使两部分重合.若∠1=50°.则∠AEF=()A.110°B.115°C.120°D.130°5.下列命题中.真命题的个数有()①对角线相等的四边形是矩形;②三条边相等的四边形是菱形;③一组对边平行且相等的四边形是平行四边形.A.3个B.2个C.1个D.0个6.三角形的三边长为a.b.c.且满足(a+b)2=c2+2ab.则这个三角形是()A.等边三角形B.钝角三角形C.直角三角形D.锐角三角形7.关于x的一元二次方程x2﹣2x+2k=0有实数根.则k的取值范围是()A.B.k≤C.D.k≥8.若把一次函数y=2x﹣3的图象向上平移3个单位长度.得到图象对应的函数解析式为()A.y=2x B.y=2x﹣6 C.y=4x﹣3 D.y=﹣x﹣39.如图.在正方形ABCD外侧.作等边三角形ADE.AC.BE相交于点F.则∠BFC为()A.75°B.60°C.55°D.45°10.小明的爸爸早晨出去散步.从家走了20分到达距离家800米的公园.他在公园休息了10分.然后用30分原路返回家中.那么小明的爸爸离家的距离S(单位:米)与离家的时间t(单位:分)之间的函数关系图象大致是()A.B.C.D.二、填空题:每题4分.共36分.11.在函数y=中.自变量x的取值范围是.12.若x=2是一元二次方程x2+x+c=0的一个解.则c2=.13.正比例函数y=kx的图象经过点(﹣2.4).则k=.14.如图.在▱ABCD中.∠B=60°.∠BCD的平分线交AD点E.若CD=3.四边形ABCE 的周长为13.则BC长为.15.一次函数y=2x﹣3的图象不经过第象限.16.一个凸多边形共有35条对角线.它是边形.17.四边形ABCD为菱形.该菱形的周长为16.面积为8.则∠ABC为度.18.某厂前年的产值为50万元.今年上升到72万元.这两年的年平均增长率是.19.如图.BD为矩形ABCD的对角线.点E在BC上.连接AE.AE=5.EC=7.∠C=2∠DAE.则BD=.(19题)三、解答题:共54分.20(10分).解下列方程:(1)x(x﹣1)=2(x﹣1)(2)2x2﹣x﹣4=0.21(8分).如图所示网格是由边长为1的小正方形组成.点A.B.C位置如图所示.在网格中确定点D.使以A.B.C.D为顶点的四边形的所有内角都相等.(1)确定点D的位置并画出以A.B.C.D为顶点的四边形;(2)直接写出(1)中所画出的四边形的周长和面积.22(9分).如图.点E.F为▱ABCD的对角线BD上的两点.连接AE.CF.∠AEB=∠CFD.求证:AE=CF.23(13分).如图.△ABC中.∠C=90°.BC=5厘米.AB=5厘米.点P从点A出发沿AC边以2厘米/秒的速度向终点C匀速移动.同时.点Q从点C出发沿CB边以1厘米/秒的速度向终点B匀速移动.P、Q两点运动几秒时.P、Q两点间的距离是2厘米?24(14分).利民商店经销某种商品.该种商品的进价为每件80元.该商店销售商品每件售价高于进价但每件售价不超过120元.当售价定为每件120元时每天可售出200件.该商品销售单价在120元的基础上.每降1元.该种商品每天可多售出10件.设该商品的销售单价为x元.每天售出商品的数量为y件.(1)求y与x之间的函数关系式;(不必写出自变量x的取值范围)(2)利民商店在销售该商品时除成本外每天还需支付各种费用1000元.该商店某天销售该商品共获利8000元.求这一天的销售单价为多少元?八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题有10个小题.每小题3分.共30分)1.在4(x﹣1)(x+2)=5.x2+y2=1.5x2﹣10=0.2x2+8x=0.=x2+3中.是一元二次方程的个数为()A.2个 B.3个 C.4个 D.5个【考点】一元二次方程的定义.【分析】根据一元二次方程的定义:只含有一个未知数.并且未知数的最高次数是2的整式方程叫一元二次方程进行分析即可.【解答】解:4(x﹣1)(x+2)=5.5x2﹣10=0.2x2+8x=0.是一元二次方程.共3个.故选:B.2.下列四组线段中.能组成直角三角形的是()A.a=1.b=2.c=3 B.a=2.b=3.c=4 C.a=2.b=4.c=5 D.a=3.b=4.c=5【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理对各选项进行逐一分析即可.【解答】解:A、∵12+22=5≠32.∴不能构成直角三角形.故本选项错误;B、∵22+32=13≠42.∴不能构成直角三角形.故本选项错误;C、∵22+42=20≠52.∴不能构成直角三角形.故本选项错误;D、∵32+42=25=52.∴能构成直角三角形.故本选项正确.故选D.3.函数y=kx+b的图象如图所示.则()A.k>0.b>0 B.k>0.b<0 C.k<0.b>0 D.k<0.b<0【考点】一次函数图象与系数的关系.【分析】根据函数y=kx+b的图象所经过的象限与单调性回答.【解答】解:根据图象知.函数y=kx+b的图象经过第一、二、四象限.∴k<0.b>0.故选C.4.如图.把矩形ABCD沿EF对折后使两部分重合.若∠1=50°.则∠AEF=()A.110°B.115°C.120° D.130°【考点】翻折变换(折叠问题).【分析】根据折叠的性质.对折前后角相等.【解答】解:根据题意得:∠2=∠3.∵∠1+∠2+∠3=180°.∴∠2=÷2=65°.∵四边形ABCD是矩形.∴AD∥BC.∴∠AEF+∠2=180°.∴∠AEF=180°﹣65°=115°.故选B.5.下列命题中.真命题的个数有()①对角线相等的四边形是矩形;②三条边相等的四边形是菱形;③一组对边平行且相等的四边形是平行四边形.A.3个 B.2个 C.1个 D.0个【考点】命题与定理.【分析】利用矩形的判定方法、菱形的判定方法及平行四边形的判定方法分别判断后即可确定正确的选项.【解答】解:①对角线相等且平分的四边形是矩形.故错误.错误.是假命题;②三条边相等的四边形是菱形.错误.是假命题;③一组对边平行且相等的四边形是平行四边形.正确.是真命题.故选C.6.三角形的三边长为a.b.c.且满足(a+b)2=c2+2ab.则这个三角形是()A.等边三角形B.钝角三角形C.直角三角形D.锐角三角形【考点】勾股定理的逆定理.【分析】对等式进行整理.再判断其形状.【解答】解:化简(a+b)2=c2+2ab.得.a2+b2=c2所以三角形是直角三角形.故选:C.7.关于x的一元二次方程x2﹣2x+2k=0有实数根.则k的取值范围是()A.B.k≤C.D.k≥【考点】根的判别式.【分析】判断上述方程的根的情况.只要看根的判别式△=b2﹣4ac的值的符号就可以了.【解答】解:∵a=1.b=﹣2.c=2k.∴△=b2﹣4ac=22﹣4×1×(2k)=4﹣8k.关于x的一元二次方程x2﹣2x+2k=0有实数根.∴4﹣8k≥0.解得k≤.故选B.8.若把一次函数y=2x﹣3的图象向上平移3个单位长度.得到图象对应的函数解析式为()A.y=2x B.y=2x﹣6 C.y=4x﹣3 D.y=﹣x﹣3【考点】一次函数图象与几何变换.【分析】根据上下平移k不变.b值加减即可得出答案.【解答】解:将直线y=2x﹣3向上平移3个单位后的直线解析式y=2x﹣3+3=2x.故选A9.如图.在正方形ABCD外侧.作等边三角形ADE.AC.BE相交于点F.则∠BFC为()A.75°B.60°C.55°D.45°【考点】正方形的性质;全等三角形的判定与性质;等边三角形的性质.【分析】由正方形的性质和等边三角形的性质得出∠BAE=150°.AB=AE.由等腰三角形的性质和内角和得出∠ABE=∠AEB=15°.再运用三角形的外角性质即可得出结果.【解答】解:∵四边形ABCD是正方形.∴∠BAD=90°.AB=AD.∠BAF=45°.∵△ADE是等边三角形.∴∠DAE=60°.AD=AE.∴∠BAE=90°+60°=150°.AB=AE.∴∠ABE=∠AEB==15°.∴∠BFC=∠BAF+∠ABE=45°+15°=60°;故选:B.10.小明的爸爸早晨出去散步.从家走了20分到达距离家800米的公园.他在公园休息了10分.然后用30分原路返回家中.那么小明的爸爸离家的距离S(单位:米)与离家的时间t(单位:分)之间的函数关系图象大致是()A.B.C.D.【考点】函数的图象.【分析】本题是分段函数的图象问题.要根据行走.休息.回家三个阶段判断.【解答】解:第10﹣20分.离家的距离随时间的增大而变大;20﹣30分.时间增大.离家的距离不变.函数图象与x轴平行;30﹣60分.时间变大.离家越来越近.故选:D.二、填空题:每题3分.共30分.11.在函数y=中.自变量x的取值范围是x≠﹣2.【考点】函数自变量的取值范围.【分析】根据分式有意义.分母不等于0列式计算即可得解.【解答】解:由题意得.x+2≠0.解得x≠﹣2.故答案为:x≠﹣2.12.若x=2是一元二次方程x2+x+c=0的一个解.则c2=36.【考点】一元二次方程的解.【分析】根据一元二次方程的解的定义.把x=2代入方程x2+x+c=0即可求得c的值.进而求得c2的值.【解答】解:依题意.得22+2+c=0.解得.c=﹣6.则c2=(﹣6)2=36.故答案为:36.13.正比例函数y=kx的图象经过点(﹣2.4).则k=﹣2.【考点】一次函数图象上点的坐标特征.【分析】直接把点(﹣2.4)代入y=kx.然后求出k即可.【解答】解:把点(﹣2.4)代入y=kx得解得:k=﹣2.故答案为:﹣214.如图.在▱ABCD中.∠B=60°.∠BCD的平分线交AD点E.若CD=3.四边形ABCE 的周长为13.则BC长为5.【考点】平行四边形的性质.【分析】利用平行四边形的对边相等且互相平行.进而得出DE=CD=3.再求出AE+BC=7.BC﹣AE=3.即可求出BC的长.【解答】解:∵CE平分∠BCD交AD边于点E.∴∠ECD=∠ECB.∵在平行四边形ABCD中.AD∥BC.AB=CD=3.AD=BC.∠D=∠B=60°.∴∠DEC=∠ECB.∴∠DEC=∠DCE.∴DE=CD=3.∴△CDE是等边三角形.∴CE=CD=3.∵四边形ABCE的周长为13.∴AE+BC=13﹣3﹣3=7①.∵AD﹣AE═DE=3.即BC﹣AE=3②.由①②得:BC=5;故答案为:5.15.一次函数y=2x﹣3的图象不经过第二象限.【考点】一次函数的性质.【分析】先根据一次函数的性质判断出此函数图象所经过的象限.再进行解答即可.【解答】解:∵一次函数y=2x﹣3中.k=2>0.∴此函数图象经过一、三象限.∵b=﹣3<0.∴此函数图象与y轴负半轴相交.∴此一次函数的图象经过一、三、四象限.不经过第二象限.故答案为:二.16.一个凸多边形共有35条对角线.它是十边形.【考点】一元二次方程的应用;多边形的对角线.【分析】设它是n边形.从任意一个顶点发出的对角线有n﹣3条.则n边形共有对角线条.即可列出方程:.求解即可.【解答】解:设它是n边形.根据题意得:=35.解得n1=10.n2=﹣7(不符题意.舍去).故它是十边形.故答案为:十.17.四边形ABCD为菱形.该菱形的周长为16.面积为8.则∠ABC为30或150度.【考点】菱形的性质.【分析】此题菱形的形状不确定所以要分当∠A为钝角和锐角时分别求出∠ABC的度数即可.【解答】解:如图1所示:当∠A为钝角.过A作AE⊥BC.∵菱形ABCD的周长为l6.∴AB=4.∵面积为8.∴AE=2.∴∠ABE=30°.∴∠ABC=60°.当∠A为锐角是.过D作DE⊥AB.∵菱形ABCD的周长为l6.∴AD=4.∵面积为8.∴DE=2.∴∠A=30°.∴∠ABC=150°.故答案为:30或150.18.某厂前年的产值为50万元.今年上升到72万元.这两年的年平均增长率是20%.【考点】一元二次方程的应用.【分析】由于设每年的增长率为x.那么去年的产值为50(1+x)万元.今年的产值为50(1+x)(1+x)万元.然后根据今年上升到72万元即可列出方程.【解答】解:设每年的增长率为x.依题意得50(1+x)(1+x)=72.即50(1+x)2=72.解得:x=0.2.x=﹣2.2(舍去)故答案为:20%19.如图.BD为矩形ABCD的对角线.点E在BC上.连接AE.AE=5.EC=7.∠C=2∠DAE.则BD=13.【考点】矩形的性质.【分析】直接利用矩形的性质结合等腰直角三角形的性质得出AB.BE的长.再利用勾股定理得出BD的长.【解答】解:∵四边形ABCD是矩形.∴∠ABC=∠C=90°.AD∥BC.∵∠C=2∠DAE.∴∠DAE=45°.∴AB=BE.∵AE=5.∴AB=BE=5.∵EC=7.∴AD=BC=12.∴BD==13.故答案为:13.三、解答题:第21题8分.第22题6分.第23-25题每题8分.共60分.20.解下列方程:(1)x(x﹣1)=2(x﹣1)(2)2x2﹣x﹣4=0.【考点】解一元二次方程﹣因式分解法;解一元二次方程﹣公式法.【分析】(1)方程移项后.提取公因式.利用两数相乘积为0两因式中至少有一个为0转化为两个一元一次方程来求解;(2)方程利用公式法求出解即可.【解答】解:(1)方程移项得:x(x﹣1)﹣2(x﹣1)=0.分解因式得:(x﹣1)(x﹣2)=0.解得:x1=1.x2=2;(2)这里a=2.b=﹣1.c=﹣4.∵△=1+32=33.∴x=.21.如图所示网格是由边长为1的小正方形组成.点A.B.C位置如图所示.在网格中确定点D.使以A.B.C.D为顶点的四边形的所有内角都相等.(1)确定点D的位置并画出以A.B.C.D为顶点的四边形;(2)直接写出(1)中所画出的四边形的周长和面积.【考点】勾股定理.【分析】(1)根据题意可知以A.B.C.D为顶点的四边形是矩形.作出矩形ABCD即为所求;(2)根据勾股定理可求AB、CD的长度.再根据进行的周长公式和面积公式计算即可求解.【解答】解:(1)如图所示:(2)AB==.BC==2.周长为(2+)×2=6.面积为2×=10.22.如图.点E.F为▱ABCD的对角线BD上的两点.连接AE.CF.∠AEB=∠CFD.求证:AE=CF.【考点】平行四边形的性质.【分析】由平行四边形的性质得出AB=CD.∠BAE=∠CDF.由AAS证明证得△ABE≌△CDF.继而证得结论.【解答】证明:∵四边形ABCD是平行四边形.∴AB=CD.AB∥CD.∴∠BAE=∠DCF.在△ABE和△CDF中..∴△ABE≌△CDF(AAS).∴AE=CF.23.如图.△ABC中.∠C=90°.BC=5厘米.AB=5厘米.点P从点A出发沿AC边以2厘米/秒的速度向终点C匀速移动.同时.点Q从点C出发沿CB边以1厘米/秒的速度向终点B匀速移动.P、Q两点运动几秒时.P、Q两点间的距离是2厘米?【考点】一元二次方程的应用.【分析】首先表示出PC和CQ的长.然后利用勾股定理列出有关时间t的方程求解即可.【解答】解:设P、Q两点运动x秒时.P、Q两点间的距离是2厘米.在△ABC中.∠C=90°.BC=5厘米.AB=5厘米.∴AC===10(厘米).∴AP=2x 厘米CQ=x厘米CP=(10﹣2x)厘米.在Rt△CPQ内有PC2+CQ2=PQ2.∴(10﹣2x)2+x2=(2)2.整理得:x2﹣8x+12=0.解得:x=2或x=6.当x=6时CP=10﹣2x=﹣2<0.∴x=6不合题意舍去.∴P、Q两点运动2秒时.P、Q两点间的距离是2厘米.24.利民商店经销某种商品.该种商品的进价为每件80元.该商店销售商品每件售价高于进价但每件售价不超过120元.当售价定为每件120元时每天可售出200件.该商品销售单价在120元的基础上.每降1元.该种商品每天可多售出10件.设该商品的销售单价为x元.每天售出商品的数量为y件.(1)求y与x之间的函数关系式;(不必写出自变量x的取值范围)(2)利民商店在销售该商品时除成本外每天还需支付各种费用1000元.该商店某天销售该商品共获利8000元.求这一天的销售单价为多少元?【考点】一次函数的应用;一元二次方程的应用.【分析】(1)首先利用当售价定为每件120元时每天可售出200件.该商品销售单价在120元的基础上.每降1元.该种商品每天可多售出10件.进而求出每天可表示出销售商品数量;(2)设商场日盈利达到8000元时.每件商品售价为x元.根据每件商品的盈利×销售的件数=商场的日盈利.列方程求解即可.【解答】解:(1)由题意得:y=200+10=﹣10x+1400;(2)由题意可得:(﹣10x+1400)(x﹣80)﹣1000=8000.整理得:x2﹣220x+12100=0.解得:x1=x2=110.答:这一天的销售单价为110元.25.点E在正方形ABCD的边BC上.点F在AE上.连接FB.FD.∠ABF=∠AFB.(1)如图1.求证:∠AFD=∠ADF;(2)如图2.过点F作垂线交AB于G.交DC的延长线于H.求证:DH=2AG;(3)在(2)的条件下.若EF=2.CH=3.求EC的长.【考点】四边形综合题.【分析】(1)利用等腰三角形的性质结合正方形的性质得出AF=AD.则∠AFD=∠ADF;(2)首先得出四边形AGHN为平行四边形.得出FM=MD.进而NF=NH.ND=NH.即可得出答案;(3)首先得出△ADN≌△DCP(ASA).进而PC=DN.再利用在Rt△ABE 中.BE2+AB2=AE2.求出答案.【解答】(1)证明:∵∠ABF=∠AFB.∴AB=AF.∵四边形ABCD为正方形.∴AB=AD.∴AF=AD.∴∠AFD=∠ADF;(2)证明:如图1所示:过点A作DF的垂线分别交DF.DH于M.N两点∵GF⊥DF.∴∠GFD=∠AMD=90°.∴AN∥GH.∵四边形ABCD为正方形.∴AG∥NH.∴四边形AGHN为平行四边形.∴AG=NH.∵AF=AD.AM⊥FD.∴FM=MD.连接NF.则NF=ND.∴∠NFD=∠NDF.∵∠NFD+∠NFH=∠NDF+∠H.∴∠NFH=∠H.∴NF=NH.∴ND=NH.∴DH=2NH=2AG;(3)解:延长DF交BC于点P.如图2所示:∵四边形ABCD为正方形.∴AD∥BC.∴∠ADF=∠FPE.∴∠PFE=∠AFD=∠ADF=∠FPE.∴EF=EP=2.∵∠DAM+∠ADM=∠ADM+∠PDC.∴∠DAM=∠PDC.∵四边形ABCD为正方形.∴AD=DC.∠ADN=∠DCP.在△ADN和△DCP中.∴△ADN≌△DCP(ASA).∴PC=DN.设EC=x.则PC=DN=x+2.DH=2x+4.∵CH=3.∴DC=AB=BC=AF=2x+1∴AE=2x+3.BE=x+1.在Rt△ABE中.BE2+AB2=AE2.∴(x+1)2+(2x+1)=(2x+3)2.整理得:x2﹣6x+7=0.解得:x1=7.x2=﹣1(不合题意.舍去)∴EC=7.26.在平面直角坐标系内.点O为坐标原点.直线y=x+3交x轴于点A.交y轴于点B.点C在x轴正半轴上.△ABC的面积为15.(1)求直线BC的解析式;(2)横坐标为t的点P在直线AB上.设d=OP2.求d与t之间的函数关系式.(不必写出自变量取值范围)(3)在(2)的条件下.当∠BPO=∠BCA时.求t的值.【考点】一次函数综合题.【分析】(1)先求出点A.B坐标.用△ABC的面积为15.求出点C的坐标.用待定系数法求出直线BC解析式;(2)在Rt△OPD中.有OP2=OD2+PD2.代入化简得d=t2+3t+9.(3)先判断出∠EBA=∠OBA.再分两种情况.①点P在第一象限.用PD=OD建立方程求出t.②当点P位于如图2所示P1位置时.用P1O=PO.建立方程求解即可.【解答】解:直线y=x+3交x轴于点A.交y轴于点B.当x=0时y=3.当y=0时.x=﹣6.∴A(﹣6.0)B(0.3).∴OA=6.OB=3.=AC×OB=(OA+OC)×OB.∴S△ABC∴15=(6+OC)×3∴OC=4.∴C(4.0).设直线BC的解析式为y=kx+b.则:∴k=∴直线BC的解析式为y=﹣x+3.(2)横坐标为t的点P在直线AB上.∴P(t.t+3)过点P作x轴的垂线.点D为垂足.如图1.∴D(t.0)在Rt△OPD中.有OP2=OD2+PD2∴d=t2+(t+3)2=t2+3t+9.(3)在在Rt△OBC内有BC2=OB2+OC2∴BC==5过点A作BC的垂线.点E为垂足.如图2S△ABC=BC•AE=15.∴AE=6∴AO=AE.∵∠AEB=∠AOB=90°∴∠EBA=∠OBA当点P位于第一象限时.∠BOP=∠ABO﹣∠APO=∠EBO﹣∠BCO=(∠EBO﹣∠BCO)=∠BOC=45°∴∠POD=∠PDO=45°.∴PD=OD.∴t+3=t.∴t=6当点P位于如图2所示P1位置时.∠BP1O=∠BCA=∠BPO∴P1O=PO.∴P1O2=PO2.∴t2+3t+9=×62+3×6+9.解得:t=﹣或t=6(舍去)综上所述:当∠BPO=∠BCA时t的值为6或﹣.。
八年级下册数学期末试卷测试卷(含答案解析)
八年级下册数学期末试卷测试卷(含答案解析)一、选择题1.下列二次根式,无论x 取什么值都有意义的是( ) A .xB .21x -C .21x D .21x +2.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是( ) A .2、3、4B .3、4、5C .5、12、13D .30、50、603.如图,下列四组条件中,不能判定四边形ABCD 是平行四边形的是( )A .AB =CD ,AD =BC B .AB //CD ,AB =CD C .AB =CD ,AD //BCD .AB //CD ,AD //BC4.某校有17名同学报名参加信息学竞赛,测试成绩各不相同,学校取前8名参加决赛,小童已经知道了自己的成绩,他想知道自己能否参加决赛,还需要知道这17名同学测试成绩的( ) A .中位数B .平均数C .众数D .方差5.如图,在正方形ABCD 中,取AD 的中点E ,连接EB ,延长DA 至F ,使EF =EB ,以线段AF 为边作正方形AFGH ,交AB 于点H ,则AHAB的值是( )A 51- B 51+ C 352D .126.如图,在菱形ABCD 中MN 分别在AB 、CD 上且AM=CN ,MN 与AC 交于点O ,连接BO 若∠DAC=62°,则∠OBC 的度数为( )A .28°B .52°C .62°D .72°7.如图,等腰Rt ABC 中,AB =AC ,∠BAC =90°,AD ⊥BC 于点D ,∠ABC 的平分线分别交AC 、AD 于E 、F 两点,M 为EF 的中点,AM 的延长线交BC 于点N ,连接DM ,下列结论:①DF =DN ;②DMN 为等腰三角形;③DM 平分∠BMN ;④AE =23EC ;⑤AE=NC ,其中正确结论有( )A .2个B .3个C .4个D .5个8.如图,直线 y 1 与 y 2 相交于点C , y 1 与 x 轴交于点 D ,与 y 轴交于点(0,1), y 2 与 x 轴 交于点 B (3,0),与 y 轴交于点 A ,下列说法正确的个数有( )①y 1的 解 析 式 为12y x =+;② OA = OB ;③2AC BC =④12y y ⊥;⑤ ∆AOB ≅ ∆BCD . A .2 个B .3个C .4 个D .5 个二、填空题9.5x -中字母x 的取值范围是__________.10.如图,在菱形ABCD 中,AC ,BD 两对角线相交于点O .若∠BAD =60°,BD =2cm ,则菱形ABCD 的面积是____cm 2.11.如图,每个小正方形的边长都为1,则ABC ∆的三边长a ,b ,c 的大小关系是________(用“>”连接).12.如图,点P 在矩形ABCD 的对角线AC 上,且不与点A C 、重合,过点P 分别作边AB AD 、的平行线,交两组对边于点E F 、和G H 、.四边形PEDH 和四边形PFBG 都是矩形并且面积分别为S 1,S 2,则S 1,S 2之间的关系为__________.13.一次函数图象过点()0,2-日与直线23y x =-平行,则一次函数解析式__________. 14.如图,两个完全相同的三角尺ABC 和DEF 在直线l 上滑动.要使四边形CBFE 为菱形,还需添加的一个条件是____(写出一个即可).15.星期六下午,小张和小王同时从学校沿相同的路线去书店买书,小王出发4分钟后发现忘记带钱包,立即调头按原速原路回学校拿钱包,小王拿到钱包后,以比原速提高20%的速度按原路赶去书店,结果还是比小张晚4分钟到书店(小王拿钱包的时间忽略不计).在整个过程中,小张保持匀速运动,小王提速前后也分别保持匀速运动,如图所示是小张与小王之间的距离y (米)与小王出发的时间x (分钟)之间的函数图象,则学校到书店的距离为________米.16.已知矩形ABCD,点E在AD边上,DE AE>,连接BE,将ABE△沿着BE翻折得到BFE△,射线EF交BC于G,若点G为BC的中点,1FG=,6DE=,则BE长为________.三、解答题17.计算:(1)(25﹣2)0+|2﹣5|+(﹣1)2021;(2)(6+3)(6﹣3)+14÷7.18.在《算法统宗》中有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几”.此问题可理解为:如图,有一架秋千,当它静止时,踏板离地的距离AB的长度为1尺.将它往前推送,当水平距离为10尺时.即10A C'=尺,则此时秋千的踏板离地的距离A D'就和身高5尺的人一样高.若运动过程中秋千的绳索始终拉得很直,求绳索OA的长.19.如图,在4×4的网格直角坐标系中(图中小正方形的边长代表一个单位长),已知点A(﹣1,﹣1),B(2,2).(1)线段AB的长为;(2)在小正方形的顶点上找一点C,连接AC,BC,使得S△ABC=92.①用直尺画出一个满足条件的△ABC;②写出所有符合条件的点C 的坐标.20.已知:如图,在Rt △ABC 中,D 是AB 边上任意一点,E 是BC 边中点,过点C 作CF ∥AB ,交DE 的延长线于点F ,连接BF 、CD . (1)求证:四边形CDBF 是平行四边形.(2)当D 点为AB 的中点时,判断四边形CDBF 的形状,并说明理由.21.先观察下列等式,再回答问题: 2211+2+()1 =1+1=2;2212+2+()212=2 12;2213+2+()3=3+13=313;…(1)根据上面三个等式提供的信息,请猜想第四个等式;(2)请按照上面各等式规律,试写出用 n (n 为正整数)表示的等式,并用所学知识证明.22.某航空公司规定,旅客乘机所携带行李的质量x (kg )与其运费y (元)由如图所示的一次函数图象确定,问: (1)求一次函数解析式(2)旅客可携带的免费行李的最大质量是多少kg ?23.如图.正方形ABCD 的边长为4,点E 从点A 出发,以每秒1个单位长度的速度沿射线AD 运动,运动时间为t 秒(t >0),以AE 为一条边,在正方形ABCD 左侧作正方形AEFG ,连接BF .(1)当t =1时,求BF 的长度;(2)在点E 运动的过程中,求D 、F 两点之间距离的最小值; (3)连接AF 、DF ,当△ADF 是等腰三角形时,求t 的值.24.如图1,已知直线24y x =+与y 轴,x 轴分别交于A ,B 两点,以B 为直角顶点在第二象限作等腰Rt ABC ∆.(1)求点C 的坐标,并求出直线AC 的关系式;(2)如图2,直线CB 交y 轴于E ,在直线CB 上取一点D ,连接AD ,若AD AC =,求证:BE DE =.(3)如图3,在(1)的条件下,直线AC 交x 轴于点M ,72P a ⎛⎫- ⎪⎝⎭,是线段BC 上一点,在x 轴上是否存在一点N ,使BPN ∆面积等于BCM ∆面积的一半?若存在,请求出点N 的坐标;若不存在,请说明理由.25.如图1,在矩形ABCD 中,对角线AC 与BD 相交于点O ,过点O 作直线EF ⊥BD ,且交AC 于点E ,交BC 于点F ,连接BE 、DF ,且BE 平分∠ABD.(1)①求证:四边形BFDE 是菱形;②求∠EBF 的度数.(2)把(1)中菱形BFDE 进行分离研究,如图2,G ,I 分别在BF ,BE 边上,且BG=BI ,连接GD ,H 为GD 的中点,连接FH ,并延长FH 交ED 于点J ,连接IJ ,IH ,IF ,IG .试探究线段IH 与FH 之间满足的数量关系,并说明理由;(3)把(1)中矩形ABCD 进行特殊化探究,如图3,矩形ABCD 满足AB=AD 时,点E 是对角线AC 上一点,连接DE ,作EF ⊥DE ,垂足为点E ,交AB 于点F ,连接DF ,交AC 于点G .请直接写出线段AG ,GE ,EC 三者之间满足的数量关系.【参考答案】一、选择题 1.D 解析:D 【分析】直接利用二次根式有意义,则被开方数是非负数,进而得出答案. 【详解】解:A.x 0x 时,二次根式有意义,故此选项不合题意;2B.1x -210x -时,二次根式有意义,故此选项不合题意;21C.x 0x ≠时,二次根式有意义,故此选项不合题意; 2D.1x +x 取什么值,二次根式都有意义,故此选项符合题意.故选:D . 【点睛】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.2.C解析:C 【分析】先求出两小边的平方和,再求出最长边的平方,最后看看是否相等即可. 【详解】解:A 、22+32≠42,不能构成直角三角形,故此选项不符合题意;B 32+42≠52,不能构成直角三角形,故此选项不符合题意;C 、52+122=132,能构成直角三角形,故此选项符合题意;D 、302+502≠602,不能构成直角三角形,故此选项不符合题意.故选:C.【点睛】本题主要考查了勾股定理逆定理,关键是掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.3.C解析:C【解析】【分析】根据平行四边形的判定定理分别进行分析即可.【详解】解:A、根据两组对边分别相等的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题意;B、根据一组对边平行且相等的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题;C、不能判定四边形ABCD是平行四边形,故此选项符合题意;D、根据两组对边分别平行的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题意;故选:C.【点睛】本题主要考查了平行四边形的判定,解题的关键是掌握平行四边形的判定定理.4.A解析:A【解析】【分析】由于比赛取前8名参加决赛,共有17名选手参加,根据中位数的意义分析即可.【详解】解:由于总共有17个人,且他们的分数互不相同,第9名的成绩是中位数,要判断是否进入前8名,故应知道自己的成绩和中位数.故选:A.【点睛】本题考查了统计量的选择,以及中位数意义,解题的关键是正确的求出这组数据的中位数.5.A解析:A【分析】设AB=2a,根据四边形ABCD为正方形,E点为AD的中点,可得EF的长,进而可得结果.【详解】解:设AB=2a,∵四边形ABCD为正方形,∴AD=2a,∵E点为AD的中点,∴AE=a,∴BE225AE AB=+=a,∴EF5=a,∴AF=EF﹣AE=(5-1)a,∵四边形AFGH为正方形,∴AH=AF=(5-1)a,∴()515122aAHAB a--==.故选:A.【点睛】本题考查了正方形的性质,解决本题的关键是掌握正方形的性质.6.A解析:A【解析】【分析】连接OB,根据菱形的性质以及AM=CN,利用ASA可得△AMO≌△CNO,可得AO=CO,然后可得BO⊥AC,继而可求得∠OBC的度数.【详解】解:连接OB,∵四边形ABCD为菱形∴AB∥CD,AB=BC,∴∠MAO=∠NCO,∠AMO=∠CNO,在△AMO和△CNO中,∵MAO NCOAM CNAMO CNO ∠∠⎧⎪⎨⎪∠∠⎩===,∴△AMO≌△CNO(ASA),∴AO=CO , ∵AB=BC , ∴BO ⊥AC , ∴∠BOC=90°, ∵∠DAC=62°, ∴∠BCA=∠DAC=62°, ∴∠OBC=90°-62°=28°. 故选A . 【点睛】本题考查了菱形的性质和全等三角形的判定和性质,注意掌握菱形对边平行以及对角线相互垂直的性质.7.C解析:C 【解析】 【分析】先根据等腰直角三角形的性质得出BD AD =,DBF DAN ∠=∠,BDF ADN ∠=∠,进而证DFB DAN △≌△,即可判断①,再证ABF CAN △≌△,推出CN AF AE ==,即可判断⑤;根据全等三角形的判定与性质可得M 为AN 的中点,进而可证得12DM AM NM AN ===,由次可判断②,再根据等腰三角形的性质及外角性质可判断③,最后再根据垂直平分线的判定与性质以及直角三角形的勾股定理可判断④. 【详解】解:90BAC ∠=︒,AC AB =,AD BC ⊥,45ABC C ∴∠=∠=︒,AD BD CD ==,90ADN ADB ∠=∠=︒,45BAD CAD ∴∠=︒=∠,BE 平分ABC ∠,122.52ABE CBE ABC ∴∠=∠=∠=︒,9022.567.5BFD AEB ∴∠=∠=︒-︒=︒,67.5AFE BFD AEB ∴∠=∠=∠=︒,AF AE ∴=,又∵M 为EF 的中点, ∴AM BE ⊥,90AMF AME ∴∠=∠=︒,9067.522.5DAN CAN MBN ∴∠=∠=︒-︒=︒=∠,在FBD 和NAD 中,FBD DAN BD ADBDF ADN ∠=∠⎧⎪=⎨⎪∠=∠⎩FBD NAD ∴△≌△(ASA ),DF DN ∴=,故①正确;在AFB △和CNA 中4522.5BAF C AB ACABF CAN ∠=∠=︒⎧⎪=⎨⎪∠=∠=︒⎩AFB CAN ∴△≌△(ASA ),AF CN ∴=,AF AE =,AE CN ∴=,故⑤正确;在ABM 和NBM 中ABM NBM BM BMAMB NMB ∠=∠⎧⎪=⎨⎪∠=∠⎩ABM NBM ∴△≌△(ASA ),AM NM ∴=,∴点M 是AN 的中点,又∵90ADN ∠=︒, ∴12DM AM NM AN ===,DM NM =, DMN ∴是等腰三角形,故②正确;DM AM =,22.5DAM ADM ∴∠=∠=︒,45DMN DAM ADM ∴∠=∠+∠=︒,9045DMB DMN DMN ∴∠=︒-∠=︒=∠,DM ∴平分BMN ∠,故③正确;如图,连接EN ,∵AM NM =,AM BE ⊥,∴BE 垂直平分AN ,∴EA =EN ,22.5ENA EAN ∴∠=∠=︒,45CEN ENA EAN ∴∠=∠+∠=︒,又∵45C ∠=︒,∴90ENC ∠=︒,且EN CN =,在Rt ENC 中,22222EC EN CN EN =+=, ∴EC ,AE ∴,故④错误, 即正确的有4个,故选:C .【点睛】本题考查了全等三角形的判定与性质,三角形外角性质,三角形内角和定理,直角三角形斜边上中线性质,等腰三角形的判定与性质,垂直平分线的判定与性质以及勾股定理等相关知识的应用,能熟练运用相关图形的判定与性质是解此题的关键,主要考查学生的推理能力.8.A解析:A【分析】通过待定系数法,求出直线y 1的解析式,于是可对①进行判断;利用待定系数法求出y 2的解析式为y =﹣x +3,则可确定A (0,3),所以OA =OB ,于是可对②进行判断;通过两点间的距离公式求出AC 、BC 的长,从而对③进行判断;计算∠EDO 和∠ABO 的度数,再通过三角形的内角和定理得出∠DCB 的度数,即可对④进行判断;通过计算BD 和AB 的长可对⑤进行判断.【详解】由图可知:直线y 1过点(0,1),(1,2),∴直线y 1的解析式为11y x =+,所以①错误;设y 2的解析式为y =kx +b ,把C (1,2),B (3,0)代入得:230k b k b +=⎧⎨+=⎩,解得:13k b =-⎧⎨=⎩,所以y 2的解析式为y =﹣x +3,当x =0时,y =﹣x +3=3,则A (0,3),则OA =OB ,所以②正确;∵A (0,3),C (1,2),B (3,0),∴ACBC ,∴12AC BC ==,所以③错误; 在11y x =+中,令y 1=0,得x =-1,∴D (-1,0),∴OD =1.∵OE =1,∴OD =OE ,∴∠EDO =45°.∵OA =OB =3,∴∠ABO =45°,∴∠DCB =180°-45°-45°=90°,∴DC ⊥AB ,∴12y y ⊥,故④正确;因为BD =3+1=4,而AB ,所以△AOB 与△BCD 不全等,所以⑤错误.故正确的有②④.故选A.【点睛】本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;也考查了全等三角形的判定.二、填空题9.5x≥【解析】【分析】根据二次根式成立的条件可直接进行求解.【详解】解:由题意得:x-≥,解得:5x≥;50x≥.故答案为5【点睛】本题主要考查二次根式有意义的条件,熟练掌握二次根式有意义的条件是解题的关键.10.A解析:3【解析】【分析】BD=1,可证△ABD是等由菱形的性质可得AB=AD,AC⊥BD,AO=CO,BO=DO=12边三角形,可得AB=BD=4,由勾股定理可求AO的长,即可求解.【详解】解:∵四边形ABCD是菱形,∴AB=AD,AC⊥BD,AO=CO,BO=DO=1BD=1cm,2∵∠BAD=60°,∴△ABD是等边三角形,∴AB=BD=2cm,∴223cm=-AO AB BO∴AC=3,∴菱形ABCD 的面积=12AC ×BD =2,故答案为:【点睛】本题主要考查了菱形的性质,勾股定理,解题的关键在于能够熟练掌握相关知识进行求解. 11.c a b >>;【解析】【分析】观察图形根据勾股定理分别计算出a 、b 、c ,根据二次根式的性质即可比较a 、b 、c 的大小.【详解】解:在图中,每个小正方形的边长都为1,由勾股定理可得:===a==b=c ∵>>∴c a b >>,故答案为:c a b >>.【点睛】本题考查了勾股定理和比较二次根式的大小,本题中正确求出a 、b 、c 的值是解题的关键.12.S 1=S 2【分析】由矩形的性质找出90D B ∠=∠=︒,结合对边互相平行即可证出四边形PEDH 和四边形PFBG 都是矩形,再根据矩形的性质可得出三对三角形的面积相等,由此即可得结果.【详解】解:∵四边形ABCD 为矩形,∴90D B ∠=∠=︒.又∵////EF AB CD ,////GH AD BC ,∴四边形PEDH 和四边形PFBG 都是矩形.∵//EF AB ,//HG BC ,四边形ABCD 为矩形,∴四边形AEPG 和四边形PHCF 也是矩形,∴ACD ABC SS =,PHC PCF S S =,AEP APG S S =, ∴ACD PHC AEP ABC PCF APG S S S S S S --=--,∴12S S故答案为:12S S .【点睛】本题考查了矩形的性质与判定,掌握矩形的性质与判定是解题的关键.13.32y x =--【解析】【分析】设一次函数解析式为y=kx+b ,先把(0,-2)代入得b=-2,再利用两直线平行的问题得到k=-3,即可得到一次函数解析式.【详解】解:设一次函数解析式为y=kx+b ,把(0,-2)代入得b=-2,∵直线y=kx+b 与直线y=2-3x 平行,∴k=-3,∴一次函数解析式为y=-3x-2.故答案为:y=-3x-2.【点睛】本题考查两直线相交或平行的问题:若两条直线是平行的关系,那么它们的自变量系数相同,即k 值相同.14.C解析:CB=BF ;BE ⊥CF ;∠EBF=60°;BD=BF 等(写出一个即可).【分析】根据邻边相等的平行四边形是菱形或对角线互相垂直的平行四边形是菱形进而判断即可.【详解】解:根据题意可得出:四边形CBFE 是平行四边形,当CB=BF 时,平行四边形CBFE 是菱形,当CB=BF ;BE ⊥CF ;∠EBF=60°;BD=BF 时,都可以得出四边形CBFE 为菱形. 故答案为:如:CB=BF ;BE ⊥CF ;∠EBF=60°;BD=BF 等.【点睛】此题主要考查了菱形的判定,关键是熟练掌握菱形的判定方法:①菱形定义:一组邻边相等的平行四边形是菱形;②四条边都相等的四边形是菱形;③对角线互相垂直的平行四边形是菱形.15.840【分析】结合题意根据最后一段图象可求得根据小王后来的速度,进而可求得小王原来的速度,再根据第一段图象可求得小张的速度,最后根据两人行完全程的时间相差4分钟可得方程,解方程即可求得答案.【解析:840【分析】结合题意根据最后一段图象可求得根据小王后来的速度,进而可求得小王原来的速度,再根据第一段图象可求得小张的速度,最后根据两人行完全程的时间相差4分钟可得方程,解方程即可求得答案.【详解】解:由题意可知:最后一段图象是小张到达书店后等待小王前往书店的图象,则小王后来的速度为:336÷4=84(米/分钟),∴小王原来的速度为:84÷(1+20%)=70(米/分钟),根据第一段图象可知:v 王-v 张=40÷4=10(米/分钟),∴小张的速度为:70-10=60(米/分钟),设学校到书店的距离为x 米, 由题意得:4448460x x ⎛⎫++-= ⎪⎝⎭, 解得:x =840,答:学校到书店的距离为840米,故答案为:840.【点睛】本题考查了函数图象的实际应用,行程问题的基本关系,一元一次方程的应用,有一定的难度,求出两人的速度是解题的关键. 16.【分析】先设,根据,,可得,,再根据,可得,进而得出方程,即可得到的长,可求得,再利用勾股定理可以,再用一次勾股定理即可算出.【详解】解:设,,,,,又为的中点,,由折叠可得,,解析:【分析】先设AE EF x ==,根据6DE =,1FG =,可得6AD x BC =+=,1EG x =+,再根据GEB GBE ∠=∠,可得EG BG =,进而得出方程612x x ++=,即可得到AE 的长,可求得EG BG =,再利用勾股定理可以BF ,再用一次勾股定理即可算出BE .【详解】解:设AE EF x ==,6DE =,1FG =,6AD x BC ∴=+=,1EG x =+,又G 为BC 的中点,1622x BG BC +∴==,由折叠可得,AEB GEB ∠=∠,由//AD BC ,可得AEB GBE ∠=∠,GEB GBE ∴∠=∠,EG BG ∴=,612x x +∴+=, 解得4x =,即4AE =,5EG BG EF FG ∴==+=,90BAE BFE ∠=∠=︒,BF ∴BE ∴=故答案是:【点睛】本题主要考查了折叠问题,勾股定理、三角全等、解题的关键是折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.三、解答题17.(1)﹣2;(2)3+.【分析】(1)先化简零指数幂,绝对值,有理数的乘方,然后再计算;(2)先利用平方差公式,二次根式的除法运算法则计算乘除,最后算加减.【详解】解:(1)原式=1+﹣2解析:(12;(2)【分析】(1)先化简零指数幂,绝对值,有理数的乘方,然后再计算;(2)先利用平方差公式,二次根式的除法运算法则计算乘除,最后算加减.【详解】解:(1)原式=2﹣12;(2)22=6﹣=【点睛】本题考查二次根式的混合运算,零指数幂,掌握二次根式混合运算的运算顺序和计算法则及平方差公式(a +b )(a ﹣b )=a 2﹣b 2的结构是解题关键.18.绳索OA 的长为14.5尺.【分析】设绳索OA 的长为x 尺,根据题意知,可列出关于 的方程,即可求解.【详解】解:由题意可知: 尺,设绳索OA 的长为x 尺,根据题意得,解得.答:绳索OA 的解析:绳索OA 的长为14.5尺.【分析】设绳索OA 的长为x 尺,根据题意知,可列出关于x 的方程,即可求解.【详解】解:由题意可知:5A D '= 尺,设绳索OA 的长为x 尺,根据题意得()2221015x x ++-=, 解得14.5x =.答:绳索OA 的长为14.5尺.【点睛】本题主要考查了勾股定理的应用,明确题意,列出方程是解题的关键.19.(1)3;(2)①见解析;②C1(2,﹣1),C2(﹣1,2),C3(﹣2,1),C4(1,﹣2).【解析】【分析】(1)直接利用勾股定理求出AB 的长度即可;(2)①根据三角形ABC 的面积画解析:(1)2)①见解析;②C 1(2,﹣1),C 2(﹣1,2),C 3(﹣2,1),C 4(1,﹣2).【解析】【分析】(1)直接利用勾股定理求出AB 的长度即可;(2)①根据三角形ABC 的面积92画出对应的三角形即可; ②根据点C 的位置,写出点C 的坐标即可.【详解】解:(1)如图所示在Rt △ACB 中,∠P =90°,AP =3,BP =3 ∴AB ==(2)①如图所示Rt △ACB 中,∠C =90°,AC =3,BC =3 ∴119=33222ABC S AC BC =⨯⨯=△②C 1(2,﹣1),C 2(﹣1,2),C 3(﹣2,1),C 4(1,﹣2).满足条件的三角形如图所示.C 1(2,﹣1),C 2(﹣1,2),C 3(﹣2,1),C 4(1,﹣2).【点睛】本题主要考查了勾股定理,三角形的面积,点的坐标,解题的关键在于能够熟练掌握相关知识点进行求解.20.(1)见解析;(2)四边形CDBF 是菱形,理由见解析【分析】(1)证△CEF ≌△BED (ASA ),得CF=BD ,再由CF ∥DB ,即可得出结论; (2)由直角三角形斜边上的直线性质得CD=DB ,即解析:(1)见解析;(2)四边形CDBF 是菱形,理由见解析【分析】(1)证△CEF ≌△BED (ASA ),得CF =BD ,再由CF ∥DB ,即可得出结论;(2)由直角三角形斜边上的直线性质得CD =DB ,即可证平行四边形CDBF 是菱形.【详解】(1)证明:∵CF ∥AB ,∴∠ECF =∠EBD ,∵E 是BC 中点,∴CE =BE ,在△CEF 和△BED 中,ECF EBD CE BECEF BED ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△CEF ≌△BED (ASA ),∴CF =BD ,又∵CF ∥AB ,∴四边形CDBF 是平行四边形.(2)解:四边形CDBF 是菱形,理由如下:∵D 为AB 的中点,∠ACB =90°,∴CD =12AB =BD ,由(1)得:四边形CDBF 是平行四边形,∴平行四边形CDBF 是菱形.【点睛】本题考查了平行四边形的判定和性质、菱形的判定、全等三角形的判定和性质、直角三角形斜边上的中线性质等知识;熟练掌握平行四边形的判定与性质,证明△CEF ≌△BED 是解题的关键,属于中考常考题型. 21.(1);(2),证明见解析.【解析】【分析】(1)根据“第一个等式内数字为1,第二个等式内数字为2,第三个等式内数字为3”,即可猜想出第四个等式为44;(2)根据等式的变化,找出变化规律“n解析:(1144+=144;(2211n n n n ++=,证明见解析.【解析】【分析】(1)根据“第一个等式内数字为1,第二个等式内数字为2,第三个等式内数字为3”,即=414+=414;(2)根据等式的变化,找出变化规律=n 211n n n ++=”,再利用222112n n n n++=+()()开方即可证出结论成立. 【详解】(1)∵1+1=2;=212+=212;=313+=313;里面的数字分别为1、2、3,∴ 144+= 144.(21+1=2,212+=212313+=313=414+=414,…,∴= 211n n n n ++=.证明:等式左边==n 211n n n++==右边.=n 211n n n ++=成立. 【点睛】本题考查了二次根式的性质与化简以及规律型中数的变化类,解题的关键是:(1)猜测出第四个等式中变化的数字为4;(2)找出变化规律n 211n n n ++=”.解决该题型题目时,根据数值的变化找出变化规律是关键.22.(1)y=20x-300;(2)15【分析】(1)根据图象,用待定系数法即可求出函数的解析式;(2)根据解析式取y=0,求出对应的x 即可.【详解】解:(1)设y=kx+b ,代入(20,10解析:(1)y =20x -300;(2)15【分析】(1)根据图象,用待定系数法即可求出函数的解析式;(2)根据解析式取y =0,求出对应的x 即可.【详解】解:(1)设y=kx+b,代入(20,100),(30,300),得:1002030030k bk b=+⎧⎨=+⎩,解得:20300kb=⎧⎨=-⎩,∴y=20x-300;(2)取y=0,则20x-300=0,解得x=15,∴免费行李的最大质量为15kg.【点睛】本题主要考查一次函数的图形,关键是能根据图象用待定系数法求出函数的解析式,然后根据y的值即可求出x的值.23.(1)(2)(3)2或或4【分析】(1)由勾股定理可求出答案;(2)延长AF,过点D作射线AF的垂线,垂足为H,设AH=DH=x,在Rt△AHD中,得出x2+x2=42,解方程解析:(1)(2)(3)2或或4【分析】(1)由勾股定理可求出答案;(2)延长AF,过点D作射线AF的垂线,垂足为H,设AH=DH=x,在Rt△AHD中,得出x2+x2=42,解方程求出x即可得出答案;(3)分AF=DF,AF=AD,AD=DF三种情况,由正方形的性质及直角三角形的性质可得出答案.【详解】解:(1)当t=1时,AE=1,∵四边形AEFG是正方形,∴AG=FG=AE=1,∠G=90°,∴BF===,(2)如图1,延长AF,过点D作射线AF的垂线,垂足为H,∵四边形AGFE是正方形,∴AE=EF,∠AEF=90°,∴∠EAF=45°,∵DH⊥AH,∴∠AHD=90°,∠ADH=45°=∠EAF,∴AH=DH,设AH=DH=x,∵在Rt△AHD中,∠AHD=90°,∴x2+x2=42,解得x1=﹣2(舍去),x2=2,∴D、F两点之间的最小距离为2;(3)当AF=DF时,由(2)知,点F与点H重合,过H作HK⊥AD于K,如图2,∵AH=DH,HK⊥AD,∴AK==2,∴t=2.当AF=AD=4时,设AE=EF=x,∵在Rt△AEF中,∠AEF=90°,∴x2+x2=42,解得x1=﹣2(舍去),x2=2,∴AE=2,即t=2.当AD=DF=4时,点E与D重合,t=4,综上所述,t为2或2或4.【点睛】本题是四边形综合题,考查了勾股定理,正方形的性质,等腰三角形的性质等知识,解题的关键是熟练掌握正方形的性质,学会用分类讨论的思想思考问题.24.(1)y=x+4;(2)见解析;(3)存在,点N(﹣,0)或(,0).【解析】【分析】(1)根据题意证明△CHB≌△BOA(AAS),即可求解;(2)求出B、E、D的坐标分别为(-1,0)、解析:(1)y =13x+4;(2)见解析;(3)存在,点N (﹣463,0)或(343,0). 【解析】【分析】(1)根据题意证明△CHB ≌△BOA (AAS ),即可求解;(2)求出B 、E 、D 的坐标分别为(-1,0)、(0,12)、(1,-1),即可求解; (3)求出BC 表达式,将点P 代入,求出a 值,再根据AC 表达式求出M 点坐标,由S △BMC =12MB×y C =12×10×2=10,S △BPN =12S △BCM =5=12 NB×a=38NB 可求解. 【详解】解:(1)令x =0,则y =4,令y =0,则x =﹣2,则点A 、B 的坐标分别为:(0,4)、(﹣2,0),过点C 作CH ⊥x 轴于点H ,∵∠HCB+∠CBH =90°,∠CBH+∠ABO =90°,∴∠ABO =∠BCH ,∠CHB =∠BOA =90°,BC =BA ,在△CHB 和△BOA 中,===BCH ABO CHB BOA BC BA ∠∠∠∠⎧⎪⎨⎪⎩, ∴△CHB ≌△BOA (AAS ),∴BH =OA =4,CH =OB=2,∴ 点C (﹣6,2),将点A 、C 的坐标代入一次函数表达式:y= m x+ b 得:426b m b=⎧⎨=-+⎩, 解得:134m b ⎧=⎪⎨⎪=⎩, 故直线AC 的表达式为:y =13x+4;(2)同理可得直线CD 的表达式为:y =﹣12x ﹣1①,则点E (0,﹣1),直线AD 的表达式为:y =﹣3x+4②,联立①②并解得:x =2,即点D (2,﹣2),点B 、E 、D 的坐标分别为(﹣2,0)、(0,﹣1)、(2,﹣2),故点E 是BD 的中点,即BE =DE ;(3)将点BC 的坐标代入一次函数表达式并解得:直线BC 的表达式为:y =﹣12x-1,将点P (﹣72,a )代入直线BC 的表达式得:34a =, 直线AC 的表达式为:y =13x+4, 令y=0,则x=-12,则点M (﹣12,0),S △BMC =12MB×y C =12×10×2=10, S △BPN =12S △BCM =5=12NB×a=38NB , 解得:NB =403, 故点N (﹣463,0)或(343,0). 【点睛】本题考查的是一次函数综合运用,涉及到三角形全等、求函数表达式、面积的计算等,综合性较强,理清题中条件关系,正确求出点的坐标是解题的关键. 25.(1)①证明见解析;②;(2);(3).【分析】(1)①由,推出,,推出四边形是平行四边形,再证明即可.②先证明,推出,延长即可解决问题.(2).只要证明是等边三角形即可.(3)结论:.如解析:(1)①证明见解析;②60EBF ∠=︒;(2)IH =;(3)222EG AG CE =+.【分析】(1)①由DOE BOF ∆≅∆,推出EO OF =,OB OD =,推出四边形EBFD 是平行四边形,再证明EB ED =即可.②先证明2ABD ADB ∠=∠,推出30ADB ∠=︒,延长即可解决问题.(2)IH =.只要证明IJF ∆是等边三角形即可.(3)结论:222EG AG CE =+.如图3中,将ADG ∆绕点D 逆时针旋转90︒得到DCM ∆,先证明DEG DEM ∆≅∆,再证明ECM ∆是直角三角形即可解决问题.【详解】(1)①证明:如图1中,四边形ABCD 是矩形,//AD BC ∴,OB OD =,EDO FBO ∴∠=∠,在DOE ∆和BOF ∆中,EDO FBO OD OBEOD BOF ∠=∠⎧⎪=⎨⎪∠=∠⎩, DOE BOF ∴∆≅∆,EO OF ∴=,OB OD =,∴四边形EBFD 是平行四边形,EF BD ⊥,OB OD =,EB ED ∴=,∴四边形EBFD 是菱形.②BE 平分ABD ∠,ABE EBD ∴∠=∠,EB ED =,EBD EDB ∴∠=∠,2ABD ADB ∴∠=∠,90ABD ADB ∠+∠=︒,30ADB ∴∠=︒,60ABD ∠=︒,30ABE EBO OBF ∴∠=∠=∠=︒,60EBF ∴∠=︒.(2)结论:3IH FH =.理由:如图2中,延长BE 到M ,使得EM EJ =,连接MJ .四边形EBFD 是菱形,60B ∠=︒,EB BF ED ∴==,//DE BF ,JDH FGH ∴∠=∠,在DHJ ∆和GHF ∆中,DHG GHF DH GHJDH FGH ∠=∠⎧⎪=⎨⎪∠=∠⎩, DHJ GHF ∴∆≅∆,DJ FG ∴=,JH HF =,EJ BG EM BI ∴===,BE IM BF ∴==,60MEJ B ∠=∠=︒,MEJ ∴∆是等边三角形,MJ EM NI ∴==,60M B ∠=∠=︒在BIF ∆和MJI ∆中,BI MJ B M BF IM =⎧⎪∠=∠⎨⎪=⎩, BIF MJI ∴∆≅∆,IJ IF ∴=,BFI MIJ ∠=∠,HJ HF =,IH JF ∴⊥,120BFI BIF ∠+∠=︒,120MIJ BIF ∴∠+∠=︒,60JIF ∴∠=︒,JIF ∴∆是等边三角形,在Rt IHF ∆中,90IHF ∠=︒,60IFH ∠=︒,30FIH ∴∠=︒, 3IH FH ∴=.(3)结论:222EG AG CE =+.理由:如图3中,将ADG ∆绕点D 逆时针旋转90︒得到DCM ∆,90FAD DEF ∠+∠=︒,AFED ∴四点共圆,45EDF DAE ∴∠=∠=︒,90ADC ∠=︒,45ADF EDC ∴∠+∠=︒,ADF CDM ∠=∠,45CDM CDE EDG ∴∠+∠=︒=∠,在DEM ∆和DEG ∆中,DE DE EDG EDM DG DM =⎧⎪∠=∠⎨⎪=⎩, DEG DEM ∴∆≅∆,GE EM ∴=,45DCM DAG ACD ∠=∠=∠=︒,AG CM =,90ECM ∴∠=︒222EC CM EM ∴+=,EG EM =,AG CM =,222GE AG CE ∴=+.【点睛】本题考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题,属于中考压轴题.。
八年级数学(下)期末考试试卷含答案
得分评卷人人八年级数学(下)期末考试试卷(全卷共五个大题,满分150分,考试时间100分钟)题号 一 二 三 四 五总分 总分人 复查人 得分友情提示:答题前先写好自己的学校、姓名、考号等信息;答题时,请你认真审题,做到先易后难;答题后,要注意检查.祝你成功! 一、选择题:(本大题共12个小题,每小题4分,共48分)每小题只有一个答案是正确的,请将正确选项的字母填在下列括号内.1.下列手机屏幕解锁图案中不是轴对称图形的是( )2.以下列各组线段为边,能组成三角形的是( )A .2 cm ,3 cm ,5 cmB .3 cm ,3 cm ,6 cmC .5 cm , 8 cm , 2 cmD .4 cm ,5 cm ,6 cm3.下列运算正确的是( )A . 235=x x x +B .()222=x y x y ++ C . 236=x x x ⋅ D . ()326=x x4.一枚一角硬币的直径约为0.022m ,用科学记数法表示为( )A .32.210m -⨯B .22.210m -⨯C .12.210m -⨯ D .32210m -⨯5.下列各式从左到右的变形是因式分解的是( )A .2)1(3222++=++x x xB .22))((y x y x y x -=-+ C .222()x xy y x y -+=- D .)(222y x y x -=-6.如图,点P 是∠BAC 的平分线AD 上一点,PE ⊥AC 于点E .已知∠BAC =60° ,PA=6,则PE长是( )A .3B .4C .5D .67.已知△ABC 的三个内角满足关系:∠A+∠B=∠C ,则此三角形是( ) A .等边三角形 B .锐角三角形 C .直角三角形 D .钝角三角形8.“尊老、敬老”是中华民族的传统美德.重阳节当天,我区一中学 “善行文学社”的全体同学租一辆面包车前去“夕阳红”老年公寓看望那里的老年人面包车的租金为180元,出发时又增加了两名同学,结果每个同学比原来少花费了3元车费.若设“善行文学社”有x 人,则所列方程为( )A .18018032x x -=- B .18018032x x -=+ C .18018032x x -=+ D .18018032x x-=-9.如图,在方格纸中,以AB 为一边作△ABP ,使之与△ABC 全等,从P 1、P 2、P 3、P 4四个点中找出符合条件的点P ,则点P 有( )A . 1个B .2个C . 3个D . 4个10.一个正方形和两个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2=( )A . 90°B . 100°C . 130°D . 180°11. 分式1x mx --中,当x m =时,下列结论正确的是( )A.分式的值为零B .分式无意义C .若1m ≠时,分式的值为零D .若1m =时,分式的值为零 12.如图所示,△ABC 为等边三角形,AQ=PQ ,PR=PS ,PR ⊥AB 于R ,PS ⊥AC 于S ,现有①点P 在∠BAC 的平分线上; ②AS=AR ;③QP ∥AR ; ④△BRP ≌△QSP 四个结论.第10题图第12题图得分评卷人人• 则对四个结论判断正确的是( ).A .仅①和②正确B .仅②③正确C .仅①和③正确D .全部都正确二、填空题:(本大题6个小题,每小题4分,共24分)请将答案直接填写在题后的横线上.13.若点A (m ,7)与点B (8,n )关于x 轴对称,则m = . 14.因式分解:23aa -= .15.如图,∠ABC =∠DCB ,请补充一个条件: ,使△ABC ≌△DCB.(只填一个即可)16.如图,在△ABC 中,AB=AC ,AD 是BC 边上的高,点E 、F 是AD 的三等分点,若 △ABC 的面积为122cm ,则图中阴影部分的面积是____________2cm .17.如图,在△ABC 中,将△ABC 沿DE 折叠,使顶点C 落在△ABC 三边的垂直平分线的交点O 处,若BE=BO ,则∠BOE=____________度.18.如果记22()1x y f x x ==+,并且f (1)表示当1x =时y 的值,即f (1)=2211112=+;得分评卷人人得分评卷人人f (12)表示当12x =时y 的值,即f (12)=221()12151()2=+.那么111(1)(2)()(3)()(4)()234f f f f f f f ++++++1(2017)()2017f f +++= _.三、解答题:(本大题2个小题,19题10分,20题6分,共16分)下列各题解答时必须给出必要的演算过程或推理步骤.19.计算或化简(每小题5分,共10分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学期末考试(时间120分钟 满分150分)卷首语:亲爱的同学,这份试卷将再次记录你的自信、沉着、智慧和收获. 我们一直投给你信任的目光。
请认真审题,看清要求,仔细答题. 预祝你取得好成绩! 一、选择题(每小题4分,共40分)1.若分式12-+x x 的值为0,则x 的值为( ) A.1=x B.2-=x C.21-=或x D.0=x2.已知反比例函数的图像经过点(1,2),则它的图像一定也经过( ) A .(-1,-2) B. (1,-2) C .(-1,2) D .(0,0)3.菱形的两条对角线长分别为6cm 、8cm ,则它的面积为( )2cm . A. 6 B. 12 C. 24 D. 48 4.若将分式aba 4+中的a 与b 的值都扩大为原来的2倍,则这个分式的值将( ) A .扩大为原来的2倍 B .分式的值不变C .缩小为原来的21 D .缩小为原来的41 5.对于数据:10,18,15,15,13,13,14.下列说法中错误的是( ) A .这组数据的平均数是14 B .这组数据的众数是15和13C .这组数据的中位数是14D .这组数据的方差是36 6.已知在的值是则,中,222AC BC AB 2,AB 90C ++==∠∆ABC ( )A. 4B. 6C. 8D. 10 7. 函数y kx b =+与(0)ky k x=≠在同一坐标系中的图象可能是( ) A B C D 8.下列说法正确的是( )A 、一组数据的众数、中位数和平均数不可能是同一个数B 、一组数据的平均数不可能与这组数据中的任何数相等C 、一组数据的中位数可能与这组数据的任何数据都不相等D 、众数、中位数和平均数从不同角度描述了一组数据的波动大小9.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求需提前3天交货,设每天应多加工x 件,则x 应满足的方程为( )。
A .72072034848x -=+ B .72072034848x +=-C .720720348x -= D .72072034848x-=+``````````````````````````````````````````````````````````````````````请不要(第18题图)ABCDE FG HM P10. 如图,已知正方形ABCD 中,对角线AC 、BD 交于O 点,AB =1cm ,过B 作BG ∥AC ,过A 作AE ∥CG ,且∠ACG :∠G =5:1,以下结论:①AE =3cm ;②四边形AEGC 是菱形;③AEC BDC S S ∆∆=;④ CE =21cm ;⑤△CFE A .①③⑤ B .②③⑤ C .②④⑤ D .①②④二、填空题(每小题4分,共24分)11.化简=-+--1213a a a a 。
12. 如图,在平面直角坐标系xOy 中,P 是反比例函数图象上一点,过点P 作x PA ⊥轴于点A ,1=∆AOP S ,则这个反比例函数的解析式是 .13. 如图,在菱形ABCD 中,∠BAD =80°,AB 的垂直平分线交对角线AC 于点E ,交AB 于点F ,F 为垂足,连接DE ,则∠CDE =____ __度.14. 某市广播电视局欲招聘播音员一名,对A B ,两名候选人进行了两项素质测试,两人的两项测试成绩如右表所示.根据实际需要,广播电视局将面试、综合知识测试的得分按3:2的比例计算两人的总成绩,那么 (填A 或B )将被录用.15.如图,梯形ABCD 中,AD ∥BC,∠B=70o ,∠C=40o ,若AD=3,BC=10, 则CD=16. 顺次连接一矩形场地ABCD 的边AB 、BC 、CD 、DA 的中点E 、F 、G 、H ,得到四边形EFGH ,M 为边EH 的中点,点P 为小明在对角线EG 上走动的位置,若AB=10米,BC=310米,当PM +PH 的和为最小值时,此时EP 的值为________________。
三、解答题(每小题6分,共24分)17. 解方程:x x x -=+--2312318.化简:22411()4422x x x x x x ---÷-+-- . 19.如图,E 、F 是四边形ABCD 的对角线AC 上两点,AF=CE ,DF=BE,且 DF ∥BE 。
(1) (220. 根据表中信息回答下列问题:(1)初二(1)班所交废旧报纸质量的中位数为 千克,众数为 千克; (2)计算初二(1)班平均每人交废旧报纸多少千克?(3)市邮政局根据每班所交废旧报纸的总质量,每3公斤部分不赠送贺卡),则初一(1)班将会获得多少张宣传贺卡? 四、解答题(每小题10分,共40分)21.如图,在平行四边形ABCD 中,︒=∠90D ,DC AB ==AE 把AED ∆折叠,使点D 恰好落在BC 边上的F 点处,若ABF ∆22. 如图,已知一次函数b x k y +=1的图象分别与x 轴、y 轴的正半轴交于A 、B 两点,且与反比例函数xk y 2=交于C 、E 两点,点C 在第二象限,过点C 作CD ⊥x 轴于点D , 1==OB OA ,2=CD .(1)求反比例函数与一次函数的解析式; (2)求BOC ∆的面积.24. 家乐福超市用5000元购进一批新品种的苹果进行试销,由于销售状况良好,超市又挑拨11000元资金购进该品种苹果,但这次的进货价比试销时每千克多了元,购进苹果数量是试销时的2倍. (1)试销时该品种苹果的进货价是每千克多少元?(2)如果超市将该品种苹果按每千克7元的定价出售,当大部分苹果售出后,余下的400千克按定价的七折售完,那么超市在这两次苹果销售中共盈利多少元? 五、解答题(第25题10分,第26题12分,共22分) 25. 如图,直角梯形ABCD 中,AD ∥BC ,∠A=90°,6AB AD ==,DE DC ⊥交AB 于E ,DF 平分∠EDC 交BC 于F ,连结EF . (1)证明:EFCF =;(2)若3AD AE =,求CF 的长.26. 正方形ABCD 中,E 点为BC 中点,连接AE ,过B AE 于G 点,连结GD ,过A 点作AH ⊥GD 交GD 于H 点.(1)求证:△ABE ≌△BCF ;(2)若正方形边长为4,AH=516,求△AGD 的面积. 八年级下期数学期末试题参考答案一、(每小题4分,共40分) BACBD CADDB 二、(每小题4分,共40分)11. 2 12.xy 2-= 13. 60度14. B 15. CD= 7 16. 103三、(每小题6分,共24分)17. 解:两边同乘以 x-2,得…………1分323x x -+-=- …………2分22x =…………1分1x = …………1分检验:1x =时,02≠-x 所以1x =是原方程的根…………1分18. 解:原式2(2)(2)12[](2)21x x x x x x +--=-⋅--- ………… 2分 212[]221x x x x x +-=-⋅---…………2分 1221+-⋅-+=x x x x …………1分 11-+=x x ………… 1分 19. (1)证明:∵DF ∥BE∠1=∠2∴∠3=∠4 ∵AF=CE ,DF=BE,∴△AFD ≌△CEB.....3分(2)证明:∵△AFD ≌△CEB ∴∠5=∠6且AD=BC ∴AD=BC,AD...3分 20.(1)中位数 3,众数 3…………2分(2)平均每人1.35122094551242039241=++++⨯+⨯+⨯+⨯+⨯ 千克…………2分(3)由(2)知共交155千克, 32513155=÷所以可获得51张宣传贺卡…………2分 四、解答题(每小题10分,共40分)21.解:分即解得分)即(,由勾股定理可知,则设,即折叠得到沿分由勾股定理得分分为矩形四边形中,平行四边形1cm 6262x 3x 1x -5CE x 5xcm cm11213cm 132cm 13125AB AF 2cm 1222190290222222222⋯⋯⋯⋯⋯⋯==⋯⋯⋯⋯⋯⋯=+=+-====-=-=∴====∴∆≅∆∆∆⋯⋯⋯⋯=+=+===⋅=∴=∠∴∴=∠∆∆︒︒..,,EF EF CF CE FE DE BF BC CF FE DE BC AD AF AFEADE AFEAE ADE BF ABS BF BF AB S B ABCD D ABCD ABFABF22. 解:(1)1==OB OA )0,1(),1,0(A B ∴ b x k y +=1 过)1,0(),0,1(A 1+-=∴x y …………4分 2=CD ∴令)2,(m D1+-=x y 过)2,(m D 12+-=∴mx k y 2=过)2,1(-D 122-=∴k22-=∴k xy 2-=∴…………4分 (2)21112121=⨯⨯=⋅=∆OD OB S BOC…………2分23. 解:原式a a a a a a a a )2)(2()2)(2(8)2(2-+÷⎥⎦⎤⎢⎣⎡-+--+=2)2(1+=a 4412++=a a …………6分 ∴原式31411=+-=…………4分24..解:(1)设试销时该品种苹果的进货价为每千克x 元,由题意得501100050002.+=⋅x x …………3分 解得x=5 …………2分经检验,x=5是原方程的解…………1分(2)首次购入苹果数量为5000÷5=1000 千克,第二次购入数量为2×1000=2000千克 两次苹果的总售价为=7×(1000+2000-400)=18200 元所以两次苹果销售利润=18200-(5000+11000)=4160 元…………3分答:试销时该品种苹果的进货价是每千克5元,两次苹果销售中共盈利4160元。
……1分 五、解答题(第25题10分,第26题12分,共22分) 25. (1)证明:过D 作DG ⊥BC 于G .由已知可得,四边形ABGD 为正方形. …………1分 ∵DE ⊥DC ,∴∠ADE +∠EDG =90°=∠GDC +∠EDG ,∴∠ADE =∠GDC . ………………………3分 又∵∠A=∠DGC ,且AD =GD , ∴△ADE ≌△GDC .∴DE =DC ,且AE =GC . ……………………4分 在△EDF 和△CDF 中,∠EDF =∠CDF ,DE =DC ,DF 为公共边, ∴△EDF ≌△CDF .∴EF =CF . ……………………………………………6分(2)∵AD=3AE , ∴2A E G C ==. ………………………………………7分 设E F x =,则88B FC F x =-=-,BE =6-2=4. 由勾股定理,得 222(8)4x x =-+. 解之,得 5x =, 即5E F =. ∴CF = EF =5……………………………10分 26. (1)正方形ABCD 中,∠ABE=90°,∴∠1+∠2=90°,又AE ⊥BF ,∴∠3+∠2=90°,则∠1=∠3 (2分)又∵四边形ABCD 为正方形,∴∠ABE=∠BCF=90°,AB=BCFDBA EC第25题图G在△ABE 和△BCF 中,⎪⎩⎪⎨⎧∠=∠=∠=∠BCF ABE 31BC AB ∴△ABE ≌△BCF(ASA) (5分)(2)延长BF 交AD 延长线于M 点,∴∠MDF=90° (6分) 由(1)知△ABE ≌△BCF ,∴CF=BE ∵E 点是BC 中点,∴BE=21BC ,即CF=21CD=FD , 在△BCF 和△MDF 中,⎪⎩⎪⎨⎧∠=∠=∠=∠FD FC DF CF MDFBCF M B ∴△BCF ≌△MDF(ASA)∴BC=DM ,即DM=AD ,D 是AM 中点 (9分) 又AG ⊥GM ,即△AGM 为直角三角形, ∴GD=21AM=AD 又正方形边长为4,∴GD=4 S △AGD =21GD·AH=21×4×516=532 (12分)BAE GCHFDM。