(完整版)余角、补角、对顶角的概念和习题答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
余角和补角和对顶角
余角:
如果两个角的和是一个直角,那么称这两个角互为余角,简称互余,也可以说其中一个角是另一个角的余角。
ZA + /C=90 °/A= 90 ° ZC , ZC 的余角=90 ° ZC 即:/A 的余角=90 ° ZA
补角:
如果两个角的和是一个平角,那么这两个角叫互为补角.其中一个角叫做另一个角的补角
ZA + /C=180 °Z A= 180 ° ZC , ZC 的补角=180 ° ZC 即:Z A 的补角=180 ° Z A
对顶角: 一个角的两边分别是另一个角的反向延长线,这两个角是对顶角。两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角。
两条直线相交,构成两对对顶角。对顶角相等•对顶角与对顶角相等•
对顶角是对两个具有特殊位置的角的名称;对顶角相等反映的是两个角间的大小关系。
补角的性质:
同角的补角相等。比如:Z A+ ZB=180 °Z A+ ZC=180 :则:Z C= Z。
等角的补角相等。比如:Z A+ ZB=180 °/D+ ZC=180 °,ZA= ZD 贝U:Z C= /B。
余角的性质:
同角的余角相等。比如:Z A+ ZB=90 °,ZA+ ZC=90。,则:Z C= /B。
A+ ZB=90 °,ZD+ ZC=90 °,ZA= ZD 贝U:Z C= Z B。
等角的余角相等。比如:Z
注意:
①钝角没有余角;
②互为余角、补角是两个角之间的关系。如Z A+ ZB+ ZC=90 °,不能说ZA、/B、/C互余;同样:如Z A+ ZB+
ZC=180 °,不能说ZA、Z B、Z C互为补角;
③互为余角、补角只与角的度数相关,与角的位置无关。只要它们的度数之和等于90 ° 或180 °,就一定互为余角或补角。
余角与补角概念认识提示:
(1 )定义中的“互为”一词如何理解?
如果Z1与Z2互余,那么Z 1的余角是Z 2,同样Z 2的余角是Z 1 ;如果Z 1与Z2互补,那么Z 1的补角是Z2 ,同样Z2
的补角是Z 1。
(2)互余、互补的两角是否一定有公共顶点或公共边?
两角互余或互补,只与角的度数有关,与位置无关。
(3 )Z1 + Z + Z3 = 90 ° 180 ° ),能说Z 1、Z2、Z3 互余(互补)吗?
不能,互余或互补是两个角之间的数量关系。
已知/ A与/ B互余,/ B与/C互补,若/ A=50°,则/ C的度数是[ D ]
A. 40° B . 50° C . 130° D . 140°
如果/A的补角是它的余角的4倍,贝U/A= ______ 度.
设/ A为x,则/ A的余角为90° -x,补角为180 ° -x,
根据题意得,180 ° -x=4(90° -x),解得x=60°.故答案为:60.
已知/ a =50 ° 17',的余角和补角分别是[B ]
A. 49°43',129°43' B . 39° 43',129° 43'
C. 39°83',129°83' D . 129° 43',39° 43'
两个角的比是6 : 4,它们的差为36。,则这两个角的关系是()
A .互余
B .相等
C .互补
D .以上都不对
设一个角为6x,则另一个角为4x,则有6x-4x=36 °,.x=18 ° ,
则这两个角分别为108 ° ,72 °,而108 °+72 °180 °
•••这两个角的关系为互补. 故选C.
如果/ A=35° 18',那么/ A的余角等于____________ .
如果/A=35 °18 '那么/A 的余角等于90 °-35 °18 ' _ =54 °42 '. 故填54 °42 '
已知/1和Z2互补,/3和Z2互余,求证:/ 3= = 2(Z1- Z2 ).
证明:由题意得:/ 2+ / 3=90°,/ 1 + Z 2=180°,• 2 (/2+Z 3)=/ 1 + Z 2, 故可得:/ 3=丄(/ 1-/2)
2
如图,/1的邻补角是[]
A. / BOC
B. / BOC和/ AOF
C. / AOF
D. / BOE和/ AOF
两个角互为补角,那么这两个角大小[D ]
A.都是锐角
B.都是钝角
C. 一个锐角,一个钝角
D.无法确定
如果两个角互为补角,那么这两个角一定互为邻补角,证明此命题真——加原因如果两个角互为补角,那么这两个角一定互为邻补角,这是假命题.
如果两个角互为领补角,那么这两个角一定互为补角,这是真命题.
譬如说,两直线平行,同旁内角互补,但互为同旁内角的两个角一定不互为领补角
如果两个角互补,那它们是邻补角”----------- 为什么说这个是假命题?
两条平行线切出的同旁内角也互补,但是它们不是邻补角
所以说:“如果两个角互补,那它们是邻补角”是假命题!
因为邻补角是相邻的两个角互补,那么这两个角是互为邻补角,而互补的两个角有不相邻的,比如四边形的两个对角互补,则这四点共圆
如果一个角是36 °,那么[D ]
.它的余角是64 ° B .它的补角是64 ° C .它的余角是144 ° D .它的补角是144 °
下列说法中:①同位角相等;②两点之间,线段最短;③如果两个角互补,那么它们是邻补角;
④两个锐角的和是锐角;⑤同角或等角的补角相等.正确的个数是()
A . 2个
B . 3个C. 4个D . 5个
①同位角相等,说法错误;
②两点之间,线段最短,说法正确;
③如果两个角互补,那么它们是邻补角,说法错误;
④两个锐角的和是锐角,说法错误;
⑤同角或等角的补角相等,说法正确;
说法正确的共有2个,故选:A .
F列说法正确的是()
F列说法中,正确的是()A.对顶角相等B.内错角相等C.锐角相等D.同位角相等
A、对顶角相等,说法正确;
四条直线出现4* (4-1)=12对对顶角依次类推,n条直线相交于一点有n*(n-1)对对顶角