(完整版)余角、补角、对顶角的概念和习题答案

合集下载

余角、补角、对顶角(通用版)(含答案)

余角、补角、对顶角(通用版)(含答案)

余角、补角、对顶角(通用版)试卷简介:考查学生对余角、补角、对顶角的定义以及对同角(或等角)的余角相等、同角(或等角)的补角相等、对顶角相等的掌握情况,并利用这些进行简单的计算.一、单选题(共16道,每道6分)1.如图,∠1,∠2是对顶角的是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:对顶角的定义2.下列语句正确的是( )A.若两个角不是对顶角,则这两个角不相等B.若两角相等,则这两个角是对顶角C.若两个角是对顶角,则这两个角相等D.以上判断都不对答案:C解题思路:试题难度:三颗星知识点:对顶角相等3.下面四个图形中,∠1=∠2一定成立的是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:对顶角相等4.如果一个角的补角是120°,那么这个角的余角是( )A.130°B.60°C.30°D.20°答案:C解题思路:试题难度:三颗星知识点:补角的定义5.如果一个角的余角是50°,那么这个角的补角是( )A.130°B.140°C.150°D.160°答案:B解题思路:试题难度:三颗星知识点:补角的定义6.已知∠1与∠2互余,且∠1=35°,则∠2的补角的度数为( )A.145°B.115°C.135°D.125°答案:D解题思路:试题难度:三颗星知识点:补角的定义7.如图,∠AOB=15°,∠AOC=90°,点B,O,D在同一直线上,则∠COD的度数为( )A.75°B.15°C.105°D.165°答案:C解题思路:试题难度:三颗星知识点:补角的定义8.如图,OC⊥AB,∠COD=45°,则图中互为补角的角共有( )A.1对B.2对C.3对D.4对答案:C解题思路:试题难度:三颗星知识点:补角的定义9.如图,OA⊥OB,OC⊥OD,则( )A.∠AOC=∠AODB.∠AOC=∠BODC.∠AOD=∠BODD.以上结论都不对答案:B解题思路:试题难度:三颗星知识点:余角的定义10.如果∠α和∠β互余,则下列式子中:①180°-∠β;②∠α+2∠β;③90°+∠α;④2∠α+∠β.能表示∠β补角的有( )A.①③B.①④C.①③④D.①②③④答案:C解题思路:试题难度:三颗星知识点:补角的定义11.如图,∠AOC=∠BOD=90°,若∠AOB=150°,则∠DOC的度数为( )A.30°B.40°C.50°D.60°答案:A解题思路:试题难度:三颗星知识点:余角的定义12.如图,已知直线AB,CD相交于点O,OA平分∠EOC,∠EOC=110°,则∠BOD的度数是( )A.25°B.35°C.45°D.55°答案:D解题思路:试题难度:三颗星知识点:对顶角相等13.如图,∠COD为平角,AO⊥OE,,则∠EOD的度数为( )A.30°B.45°C.60°D.75°答案:A解题思路:试题难度:三颗星知识点:平角的定义14.如图,已知AB⊥CD,垂足为点O,EF过点O,则图中∠FOB与∠EOD的关系是( )A.∠FOB+∠EOD=180°B.∠FOB+∠EOD=90°C.∠FOB=∠EODD.无法确定答案:B解题思路:试题难度:三颗星知识点:补角的定义15.若∠α与∠β互余,∠β与∠γ互余,则∠α与∠γ的关系是( )A.互余B.互补C.相等D.不确定答案:C解题思路:试题难度:三颗星知识点:补角的定义16.如果∠A与∠B互补,∠B与∠C互余,则∠A与∠C的关系是( )A.互余B.互补C.∠A-∠C=90°D.∠A-∠C=180°答案:C解题思路:试题难度:三颗星知识点:补角的定义。

6.3余角、补角和对顶角

6.3余角、补角和对顶角

A.2个B.3个C.4个D.6个
A.20°B.40°C.50°D.60°
A.B.C.D.
A.B.C.D.
2、相交线
(1)相交线的定义
两条直线交于一点,我们称这两条直线相交.相对的,我们称这两条直线为相交线.(2)两条相交线在形成的角中有特殊的数量关系和位置关系的有对顶角和邻补角两类.(3)在同一平面内,两条直线的位置关系有两种:平行和相交(重合除外).
【练习】
1(2006•河南)两条直线相交所成的四个角中,下列说法正确的是()A.一定有一个锐角B.一定有一个钝角
C.一定有一个直角D.一定有一个不是钝角
3(2011•柳州)如图,在所标识的角中,互为对顶角的两个角是()
A.∠2和∠3B.∠1和∠3C.∠1和∠4D.∠1和∠2
4(2009•南平)如图,某同学在课桌上随意将一块三角板的直角叠放在直尺上,则∠1+∠2的度数是()
A.45°B.60°C.90°D.180°。

6.3余角、补角、对顶角(1)

6.3余角、补角、对顶角(1)

6.3余角、补角、对顶角(1)教学目标:1、在具体情景了解余角、补角,概念2、知道等角的余角相等,等角的补角相等3、经历观察—操作—说理,交流等过程,进一步发展宽间的观念教学重难点:1、余角、补角,概念2、同角(等角)的余角相等,同角(等角)的补角相等教学过程:一、情景创设:用一副三角尺,在实际操作中,演示课本中的图通过直观、形象演示,引导学生观察,引入余角、补角概念1、探索活动活动1:通过直观、形象演示,引导学生观察,引入余角、补角概念如果两个角的和是直角,这两个的角叫做互为余角如果两个角的和是平角,这两个的角叫做互为补角( 1 )摆动两个三角板位置,∠α+∠β=90°∠α+∠β=180°不变(2)两个角的和是90 °,或者平角180°是一种特殊关系,它们分别叫做互为余角,互为补角。

(3)前面研究的角都是一个角,而互为余角、互为补角指的是两个角的关系。

(4)互补,互余是一种特殊的数量关系,思考:同一块三角板上有两个锐角互余吗?(5)如果∠α+∠β=90°那么∠α与∠β互余反过来,如果∠α与∠β互余,那么∠α+∠β=90°或∠α=90°—2∠β或∠β=90°—2∠α如果∠α+∠β=180°那么∠α与∠β互补反过来∠α与∠β互补,那么,∠α+∠β=180°或∠α=180°—2∠β或∠β=180°—2∠α活动2:填表(投影)可知:∠α的余角为90°—n°(∠α= n°)∠α的补角=180°—n°做一做:书本上连线二、例题教学:探索余角补角的性质,让学生经历”观察-----猜想-----说理”的过程,例:如果∠1与∠2 互余,∠1与∠3互余,那么∠2与∠3 相等吗?为什么?解:∠2与∠3 相等因为∠1与∠2 互余,∠1与∠3互余所以∠2=90°—∠1 ,∠3=90°—∠1所以∠2=∠3引导学生交流得出结论,同角(或等角)的余角相等,同角(或等角)的补角相等。

角与余(补)角、对顶角、平行和垂直

角与余(补)角、对顶角、平行和垂直

角与余(补)角、对顶角、平行和垂直知识框架⎧⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎧⎨⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩角的相关概念基础知识点钟面上角的比较余角、补角、对顶角平行线的相关概念垂线的概念和性质与角有关的基本概念垂线段在生活中的应用一副直角三角形板中的的角度问题重难点题型旋转、折叠有关的角度问题作图题与角有角度问题关的综合题 基础知识点知识点1-1角的相关概念1)角的定义:角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点,这两条射线叫做角的边,构成角的两个基本条件:一是角的顶点,二是角的边.角的另一种定义:角也可以看成是由一条射线绕着它的端点旋转而成的.如图4-3-7所示,∠BAC 可以看成是以A 为端点的射线,从AB 的位置绕点A 旋转到AC 的位置而成的图形.如图4-3-8所示,射线OA绕点O旋转,当终止位置OC和起始位置OA成一直线时,所成的角叫做平角;如图4-3-9所示,射线OA绕它的端点旋转一周所成的角叫做周角.2)角的分类:小于平角的角可按大小分成三类:当一个角等于平角的一半时,这个角叫直角;大于零度角小于直角的角叫锐角(0°<锐角<90°);大于直角而小于平角的角叫钝角(90°<钝角<180°).1周角=2平角=4直角=360°,1平角=2直角=180°,1直角=90°.3)角的表示方法:角用几何符号“∠”表示,角的表示方法可归纳为以下三种:(1)用三个大写英文字母表示,如图4-3-3所示,记作∠AOB或∠BOA,其中,O是角的顶点,写在中间;A和B分别是角的两边上的一点,写在两边,可以交换位置.(2)用一个大写英文字母表示,如图4-3-3所示,可记作∠O.用这种方法表示角的前提是以这个点作顶点的角只有一个,否则不能用这种方法表示,如图4-3-4所示,∠AOC就不能记作∠O.因为此时以O为顶点的角不止一个,容易混淆.(3)用数字或小写希腊字母来表示,用这种方法表示角时,要在靠近顶点处加上弧线,注上阿拉伯数字或小写希腊字母α、β、γ等.如图4-3-4所示,∠AOB记作∠l,∠BOC记作∠2;如图4-3-5所示,∠AOB记作∠β,∠BOC记作∠α.4)度量角的方法:度量角的工具是量角器,用量角器量角时要注意:(1)对中(顶点对中心);(2)重合(一边与刻度尺上的零度线重合)(3)读数(读出另一边所在线的刻度数).5)角的换算:在量角器上看到,把一个平角180等分,每一份就是1°的角.1°的160为1分,记作“1′”,即l°=60′.1′的160为1秒,记作“1″”,即1″=60″.1.(2020·安丘市初一月考)下列说法中,正确的是()A.两条射线组成的图形叫做角B.有公共端点的两条线段组成的图形叫做角C.角可以看做是由一条射线绕着它的端点旋转而形成的图形D.角可以看做是由一条线段绕着它的端点旋转而形成的图形2.(2020·江苏省初一期中)下列四个图形中,能用∠1,∠AOB,∠O三种方法表示同一个角的是().A.B.C.D.3.(2020·南京市初一期末)如图,下列表示角的方法中,不正确的是( )A.∠A B.∠a C.∠E D.∠13.(2020·广东省初一期末)如图所示,下列关于角的说法错误的是()A.∠1与∠AOB表示同一个角B.∠β表示的是∠BOCC.图中共有三个角:∠AOB,∠AOC,∠BOC D.∠AOC也可用∠O来表示4.(2020·河北省初一期中)有下列说法:①射线是直线的一半;②线段AB是点A与点B 的距离;③角的大小与这个角的两边所画的长短有关;④两个锐角的和一定是钝角.其中正确的个数有()A.0个B.1个C.2个D.3个5.(2020·宿迁市钟吾初级中学初一期末)下列各数中,正确的角度互化是()A.63.5°=63°50′ B.23°12′36″=23.48° C.18°18′18″=18.33° D.22.25°=22°15′6.(2020·成都市嘉祥外国语初一月考)某人下午6点到7点之间外出购物,出发和回来时发现表上的时针和分针的夹角都为110°,此人外出购物共用了__________分钟.7.(2020·上海市静安区实验中学月考)用量角器量图中的角,30°的角有_____个,60°的角有_____个,90°的角有_____个,120°的角有_____个.8.(2020山西吕梁初一期末)如图,在利用量角器画一个40°的∠AOB的过程中,对于先找点B,再画射线OB这一步骤的画图依据,喜羊羊同学认为是两点确定一条直线,懒羊羊同学认为是两点之间线段最短.你认为_____同学的说法是正确的.9.(2020·江苏仪征市初一期中)日常生活中,我们几乎每天都要看钟表,它的时针;和分针如同兄弟俩在赛跑,其中蕴涵着丰富的数学知识.(1)如图1,上午8:00这一时刻,时钟上分针与时针的夹角等于________;(2)请在图2中画出8:20这一时刻时针和分针的大致位置,思考并回答:从上午8:00到8:20,时钟的分针转过的度数是________,时钟的时针转过的度数是________;(3)“元旦”这一天,小明上午八点整出门买东西,回到家中时发现还没到九点,但是时针与分针重合了,那么小明从离开家到回到家的时间为多少分钟?10.(2020·辽宁鞍山初一期末)如下图,在已知角内画射线,画1条射线,图中共有个角;画2条射线,图中共有个角;画3条射线,图中共有个角;求画n条射线所得的角的个数 .知识点1-2角的比较1)角的比较方法(1)度量法:如图4-4-4所示,用量角器量得∠1=40°,∠2=30°,所以∠1>∠2.(2)叠合法:比较∠ABC与∠DEF的大小,先让顶点B、E重合,再让边BA和边ED重合,使另一边EF和BC落在BA(DE)的同侧.如果EF和BC也重合(如图4-4-5(1)所示),那∠DEF等于∠ABC.记作∠DEF=∠ABC;如果EF落在∠ABC的外部(如图4-4-5(2)所示),那么∠DEF大于∠ABC,记作∠DEF>∠ABC;如果EF落在∠ABC的内部(如图4-4-5(3)所示),那么∠DEF小于∠ABC,记作∠DEF<∠ABC.提示:叠合法可归纳为“先重合,再比较”.2)角的和、差由图4-4-7(1)、(2),已知∠1,∠2,图4-4-7(3)中,∠ABC=∠1+∠2;图4-4-7(4)中,∠GEF =∠DEG-∠1.3)角的平分线从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.如图4-4-9所示,射线OC 是∠BOA 的平分线,则∠BOC =∠COA =21∠BOA ,∠BOA =2∠BOC =2∠COA .4)方向的表示○1方位角:是指南北方向线与目标方向所成的小于900的水平角。

2.1余角与补角

2.1余角与补角
180°- x
42°
54° 62°23′
x
观察实验:
光的反射是一种常见的物理现象,通过下图的实 验装置,可以验证光的反射定律:反射角=入射角
法线
入射光线 反射光线
反 射 角
反射角=入射角
我们将上述光的反射图形抽
象为如图所示的几何图形: 其中∠1 = ∠2,DB⊥EF 垂足为B
A
D
C
12 3 4
E B
2
1
如果两个角的和等于90° ,就说这两个角互为余角.(简称余 角)即其中一个角是另一个角的余角。 符号语言:∵∠1 与∠2 互余 ∴∠1+∠2=90°
图中给出的各角,那些互为余角?
10o
30o 50o
60o
40o
80o
补角
如果两个角的和等于180°,就说这两个角互为补角(简称补 角)即其中一个角是另一个角的补角。
2
B
D
同角的余角相等
练一练:
1.若∠1+∠2=90° ,∠3+∠2=90°
则∠1=____ ∠3
2.若∠A+∠B=180° ,∠C+∠D=180°
且∠A=∠C,则∠B=____ ∠D
判断下列说法是否正确
(1)30° ,70° 与80° 的和为平角,所以 这三个角互补( ×) (2)一个角的余角必为锐角。 ( √ ) (3)一个角的补角必为钝角。 ( ×)
符号语言:∵∠1 与∠2 互补,∴∠1+∠2=180°
∵∠1+∠2=180° ∴∠1 与∠2 互补
图中给出的各角,那些互为补角?
10o
30o
60o
80o
100o
170o 120o 150o

对顶角余角和补角的定义

对顶角余角和补角的定义

对顶角余角和补角的定义
顶角、余角和补角是在几何学和三角学中常见的概念。

顶角指的是两条直线相交时,形成的相对的两个角,这两个角的顶点是同一个点。

余角是指一个角的补角,即与该角相加为90度的角。

而补角则是两个角的和为90度的角。

从几何学的角度来看,顶角是指两条直线相交时形成的相对的两个角,它们共享一个公共顶点。

例如,在一个三角形中,顶角通常指的是三角形的顶点所对的角。

余角是指一个角的补角,也就是与该角相加为90度的角。

例如,如果一个角的度数是x度,那么它的余角就是90度减去x度。

补角是指两个角的和为90度的角。

例如,如果一个角的度数是x度,那么它的补角就是90度减去x度。

从三角学的角度来看,顶角、余角和补角也有特定的定义。

在三角函数中,余角是指角A的余角是90度减去角A的度数。

补角是指两个角的和为90度的角,例如,如果角A的度数是x度,那么角A的补角就是90度减去x度。

这些概念在解题和推导三角函数的过程中经常被用到。

总的来说,顶角、余角和补角是几何学和三角学中非常基础和
重要的概念,它们帮助我们理解角的关系,解决各种几何和三角学问题。

通过理解这些概念,我们能更好地应用它们解决实际问题,并且在数学推导和证明中起到重要的作用。

七年级数学上册6.3余角、补角、对顶角什么叫余角、补角?它们的性质是什么?素材苏科版

七年级数学上册6.3余角、补角、对顶角什么叫余角、补角?它们的性质是什么?素材苏科版

什么叫余角、补角?它们的性质是什么?难易度:★★★★关键词:角答案:(1)余角:如果两个角的和等于90°(直角),就说这两个角互为余角。

即其中一个角是另一个角的余角。

(2)补角:如果两个角的和等于180°(平角),就说这两个角互为补角。

即其中一个角是另一个角的补角。

(3)性质:等角的补角相等。

等角的余角相等。

(4)余角和补角计算的应用,常常与等式的性质、等量代换相关联。

注意:余角(补角)与这两个角的位置没有关系。

不论这两个角在哪儿,只要度数之和满足了定义,则它们就具备相应的关系。

【举一反三】典例:已知一个角的补角比这个角的余角的3倍大10°,求这个角的度数.思路引导:主要考查了余角和补角的概念以及运用.互为余角的两角的和为90°,互为补角的两角之和为180度.解此题的关键是能准确的从图中找出角之间的数量关系,从而计算出结果.利用题中“一个角的补角比这个角的余角的3倍大10°"作为相等关系列方程求解即可.设这个角是x,则(180°-x)—3(90°-x)=10°,解得x=50°.故答案为50°.标准答案:50°尊敬的读者:本文由我和我的同事在百忙中收集整编出来,本文稿在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。

文中部分文字受到网友的关怀和支持,在此表示感谢!在往后的日子希望与大家共同进步,成长。

This article is collected and compiled by my colleagues and I in our busy schedule. We proofread the content carefully before the release of this article, but it is inevitable that there will be some unsatisfactory points. If there are omissions, please correct them. I hope this article can solve your doubts and arouse your thinking. Part of the text by the user's care and support, thank you here! I hope to make progress and grow with you in the future.。

余角、补角、对顶角

余角、补角、对顶角
在老师的引导下,思考。回答老师的问题
互为余角90°
互为补角180°
通过练习进一步巩固今天所学的知识。培养学生自主学习能力。整理知识,检验目标的实施情况
板书设计
情境创设
1、
2、
例1:……
……
……
例2:……
……
……
习题……
……
……
作业布置
课后随笔
互补,互余是一种特殊的数量关系
答:∠2与∠3相等
因为∠1与∠2互余,∠1与∠3互余
所以∠2=90°—∠1,∠3=90°—∠1
所以∠2=∠3
引导学生交流得出结论,
同角(或等角)的余角相等
同角(或等角)的补角相等。
通过具体情景让学生探索和发现,在不断提出问题和解决问题的氛围中发展空间观念。使学生了解余角、补角的概念和由来,培养学生的观察力和归纳能力
课时编号
备课时间
课题
6.3余角、补角、对顶角(1)
教学目标
1、在具体情景了解余角、补角,概念
2、知道等角的余角相等,等角的补角相等
3、经历观察—操作—说理,交流等过程,进一步发展宽间的观念
教学重点
余角、补角,概念
教学难点
同角(等角)的余角相等,同角(等角)的补角相等
教学过程
教学内容
教师活动
学生活动
用一副三角尺,在实际操作中,演示课本中的图
如果两个角的和是一个直角,这两个的角叫做互为余角,简称互余,其中一个是另一个的余角。
如果两个角的和是一个平角,这两个的角叫做互为补角,简称互补,其中一个是另一个的补角。
思考:同一块三角板上有两个锐角互余吗?
如果∠α+∠β=90°那么∠α与∠β互余

62 角、余角、补角以及对顶角(解析版)

62 角、余角、补角以及对顶角(解析版)

2021-2022学年七年级数学上册同步课堂专练(苏科版)6.2角、余角、补角以及对顶角一、单选题1.下列说法中正确的是()A.射线AB与射线BA是同一条射线B.两条射线组成的图形叫做角C.各边都相等的多边形是正多边形D.连接两点的线段的长度叫做两点之间的距离【答案】D【详解】解:A、射线AB与射线BA不是同一条射线,故此选项错误;B、有公共端点是两条射线组成的图形叫做角,故此选项错误;C、各边都相等、各角都相等的多边形是正多边形,故此选项错误;D、连接两点的线段的长度叫做两点之间的距离,故此选项正确.故选:D.2.如图,直线AB,CD相交于点O,分别作∠AOD,∠BOD的平分线OE,OF.将直线CD绕点O旋转,下列数据与∠BOD大小变化无关的是()A.∠AOD的度数B.∠AOC的度数C.∠EOF的度数D.∠DOF的度数【详解】 解:OE ,OF 平分∠AOD ,∠BOD11,22AOE EOD AOD DOF FOB BOD ∴∠=∠=∠∠=∠=∠180AOD BOD ∠+∠=︒111()90222EOD DOF AOD BOD AOD BOD ∴∠+∠=∠+∠=∠+∠=︒90EOF ∴∠=︒180AOD BOD ∴∠=︒-∠1,2AOC BOD DOF BOD ∴∠=∠∠=∠都与∠BOD 大小变化有关,只有∠EOF 的度数与∠BOD 大小变化无关, 故选:C .3.如图,将一个三角板60°角的顶点与另一个三角板的直角顶点重合,12740'∠=︒,则2∠的余角是( )A .1720'︒B .3220︒'C .3320'︒D .5820︒'【答案】B解:由题意可得:∠2+∠EAC =90° ∠∠2的余角是∠EAC∠∠EAC =601602740'3220'︒-∠=︒-︒=︒ 故选:B .4.设一个锐角与这个角的补角的差的绝对值为α,则( ) A .090α︒<<︒或90180α︒<<︒ B .0180α︒<<︒ C .090α︒<<︒ D .090α︒<≤︒【答案】B 【详解】解:设这个角的为x 且0<x <90°,根据题意可知180°-x -x =α, ∠α=180°-2x ,∠180°-2×90°<α<180°-2×0°, 0°<α<180°. 故选:B .5.如图,直线a 、b 被直线c 所截,则下列说法错误的是( )A .1∠与2∠是邻补角B .1∠与3∠是对顶角C .2∠与4∠是同位角D .3∠与4∠是内错角【答案】D 【详解】解:A 、1∠与2∠是邻补角,故原题说法正确;B 、1∠与3∠是对顶角,故原题说法正确;C 、2∠与4∠是同位角,故原题说法正确;D 、3∠与4∠是同旁内角,故原题说法错误;答案:D .6.下列推理错误的是( )A .因为1223∠=∠∠=∠,,所以13∠=∠B .因为12123∠=∠∠+∠=∠,,所以321∠=∠C .因为1223∠+∠=∠,所以1323∠=∠∠=∠,D .因为1∠与2∠互补,13∠=∠,所以2∠与3∠互补 【答案】C 【详解】解:A .因为∠1=∠2,∠2=∠3,所以∠1=∠3(等量代换),故原说法正确; B .因为∠1=∠2,∠1+∠2=∠3,所以∠3=∠1+∠1=2∠1,故原说法正确; C .当∠1+∠2=2∠3时,∠1,∠2不一定等于∠3,故原说法错误; D .因为∠1与∠2互补,∠1=∠3,所以∠2与∠3互补,故说法正确. 故选:C .7.下列说法正确的是( )A.如果∠1+∠2+∠3=90º,那么∠1、∠2、∠3三个互余B.过一点有且只有一条直线与已知直线平行C.不相等的两个角一定不是对顶角D.若两条直线被第三条所截,则同位角相等【答案】C【详解】如果两个角的和是90°,称这两个角互为余角,所以选项A说法错误;过直线外一点有且只有一条直线与已知直线平行,所以选项B说法错误;对顶角永远相等,所以不相等的两个角一定不是对顶角,所以选项C正确;若两条平行直线被第三条所截,则同位角相等,所以选项D说法错误;故选C.8.在下列说法中,正确的是()A.连接A,B就得到AB的距离B.延长AOB∠的平分线C.一个有理数不是整数就是分数D.23-a是单项式【答案】C 【详解】解:A. 连接A ,B 就得到线段AB ,而线段AB 的长度叫做的距离,故原说法错误,不符合题意; B. AOB ∠的平分线就是射线,若延长也只能反向延长,故原说法错误,不符合题意; C. 一个有理数不是整数就是分数,原说法正确,符合题意; D.23-a 是多项式,故原说法错误,不符合题意; 故选:C . 二、填空题9.已知,//MN PQ ,将一副三角板按照如图方式摆放在平行线之间,且线段BC 落在直线MN 上,线段DE 落在直线PQ 上,其中60ACB ∠=︒,45AED ∠=︒,CO 平分ACB ∠,EO 平分AED ∠,两条角平分线相交与点O ,则COE ∠=________︒.【答案】52.5 【详解】延长CO 交PQ 于点F ,则∠COE =∠CFE +∠OEF ,∠60ACB ∠=︒,45AED ∠=︒,CO 平分ACB ∠,EO 平分AED ∠, ∠∠BCF =30°,∠OEF =22.5°, ∠//MN PQ , ∠∠BCF =∠CFE ,∠∠COE =30°+22.5°=52.5°,故答案为:52.5°.10.如图是某城市一座古塔底部平面图,在不能进入塔内测量的情况下,学习兴趣小组设计了如图所示的一种测量方案,学习兴趣小组认为测得COD ∠的度数就是AOB ∠的度数.其中的数学原理是__________.【答案】对顶角相等 【详解】解:∠∠COD 与∠AOB 互为对顶角 ∠∠COD =∠AOB 故答案为:对顶角相等11.如图,AB 和CD 交于点O ,则AOC ∠的邻补角是___;AOC ∠的对顶角是___;若40AOC ∠=︒,则BOD ∠=___,AOD ∠=___,BOC ∠=___.【答案】AOD ∠和BOC ∠ BOD ∠ 40° 140° 140° 【详解】解:AB 和CD 交于点O ,则AOC ∠的邻补角是AOD ∠和BOC ∠;AOC ∠的对顶角是BOD ∠,40AOC ∠=︒,40BOD AOC ∴∠=∠=︒,180********AO D AO C ∴∠=︒-∠=︒-︒=︒, 140BO C AO D ∴∠=∠=︒.故答案为:AOD ∠和BOC ∠;BOD ∠;40︒;140︒;140︒.12.如图,某海域有三个小岛A ,B ,O ,在小岛O 处观测到小岛A 在它北偏东62°的方向上,观测到小岛B 在它南偏东38°12'的方向上,则∠AOB 的补角的度数是_____.【答案】100°12′. 【详解】解:∠OA 是表示北偏东62°方向的一条射线,OB 是表示南偏东38°12′方向的一条射线, ∠∠AOB =180°-62°-38°12′=79°48′,∠∠AOB 的补角的度数是180°-79°48′=100°12′. 故答案是:100°12′. 三、解答题13.如图,已知直线AB,CD相交于点O,射线OE把∠AOC分成两部分.(1)写出图中∠AOC的对顶角,∠COE的补角是;(2)已知∠AOC=60°,且∠COE:∠AOE=1:2,求∠DOE的度数.【答案】(1)∠BOD,∠DOE;(2)160°【详解】解:(1)由图形可知,∠AOC的对顶角是∠BOD,∠COE的补角是∠DOE;(2)设∠COE=x,则∠AOE=2x,∠∠AOC=60°,∠x+2x=60,解得x=20,即∠COE=20°,∠AOE=40°,∠∠AOC+∠AOD=180°,∠∠AOD=120°,∠∠DOE=∠AOE+∠AOD=40°+120°=160°.14.在同一平面内已知∠AOB=150°,∠COD=90°,OE平分∠BOD.(1)当∠COD的位置如图1所示时,且∠EOC=35°,求∠AOD的度数;(2)当∠COD的位置如图2所示时,作∠AOC的角平分线OF,求∠EOF的度数;(3)当∠COD的位置如图3所示时,若∠AOC与∠BOD互补,请你过点O作射线OM,使得∠COM为∠AOC的余角,并求出∠MOE的度数.(题中的角都是小于平角的角)【答案】(1)40°;(2)150°;(3)见解析,∠MOE的度数为105°或135°.【详解】解:(1)∠∠COD=90°,∠EOC=35°,∠∠EOD=55°,∠OE平分∠BOD,∠∠BOD=2∠EOD=110°,∠∠AOD=∠AOB﹣∠BOD=40°;(2)∠∠AOB=150°,∠COD=90°,∠∠AOC+∠BOD=360°﹣150°﹣90°=120°,∠OF平分∠AOC,OE平分∠BOD,∠∠COF=12∠AOC,∠DOE=12∠BOD,∠∠COF+∠DOE=60°,∠∠EOF=60°+90°=150°;(3)设∠AOC=α,∠∠AOB=150°,∠COD=90°,∠∠AOD=90°﹣α,∠BOC=150°﹣α,∠∠AOC与∠BOD互补,∠∠AOC+∠BOD=180°,∠∠AOD+∠BOC=180°,∠90°﹣α+150°﹣α=180°,∠α=30°,即∠AOC=30°,∠∠BOD=150°,∠OE平分∠BOD,∠∠DOE=∠BOE=75°,如图3,∠∠COM为∠AOC的余角,∠∠COM=60°,∠∠DOM=30°,∠∠MOE=∠MOD+∠DOE=30°+75°=105°,如备用图,∠∠COM为∠AOC的余角,∠∠COM=60°,∠BOM=60°,∠∠MOE =∠BOM +∠BOE =60°+75°=135°;综上所述,∠MOE 的度数为105°或135°.15.已知直线AB 与CD 相交于点O .(∠)如图1,若90AOM ∠=︒,OC 平分AOM ∠,则AOD ∠=_________.(∠)如图2,若90AOM ∠=︒,4BOC BON ∠=∠,OM 平分CON ∠,求MON ∠的大小;(∠)如图3,若AOM α∠=,4BOC BON ∠=∠,OM 平分CON ∠,求MON ∠的大小(用含α的式子表示).【答案】(∠)135°;(∠)54°;(∠)54035α︒- 【详解】解(∠)90AOM =︒∠,OC 平分AOM ∠,11904522AOC AOM ∴∠=∠=⨯︒=︒, 180AOC AOD ∠+∠=︒,180********AOD AOC ∴∠=-∠=︒-︒︒=︒,即AOD ∠的度数为135︒;(∠)4BOC NOB ∠=∠∴设NOB x ∠=︒,4BOC x ∠=︒,43CON COB BON x x x ∴∠=∠-∠=︒-︒=︒,OM 平分CON ∠,1322COM MON CON x ∴∠=∠=∠=︒, 3902BOM x x ∠=︒+︒=︒, 36x ∴=︒,33365422MON x ∴∠=︒=⨯︒=︒, 即MON ∠的度数为54︒;(∠)4BOC NOB ∠=∠∴设NOB x ∠=︒,4BOC x ∠=︒,43CON COB BON x x x ∴∠=∠-∠=︒-︒=︒, OM 平分CON ∠,1322COM MON CON x ∴∠=∠=∠=︒, 31802BOM x x α∠=︒+︒=︒-, 36025x α︒-∴=, 336025403255MON αα︒-︒-∴∠=⨯=.。

(完整)余角与补角的概念

(完整)余角与补角的概念

余角、补角的概念余角、补角是几何图形中两个重要的数量关系角概念,与角的位置无关.它们分别与两个特殊角直角、平角联系起来,在分析几何图形角的关系时占有十分重要的地位.借助余角、补角的概念,我们可以探究出它们很多有用的性质.由于余角、补角是数量关系角,而方程所表达的是一种相等的数量关系,因此借助方程求解余角、补角问题是最常用的思想方法.一、正确理解互余、互补⑴互余、互补是指两个角的数量关系,而不是三个或更多角的关系.两个角的和等于90°(直角)时,称这两个角互为余角.而三个或更多角的和也为90°(直角)时,则不能称它们互为余角.两个角的和等于180°(平角)时,称这两个角互为补角.而三个或更多角的和也为180°(平角)时,则不能称它们互为补角.⑵余角、补角都是一种“相互”关系.如∠1、∠2互余,即∠1+∠2=90°,此时∠1叫∠2的余角,而∠2也叫∠1的余角.同时一个角∠α的余角都可以用90°-∠α来表示.⑶余角、补角都是数量关系角,与位置关系无关.余角、补角都是数量关系角,与位置关系无关.因此考虑两个角是否互余、互补,只考虑角的大小,而不需考虑这两个角是否有公共顶点、公共边等关系二、余角、补角性质的探究①两角互余,则这两个角必都为锐角;②两角互补,则这两个角不可能同时为锐角或钝角.(只可能1锐1钝或两个角都为直角)③一个角的余角必为锐角;④一个角的补角可能为锐角、直角、钝角.(其中锐角的补角为钝角、钝角的补角为锐角、直角的补角还是直角.)⑤一个锐角的补角比这个角的余角大90°⑥同角或等角的余(补)角相等三、巧用方程求解余角、补角问题两点注意:⑴正确设未知数并用含所设未知数的式子表示出相关的量:一般设某个角为x,根据余角、补角定义,则这个角的余角为90-x,这个角的补角为180-x.⑵依据已知条件,寻找出正确的相等关系,列出方程.例.⑴互余且相等的两个角,各是多少度?⑵已知∠A和∠B互为余角,∠A与∠C互为补角,∠B和∠C的和等于周角的.求∠A+∠B+∠C的度数.分析:⑴设其中一个角为x,由两角互余,则另一个角为90-x.又这两角相等,∴x=90-x 解得 x=45⑵设∠A=x,依题意∠B=90-x,∠C=180-x由∠B和∠C的和等于周角的,∴(90-x)+(180-x)=×360解得 x=75 ∴∠B=90-x=15 ∠C=180-x=105∴∠A+∠B+∠C=75+15+105=185°。

七年级数学上册知识讲义-6.3认识余角、补角、对顶角-苏科版

七年级数学上册知识讲义-6.3认识余角、补角、对顶角-苏科版

初中数学认识余角、补角、对顶角精讲精练【考点精讲】1. 互为余角与互为补角(1)概念:若,则称、互为余角;若则称、互为补角。

(2)记法的余角记作;的补角记作。

2. 余角(补角)的性质同角或等角的余(补)角相等。

3. 对顶角:如下图中,我们把叫做对顶角,也是对顶角。

OADBC4. 对顶角的性质:对顶角相等。

【典例精析】例题1 如图所示,O是直线AB上的一点,,平分,平分,则图中互为补角的对数有()A. 6对B. 7对C. 8对D. 9对思路导航:是直线AB上的一点,,又,,平分,,,,。

答案:互补的角有:,,,,,共8对。

答案选C。

点评:本题涉及互补的角较多,根据题意计算有关角的度数,再根据互为补角的定义,按照一定的顺序来写,做到既不重复又不遗漏。

例题2 一个角的补角与它的余角的2倍的差是平角的,请你求出这个角的度数。

思路导航:可以直接设元(题中问什么就设什么,直接求出结果),也可以间接设元(先求出这个角,再求出它的余角),然后列方程求解。

答案:设这个角的度数为,则它的补角、余角分别为,(),根据题意得,解得,所以这个角的度数为60度。

点评:有关余角和补角的计算题目,常设未知数,根据题意列方程求解。

所设的未知数不同,所得到的方程也不同。

例题3 如图,直线AB、CD交于O点,且∠BOC=80°,OE平分∠BOC,OF为OE的反向延长线。

D(1)求∠2和∠3的度数;(2)OF平分∠AOD吗?为什么?思路导航:(1)根据邻补角的定义,即可求得∠2的度数,根据角平分线的定义和平角的定义即可求得∠3的度数;(2)根据OF分得∠AOD的两部分角的度数即可说明。

答案:(1)∵∠BOC+∠2=180°,∠BOC=80°,∴∠2=180°-80°=100°;∵OE是∠BOC的角平分线,∴∠1=40°。

∵∠1+∠2+∠3=180°,∴∠3=180°-∠1-∠2=180°-40°-100°=40°。

8第二章余角,补角,对顶角

8第二章余角,补角,对顶角

第二章余角,补角,对顶角和平行的判定和性质一、定义:1、余角:如果两个角的和是90度,那么这两个角互为余角。

2、补角:如果两个角的和是180度,那么这两个角互为补角。

3、对顶角:如果两个角的两边互为反向延长线,那么这样的两个角叫对顶角二、性质定理:1、同角的余角或补角相等。

2、 对顶角相等。

三、解题方法:一般的,利用性质定理,结合三角形内角和定理,平角性质等,建立所求未知角的方程,即可解得所求角度。

四、概念:同位角,内错角,同旁内角五、两直线平行的判定定理:1.同位角相等,两直线平行2.内错角相等,两直线平行3.同旁内角互补,两直线平行4.如果两直线都平行于另一条直线,那么两直线也平行(推论)六、两直线平行的性质定理:1. 两直线平行,同位角相等2. 两直线平行,内错角相等3. 两直线平行,同旁内角互补例题1.已知∠α是它的余角的2倍,则∠α=________.2.互为补角的两个角的度数之比为2∶7,则这两个角分别是________.3.如果一个角的余角和它的补角互补,那么这个角的度数为________4.如果两个角互为补角,以下说法不正确的是()A.不可能都是锐角 B. 不可能都是钝角C. 不可能都是直角D. 可能都是直角5.2条直线相交 3条直线相交于一点 4条直线相交于一点n条直线相交于一点,对顶角有____对对顶角有____对对顶角有_____对对顶角有_______对(用含n的式子表示)6.如图所示,直线AB与CD相交于O点,A B⊥EO,则∠EOD与∠AOC的关系是( )A 对顶角B互补的角C互余的角D相等的角7.如图,直线a,b,c两两相交,∠1=2∠3,∠2=60度,求∠4.8.如图,∠A=50°,∠1=∠2,则∠ACD等于___________9. 下列四个图形中,存在对顶角的是10. 一个角的余角比它的补角的还少12°,请求出这个角.11. 如图16,A、O、B在一条直线上,OC是射线,OE平分∠AOC, OF平分∠BOC.求∠EOF12. 如图,,求∠CAE的度数.课堂练习:1、若∠AOB=65015’,则它的余角是_________,它的补角是________.2、若∠α与∠β是对顶角,且∠α+∠β=1200 ,则∠α= ,∠β=3、如图:已知:,则4、一个角的补角等于这个角的余角的4倍,这个角是________.5.如图,CB⊥AB,∠CBA与∠CBD的度数比是5:1,则∠DBA=________度,∠CBD 的补角是_________度.6.如图2,AC⊥BC,CD⊥AB,∠A的余角有______个,与∠A相等的角有_______个.7、 两条直线被第三条直线所截,则( ). A.同位角必相等 B.内错角必相等C.同旁内角必互补 D.同位角不一定相等8、如图,与是对顶角的为( )9、命题:①对顶角相等;②垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等。

余角、补角、对顶角

余角、补角、对顶角

余角、补角、对顶角一、考点讲解:1.余角:如果两个角的和是直角,那么称这两个角互为余角.2.补角:如果两个角的和是平角,那.么称这两个角互为补角.3.对顶角:如果两个角有公共顶点,并且它们的两边互为反向延长线,这样的两个角叫做对顶角.4.互为余角的有关性质:①∠1+∠2=90°,则∠1、∠2互余.反过来,若∠1,∠2互余.则∠1+∠2=90○.②同角或等角的余角相等,如果∠l十∠2=90○,∠1+∠3= 90○,则∠2= ∠3.5.互为补角的有关性质:①若∠A +∠B=180○则∠A、∠B互补,反过来,若∠A、∠B互补,则∠A+∠B=180○.②同角或等角的补角相等.如果∠A +∠C=18 0○,∠A+∠B=18 0°,则∠B=∠C.6.对顶角的性质:对顶角相等.二、经典考题剖析:【考题1-1】已知:∠A= 30○,则∠A的补角是________度.解:150○点拨:此题考查了互为补角的性质.【考题1-2】如图l-2-1,直线AB,CD相交于点O,OE⊥AB于点O,OF 平分∠AOE,∠1=15○30’,则下列结论中不正确的是()A.∠2 =45○B.∠1=∠3C.∠AOD与∠1互为补角D.∠1的余角等于75○30′解:D 点拨:此题考查了互为余角,互为补角和对顶角之间的综合运用知识.三、针对性训练:1._______的余角相等,_______的补角相等.2.∠1和∠2互余,∠2和∠3互补,∠1=63○,∠3=__3.下列说法中正确的是( )A .两个互补的角中必有一个是钝角B .一个角的补角一定比这个角大C .互补的两个角中至少有一个角大于或等于直角D .相等的角一定互余4.轮船航行到C 处测得小岛A 的方向为北偏东32○,那么从A 处观测到C 处的方向为( )A .南偏西32○B .东偏南32○C .南偏西58○D .东偏南58○5.若∠l=2∠2,且∠1+∠2=90○则∠1=___,∠2=___.6.一个角的余角比它的补角的九分之二多1°,求这个角的度数.7.∠1和∠2互余,∠2和∠3互补,∠3=153○,∠l=_8.如图 l -2-2,AB ⊥CD ,AC ⊥BC ,图中与∠CAB 互余的角有( )A .0个B .l 个C .2个D .3个9.如果一个角的补角是150○ ,那么这个角的余角是____________10.已知∠A 和∠B 互余,∠A 与∠C 互补,∠B 与∠C 的和等于周角的13 ,求∠A+∠B+∠C 的度数.11.如图如图1―2―3,已知∠AOC 与∠B 都是直角,∠BOC=59○.(1)求∠AOD 的度数;(2)求∠AOB 和∠DOC 的度数;(3)∠A OB 与∠DOC 有何大小关系;(4)若不知道∠BOC 的具体度数,其他条件不变,这种关系仍然成立吗?。

对顶角、余角和补角

对顶角、余角和补角
首页
探讨一
1、归纳对顶角的概念与性质. 定义:有_公__共__顶点,且两边互为反向延长线的两个 角叫做_对__顶__角___. 性质:对顶角_相__等__.
例题分析:
下列图形中,∠1与∠2是对顶角的是( )
如图,直线AB、CD,EF相交于点O,∠1=40°, ∠BOC=110°,求∠2的度数.
2、两直线的位置关系与对顶角
【归纳】 1.概念:(1)如果两个角的和是_9_0_°__,那 么称这两个角互为余角. (2)如果两个角的和是_1_8_0_°__,那么称这两个角互为 补角. 2.性质:同角或等角的余角_相__等__,同角或等角的补 角_相__等__.
【思考】 1.任何角都有余角吗? 提示:由余角的定义可知,只有小于直角的角才有余角. 2.“相等的角是对顶角”这句话对吗? 提示:不对,对顶角是与两角的位置有关系的,必须是 有公共顶点,且两边互为反向延长线的两个角叫对顶角.
巩固训练 1.同一平面内有三条直线,如果只有两条互相平 行,那么它们的交点个数为( ) (A)0 (B)1 (C)2 (D)3 【解析】选C.同一平面内有三条直线,如果只 有两条互相平行,那么第三条直线与这两条直 线相交,所以共有2个交点.
首页
2.下列各图中,∠1与∠2互为对顶角的是( )
【解析】选C.对顶角必备的两个要素:有公共的 顶点,两边互为反向延长线.
分线吗?并简述理由;
(2)如图②,若∠ECD=α,CD在∠BCE的内部,请你猜想∠ACE
与∠DCB是否相等?并简述理由;
(3)在(2)的条件下,请问∠ECD与∠ACB的和是多少?并简述理由 解析:(1)首先根据直角三角板的特点得到 ∠ACD=90°,∠ECB=90°.再根据角平 分线的定义计算出∠ECD和∠DCB的度数 即可; (2)∠ACE与∠DCB相等,根据“等角的余角 相等”即可得到答案; (3)根据角的和差关系进行等量代换即可.

角的数量关系(余角,补角)练习题及解析

角的数量关系(余角,补角)练习题及解析

角的数量关系(余角,补角)练习题及解析下面是角的数量关系(余角,补角)的相应练习题。

有兴趣的同学可以做一做。

①如果一个角的余角和这个角的补角互补,那么这个角的度数是多少。

②若∠A与∠B互为余角,且∠A比∠B大,则∠B的补角是( )。

A:2(∠A-∠B) B:2(∠A+∠B) C:2∠A+∠B D:∠A+2∠B③一个角的补角的16分之一是6°15′,则这个角是多少度。

④如果∠AOC与∠BOD都是直角,已知∠BOC:∠AOD=5:7,求∠AOB的度数。

⑤∠A与∠B互余,∠A与∠C互补,已知∠B=12°34′56″ 那么∠C= 。

(用度分秒表示)⑥∠A的补角是∠B的补角的3倍,且∠A比∠B的一半大15°,求∠A的度数。

①答案:45°解析:设这个角是x度,根据等量关系列方程90-x+(180-x)=180 解得x=45②答案:C解析:∠A与∠B互为余角,所以∠A+∠B=90°∠B的补角是180°-∠B = 2(∠A+∠B)-∠B=2∠A+∠B③答案:80°解析:这个角的补角是6°15′× 16 = 100°所以这个角是180°-100°=80°④答案:15°解析:∠AOB=∠COD(根据它俩都与∠BOC互余),∠BOC:(∠BOC+2∠AOB)=5:7得到∠BOC:∠AOB=5:1,它们的和是90°,所以∠AOB=90°÷6=15°⑤答案:102°34′56″解析:∠A=90°-∠B∠C=180°-∠A=180°-(90°-∠B)=∠B+90°=102°34′56″⑥答案:90°解析:根据第一个条件,180°-∠A=3(180°-∠B)根据第二个条件,∠A=0.5∠B+15°,即∠B=2(∠A-15°)代入第一个方程,解得∠A=90°。

余角、补角与对顶角

余角、补角与对顶角

1234◎苏丹图2我们已经学习了锐角、直角和钝角,并且了解了三角形的内角和为180°,现在我们来认识三个新朋友——余角、补角与对顶角。

下图中你能找到几个角?它们分别是什么角?图1中有三个角,分别为两个锐角,一个直角。

一条射线绕它的端点旋转,当始边和终边在同一条直线上,方向相反时,所构成的角叫平角,平角为180°,因此我们知道∠1+∠2+∠3=180°,∠3为直角(90°),因此∠1+∠2=180°-90°=90°。

当两个角的和为90°(直角)时,则这两个角互为余角,因此∠1和∠2互为余角。

图2为两条直线相交,看看这个图,你能找到几个角?它们分别是什么角?123图1 Copyright©博看网 . All Rights Reserved.图2中有四个角,两个锐角、两个钝角。

∠1+∠2=∠2+∠3=∠3+∠4=∠4+∠1= 180°。

当两个角的和为180°(平角)时,则这两个角互为补角,因此∠1与∠2、∠2与∠3、∠3与∠4、∠4与∠1互为补角。

两条直线相交时会产生一个交点,并产生以这个交点为顶点的四个角,其中不相邻的两个角互为对顶角。

因此,∠1与∠3、∠2与∠4互为对顶角。

拿尺子量一量,你会发现对顶角相等。

想一想看看下面这个图,哪个角与哪个角互为余角?如果∠1=∠4,那么∠2与∠3是否相等?1234《余角、补角与对顶角》参考答案∠1与∠2,∠3与∠4互为余角。

如果∠1=∠4,那么∠2=∠3。

Copyright©博看网 . All Rights Reserved.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

余角和补角和对顶角
余角:
如果两个角的和是一个直角,那么称这两个角互为余角,简称互余,也可以说其中一个角是另一个角的余角。

ZA + /C=90 °/A= 90 ° ZC , ZC 的余角=90 ° ZC 即:/A 的余角=90 ° ZA
补角:
如果两个角的和是一个平角,那么这两个角叫互为补角.其中一个角叫做另一个角的补角
ZA + /C=180 °Z A= 180 ° ZC , ZC 的补角=180 ° ZC 即:Z A 的补角=180 ° Z A
对顶角: 一个角的两边分别是另一个角的反向延长线,这两个角是对顶角。

两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角。

两条直线相交,构成两对对顶角。

对顶角相等•对顶角与对顶角相等•
对顶角是对两个具有特殊位置的角的名称;对顶角相等反映的是两个角间的大小关系。

补角的性质:
同角的补角相等。

比如:Z A+ ZB=180 °Z A+ ZC=180 :则:Z C= Z。

等角的补角相等。

比如:Z A+ ZB=180 °/D+ ZC=180 °,ZA= ZD 贝U:Z C= /B。

余角的性质:
同角的余角相等。

比如:Z A+ ZB=90 °,ZA+ ZC=90。

,则:Z C= /B。

A+ ZB=90 °,ZD+ ZC=90 °,ZA= ZD 贝U:Z C= Z B。

等角的余角相等。

比如:Z
注意:
①钝角没有余角;
②互为余角、补角是两个角之间的关系。

如Z A+ ZB+ ZC=90 °,不能说ZA、/B、/C互余;同样:如Z A+ ZB+
ZC=180 °,不能说ZA、Z B、Z C互为补角;
③互为余角、补角只与角的度数相关,与角的位置无关。

只要它们的度数之和等于90 ° 或180 °,就一定互为余角或补角。

余角与补角概念认识提示:
(1 )定义中的“互为”一词如何理解?
如果Z1与Z2互余,那么Z 1的余角是Z 2,同样Z 2的余角是Z 1 ;如果Z 1与Z2互补,那么Z 1的补角是Z2 ,同样Z2
的补角是Z 1。

(2)互余、互补的两角是否一定有公共顶点或公共边?
两角互余或互补,只与角的度数有关,与位置无关。

(3 )Z1 + Z + Z3 = 90 ° 180 ° ),能说Z 1、Z2、Z3 互余(互补)吗?
不能,互余或互补是两个角之间的数量关系。

已知/ A与/ B互余,/ B与/C互补,若/ A=50°,则/ C的度数是[ D ]
A. 40° B . 50° C . 130° D . 140°
如果/A的补角是它的余角的4倍,贝U/A= ______ 度.
设/ A为x,则/ A的余角为90° -x,补角为180 ° -x,
根据题意得,180 ° -x=4(90° -x),解得x=60°.故答案为:60.
已知/ a =50 ° 17',的余角和补角分别是[B ]
A. 49°43',129°43' B . 39° 43',129° 43'
C. 39°83',129°83' D . 129° 43',39° 43'
两个角的比是6 : 4,它们的差为36。

,则这两个角的关系是()
A .互余
B .相等
C .互补
D .以上都不对
设一个角为6x,则另一个角为4x,则有6x-4x=36 °,.x=18 ° ,
则这两个角分别为108 ° ,72 °,而108 °+72 °180 °
•••这两个角的关系为互补. 故选C.
如果/ A=35° 18',那么/ A的余角等于____________ .
如果/A=35 °18 '那么/A 的余角等于90 °-35 °18 ' _ =54 °42 '. 故填54 °42 '
已知/1和Z2互补,/3和Z2互余,求证:/ 3= = 2(Z1- Z2 ).
证明:由题意得:/ 2+ / 3=90°,/ 1 + Z 2=180°,• 2 (/2+Z 3)=/ 1 + Z 2, 故可得:/ 3=丄(/ 1-/2)
2
如图,/1的邻补角是[]
A. / BOC
B. / BOC和/ AOF
C. / AOF
D. / BOE和/ AOF
两个角互为补角,那么这两个角大小[D ]
A.都是锐角
B.都是钝角
C. 一个锐角,一个钝角
D.无法确定
如果两个角互为补角,那么这两个角一定互为邻补角,证明此命题真——加原因如果两个角互为补角,那么这两个角一定互为邻补角,这是假命题.
如果两个角互为领补角,那么这两个角一定互为补角,这是真命题.
譬如说,两直线平行,同旁内角互补,但互为同旁内角的两个角一定不互为领补角
如果两个角互补,那它们是邻补角”----------- 为什么说这个是假命题?
两条平行线切出的同旁内角也互补,但是它们不是邻补角
所以说:“如果两个角互补,那它们是邻补角”是假命题!
因为邻补角是相邻的两个角互补,那么这两个角是互为邻补角,而互补的两个角有不相邻的,比如四边形的两个对角互补,则这四点共圆
如果一个角是36 °,那么[D ]
.它的余角是64 ° B .它的补角是64 ° C .它的余角是144 ° D .它的补角是144 °
下列说法中:①同位角相等;②两点之间,线段最短;③如果两个角互补,那么它们是邻补角;
④两个锐角的和是锐角;⑤同角或等角的补角相等.正确的个数是()
A . 2个
B . 3个C. 4个D . 5个
①同位角相等,说法错误;
②两点之间,线段最短,说法正确;
③如果两个角互补,那么它们是邻补角,说法错误;
④两个锐角的和是锐角,说法错误;
⑤同角或等角的补角相等,说法正确;
说法正确的共有2个,故选:A .
F列说法正确的是()
F列说法中,正确的是()A.对顶角相等B.内错角相等C.锐角相等D.同位角相等
A、对顶角相等,说法正确;
四条直线出现4* (4-1)=12对对顶角依次类推,n条直线相交于一点有n*(n-1)对对顶角
四条直线出现4* (4-1)=12对对顶角依次类推,n条直线相交于一点有n*(n-1)对对顶角
我要方法和答案!
三条直线相交与 占 八、,6对; 四条直线相交与一点, 12对;
五条直线相交与 占
八、
20对; N 条直线相交与 点,N(N-1)对;
条数
个数
2-
2=2x1
3 6=3x2
4 12=4x3
5
20=5x4
1 .........................
n n(n_1)
三条直线相交于一点,对顶角最多有 ____________ 对.
把三条直线相交于一点, 拆成三种两条直线交于一点的情况, 因为两条直线相交于一点, 形成两对对顶角,
所以三条直线相交于一点,有 3个两对对顶角,共 6对对顶角
两条直线相交,有一个交点。

三条直线相交,最多有多少个交点?四条直线呢?你能发现什么规律吗?
这个其实就是组合问题。

因为两条线构成一个交点,所以三条线时,从三条线中取两条线,有
3*2/2=3种
取法,所以有3个交点。

四条线中取两条,有4*3/2=6种取法,所以有6个交点。

n 条线中取两条,有n(n-1)/2 种取法,所以有n(n-1)/2个交点。

邻补角是互补的角是真命题吗 」
当然是,邻补角相加等于180度 就是互补啊
互补的角是邻补角是真命题还是假命题
若是真命题,请举反例
两个角有一条公共边,它们的另一条边互为反向延长线 ,具有这种关系的两个角称为互为邻补角 •
可以随便画两个没有公共边的角 ,比如1个60度,另-个120度,显然它们是互补的,但是并不是邻补角
所以互补的角是邻补角这是一个假命题
应该说邻补角是互补的角,这才是真命题
既相邻又互补的两个角是邻补角吗
两条平行线切出的同旁内角也互补, 但是它们不是邻补角。

所以说:“如果两个角互补,那它们是邻补角”
是假命题!
成互补关系的两个角互为邻补角是对还是错 不对 相邻的两个角互补称之为邻补角
像两直线平行,同旁内角互补(这两个互补的角不相邻)
互补的两个角是邻补角 用因为所以答 因为两个角是邻补角
所以两个角互补
反过来不成立
如图,单个的角是对顶角的有
3对, 两个角的复合角是对顶角的有
3对,
如果有n 条直线相交于一点,有多少对对顶角?
n 的平方减去2
三条直线相交于一点,共可组成 __________ :寸对顶角.
所以,共有对顶角 3+3=6对.
故答案为:。

相关文档
最新文档