(含15套模拟卷)四川省德阳中江县初中2018-2019学年数学中考模拟试卷汇总

合集下载

初中数学四川省德阳市中考模拟数学考试卷及答案Word版.docx

初中数学四川省德阳市中考模拟数学考试卷及答案Word版.docx

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:﹣的倒数为()A. B. 3C.﹣3 D.﹣1试题2:为了考察一批电视机的使用寿命,从中任意抽取了10台进行实验,在这个问题中样本是() A.抽取的10台电视机B.这一批电视机的使用寿命C. 10D.抽取的10台电视机的使用寿命试题3:中国的领水面积约为370000km2,将数370000用科学记数法表示为()A.37×104 B. 3.7×104 C. 0.37×106 D. 3.7×105试题4:如图,已知直线AB∥CD,直线EF与AB、CD相交于N,M两点,MG平分∠EMD,若∠BNE=30°,则∠EMG等于()A.15° B. 30° C . 75° D. 150°试题5:下列事件发生的概率为0的是()A.射击运动员只射击1次,就命中靶心B.任取一个实数x,都有|x|≥0C.画一个三角形,使其三边的长分别为8cm,6cm,2cmD.抛掷一枚质地均匀且六个面分别刻有1到6的点数的正方体骰子,朝上一面的点数为6试题6:如图,已知⊙O的周长为4π,的长为π,则图中阴影部分的面积为()A.π﹣2 B.π﹣C.π D. 2试题7:某商品的外包装盒的三视图如图所示,则这个包装盒的体积是()A.200πcm3 B. 500πcm3 C. 1000πcm3 D. 2000πcm3试题8:将抛物线y=﹣x2+2x+3在x轴上方的部分沿x轴翻折至x轴下方,图象的剩余部分不变,得到一个新的函数图象,那么直线y=x+b与此新图象的交点个数的情况有()种.A.6 B. 5C. 4 D. 3试题9:如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的高,若点A关于CD所在直线的对称点E恰好为AB的中点,则∠B的度数是()A.60° B. 45° C . 30° D. 75°试题10:如图,在一次函数y=﹣x+6的图象上取一点P,作PA⊥x轴于点A,PB⊥y轴于点B,且矩形PBOA的面积为5,则在x轴的上方满足上述条件的点P的个数共有()A.1个 B. 2个 C.3个 D. 4个试题11:如图,在五边形ABCDE中,AB=AC=AD=AE,且AB∥ED,∠EAB=120°,则∠DCB=()A.150° B. 160° C.130° D. 60°试题12:已知m=x+1,n=﹣x+2,若规定y=,则y的最小值为()A.0 B. 1C.﹣1 D. 2试题13:分解因式:a3﹣a=试题14:不等式组的解集为试题15:在某次军事夏令营射击考核中,甲、乙两名同学各进行了5次射击,射击成绩如图所示,则这两人中水平发挥较为稳定的是同学.试题16:.如图,在直角坐标系xOy中,点A在第一象限,点B在x轴的正半轴上,△AOB为正三角形,射线OC⊥AB,在OC上依次截取点P1,P2,P3,…,P n,使OP1=1,P1P2=3,P2P3=5,…,P n﹣1P n=2n﹣1(n为正整数),分别过点P1,P2,P3,…,P n 向射线OA作垂线段,垂足分别为点Q1,Q2,Q3,…,Q n,则点Q n的坐标为.试题17:下列四个命题中,正确的是(填写正确命题的序号)①三角形的外心是三角形三边垂直平分线的交点;②函数y=(1﹣a)x2﹣4x+6与x轴只有一个交点,则a=;③半径分别为1和2的两圆相切,则两圆的圆心距为3;④若对于任意x>1的实数,都有ax>1成立,则a的取值范围是a≥1.试题18:计算:2﹣1+tan45°﹣|2﹣|+÷.试题19:如图,四边形ABCD为菱形,M为BC上一点,连接AM交对角线BD于点G,并且∠ABM=2∠BAM.(1)求证:AG=BG;(2)若点M为BC的中点,同时S△BMG=1,求三角形ADG的面积.试题20:希望学校八年级共有4个班,在世界地球日来临之际,每班各选拔10名学生参加环境知识竞赛,评出了一、二、三等奖各若干名,校学生会将获奖情况绘制成如图所示的两幅不完整的统计图,请依据图中信息解答下列问题:(1)本次竞赛获奖总人数为人;获奖率为;(2)补全折线统计图;(3)已知获得一等奖的4人为每班各一人,学校采取随机抽签的方式在4人中选派2人参加上级团委组织的“爱护环境、保护地球”夏令营,请用列举法求出抽到的两人恰好来自二、三班的概率.试题21:如图,直线y=x+1和y=﹣x+3相交于点A,且分别与x轴交于B,C两点,过点A的双曲线y=(x>0)与直线y=﹣x+3的另一交点为点D.(1)求双曲线的解析式;(2)求△BCD的面积.试题22:大华服装厂生产一件秋冬季外套需面料1.2米,里料0.8米,已知面料的单价比里料的单价的2倍还多10元,一件外套的布料成本为76元.(1)求面料和里料的单价;(2)该款外套9月份投放市场的批发价为150元/件,出现购销两旺态势,10月份进入批发淡季,厂方决定采取打折促销.已知生产一件外套需人工等固定费用14元,为确保每件外套的利润不低于30元.①设10月份厂方的打折数为m,求m的最小值;(利润=销售价﹣布料成本﹣固定费用)②进入11月份以后,销售情况出现好转,厂方决定对VIP客户在10月份最低折扣价的基础上实施更大的优惠,对普通客户在10月份最低折扣价的基础上实施价格上浮.已知对VIP客户的降价率和对普通客户的提价率相等,结果一个VIP客户用9120元批发外套的件数和一个普通客户用10080元批发外套的件数相同,求VIP客户享受的降价率.试题23:如图,已知BC是⊙O的弦,A是⊙O外一点,△ABC为正三角形,D为BC的中点,M为⊙O上一点,并且∠BMC=60°.(1)求证:AB是⊙O的切线;(2)若E,F分别是边AB,AC上的两个动点,且∠EDF=120°,⊙O的半径为2,试问BE+CF的值是否为定值?若是,求出这个定值;若不是,请说明理由.试题24:如图,已知抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C,且OC=OB.(1)求此抛物线的解析式;(2)若点E为第二象限抛物线上一动点,连接BE,CE,求四边形BOCE面积的最大值,并求出此时点E的坐标;(3)点P在抛物线的对称轴上,若线段PA绕点P逆时针旋转90°后,点A的对应点A′恰好也落在此抛物线上,求点P 的坐标.试题1答案:C.试题2答案:D.试题3答案:D.试题4答案:A解:∵直线AB∥CD,∠BNE=30°,∴∠DME=∠BNE=30°.∵MG是∠EMD的角平分线,∴∠EMG=∠EMD=15°.试题5答案:C.试题6答案:A 解:∵⊙O的周长为4π,∴⊙O的半径是r=4π÷2π=2,∵的长为π,∴的长等于⊙O的周长的,∴∠AOB=90°,∴S阴影==π﹣2.试题7答案:B 解:根据图示,可得商品的外包装盒是底面直径是10cm,高是20cm的圆柱,∴这个包装盒的体积是:π×(10÷2)2×20=π×25×20=500π(cm3).试题8答案:C 解:如图1,所示:函数图象没有交点.如图2所示:函数图象有1个交点.如图3所示函数图象有3个交点.如图4所示,图象有两个交点.如图5所示;函数图象有一个交点.综上所述,共有4中情况.试题9答案:C解:∵在Rt△ABC中,∠ACB=90°,CD为AB边上的高,点A关于CD所在直线的对称点E恰好为AB的中点,∴∠CED=∠A,CE=BE=AE,∴∠ECA=∠A,∠B=∠BCE,∴△ACE是等边三角形,∴∠CED=60°,∴∠B=∠CED=30°.试题10答案:C 解:①当0<x<6时,设点P(x,﹣x+6),∴矩形PBOA的面积为5,∴x(﹣x+6)=5,化简x2﹣6x+5=0,解得x1=1,x2=5,∴P1(1,5),P2(5,1),②当x<0时,设点P(x,﹣x+6),∴矩形PBOA的面积为5,∴﹣x(﹣x+6)=5,化简x2﹣6x﹣5=0,解得x3=3﹣,x4=3+(舍去),∴P3(3﹣,3+),∴在x轴的上方满足上述条件的点P的个数共有3个.试题11答案:A 解:∵AB∥ED,∴∠E=180°﹣∠EAB=180°﹣120°=60°,∵AD=AE,∴△ADE是等边三角形,∴∠EAD=60°,∴∠BAD=∠EAB﹣∠DAE=120°﹣60°=60°,∵AB=AC=AD,∴∠B=∠ACB,∠ACD=∠ADC,在四边形ABCD中,∠BCD=(360°﹣∠BAD)=(360°﹣60°)=150°.试题12答案:B 解:因为m=x+1,n=﹣x+2,当x+1≥﹣x+2时,可得:x≥0.5,则y=1+x+1+x﹣2=2x,则y的最小值为1;当x+1<﹣x+2时,可得:x<0.5,则y=1﹣x﹣1﹣x+2=﹣2x+2,则y<1,试题13答案:a(a+1)(a﹣1).解:a3﹣a,=a(a2﹣1),=a(a+1)(a﹣1).试题14答案:﹣1<x≤3 .解:由①得x>﹣1,由②得x≤3.故原不等式组的解集为﹣1<x≤3.故答案为:﹣1<x≤3.试题15答案:甲解:∵甲=(6+7+6+8+8)=7,乙=(5+7+8+8+7)=7;∴S2甲=[(6﹣7)2+(7﹣7)2+(6﹣7)2+(8﹣7)2+(8﹣7)2=,S2乙=[(5﹣7)2+(7﹣7)2+(8﹣7)2+(8﹣7)2+(7﹣7)2=;∴S2甲<S2乙,∴甲在射击中成绩发挥比较稳定.试题16答案:(n2,n2)解:∵△AOB为正三角形,射线OC⊥AB,∴∠AOC=30°,又∵P n﹣1P n=2n﹣1,P n Q n⊥OA,∴OQ n=(OP1+P1P2+P2P3+…+P n﹣1P n)=(1+3+5+…+2n﹣1)=n2,∴Q n的坐标为(n2•cos60°,n2•sin60°),∴Q n的坐标为(n2,n2).试题17答案:①④解:三角形的外心是三角形三边垂直平分线的交点,所以①正确;函数y=(1﹣a)x2﹣4x+6与x轴只有一个交点,则a=或1,所以②错误;半径分别为1和2的两圆相切,则两圆的圆心距为1或3;若对于任意x>1的实数,都有ax>1成立,则a的取值范围是a≥1,所以④正确.试题18答案:解:原式=+1﹣(3﹣2)+3÷2=﹣1+=2.试题19答案:(1)证明:∵四边形ABCD是菱形,∴∠ABD=∠CBD,∵∠ABM=2∠BAM,∴∠ABD=∠BAM,∴AG=BG;(2)解:∵AD∥BC,∴△ADG∽△MBG,∴=,∵点M为BC的中点,∴=2,∴=()2=4∵S△BMG=1,∴S△ADG=4.试题20答案:解:(1)本次竞赛获奖总人数=4÷=20(人),获奖率=×100%=50%;故答案为20;50%;(2)三等奖的人数=20×50%=10(人),二等奖的人数=20﹣4﹣10=6(人),折线统计图为:(3)画树状图为:共有12种等可能的结果数,其中抽到的两人恰好来自二、三班的有2种情况,所以抽到的两人恰好来自二、三班的概率==.试题21答案:解:(1)解方程组得,则A(1,2),把A(1,2)代入y=得k=1×2=2,所以反比例函数解析式为y=;(2)解方程组得或,则D(2,1),当y=0时,x+1=0,解得x=﹣1,则B(﹣1,0);当y=0时,﹣x+3=0,解得x=3,则C(3,0),所以△BCD的面积=×(3+1)×1=2.试题22答案:解:(1)设里料的单价为x元/米,面料的单价为(2x+10)元/米.根据题意得:0.8x+1.2(2x+10)=76.解得:x=20.2x+10=2×20+10=50.答:面料的单价为50元/米,里料的单价为20元/米.(2)设打折数为m.根据题意得:150×﹣76﹣14≥30.解得:m≥8.∴m的最小值为8.答:m的最小值为8.(3)150×0.8=120元.设vip客户享受的降价率为x.根据题意得:,解得:x=0.05经检验x=0.05是原方程的解.答;vip客户享受的降价率为5%.试题23答案:(1)证明:连结OB、OD,如图1,∵D为BC的中点,∴OD⊥BC,∠BOD=∠COD,∴∠ODB=90°,∵∠BMC=∠BOC,∴∠BOD=∠M=60°,∴∠OBD=30°,∵△ABC为正三角形,∴∠ABC=60°,∴∠ABO=60°+30°=90°,∴AB⊥OB,∴AB是⊙O的切线;(2)解:BE+CF的值是为定值.作DM⊥AB于M,DN⊥AC于N,连结AD,如图2,∵△ABC为正三角形,D为BC的中点,∴AD平分∠BAC,∠BAC=60°,∴DM=DN,∠MDN=120°,∵∠EDF=120°,∴∠MDE=∠NDF,在△DME和△DNF中,,∴△DME≌△DNF,∴ME=NF,∴BE+CF=BM﹣EM+CN+NF=BM+CN,在Rt△DMB中,∵∠DBM=60°,∴BM=BD,同理可得CN=OC,∴BE+CF=OB+OC=BC,∴BE+CF的值是定值,为等边△ABC边长的一半.试题24答案:解:(1)∵抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),∴OB=3,∵OC=OB,∴OC=3,∴c=3,∴,解得:,∴所求抛物线解析式为:y=﹣x2﹣2x+3;(2)如图2,过点E作EF⊥x轴于点F,设E(a,﹣a2﹣2a+3)(﹣3<a<0)∴EF=﹣a2﹣2a+3,BF=a+3,OF=﹣a,∴S四边形BOCE=BF•EF+(OC+EF)•OF,=(a+3)•(﹣a2﹣2a+3)+(﹣a2﹣2a+6)•(﹣a),=﹣﹣a+,=﹣(a+)2+,∴当a=﹣时,S四边形BOCE最大,且最大值为.此时,点E坐标为(﹣,);(3)∵抛物线y=﹣x2﹣2x+3的对称轴为x=﹣1,点P在抛物线的对称轴上,∴设P(﹣1,m),∵线段PA绕点P逆时针旋转90°后,点A的对应点A′恰好也落在此抛物线上,如图,∴PA=PA′,∠APA′=90°,如图3,过A′作A′N⊥对称轴于N,设对称轴于x轴交于点M,∴∠NPA′+∠MPA=∠NA′P+∠NPA′=90°,∴∠NA′P=∠NPA,在△A′NP与△APM中,,∴△A′NP≌△PMA,∴A′N=PM=|m|,PN=AM=2,∴A′(m﹣1,m+2),代入y=﹣x2﹣2x+3得:m+2=﹣(m﹣1)2﹣2(m﹣1)+3,解得:m=1,m=﹣2,∴P(﹣1,1),(﹣1,﹣2).。

2019年德阳市中考数学模拟试卷含答案

2019年德阳市中考数学模拟试卷含答案

2019年德阳市中考数学模拟试卷含答案(全卷总分:150分 考试时间:120分钟)注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置。

2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦擦干净后,再选涂其它答案标号。

3.答非选择题时,必须使用黑色墨水笔或黑色签字笔将答案书写在答题卡规定的位置上。

4.所有题目必须在答题卡上作答,在试题卷上答题无效。

5.考试结束后,将试题卷和答题卡一并交回。

一、选择题(本题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请用2B 铅笔把答题卡上对应题目的答案标号涂黑、涂满.)1.-2017的绝对值是 A .2017B .-2017 C.12017 D .-120172.下列图案中,既是轴对称图形又是中心对称图形的是3.下列各式计算正确的是 A .x 2+x 3=x 5B .(mn 3)2=mn 6C .(a -b )2=a 2-b 2D .p 6÷p 2=p 4(p ≠0)4.如图所示,已知AB ∥CD ,∠1=60°,则∠2的度数是 A .30°B .60°C .120°D .150°5.在今年遵义市中考体育考试中,某小组7名考生“一分钟跳绳”的成绩(单位:个/分)分别为:178,183,182,181,183,183,182.这组数据的众数和中位数分别为A .183,182B .182,183C .182,182D .183,1836.不等式组⎩⎪⎨⎪⎧x +2>0,x -2≤0的解集在数轴上表示正确的是7.已知点A (x 1,y 1)、B (x 2,y 2)是直线y =-12x +2上不同的两点,且x 1<x 2,若m =(x 1-x 2)(y 1-y 2)则 A .m =0B .m <0C .m >0D .不能比较8.如图,△DEF 是由△ABC 经过位似变换得到的,点O 是位似中心,D ,E ,F 分别是OA ,OB ,OC 的中点,则△DEF 与△ABC 的面积比是A .1∶2B .1∶4C .1∶5D .1∶69.函数y =2-x +1x +1中自变量x 的取值范围是 A .x ≤2B .x ≠-1C .x ≤2且x ≠0D .x ≤2且x ≠-110.如图所示,将矩形ABCD 绕点A 顺时针旋转到矩形AB ′C ′D ′的位置,旋转角为α(0°<α<90°).若∠1=110°,则旋转角α的度数为 A .10°B .15°C .20°D .25°11.如图,正方形ABCD 边长为4,以BC 为直径的半圆O 交对角线BD 于点E .则阴影部分面积为A .6-πB .23-πC.32πD .π12.如图,在平行四边形ABCD 中,AB =6,AD =9,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,BG ⊥AE 于点G ,BG =42,则△EFC 的周长为A .11B .10C .9D .8二、填空题(本大题共6小题,每小题4分,共24分.答题请用黑色墨水笔或黑色签字笔直接答在答题卡的相应位置上.)三、13.分解因式:ab 2-4ab +4a =______▲______. 14.计算:48-613=______▲______. 15.如图所示,王华晚上由路灯A 下的B 处走到C 处时,测得影子CD 的长为1米,继续往前走3米到达E 处时,测得影子EF 的长为2米,已知王华的身高是1.5米,那么路灯A 的高度AB 等于______▲______米.16.如图,在圆O 中,AB 、AC 为互相垂直且相等的两条弦,OD ⊥AB ,OE ⊥AC ,垂足分别为D 、E ,若AC =2cm ,则圆O 的半径为______▲______17.如图,点A 在双曲线y =4x 上,点B 在双曲线y =kx (k ≠0)上,AB ∥x 轴,分别过点A 、B 向x 轴作垂线,垂足分别为D 、C ,若矩形ABCD 的面积是12,则k 的值为______▲______.18.如图,在正方形ABCD 中,边长为2的等边三角形AEF 的顶点E ,F 分别在BC 和CD 上,下列结论:①CE =CF ;②∠AEB =75°;③BE +DF =EF ;④S 正方形ABCD=2+ 3.其中正确的序号是______▲______.(把你认为正确的都填上)三、解答题(本大题共9小题,共90分.答题请用黑色墨水笔或黑色签字笔书写在答题卡的相应位置上.解答时应写出必要的文字说明,证明过程和演算步骤.)19.(6分)计算:(13)-1-||2-2-2sin45°+(3-π)0.20.(8分)先化简,再求值:a 2-b 2a 2b +ab 2÷(a 2+b 22ab -1),其中a =3+5,b =3- 5.21.(8分)有A 、B 两个口袋,A 口袋中装有两个分别标有数字2,3的小球;B 口袋中装有三个分别标有数字-1,4,-5的小球.小斌先从A 口袋中随机取出一个小球,用m 表示所取球上的数字,再从B 口袋中随机取出两个小球,用n 表示所取球上的数字之和.(1)用树状图法表示小斌所取出的三个小球的所有可能结果; (2)求nm 的值是正数的概率.22.(10分)安装在屋顶的太阳能热水器的横截面示意图如图所示.已知安装集热管的支架AE与支架BF所在直线相交于水箱横截面⊙O的圆心O,支架BF的长度为0.9m,且与屋面AB垂直,支架AE的长度为1.9m,且与铅垂线OD的夹角为35°,支架的支撑点A、B 在屋面上的距离为3m(1)求⊙O的半径;(2)求屋面AB与水平线AD的夹角.23.(10分)课外阅读是提高学生素养的重要途径.某校为了解本校学生课外阅读情况,对八年级学生进行随机抽样调查.如图是根据调查结果绘制成的统计图(不完整),请根据图中提供的信息,解答下面的问题:(1)本次抽样调查的样本容量是____▲____;(2)在条形统计图补中,计算出日人均阅读时间在0.5~1小时的人数是____▲____,并将条形统计图补充完整;(3)在扇形统计图中,计算出日人均阅读时间在1~1.5小时对应的圆心角度数____▲____度;(4)根据本次抽样调查,试估计该市15000名八年级学生中日人均阅读时间在0.5~1.5小时的人数.24.(10分)已知:如图,在△ABC中,AB=AC=10,M为底边BC上任意一点,过点M分别作AB、AC的平行线,交AC于点P,交AB于点Q.(1)求四边形AQMP的周长;(2)M位于BC的什么位置时,四边形AQMP为菱形?说明你的理由.25.(12分)“六一”前夕,某玩具经销商用去2350元购进A、B、C三种新型的电动玩具共50套,并且购进的三种玩具都不少于10套,设购进A种电动玩具x套,购进B种电动玩具y套,三种电动玩具的进价和售价如下表:电动玩具型号 A B C进价(单位:元/套)405550销售价(单位:元/套)508065(1)用含x、y的代数式表示购进C种电动玩具的套数;(2)求出y与x之间的函数关系式;(3)假设所购进的电动玩具全部售出,且在购销这批玩具过程中需要另外支出各种费用共200元.①求出利润P(元)与x(套)之间的函数关系式;②求出利润的最大值,并写出此时购进三种电动玩具各多少套?26.(12分)如图,已知点E在△ABC的边AB上,∠C=90°,∠BAC的平分线交BC于点D,且D在以AE为直径的⊙O上.(1)求证:BC 是⊙O 的切线;(2)若DC =4,AC =6,求圆心O 到AD 的距离; (3)若tan ∠DAC =23,求BEBD 的值.27.(14分)如图,在平面直角坐标系中,抛物线y =ax 2+bx +4经过A (-3,0)、B (4,0)两点,且与y 轴交于点C ,点D 在x 轴的负半轴上,且BD =BC .动点P 从点A 出发,沿线段AB 以每秒1个单位长度的速度向点B 移动,同时动点Q 从点C 出发,沿线段CA 以某一速度向点A 移动.(1)求该抛物线的解析式;(2)若经过t 秒的移动,线段PQ 被CD 垂直平分,求此时t 的值;(3)该抛物线的对称轴上是否存在一点M ,使MQ +MA 的值最小?若存在,求出点M 的坐标;若不存在,请说明理由.答题卡(第1—12题请用2B 铅笔填涂)(第13—27题答题请用黑色签字笔书写)13. a (b -2)2 14. 23 15. 6 16.217. 16 18. ①②④三、解答题 19.(6分)解:原式=3-2+2-2×22+14分 =2.6分20.(8分)解:原式=(a +b )(a -b )ab ()a +b ÷a 2+b 2-2ab2ab1分 =(a +b )(a -b )ab ()a +b ·2ab(a -b )22分 =2a -b, 4分 把a =3+5,b =3-5代入,原式=55. 8分21.(8分)解:(1)画树状图如下:3分 由树状图可知共12种等可能结果.4分(2)由树状图可知,n m 所有可能的值分别为:32,-3,32,-12,-3,-12,1,-2,1,-13,-2,-13,共有12种情况,且每种情况出现的可能性相同,其中nm 的值是正数的情况有4种.6分 ∴n m 的值是正数的概率P =412=13.8分22.(10分)解:(1)设圆的半径是r ,则OA =1.9+r ,OB =0.9+r .1分在Rt △OAB 中,AB 2+OB 2=OA 2, 2分∴(3)2+(0.9+r )2=(1.9+r )2, 3分 解得:r =0.1, 4分 ∴⊙O 的半径是0.1m.5分(2)在Rt △OAB 中,OB =1,OA =2. 则∠AOB =60°,6分 ∴∠BOD =60°-35°=25°.7分 在Rt △OBM 与Rt △ADM 中,∠D =∠B =90°,∠AMD =∠OMB , 8分 ∴∠BAD =∠BOD =25°.9分 答:屋面AB 与水平线AD 的夹角是25°. 10分23.(10分)解:(1)150. 2分 (2)75.补图如下:3分4分(3)人均阅读时间在1~1.5小时对应的圆心角度数是:360°×45150=108°.7分 (4)15000×75+45150=12000(人).9分答:该市15000名八年级学生中日人均阅读时间在 0.5~1.5小时的人约为12000人.10分24.(10分)解:(1)∵AB ∥MP ,QM ∥AC ,∴四边形APMQ 是平行四边形, ∴∠B =PMC ,∠C =∠QMB . 2分 ∵AB =AC , ∴∠B =∠C ,∴∠B =∠QMB ,∠C =∠PMC . ∴BQ =QM ,PM =PC .4分 ∴四边形AQMP 的周长=AQ +AP +QM +MP =AQ +QB +AP +PC =AB +AC =20. 5分(2)当点M 是BC 的中点时,四边形APMQ 是菱形. 6分理由如下:∵点M 是BC 的中点,AB ∥MP ,QM ∥AC , ∴QM ,PM 是三角形ABC 的中位线.7分 ∵AB =AC ,∴QM =PM =12AB =12AC .8分又∵由(1)知,四边形APMQ 是平行四边形, ∴平行四边形APMQ 是菱形.10分25.(12分)解:(1)购进C 种玩具套数为:50-x -y . 2分 (2)由题意得40x +55y +50(50-x -y )=2350, 4分 整理得y =2x -30.5分(3)①利润=销售收入-进价-其它费用, ∴P =50x +80y +65(50-x -y )-2350-200, 整理得P =15x +250.8分②购进C 种电动玩具的套数为:50-x -y =80-3x .根据题意列不等式组,得⎩⎪⎨⎪⎧x ≥10,2x -30≥10,80-3x ≥10,解得20≤x ≤703.∴x 的范围为20≤x ≤23,且x 为整数. 9分∵P 是x 的一次函数,k =15>0, ∴P 随x 的增大而增大.10分∴当x 取最大值23时,P 有最大值,最大值为595元. 11分此时购进A 、B 、C 种玩具分别为23套、16套、11套. 12分26.(12分) (1)证明:连接OD .∵AD 平分∠BAC , ∴∠BAD =∠DAC . 1分∵OA =OD ,∴∠BAD =∠ODA , ∴∠ODA =∠DAC , ∴AC ∥OD . 2分 ∵∠C =90°, ∴∠ODC =90°, 即BC 是⊙O 的切线.3分(2)解:在Rt △ADC 中,∠ACD =90°,由勾股定理, 得:AD =AC 2+DC 2=62+42=213.4分 作OF ⊥AD 于点F ,根据垂径定理得AF =12AD =13,5分可得△AOF ∽△ADC , ∴OF DC =AF AC ,∴OF 4=136,∴OF =2313. 7分 (3)解:连接ED .∵AD 平分∠BAC , ∴∠BAD =∠DAC .∵AE 为直径, ∴∠ADE =90°, ∴Rt △AED 中,tan ∠EAD =ED AD =tan ∠DAC =23.9分∵∠ADE =90°, ∴∠EDB +∠ADC =90°. 又∵∠DAC +∠ADC =90°, ∴∠EDB =∠DAC =∠EAD . 又∵∠B =∠B , ∴△BED ∽△BDA ,10分∴BE BD =DE AD =23.12分27.(14分)解:(1)∵抛物线y =ax 2+bx +4经过A (-3,0)、B (4,0)两点,∴⎩⎪⎨⎪⎧9a -3b +4=0,16a +4b +4=0,解得a =-13,b =13.2分 ∴所求抛物线的解析式为y =-13x 2+13x +4.3分(2)如图①,连接DQ ,依题意知AP =t . ∵抛物线y =-13x 2+13x +4与y 轴交于点C ,∴C (0,4).4分又A (-3,0),B (4,0),可得AC =5,BC =42,AB =7. ∵BD =BC ,∴AD =AB -BD =7-4 2. 5分∵CD 垂直平分PQ , ∴QD =DP ,∠CDQ =∠CDP . ∵BD =BC ,∴∠DCB =∠CDB , ∴∠CDQ =∠DCB ,∴DQ ∥BC ,∴△ADQ ∽△ABC ,∴AD AB =DQ BC ,∴AD AB =DPBC ,6分 ∴7-427=DP42.7分 解得DP =42-327,∴AP =AD +DP =177,9分 ∴线段PQ 被CD 垂直平分时,t 的值为177.10分(3)如图②,设抛物线y =-13x 2+13x +4的对称轴x =12与x 轴交于点E , 由于点A 、B 关于对称轴x =12对称,连接BQ 交对称轴于点M ,则MQ +MA =MQ +MB ,即MQ +MA =BQ . 11分当BQ ⊥AC 时,BQ 最小,此时∠EBM =∠ACO , ∴tan ∠EBM =tan ∠ACO =34,12分∴ME BE =34,即ME 4-12=34,解得ME =218. 13分∴M (12,218),即在抛物线的对称上存在一点M (12,218),使得MQ +MA 的值最小. 14分。

2018年四川省德阳市中江县中考数学一诊试卷

2018年四川省德阳市中江县中考数学一诊试卷

2018年四川省德阳市中江县中考数学一诊试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)下列图标中,是中心对称图形的是()A.B.C.D.2.(3分)把抛物线y=﹣2x2先向左平移3个单位,再向上平移3个单位,则变换后的抛物线解析式是()A.y=﹣2(x+3)2﹣3B.y=﹣2(x+3)2+3C.y=﹣2(x﹣3)2+3D.y=﹣2(x﹣3)2﹣33.(3分)如图,在半径为10cm的圆形铁片上切下一块高为4cm的弓形铁片,则弓形弦AB 的长为()A.8cm B.12cm C.16cm D.20cm4.(3分)下列诗句所描述的事件中,是不可能事件的是()A.黄河入海流B.锄禾日当午C.大漠孤烟直D.手可摘星辰5.(3分)关于x的方程(a﹣1)x|a|+1﹣3x+2=0是一元二次方程,则()A.a≠±1B.a=1C.a=﹣1D.a=±16.(3分)已知二次函数y=ax2+bx+c(a<0)的图象如图所示,当﹣5≤x≤0时,下列说法正确的是()A.有最小值﹣5、最大值0B.有最小值﹣3、最大值6C.有最小值0、最大值6D.有最小值2、最大值67.(3分)如果矩形的面积为8,那么它的长y与宽x的函数关系的大致图象表示为()A.B.C.D.8.(3分)一元二次方程x2﹣x+3=0的根的情况为()A.没有实数根B.只有一个实数根C.有两个不等的实数根D.有两个相等的实数根9.(3分)如图,已知在⊙O中,AB是弦,半径OC⊥AB,垂足为点D,要使四边形OACB 为菱形,还需要添加一个条件,这个条件可以是()A.AD=BD B.OD=CD C.∠CAD=∠CBD D.∠OCA=∠OCB 10.(3分)在一个不透明的袋子里装有四个小球,球上分别标有6,7,8,9四个数字,这些小球除数字外都相同.甲、乙两人玩“猜数字”游戏,甲先从袋中任意摸出一个小球,将小球上的数字记为m,再由乙猜这个小球上的数字,记为n.如果m,n满足|m﹣n|≤1,那么就称甲、乙两人“心领神会”,则两人“心领神会”的概率是()A.B.C.D.11.(3分)如图,二次函数y=ax2+bx+c的图象过点A(3,0),对称轴为直线x=1,给出以下结论:①abc<0;②b2﹣4ac>0;③a+b+c≥ax2+bx+c;④若M(x2+1,y1)、N(x2+2,y2)为函数图象上的两点,则y1<y2,其中正确的是()A.①②③B.①②④C.①③④D.②③④12.(3分)如图,P A,PB是⊙O的切线,A,B为切点,AC为⊙O的直径,弦BD⊥AC下列结论:①∠P+∠D=180°;②∠COB=∠DAB;③∠DBA=∠ABP;④∠DBO=∠ABP.其中正确的只有()A.①③B.②④C.②③D.①④二、填空题(共5小题,每小题3分,满分15分)13.(3分)已知袋中有若干个小球,它们除颜色外其它都相同,其中只有2个红球,若随机从中摸出一个,摸到红球的概率是,则袋中小球的总个数是14.(3分)用一段长为30m的篱笆围成一个一边靠墙的矩形菜园,墙长20m,当矩形的长、宽各取某个特定的值时,菜园的面积最大,这个最大面积是m2.15.(3分)如图,正比例函数y1=kx与反比例函数y2=交于点A(m,2),则不等式kx>的解集为.16.(3分)如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是cm.17.(3分)如图,AB是⊙O的直径,AC是弦,AC=6,,若用扇形OAC(图中阴影部分)围成一个圆锥的侧面,则这个圆锥底面圆的半径是三、解答题(本大题共7小题,共69分)18.(6分)用配方法解方程:x2﹣7x+5=0.19.(9分)“一碗面,一座城”!中江挂面在2017年全国魅力城市PK中,作为德阳市的一张名片登上中央电视台,为“德阳魅力城”的晋升立下了汗马功劳,为发展中江经济,县政府决定在2016年底生产100吨挂面的基础上继续扩大生产规模,到2018年底产量达到169吨.(1)求中江挂面这两年产量的平均增长率;(2)若按此速度继续扩大生产规模,请你计算到2019年底时,中江挂面的产量将达到多少吨?每吨挂面可盈利6千元,则2019年仅挂面一项,能为中江赚多少钱?20.(8分)如图,已知点A(﹣4,2),B(﹣1,﹣2),平行四边形ABCD的对角线交于坐标原点O.(1)请直接写出点C、D的坐标;(2)写出从线段AB到线段CD的变换过程;(3)求△AOB的面积.21.(10分)小明正在参加全国“数学竞赛”,只要他再答对最后两道单选题就能顺利过关,其中第一道题有3个选项,第二道题有4个选项,而这两道题小明都不会,不过小明还有一次“求助”没有使用(使用“求助”可让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用“求助”,随机选择一个选项,那么小明答对第一道题的概率是多少?(2)如果小明将“求助”留在第二题使用,请用画树状图或列表法求小明能顺利过关的概率.(3)请你从概率的角度分析,建议小明在第几题使用“求助”,才能使他过关的概率较大.22.(10分)如图,反比例函数y=与一次函数y=kx+b的图象交于点A(﹣2,1),B(1,n),交y轴于点C.(1)求反比例函数与一次函数的解析式;(2)求△AOB的面积;(3)若点P是y轴上的点,请直接写出能使△P AC为等腰三角形的点P的坐标.23.(12分)如图,AB是⊙O的直径,M是OA上一点,过M作AB的垂线交AC于点N,交BC的延长线于点E,直线CF交EN于点F,若∠BAC=30°,且∠ECF=∠E.(1)试判断CF与⊙O的位置关系,并说明理由;(2)设⊙O的半径为2,且AC=CE,求AM的长.24.(14分)抛物线y=﹣x2+bx+c与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C.(1)求该抛物线的解析式;(2)在抛物线上求一点P,使S△P AB=S△ABC,写出P点的坐标;(3)在抛物线的对称轴上是否存在点Q,使得△QBC的周长最小?若存在,求出点Q的坐标,若不存在,请说明理由.2018年四川省德阳市中江县中考数学一诊试卷参考答案一、选择题(本大题共12小题,每小题3分,共36分)1.D;2.B;3.C;4.D;5.C;6.B;7.B;8.A;9.B;10.B;11.A;12.C;二、填空题(共5小题,每小题3分,满分15分)13.8个;14.;15.﹣1<x<0或x>1;16.17;17.1;三、解答题(本大题共7小题,共69分)18.;19.;20.;21.;22.;23.;24.;。

四川省德阳市数学中考模拟试卷

四川省德阳市数学中考模拟试卷

四川省德阳市数学中考模拟试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019七上·仪陇期中) 下列各组数中,相等的是().A . 32与23B . -22与(-2)2C . -|-3|与|-3|D . -23与(-2)32. (2分) (2015八上·怀化开学考) 下列图形中,不是轴对图形的是()A .B .C .D .3. (2分)一个几何体的三视图如图所示,则这个几何体是()A . 圆柱B . 圆锥C . 长方体D . 正方体4. (2分)(2019·沾化模拟) 下列运算中正确的是()A . x4·x=x5B . 2x3÷ x=4x4C . (-a2)4=a6D . 5x-3x=25. (2分)要使式子有意义,a的取值范围是()A . a≠0B . a>-2且a≠0C . a>-2或a≠0D . a≥-2且a≠06. (2分)(2019·松桃模拟) 把不等式组的解集表示在数轴上,下列选项正确的是()A .B .C .D .7. (2分)教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间(min)的关系如图,为了在上午第一节下课时(8:45)能喝到不超过50℃的水,则接通电源的时间可以是当天上午的()A . 7:20B . 7:30C . 7:45D . 7:508. (2分) (2018八上·西安月考) 已知Rt△ABC中的三边长为a,b,c,若a=8,b=15,那么c2等于()A . 161B . 289C . 225D . 161或2899. (2分)(2018·临河模拟) 如图,已知点A(0,1),B(0,-1),以点A为圆心,AB为半径作圆,交轴的正半轴于点C,则∠BAC等于()A . 90°B . 120°C . 60°D . 30°10. (2分)已知抛物线y=ax2+bx+c(a>0)过(﹣2,0),(2,3)两点,那么抛物线的对称轴()A . 只能是x=﹣1B . 可能是y轴C . 可能在y轴右侧且在直线x=2的左侧D . 可能在y轴左侧且在直线x=﹣2的右侧二、填空题 (共6题;共7分)11. (1分)(2019·河南模拟) 计算:()0+(﹣2)2=________.12. (1分)因式分解:xy3﹣x3y=________.13. (1分) (2017九下·六盘水开学考) 一种细菌的半径为0.000039m,用科学记数法表示应是________m.14. (2分)(2019·上海) 小明为了解所在小区居民各类生活垃圾的投放情况,他随机调查了该校区50户家庭某一天各类生活垃圾的投放量,统计得出这50户家庭各类生活垃圾的投放总量是100千克,并画出各类生活垃圾投放量分布情况的扇形图(如图所示),根据以上信息,估计该小区300户居民这一天投放的可回收垃圾共约________千克.15. (1分)如图,AD为△ABC的外接圆⊙O的直径,若∠BAD=50°,则∠ACB=________°.16. (1分)观察下面一列数:﹣1,2,﹣3,4,﹣5,6,﹣7,…将这列数排成下列形式:按照上述规律排下去,那么第10行从左边数第9个数是________;数﹣201是第________行从左边数第________个数.三、解答题 (共9题;共71分)17. (5分)(2020·香坊模拟) 先化简,再求代数式的值,其中.18. (2分)(2017·岳池模拟) 某日,正在我国南海海域作业的一艘大型渔船突然发生险情,相关部门接到求救信号后,立即调遣一架直升飞机和一艘刚在南海巡航的渔政船前往救援.当飞机到达距离海面3000米的高空C 处,测得A处渔政船的俯角为60°,测得B处发生险情渔船的俯角为30°,请问:此时渔政船和渔船相距多远?(结果保留根号)19. (2分)已知△ABC是等腰直角三角形,∠BAC=90°,E为△ABC外一点,CE⊥FE,CE=FE,连接AE、BF,点M为AE中点,点N为BF中点.(1)若BC=4 ,FC=2 ,∠ECA=30°,求S△ACE .(2)求证:MN⊥AE.20. (2分)(2017·吉林模拟) 如图,反比例函数y= (x>0)的图象与一次函数y=3x的图象相交于点A,其横坐标为2.(1)求k的值;(2)点B为此反比例函数图象上一点,其纵坐标为3.过点B作CB∥OA,交x轴于点C,直接写出线段OC 的长.21. (10分)已知关于x的一元二次方程x2+(k﹣5)x+1﹣k=0,其中k为常数.(1)求证:无论k为何值,方程总有两个不相等实数根;(2)已知函数y=x2+(k﹣5)x+1﹣k的图象不经过第三象限,求k的取值范围;(3)若原方程的一个根大于3,另一个根小于3,求k的最大整数值.22. (10分)为了参加中考体育测试,甲、乙、丙三位同学进行足球传球训练,球从一个人脚下随机传到另一个人脚下,且每位传球人传给其余两人的机会是均等的,由甲开始传球,共传球三次.(1)请利用树状图列举出三次传球的所有可能情况;(2)求三次传球后,球回到甲脚下的概率;(3)三次传球后,球回到甲脚下的概率大还是传到乙脚下的概率大?23. (10分) (2018八上·钦州期末) 某校积极开展科技创新活动,在一次用电脑程序控制小型赛车进行50m 比赛的活动中,“梦想号”和“创新号”两辆赛车在比赛前进行结对练习,两辆车从起点同时出发,“梦想号”到达终点时,“创新号”离终点还差2m.已知“梦想号”的平均速度比“创新号”的平均速度快0.1m/s.(1)求“创新号”的平均速度;(2)如果两车重新开始练习,“梦想号”从起点向后退2m,两车同时出发,两车能否同时到达终点?请说明理由.24. (15分)(2020·晋中模拟) 如图,圆心在坐标原点的⊙O ,与坐标轴的交点分别为A、B和C、D .弦CM交OA于P ,连结AM ,已知tan∠PCO=,PC、PM是方程x2﹣px+20=0的两根.(1)求C点的坐标;(2)写出直线CM的函数解析式;(3)求△AMC的面积.25. (15分)(2017·丹江口模拟) 如图,直线y=﹣x+3与x轴交于点C,与y轴交于点B,抛物线y=ax2+x+c经过B、C两点,点E是直线BC上方抛物线上的一动点.(1)求抛物线的解析式;(2)过点E作y轴的平行线交直线BC于点M、交x轴于点F,当S△BEC= 时,请求出点E和点M的坐标;(3)在(2)的条件下,当E点的横坐标为1时,在EM上是否存在点N,使得△CMN和△CBE相似?如果存在,请直接写出点N的坐标;如果不存在,请说明理由.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共71分)17-1、18-1、19-1、19-2、20-1、20-2、21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、24-1、24-2、24-3、25-1、25-2、25-3、。

2019年德阳市中考数学一模试卷附答案

2019年德阳市中考数学一模试卷附答案

2019年德阳市中考数学一模试卷附答案一、选择题1.通过如下尺规作图,能确定点D 是BC 边中点的是( )A .B .C .D .2.如图,A ,B ,P 是半径为2的⊙O 上的三点,∠APB =45°,则弦AB 的长为( )A .2B .4C .22D .23.如图抛物线y =ax 2+bx +c 的对称轴为直线x =1,且过点(3,0),下列结论:①abc >0;②a ﹣b +c <0;③2a +b >0;④b 2﹣4ac >0;正确的有( )个.A .1B .2C .3D .44.菱形不具备的性质是( )A .四条边都相等B .对角线一定相等C .是轴对称图形D .是中心对称图形 5.已知AC 为矩形ABCD 的对角线,则图中1∠与2∠一定不相等的是( ) A .B .C .D .6.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为( ) A .﹣3B .﹣5C .1或﹣3D .1或﹣57.估计10+1的值应在( ) A .3和4之间B .4和5之间C .5和6之间D .6和7之间8.如图,AB 为⊙O 直径,已知为∠DCB=20°,则∠DBA 为( )A .50°B .20°C .60°D .70°9.下列几何体中,其侧面展开图为扇形的是( )A .B .C .D .10.一元二次方程(1)(1)23x x x +-=+的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .只有一个实数根 D .没有实数根11.cos45°的值等于( ) A .2B .1C .32D .2 12.如图,AB ∥CD ,∠C=80°,∠CAD=60°,则∠BAD 的度数等于( )A .60°B .50°C .45°D .40°二、填空题13.如图,△ABC 的三个顶点均在正方形网格格点上,则tan ∠BAC =_____________.14.如图:已知AB=10,点C 、D 在线段AB 上且AC=DB=2; P 是线段CD 上的动点,分别以AP 、PB 为边在线段AB 的同侧作等边△AEP 和等边△PFB ,连结EF ,设EF 的中点为G ;当点P 从点C 运动到点D 时,则点G 移动路径的长是________.15.计算:2cos45°﹣(π+1)0+111()42-+=______. 16.用一个圆心角为180°,半径为4的扇形围成一个圆锥的侧面,则这个圆锥的底面圆的半径为_______.17.甲、乙两人在1200米长的直线道路上跑步,甲、乙两人同起点、同方向出发,并分别以不同的速度匀速前进,已知,甲出发30秒后,乙出发,乙到终点后立即返回,并以原来的速度前进,最后与甲相遇,此时跑步结束.如图,y (米)表示甲、乙两人之间的距离,x (秒)表示甲出发的时间,图中折线及数据表示整个跑步过程中y 与x 函数关系,那么,乙到达终点后_____秒与甲相遇.18.九年级三班小亮同学学习了“测量物体高度”一节课后,他为了测得如图所放风筝的高度,进行了如下操作:(1)在放风筝的点A 处安置测倾器,测得风筝C 的仰角∠CBD =60°; (2)根据手中剩余线的长度出风筝线BC 的长度为70米; (3)量出测倾器的高度AB =1.5米.根据测量数据,计算出风筝的高度CE 约为_____米.(精确到0.1米,3≈1.73).19.农科院新培育出A 、B 两种新麦种,为了了解它们的发芽情况,在推广前做了五次发芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下: 种子数量100 200 500 1000 2000 A 出芽种子数 96 165 491 984 1965 发芽率 0.96 0.83 0.98 0.98 0.98 B出芽种子数961924869771946发芽率0.960.960.970.980.97下面有三个推断:①当实验种子数量为100时,两种种子的发芽率均为0.96,所以他们发芽的概率一样;②随着实验种子数量的增加,A种子出芽率在0.98附近摆动,显示出一定的稳定性,可以估计A种子出芽的概率是0.98;③在同样的地质环境下播种,A种子的出芽率可能会高于B种子.其中合理的是__________(只填序号).20.在学校组织的义务植树活动中,甲、乙两组各四名同学的植树棵数如下,甲组:9,9,11,10;乙组:9,8,9,10;分别从甲、乙两组中随机选取一名同学,则这两名同学的植树总棵数为19的概率______.三、解答题21.如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.22.2018年“妇女节”前夕,扬州某花店用4000元购进若干束花,很快售完,接着又用4500元购进第二批花,已知第二批所购花的束数是第一批所购花束数的1.5倍,且每束花的进价比第一批的进价少5元,求第一批花每束的进价是多少?23.某旅行团32人在景区A游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.(1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B游玩.景区B的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.24.修建隧道可以方便出行.如图:A,B两地被大山阻隔,由A地到B地需要爬坡到山顶C地,再下坡到B地.若打通穿山隧道,建成直达A,B两地的公路,可以缩短从A地i=B到C坡面的坡角到B地的路程.已知:从A到C坡面的坡度3∠=︒,42CBA45BC=.(1)求隧道打通后从A 到B 的总路程是多少公里?(结果保留根号)(2)求隧道打通后与打通前相比,从A 地到B 地的路程约缩短多少公里?(结果精确到0.01)(2 1.414≈,3 1.732≈)25.将平行四边形纸片ABCD 按如图方式折叠,使点C 与A 重合,点D 落到D '处,折痕为EF .(1)求证:ABE AD F 'V V ≌;(2)连结CF ,判断四边形AECF 是什么特殊四边形?证明你的结论.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】作线段BC 的垂直平分线可得线段BC 的中点. 【详解】作线段BC 的垂直平分线可得线段BC 的中点. 由此可知:选项A 符合条件, 故选A . 【点睛】本题考查作图﹣复杂作图,解题的关键是熟练掌握五种基本作图.2.C解析:C【解析】 【分析】由A 、B 、P 是半径为2的⊙O 上的三点,∠APB=45°,可得△OAB 是等腰直角三角形,继而求得答案. 【详解】解:连接OA ,OB . ∵∠APB =45°, ∴∠AOB =2∠APB =90°. ∵OA =OB =2,∴AB =22OA OB =22. 故选C .3.B解析:B 【解析】 【分析】由图像可知a >0,对称轴x=-2ba=1,即2a +b =0,c <0,根据抛物线的对称性得x=-1时y=0,抛物线与x 轴有2个交点,故△=b 2﹣4ac >0,由此即可判断. 【详解】解:∵抛物线开口向上, ∴a >0,∵抛物线的对称轴为直线x =﹣2ba=1, ∴b =﹣2a <0,∵抛物线与y 轴的交点在x 轴下方, ∴c <0,∴abc >0,所以①正确;∵抛物线与x 轴的一个交点为(3,0),而抛物线的对称轴为直线x =1, ∴抛物线与x 轴的另一个交点为(﹣1,0), ∵x =﹣1时,y =0, ∴a ﹣b +c =0,所以②错误; ∵b =﹣2a ,∴2a +b =0,所以③错误;∵抛物线与x 轴有2个交点, ∴△=b 2﹣4ac >0,所以④正确. 故选B . 【点睛】此题主要考查二次函数的图像,解题的关键是熟知各系数所代表的含义.4.B解析:B 【解析】【分析】根据菱形的性质逐项进行判断即可得答案. 【详解】菱形的四条边相等,菱形是轴对称图形,也是中心对称图形, 菱形对角线垂直但不一定相等, 故选B .【点睛】本题考查了菱形的性质,解题的关键是熟练掌握菱形的性质.5.D解析:D 【解析】 【分析】 【详解】解:A 选项中,根据对顶角相等,得1∠与2∠一定相等; B 、C 项中无法确定1∠与2∠是否相等;D 选项中因为∠1=∠ACD ,∠2>∠ACD ,所以∠2>∠1. 故选:D6.A解析:A 【解析】分析:根据点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,得到4=|2a +2|,即可解答.详解:∵点A (a +2,4)和B (3,2a +2)到x 轴的距离相等, ∴4=|2a +2|,a +2≠3, 解得:a =−3, 故选A .点睛:考查点的坐标的相关知识;用到的知识点为:到x 轴和y 轴的距离相等的点的横纵坐标相等或互为相反数.7.B解析:B 【解析】解:∵34<<,∴415<<.故选B .的取值范围是解题关键.8.D解析:D 【解析】题解析:∵AB 为⊙O 直径,∴∠ACB =90°,∴∠ACD =90°-∠DCB =90°-20°=70°,∴∠DBA =∠ACD =70°.故选D .【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.9.C解析:C 【解析】 【分析】根据特殊几何体的展开图逐一进行分析判断即可得答案. 【详解】A 、圆柱的侧面展开图是矩形,故A 错误;B 、三棱柱的侧面展开图是矩形,故B 错误;C 、圆锥的侧面展开图是扇形,故C 正确;D 、三棱锥的侧面展开图是三个三角形拼成的图形,故D 错误, 故选C . 【点睛】本题考查了几何体的展开图,熟记特殊几何体的侧面展开图是解题关键.10.A解析:A 【解析】 【分析】先化成一般式后,在求根的判别式,即可确定根的状况. 【详解】解:原方程可化为:2240x x --=,1a \=,2b =-,4c =-,2(2)41(4)200∴∆=--⨯⨯-=>, ∴方程由两个不相等的实数根.故选:A . 【点睛】本题运用了根的判别式的知识点,把方程转化为一般式是解决问题的关键.11.D解析:D 【解析】【分析】将特殊角的三角函数值代入求解. 【详解】 解:cos45°= 2. 故选D . 【点睛】本题考查特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.12.D解析:D 【解析】 【分析】 【详解】∵∠C=80°,∠CAD=60°, ∴∠D=180°﹣80°﹣60°=40°, ∵AB ∥CD , ∴∠BAD=∠D=40°. 故选D .二、填空题13.【解析】分析:在图形左侧添加正方形网格分别延长ABAC 连接它们延长线所经过的格点可构成直角三角形利用正切的定义即可得出答案详解:如图所示由图形可知∴tan∠BAC=故答案为点睛:本题考查了锐角三角函解析:13【解析】分析:在图形左侧添加正方形网格,分别延长AB 、AC ,连接它们延长线所经过的格点,可构成直角三角形,利用正切的定义即可得出答案. 详解:如图所示,由图形可知,90AFE ∠=︒,3AF AC =,EF AC =, ∴tan ∠BAC =133EF AC AF AC ==.故答案为1 3 .点睛:本题考查了锐角三角函数的定义. 利用网格构建直角三角形进而利用正切的定义进行求解是解题的关键.14.3【解析】【分析】分别延长AEBF交于点H易证四边形EPFH为平行四边形得出G为PH中点则G的运行轨迹为三角形HCD的中位线MN再求出CD的长运用中位线的性质求出MN的长度即可【详解】如图分别延长A解析:3【解析】【分析】分别延长AE、BF交于点H,易证四边形EPFH为平行四边形,得出G为PH中点,则G 的运行轨迹为三角形HCD的中位线MN.再求出CD的长,运用中位线的性质求出MN的长度即可.【详解】如图,分别延长AE、BF交于点H.∵∠A=∠FPB=60°,∴AH∥PF,∵∠B=∠EPA=60°,∴BH∥PE,∴四边形EPFH为平行四边形,∴EF与HP互相平分.∵G为EF的中点,∴G也正好为PH中点,即在P的运动过程中,G始终为PH的中点,所以G的运行轨迹为三角形HCD的中位线MN.∵CD=10-2-2=6,∴MN=3,即G的移动路径长为3.故答案为:3.【点睛】本题考查了等腰三角形及中位线的性质,以及动点问题,是中考的热点.15.【解析】解:原式==故答案为:322.【解析】解:原式=212122⨯-++=322+.故答案为:322+.16.2【解析】【分析】设这个圆锥的底面圆的半径为R根据扇形的弧长等于这个圆锥的底面圆的周长列出方程即可解决问题【详解】设这个圆锥的底面圆的半径为R由题意:2πR=解得R=2故答案为2解析:2【解析】【分析】设这个圆锥的底面圆的半径为R,根据扇形的弧长等于这个圆锥的底面圆的周长,列出方程即可解决问题.【详解】设这个圆锥的底面圆的半径为R,由题意:2πR=1804 180π⨯,解得R=2.故答案为2.17.30【解析】【分析】由图象可以V甲=9030=3m/sV追=90120-30=1m/s故V乙=1+3=4m/s由此可求得乙走完全程所用的时间为:12004=300 s则可以求得此时乙与甲的距离即可求出解析:30【解析】【分析】由图象可以V甲==3m/s,V追==1m/s,故V乙=1+3=4m/s,由此可求得乙走完全程所用的时间为:=300s,则可以求得此时乙与甲的距离,即可求出最后与甲相遇的时间.【详解】由图象可得V甲==3m/s,V追==1m/s,∴V乙=1+3=4m/s,∴乙走完全程所用的时间为:=300s,此时甲所走的路程为:(300+30)×3=990m.此时甲乙相距:1200﹣990=210m则最后相遇的时间为:=30s故答案为:30【点睛】此题主要考查一次函数图象的应用,利用函数图象解决行程问题.此时就要求掌握函数图象中数据表示的含义.18.1【解析】试题分析:在Rt△CBD中知道了斜边求60°角的对边可以用正弦值进行解答试题解析:在Rt△CBD中DC=BC•sin60°=70×≈6055(米)∵AB=15∴CE=6055+15≈621解析:1.【解析】试题分析:在Rt△CBD中,知道了斜边,求60°角的对边,可以用正弦值进行解答.试题解析:在Rt△CBD中,.55(米).∵AB=1.5,∴CE=60.55+1.5≈62.1(米).考点:解直角三角形的应用-仰角俯角问题.19.②③【解析】分析:根据随机事件发生的频率与概率的关系进行分析解答即可详解:(1)由表中的数据可知当实验种子数量为100时两种种子的发芽率虽然都是96但结合后续实验数据可知此时的发芽率并不稳定故不能确解析:②③【解析】分析:根据随机事件发生的“频率”与“概率”的关系进行分析解答即可.详解:(1)由表中的数据可知,当实验种子数量为100时,两种种子的发芽率虽然都是96%,但结合后续实验数据可知,此时的发芽率并不稳定,故不能确定两种种子发芽的概率就是96%,所以①中的说法不合理;(2)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,故可以估计A种种子发芽的概率是98%,所以②中的说法是合理的;(3)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,而B种种子发芽的频率稳定在97%左右,故可以估计在相同条件下,A种种子发芽率大于B种种子发芽率,所以③中的说法是合理的.故答案为:②③.点睛:理解“随机事件发生的频率与概率之间的关系”是正确解答本题的关键. 20.【解析】【分析】【详解】画树状图如图:∵共有16种等可能结果两名同学的植树总棵数为19的结果有5种结果∴这两名同学的植树总棵数为19的概率为解析:5 16.【解析】【分析】【详解】画树状图如图:∵共有16种等可能结果,两名同学的植树总棵数为19的结果有5种结果,∴这两名同学的植树总棵数为19的概率为516. 三、解答题21.(1)DE=3;(2)ADB S 15∆=.【解析】【分析】(1)根据角平分线性质得出CD=DE ,代入求出即可;(2)利用勾股定理求出AB 的长,然后计算△ADB 的面积.【详解】(1)∵AD 平分∠CAB ,DE ⊥AB ,∠C=90°,∴CD=DE ,∵CD=3,∴DE=3;(2)在Rt △ABC 中,由勾股定理得:2222AB AC BC 6810=+=+=,∴△ADB 的面积为ADB 11S AB DE 1031522∆=⋅=⨯⨯=. 22.20元/束.【解析】【分析】设第一批花每束的进价是x 元/束,则第一批进的数量是:4000x,再根据等量关系:第二批进的数量=第一批进的数量×1.5可得方程. 【详解】设第一批花每束的进价是x 元/束, 依题意得:4000x ×1.5=45005x -, 解得x =20. 经检验x =20是原方程的解,且符合题意.答:第一批花每束的进价是20元/束.【点睛】本题考查了分式方程的应用.关键是根据等量关系:第二批进的数量=第一批进的数量×1.5列方程.23.(1)该旅行团中成人17人,少年5人;(2)①1320元,②最多可以安排成人和少年共12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人;其中当成人10人,少年2人时购票费用最少.【解析】【分析】(1)设该旅行团中成人x 人,少年y 人,根据儿童10人,成人比少年多12人列出方程组求解即可;(2)①根据一名成人可以免费携带一名儿童以及少年8折,儿童6折直接列式计算即可; ②分情况讨论,分别求出在a 的不同取值范围内b 的最大值,得到符合题意的方案,并计算出所需费用,比较即可.【详解】解:(1)设该旅行团中成人x 人,少年y 人,根据题意,得103212x y x y ++=⎧⎨=+⎩,解得175x y =⎧⎨=⎩. 答:该旅行团中成人17人,少年5人.(2)∵①成人8人可免费带8名儿童,∴所需门票的总费用为:()10081000.851000.6108=1320⨯+⨯⨯+⨯⨯-(元).②设可以安排成人a 人、少年b 人带队,则11715a b ,剟剟. 当1017a 剟时, (ⅰ)当10a =时,10010801200b ⨯+„,∴52b „, ∴2b =最大值,此时12a b +=,费用为1160元.(ⅱ)当11a =时,10011801200b ⨯+„,∴54b „, ∴1b =最大值,此时12a b +=,费用为1180元. (ⅲ)当12a …时,1001200a …,即成人门票至少需要1200元,不合题意,舍去. 当110a <„时,(ⅰ)当9a =时,100980601200b ⨯++„,∴3b ≤,∴3b =最大值,此时12a b +=,费用为1200元.(ⅱ)当8a =时,100880601200b ⨯++„,∴72b ≤,∴3b =最大值,此时1112a b +=<,不合题意,舍去.(ⅲ)同理,当8a <时,12a b +<,不合题意,舍去.综上所述,最多可以安排成人和少年共12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人;其中当成人10人,少年2人时购票费用最少.【点睛】本题主要考查了二元一次方程组的应用,不等式的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.24.(1)隧道打通后从A 到B 的总路程是(434)+公里;(2)隧道打通后与打通前相比,从A 地到B 地的路程约缩短2.73公里.【解析】【分析】(1)过点C 作CD ⊥AB 于点D ,利用锐角三角函数的定义求出CD 及AD 的长,进而可得出结论.(2)由坡度可以得出A ∠的度数,从而得出AC 的长,根据AC CB AB +-即可得出缩短的距离.【详解】(1)作CD AB ⊥于点D ,在Rt BCD ∆中,∵45CBA ∠=︒,42BC =,∴4CD BD ==.在Rt ACD ∆中,∵1:3CD i AD==, ∴343AD CD ==,∴()434AB =+公里.答:隧道打通后从A 到B 的总路程是()434+公里.(2)在Rt ACD ∆中,∵3CD i AD==, ∴30A ∠=︒,∴2248AC CD ==⨯=,∴842AC CB +=+∵434AB =,∴842434 2.73AC CB AB +-=+--≈(公里).答:隧道打通后与打通前相比,从A 地到B 地的路程约缩短2.73公里.【点睛】本题考查的是解直角三角形的应用-坡度问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,需要熟记坡度和锐角三角函数的定义.25.(1)证明见解析;(2)四边形AECF 是菱形.证明见解析.【解析】【分析】(1)根据平行四边形的性质及折叠的性质我们可以得到∠B=∠D′,AB=AD′,∠1=∠3,从而利用ASA 判定△ABE ≌△AD′F ;(2)四边形AECF 是菱形,我们可以运用菱形的判定,有一组邻边相等的平行四边形是菱形来进行验证.【详解】解:(1)由折叠可知:∠D=∠D′,CD=AD′,∠C=∠D′AE .∵四边形ABCD 是平行四边形,∴∠B=∠D ,AB=CD ,∠C=∠BAD .∴∠B=∠D′,AB=AD′,∠D′AE=∠BAD ,即∠1+∠2=∠2+∠3.∴∠1=∠3.在△ABE 和△AD′F 中∵{13D BAB AD ∠'=∠='∠=∠∴△ABE ≌△AD′F (ASA ).(2)四边形AECF 是菱形.证明:由折叠可知:AE=EC ,∠4=∠5.∵四边形ABCD 是平行四边形,∴AD ∥BC .∴∠5=∠6.∴∠4=∠6.∴AF=AE .∵AE=EC,∴AF=EC.又∵AF∥EC,∴四边形AECF是平行四边形.又∵AF=AE,∴平行四边形AECF是菱形.考点:1.全等三角形的判定;2.菱形的判定.。

2018-2019学年四川省德阳五中九年级(上)期中数学模拟试卷(附解析)

2018-2019学年四川省德阳五中九年级(上)期中数学模拟试卷(附解析)

2018-2019学年四川省德阳五中九年级(上)期中数学模拟试卷一.选择题(共12小题,满分36分)1.如图图案中,属于中心对称图形的是()A.B.C.D.2.一元二次方程x2﹣3x=0的解是()A.x1=0,x2=﹣3B.x=﹣3C.x=3D.x1=0,x2=3 3.一元二次方程x2+5x+7=0解的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定4.抛物线y=3(x﹣1)2+1的顶点坐标是()A.(1,1)B.(﹣1,1)C.(﹣1,﹣1)D.(1,﹣1)5.如图,CD是⊙O的直径,∠EOD=84°,AE交⊙O于点B,且AB=OC,则∠A 的度数为()A.28°B.42°C.21°D.20°6.为满足消费者需要,红星厂一月份生产手提电脑200台,计划二、三月份共生产2500台.设二、三月份每月的平均增长率为x,根据题意列出的方程是()A.200(1+x)2=2500B.200(1+x)+200(1+x)2=2500C.200(1﹣x)2=2500D.200+200(1+x)+2000(1+x)2=2507.对于函数y=5x2,下列结论正确的是()A.y随x的增大而增大B.图象开口向下C.图象关于y轴对称D.无论x取何值,y的值总是正的8.如图,⊙O的半径OA=6,以A为圆心,OA为半径的弧交⊙O于B、C点,则BC=()A.B.C.D.9.已知⊙O的半径为5cm,圆心O到直线l的距离为5cm,则直线l与⊙O的位置关系为()A.相交B.相切C.相离D.无法确定10.如图,在方格纸上建立的平面直角坐标系中,将△ABO绕点O按顺时针方向旋转90°,得△A′B′O′,则点A′的坐标为()A.(3,1)B.(3,2)C.(2,3)D.(1,3)11.如图所示,△ABC的顶点是正方形网格的格点,则sinA的值为()A.B.C.D.12.如图是二次函数y=ax2+bx+c(a≠0)的图象,下列结论正确的个数是()①顶点是(﹣1,4)②方程ax2+bx+c=0的解是x1=﹣3,x2=1③4a+2b+c>0④不等式ax2+bx+c>0的解为﹣2<x<0.A.1B.2C.3D.4二.填空题(共6小题,满分18分,每小题3分)13.如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按顺时针方向旋转而得到的,则旋转的角度为.14.若实数a,b满足(2a+2b)(2a+2b﹣2)﹣8=0,则a+b=.15.若关于x的二次函数y=ax2+a2的最小值为4,则a的值为.16.一个直角三角形的两直角边分别为8和15,则它的内切圆的面积为.17.一个半径为5cm的圆内接正六边形的面积等于.18.已知关于x的一元二次方程x2+(m+3)x+m+1=0的两个实数根为x1,x2,若x12+x22=4,则m的值为.三.解答题(共7小题,满分54分)19.解方程:x2﹣4x﹣5=0.20.如图,△ABC中,∠B=10°,∠ACB=20°,AB=4cm,三角形ABC按逆时针方向旋转一定角度后与三角形ADE重合,且点C恰好成为AD的中点.(1)指出旋转中心,并求出旋转的度数;(2)求出∠BAE的度数和AE的长.21.已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图).(1)求证:AC=BD;(2)若大圆的半径R=10,小圆的半径r=8,且圆O到直线AB的距离为6,求AC的长.22.已知,抛物线y=ax2+2ax+c与y轴交于点C,与x轴交于A,B两点,点A在点B左侧.点B的坐标为(1,0),OC=3OB.(1)求抛物线的解析式;(2)当a>0时,如图所示,若点D是第三象限抛物线上方的动点,设点D的横坐标为m,三角形ADC的面积为S,求出S与m的函数关系式,并直接写出自变量m的取值范围;请问当m为何值时,S有最大值?最大值是多少.23.某文具店去年8月底购进了一批文具1160件,预计在9月份进行试销.购进价格为每件10元.若售价为12元/件,则可全部售出.若每涨价0.1元.销售量就减少2件.(1)求该文具店在9月份销售量不低于1100件,则售价应不高于多少元?(2)由于销量好,10月份该文具进价比8月底的进价每件增加20%,该店主增加了进货量,并加强了宣传力度,结果10月份的销售量比9月份在(1)的条件下的最低销售量增加了m%,但售价比9月份在(1)的条件下的最高售价减少m%.结果10月份利润达到3388元,求m的值(m>10).24.如图,AB是圆O的弦,D为半径OA的中点,过D作CD⊥OA交弦AB于点E,交圆O于点F,且CE=CB.(1)求证:BC是⊙O的切线;(2)连接AF,BF,求∠ABF的度数;(3)如果OA=3,求AE•AB的值.25.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线与x轴交于A、B两点,与y轴交于C点,其中A(1,0),C(0,3).(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.参考答案一.选择题1.C.2.D.3.C.4.A.5.A.6.B.7.C.8.A.9.B.10.D.11.D.12.B.二.填空题13.90°.14.﹣1或2.15.2.16.9π17.cm2.18.﹣1或﹣3三.解答题19.解:(x+1)(x﹣5)=0,则x+1=0或x﹣5=0,∴x=﹣1或x=5.20.解:(1)∵△ABC逆时针旋转一定角度后与△ADE重合,A为顶点,∴旋转中心是点A;根据旋转的性质可知:∠CAE=∠BAD=180°﹣∠B﹣∠ACB=150°,∴旋转角度是150°;(2)由(1)可知:∠BAE=360°﹣150°×2=60°,由旋转可知:△ABC≌△ADE,∴AB=AD,AC=AE,又C为AD中点,∴AC=AE=AB=×4=2cm.21.(1)证明:过O作OE⊥AB于点E,则CE=DE,AE=BE,∴BE﹣DE=AE﹣CE,即AC=BD;(2)解:由(1)可知,OE⊥AB且OE⊥CD,连接OC,OA,∴OE=6,∴CE===2,AE===8,∴AC=AE﹣CE=8﹣2.22.解:(1)∵点B的坐标为(1,0),OC=3OB,∴点C的坐标为(0,3)或(0,﹣3),将点B(1,0)、C(0,3)或(0,﹣3)代入y=ax2+2ax+c,或,解得:或,∴抛物线的解析式为y=﹣x2﹣2x+3或y=x2+2x﹣3.(2)过点D作DE⊥x轴,交AC于点E,如图所示.∵a>1,∴抛物线的解析式为y=x2+2x﹣3,∴点C的坐标为(0,﹣3).当y=0时,有x2+2x﹣3=0,解得:x1=﹣3,x2=1,∴点A的坐标为(﹣3,0),利用待定系数法可求出线段AC所在直线的解析式为y=﹣x﹣3.∵点D的横坐标为m,∴点D的坐标为(m,m2+2m﹣3),点E的坐标为(m,﹣m﹣3),∴DE=﹣m﹣3﹣(m2+2m﹣3)=﹣m2﹣3m,∴S=DE×|﹣3﹣0|=﹣(m2+m)(﹣3<m<0).∵﹣<0,且S=﹣(m2+m)=﹣(m+)2+,∴当m=﹣时,S取最大值,最大值为.23.解:(1)设售价应为x元,依题意有1160﹣≥1100,解得x≤15.答:售价应不高于15元.(2)10月份的进价:10(1+20%)=12(元),由题意得:1100(1+m%)[15(1﹣m%)﹣12]=3388,设m%=t,化简得50t2﹣25t+2=0,解得:t1=,t2=,所以m1=40,m2=10,因为m>10,所以m=40.答:m的值为40.24.(1)证明:连接OB.∵CD⊥OA,∴∠ADE=90°,∴∠DAE+∠AED=90°,∵OA=OB,∴∠A=∠OBA,∵CE=CB,∴∠CBE=∠CEB=∠AED,∴∠ABO+∠CBE=90°,∴∠OBC=90°,∴OB⊥BC.(2)解:连接OF.∵AD=OD,FD⊥OA,∴FA=FO=AO,∴△AOF是等边三角形,∴∠AOF=60°,∴∠ABF=∠AOF=30°.(3)解:延长AO交⊙O于H,连接BH.∵AH是直径,∴∠ABH=∠ADE=90°,∵∠DAE=∠HAB,∴△DAE∽△BAH,∴=,∴AE•AB=AD•AH=×6=9.25.解:(1)依题意得:,解之得:,∴抛物线解析式为y=﹣x2﹣2x+3∵对称轴为x=﹣1,且抛物线经过A(1,0),∴把B(﹣3,0)、C(0,3)分别代入直线y=mx+n,得,解之得:,∴直线y=mx+n的解析式为y=x+3;(2)设直线BC与对称轴x=﹣1的交点为M,则此时MA+MC的值最小.把x=﹣1代入直线y=x+3得,y=2,∴M(﹣1,2),即当点M到点A的距离与到点C的距离之和最小时M的坐标为(﹣1,2);(3)设P(﹣1,t),又∵B(﹣3,0),C(0,3),∴BC2=18,PB2=(﹣1+3)2+t2=4+t2,PC2=(﹣1)2+(t﹣3)2=t2﹣6t+10,①若点B为直角顶点,则BC2+PB2=PC2即:18+4+t2=t2﹣6t+10解之得:t=﹣2;②若点C为直角顶点,则BC2+PC2=PB2即:18+t2﹣6t+10=4+t2解之得:t=4,③若点P为直角顶点,则PB2+PC2=BC2即:4+t2+t2﹣6t+10=18解之得:t1=,t2=;综上所述P的坐标为(﹣1,﹣2)或(﹣1,4)或(﹣1,)或(﹣1,).。

四川省德阳中江县初中2019-2020学年中考数学模拟试卷

四川省德阳中江县初中2019-2020学年中考数学模拟试卷

四川省德阳中江县初中2019-2020学年中考数学模拟试卷一、选择题1.下列说法中正确的是( )A .对角线相等的四边形是矩形B .对角线互相垂直的矩形是正方形C .顺次联结矩形各边中点所得四边形是正方形D .正多边形都是中心对称图形2.如图,在已知的△ABC 中,按以下步骤:(1)分别以B 、C 为圆心,大于12BC 的长为半径作弧,两弧相交M 、N ;(2)作直线MN ,交AB 于D ,连结CD ,若CD =AD ,∠B =20°,则下列结论:①∠ADC =40°②∠ACD =70°③点D 为△ABC 的外心④∠ACD =90°,正确的有( )A .4个B .3个C .2个D .1个3.如图,在△ABC 中,∠ACB =90°,分别以点A 和点C 为圆心,以相同的长(大于AC )为半径作弧,两弧相交于点M 和点N ,作直线MN 交AB 于点D ,交AC 于点E ,连接CD .下列结论错误的是( )A.AD =CDB.∠A =∠DCBC.∠ADE =∠DCBD.∠A =∠DCA4.为落实“垃圾分类”,换位部门将某住宅小区的垃圾箱设置为,,A B C 三类。

广宇家附近恰好有,,A B C 三类垃圾箱各一个,广宇姐姐将家中的垃圾对应分为,A B 两包,如果广宇将两包垃圾随机投放到其中的两个垃圾箱中,能实现对应投放的概率是( )A .13B .29C .19D .165.如图,在ABC △中,90ACB ∠=︒,分别以点A 和点C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和点N ,作直线MN 交AB 于点D ,交AC 于点E ,连接CD .若34B ∠=︒,则BDC ∠的度数是( )A .68︒B .112︒C .124︒D .146︒6.已知A ,B 两地相距120千米,甲、乙两人沿同一条公路从A 地出发到B 地,乙骑自行车,甲骑摩托车,图中DE ,OC 分别表示甲、乙离开A 地的路程s (单位:千米)与时间t (单位:小时)的函数关系的图象,设在这个过程中,甲、乙两人相距y (单位:千米),则y 关于t 的函数图象是( )A .B .C .D .7.计算11x -- 1x x -的结果为( ) A .1 B .2 C .﹣1 D .﹣28.如图,AB 是⊙O 的直径,AB=AC ,AC 交⊙O 于点E ,BC 交⊙O 于点D ,F 是CE 的中点,连接DF .则下列结论错误的是A .∠A=∠ABEB .BD DE =C .BD=DCD .DF 是⊙O 的切线9.若一个直角三角形的两条直角边长分别为5和12,则其第三边长( )A .13BC .5D .1510.如图,在△ABC 中,∠B =50°,点D 为边AB 的中点,点E 在边AC 上,将△ADE 沿DE 折叠,使得点A 恰好落在BC 的延长线上的点F 处,DF 与AC 交于点O ,连结CD ,则下列结论一定正确的是( )A.CE=EF B.∠BDF=90°C.△EOD和△COF的面积相等D.∠BDC=∠CEF+∠A11.下列实数中,最大的数是()A.﹣|﹣4| B.0 C.1 D.﹣(﹣3)12.下列计算正确的是()A.a3+a4=a7B.a4•a5=a9C.4m•5m=9m D.a3+a3=2a6二、填空题13.在Rt△ABC中,∠ACB=90°,AC=8,BC=6,点D、E分别在AC、AB上,且△ADE是直角三角形,△BDE是等腰三角形,则BE=_________.14.正九边形的中心角等于____________________︒.15.如图1为两个边长为1的正方形组成的格点图,点A,B,C,D都在格点上,AB,CD交于点P,则tan ∠BPD=_____,如果是n个边长为1的正方形组成的格点图,如图2,那么tan∠BPD=_____.16.如图,在直角坐标系中,点A(2,0),点B (0,1),过点A的直线l垂直于线段AB,点P是直线l 上一动点,过点P作PC⊥x轴,垂足为C,把△ACP沿AP翻折180︒,使点C落在点D处,若以A,D,P 为顶点的三角形与△ABP相似,则所有满足此条件的点P的坐标为___________________________.17.已知不等式组1xx a>⎧⎨<⎩无解,则a的取值范围是_____.18.已知实数x,y,a满足x+3y+a=4,x﹣y﹣3a=0.若﹣1≤a≤1,则2x+y的取值范围是_____.三、解答题19.如图,△ABC(∠B>∠A).(1)在边AC上用尺规作图作出点D,使∠ADB+2∠A=180°(保留作图痕迹);(2)在(1)的情况下,连接BD,若CB=CD,∠A=35°,求∠C的度数.20.如图,直线y =x+b 与双曲线y =k x(k 为常数,k≠0)在第一象限内交于点A (1,2),且与x 轴、y 轴分别交于B ,C 两点.(1)求直线和双曲线的解析式; (2)点P 在x 轴上,且△BCP 的面积等于2,求P 点的坐标.21.如图,在Rt △ABC 中,∠A =90°,AB =AC ,将线段BC 绕点B 逆时针旋转α°(0<α<180),得到线段BD ,且AD ∥BC .(1)依题意补全图形;(2)求满足条件的α的值;(3)若AB =2,求AD 的长.22.如图,在正方形ABCD 中,E 、F 分别为BC 、CD 的中点,连接AE 、BF ,交点为G .求证:AE ⊥BF .23.先化简,再计算:2221222x x x x x x x--+--+,其中x 1. 24.背景材料:在学习全等三角形知识时,数学兴趣小组发现这样一个模型,它是由两个共顶点且顶角相等的等腰三角形构成.在相对位置变化的同时,始终存在一对全等三角形.通过资料查询,他们知道这种模型称为手拉手模型.例如:如图1,两个等腰直角三角形△ABC 和△ADE ,∠BAC =∠EAD =90°,AB =AC ,AE =AD ,如果把小等腰三角形的腰长看作是小手,大等腰三角形的腰长看作大手,两个等腰三角形有公共顶点,类似大手拉着小手,这个就是手拉手模型,在这个模型中易得到△ABD ≌△ACE .学习小组继续探究:(1)如图2,已知△ABC,以AB,AC为边分别向△ABC外作等边△ABD和等边△ACE,请作出一个手拉手图形(尺规作图,不写作法,保留作图痕迹),并连接BE,CD,证明BE=CD;(2)小刚同学发现,不等腰的三角形也可得到手拉手模型,例如,在△ABC中AB>AC,DE∥BC,将三角形ADE旋转一定的角度(如图3),连接CE和BD,证明△ABD∽△ACE.学以致用:(3)如图4,四边形ABCD中,∠CAB=90°,∠ADC=∠ACB=α,tanα=34,CD=5,AD=12.请在图中构造小刚发现的手拉手模型求BD的长.25.在平面直角坐标系中,点O为原点,点A的坐标为(﹣8,0).如图1,正方形OBCD的顶点B在x 轴的负半轴上,点C在第二象限.现将正方形OBCD绕点O顺时针旋转角α得到正方形OEFG.(1)如图2,若α=45°,OE=OA,求直线EF的函数表达式;(2)如图3,若α为锐角,且tanα=12,当EA⊥x轴时,正方形对角线EG与OF相交于点M,求线段AM的长;(3)当正方形OEFG的顶点F落在y轴正半轴上时,直线AE与直线FG相交于点P,是否存在△OEP的两:1?若存在,求出点P的坐标;若不存在,试说明理由.【参考答案】***一、选择题13.307或154.14.40 15.16.53 14,40,4,1 22--(,)或()或()或()17.a≤118.0≤2x+y≤6三、解答题19.(1)作AB的垂直平分线,交边AC于D,如图所示:见解析;(2)∠C=40°.【解析】【分析】(1)作AB的垂直平分线,交边AC于D即可;(2)依据等腰三角形的性质以及三角形内角和定理,即可得到∠C的度数.【详解】(1)作AB的垂直平分线,交边AC于D,如图所示:∴点D即为所求;(2)∵CB=CD,∴∠CDB=∠CBD,由(1)可得,DA=DB,∴∠A=∠ABD=35°,∴∠CDB=70°,∴△BCD中,∠C=40°.【点睛】本题主要参考了等腰三角形的性质以及线段垂直平分线的性质的运用,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.20.(1)y=2x;y=x+1;(2)P点的坐标为(3,0)或(﹣5,0).【解析】【分析】(1)把A(1,2)代入双曲线以及直线y=x+b,分别可得k,b的值;(2)先根据直线解析式得到BO=CO=1,再根据△BCP的面积等于2,即可得到P的坐标.【详解】解:(1)把A(1,2)代入双曲线y=kx,可得k=2,∴双曲线的解析式为y=2x;把A(1,2)代入直线y=x+b,可得b=1,∴直线的解析式为y=x+1;(2)设P点的坐标为(x,0),在y=x+1中,令y=0,则x=﹣1;令x=0,则y=1,∴B(﹣1,0),C(0,1),即BO=1=CO,∵△BCP的面积等于2,∴12BP×CO=2,即12|x﹣(﹣1)|×1=2,解得x=3或﹣5,∴P点的坐标为(3,0)或(﹣5,0).【点睛】本题主要考查了反比例函数与一次函数交点问题,解题时注意:反比例函数与一次函数交点的坐标同时满足两个函数解析式.21.(1)详见解析;(2)30°或150°(3【解析】【分析】(1)根据要求好像图形即可.(2)分两种情形分别求解即可.(3)解直角三角形求出BE,BF即可解决问题.【详解】解:(1)满足条件的点D和D′如图所示.(2)作AF⊥BC于F,DE⊥BC于E.则四边形AFED是矩形.∴AF=DE,∠DEB=90°,∵AB=AC,∠BAC=90°,AF⊥BC,∴BF=CF,∴AF=12 BC,∵BC=BD,AF=DE,∴DE=12 BD,∴∠DBE=30°,∴∠D′BC=120°+30°=150°,∴满足条件的α的值为30°或150°.(3)由题意AB=AC=2,∴BC=,∴AF=BF=DE,∴BE,∴AD.【点睛】本题考查旋转变换,等腰直角三角形的性质等知识,解题的关键是理解题意,学会添加常用辅助线,构造直角三角形解决问题.,属于中考常考题型.22.证明见解析【解析】【分析】由E,F分别是正方形ABCD边BC,CD的中点知CF=BE,证Rt△ABE≌Rt△BCF得∠BAE=∠CBF,根据∠BAE+∠BEA=90°即可得∠CBF+∠BEA=90°,据此即可得证.【详解】证明:∵E,F分别是正方形ABCD边BC,CD的中点,∴CF=BE,在Rt△ABE和Rt△BCF中,∵AB BCABE BCF BE CF=⎧⎪∠=∠⎨⎪=⎩,∴Rt△ABE≌Rt△BCF(SAS),∴∠BAE=∠CBF,又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF.【点睛】本题主要考查正方形的性质,全等三角形的的判定与性质,解题的关键是掌握正方形的性质与全等三角形的判定与性质.23.1xx-,【解析】【分析】原式约分后,利用同分母分式的减法法则计算得到最简结果,将x的值代入计算即可求出值.【详解】原式=(1)(2)12(1)1212(1)x x x x x x x x x x x x +-++-⋅-=-=-+,当x时,2=.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.24.(1)作图见解析,证明见解析;(2)见解析;(3)4BD= .【解析】【分析】(1)由等边三角形的性质可得AD=AB,AC=AE,∠DAB=∠EAC=60°,可得∠DAC=∠BAE,即可证△DAC≌△BAE,可得BD=CE;(2)通过证明△ADE∽△ABC,可得AB ADAC AE=,由旋转的性质可得∠BAC=∠DAE,即可得结论;(3)过点A 作AE垂直于AD,作∠AED=α,连接CE,则∠EDC=90°,通过证明△AEC∽△ADB,可得CE ACBD AB=,由锐角三角函数和勾股定理可求AE,DE,EC的长,即可求BD的长.【详解】(1)作图∵△ABD和△ACE都是等边三角形∴AD=AB,AC=AE,∠DAB=∠EAC=60°,∴∠DAC=∠BAE,且AD=AB,AC=AE∴△DAC≌△BAE(SAS)∴BE=CD(2)如图,在第一个图中,∵DE∥BC∴△ADE∽△ABC∴AB AD AC AE=∵将三角形ADE旋转一定的角度∴∠BAC=∠DAE∴∠BAD=∠CAE,且AB AD AC AE=∴△ABD∽△ACE;(3)如图,过点A 作AE垂直于AD,作∠AED=α,连接CE,则∠EDC=90°,∵∠AED=∠ACB=α,∠CAB=∠DAE=90°∴△AED∽△ACB∴AE AC AD AB=∵∠CAB =∠DAE =90°∴∠CAE =∠DAB ,且AE AC AD AB= ∴△AEC ∽△ADB ∴CE AC BD AB = ∵△AED ∽△ACB∴∠ADE =∠ABC∵∠ACB+∠ABC =90°,∠ADC =∠ACB∴∠ADC+∠ADE =90°∴∠EDC =90°∵tan α=34AD AE =,AD =12. ∴AE =16∴DE =20∴EC=∵43CE AC BD AB ==∴BD 【点睛】本题是相似综合题,考查了相似三角形的判定和性质,全等三角形的判定和性质,勾股定理,锐角三角函数,添加恰当辅助线构造相似三角形是本题的关键.25.(1)直线EF 的解析式为y =(2)AM =;(3)满足条件的点P 的坐标为(0,8),(﹣8,24),(﹣24,48).【解析】【分析】(1)过点E 作EH ⊥OA 于点H,进而求出点E 的坐标,再根据勾股定理求出OF 的值,然后利用待定系数法,即可求出直线EF 的解析式(2)作MN ⊥AM 交x 轴于点N,此时△AEM ≌△NOM,得到AE=ON=4,△AMN 是等腰直角三角形,即可求出AM 的长;(3)根据点F 落在y 轴正半轴上,通过改变正方形的边长,画出直线AE 与直线FG 相交的点P,并判断△OEP的其中两边之比能否为2:1,当△OEP :1时,再通过分类讨论确定出图形,根据图形性质,利用勾股定理、相似三角形、三角函数等知识求得点P 的坐标【详解】(1)∵OE =OA =8,α=45°,∴E(﹣,F(0,),设直线EF 的解析式为y =kx+b ,则有b b ⎧=⎪⎨-+=⎪⎩, 解得1k b =⎧⎪⎨=⎪⎩∴直线EF 的解析式为y =.(2)如图3中,作MH ⊥OA 于H ,MK ⊥AE 交AE 的延长线于K .在Rt△AEO中,tan∠AOE=12AEOA=,OA=8,∴AE=4,∵四边形EOGF是正方形,∴∠EMO=90°,∵∠EAO=∠EMO=90°,∴E、A、O、M四点共圆,∴∠EAM=∠EOM=45°,∴∠MAK=∠MAH=45°,∵MK⊥AE,MH⊥OA,∴MK=MH,四边形KAOM是正方形,∵EM=OM,∴△MKE≌△MHO,∴EK=OH,∴AK+AH=2AH=AE+EK+OA﹣OH=12,∴AH=6,∴AM=.(3)如图2中,设F(0,2a),则E(﹣a,a).∵A(﹣8,0),E(﹣a,a),∴直线AP的解析式为y=888a axa a+--,直线FG的解析式为y=﹣x+2a,由22424,84884a ay x a xa ay x a aa a y⎧-=-+=⎧⎪⎪⎪⎨⎨=++⎪⎪--⎩=⎪⎩解得,∴P(2244,44a a a a-+).①当POOE时,∴PO2=2OE2,则有:2222(4)(4)1616a a a a-++=4a2,解得a=4或﹣4(舍弃)或0(舍弃),此时P(0,8).②当POPE时,则有:2222(4)(4)1616a a a a-++=2[(22244+)44a a a aa a-++-()2],解得:a=4或12,此时P(0,8)或(﹣24,48),③当PE EO时,[(22244+)44a a a aa a-++-()2]=4a2,解得a=8或0(舍弃),∴P(﹣8,24)综上所述,满足条件的点P的坐标为(0,8),(﹣8,24),(﹣24,48).【点睛】本题考査了正方形的性质、等腰三角形的性质、勾股定理、待定系数法求函数解析式、解直角三角形、相似三角形的判定与性质,解题关键在于做辅助线。

德阳市实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

德阳市实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

德阳市实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分),则a与b的关系是()A. B. a与b相等 C. a与b互为相反数 D. 无法判定【答案】C【考点】立方根及开立方【解析】【解答】∵,∴,∴a与b互为相反数.故答案为:C.【分析】立方根的性质是:正数的立方根是正数,负数的立方根是负数,0的立方根是0。

由已知条件和立方根的性质可知,a与b互为相反数。

2、(2分)根据数量关系: 减去10不大于10,用不等式表示为()A.B.C.D.【答案】B【考点】不等式及其性质【解析】【解答】解:由减去10不大于10得:,故答案为:B.【分析】由减去10可表示为x 2-10,再由“ 不大于”表示为“≤”可列出不等式.3、(2分)如图,由下列条件不能得到直线a∥b的是()A. ∠1=∠2B. ∠1=∠3C. ∠1+∠4=180°D. ∠2+∠4=180°【答案】C【考点】平行线的性质【解析】【解答】解:A、∵∠1=∠2,∴a∥b,因此A不符合题意;B、∵∠1=∠3,∴a∥b,因此B不符合题意;C、∠1+∠4=180° ,∠1与∠4是邻补角,不能证明a∥b,因此C符合题意;D、∵∠2+∠4=180°,∴a∥b,因此D不符合题意;故答案为:C【分析】根据平行线的性质对各选项逐一判断即可。

4、(2分)如图,AB∥CD,AD平分∠BAC,若∠BAD=70°,那么∠ACD的度数为()A. 40°B. 35°C. 50°D. 45°【答案】A【考点】平行线的性质【解析】【解答】解:∵AD平分∠BAC,∠BAD=70°∴∠BAC=140°∵AB∥CD,∴∠ACD +∠BAC=180°,∠ACD=40°,故答案为:A【分析】因为AD是角平分线,所以可以求出∠BAC的度数,再利用两直线平行,同旁内角互补,即可求出∠ACD的度数.5、(2分)如图,表示的点在数轴上表示时,应在哪两个字母之间()A. C与DB. A与BC. A与CD. B与C【答案】A【考点】实数在数轴上的表示,估算无理数的大小【解析】【解答】解:∵6.25<7<9,∴2.5<<3,则表示的点在数轴上表示时,所在C和D两个字母之间.故答案为:A.【分析】本题应先估计无理数的大小,然后才能在数轴上将表示出来,因为,所以应该在C与D之间.6、(2分)若为非负数,则x的取值范围是()A.x≥1B.x≥-C.x>1D.x>-【答案】B【考点】解一元一次不等式【解析】【解答】解:由题意得≥0,2x+1≥0,∴x≥- .故答案为:B.【分析】非负数即正数和0,由为非负数列出不等式,然后再解不等式即可求出x的取值范围。

德阳市初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

德阳市初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

德阳市初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)在- ,,,了11,2.101101110...(每个0之间多1个1)中,无理数的个数是()A.2个B.3个C.4个 D 5个【答案】B【考点】无理数的认识【解析】【解答】解:依题可得:无理数有:,, 2.101101110……,∴无理数的个数为3个.故答案为:B.【分析】无理数:无限不循环小数,由此即可得出答案.2、(2分)下列四个数中,最大的一个数是()A. 2B.C. 0D. -2【答案】A【考点】实数大小的比较【解析】【解答】解:∵0和负数比正数都小而1<<2∴最大的数是2故答案为:A【分析】根据正数都大于0和负数,因此只需比较2和的大小即可。

3、(2分)不等式组的所有整数解的和是()A. 2B. 3C. 5D. 6【答案】D【考点】一元一次不等式组的特殊解【解析】【解答】解:∵解不等式①得;x>﹣,解不等式②得;x≤3,∴不等式组的解集为﹣<x≤3,∴不等式组的整数解为0,1,2,3,0+1+2+3=6,故答案为:D【分析】先解不等式组求得不等式组的解集,再取在解集范围内的整数解即可.4、(2分)用如图①中的长方形和正方形纸板作侧面和底面,做成如图②的竖式和横式的两种无盖纸盒。

现在仓库里有m张正方形纸板和n张长方形纸板,如果做两种纸盒若干个,恰好使库存的纸板用完,则的值可能是()A. 2013B. 2014C. 2015D. 2016【答案】C【考点】二元一次方程组的其他应用【解析】【解答】解:设做竖式和横式的两种无盖纸盒分别为x个、y个,根据题意得,两式相加得,m+n=5(x+y),∵x、y都是正整数,∴m+n是5的倍数,∵2013、2014、2015、2016四个数中只有2015是5的倍数,∴m+n的值可能是2015.故答案为:C.【分析】根据正方形纸板的数量为m张,长方形纸板的数量为n张,设未知数,列方程组,求出m+n=5(x+y),再由x、y都是正整数,且m+n是5的倍数,分析即可得出答案。

四川中江初中2018-2019年初二上年末数学试卷及解析

四川中江初中2018-2019年初二上年末数学试卷及解析

四川中江初中2018-2019年初二上年末数学试卷及解析八年级数学试卷说明:1.本试卷分为第一卷和第二卷.第一卷1~2页,第二卷3~8页.请将第一卷旳正确选项用2B 铅笔填涂在机读答题卡上;第二卷用蓝、黑色旳钢笔或签字笔解答在试卷上,其中旳解答题都应按要求写出必要旳解答过程.2.本试卷总分值为100分,答题时刻为120分钟.3.不使用计算器解题.第一卷选择题〔36分〕【一】选择题〔本大题共12个小题,每题3分,总分值36分〕在每题给出旳四个选项中,有且仅有一项为哪一项符合题目要求旳. 1.以下等式成立旳是 A.229)3)(3(y x y x y x -=-+ B.222)(b a b a +=+C.1)1)(2(2-+=-+x x x xD.222)(b a b a -=-2.下面旳五边形、正方形等图形是轴对称图形,且对称轴条数最多旳是3.假设一个多边形旳外角和与它旳内角和相等,那么那个多边形是 A.三角形 B.五边形 C.四边形 D.六边形4.如图,在△ABC 中,AB=AC ,D 是BC 旳中点,以下结论不正确旳选项是 A.AD ⊥BC B.∠B=∠C C.AB=2BD D.AD 平分∠BAC5.以下等式成立旳是 A.9)3(2-=--B.91)3(2=--C.14212)(a a=-D.42221)(b a b a -=----6.如图,是三条直线表示三条相互交叉旳公路,现要建一个中转站,要求它到三条公路旳距离相等,那么 可供选择旳地址有 A.一处 B.两处 C.三处 D.四处7.如图,假设△ABC ≌△AEF ,那么关于结论:⑴AC=AF;⑵∠FAB=∠EAB ;⑶EF=BC;⑷∠EAB=∠FAC. 其中正确旳个数是A.一个B.2个C.3个D.4个8.a 、b 、c 是三角形旳三边,那么代数式a 2-2ab +b 2-c 2旳值 A.不能确定 B.大于0 C.等于0 D.小于09.假设xy=x -y ≠0,那么分式y 1-x1= A.xy1B.y -xC.1D.-110.如图,等边△ABC 旳边长为4,AD 是BC 边上旳中线,F 是AD 边上旳动点,E 是AC 边上一点,假设AE=2,当EF+CF 取 最小值时,那么∠ECF 旳度数为 A.30°B.22.5°C.15°D.45° 11.关于x 旳方程112=-+x ax 旳解是正数,那么a 旳取值范围是 A.a >-1 B.a <-1且a ≠-2 C.a <-1 D.a >-1且a ≠0 12.如图,△MNP 中,∠P =60°,MN =NP ,MQ ⊥PN 于Q ,延长MN 至G ,取NG=NQ.假设△MNP 旳周长为12,MQ=a ,那么△MGQ 旳周长为 A.6+2a B.8+a C.6+a D.8+2a中江县初中2018年秋季八年级期末考试数学试题第二卷总分表第二卷非选择题〔64分〕【二】填空题〔本大题共8个小题,每题3分,总分值24分〕只要求填写最后结果. 13.计算:32)2(a -=.14.当x =时,分式112+-x x 旳值为0.15.化简:x 1-11-x =. 16.如图,AB =AE ,∠BAD =∠CAE ,要使△ABC ≌△AED ,还需添加一个条件,那个条件能够是.17.如图,在△ABC 中,AB =AC ,∠BAC =120°,D 是BC 旳中点,DE ⊥AC.那么AB:AE =.18.如图,AB ∥CD ,AO 平分∠BAC ,CO 平分∠ACD ,OE ⊥AC 于点E ,且OE =2.那么AB 与CD 间旳距离 为.19.点M(2a +1,2a -3〕关于x 轴旳对称点在第一象限,那么a 旳取值范围是. 20.a ≠0,S 1=3a ,S 2=13S ,S 3=23S ,……S 2018=20123S ,那么S 2018=. 【三】解答题〔总分值16分〕 21.〔1〕计算:2202)21()12(----+;〔2〕化简:)12(12mmm m m m --÷-+; 〔3〕先化简,再求值:122)12143(22+-+÷---+x x x x x x ,其中x 是不等式组⎩⎨⎧++15<2x >04x 旳整数解; 〔4〕,2111--+=+n n m ,且m -n +2≠0,试求mn -m +n 旳值. 【四】解答题〔本大题共2个题,其中第22题5分,第23题6分,总分值11分〕 22.解分式方程:xxx --=+-32431. 23.我市某校为了创建书香校园,去年购进一批图书.经了解,科普书旳单价比文学书旳单价多4元,用12000元购进旳科普书与用8000元购进旳文学书本数相等.今年文学书和科普书旳单价和去年相比保持不变.该校打算用10000元再购进一批文学书和科普书,问购进文学书550本后最多还能购进多少本科普书? 【五】解答题〔本大题总分值6分〕24.如图,在△ABC 中,∠BAC =110°,点E 、G 分别是AB 、AC 旳中点,DE ⊥AB 交BC 于D ,FG ⊥AC 交BC 于F ,连接AD 、AF.试求∠DAF 旳度数.六、几何证明题〔本大题总分值7分〕25.如图,AB =AC ,CD ⊥AB 于点D ,BE ⊥AC 于点E ,BE 与CD 相交于点O.⑴求证:AD =AE ;⑵试猜想:OA 与BC 旳位置关系,并加以证明.数学试题参考【答案】及评分标准【二】填空题〔本大题共8个小题,每题3分,总分值24分〕 13.-8a 614.115.)1(1--x x 或x x --21或21xx - 16.不唯一,如AC=AD 或∠C =∠D 或∠B =∠E 〔答对一个就给3分〕17.4:118.419.21-<a <2320.3a【三】解答题〔本大题总分值16分〕21.〔每题4分〕计算:〔1〕2202)21()12(----+ 解原式=1-41-41〔注:每项1分〕…………………………3分 =21.…………………………………………………………4分 〔2〕化简:)12(12mmm m m m --÷-+ 解:原式=mm m m m m ---÷-+11)1(2………………………………………………2分=)1(11)1(m m m m m m +-⨯-+-………………………………………………3分=-1.………………………………………………………………………4分 〔3〕先化简再求122)12143(22+-+÷---+x x x x x x ,其中x 是不等式组⎩⎨⎧++15<2x >04x 旳整数解; 解:原式=[]2)1()1)(1()1(2)1)(1(432+-⋅-++--++x x x x x x x x ……………………1分=2)1()1)(1(22+-⋅-++x x x x x =11+-x x .…………………………………2分不等式组⎩⎨⎧++1 5<2x >04x 旳解集为-4<x <-2,其整数解为x =-3.…3分当x =-3时,原式=11+-x x =1313+---=2.……………………………4分〔4〕,21111--+=++n n m m ,且m -n +2≠0,试求mn -m +n 旳值. 解:由得:m -n +2=11-n -11+m =)1)(1(2-++-n m n m ,…………………2分 ∵m -n +2≠0, ∴1=11-+-n m mn ,……………………………………………………………3分∴mn -m +n -1=1,∴mn -m +n =2.………………………………………………………………………4分【四】解答题〔本大题共2个题,其中第22题5分,第23题6分,总分值11分〕 22.解分式方程:x xx --=+-32431 解:32431--=+-x x x ,………………………………………………………2分 1+4(x -3)=x -2,∴x =3.………………………………………………………………………………3分 检验:当x =3时,x -3=0.∴x =3不是原方程旳解,∴原方程无实数解.…5分 23.解:设去年文学书旳单价为x 元,那么科普书旳单价为〔x +4〕元. 由题意得方程:412000+x =x8000,……………………………………………2分 解之得:x =8,………………………………………………………………3分经检验,x =8是原方程旳解,且符合题意.∴x +4=12,∴去年购进旳文学书和科普书旳单价分别为8元和12元.……………………4分 设购进文学书550本后,最多还能购进y 本科普书.由题意得:550×8+12y ≤10000,………………………………………………5分 ∴y ≤466.66667.由题意,y 取最大整数,∴y =466.答:购进文学书550本后最多还能购进466本科普书.………………………6分 【五】解答题〔本大题总分值6分〕24.解:在△ABC 中,∵∠BAC =110°, ∴∠B +∠C =180°-110°=70°.……1分 ∵E 、G 分别是AB 、AC 旳中点,又DE ⊥AB ,FG ⊥AC ,∴AD =BD ,AF =CF ,……………………3分 ∴∠BAD =∠B ,∠CAF =∠C ,…………4分 ∴∠DAF =∠BAC -(∠BAD +∠CAF)=∠BAC -(∠B +∠C)=110°-70°=40°.……………………6分注:解法不唯一,参照给分。

四川省德阳中江县初中2024届中考数学全真模拟试题含解析

四川省德阳中江县初中2024届中考数学全真模拟试题含解析

四川省德阳中江县初中2024届中考数学全真模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(共10小题,每小题3分,共30分)1.将一副三角板按如图方式摆放,∠1与∠2不一定互补的是()A.B.C.D.2.如图,△ABC在边长为1个单位的方格纸中,它的顶点在小正方形的顶点位置.如果△ABC的面积为10,且sinA=55,那么点C的位置可以在()A.点C1处B.点C2处C.点C3处D.点C4处3.随着“三农”问题的解决,某农民近两年的年收入发生了明显变化,已知前年和去年的收入分别是60000元和80000元,下面是依据①②③三种农作物每种作物每年的收入占该年年收入的比例绘制的扇形统计图.依据统计图得出的以下四个结论正确的是()A.①的收入去年和前年相同B.③的收入所占比例前年的比去年的大C .去年②的收入为2.8万D .前年年收入不止①②③三种农作物的收入4.下列计算正确的是( )A .(a +2)(a ﹣2)=a 2﹣2B .(a +1)(a ﹣2)=a 2+a ﹣2C .(a +b )2=a 2+b 2D .(a ﹣b )2=a 2﹣2ab +b 25.不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙同学:它有8条棱.该模型的形状对应的立体图形可能是( )A .三棱柱B .四棱柱C .三棱锥D .四棱锥6.已知x 1、x 2是关于x 的方程x 2﹣ax ﹣2=0的两根,下列结论一定正确的是( )A .x 1≠x 2B .x 1+x 2>0C .x 1•x 2>0D .x 1<0,x 2<07.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是( )A .主视图B .俯视图C .左视图D .一样大8.下列运算结果正确的是( )A .3a 2-a 2 = 2B .a 2·a 3= a 6C .(-a 2)3 = -a 6D .a 2÷a 2 = a9.下列运算正确的是( )A .2510a a a ⋅=B .326(3)6a a =C .222()a b a b +=+D .2(2)(3)6a a a a10.如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,连接CD ,若⊙O 的半径r=5,AC=5,则∠B 的度数是( )A .30°B .45°C .50°D .60°二、填空题(本大题共6个小题,每小题3分,共18分)11.甲、乙两名学生练习打字,甲打135个字所用时间与乙打180个字所用时间相同,已知甲平均每分钟比乙少打20个字,如果设甲平均每分钟打字的个数为x ,那么符合题意的方程为:______.12.如图,OAB ∆与OCD ∆是以点O 为位似中心的位似图形,相似比为3:4,90OCD =∠,60AOB ∠=,若点B 的坐标是(6,0),则点C 的坐标是__________.13.计算:102(2018)--=___.14.如图,D 、E 分别是△ABC 的边AB 、BC 上的点,DE ∥AC ,若S △BDE :S △CDE =1:3,则BE :BC 的值为_________.15.如果实数x 、y 满足方程组30233x y x y +=⎧⎨+=⎩,求代数式(xy x y ++2)÷1x y +. 16.如图,已知AB ∥CD ,F 为CD 上一点,∠EFD=60°,∠AEC=2∠CEF ,若6°<∠BAE <15°,∠C 的度数为整数,则∠C 的度数为_____.三、解答题(共8题,共72分)17.(8分)计算:(3﹣2)0+11()3-+4cos30°﹣|﹣12|.18.(8分)阅读材料,解答问题.材料:“小聪设计的一个电子游戏是:一电子跳蚤从这P 1(﹣3,9)开始,按点的横坐标依次增加1的规律,在抛物线y =x 2上向右跳动,得到点P 2、P 3、P 4、P 5…(如图1所示).过P 1、P 2、P 3分别作P 1H 1、P 2H 2、P 3H 3垂直于x 轴,垂足为H 1、H 2、H 3,则S △P 1P 2P 3=S 梯形P 1H 1H 3P 3﹣S 梯形P 1H 1H 2P 2﹣S 梯形P 2H 2H 3P 3=12(9+1)×2﹣12(9+4)×1﹣12(4+1)×1,即△P 1P 2P 3的面积为1.”问题:(1)求四边形P 1P 2P 3P 4和P 2P 3P 4P 5的面积(要求:写出其中一个四边形面积的求解过程,另一个直接写出答案);(2)猜想四边形P n ﹣1P n P n +1P n +2的面积,并说明理由(利用图2);(3)若将抛物线y=x2改为抛物线y=x2+bx+c,其它条件不变,猜想四边形P n﹣1P n P n+1P n+2的面积(直接写出答案).19.(8分)如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A(2,2),B(4,0),C(4,﹣4).请在图中,画出△ABC向左平移6个单位长度后得到的△A1B1C1;以点O为位似中心,将△ABC缩小为原来的12,得到△A2B2C2,请在图中y轴右侧,画出△A2B2C2,并求出∠A2C2B2的正弦值.20.(8分)解不等式:233x-﹣12x-≤121.(8分)如图所示,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,EC的延长线交BD 于点P.(1)把△ABC绕点A旋转到图1,BD,CE的关系是(选填“相等”或“不相等”);简要说明理由;(2)若AB=3,AD=5,把△ABC绕点A旋转,当∠EAC=90°时,在图2中作出旋转后的图形,PD=,简要说明计算过程;(3)在(2)的条件下写出旋转过程中线段PD的最小值为,最大值为.22.(10分)如图,已知D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.23.(12分)如图,AB∥CD,E、F分别为AB、CD上的点,且EC∥BF,连接AD,分别与EC、BF相交与点G、H,若AB=CD,求证:AG=DH.24.我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托,折回索子却量竿,却比竿子短一托”其大意为:现有一根竿和一根绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.求绳索长和竿长.参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解题分析】A选项:∠1+∠2=360°-90°×2=180°;B选项:∵∠2+∠3=90°,∠3+∠4=90°,∴∠2=∠4,∵∠1+∠4=180°,∴∠1+∠2=180°;C 选项:∵∠ABC =∠DEC =90°,∴AB ∥DE ,∴∠2=∠EFC ,∵∠1+∠EFC =180°,∴∠1+∠2=180°;D 选项:∠1和∠2不一定互补.故选D.点睛:本题主要掌握平行线的性质与判定定理,关键在于通过角度之间的转化得出∠1和∠2的互补关系.2、D【解题分析】如图:∵AB=5,10ABC S =△, ∴D 4C =4, ∵5sin A =54DC AC AC==,∴5, ∵在RT △AD 4C 中,D 44C =,AD=8, ∴A 4C 228445+,故答案为D.3、C【解题分析】A 、前年①的收入为60000×117360=19500,去年①的收入为80000×117360=26000,此选项错误;B 、前年③的收入所占比例为360135117360--×100%=30%,去年③的收入所占比例为360126117360--×100%=32.5%,此选项错误;C 、去年②的收入为80000×126360=28000=2.8(万元),此选项正确; D 、前年年收入即为①②③三种农作物的收入,此选项错误,故选C .【题目点拨】本题主要考查扇形统计图,解题的关键是掌握扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数,并且通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.4、D【解题分析】A 、原式=a 2﹣4,不符合题意;B 、原式=a 2﹣a ﹣2,不符合题意;C 、原式=a 2+b 2+2ab ,不符合题意;D 、原式=a 2﹣2ab+b 2,符合题意,故选D5、D【解题分析】试题分析:根据有四个三角形的面,且有8条棱,可知是四棱锥.而三棱柱有两个三角形的面,四棱柱没有三角形的面,三棱锥有四个三角形的面,但是只有6条棱.故选D考点:几何体的形状6、A【解题分析】分析:A 、根据方程的系数结合根的判别式,可得出△>0,由此即可得出x 1≠x 2,结论A 正确;B 、根据根与系数的关系可得出x 1+x 2=a ,结合a 的值不确定,可得出B 结论不一定正确;C 、根据根与系数的关系可得出x 1•x 2=﹣2,结论C 错误;D 、由x 1•x 2=﹣2,可得出x 1<0,x 2>0,结论D 错误.综上即可得出结论.详解:A ∵△=(﹣a )2﹣4×1×(﹣2)=a 2+8>0,∴x 1≠x 2,结论A 正确;B 、∵x 1、x 2是关于x 的方程x 2﹣ax ﹣2=0的两根,∴x 1+x 2=a ,∵a 的值不确定,∴B 结论不一定正确;C 、∵x 1、x 2是关于x 的方程x 2﹣ax ﹣2=0的两根,∴x 1•x 2=﹣2,结论C 错误;D 、∵x 1•x 2=﹣2,∴x 1<0,x 2>0,结论D 错误.故选A .点睛:本题考查了根的判别式以及根与系数的关系,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键. 7、C【解题分析】如图,该几何体主视图是由5个小正方形组成,左视图是由3个小正方形组成,俯视图是由5个小正方形组成,故三种视图面积最小的是左视图,故选C .8、C【解题分析】选项A , 3a 2-a 2 = 2 a 2;选项B , a 2·a 3= a 5;选项C , (-a 2)3 = -a 6;选项D ,a 2÷a 2 = 1.正确的只有选项C ,故选C.9、D【解题分析】【分析】根据同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的法则逐项进行计算即可得.【题目详解】A. 257a a a ⋅= ,故A 选项错误,不符合题意;B. ()2363a 9a =,故B 选项错误,不符合题意;C. ()222a b a 2ab b +=++ ,故C 选项错误,不符合题意;D. ()()2a 2a 3a a 6+-=--,正确,符合题意, 故选D.【题目点拨】本题考查了整式的运算,熟练掌握同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的运算法则是解题的关键.10、D【解题分析】根据圆周角定理的推论,得∠B=∠D .根据直径所对的圆周角是直角,得∠ACD=90°.在直角三角形ACD 中求出∠D .则sinD=∠D=60°∠B=∠D=60°.故选D . “点睛”此题综合运用了圆周角定理的推论以及锐角三角函数的定义,解答时要找准直角三角形的对应边.二、填空题(本大题共6个小题,每小题3分,共18分)11、13518020x x =+ 【解题分析】设甲平均每分钟打x 个字,则乙平均每分钟打(x+20)个字,根据工作时间=工作总量÷工作效率结合甲打135个字所用时间与乙打180个字所用时间相同,即可得出关于x 的分式方程.【题目详解】∵甲平均每分钟打x 个字,∴乙平均每分钟打(x+20)个字, 根据题意得:13518020x x =+, 故答案为13518020x x =+. 【题目点拨】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.12、(2,3【解题分析】分析:首先解直角三角形得出A 点坐标,再利用位似是特殊的相似,若两个图形OAB ∆与OCD ∆是以点O 为位似中心的位似图形,相似比是k ,OAB ∆上一点的坐标是(),x y ,则在OCD ∆中,它的对应点的坐标是(),kx ky 或(),kx ky --,进而求出即可.详解:OAB 与OCD ∆是以点O 为位似中心的位似图形,90OCD ∠=, 90.OAB ∴∠=︒60AOB ∠=,若点B 的坐标是()6,0, 1cos606 3.2OA OB =⋅︒=⨯= 过点A 作AE OD ⊥交OD 于点E .333,,22OE AE == 点A 的坐标为:333,,22⎛⎫ ⎪ ⎪⎝⎭OAB ∆与OCD ∆的相似比为3:4,点C 的坐标为:34334,,2323⎛⎫⨯⨯ ⎪ ⎪⎝⎭即点C 的坐标为:()2,23. 故答案为:()2,23.点睛:考查位似图形的性质,熟练掌握位似图形的性质是解题的关键. 13、12- 【解题分析】直接利用负指数幂的性质以及零指数幂的性质分别化简得出答案.【题目详解】原式11122=-=-. 故答案为12-. 【题目点拨】本题考查了实数运算,正确化简各数是解题的关键.14、1:4【解题分析】由S △BDE :S △CDE =1:3,得到 BE 1CE 3=,于是得到 41BE BC =. 【题目详解】解::1:3BDE CDE S S ,= 两个三角形同高,底边之比等于面积比.13BE CE ∴=, :1:4.BE BC ∴=故答案为1:4.【题目点拨】本题考查了三角形的面积,比例的性质等知识,知道等高不同底的三角形的面积的比等于底的比是解题的关键. 15、1【解题分析】解:原式=222()xy x y x y x y ++⋅++=xy +2x +2y ,方程组:30233x y x y +=⎧⎨+=⎩,解得:31x y =⎧⎨=-⎩,当x =3,y =﹣1时,原式=﹣3+6﹣2=1.故答案为1.点睛:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.16、36°或37°.【解题分析】分析:先过E 作EG ∥AB ,根据平行线的性质可得∠AEF=∠BAE+∠DFE ,再设∠CEF=x ,则∠AEC=2x ,根据6°<∠BAE <15°,即可得到6°<3x-60°<15°,解得22°<x <25°,进而得到∠C 的度数.详解:如图,过E 作EG ∥AB ,∵AB ∥CD ,∴GE ∥CD ,∴∠BAE=∠AEG ,∠DFE=∠GEF ,∴∠AEF=∠BAE+∠DFE ,设∠CEF=x ,则∠AEC=2x ,∴x+2x=∠BAE+60°,∴∠BAE=3x-60°,又∵6°<∠BAE<15°,∴6°<3x-60°<15°,解得22°<x<25°,又∵∠DFE是△CEF的外角,∠C的度数为整数,∴∠C=60°-23°=37°或∠C=60°-24°=36°,故答案为:36°或37°.点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解决问题的关键是作平行线,解题时注意:两直线平行,内错角相等.三、解答题(共8题,共72分)17、1【解题分析】分析:按照实数的运算顺序进行运算即可.详解:原式134=++-13=++=1.点睛:本题考查实数的运算,主要考查零次幂,负整数指数幂,特殊角的三角函数值以及二次根式,熟练掌握各个知识点是解题的关键.18、(1)2,2;(2)2,理由见解析;(3)2.【解题分析】(1)作P5H5垂直于x轴,垂足为H5,把四边形P1P2P3P2和四边形P2P3P2P5的转化为S P1P2P3P2=S△OP1H1﹣S△OP3H3﹣S 梯形P2H2H3P3﹣S梯形P1H1H2P2和S P2P3P2P5=S梯形P5H5H2P2﹣S△P5H5O﹣S△OH3P3﹣S梯形P2H2H3P3来求解;(2)(3)由图可知,P n﹣1、P n、P n+1、P n+2的横坐标为n﹣5,n﹣2,n﹣3,n﹣2,代入二次函数解析式,可得P n﹣1、P n、P n+1、P n+2的纵坐标为(n﹣5)2,(n﹣2)2,(n﹣3)2,(n﹣2)2,将四边形面积转化为S四边形Pn﹣1PnPn+1Pn+2=S梯形Pn﹣5Hn﹣5Hn﹣2Pn﹣2﹣S梯形Pn﹣5Hn﹣5Hn﹣2Pn﹣2﹣S梯形Pn﹣2Hn﹣2Hn﹣3Pn﹣3﹣S梯形Pn﹣3Hn﹣3Hn﹣2Pn﹣2来解答.【题目详解】(1)作P5H5垂直于x轴,垂足为H5,由图可知S P1P2P3P2=S△OP1H1﹣S△OP3H3﹣S梯形P2H2H3P3﹣S梯形P1H1H2P2=93111449 2222⨯⨯++---=2,S P 2P 3P 2P 5=S 梯形P 5H 5H 2P 2﹣S △P 5H 5O ﹣S △OH 3P 3﹣S 梯形P 2H 2H 3P 3=3(14)1111142222+⨯⨯+---=2; (2)作P n ﹣1H n ﹣1、P n H n 、P n +1H n +1、P n +2H n +2垂直于x 轴,垂足为H n ﹣1、H n 、H n +1、H n +2,由图可知P n ﹣1、P n 、P n +1、P n +2的横坐标为n ﹣5,n ﹣2,n ﹣3,n ﹣2,代入二次函数解析式,可得P n ﹣1、P n 、P n +1、P n +2的纵坐标为(n ﹣5)2,(n ﹣2)2,(n ﹣3)2,(n ﹣2)2,四边形P n ﹣1P n P n +1P n +2的面积为S 四边形Pn ﹣1PnPn +1Pn +2=S 梯形Pn ﹣5Hn ﹣5Hn ﹣2Pn ﹣2﹣S 梯形Pn ﹣5Hn ﹣5Hn ﹣2Pn ﹣2﹣S 梯形Pn ﹣2Hn ﹣2Hn ﹣3Pn ﹣3﹣S 梯形Pn ﹣3Hn ﹣3Hn ﹣2Pn ﹣2=222222223(5)(2)(5)(4)(4)(3)(3)(2)2222n n n n n n n n ⎡⎤-+--+--+--+-⎣⎦---=2; (3)S 四边形Pn ﹣1PnPn +1Pn +2=S 梯形Pn ﹣5Hn ﹣5Hn ﹣2Pn ﹣2﹣S 梯形Pn ﹣5Hn ﹣5Hn ﹣2Pn ﹣2﹣S 梯形Pn ﹣2Hn ﹣2Hn ﹣3Pn ﹣3﹣S 梯形Pn ﹣3Hn ﹣3Hn ﹣2Pn ﹣2=22223(5)(5)(2)(2)(5)(5)(4)(4)-22n b n c n b n c n b n c n b n c ⎡⎤-+-++-+-+-+-++-+-+⎣⎦-2222(4)(4)(3)(3)(3)(3)(2)(2)22n b n c n b n c n b n c n b n c -+-++-+-+-+-++-+-+-=2. 【题目点拨】本题是一道二次函数的综合题,考查了根据函数坐标特点求图形面积的知识,解答时要注意,前一小题为后面的题提供思路,由于计算量极大,要仔细计算,以免出错,19、(1)见解析(2)1010【解题分析】试题分析:(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用位似图形的性质得出对应点位置,再利用锐角三角三角函数关系得出答案.试题解析:(1)如图所示:△A 1B 1C 1,即为所求;(2)如图所示:△A 2B 2C 2,即为所求,由图形可知,∠A 2C 2B 2=∠ACB ,过点A 作AD ⊥BC 交BC 的延长线于点D ,由A (2,2),C (4,﹣4),B (4,0),易得D (4,2),故AD=2,CD=6,AC==,∴sin ∠ACB===,即sin ∠A 2C 2B 2=.考点:作图﹣位似变换;作图﹣平移变换;解直角三角形.20、x≥19. 【解题分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【题目详解】231132x x ---≤ 2(2﹣3x )﹣3(x ﹣1)≤6,4﹣6x ﹣3x+3≤6,﹣6x ﹣3x≤6﹣4﹣3,﹣9x≤﹣1, x≥19. 【题目点拨】考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.21、(1)BD ,CE 的关系是相等;(253417203417(3)1,1 【解题分析】分析:(1)依据△ABC 和△ADE 是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,即可BA=CA ,∠BAD=∠CAE ,DA=EA ,进而得到△ABD ≌△ACE ,可得出BD=CE ;(2)分两种情况:依据∠PDA=∠AEC ,∠PCD=∠ACE ,可得△PCD ∽△ACE ,即可得到PD AE =CD CE,进而得到53417;依据∠ABD=∠PBE ,∠BAD=∠BPE=90°,可得△BAD ∽△BPE ,即可得到PB BE AB BD=,进而得出PB=63434,PD=BD+PB=203417;(3)以A为圆心,AC长为半径画圆,当CE在⊙A下方与⊙A相切时,PD的值最小;当CE在在⊙A右上方与⊙A 相切时,PD的值最大.在Rt△PED中,PD=DE•sin∠PED,因此锐角∠PED的大小直接决定了PD的大小.分两种情况进行讨论,即可得到旋转过程中线段PD的最小值以及最大值.详解:(1)BD,CE的关系是相等.理由:∵△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,∴BA=CA,∠BAD=∠CAE,DA=EA,∴△ABD≌△ACE,∴BD=CE;故答案为相等.(2)作出旋转后的图形,若点C在AD上,如图2所示:∵∠EAC=90°,∴CE=2234AC AE+=,∵∠PDA=∠AEC,∠PCD=∠ACE,∴△PCD∽△ACE,∴PD CD AE CE=,∴PD=534 17;若点B在AE上,如图2所示:∵∠BAD=90°,∴Rt△ABD中,BD=2234AD AB+=,BE=AE﹣AB=2,∵∠ABD=∠PBE,∠BAD=∠BPE=90°,∴△BAD∽△BPE,∴PB BEAB BD=,即2334PB=,解得PB=634 34,∴PD=BD+PB=34+63434=203417,故答案为53417或203417;(3)如图3所示,以A为圆心,AC长为半径画圆,当CE在⊙A下方与⊙A相切时,PD的值最小;当CE在在⊙A 右上方与⊙A相切时,PD的值最大.如图3所示,分两种情况讨论:在Rt△PED中,PD=DE•sin∠PED,因此锐角∠PED的大小直接决定了PD的大小.①当小三角形旋转到图中△ACB的位置时,在Rt△ACE中,2253-,在Rt△DAE中,225552+=∵四边形ACPB是正方形,∴PC=AB=3,∴PE=3+4=1,在Rt△PDE中,2250491DE PE-=-=,即旋转过程中线段PD的最小值为1;②当小三角形旋转到图中△AB'C'时,可得DP'为最大值,此时,DP'=4+3=1,即旋转过程中线段PD的最大值为1.故答案为1,1.点睛:本题属于几何变换综合题,主要考查了等腰直角三角形的性质、旋转变换、全等三角形的判定和性质、相似三角形的判定和性质、圆的有关知识,解题的关键是灵活运用这些知识解决问题,学会分类讨论的思想思考问题,学会利用图形的特殊位置解决最值问题.22、见解析【解题分析】证明:∵DE ∥AB ,∴∠CAB=∠ADE .在△ABC 和△DAE 中,∵CAB ADE{AB DA B DAE∠=∠=∠=∠,∴△ABC ≌△DAE (ASA ).∴BC=AE .【题目点拨】根据两直线平行,内错角相等求出∠CAB=∠ADE ,然后利用“角边角”证明△ABC 和△DAE 全等,再根据全等三角形对应边相等证明即可.23、证明见解析.【解题分析】【分析】利用AAS 先证明∆ABH ≌∆DCG ,根据全等三角形的性质可得AH=DG ,再根据AH =AG +GH ,DG =DH +GH 即可证得AG =HD.【题目详解】∵AB ∥CD ,∴∠A =∠D ,∵CE ∥BF ,∴∠AHB =∠DGC ,在∆ABH 和∆DCG 中,A D AHB DGC AB CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴∆ABH ≌∆DCG(AAS),∴AH =DG ,∵AH =AG +GH ,DG =DH +GH ,∴AG =HD.【题目点拨】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.24、绳索长为20尺,竿长为15尺.【解题分析】设索长为x 尺,竿子长为y 尺,根据“索比竿子长一托,对折索子来量竿,却比竿子短一托”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论.【题目详解】设绳索长、竿长分别为x 尺,y 尺, 依题意得:552x y x y =+⎧⎪⎨=-⎪⎩ 解得:20x =,15y =.答:绳索长为20尺,竿长为15尺.【题目点拨】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.。

(word完整版)四川省德阳市中考模拟试卷(一)

(word完整版)四川省德阳市中考模拟试卷(一)

四川省德阳市中考模拟试卷·数学(一)第Ⅰ卷(选择,共36分)一、选择题(本大题共12小题,每小题3分,共36分)下列各题给出的四个选项中,只有一个是正确的,请将正确的答案的字母代号填在下面的表格中.题序1 2 3 4 5 6 7 8 9 10 11 12 答案 1. —2016的相反数是( )A .-2016B .20161C .2016D .20161-2。

为了了解某校九年级400名学生的体重情况,从中抽查了50名学生的体重进行统计分析,在这个问题中,总体是( )A .400名学生的体重B .被抽取的50名学生C .400名学生D .被抽取的50名学生的体重 3.如图,AB ∥CD ,DE ⊥CE,∠1=34°,则∠DCE 的度数为( ) A .34° B .56° C .66° D .54°第3题图 第4题图 第9题图 4。

如图是由5个相同的立方块所搭成的几何体,其俯视图是( )A .B .C .D .5.下列各式计算正确的是( )A .123=-B .a 6÷a 2=a 3C .(x+y )2=x 2+y 2D .(—x 2)3=—x 66。

某彩票的中奖机会是1%,下列说法正确的是( ) A .买一张一定不会中奖 B .买10000张一定会中奖C .买1000张一定有10张中奖D .买1张有可能中奖7.的正整数解有( ) A .1个B .2个C .3个D .4个8.⊙O 的半径r=5cm ,圆心到直线l 的距离OM=4cm,在直线l 上有一点P,且PM=3cm ,则点P( ) A .在⊙O 内 B .在⊙O 上 C .在⊙O 外 D .可能在⊙O 上或在⊙O 内 9。

如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB 于点D ,∠ACD=3∠BCD ,E 是斜边AB 的中点,则A .22.5°B .30°C .36°D .45°10。

2018年四川德阳市中考数学模拟试题含答案详解

2018年四川德阳市中考数学模拟试题含答案详解

德阳市2018年初中毕业生学业考试与高中阶段学校招生考试模拟试卷(满分:120分考试时间:120分钟)第I卷选择题(共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列根式中,与是同类二次根式的是()A.B.C.D.2.已知点A(a,1)与点A′(﹣5,b)是关于原点O的对称点,则a+b的值为()A.1 B.5C.6D.43.已知x=2是一元二次方程x2+mx+2=0的一个解,则m的值是()A.﹣3 B.3C.0D.0或34.下列图形中,既是轴对称图形又是中心对称图形的有()①平行四边形;②正方形;③等腰梯形;④菱形;⑤矩形;⑥圆.A.1个B.2个C.3个D.4个5.如图,⊙O中,弦AB、CD相交于点P,∠A=40°,∠APD=75°,则∠B=()第5题A.15°B.40°C.75°D.35°6.下列关于概率知识的说法中,正确的是()A.“明天要降雨的概率是90%”表示:明天有90%的时间都在下雨B.“抛掷一枚硬币,正面朝上的概率是”表示:每抛掷两次,就有一次正面朝上C.“彩票中奖的概率是1%”表示:每买100张彩票就肯定有一张会中奖D.“抛掷一枚质地均匀的正方体骰子,朝上的点数是1的概率是”表示:随着抛掷次数的增加,“抛出朝上点数是1”这一事件的频率是7.已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式m2﹣m+2013的值为()A.2011 B.2012 C.2013 D.20148.用配方法解方程x2+4x+1=0,配方后的方程是()A.(x+2)2=3 B.(x﹣2)2=3 C.(x﹣2)2=5 D.(x+2)2=59.要使代数式有意义,则a的取值范围是()A.a≥0 B.a≠C.a≥0且a≠D.一切实数10.如图,已知⊙O的直径CD垂直于弦AB,垂足为点E,∠ACD=22.5°,若CD=6cm,则AB的长为()第10题A.4cm B.3cm C.2cm D.2cm11.到2014底,我县已建立了比较完善的经济困难学生资助体系.某校2012年发放给每个经济困难学生450元,2014年发放的金额为625元.设每年发放的资助金额的平均增长率为x,则下面列出的方程中正确的是()A.450(1+x)2=625 B.450(1+x)=625C.450(1+2x)=625 D.625(1+x)2=45012.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的实数).其中正确结论的有()第12题A.①②③B.①③④C.③④⑤D.②③⑤第II卷非选择题(共84分)二、填空题(本大题共5小题,每小题3分,共15分.请把答案填在题中的横线上)13.如图,BC=EC,∠1=∠2,要使△ABC≌△DEC,则应添加的一个条件为.(答案不唯一,只需填一个).第13题14.关于x的一元二次方程﹣x2+(2m+1)x+1﹣m2=0无实数根,则m的取值范围是.15.化简:=.16.如图,在反比例函数y=(x>0)的图象上,有点P1,P2,P3,P4,它们的横坐标依次为1,2,3,4.分别过这些点作x轴与y轴的垂线,图中所构成的阴影部分的面积从左到右依次为S1,S2,S3,则S1+S2+S3=.第16题17.观察下面的图形,它们是按一定规律排列的,依照此规律,第个图形共有120个★.第17题三、解答题(本大题共7小题,共69分,解答应写出必要的文字说明,证明过程或演算步骤)18.(4分)计算:.19.(6分)如图,把质地均匀的A、B两个转盘都分成三等分,玲玲和兰兰利用它们做游戏,同时自由转动两个转盘,当两个指针所停区域(停在分界线上重转)的数都是奇数或都是偶数时,则玲玲获胜,当两个指针所停区域的数是一奇一偶时,则兰兰获胜,列表或画树状图,用概率的知识说明这个游戏对她们是否公平?第19题20.(8分)某德阳特产专卖店销售“中江柚”,已知“中江柚”的进价为每个10元,现在的售价是每个16元,每天可卖出120个.市场调查反映:如调整价格,每涨价1元,每天要少卖出10个;每降价1元,每天可多卖出30个.(1)如果专卖店每天要想获得770元的利润,且要尽可能的让利给顾客,那么售价应涨价多少元?(2)请你帮专卖店老板算一算,如何定价才能使利润最大,并求出此时的最大利润?21.(12分)如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A,B的坐标分别是A(3,3)、B(1,2),△AOB绕点O逆时针旋转90°后得到△A1OB1.(1)画出△A1OB1,直接写出点A1,B1的坐标;(2)在旋转过程中,点B经过的路径的长;(3)求在旋转过程中,线段AB所扫过的面积.第21题22.(12分)如图,已知A(﹣4,2)、B(a,﹣4)是一次函数y=kx+b的图象与反比例函数的图象的两个交点;(1)求此反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值小于反比例函数的值的x的取值范围;(3)求△AOB的面积.第22题23.(13分)如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.(1)求证:CD为⊙O的切线;(2)求证:∠C=2∠DBE;(3)若EA=AO=2,求图中阴影部分的面积.(结果保留π)第23题24.(14分)如图,抛物线y=x2+bx﹣2与x轴交于A、B两点,与y轴交于C点,且A(﹣1,0).(1)求抛物线的解析式及顶点D的坐标;(2)判断△ABC的形状,证明你的结论;(3)点M是x轴上的一个动点,当△DCM的周长最小时,求点M的坐标.第24题德阳市2018年初中毕业生学业考试与高中阶段学校招生考试模拟试卷(参考答案)一、1.A解析:A、与被开方数相同,是同类二次根式;B、=2 与被开方数不同,不是同类二次根式;C、=2与被开方数不同,不是同类二次根式;D、与的根指数不同,不是同类二次根式.故选A.2.D解析:∵点A(a,1)与点A′(﹣5,b)是关于原点O的对称点,∴a=5,b=﹣1,∴a+b=4,故选D.3.A解析:∵x=2是一元二次方程x2+mx+2=0的一个解,∴4+2m+2=0,∴m=﹣3.故选A.4.D解析:①不是轴对称图形,是中心对称图形,不符合题意;②即是轴对称图形,又是中心对称图形,符合题意;③是轴对称图形,不是中心对称图形,不符合题意;④既是轴对称图形,又是中心对称图形,符合题意.⑤既是轴对称图形,又是中心对称图形.符合题意;⑥既是轴对称图形,又是中心对称图形.符合题意.共4个既是轴对称图形又是中心对称图形.故选D.5.D解析:∵∠APD=75°,∴∠BPD=105°,由圆周角定理,可知∠A=∠D(同弧所对的圆周角相等),在三角形BDP中,∠B=180°﹣∠BPD﹣∠D=35°,故选D.6.D解析:A、“明天要降雨的概率是90%”表示:明天有90%下雨的可能,故此选项错误;B、抛掷一枚硬币,正面朝上的概率是”表示,每抛掷一次出现正面向上与向下的可能都是,并不是一定是,故此选项错误;C、“彩票中奖的概率是1%”表示:每买100张彩票就可能有一张会中奖,故此选项错误;D、“抛掷一枚质地均匀的正方体骰子,朝上的点数是1的概率是”表示:随着抛掷次数的增加,“抛出朝上点数是1”这一事件的频率是,此选项正确.故选D.7.A 解析:根据题意,得m2﹣m﹣1=0,所以m2﹣m=1,所以m2﹣m+2013=1+2013=2014.故选D.8.A解析:方程移项,得x2+4x=﹣1,配方,得x2+4x+4=3,即(x+2)2=3.故选A.9.C解析:根据题意,得,解得a≥0且a≠.故选C.10.B解析:连结OA,如图,∵∠ACD=22.5°,∴∠AOD=2∠ACD=45°,∵⊙O的直径CD垂直于弦AB,∴AE=BE,△OAE为等腰直角三角形,∴AE=OA,∵CD=6,∴OA=3,∴AE=,∴AB=2AE=3(cm).故选B.11.A解析:设每年发放的资助金额的平均增长率为x,则2012年发放给每个经济困难学生450(1+x)元,2013年发放给每个经济困难学生450(1+x)2元,由题意,得450(1+x)2=625.故选A.12.C 解析:①由图象可知:a<0,b>0,c>0,abc<0,故①错误;②当x=﹣1时,y=a﹣b+c<0,即b>a+c,故②错误;③由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,故③正确;④当x=3时函数值小于0,y=9a+3b+c<0,且x=﹣=1,即a=﹣,代入得9(﹣)+3b+c<0,得2c<3b,故④正确;⑤当x=1时,y的值最大.此时,y=a+b+c,而当x=m时,y=am2+bm+c,所以a+b+c>am2+bm+c,故a+b>am2+bm,即a+b>m(am+b),故⑤正确.综上所述,③④⑤正确.故选C.二、13.AC=CD解析:添加的条件是AC=CD,理由是:∵∠1=∠2,∴∠1+∠ECA=∠2+∠ECA,∴∠BCA=∠ECD,∵在△ABC和△DCE中,,∴△ABC≌△DCE.14.m<﹣解析:∵关于x的一元二次方程﹣x2+(2m+1)x+1﹣m2=0的二次项系数a=﹣1,一次项系数b=(2m+1),常数项c=1﹣m2,∴△=(2m+1)2﹣4×(﹣1)(1﹣m2),即△=4m+5,又∵原方程无实根,∴△<0,即4m+5<0,解得m<﹣.15.a﹣b解析:原式=(﹣)÷=•=a ﹣b.16.解析:由题意,可知点P1、P2、P3、P4坐标分别为:(1,2),(2,1),(3,),(4,).解法一:∵S1=1×(2﹣1)=1,S2=1×(1﹣)=,S3=1×(﹣)=,∴S1+S2+S3=1++ =.解法二:∵图中所构成的阴影部分的总面积正好是从点P1向x轴、y轴引垂线构成的长方形面积减去最下方的长方形的面积,∴1×2﹣×1=.17.15解析:通过观察,得到星的个数分别是,1,3,6,10,15,…,第一个图形为:1×(1+1)÷2=1,第二个图形为:2×(2+1)÷2=3,第三个图形为:3×(3+1)÷2=6,第四个图形为:4×(4+1)÷2=10,…,所以第n个图形为:n(n+1)÷2个星,设第m个图形共有120个星,则m(m+1)÷2=120,解得m=15.三、18.解:原式=1+2+3﹣5﹣2=4﹣5.19.解:同时自由转动两个转盘,出现的情况如图,共有9种等可能的结果,两个指针所停区域的数都是奇数的概率为,两个指针所停区域的数都是偶数的概率为,两个指针所停区域的数是一奇一偶的概率为+>,所以这个游戏对他们不公平,玲玲获胜的可能性大.20.解:(1)设售价应涨价x元,则(16+x﹣10)(120﹣10x)=770,解得x1=1,x2=5.又要尽可能的让利给顾客,则涨价应最少,所以x2=5(舍去).所以x=1.答:专卖店涨价1元时,每天可以获利770元.(2)设单价涨价x元时,每天的利润为w1元,则w1=(16+x﹣10)(120﹣10x)=﹣10x2+60x+720 =﹣10(x﹣3)2+810(0≤x≤12),即定价为16+3=19(元)时,专卖店可以获得最大利润810元.设单价降价z元时,每天的利润为w2元,则w2=(16﹣z﹣10)(120+30z)=﹣30z2+60z+720 =﹣30(z﹣1)2+750(0≤z≤6),即定价为16﹣1=15(元)时,专卖店可以获得最大利润750元.综上所述,专卖店将单价定为每个19元时,可以获得最大利润810元.21.解:(1)△A1OB1如图所示,A1(﹣3,3),B1(﹣2,1).(2)由勾股定理,得OB==,所以弧BB1==π.(3)由勾股定理,得OA==3,S扇形OAA1==π,S扇形OBB1==π,则线段AB所扫过的面积为:π﹣π=π.22.解:(1)∵m=xy=(﹣4)×2=﹣8,∴﹣4a=﹣8,∴a=2,则y=kx+b过A(﹣4,2),B(2,﹣4)两点,∴解得k=﹣1,b=﹣2.故B(2,﹣4),一次函数的解析式为y=﹣x﹣2.(2)一次函数的值小于反比例函数值的x的取值范围:﹣4<x<0或x>2.(3)由(1),得一次函数y=﹣x﹣2,令x=0,解得y=﹣2,∴一次函数与y轴交点为C(0,﹣2),∴OC=2,∴S△AOB=S△AOC+S△BOC=OC•|y点A横坐标|+OC•|y点B横坐标|=×2×4+×2×2=6.S△AOB=6.23.(1)证明:连结OD,∵BC是⊙O的切线,∴∠ABC=90°,∵CD=CB,∴∠CBD=∠CDB,∵OB=OD,∴∠OBD=∠ODB,∴∠ODC=∠ABC=90°,即OD⊥CD,∵点D在⊙O上,∴CD为⊙O的切线;(2)证明:如图,∠DOE=∠ODB+∠OBD=2∠DBE,由(1),得OD⊥EC于点D,∴∠E+∠C=∠E+∠DOE=90°,∴∠C=∠DOE=2∠DBE;(3)解:作OF⊥DB于点F,连结AD,由EA=AO可得:AD是Rt△ODE斜边的中线,∴AD=AO=OD,∴∠DOA=60°,∴∠OBD=30°,又∵OB=AO=2,OF⊥BD,∴OF=1,BF=,∴BD=2BF=2,∠BOD=180°﹣∠DOA=120°,∴S阴影=S扇形OBD﹣S△BOD=﹣×2×1=﹣.24.解:(1)∵点A(﹣1,0)在抛物线上,∴,解得,∴抛物线的解析式.∵,∴顶点D的坐标为;(2)△ABC是直角三角形.理由如下:当x=0时,y=﹣2,∴C(0,﹣2),则OC=2.当y=0时,,∴x1=﹣1,x2=4,则B(4,0),∴OA=1,OB=4,∴AB=5.∵AB2=25,AC2=OA2+OC2=5,BC2=OC2+OB2=20,∴AC2+BC2=AB2,∴△ABC是直角三角形;(3)作出点C关于x轴的对称点C′,则C'(0,2).连结C′D交x轴于点M,根据轴对称性及两点之间线段最短可知,CD一定,当MC+MD的值最小时,△CDM的周长最小.设直线C′D的解析式为y=ax+b(a≠0),则,解得,∴.当y=0时,,则,∴.。

四川省德阳中江县联考2019-2020学年中考数学模拟试卷

四川省德阳中江县联考2019-2020学年中考数学模拟试卷

四川省德阳中江县联考2019-2020学年中考数学模拟试卷一、选择题1.如图,内有一点D,且,若,则的大小是( )A.B.C.D.2.下面两幅图是由几个小正方形搭成的几何体的主视图与俯视图,则搭成这个几何体的小正方体的个数为()A.3个B.4个C.5个D.6个3.某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品,将这些作品排成一个矩形(作品不完全重合).现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉(例如,用9枚图钉将4张作品钉在墙上,如图).若有36枚图钉可供选用,则最多可以展示绘画作品( )A.22张B.23张C.24张D.25张4.下列运算正确的是()A.(a2)3=a6B.(a+2)2=a2+4C.a6÷a3=a2D=5.如图,点D、E分别在△ABC的边AB、AC上,且AB=9,AC=6,AD=3,若使△ADE与△ABC相似,则AE的长为()A.2 B.92C.2或92D.3或926.已知x,y满足方程组24342x yx y+=⎧⎨-=⎩,则2x y-的值为A .3B .4C .7-D .17-7.在“大家跳起来”的乡村学校舞蹈比赛中,某校10名学生参赛成绩统计如图所示。

对于这10名学生的参赛成绩,下列说法中错误的是( )A .中位数是90B .众数是90C .极差是15D .平均数是908.如图,CD 是⊙O 的直径,AB 是弦(不是直径),AB ⊥CD 于点E ,则下列结论正确的是( )A .AE >BEB .AD =BC C .∠D =12∠AEC D .△ADE ∽△CBE9.如图,在矩形ABCD 中,点F 在AD 上,射线BF 交AC 于点G,交CD 的延长线于点E,则下列等式正确的为( )A.AB EF ED BF =B.AF AB BC CE =C.FG CG BG AG =D.FD ED BC CD= 10.某校规定学生的学期数学成绩满分为100分,其中平时学习成绩占30%,期末卷面成绩占70%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是( )A .83分B .86分C .87分D .92.4分 11.下列计算正确的是( ) A .b 5∙ b 5=2 b 5B .(a- b)5 ·(b - a)4=( a - b)9C .a +2 a 2=3 a 3D .(a n-1)3 = a 3n-1 12.将一张宽为5cm 的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是( )A cm 2B .252cm 2C .25cm 2D 2 二、填空题13.已知112a b +=,求535a ab b a ab b++=-+_____. 14.如图,一块飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是______.15.如图,已知1,2,3,A A A …,1n n A A +是x 轴上的点,且11223OA A A A A ===…,11n n A A +==,分别过点123,A A A …,1n n A A +作x 轴的垂线交反比例函数()10y x x=>的图象于点123,,,B B B …,1n n B B +,过点2B 作2111B P A B ⊥于点1P ,过点3B 作3222B P A B ⊥于点2P ……记112B PB ∆的面积为1S ,223B P B ∆的面积为2S ……1n n n B P B +∆的面积为n S ,则123S S S +++…n S 等于_________.16.在平面直角坐标系中,已知()A 2,4、()P 1,0,B 为y 轴上的动点,以AB 为边构造ABC ,使点C 在x 轴上,BAC 90.M ∠=为BC 的中点,则PM 的最小值为______.17.因式分解:2a 2﹣16=_____.18a <<a 的值为_____.三、解答题19.“机动车行驶到斑马线要礼让行人”等交通法规实施后,某校数学课外实践小组对这些交通法规的了解情况在全校随机调查了部分学生,调查结果分为四种:A .非常了解,B .比较了解,C .基本了解,D .不太了解,实践小组把此次调查结果整理并绘制成下面不完整的条形统计图和扇形统计图.请结合图中所给信息解答下列问题:(1)本次共调查 名学生;扇形统计图中C 所对应扇形的圆心角度数是 ;(2)补全条形统计图;(3)学校准备从组内的甲、乙、丙、丁四位学生中随机抽取两名学生参加市区交通法规竞赛,请用列表或画树状图的方法求丙和丁两名学生同时被选中的概率.20.2019年1月,温州轨道交通1S线正式运营,1S线有以下4种购票方式:A.二维码过闸B.现金购票C.市名卡过闸D.银联闪付(1)某兴趣小组为了解最受欢迎的购票方式,随机调查了某区的若干居民,得到如图所示的统计图,已知选择方式D的有200人,求选择方式A的人数.(2)小博和小雅对A,B,C三种购票方式的喜爱程度相同,随机选取一种方式购票,求他们选择同一种购票方式的概率.(要求列表或画树状图).21.我市中小学学生素养提升五项工程自启动以来,越来越受到教师、家长和学生的喜爱.为进一步了解学生对“规范书写”、“深度阅读”、“课堂演讲”、“阳光体艺”、“实验实践”的喜爱程度,某学生总数是1800人的九年一贯制学校,从每个年级随机抽取了部分学生进行了调查(每位学生只可选其中一项),并将结果整理、绘制成统计图如下:根据以上统计图,解答下列问题:(1)本次接受调查的学生共有人,补全条形统计图;(2)求扇形统计图中a的值;(3)估计该校全体学生中喜爱“实验实践”的人数.22.群芳雅苑花卉基地出售两种花卉,其中马蹄莲每株4.5元,康乃馨每株6元.如果同一客户所购的马蹄莲数量多于1000株,那么所有的马蹄莲每株还可优惠0.3元.现某鲜花店向群芳雅苑花卉基地采购马蹄莲800~1200株、康乃馨若干株本次采购共用了9000元.然后再以马蹄莲每株5.5元、康乃馨每株8元的价格卖出.(注:800~1200株表示采购株数大于或等于800株,且小于或等于1200株;利润=销售所得金额﹣进货所需金额)(1)设鲜花店销售完这两种鲜花获得的利润为y元,采购马蹄莲x株,求y与x之间的函数关系式;(2)若该鲜花店购进的马蹄莲多于1000株,采购马蹄莲多少时才能使获得的利润不少于2890元?23.如图,在△ABC,BA=BC,以BC为直径的⊙O分别交AB、AC于点E、D,点F在BA的延长线上,且∠ACF=12∠ABC,(1)求证:直线CF是⊙O的切线;(2)若BC=5,sin∠,求CF的长。

中江县初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

中江县初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

中江县初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)如图,∠A0B的两边0A,0B均为平面反光镜,∠A0B=40°.在射线0B上有一点P,从P点射出一束光线经0A上的Q点反射后,反射光线QR恰好与0B平行,则∠QPB的度数是()A. 60°B. 80°C. 100°D. 120°【答案】B【考点】平行线的性质【解析】【解答】解:∵QR∥OB,∴∠AQR=∠AOB=40°,∠PQR+∠QPB=180°;∵∠AQR=∠PQO,∠AQR+∠PQO+∠RQP=180°(平角定义),∴∠PQR=180°﹣2∠AQR=100°,∴∠QPB=180°﹣100°=80°.故答案为:B.【分析】根据两直线平行,同位角相等,同旁内角互补,得出∠AQR=∠AOB=40°,∠PQR+∠QPB=180°,再根据平角是180°,得出∠PQR=100°,最后算出∠QPB=80°2、(2分)8的立方根是()A. 4B. 2C. ±2D. -2【答案】B【考点】立方根及开立方【解析】【解答】解:∵23=8,∴8的立方根是2.故答案为:B【分析】根据立方根的意义,2的立方等于8,所以8的立方根是2 。

3、(2分)比较2, , 的大小,正确的是()A. 2< <B. 2< <C. <2<D. < <2【答案】C【考点】实数大小的比较,估算无理数的大小【解析】【解答】解:∵1<<2,2<<3∴<2<故答案为:C【分析】根据题意判断和分别在哪两个整数之间,即可判断它们的大小。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学模拟试卷含答案注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一.选择题(共8小题,满分32分,每小题4分)1.(4分)据统计部门发布的信息,广州2016年常驻人口14043500人,数字14043500用科学记数法表示为()A.0.140435×108B.1.40435×107C.14.0435×106D.140.435×1052.(4分)如图,下列图形从正面看是三角形的是()A.B.C.D.3.(4分)若将代数式中的任意两个字母互相替换,代数式不变,则称这个代数式为完全对称式、如在代数式a+b+c中,把a和b互相替换,得b+a+c;把a和c互相替换,得c+b+a;把b和c…;a+b+c就是完全对称式、下列三个代数式:①(a﹣b)2;②ab+bc+ca;③a2b+b2c+c2a其中为完全对称式的是()A.①② B.②③ C.①③ D.①②③4.(4分)一个五边形的5个内角中,钝角至少有()A.5个B.4个C.3个D.2个5.(4分)△ABC中,∠A,∠B均为锐角,且(tanB﹣)(2sinA﹣)=0,则△ABC一定是()A.等腰三角形B.等边三角形C.直角三角形D.有一个角是60°的三角形6.(4分)下列说法正确的是()A.要了解某公司生产的100万只灯泡的使用寿命,可以采用抽样调查的方法B.4位同学的数学期末成绩分别为100、95、105、110,则这四位同学数学期末成绩的中位数为100C.甲乙两人各自跳远10次,若他们跳远成绩的平均数相同,甲乙跳远成绩的方差分别为0.51和0.62,则乙的表现较甲更稳定D.某次抽奖活动中,中奖的概率为表示每抽奖50次就有一次中奖7.(4分)如图,在△ABC中,∠C=90°,AC>BC,若以AC为底面圆半径、BC为高的圆锥的侧面积为S1,以BC 为底面圆半径、AC为高的圆锥的侧面积为S2,则()A.S1=S2 B.S1>S2C.S1<S2D.S1、S2的大小关系不确定8.(4分)如图,有一圆通过△ABC的三个顶点,与BC边的中垂线相交于D点,若∠B=74°,∠ACB=46°,则∠ACD的度数为()A.14° B.26° C.30° D.44°二.填空题(共6小题,满分18分,每小题3分)9.(3分)当两数时,它们的和为0.10.(3分)已知一组数列:,记第一个数为a1,第二个数为a2,…,第n个数为a n,若a n是方程的解,则n= .11.(3分)已知,如图,P为△ABC中线AD上一点,AP:PD=2:1,延长BP、CP分别交AC、AB于点E、F,EF 交AD于点Q.(1)PQ=EQ;(2)FP:PC=EC:AE;(3)FQ:BD=PQ:PD;(4)S△FPQ:S△DCP=S PEF:S△PBC.上述结论中,正确的有.12.(3分)已知|a﹣2007|+=a,则a﹣20072的值是.13.(3分)如图,以正方形ABCD的边BC为直径作半圆O,过点D作直线与半圆相切于点F,交AB于点E,若AB=2cm,则阴影部分的面积为.14.(3分)如图,矩形ABCD中,AB=2AD,点A(0,1),点C、D在反比例函数y=(k>0)的图象上,AB与x 轴的正半轴相交于点E,若E为AB的中点,则k的值为.三.解答题(共9小题,满分70分)15.(6分)如图1,在锐角△ABC中,∠ABC=45°,高线AD、BE相交于点F.(1)判断BF与AC的数量关系并说明理由;(2)如图2,将△ACD沿线段AD对折,点C落在BD上的点M,AM与BE相交于点N,当DE∥AM时,判断NE与AC的数量关系并说明理由.16.(6分)从2开始,连续的偶数相加,它们和的情况如下表:(1)若n=8时,则S的值为.(2)根据表中的规律猜想:用n的式子表示S的公式为:S=2+4+6+8+…+2n= .(3)根据上题的规律求102+104+106+108+…+200的值(要有过程)17.(8分)典典同学学完统计知识后,随机调查了她家所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:(1)扇形统计图中a= ,b= ;并补全条形统计图;(2)若该辖区共有居民3500人,请估计年龄在0~14岁的居民的人数.(3)一天,典典知道了辖区内60岁以上的部分老人参加了市级门球比赛,比赛的老人们分成甲、乙两组,典典很想知道甲乙两组的比赛结果,王大爷告诉说,甲组与乙组的得分和为110,甲组得分不低于乙组得分的1.5倍,甲组得分最少为多少?18.(6分)我市向民族地区的某县赠送一批计算机,首批270台将于近期启运.经与某物流公司联系,得知用A型汽车若干辆刚好装完;用B型汽车不仅可少用1辆,而且有一辆车差30台计算机才装满.(1)已知B型汽车比A型汽车每辆车可多装15台,求A、B两种型号的汽车各能装计算机多少台?(2)已知A型汽车的运费是每辆350元,B型汽车的运费是每辆400元.若运送这批计算机同时用这两种型号的汽车,其中B型汽车比A型汽车多用1辆,所用运费比单独用任何一种型号的汽车都要节省,按这种方案需A、B两种型号的汽车各多少辆运费多少元?19.(7分)某电视台的一档娱乐性节目中,在游戏PK环节,为了随机分选游戏双方的组员,主持人设计了以下游戏:用不透明的白布包住三根颜色长短相同的细绳AA1、BB1、CC1,只露出它们的头和尾(如图所示),由甲、乙两位嘉宾分别从白布两端各选一根细绳,并拉出,若两人选中同一根细绳,则两人同队,否则互为反方队员.(1)若甲嘉宾从中任意选择一根细绳拉出,求他恰好抽出细绳AA1的概率;(2)请用画树状图法或列表法,求甲、乙两位嘉宾能分为同队的概率.20.(8分)如图,等腰三角形ABC中,AB=AC,AH垂直BC,点E是AH上一点,延长AH至点F,使FH=EH,(1)求证:四边形EBFC是菱形;(2)如果∠BAC=∠ECF,求证:AC⊥CF.21.(8分)阅读下列材料:有这样一个问题:关于x 的一元二次方程a x2+bx+c=0(a>0)有两个不相等的且非零的实数根.探究a,b,c 满足的条件.小明根据学习函数的经验,认为可以从二次函数的角度看一元二次方程,下面是小明的探究过程:①设一元二次方程ax2+bx+c=0(a>0)对应的二次函数为y=ax2+bx+c(a>0);②借助二次函数图象,可以得到相应的一元二次中a,b,c满足的条件,列表如下:方程根的几何意义:请将(2)补充完整(1)参考小明的做法,把上述表格补充完整;(2)若一元二次方程mx2﹣(2m+3)x﹣4m=0有一个负实根,一个正实根,且负实根大于﹣1,求实数m的取值范围.22.(9分)某商场同时购进甲、乙两种商品共200件,其进价和售价如表,设其中甲种商品购进x件,该商场售完这200件商品的总利润为y元.(1)求y与x的函数关系式;(2)该商品计划最多投入18000元用于购买这两种商品,则至少要购进多少件甲商品?若售完这些商品,则商场可获得的最大利润是多少元?(3)在(2)的基础上,实际进货时,生产厂家对甲种商品的出厂价下调a元(50<a<70)出售,且限定商场最多购进120件,若商场保持同种商品的售价不变,请你根据以上信息及(2)中的条件,设计出使该商场获得最大利润的进货方案.23.(12分)如图,矩形ABCD中,AB=4,BC=6,E是BC边的中点,点P在线段AD上,过P作PF⊥AE于F,设PA=x.(1)求证:△PFA∽△ABE;(2)当点P在线段AD上运动时,设PA=x,是否存在实数x,使得以点P,F,E为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,请说明理由;(3)探究:当以D为圆心,DP为半径的⊙D与线段AE只有一个公共点时,请直接写出x满足的条件:.中考数学一模试卷参考答案与试题解析一.选择题(共8小题,满分32分,每小题4分)1.【解答】解:14043500=1.40435×107故选:B.2.【解答】解:A、三棱柱从正面看到的是长方形,不合题意;B、圆台从正面看到的是梯形,不合题意;C、圆锥从正面看到的是三角形,符合题意;D、长方体从正面看到的是长方形,不合题意.故选:C.3.【解答】解:①∵(a﹣b)2=(b﹣a)2,∴①是完全对称式;②ab+bc+ca中把a和b互相替换得ab+bc+ca,∴②是完全对称式;③a2b+b2c+c2a中把a和b互相替换得b2a+a2c+c2b,和原来不相等,∴不是完全对称式;故①②正确.故选:A.4.【解答】解:∵五边形外角和为360度,∴5个外角中不能有4个或5个钝角,外角中至多有3个钝角,即内角中最多有3个锐角,至少有2个钝角.故选:D.5.【解答】解:∵△ABC中,∠A,∠B均为锐角,且(tanB﹣)(2sinA﹣)=0,∴tanB﹣=0或2sinA﹣=0,即tanB=或sinA=.∴∠B=60°或∠A=60°.∴△ABC有一个角是60°.故选:D.6.【解答】解:A、要了解某公司生产的100万只灯泡的使用寿命,可以采用抽样调查的方法,正确,故本选项正确;B、4位同学的数学期末成绩分别为100、95、105、110,则这四位同学数学期末成绩的中位数为=102.5,故本选项错误;C、方差越小越稳定,所以甲的表现较乙更稳定,故本选项错误;D、某次抽奖活动中,中奖的概率为表示每抽奖50次就有一次中奖,错误,故本选项错误.故选:A.7.【解答】解:S1=底面周长×母线长=×2πAC×AB;S2=底面周长×母线长=×2πBC×AB,∵AC>BC,∴S1>S2.故选:B.8.【解答】解:连接BD,∵DE是线段BC的垂直平分线,∴BD=CD,∴=,∵∠B=74°,∠ACB=46°,∴=74°,=46°,∴2=﹣=74°﹣46°=28°,∴=14°,∴∠ACD=14°.故选:A.二.填空题(共6小题,满分18分,每小题3分)9.【解答】解:当两数互为相反数时,它们的和为0.故答案为:互为相反数.10.【解答】解:将方程去分母得:6(1﹣x)=5(x+1),移项,并合并同类项得:1=11x,解得x=,∵a n是方程的解,∴a n=,则n为11组第一个数,由数列可发现规律:为1组,、、为1组…每组的个数为2n﹣1,n=1+3+…+19+1=(1+19)×10÷2+1=100+1=101,或n=1+3+…+21=(1+21)×11÷2=121.故答案为:101或121.11.【解答】解:延长PD到M,使DM=PD,连接BM、CM,∵AD是中线,∴BD=CD,∴四边形BPCM是平行四边形,∴BP∥MC,CP∥BM,即PE∥MC,PF∥BM,∴AE:AC=AP:AM,AF:AB=AP:AM,∴AF:AB=AE:AC,∴EF∥BC;∴△AFQ∽△ABD,△AEQ∽△ACD,∴FQ:BD=EQ:CD,∴FQ=EQ,而PQ与EQ不一定相等,故(1)错误;∵△PEF∽△PBC,△AEF∽△ACB,∴PF:PC=EF:BC,EF:BC=AE:AC,∴PF:PC=AE:AC,故(2)错误;∵△PFQ∽△PCD,∴FQ:CD=PQ:PD,∴FQ:BD=PQ:PD;故(3)正确;∵EF∥BC,∴S△FPQ:S△DCP=()2,S△PEF:S△PBC=()2,∴S△FPQ:S△DCP=S PEF:S△PBC.故(4)正确.故答案为:(3)(4).12.【解答】解:∵|a﹣2007|+=a,∴a≥2008.∴a﹣2007+=a,=2007,两边同平方,得a﹣2008=20072,∴a﹣20072=2008.13.【解答】解:由切线长定理可知:BE=EF、DF=DC=2cm.设AE=xcm,则EF=(2﹣x)cm,ED=(4﹣x)cm.在Rt△ADE中,AD2+AE2=ED2,即22+x2=(4﹣x)2.解得:x=1.5.则AE=1.5cm.阴影部分的面积=正方形的面积﹣△ADE的面积﹣减去半圆的面积=2×2﹣××2﹣π×12,=cm2.故答案为: cm2.14.【解答】解:如图,作DF⊥y轴于F,过B点作x轴的平行线与过C点垂直与x轴的直线交于G,CG交x轴于K,作BH⊥x轴于H,∵四边形ABCD是矩形,∴∠BAD=90°,∴∠DAF+∠OAE=90°,∵∠AEO+∠OAE=90°,∴∠DAF=∠AEO,∵AB=2AD,E为AB的中点,∴AD=AE,在△ADF和△EAO中,∴△ADF≌△EAO(AAS),∴DF=OA=1,AF=OE,∴D(1,k),∴AF=k﹣1,同理;△AOE≌△BHE,△ADF≌△CBG,∴BH=BG=DF=OA=1,EH=CG=OE=AF=k﹣1,∴OK=2(k﹣1)+1=2k﹣1,CK=k﹣2∴C(2k﹣1,k﹣2),∴(2k﹣1)(k﹣2)=1•k,解得k1=,k2=,∵k﹣1>0,∴k=故答案是:.三.解答题(共9小题,满分70分)15.【解答】解:(1)BF=AC,理由是:如图1,∵AD⊥BC,BE⊥AC,∴∠ADB=∠AEF=90°,∵∠ABC=45°,∴△ABD是等腰直角三角形,∴AD=BD,∵∠AFE=∠BFD,∴∠DAC=∠EBC,在△ADC和△BDF中,∵,∴△ADC≌△BDF(AAS),∴BF=AC;(2)NE=AC,理由是:如图2,由折叠得:MD=DC,∵DE∥AM,∴AE=EC,∵BE⊥AC,∴AB=BC,∴∠ABE=∠CBE,由(1)得:△ADC≌△BDF,∵△ADC≌△ADM,∴△BDF≌△ADM,∴∠DBF=∠MAD,∵∠DBA=∠BAD=45°,∴∠DBA﹣∠DBF=∠BAD﹣∠MAD,即∠ABE=∠BAN,∵∠ANE=∠ABE+∠BAN=2∠ABE,∠NAE=2∠NAD=2∠CBE,∴∠ANE=∠NAE=45°,∴AE=EN,∴EN=AC.16.【解答】解:(1)当n=8时,S=8×9=72;故答案为:72;(2)根据特殊的式子即可发现规律,S=2+4+6+8+…+2n=2(1+2+3+…+n)=n(n+1);故答案为:n(n+1);(3)102+104+106+…+200=(2+4+6+...+102+...+200)﹣(2+4+6+ (100)=100×101﹣50×51=7550.17.【解答】解:(1)总人数:230÷46%=500(人),100÷500×100%=20%,60÷500×100%=12%;500×22%=110(人),如图所示:(2)3500×20%=700(人);(3)设甲组得x分,则乙组得(110﹣x)分,由题意得:x≥1.5(110﹣x),解得:x≥66.答:甲组最少得66分.18.【解答】解:(1)设A型汽车每辆可装计算机x台,则B型汽车每辆可装计算机(x+15)台.依题意得: =+1.解得:x=45,x=﹣90(舍去).经检验:x=45是原方程的解.∴x+15=60.答:A型汽车每辆可装计算机45台,B型汽车每辆可装计算机60台.(2)由(1)知.若单独用A型汽车运送,需6辆,运费为2100元;若单独用B型汽车运送,需车5辆,运费为2000元.若按这种方案需同时用A,B两种型号的汽车运送,设需要用A型汽车y辆,则需B型汽车(y+1)辆.根据题意可得:350y+400(y+1)<2000.解得:y<.因汽车辆数为正整数.∴y=1或2.当y=1时,y+1=2.则45×1+60×2=165<270.不同题意.当y=2时,y+1=3.则45×2+60×3=270.符合题意.此时运费为350×2+400×3=1900元.答:需要用A型汽车2辆,则需B型汽车3辆.运费1900元.19.【解答】解:(1)∵共有三根细绳,且抽出每根细绳的可能性相同,∴甲嘉宾从中任意选择一根细绳拉出,恰好抽出细绳AA1的概率是=;(2)画树状图:共有9种等可能的结果数,其中甲、乙两位嘉宾能分为同队的结果数为3种情况,则甲、乙两位嘉宾能分为同队的概率是=.20.【解答】证明:(1)∵AB=AC,AH⊥CB,∴BH=HC.(2分)∵FH=EH,∴四边形EBFC是平行四边形.(2分)又∵AH⊥CB,∴四边形EBFC是菱形.(2分)(2)证明:∵四边形EBFC是菱形.∴.(2分)∵AB=AC,AH⊥CB,∴.(1分)∵∠BAC=∠ECF∴∠4=∠3.(1分)∵AH⊥CB∴∠4+∠1+∠2=90°.(1分)∴∠3+∠1+∠2=90°.即:AC⊥CF.(1分)21.【解答】解:(1)补全表格如下:故答案为:方程有一个负实根,一个正实根,,;(2)解:设一元二次方程mx2﹣(2m+3)x﹣4m=0对应的二次函数为:y=mx2﹣(2m+3)x﹣4m,∵一元二次方程mx2+(2m﹣3)x﹣4=0有一个负实根,一个正实根,且负实根大于﹣1,①当m>0时,x=﹣1时,y>0,解得m<2,∴0<m<2.②当m<0时,x=﹣1时,y<0,解得m>2(舍弃)∴m的取值范围是0<m<2.22.【解答】解:(1)根据题意得:y=(160﹣80)x+(240﹣100)(200﹣x),=﹣60x+28000,则y与x的函数关系式为:y=﹣60x+28000;(2)80x+100(200﹣x)≤18000,解得:x≥100,∴至少要购进100件甲商品,y=﹣60x+28000,∵﹣60<0,∴y随x的增大而减小,∴当x=100时,y有最大值,y大=﹣60×100+28000=22000,∴若售完这些商品,则商场可获得的最大利润是22000元;(3)y=(160﹣80+a)x+(240﹣100)(200﹣x)(100≤x≤120),y=(a﹣60)x+28000,①当50<a<60时,a﹣60<0,y随x的增大而减小,∴当x=100时,y有最大利润,即商场应购进甲商品100件,乙商品100件,获利最大,②当a=60时,a﹣60=0,y=28000,即商场应购进甲商品的数量满足100≤x≤120的整数件时,获利最大,③当60<a<70时,a﹣60>0,y随x的增大而增大,∴当x=120时,y有最大利润,即商场应购进甲商品120件,乙商品80件,获利最大.23.【解答】(1)证明:∵矩形ABCD,∴∠ABE=90°,AD∥BC,∴∠PAF=∠AEB,又∵PF⊥AE,∴∠PFA=90°=∠ABE,∴△PFA∽△ABE.…(4分)(2)解:分二种情况:①若△EFP∽△ABE,如图1,则∠PEF=∠EAB,∴PE∥AB,∴四边形ABEP为矩形,∴PA=EB=3,即x=3.…(6分)②若△PFE∽△ABE,则∠PEF=∠AEB,∵AD∥BC∴∠PAF=∠AEB,∴∠PEF=∠PAF.∴PE=PA.∵PF⊥AE,∴点F为AE的中点,Rt△ABE中,AB=4,BE=3,∴AE=5,∴EF=AE=,∵△PFE∽△ABE,∴,∴,∴PE=,即x=.∴满足条件的x的值为3或.…(9分)(3)如图3,当⊙D与AE相切时,设切点为G,连接DG,∵AP=x,∴PD═DG=6﹣x,∵∠DAG=∠AEB,∠AGD=∠B=90°,∴△AGD∽△EBA,∴,∴=,x=,当⊙D过点E时,如图4,⊙D与线段有两个公共点,连接DE,此时PD=DE=5,∴AP=x=6﹣5=1,∴当以D为圆心,DP为半径的⊙D与线段AE只有一个公共点时,x满足的条件:x=或0≤x<1;故答案为:x=或0≤x<1.…(12分)中考数学模拟试卷含答案注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

相关文档
最新文档