第四章表面活性物质

合集下载

药剂学第四章表面活性剂

药剂学第四章表面活性剂

产生固-气/固-液界面吸附
液体表面依靠吸附于体系的溶质以降低自由能活 表面张力
产生液-气/液-液界面吸附
2021/1/12
10
液-液(气)吸附:
溶质分子在界面聚集或反聚集,导致溶液表面张 力的变化。
➢ 溶质浓度的增加导致表面张力的缓慢增加,如无 机电解质与水分子具有良好的亲和力。
➢ 20溶21/1质/12 浓度的增加导致表面张力的缓慢降低,如11低
脂肪 单月 单棕 单硬 三硬 单油 三油 酸 桂酸 榈酸 脂酸 脂酸 酸 酸
性质: Spans20-40有一定水溶性,用作 O/W型乳化剂,随着脂肪酸链长的增加和脂 肪酸基团数量的增多,疏水性变大,
2021S/1/p12ans60以上用作W/O乳剂的乳化剂。酸、36
2.多元醇型
(2) 聚山梨酯:吐温[Tweens] 即聚氧乙烯失水山梨醇脂肪酸酯
一、基本概念
界面表面分子收到的作用力和
内部分子受到的作用力和不同。
表面张力:微观上表面分子受到垂直指向液体 内部的合力,宏观上液体表面上任何部分单位 长度直线上的收缩力。
表面张力方向:表面张力的方向与液面相切, 并与液面的任何两部分分界线垂直。单位N/m。
2021/1/12
6
一、基本概念 表面自由能:在表面张力作用下,液面发生收缩,
产品有:泊洛沙姆(poloxamer),商品名普朗尼 克 (Pluronic),。
202性1/1/1质2 :为淡黄色液体或固体;分子量
34
2.多元醇型
该类表面活性剂为疏水性脂肪酸与亲水性多元 醇如甘油、季戊四醇、失水山梨醇作用生成的 酯。
1
失水
2021/1/12
4 5
山梨醇

第四章 表面活性剂

第四章  表面活性剂

剂HLB值的计算
39
• HLB值与应用的关系
亲 油 性 表 面 活 性 剂 HLB 低 , 亲水性表面活性剂的HLB高; 亲油性或亲水性很大的表面活 性剂易溶于油或水。
• 3-6:W/O型乳化剂; • 8-18:O/W型乳化剂; • 13-18:增溶剂; • 7-9:润湿剂。
40
二、亲水亲油平衡值(HLB)
高亲油性越好,亲水性越差)
34
2.温度对溶解特性的影响
• 昙点:聚氧乙烯型非离子表面活性剂,升 温可导致聚氧乙烯链与水间氢键断裂,升 到一定温度时,聚氧乙烯链发生强烈脱水 和收缩,使增溶空间减小,增溶能力下降, 溶解度急剧下降并析出,溶液出现混浊的 现象。此温度为昙点或浊点
聚氧乙烯链相同时,碳氢链越长,浊点越
多价皂(铅、钙、铝皂);有机胺皂(三乙 醇胺皂) ③性质:具有良好的乳化能力,易被酸及 多价盐破坏,电解质使之盐析。 ④应用:具有一定刺激性,一般供外用。
13
硫酸酯盐:
①通式:R·O·SO3¯M+ ②分类:硫酸化油(硫酸化蓖麻油);高级脂
肪醇硫酸脂(十二烷基硫酸钠SDS) 。
③性质:与水混溶,为无刺激去污剂和润湿 剂;乳化性很强,稳定、耐酸和钙镁盐, 易与一些高分子阳离子药物发生沉淀。
•性质:毒性低、溶血作用小,化学上不解 离,不易受电解质和pH值的影响;能与大 多数药物配伍,应用广泛(外用、内服、 注射)。
•分类:聚乙二醇型、多元醇型
20
2.非离子表面活性剂 • 聚乙二醇型(聚氧乙烯型) 聚氧乙烯脂肪醇醚与聚氧乙烯烷基酚醚 ① 通 式 : RO(CH2OCH2)nH 与 R-
在等电点以下—呈阳离子型表面活性剂性质 (杀菌)
18
• 两性离子表面活性剂 c.常用品种:卵磷脂、氨基酸型和甜菜碱 型两性离子型表面活性剂。 d.最大优点:适用于任何pH溶液,甜菜碱 型等电点时也不沉淀。

表面活性剂第四章乳状液与泡沫

表面活性剂第四章乳状液与泡沫

02
表面活性剂能够稳定乳状液和泡沫,防止其破裂和聚结,从而
提高其在工业中的应用效果。
提高分散性和润湿性
03
表面活性剂能够提高固体颗粒的分散性和液体表面的润湿性,
有利于制备稳定的乳状液和泡沫。
THANKS
感谢观看
02 形成胶束
表面活性剂分子在溶液中聚集形成胶束,这些胶 束能够将油、水和固体颗粒包裹其中,从而稳定 乳状液。
03 防止液滴合并
表面活性剂分子在液滴表面形成保护层,防止液 滴合并,保持乳状液的稳定性。
表面活性剂在泡沫中的作用
降低界面张力
表面活性剂能够降低气-水界面张力,使气体更容易分散在水中, 形成稳定的泡沫。
稳定性定义
01
泡沫稳定性是指泡沫在一定时间内保持其结构和外观
的特性。
影响稳定性的因素
02 影响泡沫稳定性的因素包括表面活性剂的性质、液相
的粘度、气体的溶解度以及温度和压力等环境因素。
提高稳定性方法
03
通过选择适当的表面活性剂和调整溶液的物理性质,
可以提高泡沫的稳定性。
泡沫的破灭
破灭机制
泡沫的破灭可以由多种机制引起, 如重力、气体溶解度变化、液膜 破裂等。
乳状液类型
总结词
根据分散相和分散介质的类型,乳状液可分为水包油型(O/W)和油包水型(W/O) 两种类型。
详细描述
水包油型(O/W)乳状液是指水作为分散介质,油作为分散相的乳状液。这种类型的 乳状液通常外观呈透明或略带乳白色,广泛应用于化妆品、食品、医药等领域。油包水 型(W/O)乳状液则相反,油作为分散介质,水作为分散相,外观通常呈蓝黑色或暗
褐色,这种类型的乳状液在工业上有广泛应用,如涂料、油墨等领域。

第四章表面活性剂驱

第四章表面活性剂驱

称为油包水乳状液,用W/O表示。
单纯的油和水形不成稳定的乳状液,只有加入表面活性剂之类的物 质才能得到较稳定的乳状液,这类能提高乳状液稳定性的物质,称为乳
化剂。
乳化剂可分为两大类:能使之形成稳定的O/W乳状液的称为O/W乳 化剂;能使之形成稳定的W/O型乳状液的称为W/O型乳化剂。
就分子结构而言,如果乳化剂分子结构中亲水基的亲水能力大于亲油
面张力比气-液表面张力降低的幅度大。
如果表面活性剂在液一固界面上吸附,同样能降低液一 固界而张力.改变固体表面的润湿性。
2.表面活性剂溶液的基本性质
2)乳化
一种液体以极微小液滴均匀地分散在互不相溶的另一 种液体中的作用。
乳化是发生于两种互不相溶的液一液之间的分散现象。
其中总有一种液体是水(或水溶液),简称“水相”;而另一 种通常是有机液体,如苯、原油等.简称“油相”。
1)降低表面张力
当表面活性剂溶于水后,必然向溶液表面层进行定向吸附,从而引起 溶液表面的净吸力发生变化。
由于水分子极性较大,当以极性较小的表面活性剂的极性
部分代替了表面层中的水分子时,结果使液体相内部对表面的 吸引力减弱。再由于表面活性剂分子的非极性部分与气相的吸 引力.随着相对分子质量的增加而增大,因此,当表面活性剂 的分子代替了表面层水分子并把其非极性部分露在气相时,气
特殊类型的表活剂:以碳氟链为疏水基的表面活性剂称。
1.表面活性剂的类型
1.表面活性剂的类型
1)离子型表面活性剂
①:阴离子表面活性剂
阴离子表面活性剂是发展最早、应用最广的一类极其重
要的产品。其产量占表面活性剂总量的60%一70%,尤其 在我国,阴离子表面活性剂占总量的90%左右。 此类表面活性剂在水溶液中可离解出表面活性阴离子。 这种表面活性阴离子是由亲油基和亲水基两部分构成,所以 它具有表面活性剂两亲的结构特点。

4-表面活性剂

4-表面活性剂

第四章表面活性剂1 关于表面活性剂的叙述中正确的是( )(A)能使溶液表面张力增加的物质(B)能使溶液表面张力降低的物质(C)能使溶液表面张力不改变的物质(D)能使溶液表面张力急剧上升的物质(E)能使溶液表面张力急剧下降的物质2 表面型活性剂分子的结构特征是( )(A)具有酯键(B)均具有醚键(C)结构中具有醇羟基结构(D)既有亲水基团,又有亲油基团(E)仅具有亲水基团,而无亲油基因3 下列关于表面活性剂的叙述中错误的是( )(A)表面活性剂分子可在溶液表面作定向排列(B)能够降低溶液表面张力的物质叫作表面活性剂(C)能够显著降低溶液表面张力的物质叫作表面活性剂(D)表面活性剂分子结构中具有亲水基与亲油基(E)表面活性剂在溶液表面层的浓度大于其在溶液内部的浓度4 下列属于阳离子型表面活性剂的为( )(A)吐温类(B)洁尔灭(C)磺酸化物(D)硫酸化物(E)肥皂类5 下列属于阴离子型表面活性剂的是( )(A)十六烷基硫酸钠(B)Poloxamer 188(C)Tego(D)司盘65(E)蔗糖脂肪酸酯6 以吐温80为乳化剂制备的乳剂灭菌后出现浑浊现象,最可能的原因是( ) (A)吐温80被水解(B)吐温80被氧化(C)吐温80被增溶(D)吐温80发生了起昙现象(E)吐温80发生了聚合反应7 下列属于两性离子型表面活性的是( )(A)卵磷脂(B)肥皂类(C)聚山梨酯(D)脂肪酸甘油酯(E)季铵盐类8 十二烷基硫酸钠属于( )(A)两性离子型表面活性剂(B)阳离子型表面活性剂(C)阴离子型表面活性剂(D)非离子型表面活性剂(E)灭菌与防腐剂9 聚氧乙烯脱水山梨醇单油酸酯的商品名称是( ) (A)Tween 20(B)Tween 80(C)Span 40(D)Tween 60(E)Span 8010 下列属于非离子型表面活性剂的是( )(A)HPMC(B)SLS(C)Tego(D)lecithin(E)polysorbate11 下列属于非离子型表面活性剂的是( )(A)polysorbate 80(B)lecithin(C)sodium cholate(D)MCC(E)SDS-Na12 吐温类表面活性剂的化学名称是( )(A)失水山梨醇脂肪酸酯类(B)聚氧乙烯失水山梨醇脂肪酸酯类(C)山梨醇脂肪酸酶类(D)三油酸甘油酯类(E)聚乙烯脂肪酸酯类13 下列关于Tween 80的描述中错误的是( ) (A)Tween 80可作为O/W型乳剂的乳化剂(B)Tween 80能与抑菌剂羟苯酯类形成络合物(C)Tween 80属于非离子型表面活性剂(D)Tween 80在碱性溶液中易水解(E)在常用的表面活性剂中,吐温80的溶血作用最强14 吐温类表面活性剂不具有( )(A)助溶作用(B)增溶作用(C)润滑作用(D)乳化作用(E)分散作用15 可静脉注射用亚微米乳的乳化剂为( )(A)吐温85(B)司盘80(C)蔗糖脂肪酸酯(D)SDS(E)lecithin16 最适合作W/O型乳化剂的HLB值是( ) (A)1~3(B)3~8(C)7~15(D)9~13(E)0.5~2017 O/W型乳化剂的HLB值一般在( )(A)6~9(B)3~8(C)3~20(D)8~16(E)15~4018 表面活性剂的增溶机制,是由于形成了( ) (A)共价键(B)复合物(C)络合物(D)聚合物盐(E)胶束19 下列表面活性剂中具有Krafft点的是( )(A)单硬脂酸甘油酯(B)司盘类(C)肥皂类(D)聚氧乙烯脂肪酸酯(E)吐温类20 临界胶束浓度的缩写为( )(A)MC(B)CMS-Na(C)MAC(D)CMC(E)LDso21 与表面活性剂增溶作用相关的表面活性剂性质是( ) (A)HLB值(B)溶液中形成胶束(C)界面活性(D)昙点或浊点(E)溶液与气体表面的正吸附22 下列具有昙点的表面活性剂为( )(A)肥皂类(B)硫酸化物(C)磺酸化物(D)聚山梨酯类(E)脂肪酸山梨坦类23 具有起昙现象的表面活性剂是( )(A)卵磷脂(B)壳聚糖(C)吐温40(D)司盘20(E)三乙醇胺24 增溶剂的HLB值范围一般在( )(A)3~6(B)6~8(C)8~10(D)15~18(E)8~1825 发挥润湿剂作用的表面活性剂,其HLB值一般在( ) (A)3~8(B)7~9(C)8~16(D)13~16(E)15~1826 某挥发油形成稳定乳剂所需HLB值为11.4,现拟用吐温80(HLB=15.0)和司盘80(HLB=4.3)的混合乳化剂,则两者的比例应为( )(A)1:1(B)1:2(C)1:3(D)2:1(E)3:127 将Tween80(HLB=15.0)与Span 80(HLB=4.3)按照4:6的比例混合,则混合物的HLB值为( )(A)4.8(B)6.6(C)8.6(D)12.6(E)15.228 下列有关表面活性剂的正确描述是( )(A)阳离子型表面活性剂具有很强杀菌作用,故常用作杀菌和防腐剂(B)表面活性剂用作乳化剂时,其浓度必须达到临界胶团浓度(CMC)(C)非离子型表面活性的亲水亲油平衡值(HLB)值越小,其亲水性越大(D)表面活性剂均有很高毒性,故应注意给药途径(E)表面活性剂的使用浓度要在临界胶团浓度(CMC)以下,才有增溶作用29 下列对表面活性剂的HLB值表述正确的是( )(A)表面活性剂的亲油性越强,其HLB值越大(B)表面活性剂的亲水性越强,其HLB值越大(C)表面活性剂的CMC越大,其HLB值越小(D)离子型表面活性剂的HLB值具有加和性(E)表面活性剂的HLB值就是油相或水相中的溶解能力30 有关HLB值的错误描述是( )(A)表面活性剂分子中亲水和亲油基团对油或水的综合亲和力称为HLB值(B)HLB值在8-18的表面活性剂,适合用作O/W型乳化剂(C)亲水性表面活性剂有较低的HLB值,亲油性表面活性剂有较高的HLB值(D)非离子型表面活性剂的HLB值有加合性(E)一般将表面活性剂的HLB值限定在0—20之间31 下列术语与表面活性剂特性无关的是( )(A)CMC(B)Krafft point(C)cloud point(D)Z值与F0值(E)HLB32 不同HLB值的表面活性剂用途不同,下列叙述中错误的是( )(A)增溶剂最适范围为15—18以上(B)O/W型乳化剂最适范围为8~16(C)润湿剂与铺展剂最适范围为7~9(D)去污剂最适范围为13—16(E)大部分消泡剂最适范围为5-833 下列有关表面活性剂的叙述中错误的是( )(A)表面活性剂的CMC越低、缔合数越大,增溶的MAC就越高(B)不是所有的聚氧乙烯类表面活性剂都具有昙点(C)在CMC以上,随着表面活性剂用量的增加,增溶量也相应增加(D)某表面活性剂的昙点是其应用温度的下限(E)Krafft点是离子型表面活性剂应用温度的下限34 下列表面活性剂中毒性最小的是( )(A)阴离子型表面活性剂(B)两性离子型表面活性剂中的氨基酸型(C)阳离子表面型活性剂(D)非离子型表面活性剂(E)两性离子型表面活性剂中的甜菜碱型35 聚山梨酯类表面活性剂溶血作用的顺序为( )(A)聚山梨酯20>聚山梨酯60>聚山梨酯40>聚山梨酯80(B)聚山梨酯80>聚山梨酯60>聚山梨酯40>聚山梨酯20(C)聚山梨酯80>聚山梨酯40>聚山梨酯60>聚山梨酯20(D)聚山梨酯40>聚山梨酯20>聚山梨酯60>聚山梨酯80(E)聚山梨酯40>聚山梨酯80>聚山梨酯60>聚山梨酯2036 常用表面活性剂溶血作用大小正确的顺序为( )(A)聚氧乙烯烷芳基醚<聚山梨酯类<聚氧乙烯烷基醚<聚氧乙烯脂肪酸酯类(B)聚氧乙烯烷基醚>聚氧乙烯烷芳基醚>聚氧乙烯脂肪酸酯>聚山梨酯类(C)聚山梨酯类>聚氧乙烯烷芳基醚>聚氧乙烯脂肪酸酯>聚氧乙烯烷基醚(D)聚氧乙烯烷芳基醚<聚氧乙烯烷基醚<聚山梨酯类<聚氧乙烯脂肪酸酯类(E)聚氧乙烯烷基醚<聚氧乙烯烷芳基醚<聚氧乙烯脂肪酸酯<聚山梨酯类37 下列表面活性剂中,毒性最强的是( )(A)苯扎氯铵(B)肥皂(C)平平加0(D)司盘80(E)吐温8038 下列关于表面活性剂的叙述中错误的是( )(A)吐温80的溶血作用最小(B)阳离子型表面活性剂的毒性最小(C)卵磷脂无毒、无刺激性、无溶血性(D)Poloxamer 188可作为静脉注射脂肪乳剂的乳化剂(E)阴离子型表面活性剂较非离子型表面活性剂具有较大的刺激性39 下列表面活性剂中属于W/O型乳化剂的是( )(A)Arabic gum(B)Myrij 45(C)Span 80(D)Fween 80(E)Pluronic F 6840 与表面活性剂增溶相关的性质为( )(A)表面活性(B)在溶液表面定向排列(C)HLB值(D)形成胶束(E)昙点41 可作为杀菌剂的表面活性剂是( )(A)非离子型表面活性剂(B)肥皂类(C)两性离子型表面活性剂(D)阳离子型表面活性剂(E)阴离子型表面活性剂42 可作为消毒剂的表面活性剂是( )(A)Tego(B)Cremophor EL(C)Brij 72(D)Pluronic F 68(E)SDS-Na43 Tween80可提高尼泊金类防腐剂的溶解度,但不能增加抑菌力,其原因( ) (A)前者不能改变后者活性(B)两者之间起化学作用(C)两者之间形成复合物(D)形成胶团包裹防腐剂(E)前者使后者分解44 作为疏水性药物常用润湿剂的HLB值范围是( )(A)HLB值在5~20之间(B)HLB值在3—8之间(C)HLB值在7-9之间(D)HLB值在7-13之间(E)HLB值在8~16之间45 下列关于表面活性剂的叙述中正确的是( )(A)表面活性剂既可能促进药物的吸收也可能降低药物的吸收(B)阴离子型表面活性剂与阳离子型表面活性剂不能配伍使用(C)司盘类是常用的去污剂(D)吐温类表面活性剂对皮肤和黏膜的刺激性较小,可大剂量长期使用(E)增溶质同系物随着烃链的增加,其溶解能力上升46 下列关于表面活性剂的叙述中错误的是( )(A)表面活性剂静脉注射的毒性远大于口服给药(B)表面活性剂与蛋白质可发生相互作用(C)一般来讲,非离子型表面活性剂毒性最大(D)表面活性剂长期应用或高浓度使用于皮肤或黏膜,也会出现皮肤或黏膜损伤(E)温度升高,可使聚氧乙烯类表面活性剂的CMC减少,胶束聚集数增加47 下列关于表面活性剂的叙述正确的是( )(A)阴离子型表面活性剂一般作消毒剂使用(B)卵磷脂是非离子型表面活性剂(C)表面活性剂作增溶剂时浓度应大于CMC(D)所有非离子型表面活性剂均具有昙点(E)Krafft点是非离子型表面活性剂的特征值,但与增溶无关48 与表面活性剂应用无关的作用是( )(A)增溶作用(B)杀菌作用(C)润湿作用(D)乳化作用(E)助溶作用49 下列有关增溶的叙述中正确的是( )(A)就增溶剂而言,同系物碳链愈长,则增溶量愈小(B)就药物性质而言,同系物药物分子量愈大,则增溶量愈大(C)增溶剂与药物的混合顺序与增溶无关,增溶量只与温度及增溶剂用量有关(D)药物增溶后形成澄明溶液,但用溶剂稀释后反而会产生浑浊(E)增溶是利用药物与表面活性剂形成络合物的性质50 HLB值用于体现( )(A)乳化能力大小(B)增溶能力大小(C)亲水性大小(D)润湿能力大小(E)消泡能力大小51 属于非离子表面活性剂的是( )。

重要的表面活性剂体系

重要的表面活性剂体系

(4) 生物矿化
(5) 抑制金属腐蚀
对1mol/L 的HCl中的金属铁有很 好的保护作用 Bola浓度越大,保护效果越明 显, 最高可达94%。
Bola型表面活性剂小结
疏水链的两端各有一个极性基团。 极性基团可以是阳离子,阴离子,非离子型;也可 以相同或不同。 疏水链可以是一条,两条,或一条长链和两个短链 的组合(环形);也可以为刚性或柔性。 Bola型表面活性剂在水溶液表面采取倒U-型构像, 表面活性总体上不如传统表面活性剂。 聚集行为丰富,可以用来调节囊泡膜的功能,以及 通过自身的自组装在不同领域里具有不同的应用前 景。
当间隔基团较短时,两个单体 之间距离很小,间隔基团伸展,所 以分子面积随间隔基团长度增加; 而当间隔基团很长时,会弯向疏水 链,从而使分子的平均占有面积不 再增加。
3. 间隔基团对Gemini型表面活性剂性质的影响
3.1 对CMC的影响
CMC 与间隔基团的长度有 关,但不是单调的关系,变化也不 大。间隔基团为亚甲基时,亚甲基 数目为4~6时体系CMC最大;进 一步增加亚甲基长度则CMC降 低。
Gemini 体系解离解离示意图
+
2RT
+ 2
3RT
平均最小分子面积Amin
A= 1
Γ • Na
普通、Bola表面活性剂同系 物体系,气液界面吸附分子 平均占有面积相等。 Gemini体系气液界面吸附分 子平均占有面积随s变化, 有极大值。 Gemini体系表面张力法测得 的吸附量和平均分子面积具 有模型依赖性。
Bolaamphiphiles Bolaphiles Bolaform surfactants alpha-omega-type
2. Bola型表面活性剂的结构特征

第四章(四).两性离子和非离子表面活性剂

第四章(四).两性离子和非离子表面活性剂

C17H35COOH + n CH2 CH2 O
C17H35
O R C O R C NH2 + m+n CH2 CH2 O N
ቤተ መጻሕፍቲ ባይዱ
CH2 CH2 O n H CH2 CH2 O mH H CH2 CH2 O m+n H
O R C N
6501是二乙醇胺与已形成的酰胺复合而形成水溶 性好的复合物。是一种常用的工业乳化剂。耐水 解,且能在碱性介质中应用
三、浊点——非离子表面活性剂 该方法是鉴定非离子表面活性剂的常用方法, 鉴定时会受到其他物质的干扰。当存在少 量阴离子时,会使浊点升高或受抑制。有 无机盐共存时会使浊点下降。 方法:配制1%待测试样溶液(不必很准确), 将试样取5~10ml于一试管中,插于1支温 度计,边加热边搅动。试管中溶液变浑时 的温度即为浊点。浑溶液变澄清时的温度 即为浊点。
CH3 CH2 CH2 CH
n CH2 CH2 CH3 CH3 O CH3 CH2 CH2 CH CH CH3
O
CH2 CH2 O n H
3、脂肪酸、脂肪胺、脂肪酰胺与环氧乙烷加成物
C18H37NH2 + m+n CH2 CH2 O CH2 CH2 O n H C18H37N O C O CH2 CH2 O mH CH2 CH2 O n H
2、碱性溴酚蓝法——季胺盐、脂肪胺 碱性溴酚蓝溶液配制:称取2.5克溴酚蓝试样, 溶解于50ml蒸馏水中,并加入1克NaOH。 方法:取2ml1%待测试样,加入0.2ml碱性溴 酚蓝溶液,溶液呈蓝色,再加入5ml氯仿, 激烈振荡,蓝色转移到氯仿层,分离出氯 仿层,于其中边振荡边滴加十二烷基苯磺 酸钠标准溶液,氯仿层逐渐变成无色,表 明有季铵盐存在。

药剂学电子书第五版 (第四章表面活性剂)

药剂学电子书第五版 (第四章表面活性剂)

第四章表面活性剂第一节概述一、表面活性剂的概念一定条件下的任何纯液体都具有表面张力,20℃时,水的表面张力为72.75mN·m-1。

当溶剂中溶入溶质时,溶液的表面张力因溶质的加入而发生变化,水溶液表面张力的大小因溶质不同而改变,如一些无机盐可以使水的表面张力略有增加,一些低级醇则使水的表面张力略有下降,而肥皂和洗衣粉可使水的表面张力显著下降。

使液体表面张力降低的性质即为表面活性。

表面活性剂是指那些具有很强表面活性、能使液体的表面张力显著下降的物质。

此外,作为表面活性剂还应具有增溶、乳化、润湿、去污、杀菌、消泡和起泡等应用性质,这是与一般表面活性物质的重要区别。

二、表面活性剂的结构特征表面活性剂分子一般由非极性烃链和一个以上的极性基团组成,烃链长度一般在8个碳原子以上,极性基团可以是解离的离子,也可以是不解离的亲水基团。

极性基团可以是羧酸及其盐、磺酸及其盐、硫酸酯及其可溶性盐﹑磷酸酯基﹑氨基或胺基及它们的盐,也可以是羟基、酰胺基、醚键﹑羧酸酯基等。

如肥皂是脂肪酸类(R-COO-)表面活性剂,其结构中的脂肪酸碳链(R-)为亲油基团,解离的脂肪酸根(COO-)为亲水基团。

三、表面活性剂的吸附性1.表面活性剂分子在溶液中的正吸附表面活性剂在水中溶解时,当水中表面活性剂的浓度很低时,表面活性剂分子在水-空气界面产生定向排列,亲水基团朝向水而亲油基团朝向空气。

当溶液较稀时,表面活性剂几乎完全集中在表面形成单分子层,溶液表面层的表面活性剂浓度大大高于溶液中的浓度,并将溶液的表面张力降低到纯水表面张力以下。

表面活性剂在溶液表面层聚集的现象称为正吸附。

正吸附改变了溶液表面的性质,最外层呈现出碳氢链性质,从而表现出较低的表面张力,随之产生较好的润湿性、乳化性、起泡性等。

如果表面活性剂浓度越低,而降低表面张力越显著,则表面活性越强,越容易形成正吸附。

因此,表面活性剂的表面活性大小,对于其实际应用有着重要的意义。

第四章表面活性剂的分析

第四章表面活性剂的分析
无机盐,蔗糖,甘露醇
非表面活性剂
σ
醇,醛,酸,酯
0 0
Conc.
溶液浓度与表面张力的关系
表面活性剂
Company Logo
表面活性剂的分子结构特点
表面活性剂由非极性的亲油基团和亲水的极性 表面活性剂由非极性的亲油基团和亲水的极性 基团两部分组成 组成, 基团两部分组成,这里其亲油基可以是一个或 多个,亲水基也可以是一个或多个。 多个,亲水基也可以是一个或多个。 表面活性剂分子不对称的双亲结构 双亲结构, 表面活性剂分子不对称的双亲结构,使它具有 亲水和亲油的双重性质, 亲水和亲油的双重性质,从而使其溶液呈现出 与其它物质的溶液不同的特性。 与其它物质的溶液不同的特性。
用下易水解成蔗糖和脂肪酸。 用下易水解成蔗糖和脂肪酸。
♦ 应用:HLB 5~13,表面活性弱,用作O/W型乳化剂。 应用: 13,表面活性弱,用作O/W型乳化剂。 O/W型乳化剂
Company Logo
♦ ⑵脂肪酸山梨醇: 脂肪酸山梨醇:
O
CH2OOCR
山梨糖醇及其单酐和二酐+ 山梨糖醇及其单酐和二酐+各种脂肪酸 →脱水山梨醇脂肪酸酯的混合物 (司盘,span) 司盘,
Company Logo
♦ ⑶聚山梨酯(polysorbate): 聚山梨酯(polysorbate) (polysorbate):
O
CH2OOCR
脱水山梨醇脂肪酸酯+ 脱水山梨醇脂肪酸酯+环氧乙烷 2H4O)xO H(C →聚氧乙烯脱水山梨醇脂肪酸酯 (吐温,Tween) 吐温,O(Leabharlann 2H4O)yH O(C2H4O)zH
companylogo非离子表面活性剂的羟值常用酸酐测定法该法的原理是酸酐先与表面活性剂上的羟基发生酯化反应再用氢氧化钠标准溶液滴定剩余的酸酐和产生的酸由消耗的酸酐的量可求出羟也可以在非离子表面活性剂溶液中加入过量铁氰化钾溶液使之产生沉淀然后用硫酸锌标准溶液滴定剩余的铁氰化钾终点指示剂为二苯胺

第4章阴离子表面活性剂

第4章阴离子表面活性剂
磺化反应的作用磺化反应的作用生成表面活性剂生成表面活性剂赋予有机化合物水溶性和酸性赋予有机化合物水溶性和酸性选择性磺化用于分离异构体选择性磺化用于分离异构体如二甲苯三个异构体间二甲苯最先磺化溶如二甲苯三个异构体间二甲苯最先磺化溶引入磺酸基可以得到一系列中间产物引入磺酸基可以得到一系列中间产物然后再进一步反应然后再进一步反应各种常见的磺化剂各种常见的磺化剂4242磺酸盐由于磺基硫原子与碳原子直接相磺酸盐由于磺基硫原子与碳原子直接相连较硫酸酯盐更稳定在酸性溶液连较硫酸酯盐更稳定在酸性溶液中不发生水解加热时也不易分解
烷基苯磺酸钠的生产路线有多条,如 图所示:
分子筛
煤油
尿素络合
正构烷烃

氯化再氢脱HCl来自正构烷烯烷基化
石蜡 乙烯
裂解 齐格勒聚合
a-烯烃
丙烯
四聚丙烯

发烟硫酸

磺化
基 NaOH 中



苯 SO 3 磺化 磺

烷基苯磺酸钠
烷基苯磺酸钠生产工艺路线
分子筛
煤油
正构烷烃
尿素络合
脱 氯化再 氢 脱HCl
正构烷烯 烷基化
R-OPO3Na
R-COO-
Na+
二、特点:阴离子型表面活性剂由于溶 于水后能够离解出具有表面活性的带 负电荷的基团而得名。
三、用途:是用量最大、品种最多的一 类表面活性剂产品,价格低廉、性能 优异、用途广泛。可用于洗涤剂、润 湿剂、发泡剂、乳化剂等。
四、发展:从草木灰到肥皂、合成红油、
进而出现了各类合成的阴离子型表面 活性剂。到2002年,我国的阴离子型 表面活性剂的产量是67.1万吨,占表 面活性剂总量的77.1%。是最早使用的 一类表面活性剂。

第4章 表面活性剂在固液界面的吸附作用

第4章 表面活性剂在固液界面的吸附作用
26
4.1 固体自稀溶液中吸附的特点
4.1.2 稀溶液吸附 3.吸附量及其测定 (1)固体自溶液中的吸附量测定(浓差法): 对于二组分稀溶液,一般的关系是:
n0 x2 2 x1 1 x2 m
式中,Δx2=x20-x2,x代表溶液中的摩尔分数,下标1 和2分别表示溶剂和溶质,下标0表示吸附前溶液的数量, n代表物质的量,m代表吸附剂的量。
10
4.1 固体自稀溶液中吸附的特点
4.1.1 固体表面特点 3. 固体表面的电性质 固体与液体接触后可因多种原因而使固体表面带 有某种电荷,原因如下: (1)电离作用 硅胶在弱酸性和碱性电解质中,表面硅酸电离而 使其带负电 活性炭表面的一些含氧基团在水中也可电离,在 中性介质中通常带负电
3
概述
吸附剂: 具有吸附能力的固体物质。 吸附质: 被吸附的物质。 在研究表面活件剂在固液界面吸附时通常把表面 活性剂叫做吸附质,固体叫做吸附剂。 注意: 吸附只发生在相界面上,被吸附的物质并 不进入到固体内部,否则就称为吸收。如镍-氢电 池中储氢材料对氢气的吸收等,而非简单的吸附。 物理吸附: 吸附剂与吸附质之间以范德华力相互 作用而发生的吸附。
132固体自稀溶液中吸附的特点固体表面特点低表面能固体和高表面能固体固体表面能mjm固体表面能mjm聚六氟丙烯18聚对苯二甲43聚四氟乙烯195石英325石蜡255氧化锡440聚乙烯355184010132固体自稀溶液中吸附的特点固体表面特点固体表面的电性质固体与液体接触后可因多种原因而使固体表面带有某种电荷原因如下
11
4.1 固体自稀溶液中吸附的特点
4.1.1 固体表面特点
3. 固体表面的电性质 (2)选择性吸附 有些固体优先自水吸附H+或OH-而使其带正电或 负电。

第四章_表面活性剂的润湿功能

第四章_表面活性剂的润湿功能

(3)铺展:以固液界面取代固气界面同时,液体表面 扩展的过程。
铺展系数S = γsg -(γlg + γsl) = -∆G ≥ 0 时液体可以在固体表 面上自动展开,连续地从固体表面上取代气体。
又可写成:S = Wi-γlg ,则: 若要铺展系数大于0,则Wi必须大于γlg。
γlg是液体表面张力,表征液体收缩表面的能力。与之 相应,Wi则体现了固体与液体间粘附的能力。因此,又称 之为黏附张力。用符号A表示。
(1)沾湿:液体与固体由不接触到接触,变液气界面和固 气界面为固液界面的过程
Wa = γlg +γsg – γsl = -∆G Wa: 粘附功 > 0 自发
(2)浸湿:固体浸入液体的过程。(洗衣时泡衣服)固气 界面为固液界面替代, 液体表面并无变化。
-∆G = γsg - γsl = Wi
Wi: 浸润功 >0 是浸湿过程能否自动进行的依据
(2)对比三者发生的条件
沾湿: Wa = γlg +γsg - γsl≥ 0 浸湿: γsg - γsl ≥ 0 铺展: S = γsg -(γlg + γsl) ≥ 0 (3)固气和固液界面能对体系的三种润湿作用的贡献是一致的。
2 接触角与润湿方程
将液体滴于固体表面 上,液体或铺展或覆 盖于表面,或形成一 液滴停于其上,此时 在三相交界处,自固 液界面经液体内部到 气液界面的夹角就叫 做接触角。
因此当表面层的基团相同时不管基体是否相同其高能表面的自憎现象虽然许多液体可在高能表面上铺展如煤油等碳氢化合物可在干净的玻璃钢上铺展但也有一些低表面张力的液体不能在高能表面上铺出现这种现象的原因在于这些有机液体的分子在高能表面上吸附并形成定向排列的吸附膜被吸附的两亲分子以极性基朝向固体表面而非极性基朝外排列从而使高能表面的组成和结构发生变化

表面活性剂物理化学第四章

表面活性剂物理化学第四章
上一内容 下一内容 回主目录
返回
2013-7-9
胶束形成的热力学
若不考虑溶剂,表面活性剂的胶束化应是熵减的过程。 因为胶束化是表面活性剂从无序到有序的过程。但这明 显与胶束化是一自发过程相矛盾。 实际上,从憎水效应的机理看,当憎水基聚集成胶束 内核时,冰山结构被破坏,水恢复为自由水分子。此过 程熵的增加应比表面活性剂的熵减少要大,因此,净结 果是总熵增加。可见,胶束的形成除水分子与烃之间的 斥力及憎水基间的范德华力外,更主要的是热力学因素。 即熵效应是胶束形成的主要推动力。
返回
2013-7-9
4.3 临界胶团浓度的测定及其影响因素 1、测定方法 (1)表面张力法(这是测定cmc的标准方法) 作γ-lnc曲线,从曲线的转折点可得CMC,此方法简单 、方便,可同时求得CMC和吸附量。
1 d RT d ln c
上一内容
下一内容
回主目录
返回
2013-7-9
临界胶团浓度的测定及其影响因素
(5)光散射法 胶团粒子的大小满足光散射的条件,因此,具有较强的丁择尔效 应(Tyndall effect).因此,可通过测定散射光强度随浓度的 变化以确定临界胶团浓度,此方法干扰少,具有普适性,是测定 CMC的好方法。
上一内容
下一内容
回主目录
返回
2013-7-9
上一内容 下一内容 回主目录
返回
2013-7-9
胶团的大小 胶团聚集数的大小与亲水基和憎水性的相对大小有关,与电解质
的存在与否、强度的高低有关,一般规律为:
(1)憎水基链长增加,胶团聚集数增加,半径增大,表面层面 积增大(对球形或椭球形)
(2)憎水基固定,聚氯乙烯链长增加,聚集数下降。半径不变

物理药剂学 第四章 药物的表面现象与表面活性剂

物理药剂学 第四章  药物的表面现象与表面活性剂

§2 表面活性剂的分类
天然、合成表面活性剂 离子型表面活性剂;非离子型表面活
性剂
水溶性和油溶性表面活性剂 高分子表面活性剂 保护胶体 水溶性高分子
高级脂肪酸盐
硫酸化物 阴离子 离子表面活性剂 阳离子 磺酸化物
1.碱金属皂 2.碱土金属皂 3.有机胺皂
两性离子:卵磷脂、氨基酸型和甜菜碱型 脂肪酸甘油酯 多元醇型 非离子表面活性剂 1.蔗糖脂肪酸酯 2. 脂肪酸山梨坦(司盘) 3.聚山梨酯(吐温) 1.聚氧乙烯脂肪酸酯
2. 聚氧乙烯型 (1)聚氧乙烯脂肪酸酯(酯型) 通式:RCOOCH2(CH2OCH2)nCH2OH e.g.:卖泽, Myrij;聚氧乙烯40硬脂酸酯 (polyoxyl 40 stearate), O/W型乳化剂 (2)聚氧乙烯脂肪醇醚(醚型) 通式:RO(CH2CH2O)nH e.g.:苄泽, Brij;Brij 30与Brij 35是不同分 子量聚乙二醇与月桂醇的缩合物 西土马哥、平平加0、埃莫尔弗 这一类表面活性剂通常被用作O/W型乳化剂
一价金属皂(钾、钠皂)
性质:易溶于水,在PH9以上稳定,在 PH9以下则析出脂肪酸而失去表面活性; 多价金属离子可与其结合成不溶性肥皂; 电解质使之盐析;乳化能力(O∕W) 很强,刺激性较大。 应用:一般只作外用。 钾皂potassium soap :制备液状皂,外 用醑剂
二价或多价皂(铅、钙、铝皂)
聚氧乙烯型
2.聚氧乙烯脂肪醇醚
聚氧乙烯-聚氧丙烯共聚物
一、离子型表面活性
阴离子:高级脂肪酸盐、硫酸化物、 磺酸化物、胆盐 阳离子:季铵类化合物 两性离子型:卵磷脂、氨基酸型和甜 菜碱型
(一)阴离子表面活性剂
1. 高级脂肪酸盐 通式:(RCOO-)nMn+ e.g.:硬脂酸钠、钙、镁等 分类: 一价金属皂(钾、钠皂); 二价或多价皂(铅、钙、铝皂); 有机胺皂(三乙醇胺皂) 性质:具有良好的乳化能力,易被酸破坏。 应用:具有一定的刺激性,多供外用。

表面活性剂化学第四章

表面活性剂化学第四章

• ②表面张力法 • 测定原理:表面活性剂水溶液的表面张力-浓 度对数曲线上在cmc处存在一转折点。测定不 同浓度下表面活性剂水溶液的表面张力,然后 作-logc曲线,曲线转折点的浓度即为临界胶 团浓度。 • 假若存在杂质,往往在cmc附近,表面张力 值出现极小。这时需要提纯后再测。表面张力 法对离子型和非离子型表面活性剂都适用。
• 3. 影响表面活性剂分子有序组合体形态 的因素
• (1)浓度
• • 当其浓度小于cmc时,表面活性剂存在几个 分子的聚集体,常称小于10倍cmc,形成的胶束一般
为球形。


当表面活性剂浓度大于10倍cmc时,往往有 棒状、盘状等不对称形状的胶束形成。由球形 向棒状胶团转化时,对应的浓度称为第二临界 胶束浓度。

此法的关键是必须选择合适的染料:根据 同性电荷相斥,异性电荷相吸的原理,选取与
表面活性离子电荷相反的染料(一般为有机离
子)。 • 方法特点: 因染料的加入影响测定的精确性, 对cmc较小的表面活性剂影响更大。另外, 当 表面活性剂中含有无机盐及醇时,测定结果不
甚准确。
• ④光散射法 • 测定原理:光散射法是基于表面活性剂在其水 溶液中的浓度大于临界胶团后会形成胶团,胶 团是几十个或更多的表面活性剂分子或离子的 缔合物,其大小符合胶粒大小的范围,故对光 有较强的散射作用。从光散射-浓度曲线的转 折点可测出临界胶团浓度。 • 方法特点:此法除可获得cmc值外,还可测定 胶束的聚集数、胶束的形状和大小及胶束的电 荷量等有用的数据,这些优于上述其他方法。 然而,该法要求待测溶液非常纯净,任何杂质 质点都将影响测定结果。
V p a0 l c
两亲分子结构对自组装体形成的影响
临界堆 积参数 两亲分子 结构 临界堆积 形状 自组装体 形状 自组装体 类型

《表面活性剂》第四章-阴离子表面活性剂(转)

《表面活性剂》第四章-阴离子表面活性剂(转)
的量比为(0.05-0.1):1。
④反应压力的影响 使用三氯化铝作催化剂时不存在催化剂
的汽化问题,但从操作方便上考虑多采用 微负压下反应
抚顺石化公司洗涤剂化工厂年产烷基苯 10万吨、烯烃7.5万吨
抚顺洗涤剂化学厂年产烷基苯7.2万吨、 脂肪醇5万吨
§4.2.3 烷基芳烃的磺化
§4.2.3.1 烷基苯磺化机理 (1)、磺化试剂
反之,碳原子数越多,烷基链越长,疏 水性越强,越难溶解。(见P76图4-1)
§4.2.1.2 表面张力
随着直链烷基苯磺酸钠烷基碳原子数的 增加,表面张力值呈下降趋势。(图4-2)
这里所指的表面张力是表面活性剂浓度 高于CMC时溶液的表面张力。
§4.2.1.3 润湿力
随着直链烷基苯磺酸钠烷基碳原子数的 增加,表面活性剂的润湿力呈下降趋势。 (图4-5)
及生产方法 3、了解各类阴离子表面活性剂的应用
§4.1 阴离子表面活性剂概述
§4.1 阴离子表面活性剂的分类 §4.2 磺酸基引入方法
阴离子表面活性剂的特性
1)溶解度随温度的变化存在明显的转折点,即 在较低的一段温度范围内溶解度随温度上升非常 缓慢,当温度上升到某一定值时溶解度随温度上 升而迅速增大,这个温度叫做表面活性剂的克拉 夫点(Krafft point)。一般离子型表面活性剂 都有Krafft点。
5)在疏水链和阴离子头基之间引入短的聚 氧丙烯链可改善其在有机溶剂中的溶解 性,但同时也降低了其生物降解性。
6)羧酸盐在酸中易析出自由羧酸,硫酸盐 在酸中可发生自催化作用迅速分解,其 他类型阴离子表面活性剂在一般条件下 是稳定的。
7)阴离子表面活性剂是家用洗涤剂、工业 洗涤剂、干洗剂和润湿剂的重要成分。
生产能力年递增6-7%。

第四章 表面活性剂(一)

第四章 表面活性剂(一)

3. 硅化合物类:如下所示的聚硅氧烷链疏水性很突出
H3C
CH3 CH3
C Si
(O
CH3 CH3
CH3
Si )4
CH3
非极性基团:
1. 最常见的是8-18碳的直链烷烃,或环烃等
如 C17H35-,R-

2. 全氟表面活性剂:将上述碳氢链中的氢原子全部用 氟原子取代即可。其疏水作用强于碳氢链,其水溶液 表面张力可低至20mN/m以下
能溶解相当量的不溶(或不易溶)于水的有机物质。如果是 无机盐水溶液,一般由于“盐析”作用,浓度增加易使其溶 解有机物的能力减小,而表面活性剂电解质则相反,溶解有 机物的能力随浓度上升。
图4-7 (CH3)2N— —N=N—
图4-8 染料“AB黄”在表面活性剂 C12H25SO3H水溶液中的溶量 S(25℃)
第四章(Ⅰ) 表面活性剂
曲线1是表面张力随浓度增
加而稍有上升。(NaCl、
1
KNO3、HCl等)
曲线2是表面张力随浓度增
加而缓慢下降。(乙醇、丁
2
醇、醋酸等)
曲线3是表面张力在稀溶液
3
范围内随浓度的增加而积剧
下降,表面张力降至一定程
度后便下降很慢,或基本不
浓度
下降.(表面活性剂)
图4-1 水溶液浓度与表面张力的关系
这一概念上世纪初由McBain提出,1925年当McBain在 伦敦的一个学术会议上提出肥皂这类物质的溶液含有导电的 胶体电解质,并且是严格的热力学稳定体系时,当时的会议 主席竟然以“胡说”的无理言辞代替了讨论。当然科学的历 史证明了McBain的正确。
临界胶束浓度 ( CMC ) (Critical Micelle Concentration)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.4 表面活性剂聚集体的微观性质

表面活性剂在水中形成多样的聚集结构,但争论也较 多。

目前一般认为,当表面活性剂浓度小于CMC时,表面 活性剂已存在几个分子的聚集体,称为预胶束,其数 量较少,而且不稳定。

浓度超过CMC以后,表面活性剂自发形成胶束,如果 体系中不含添加剂,表面活性剂浓度大于CMC不多时, 形成的胶束一般为球形;浓度大于CMC10倍时,往往

原因:表面活性剂溶于水后首先在表面吸附并定向排列, 达到一定值时表面达到饱和吸附,表面张力不再降低,内 部分子开始聚集,形成胶束,用CMC表示。
•CMC(critical micelle concentration)由不同方法得到的 数值有所不同,通常以表面张力方法为准。

有如下规律:
(1)疏水基相同时,直链非离子型表面活性剂的CMC大 约比离子型表面活性剂小两个数量级; (2) 同系物中,不论离子型的还是非离子型的活性剂, 疏水基的碳原子数目越多,CMC就越低。可以看出, 对于直链的离子型表面活性剂,具有同一个亲水基团 的同系物,疏水基每增加两个碳原子,CMC约降低为 原来的1/4。对于直链非离子型活性剂,每增加两个碳 原子,其CMC值约降低到原来的1/10。根据经验总结,
其中,m代表侧链的亚甲基数,一般为8,10,12,s代表 两极性头之间的亚甲基数。

Bola型表面活性剂:双头单尾,由疏水链两端各连接一个 亲水基团构成

X(CH2)16N+Me3Br
具有高度的热稳定性,在生物膜模拟方面具有极好的应用 前景。
6.2 表面活性剂在溶液界面上的吸附---Gibbs吸附

非离子表面活性剂原料来源广泛,性质稳定,不受盐类及 溶液pH的影响,而且可与阴、阳离子型表面活性剂混合使 用,在水和有机溶剂中均可溶解,因而应用范围极为广泛。
(4) 两性活性剂

可分为非离子-阴离子型、非离子-阳离子型、阴离子-阳离 子型和阴离子-阳离子-非离子型四类,如

聚氧乙烯烷基醇醚硫酸脂钠盐 RO(CH2CH2O)n SO3Na 二聚氧乙烯基烷基甲基氯化铵 [RCH3N(CH2CH2O)n1H (CH2CH2O)n2H]Cl 烷基二甲基铵丙酸内盐 R(CH3)2N+CH2CH2COO咪唑啉




根据其碱性(胺基或季胺基)和酸性基团(羧酸、磺酸、 硫酸和磷酸)对pH的敏感性可分为pH敏感型和pH不敏感 型。若碱性基团和酸性基团均对pH敏感,则该表面活性 剂存在等电点,即它在水溶液中随着pH的变化可以不同 的离子形式存在。

若两性离子表面活性剂分子中只含有一个pH敏感基团, 如N-十二烷基甜菜碱,其季铵基团对pH不敏感,pH<5时 以正离子形式存在,pH≥5时均以两性离子形式存在,不 会以负离子形式存在。

有棒状、盘状等不对称形状的胶束。胶束由球形向棒状转 变的浓度称为第二临界胶束浓度。若体系中存在添加剂如 无机盐等,即使表面活性剂浓度没有大于10倍的CMC, 有时也可能出现不对称形状的胶束。

已发现不仅有层状、柱状胶束形成,而且有具有粘弹性的 虫状胶束等多种聚集结构形成。
憎水基团相同时,氧乙烯数目越多,浊点就越高。如壬基 酚聚氧乙烯醚的2%溶液,有9个氧乙烯基团的浊点在50度, 10个的在65度,11个的在75度。所以其CMC是随着温度 的上升而降低。 (2)电解质 强电解质能降低表面活性剂的CMC,以离子型 表面活性剂尤为显著。原因是反离子压缩双电层。 反离子价数越高,水合半径越小,降低CMC的能力越强。 (3)有机物 影响较为复杂,尚无定论。 (4)不同表面活性剂 复配增效作用
6.1 表面活性剂的分类

按结构分类 (1) 阴离子型表面活性剂 在水中解离后,起活性作用的是阴离子基团,又可分 为两种类型:

盐类型:由有机酸根与金属离子组成,如羧酸盐型, RCOO-Na+, 磺酸盐型RSO3-Na+

酯盐类型:既有酯的结构又有盐的结构,如硫酸酯盐, ROSO3-Na+, 磷酸酯盐ROPO3-Na+

通常将能够降低水的表面张力的物质称为表面活性物质。

也有一些物质并不要求降低水的表面张力,比如对固 体表面产生润湿或反润湿,对乳状液的乳化或破乳等, 也称为表面活性物质。

凡是能够使体系的表面状态发生明显变化的物质都可 称为表面活性物质。

第三类物质可以显著降低表面张力,且在溶液中形成 胶束等聚集体,产生增溶、去污等作用,称为表面活 性剂,第二类物质称为助表面活性剂。

结构特征:两种不同极性的原子基团组成,一种是亲 水基团,与水分子作用力较强;另一种是疏水基团, 容易与油分子接近。又叫双亲物质。

以硬脂酸钠为例,C17H35COONa,C17H35为疏水基团, COONa为亲水基团。常以 “─○”表示。

疏水部分的碳原子数目有一定范围,碳原子数较少, 不具有聚集成胶束的能力,太多则难溶于水,对于脂 肪酸钠盐,一般在8到20之间才有表面活性。

实验结果表明,对于直链脂肪酸、醇、胺来说, 只要疏水基的碳原子数目不大于8,不管碳链 长度如何,同系物的Γ∞值总是相近的。

由此求得醇类的S∞=0.274-0.289nm2, RCOOH 的S∞ =0.302-0.310nm2

数据表明表面上吸附的分子是定向排列的。但数据有所误 差,一是由于界面层的吸附分子周围不可避免地会存在水 分子,使数据偏大;二是仅考虑的表面过剩量,也使得计 算值大于实际值。
(5)水溶性大分子 具有一定疏水性的大分子往往使表面张 力等温线出现两个转折点。第一个转折点对应的表面活性 剂浓度小于CMC, 第二个大于CMC。这是由于表面活性 剂与大分子形成复合物所致。

第一个转折点意味着复合物开始形成,此时浓度称为临界 聚集浓度,以CAC表示;

表面活性剂浓度继续增大,结合达到饱和,正常胶束开始 形成,出现第二个转折点。此时体系中表面活性剂单体、 胶束、大分子和表面活性剂-大分子复合物平衡共存。
第六章

表面活性物质
物质溶于水后对水的表面张力影响有三种情况: I. 等 随溶液浓度增加而略有上升,如无机盐、酸、碱

II. 随着溶液浓度的增加表面张力逐渐下降,如低分子 醇、胺、羧酸等极性有机化合物

III. 随着溶液浓度的增加,溶液的表面张力先是急剧下 降,到了一定浓度后趋于恒定,如肥皂中的硬脂酸钠、 洗衣粉中的烷基苯磺酸钠等。

环境条件对表面活性剂的CMC影响也很显著
(1)温度 离子型表面活性剂存在Kraft点,即临界溶解 温度;非离子型表面活性剂则有浊点,即升高至某一 温度溶液会突然浑浊,表面活性剂析出。产生原因是 非离子表面活性剂的亲水性很弱。在水溶液中,聚氧 乙烯链呈折形,亲水的氧原子位于链的外侧,在升温 或加入盐类时水分子有脱离倾向,转而析出。

式中,R为摩尔气体常数,为吸附量,单位常采用mol.m2

此式只适用于非离子型表面活性剂,或含有过量的无机 盐(所含无机盐的一种离子与表面活性剂反离子相同)、 体系中保持离子强度恒定的离子型表面活性剂溶液。

若离子型表面活性剂溶液不含有过量的无机盐或未保持离 子强度恒定,由于表面活性离子、反离子已经与之相关的 等也要在表面上产生不同程度的吸附,兼顾电中性原则, Gibbs吸附公式应采取以下形式:

两性表面活性剂具有许多独特的性质,如对皮肤的低刺 激性,良好的抗盐性,且兼备阴离子和阳离子型表面活 性剂的特点,既可做洗涤剂、乳化剂,也可用作杀菌剂、 防霉剂和抗静电剂,因而发展较快。

(5) 高分子型表面活性剂 该类表面活性剂的相对分子质量一般在几千以上,甚至 高达几千万,也有非离子、阴离子、阳离子和两性型之 分,特点是相对分子质量大且含有极性和非极性两部分。

胺型 聚氧乙烯脂肪胺 酰胺型 聚氧乙烯烷基酰胺 混合型 吐温(Tween)是失水山梨糖醇脂肪酸聚氧乙烯 醚,属于脂醚型;

糖脂和糖醚 烷基多苷(APG)

其中R为疏水的烷基,x是糖苷单元的平均数目,通常 R=C4-C6,x=1-3。这是20世纪90年代后商品化的绿色 表面活性剂,无毒、对皮肤无刺激、易生物降解,很 有发展潜力。
(4)亲水基团相同,疏水基碳原子数亦相同,疏水基中含 有支链或不饱和键时,会使CMC升高。 (5)疏水基相同时,离子型表面活性剂的亲水基团对CMC 值影响较小,同价反离子交换对CMC影响很小。但二价 反离子取代一价反离子则使CMC显著降低。 (6)聚氧乙烯类非离子表面活性剂氧乙烯数目的增多会使 CMC稍有升高。
(6) 特殊表面活性剂

氟表面活性剂:以碳氟链为疏水基,如全氟辛酸 CF3(CF2)6可以使水的表面张力 降低至20mNm-1以下,而且能降低油的表面张力。化 学性质极为稳定,具有抗氧化、抗强酸和强碱及抗高 温等特性。

硅表面活性剂:以硅氧烷为疏水基,如二甲硅烷的聚合 物,其表面活性仅次于氟表面活性剂。

如聚氧乙烯聚氧丙烯二醇醚(即破乳剂4411)是一类 非离子型高分子表面活性剂,它是著名的原油破乳剂。 聚-4-乙烯溴化十二烷基吡啶是阳离子型的,聚丙烯酸 钠是阴离子型的。

有些高分子物质并不具有显著降低表面张力的作用, 也不形成胶束,但可以吸附于固体表面,从而具有分 散、稳定和絮凝作用,也被称为高分子表面活性剂。 如褐藻酸钠、羧甲基纤维素钠盐、明胶、淀粉衍生物、 聚丙烯酰胺、聚乙烯醇等。

表面活性物质在表面上的定向排列在液-液、固-液表面也 同样存在,如水-苯界面,润滑油与固体的界面,有时会 更明显。
6.3 表面活性剂的临界胶束浓度

溶液表面张力与表面活性剂浓度关系曲线上有一特征点, 过了这一点以后浓度虽然继续增加表面张力却不再变化。 而且其他物理化学性质也有突变,如摩尔电导率、渗透压 等性质。
相关文档
最新文档