(共34套)人教版高中数学必修一(全册)配套教学课件汇总
合集下载
高中数学必修全册人教版PPT
Rt⊿ SOH
Rt⊿ SOB Rt⊿ SHB Rt⊿ BHO
棱台由棱锥截得而成,所以在棱台中也有类似 的直角梯形。
第十三页,共101页。
棱台
结构特征
用一个平行于棱锥 底面的平面去截棱锥,底
面与截面之间的部分是棱 台.
D’
D A’
C’
B’
C
A
B
第十四页,共101页。
圆柱
结构特征
以矩形的一边所在直线为
锥的体积是( A)
(A)9
(B) 9 (C)7 (D)
7
2
2
A1 练5:一个正三棱台的上、下底
面边长分别为3cm和6cm,
高是1.5cm,求三棱台的侧
面积。
27 3 cm2
A
2
C1 B1
C B
第二十三页,共101页。
6.如图,等边圆柱(轴截面为正方
形ABCD)一只蚂蚁在A处,想吃C1
处的蜜糖,怎么走才最快,并求最短路
O’ O
第十七页,共101页。
球
结构特征
以半圆的直径所 在直线为旋转轴,半圆 面旋转一周形成的旋 转体.
半径
O 球心
第十八页,共101页。
空间几何体的表面积和体积
圆柱的侧面积: S 2 rl
面积
圆锥的侧面积: S rl
圆台的侧面积: S (r r)l
球的表面积: S 4 R2
柱体的体积: V Sh
A.1 B.1 C. 1 D.1 2 36
正视图 侧视图 俯视图
V
1 3 S底h
1 111 3
1 3
1 1
1
第四十页,共101页。
11.已知某个几何体的三视图如图2,根据图中标出的尺寸 (单位:cm),可得这个几何体的体积是___8_0__0_0_c.m 3
高中数学必修一全册课件(精校版)
函数的表示方法
函数的表示方法主要有三种,即解析法、列表法和图象法。解析法是用数学表达式表示两个变 量之间的对应关系;列表法是通过列表给出部分自变量与函数的对应值;图象法是用图象表示 两个变量之间的对应关系。
函数的基本性质
函数的单调性
函数的奇偶性
函数的周期性
函数的单调性是指函数在某个 区间上的增减情况。如果对于 区间I上的任意两个自变量的值 x1、x2,当x1<x2时,都有 f(x1)<f(x2),那么就说函数f(x) 在区间I上是增函数;如果对于 区间I上的任意两个自变量的值 x1、x2,当x1<x2时,都有 f(x1)>f(x2),那么就说函数f(x) 在区间I上是减函数。
,记作A=B。
空集
不含任何元素的集合叫做空集, 记作∅。空集是任何集合的子集 ,是任何非空集合的真子集。
集合的基本运算
01 并集
由所有属于集合A或属于集合B的元素所组成的集 合,叫做集合A与集合B的并集,记作A∪B。
02 交集
由所有既属于集合A又属于集合B的元素所组成的 集合,叫做集合A与集合B的交集,记作A∩B。
平面外一条直线与此平面内的一 条直线平行,则该直线与此平面 平行。
平面与平面平行的判定
一个平面内的两条相交直线与另 一个平面平行,则这两个平面平 行。
平行直线的性质
平行于同一直线的两条直线互相 平行;平行线间距离相等;平行 线间同位角、内错角相等。
直线与直线平行的判定
同位角相等,或内错角相等,或 同旁内角互补。
02
基本初等函数(Ⅰ)
指数函数
1 2ห้องสมุดไป่ตู้3
指数函数的概念
形如y=a^x(a>0且a≠1)的函数叫做指数函数 。
函数的表示方法主要有三种,即解析法、列表法和图象法。解析法是用数学表达式表示两个变 量之间的对应关系;列表法是通过列表给出部分自变量与函数的对应值;图象法是用图象表示 两个变量之间的对应关系。
函数的基本性质
函数的单调性
函数的奇偶性
函数的周期性
函数的单调性是指函数在某个 区间上的增减情况。如果对于 区间I上的任意两个自变量的值 x1、x2,当x1<x2时,都有 f(x1)<f(x2),那么就说函数f(x) 在区间I上是增函数;如果对于 区间I上的任意两个自变量的值 x1、x2,当x1<x2时,都有 f(x1)>f(x2),那么就说函数f(x) 在区间I上是减函数。
,记作A=B。
空集
不含任何元素的集合叫做空集, 记作∅。空集是任何集合的子集 ,是任何非空集合的真子集。
集合的基本运算
01 并集
由所有属于集合A或属于集合B的元素所组成的集 合,叫做集合A与集合B的并集,记作A∪B。
02 交集
由所有既属于集合A又属于集合B的元素所组成的 集合,叫做集合A与集合B的交集,记作A∩B。
平面外一条直线与此平面内的一 条直线平行,则该直线与此平面 平行。
平面与平面平行的判定
一个平面内的两条相交直线与另 一个平面平行,则这两个平面平 行。
平行直线的性质
平行于同一直线的两条直线互相 平行;平行线间距离相等;平行 线间同位角、内错角相等。
直线与直线平行的判定
同位角相等,或内错角相等,或 同旁内角互补。
02
基本初等函数(Ⅰ)
指数函数
1 2ห้องสมุดไป่ตู้3
指数函数的概念
形如y=a^x(a>0且a≠1)的函数叫做指数函数 。
人教版高中数学必修1全套PPT课件
图2
并集交集例题
例1.设集合A={x|-1<x<2},B={x|1<x<3}, 求AUB.A∩B
解:A B {x | 1 x 2}{x |1 x 3} x | 1 x 3
A B {x1 x 2}
可以在数轴上表示例2中的并集 交集,如 下图:
例3. 已知集合A={x -2≤x≤4},B={x x>a} ①若A∩B=φ,求实数a的取值范围; ②若A∩B=A,求实数a的取值范围.
-2 -1 0
1
234
x
-2 -1 0
1
234
x
引导探究二
并集性质
①A∪A= A ; ②A∪= A ;
③A∪B=A A____B
交集性质
①AA= A ; ②A= ;
当堂诊学
一、完成课本P7页练习2、3 二、完成选做题
选做题1. 已知集合A={x|-2≤x≤7},B={x|m+1<
x<2m-1},若B⊆A,求实数m的取值范围.
分析:若B⊆A,则B=Ø或B≠Ø,故分两种情况讨论.
解:当B=Ø时,有m+1≥2m-1,得m≤2,
当B≠Ø 时,有
m+1≥-2,
2m-1≤7, 解得 2<m≤4.
m+1<2m-1,
综上:m≤4.
强化补清
• 一、课本P12页A组5 • 二、完全解读P16、17页习题
课题导入
考察下列各个集合,你能说出集合C与集合A,B 之间的关系吗? (1) A={1,3,5}, B={2,4,6} ,C={1,2,3,4,5,6}
(2) A={x|x是有理数},B={x|x是无理数}, C={x|x是实数}.
并集交集例题
例1.设集合A={x|-1<x<2},B={x|1<x<3}, 求AUB.A∩B
解:A B {x | 1 x 2}{x |1 x 3} x | 1 x 3
A B {x1 x 2}
可以在数轴上表示例2中的并集 交集,如 下图:
例3. 已知集合A={x -2≤x≤4},B={x x>a} ①若A∩B=φ,求实数a的取值范围; ②若A∩B=A,求实数a的取值范围.
-2 -1 0
1
234
x
-2 -1 0
1
234
x
引导探究二
并集性质
①A∪A= A ; ②A∪= A ;
③A∪B=A A____B
交集性质
①AA= A ; ②A= ;
当堂诊学
一、完成课本P7页练习2、3 二、完成选做题
选做题1. 已知集合A={x|-2≤x≤7},B={x|m+1<
x<2m-1},若B⊆A,求实数m的取值范围.
分析:若B⊆A,则B=Ø或B≠Ø,故分两种情况讨论.
解:当B=Ø时,有m+1≥2m-1,得m≤2,
当B≠Ø 时,有
m+1≥-2,
2m-1≤7, 解得 2<m≤4.
m+1<2m-1,
综上:m≤4.
强化补清
• 一、课本P12页A组5 • 二、完全解读P16、17页习题
课题导入
考察下列各个集合,你能说出集合C与集合A,B 之间的关系吗? (1) A={1,3,5}, B={2,4,6} ,C={1,2,3,4,5,6}
(2) A={x|x是有理数},B={x|x是无理数}, C={x|x是实数}.
打包下载(34套408页)人教版高中数学必修一(全册)教学课件汇总
六、对数学学习有什么要求? 1.专注认真; 2.勤思多练; 3.常做笔记; 4.规范作业; 5.加强交流; 6.反思评价.
老师寄语 :
是花就要绽放,是树就要撑出绿荫,是 水手就要博击风浪,是雄鹰就要展翅飞翔。
很难说什么事情是难以办到的,昨天的 梦想就是今天的希望和明天的现实。我们要 以坚定的信心托起昨天的梦想,以顽强的斗 志,耕耘今天的希望,那我们一定能用我们 的智慧和汗水书写明天的辉煌。
一次小下载 安逸一整年
超级资源(共34套408页)人教版高中数 学必修一(全册)教学课件汇总
如果暂时不需要,请您一定收藏我哦! 因为一旦关闭我,再搜索到我的机会几乎为零!!!
请别问我是怎么知道的!
序言
一、为什么要学数学? 1.提高思维能力,增长聪明才智
2.学习与实践的基础 3.“高考市场”的拳头产品
集合中的元素必须是确定的
思考2:在一个给定的集合中能否有相同的元素?由此 说明什么?
集合中的元素是不重复出现的
思考3:0705班的全体同学组成一个集合,调整座位后 这个集合有没有变化?由此说明什么?
集合中的元素是没有顺序的
知识探究(三)
思考1:设集合A表示“1~20以内的所有质数”,那 么3,4,5,6这四个元素哪些在集合A中?哪些不在集合A 中?
例3 设集合 A 5,| a 1|, 2a 1 ,已知 3 A ,求实
数 a 的值. 1或-4
例4 已知集合A={1,2,3},B={1,2},设集合
C=x | x a b, a A,b B ,试用列举法表示集合C.
C={-1,0,1,2}
高一年级 数学 第一章 1.1.1集合的含义与表示
思考5:集合{a},{a,b},{a,b,c}分别有 多少个子集?
高中数学必修一全册课件人教版(共99张PPT)
例如:1∈N, -5 ∈ Z, Q 1.5 N
四、集合的表示方法
1、列举法
就是将集合中的元素一一列举出来并放在大括号内表示集合的方法
注意:1、元素间要用逗号隔开; 2、不管次序放在大括号内。
例如:book中的字母组成的集合表示为:{b,o,o,k}{b,o,k} 一次函数y=x+3与y=-2x+6的图像的交点组成的集合。{1,4}{(1,4)}
的关系f则成为对应法则,则上面两个例子中,对应法则分别是“乘以10再加20” 和“平方后乘以”
1 乘以10再加20 30
2
40
3
50
4
60
5
70
6
80
7
90
8
100
1 平方后乘以4.94.9
1.5
?
2
?
3
?
5
?
6
?
7
?
8
?
二、映射
通过上面的两个例子,我们说明了什么是函数,上面的两个例子都是研究的 数值的情况,那么进一步扩展,如果集合A和集合B不是数值,而是其他类型的 集合,则这种对应关系就称为映射。具体定义如下:
7、判断下列表示是否正确:
(1)a {a}; (2) {a} ∈{a,b};
(3){a,b} {b,a}; (4){-1,1}{-1,0,1}
(5)0;
(6) {-1,1}.
集合与集合的运算
1、交集
一般地,由所有属于集合A且属于集合B的元素构成的集合,称为A与B的交集, 记作A∩B,即
A∩B={x|x∈A,且x∈B} A∩B可用右图中的阴影部分来表示。
⑴ A={1,2,3} , B={1,2,3,4,5};
四、集合的表示方法
1、列举法
就是将集合中的元素一一列举出来并放在大括号内表示集合的方法
注意:1、元素间要用逗号隔开; 2、不管次序放在大括号内。
例如:book中的字母组成的集合表示为:{b,o,o,k}{b,o,k} 一次函数y=x+3与y=-2x+6的图像的交点组成的集合。{1,4}{(1,4)}
的关系f则成为对应法则,则上面两个例子中,对应法则分别是“乘以10再加20” 和“平方后乘以”
1 乘以10再加20 30
2
40
3
50
4
60
5
70
6
80
7
90
8
100
1 平方后乘以4.94.9
1.5
?
2
?
3
?
5
?
6
?
7
?
8
?
二、映射
通过上面的两个例子,我们说明了什么是函数,上面的两个例子都是研究的 数值的情况,那么进一步扩展,如果集合A和集合B不是数值,而是其他类型的 集合,则这种对应关系就称为映射。具体定义如下:
7、判断下列表示是否正确:
(1)a {a}; (2) {a} ∈{a,b};
(3){a,b} {b,a}; (4){-1,1}{-1,0,1}
(5)0;
(6) {-1,1}.
集合与集合的运算
1、交集
一般地,由所有属于集合A且属于集合B的元素构成的集合,称为A与B的交集, 记作A∩B,即
A∩B={x|x∈A,且x∈B} A∩B可用右图中的阴影部分来表示。
⑴ A={1,2,3} , B={1,2,3,4,5};
打包下载(39套514页)人教版高中数学必修一(全册)教学课件汇总
• (1)方程x2-2=0的所有实数根组成的集 合;
• (2)由大于10小于20的所有整数组成 的集合。
思考题 结合此例,试比较用自然语言、 列举法和描述法表示集合时各自的特点和 适用的对象。
• 例3:已知A={a-2,2a2+5a,10},且 -3∈A,求a。
例4若A={x|x=3n+1,n ∈ Z}, B= {x|x=3n+2,n ∈ Z} C={x|x=6n+3,n ∈ Z}
例4.学校先举办了一次田径运 动会,某班有8名同学参赛,又举办了 一次球类运动会,这个班有12名学 生参赛,两次运动会都参赛的有3人, 两次运动会中,这个班共有多少名同 学参赛?
探索:
对有限集A,B,C你能发现card(A∪B∪C), card(A), card(B), card(C), card(A∩B), card(A∩C), card(C∩B), card(A∩B∩C) 之间的关系吗?
AB
注:有两种可能
(1)A是B的一部分;
(2)A与B是同一集 合
图中A是否为B的子集?
B
A
(1)
BA (2)
判断集合A是否为集合B的子集, 若是则在( )打√,若不是则在 ( )打×:
①A={1,3,5}, B={1,2,3,4,5,6} (√ )
②A={1,3,5}, B={1,3,6,9} (× )
作业布置
1.教材P.12 A组 5 B组2. 2. 若A={x |-3≤x≤4},
B={x | 2m-. 1≤x≤m+1},当B A时,
求实数m的取值范围.
3.已知 A B, A C, B 1,2,3,5, C 0,2,4,8,求A
• (2)由大于10小于20的所有整数组成 的集合。
思考题 结合此例,试比较用自然语言、 列举法和描述法表示集合时各自的特点和 适用的对象。
• 例3:已知A={a-2,2a2+5a,10},且 -3∈A,求a。
例4若A={x|x=3n+1,n ∈ Z}, B= {x|x=3n+2,n ∈ Z} C={x|x=6n+3,n ∈ Z}
例4.学校先举办了一次田径运 动会,某班有8名同学参赛,又举办了 一次球类运动会,这个班有12名学 生参赛,两次运动会都参赛的有3人, 两次运动会中,这个班共有多少名同 学参赛?
探索:
对有限集A,B,C你能发现card(A∪B∪C), card(A), card(B), card(C), card(A∩B), card(A∩C), card(C∩B), card(A∩B∩C) 之间的关系吗?
AB
注:有两种可能
(1)A是B的一部分;
(2)A与B是同一集 合
图中A是否为B的子集?
B
A
(1)
BA (2)
判断集合A是否为集合B的子集, 若是则在( )打√,若不是则在 ( )打×:
①A={1,3,5}, B={1,2,3,4,5,6} (√ )
②A={1,3,5}, B={1,3,6,9} (× )
作业布置
1.教材P.12 A组 5 B组2. 2. 若A={x |-3≤x≤4},
B={x | 2m-. 1≤x≤m+1},当B A时,
求实数m的取值范围.
3.已知 A B, A C, B 1,2,3,5, C 0,2,4,8,求A
高中数学必修一整册全套课件(共40个课件) 人教课标版32
3
让学生复述本节课的历程:从实际背景 出发,通过实例的探究归纳出二分法的思想, 进而建构出具体的算法程序,并经过操作加 以巩固,对本节课学习的内容、知识的生长 过程,研究问题的方法与思想进行反思与总 结。 这是一个知识技能内化的过程,能逐步 促进学生形成正确的数学观,培养学生严谨 的学习作风,进一步树立科学的人生观、价 值观。
【教学目标】 1.能够借助计算器用二分法求 方程的近似解 2.理解二分法求方程近似解 的实质。 3、了解逼近思想,体验并理解函 数方程的相互转化的数学思想方法。
【教学重点】用二分法求方程近似解的 一般步骤;能够借助计算器用二分法求 方程的近似解。 【教学难点】对用二分法求方程近似解 的实质的理解。
教材首先以学生熟悉的一元二次方程 为例对用二分法求方程的近似解作了详细 的介绍,并进一步拓展到其它简单方程, 使学生体会函数与方程之间的关系,初步 形成用函数观点处理问题的能力和意识。
本节课内容属于高中数学新增内容, 既是函数与方程联系的桥梁;也是中等数 学与高等数学联系的一根纽带;同时是学 习一种思维方式,其中渗透了逼近思想和 算法思想,以及从具体到抽象的认识规律, 体现了新课程的理念。也是今后高考的重 要内容,值得关注!
让学生试着归纳、猜想得到
求方程近似解的大体思路为:
第一步:确定根的大致范围即求隔离区间; 第二步 :以根的隔离区间的端点作为根的初 始近似值; 然后,逐步改善根的近似值的精度,直至求 得满足精确度要求的近似解。
1.
因此, 给定精确度 ,用 二分法求方程 解近似值 f (x) 0 的步骤如下: f( a ) f( b ) 0
教学中,我创设情境,充分激发学生探 索新知的欲望,此过程中充分发挥他们的自 主探索能力。
高中数学必修一课件全册课件(2024)
高中数学必修一课件 全册课件
2024/1/28
1
目录
2024/1/28
• 集合与函数概念 • 基本初等函数(Ⅰ) • 函数的应用 • 空间几何体 • 点、直线、平面之间的位置关系
2
01
集合与函数概念
2024/1/28
3
集合的含义与表示
01 集合的概念
集合是由一个或多个确定的元素所构成的整体。
02 集合的表示方法
01 中心投影与平行投影
02 三视图的形成及其投影规律 02 由三视图还原成实物图
2024/1/28
22
空间几何体的表面积与体积
柱体、锥体、台体的表面 积与体积
空间几何体的表面积和体 积的计算方法
2024/1/28
球的表面积和体积
23
点、直线、平面之间的位置
05
关系
2024/1/28
24
空间点、直线、平面的位置关系
平面与平面平行的判定
若一个平面内的两条相交直线分别平行于另一个平面,则 这两个平面平行。
平行直线的性质
平行于同一直线的两条直线互相平行;平行于同一平面的 两个平面互相平行。
26
直线、平面垂直的判定及其性质
01
直线与平面垂直的判定
若直线与平面内任意一条直线都垂直,则该直线与该平面垂直。
02
平面与平面垂直的判定
2024/1/28
5
集合的基本运算
并集
由所有属于集合A或属于 集合B的元素所组成的集 合。
补集
在全集U中,不属于集合 A的所有元素组成的集合 称为集合A的补集。
2024/1/28
交集
由所有既属于集合A又属 于集合B的元素所组成的 集合。
2024/1/28
1
目录
2024/1/28
• 集合与函数概念 • 基本初等函数(Ⅰ) • 函数的应用 • 空间几何体 • 点、直线、平面之间的位置关系
2
01
集合与函数概念
2024/1/28
3
集合的含义与表示
01 集合的概念
集合是由一个或多个确定的元素所构成的整体。
02 集合的表示方法
01 中心投影与平行投影
02 三视图的形成及其投影规律 02 由三视图还原成实物图
2024/1/28
22
空间几何体的表面积与体积
柱体、锥体、台体的表面 积与体积
空间几何体的表面积和体 积的计算方法
2024/1/28
球的表面积和体积
23
点、直线、平面之间的位置
05
关系
2024/1/28
24
空间点、直线、平面的位置关系
平面与平面平行的判定
若一个平面内的两条相交直线分别平行于另一个平面,则 这两个平面平行。
平行直线的性质
平行于同一直线的两条直线互相平行;平行于同一平面的 两个平面互相平行。
26
直线、平面垂直的判定及其性质
01
直线与平面垂直的判定
若直线与平面内任意一条直线都垂直,则该直线与该平面垂直。
02
平面与平面垂直的判定
2024/1/28
5
集合的基本运算
并集
由所有属于集合A或属于 集合B的元素所组成的集 合。
补集
在全集U中,不属于集合 A的所有元素组成的集合 称为集合A的补集。
2024/1/28
交集
由所有既属于集合A又属 于集合B的元素所组成的 集合。
人教版高中数学必修1全套课件
函数与方程
函数与方程的基本概念
包括函数定义、函数值、自变量、因 变量等概念的介绍。
函数的表示方法
解析法、列表法、图象法等表示方法 的特点和适用范围。
函数的性质
单调性、奇偶性、周期性等性质的定 义和判断方法。
方程与不等式的解法
一元一次方程、一元二次方程、分式 方程等方程和不等式的解法,以及函 数与方程的联系。
对数函数
对数函数的定义与性质
01
介绍对数函数的基本概念、性质,包括底数、对数的定义和运
算规则。
对数函数的图像与性质
02
通过图像展示对数函数的增减性、奇偶性、周期性等性质,帮
助学生直观理解函数特点。
对数函数的应用
03
列举对数函数在生活中的实际应用,如音量的分贝计算、地震
震级的计算等,培养学生运用数学知识解决问题的能力。
数列的项与通项公式
数列中的每一个数称为数列的项;表示数列第n项的公式称为数列 的通项公式。
数列的表示方法
列表法、图象法和通项公式法。
等差数列和等比数列
等差数列的定义与性质
从第二项起,每一项与它的前一项的差等于同一个常数的一种数列。
等比数列的定义与性质
从第二项起,每一项与它的前一项的比等于同一个常数的一种数列。
正切函数、余切函数的图象和性质 三角函数的最值问题
三角恒等变换
两角和与差的正弦、余弦 公式
半角公式及其应用
二倍角公式及其应用 积化和差与和差化积公式
解三角形及其应用举例
01
正弦定理及其应用
02
余弦定理及其应用
03
解三角形的常用方法:面积法、正弦定理 法、余弦定理法等
04
解三角形的实际应用举例:测量、航海、 地理等问题
高中数学必修一整册全套课件(共40个课件) 人教课标版10
例3.探讨函数 和 的图象的关系,并证明 它们图象关于y轴对称
1 y 2 例4.求函数 的单调区间
1x 2x1
例5.已知
x
x
2 4 4 0
z 4 2 4 5
求 z 的取值范围。
y
y
例6.已知函数f(x)=3x,且f(a+2)=18, g(x)=3ax-4x的定义域为区间[-1,1] (1)求g(x)的解析式;
1 x y ( ) 2 并探讨 1 |x| y ( ) 2 与
图像的பைடு நூலகம்系
⑵已知函数
1 | x 1| y函数 ( ) 2
作出
图像,求定义域、值域,并探讨
1 x 1 y( ) 2 1 | x 1| y与 ( ) 2
图像
的关系
ya
( a 0 且 a 1 )
x
ya
x
2.1.2指数函数及其性质 (第三课时)
例1。用计算机作出的图像,并在同 一坐标系下作出下列函数的图象,并 x 指出它们与指数函数y= 2 的图 象的关系, x 1 x2 ⑴y= 2 与2 y= . ⑵y= 2
x 1
2 与 y=
x2
.
例2. ⑴已知函数 y ( 1 ) | x |
2
作出函数 图像,求定义域、值 域
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
读一本好书,就是和许多高尚的人谈话。 ---歌德 书籍是人类知识的总结。书籍是全世界的营养品。 ---莎士比亚 书籍是巨大的力量。 ---列宁 好的书籍是最贵重的珍宝。 ---别林斯基 任何时候我也不会满足,越是多读书,就越是深刻地感到不满足,越感到自己知识贫乏。 ---马克思 书籍便是这种改造灵魂的工具。人类所需要的,是富有启发性的养料。而阅读,则正是这种养料。 ---雨果 喜欢读书,就等于把生活中寂寞的辰光换成巨大享受的时刻。 ---孟德斯鸠 如果我阅读得和别人一样多,我就知道得和别人一样少。 ---霍伯斯[英国作家] 读书有三种方法:一种是读而不懂,另一种是既读也懂,还有一种是读而懂得书上所没有的东西。 ---克尼雅日宁[俄国剧作家・诗人] 要学会读书,必须首先读的非常慢,直到最后值得你精读的一本书,还是应该很慢地读。 ---法奇(法国科学家) 了解一页书,胜于匆促地阅读一卷书。 ---麦考利[英国作家] 读书而不回想,犹如食物而不消化。 ---伯克[美国想思家] 读书而不能运用,则所读书等于废纸。 ---华盛顿(美国政治家) 书籍使一些人博学多识,但也使一些食而不化的人疯疯颠颠。 ---彼特拉克[意大利诗人] 生活在我们这个世界里,不读书就完全不可能了解人。 ---高尔基 读书越多,越感到腹中空虚。 ---雪莱(英国诗人) 读书是我唯一的娱乐。我不把时间浪费于酒店、赌博或任何一种恶劣的游戏;而我对于事业的勤劳,仍是按照必要,不倦不厌。 ---富兰克林 书读的越多而不加思索,你就会觉得你知道得很多;但当你读书而思考越多的时候,你就会清楚地看到你知道得很少。 ---伏尔泰(法国哲学家、文学家) 读书破万卷,下笔如有神。---杜甫 读万卷书,行万里路。 ---顾炎武 读书之法无他,惟是笃志虚心,反复详玩,为有功耳。 ---朱熹 读书无嗜好,就能尽其多。不先泛览群书,则会无所适从或失之偏好,广然后深,博然后专。 ---鲁迅 读书之法,在循序渐进,熟读而精思。 ---朱煮 读书务在循序渐进;一书已熟,方读一书,勿得卤莽躐等,虽多无益。 ---胡居仁[明] 读书是学习,摘抄是整理,写作是创造。 ---吴晗 看书不能信仰而无思考,要大胆地提出问题,勤于摘录资料,分析资料,找出其中的相互关系,是做学问的一种方法。---顾颉刚 书犹药也,善读之可以医愚。 ---刘向 读书破万卷,胸中无适主,便如暴富儿,颇为用钱苦。 ---郑板桥 知古不知今,谓之落沉。知今不知古,谓之盲瞽。 ---王充 举一纲而万目张,解一卷而众篇明。 ---郑玄
高中数学必修一整册全套课件(共40个课件) 人教课标版1
①“∈
例1(1) 写出N,Z,Q,R的包 含关系,并用Venn图表示 (2) 判断下列写法是否正确 ①Φ A ②Φ A ③ A A ④A A
A A
例 2 写出集合 a ,b 的所有子集 ,并
指出哪些是它的真子集
思考 :集合 a ,a , ,a 有多少个 1 2 n
若A B且B A, 则A=B; 反之,亦然.
定 义
对于两个集合A与B,如果A B ,且 x A B,但存在元素x ,则称集合 A是集合B的真子集(proper
subset).记作A B
Venn图为
B
A
几个结论
①空集是任何集合的子集Φ A ②空集是任何非空集合的真子集 Φ A (A ≠ Φ ) ③任何一个集合是它本身的子集,即 A A ④对于集合A,B,C,如果 A B, 且B C,则A C
观察以下几组集合,并指出它们元
素间的关系:
① A={1,2,3}, B={1,2,3,4,5};
② A={x| x>1}, B={x | x2>1}; ③ A={四边形}, B={多边形};
④ A={x | x是两边相等的三角形},
B={x| x是等腰三角形} .
定 义
一般地,对于两个集合A与B, 如果集合A中的任何一个元素都是 集合B的元素,我们就说这两个集合有包含 关系,称集合A为集合B的子集(subset)
注意易混符号
”与“ ”:元素与集合之间是 属于关系;集合与集合之间是包含关 系如 1 N , 1 N , N R , Φ R,{1} {1 ,2,3} ②{0}与Φ:{0}是含有一个元素0的集 合,Φ是不含任何元素的集合如 Φ {0}不能写成Φ={0},Φ∈{0}
例1(1) 写出N,Z,Q,R的包 含关系,并用Venn图表示 (2) 判断下列写法是否正确 ①Φ A ②Φ A ③ A A ④A A
A A
例 2 写出集合 a ,b 的所有子集 ,并
指出哪些是它的真子集
思考 :集合 a ,a , ,a 有多少个 1 2 n
若A B且B A, 则A=B; 反之,亦然.
定 义
对于两个集合A与B,如果A B ,且 x A B,但存在元素x ,则称集合 A是集合B的真子集(proper
subset).记作A B
Venn图为
B
A
几个结论
①空集是任何集合的子集Φ A ②空集是任何非空集合的真子集 Φ A (A ≠ Φ ) ③任何一个集合是它本身的子集,即 A A ④对于集合A,B,C,如果 A B, 且B C,则A C
观察以下几组集合,并指出它们元
素间的关系:
① A={1,2,3}, B={1,2,3,4,5};
② A={x| x>1}, B={x | x2>1}; ③ A={四边形}, B={多边形};
④ A={x | x是两边相等的三角形},
B={x| x是等腰三角形} .
定 义
一般地,对于两个集合A与B, 如果集合A中的任何一个元素都是 集合B的元素,我们就说这两个集合有包含 关系,称集合A为集合B的子集(subset)
注意易混符号
”与“ ”:元素与集合之间是 属于关系;集合与集合之间是包含关 系如 1 N , 1 N , N R , Φ R,{1} {1 ,2,3} ②{0}与Φ:{0}是含有一个元素0的集 合,Φ是不含任何元素的集合如 Φ {0}不能写成Φ={0},Φ∈{0}
高中数学必修一整册全套课件(共40个课件) 人教课标版17
i
应用举例. 选讲.1)当
取不同的有理数时,讨论
幂函数
yx
的定义域.
2 m 2 m 3
x ( m N ), 2)已知幂函数 y 在区间(0,+∞)上是减函数,求函数的解析式 并讨论其单调性和奇偶性
课堂小结. 1.幂函数的定义
2.5类典型幂函数的图像及性质 3.的大小
5 2 5 2
1)3
和 3 .1
7 8
1 2) 8 和 ( ) 9 2 2 2 3 3 3 3 )( ) 和 ( ) 31 4 1
7 8
0.93 和 0.82呢 ?
应用举例.
x( i 1 , 2 , 3 , 4 , 5 ) 例4.如图,幂函数 y 在第一象限对应的图像分别是C1, C2 , C3 , C4 , C5 ,则 i 大小如何排列?
2.3幂函数
引例.
1)如果张红购买了每千克1元的蔬菜w千克,那么 她需要支付p=w元,这里p是w的函数; 2)如果正方形的边长为a,那么正方形的面积 s=a2, 这里s是a的函数; 3)如果立方体的边长为a,那么立方体的体积V=a3, 这里V是a函数; 4)如果一个正方形场地的面积为S,那么这个正方 形的边长 a=S1/2 这里S是a的函数; 5)如果人ts内骑车行进了1km,那么他骑车的平均 速度v=t-1 km/s 这里v是t的函数. 以上问题中的函数具有什么共同特征?
新课讲解.
一般地,函数 y x 叫做幂函数 (power function),其中x是自变量, 是常数.
一.幂函数的定义
几点说明:
y x 1) 中 x 前面系数是1,并且后面也没有常数项;
2)要确定一个幂函数,需要一个条件就可以,即把常数 确定下来; 3)幂函数和指数函数的异同:两者都具有幂的形式,但 指数函数的自变量位于指数上,幂函数的自变量是底数.
2024年度人教版高中数学必修一全套PPT课件
2024/3/23
33
点、直线、平面之间的位置关系的应用举例
2024/3/23
点到直线的距离公式及应用
利用点到直线的距离公式可以求解点到直线的最短距离, 进而解决一些实际问题,如线路设计、最短路径等。
点到平面的距离公式及应用
利用点到平面的距离公式可以求解点到平面的最短距离, 进而解决一些实际问题,如建筑设计、空间定位等。
生物学中的应用
利用函数模型研究生物种群数 量变化、生态平衡等问题。
20
2024/3/23
PART 04
空间几何体
21
空间几何体的结构特征
棱柱
有两个面互相平行,其余各面都是四 边形,并且每相邻两个四边形的公共 边都互相平行。
棱锥
有一个面是多边形,其余各面都是有 一个公共顶点的三角形。
2024/3/23
以直角梯形的垂直于底边的腰所在直线为旋转轴,其余各边旋转 形成的曲面所围成的几何体。
球
半圆以它的直径为旋转轴,旋转一周形成的曲面所围成的几何体 。
2024/3/23
24
空间几何体的三视图和直观图
三视图
正视图(从正面看)、侧视图(从左面看)、俯视图(从上面看)。
直观图
斜二测画法。
2024/3/23
25
5
学习方法与建议
课堂听讲
认真听讲,积极思考,及时记 录重要知识点和疑难问题。
多做练习
通过大量的练习,熟练掌握各 种题型的解题方法和技巧,提 高解题速度和准确性。
课前预习
提前预习相关知识点,了解基 本概念和性质,为课堂听讲做 好准备。
2024/3/23
课后复习
及时复习巩固所学内容,独立 完成作业和练习题,加深对知 识点的理解和记忆。
高中数学必修一整册全套课件(共40个课件) 人教课标版2
B A∪ B
性 质4
若A∩B=A,则A B.
反之亦然.
若A∪B=A,则A B. 反之亦然.
例3.新华中学开运动会,设 A={x|x是新华中学高一年级参加百米赛跑的同 学} B={x|x是新华中学高一年级参加跳高比赛的同 学} 求:A∩B
例4.设平面内直线l1上点的集合为L1,直线l2 上点的集合为L2试用集合的运算表示l1,l2的 位置关系。
A
B
即A∪B={x | x∈A,或x∈B}
A∪ B
例1. A={4,5,6,8},B= {3,5,7,8},求A∪B.
例2.设A={x|-1<x<2},B={x|1<x<3}, 求A∪B.
性 质1
A∪ A = A A∪φ = A A∪B = B∪A
观察集合A,B,C元素间的关系:
A={4,5,6,8},
作业布置
1.教材P12 A组6,7,8 B组3 2 补.P={a2,a+2,-3}, Q={a-2,2a+1,a2+1},P ∩Q={-3}, 求 a.
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
读一本好书,就是和许多高尚的人谈话。 ---歌德 书籍是人类知识的总结。书籍是全世界的营养品。 ---莎士比亚 书籍是巨大的力量。 ---列宁 好的书籍是最贵重的珍宝。 ---别林斯基 任何时候我也不会满足,越是多读书,就越是深刻地感到不满足,越感到自己知识贫乏。 ---马克思 书籍便是这种改造灵魂的工具。人类所需要的,是富有启发性的养料。而阅读,则正是这种养料。 ---雨果 喜欢读书,就等于把生活中寂寞的辰光换成巨大享受的时刻。 ---孟德斯鸠 如果我阅读得和别人一样多,我就知道得和别人一样少。 ---霍伯斯[英国作家] 读书有三种方法:一种是读而不懂,另一种是既读也懂,还有一种是读而懂得书上所没有的东西。 ---克尼雅日宁[俄国剧作家・诗人] 要学会读书,必须首先读的非常慢,直到最后值得你精读的一本书,还是应该很慢地读。 ---法奇(法国科学家) 了解一页书,胜于匆促地阅读一卷书。 ---麦考利[英国作家] 读书而不回想,犹如食物而不消化。 ---伯克[美国想思家] 读书而不能运用,则所读书等于废纸。 ---华盛顿(美国政治家) 书籍使一些人博学多识,但也使一些食而不化的人疯疯颠颠。 ---彼特拉克[意大利诗人] 生活在我们这个世界里,不读书就完全不可能了解人。 ---高尔基 读书越多,越感到腹中空虚。 ---雪莱(英国诗人) 读书是我唯一的娱乐。我不把时间浪费于酒店、赌博或任何一种恶劣的游戏;而我对于事业的勤劳,仍是按照必要,不倦不厌。 ---富兰克林 书读的越多而不加思索,你就会觉得你知道得很多;但当你读书而思考越多的时候,你就会清楚地看到你知道得很少。 ---伏尔泰(法国哲学家、文学家) 读书破万卷,下笔如有神。---杜甫 读万卷书,行万里路。 ---顾炎武 读书之法无他,惟是笃志虚心,反复详玩,为有功耳。 ---朱熹 读书无嗜好,就能尽其多。不先泛览群书,则会无所适从或失之偏好,广然后深,博然后专。 ---鲁迅 读书之法,在循序渐进,熟读而精思。 ---朱煮 读书务在循序渐进;一书已熟,方读一书,勿得卤莽躐等,虽多无益。 ---胡居仁[明] 读书是学习,摘抄是整理,写作是创造。 ---吴晗 看书不能信仰而无思考,要大胆地提出问题,勤于摘录资料,分析资料,找出其中的相互关系,是做学问的一种方法。---顾颉刚 书犹药也,善读之可以医愚。 ---刘向 读书破万卷,胸中无适主,便如暴富儿,颇为用钱苦。 ---郑板桥 知古不知今,谓之落沉。知今不知古,谓之盲瞽。 ---王充 举一纲而万目张,解一卷而众篇明。 ---郑玄
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、数学为什么难学? 1.高度的抽象性 2.严密的逻辑性 3.应用的广泛性
三、高中学哪些数学?
1.必修课程:5个模块
2.选修课程:4个系列 系列1:2个模块(文科选修) 系列2:3个模块(理科选修) 系列3:6个专题(自主选修) 系列4:10个专题(自主选修)
四、高中数学要获多少学分?
文科学生:必修课程(10个学分); 选修系列1(4个学分); 选修系列3(2个学分); 共16个学分.
六、对数学学习有什么要求? 1.专注认真; 2.勤思多练; 3.常做笔记; 4.规范作业; 5.加强交流; 6.反思评价.
老师寄语 :
是花就要绽放,是树就要撑出绿荫,是 水手就要博击风浪,是雄鹰就要展翅飞翔。
很难说什么事情是难以办到的,昨天的 梦想就是今天的希望和明天的现实。我们要 以坚定的信心托起昨天的梦想,以顽强的斗 志,耕耘今天的希望,那我们一定能用我们 的智慧和汗水书写明天的辉煌。
高一年级 数学 第一章 1.1.1集合的含义与表示
课题: 集合的表示
问题提出
1.集合中的元素有哪些特征?确定性、无序性、互异性
2.元素与集合有哪几种关系? 属于、不属于
3.用自然语言描述一个集合往往是不简明的,如 “在平面直角坐标系中以原点为圆心,2 为半径的圆周 上的点”组成的集合,那么,我们可以用什么方式表示 集合呢?
例4 已知集合A={1,2,3},B={1,2},设集合
C=x | x a b, a A,b B ,试用列举法表示集合C.
C={-1,0,1,2}
高一年级 数学 第一章 1.1.1集合的含义与表示
课题: 集合的含义
问题提出
“集合”是日常生活中的一个常用词,现代汉语解释为: 许多的人或物聚在一起.
知识探究(一)
考察下列集合: (1)小于5的所有自然数组成的集合; (2)方程 x3 x的所有实数根组成的集合. 思考1:这两个集合分别有哪些元素?
(1)0,1,2,3,4; (2)-1,0,1 思考2:由上述两组数组成的集合可分别怎样表示?
(1){0,1,2,3,4}; (2){-1,0,1} 思考3:这种表示集合的方法叫什么名称?
(1)x R,且 x 5 ; (2)x R,且 | x | 2
思考3:上述两个集合可分别怎样表示?
(1){ x R|x 5 }; (2){x R|| x | 2 }
思考4:这种表示集合的方法叫什么名称? 描述法
思考5:描述法表示集合的基本模式是什么? {元素的一般符号及取值范围|元素所具有的性质}
例2 用列举法表示下列集合:
(1)A
x
Z
|
x
4
3
Z
;
(2)(x, y) | x y 3, x N, y N .
(1){-1,1,2,4,5,7};
(2){(0,3),(1,2),(2,1),(3,0)}
例3 设集合 A 5,| a 1|, 2a 1 ,已知 3 A ,求实
数 a 的值. 1或-4
一次小下载 安逸一整年
超级资源(共34套408页)人教版高中数 学必修一(全册)教学课件汇总
如果暂时不需要,请您一定收藏我哦! 因为一旦关闭我,再搜索到我的机会几乎为零!!!
请别问我是怎么知道的!
序言
一、为什么要学数学? 1.提高思维能力,增长聪明才智
2.学习与实践的基础 3.“高考市场”的拳头产品
在现代数学中,集合是一种简洁、高雅的数学语言, 我们怎样理解数学中的“集合”?
知识探究(一)
考察下列问题: (1)1~20以内的所有质数; (2)绝对值小于3的整数; (3)师大附中0705班的所有男同学; (4)平面上到定点O的距离等于定长的所有的点.
思考1:上述每个问题都由若干个对象组成,每组对象 的全体分别形成一个集合,集合中的每个对象都称为元素. 上述4个集合中的元素分别是什么?
思考2:一般地,怎样理解“元素”与“集合”? 把研究的对象称为元素,通常用小写拉丁字母a,b,
c,…表示;把一些元素组成的总体叫做集合,简称集, 通常用大写拉丁字母A,B,C,…表示.
思考3:组成集合的元素所属对象是否有限制?集合中 的元素个数的多少是否有限制?
思考4:美国NBA火箭队的全体队员是否组成一个集合? 若是,这个集合中有哪些元素?
知识探究(三)
思考1:a与{ a }的含义是否相同?
思考2:集合{1,2}与集合{(1,2)}相同吗?
思考3:集合{y | y x2, x R}与集合 {y x2} 相同吗? 思考4:集合 {(x, y) | y x2, x R}的几何意义如何?
y y x2
x o
理论迁移
例1 用适当的方法表示下列集合: (1)绝对值小于3的所有整数组成的集合;
思考5:试列举一个集合的例子,并指出集合中的元素.
知识探究(二)
任意一组对象是否都能组成一个集合?集合中的元 素有什么特征?
思考1:某单位所有的“帅哥”能否构成一个集合?由 此说明什么?
集合中的元素必须是确定的
思考2:在一个给定的集合中能否有相同的元素?由此 说明什么?
{-2,-1,0,1,2}或 {x Z || x | 3}
(2)在平面直角坐标系中以原点为圆心,1为半径的圆 上的点组成的集合;
{(x, y) | x2 y2 1}
(3)所有奇数组成的集合;
{x | x 2k 1, k Z}
(4)由数字1,2,3组成的所有三位数构成的集合. {123,132,213,231,312,321}.
列举法 思考4:列举法表示集合的基本模式是什么?
把集合的元素一一列举出来,并用花括号“{ }” 括起来,即 {a,b, c, }
知识探究(二)
考察下列集合: (1)不等式 2x 7 3 的解组成的集合; (2)绝对值小于2的实数组成的集合. 思考1:这两个集合能否用列举法表示? 思考2:如何用数学式子描述上述两个集合的元素特征?
理科学生:必修课程(10个学分); 选修系列2(6个学分); 选修系列3(2个学分); 选修系列4(2个学分); 共20个学分.
五、如何学好高中数学? 1.牢记基础知识; 2.领悟思想方法; 3.把握主干问题; 4.提高运算技能; 5.注重理性思维; 6.勇于探索创新; 7.加强数学应用; 8.优化心理品质.