初高中数学衔接知识(二次函数)

合集下载

初高中数学知识衔接(六)二次函数及应用

初高中数学知识衔接(六)二次函数及应用

初高中数学知识衔接《二次函数的应用》
整理:键盘手
【知识要点】
1.简单的函数模型建立的基本步骤:
(1)审题——理解题意,分析条件和结论,理顺数量关系。

(2)建立函数模型——将文字语言转化成数学语言,建立相应的目标函数。

(3)求模——利用有关的函数知识,得到数学结论。

(4)还原——将用数学方法得到的结论,还原为实际问题的意义。

2.二次函数的运用
(1)利用二次函数的性质与思想方法处理方程、不等式等问题。

(2)建立二次函数模型解决实际问题。

【典型例题】
例1.某商品的进货单价为30元。

如果按单价40元销售,能买出40个。

销售单价每涨1元,销量就减少1个。

为获得最大利润,此商品的最佳售价应定为每个多少元?
例2.一根弹簧原长15cm ,已知在挂重20N 内,弹簧的长度与所受的重力成一次函数关系。

现测得当挂重4N 时,弹簧的长度为17cm ,问当弹簧长度为22cm 时,挂重多少N?
例3.如图,灌溉渠的横断面是等腰梯形,底宽及两边坡总长度为l ,边坡的倾斜角为 60。

1)求横断面面积y 与底宽x 的函数关系式;2)已知底宽]2
,4[l
l x ,求横断面的面积y 的最大值和最小值。

8000m,深m5的长方体蓄水池,池壁每例4.某水厂要建造一个容积为3
平方米的造价为a元,池底每平方米的造价为a2元。

1)把总造价y(元)表示为底的一边)
(m
x的函数,并指出其定义域;2)当底的一边x取何值时造价最省。

初高中知识衔接(二次函数、方程、不等式)

初高中知识衔接(二次函数、方程、不等式)

初高中衔接二次函数方程不等式一、明确复习目标1.掌握二次函数的图象和性质;2.掌握一元二次函数、方程、不等式的关系;3.会讨论二次方程实根分布和二次不等式的解;4.会运用数形结合、分类讨论、函数与方程以及等价转化等重要的数学思想分析解决有关二次的问题。

二.建构知识网络1.二次函数的三种表达式:一般式:;顶点式:;零点式:2.二次函数图象抛物线的开口方向,对称轴:,顶点:,最值:,单调区间:,3.二次函数在闭区间上,必有最大值和最小值,当含有参数时,要按对称轴相对于区间的位置进行讨论。

4.一元二次函数、方程、不等式之间的关系5.一元二次方程实根分布的讨论(1) 利用函数的图象、性质;(2) 利用韦达定理、判别式。

三、双基题目练练手1.已知函数f(x)=4x2-mx+5在区间[-2,+∞)上是增函数,则f(1)的范围是A.f(1)≥25B.f(1)=25 ( )C.f(1)≤25D.f(1)>252.二次函数y=x2-2(a+b)x+c2+2ab的图象的顶点在x轴上,且a、b、c 为△ABC的三边长,则△ABC为 ( )A.锐角三角形B.直角三角形C.钝角三D.等腰三角形3.如果函数f(x)=x+bx+c对于任意实数t,都有f(2+t)=f(2-t),那么( )A. f(2)<f(1)<f(4)B. f(1)<f(2)<f(4)C. f(2)<f(4)<f(1)D. f(4)<f(2)<f(1)二、填空题4.函数f(x)=2x2-6x+1在区间[-1,1]上的最小值是______,最大值是________.5.已知函数,则的单调递增区间为简答1-4、ABA; 4、-3 9; 5、;1.对称轴 ≤-2m≤-16,∴f(1)=9-m≥25.2.顶点为(a+b,c2-a2-b2),由已知c2-a2-b2=0.∴Rt△3.对称轴为x=2;四、经典例题做一做【例1】已知方程(1)都小于零; (2)都小于1;(3); (4)(5)恰有一根在(1,2)区间内。

初高中衔接二次函数专题

初高中衔接二次函数专题

3 二次函数 基础知识1.二次函数的三种表示方式: (1)一般式:y=ax 2 +bx+c ;(2)顶点式:y=a(x-m)2 +n (常用,便于求最值、画图); (3)交点式: y=a(x-x 1 )(x-x 2 ) (△≥0时) .2.若函数y=f(x)的对称轴是x=h,则对f(x)定义域内的任意x,都有f(h+x)=f(h-x);反之也成立。

3.二次方程根的分布问题,限制条件较多时可用相应抛物线位置,限制条件较少时可用韦达定理解决。

4.二次函数的最值问题(1)二次函数2(0)y ax bx c a =++≠的最值.二次函数在自变量x 取任意实数时的最值情况:当0a >时,函数在2bx a=-处取得最小值244ac b a -,没有最大值;当0a <时,函数在2b x a=-处取得最大值244ac b a -,没有最小值.求二次函数最大值或最小值的步骤:第一步确定a 的符号,a >0有最小值,a <0有最大值; 第二步配方求顶点,顶点的纵坐标即为对应的最大值或最小值. (2)求二次函数在某一范围内的最值.二次函数在某区间上的最值须用配方法,含字母的函数最值可借助图象分析。

如:求2y ax bx c =++在m x n ≤≤(其中m n <)的最值的步骤: 第一步:先通过配方,求出函数图象的对称轴:0x x =;第二步:讨论:(请同学们画出图像理解)(1)若0a >时求最小值或0a <时求最大值,需分三种情况讨论: ①0x m <,即对称轴在m x n ≤≤的左侧; ②0m x n ≤≤,即对称轴在m x n ≤≤的内部; ③0x n >,即对称轴在m x n ≤≤的右侧。

(2) 若0a >时求最大值或0a <时求最小值,需分两种情况讨论: ①02m nx +≤,即对称轴在m x n ≤≤的中点的左侧;②02m nx +>,即对称轴在m x n ≤≤的中点的右侧。

初高中数学衔接知识复习二次函数

初高中数学衔接知识复习二次函数

初、高中数学衔接知识复习:二次函数一.要点回顾1. 二次函数y =ax 2+bx +c (a ≠0)配方得:y =ax 2+bx +c =a (x 2+b x a )+c =a (x 2+b x a+224b a )+c -24b a 224()24b b ac a x a a-=++, 所以,y =ax 2+bx +c (a ≠0)的图象可以由函数y =ax 2的图象作左右平移、上下平移而得到。

2.二次函数y =ax 2+bx +c (a ≠0)的性质:[1] 当a >0时,函数y =ax 2+bx +c 图象开口向 ;顶点坐标为 ,对称轴为直线 ;当x 时,y 随着x 的增大而 ;当x 时,y 随着x 的增大而 ;当x 时,函数取最小值 .[2] 当a <0时,函数y =ax 2+bx +c 图象开口向 ;顶点坐标为 ,对称轴为直线 ;当x 时,y 随着x 的增大而 ;当x 时,y 随着x 的增大而 ;当x 时,函数取最大值 .3.二次函数的三种表示方式[1]二次函数的三种表示方式:(1).一般式: ; (2).顶点式: ; (3).交点式: . 说明:确定二此函数的关系式的一般方法是待定系数法,在选择把二次函数的关系式设成什么形式时,可根据题目中的条件灵活选择,以简单为原则.二次函数的关系式可设如下三种形式:①给出三点坐标可利用一般式来求;②给出两点,且其中一点为顶点时可利用顶点式来求.③给出三点,其中两点为与x 轴的两个交点)0,(1x .)0,(2x 时可利用交点式来求.2 二次函数图像的变换----------平移二次函数y =a (x +h )2+k (a ≠0)中,a 决定了二次函数图象的开口大小及方向;h 决定了二次函数图象的左右平移,而且“h 正左移,h 负右移”;k 决定了二次函数图象的上下平移,而且“k 正上移,k 负下移”. 选择题:(1)下列函数图象中,顶点不在坐标轴上的是 ( )(A )y =2x 2 (B )y =2x 2-4x +2(C )y =2x 2-1 (D )y =2x 2-4x(2)函数y =2(x -1)2+2是将函数y =2x 2( )(A )向左平移1个单位、再向上平移2个单位得到的 (B )向右平移2个单位、再向上平移1个单位得到的 (C )向下平移2个单位、再向右平移1个单位得到的 (D )向上平移2个单位、再向右平移1个单位得到的(3)把函数y =-(x -1)2+4的图象向左平移2个单位,向下平移3个单位,所得图象对应的解析式为 ( )(A )y = (x +1)2+1 (B )y =-(x +1)2+1(C )y =-(x -3)2+4 (D )y =-(x -3)2+二.题型演练例1.抛物线()21252y x =--+的顶点坐标是_________,对称轴是_________,开口向_____,当x =_______时,y 有最______值,最大值为 ________。

初中数学二次函数知识点总结

初中数学二次函数知识点总结

初中数学二次函数知识点总结二次函数是高中数学中重要的内容之一,也是中考和高考常见的考点。

它是一个关于x的二次方程,其一般形式可以表示为y=ax²+bx+c,其中a、b、c为实数,且a≠0。

下面对初中数学中涉及到的二次函数知识点进行总结。

一、二次函数的图像和性质:1. 二次函数的图像是一个抛物线,可以是开口向上的,也可以是开口向下的。

2. 抛物线的顶点是图像的最低点或最高点,记作顶点(x0,y0),其中x0=-b/2a。

3. 当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

4. 当a>0时,函数的最小值为y0;当a<0时,函数的最大值为y0。

5. 如果a>0,抛物线在x轴上方,开口向上,函数的值随着x的增大而增大。

二、求二次函数的零点:1. 二次函数的零点为使得函数值为0的x的值,记作x1和x2。

2. 二次函数的零点可以通过求解二次方程ax²+bx+c=0来得到。

3. 当b²-4ac>0时,有两个不相等的实根;当b²-4ac=0时,有两个相等的实根;当b²-4ac<0时,没有实根,但有两个共轭复数根。

4. 零点与顶点的关系:零点的平均值等于顶点的横坐标,即(x1+x2)/2=-b/2a。

1. 对称轴是抛物线的对称轴,是通过顶点的水平直线。

2. 对称轴的方程为x=-b/2a。

3. 对称性质:当x在对称轴两侧,二次函数的值对称,即f(x)=f(2x0-x)。

1. 二次函数的图像沿x轴左右平移会改变对称轴的位置,平移后的对称轴的方程为x=-b/2a+h,其中h为平移的水平距离。

2. 平移后的二次函数的顶点的横坐标为(-b/2a+h)。

五、二次函数与一次函数的关系:1. 一次函数y=kx+b是二次函数y=ax²+bx+c的特例,即a=0时的情况。

2. 当a=0时,二次函数退化为一次函数。

3. 一次函数的图像是一条直线,不具有抛物线的特点。

初升高数学衔接知识点

初升高数学衔接知识点

初升高数学衔接知识点
1. 函数的概念嘿!你想想看,函数就像一个魔法机器,你给它一个输入,它就会给你一个特定的输出。

比如说,y = 2x,当你给 x 赋值 5 时,y 不就等于 10 了嘛,神奇吧!
2. 二次函数的图像哇塞!二次函数的图像就像一条会跳舞的曲线。

像抛物线 y = x^2,它有个最低点,多有意思啊!还记得你扔出的球的轨迹吗?那就和二次函数图像有点像呢。

3. 几何图形的认识哎呀!几何图形就像生活中的各种东西呀。

圆就像个大皮球,三角形像个屋顶,正方体像个盒子。

你看我们身边到处都是几何图形呢!
4. 不等式的求解嘿呀!不等式就像个天平,要让两边平衡呀。

比如说
2x + 5 > 10,解出来 x 的范围,不就知道哪些数满足条件啦,是不是很有
趣呢?
5. 因式分解哇靠!因式分解就像是把一个大东西拆分成好多小零件。

像x^2 - 9 可以分解成 (x + 3)(x - 3),厉害吧!
6. 概率的初步了解天哪!概率就像是在碰运气呢。

抛个硬币,正面朝上的概率是二分之一。

就好像抽奖一样,充满了未知和期待,多刺激呀!
7. 数列的奥秘哟呵!数列就像一串有规律的数字在排队。

等差数列 1,3,5,7,它们每次都增加 2,是不是很神奇呢!
8. 三角函数的神奇嘿嘿!三角函数就像是数学里的魔法师。

像正弦函数,余弦函数,它们能解决很多几何问题呢,你不好奇吗?
我的观点结论就是:初升高这些数学衔接知识点真的很重要,很有趣,能让我们更好地进入高中数学的学习呢!。

初中数学二次函数的知识点

初中数学二次函数的知识点

初中数学二次函数的知识点在初中数学学习中,二次函数是一个非常重要的知识点,它衔接了代数和几何两部分内容,对于初中生来说,掌握好二次函数可以为高中数学学习打下坚实的基础。

本文将详细介绍初中数学二次函数的知识点,帮助同学们更好地理解和应用。

一、二次函数的定义二次函数是指形如y=ax^2+bx+c(a≠0)的函数,其中a、b、c为常数。

特别地,当b=0时,二次函数变成了一个二次项系数为a的二次方程,其一般形式为y=ax^2+c。

二、二次函数的图像1. 开口方向:二次函数的图像是一条抛物线,根据a的符号不同,抛物线开口方向也不同。

当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

2. 顶点:对于一般形式的二次函数y=ax^2+bx+c(a≠0),其图像的顶点坐标为(-b/2a,(4ac-b^2)/4a)。

当b=0时,抛物线顶点为(0,c)。

3. 拐点:在二次函数的图像中,拐点通常是指曲线的凸凹性质发生改变的点,也就是二阶导数为0的点。

对于二次函数y=ax^2+bx+c(a ≠0),其拐点为(b/2a,c-b^2/4a)。

三、二次函数的应用二次函数在日常生活中有着广泛的应用,以下列举几个例子:1. 利润问题:在商业活动中,经常涉及到利润问题。

例如,某种商品的成本为每件100元,售出价格为每件150元,若售出件数为100件,求该商品的利润。

这个问题可以用二次函数来解决,将成本、售价和售出件数作为变量,利润作为因变量,列出二次函数表达式,再通过求解表达式得到利润。

2. 人口问题:在生物学和人口统计学中,通常会研究人口数量随时间的变化情况。

我们可以将人口数量作为因变量,时间作为自变量,列出二次函数表达式,通过观察表达式的变化趋势来分析人口增长情况。

3. 物理问题:在物理学中,很多问题也可以用二次函数来描述。

例如,一个物体从高处自由落体,其下落距离与时间的关系就可以用二次函数来表达。

通过对表达式的计算和分析,我们可以求出物体下落的距离和时间的关系。

二次函数常用公式、结论及训练

二次函数常用公式、结论及训练

初中函数问题涉及到的常用公式或结论及其训练一、 常用公式或结论(1)横线段的长 = x 大-x 小 =x 右-x 左 =横标之差的绝对值(用于情况不明)。

纵线段的长 = y 大-y 小=y 上-y 下 = 纵标之差的绝对值(用于情况不明)。

(2)点轴距离:点P (x 0 ,y 0)到X 轴的距离为0y ,到Y 轴的距离为o x 。

(3)两点间的距离公式:若A (x 1,y 1),B(x 2,y 2), 则 AB=221212()()x x y y -+- (4)点到直线的距离:点P (x 0 ,y 0)到直线Ax+By+C=0 (其中常数A,B,C 最好化为整系数,也方便计算)的距离为:0022Ax By Cd A B++=+(5)中点坐标公式:若A(x 1,y 1),B (x 2,y 2),则线段AB 的中点坐标为(1212,22x x y y ++)(6)直线的斜率公式:若A (x 1,y 1),B (x 2,y 2)(x 1≠x 2),则直线AB 的斜率为:1212=AB y y k x x --,(x 1≠x 2) (7)两直线平行的结论:已知直线l 1: y=k 1x+b 1 ; l 2: y=k 2x+b 2①若l 1//l 2,则k 1=k 2;②若k 1=k 2,且b 1 ≠b 2,则 l 1//l 2。

(8)两直线垂直的结论:已知直线l 1: y=k 1x+b 1 ; l 2: y=k 2x+b 2 ①若l 1┴l 2,则k 1•k 2 =-1;②若k 1•k 2 =-1,则l 1┴l 2(9)直线与抛物线(或双曲线)截得的弦长公式:【初高中数学重要衔接内容之一,设而不求的思想】直线y=kx+n 与抛物线y=ax 2+bx+c (或双曲线y=m/x )截得的弦长公式是:AB=2121x x k -∙+=2122124)(1x x x x k -+∙+证明如下:设直线y=kx+n 与抛物线y=ax 2+bx+c (或双曲线y=m/x )交于A (x 1, y 1), B (x 2, y 2)两点,由两点间的距离公式可得:AB=221221)()(y y x x -+-,因为A (x 1, y 1),B (x 2, y 2)两点是直线y=kx+n 与抛物线抛物线y=ax 2+bx+c (或双曲线y=m/x )的交点,所以 A (x 1, y 1),B (x 2, y 2)两点也在直线y=kx+n 上,∴y 1=kx 1+n, y 2=kx 2+n, ∴y 1-y 2=(kx 1+n )—(kx 2+n )=kx 1-kx 2=k (x 1-x 2), ∴AB=2212221)()(x x k x x -+-=2212))(1(x x k -+=2121x x k -∙+=2122124)(1x x x x k -+∙+而x 1, x 2显然是直线y=kx+n 与抛物线y=ax 2+bx+c (或双曲线y=m/x )组成方程组后,消去y (用代入法)所得到的那个一元二次方程的两根,从而运用韦达定理x 1+x 2 , x 1∙x 2可轻松求出,进而直线与抛物线(或双曲线)截得的弦长就很容易计算或表示出来。

二次函数的简单应用- 初升高数学衔接(解析版)

二次函数的简单应用- 初升高数学衔接(解析版)

二次函数的简单应用- 初升高数学衔接(解析版)高中必备知识点1:平移变换问题1 在把二次函数的图象进行平移时,有什么特点?依据这一特点,可以怎样来研究二次函数的图象平移?我们不难发现:在对二次函数的图象进行平移时,具有这样的特点——只改变函数图象的位置、不改变其形状,因此,在研究二次函数的图象平移问题时,只需利用二次函数图象的顶点式研究其顶点的位置即可.典型考题【典型例题】如图,抛物线经过两点,顶点为D.求a和b的值;将抛物线沿y轴方向上下平移,使顶点D落在x轴上.求平移后所得图象的函数解析式;若将平移后的抛物线,再沿x轴方向左右平移得到新抛物线,若时,新抛物线对应的函数有最小值2,求平移的方向和单位长度.【答案】将抛物线向左平移个单位长度或向右平移个单位长度.【解析】代入,得:,解得:.,抛物线顶点D的坐标为.将抛物线沿y轴平移后,顶点D落在x轴上,平移后的抛物线的顶点坐标为,平移后的抛物线为,即.若将抛物线向左平移个单位长度,则新抛物线的解析式为,时,新抛物线对应的函数有最小值2,新抛物线必过点,,解得:舍去;若将抛物线向右平移个单位长度,则新抛物线的解析式为,时,新抛物线对应的函数有最小值2,新抛物线必过点.,解得:舍去.将抛物线向左平移个单位长度或向右平移个单位长度.【变式训练】已知抛物线,把它向上平移,得到的抛物线与x轴交于A、B两点,与y轴交于C点,若是直角三角形,那么原抛物线应向上平移几个单位?【答案】向上平移3个单位.【解析】由题意知,必为等腰直角三角形,设平移后的抛物线为,则,代入抛物线方程得:,舍去.所以向上平移3个单位.【能力提升】已知抛物线y=x(x﹣2)+2.(1)用配方法把这个抛物线的表达式化成y=a(x+m)2+k的形式,并写出它的项点坐标;(2)将抛物线y=x(x﹣2)+2上下平移,使顶点移到x轴上,求新抛物线的表达式.【答案】(1)y=(x﹣1)2+1,它的顶点坐标为:(1,1);(2)图象向下平移1个单位得到:y=(x﹣1)2.【解析】(1)y=x(x﹣2)+2=x2﹣2x+2=(x﹣1)2+1,它的顶点坐标为:(1,1);(2)∵将抛物线y=x(x﹣2)+2上下平移,使顶点移到x轴上,∴图象向下平移1个单位得到:y=(x﹣1)2.高中必备知识点2:对称变换在把二次函数的图象关于与坐标轴平行的直线进行对称变换时,有什么特点?依据这一特点,可以怎样来研究二次函数的图象平移?我们不难发现:在把二次函数的图象关于与坐标轴平行的直线进行对称变换时,具有这样的特点——只改变函数图象的位置或开口方向、不改变其形状,因此,在研究二次函数图象的对称变换问题时,关键是要抓住二次函数的顶点位置和开口方向来解决问题.典型考题【典型例题】如图,抛物线y=ax²-2x+c(a≠0)与x轴,y轴分别交于点A,B,C三点,已知点(-2,0),C(0,-8),点D是抛物线的顶点.(1)求抛物线的解析式及顶点D的坐标;(2)如图,抛物线的对称轴与x轴交于点E,第四象限的抛物线上有一点P,将△EB直线EP折叠,使点B 的对应点B'落在抛物线的对称轴上,求点P的坐标;【答案】(1)y=x2﹣2x﹣8;D(1,﹣9);(2)P().【解析】(1)将点A、点C的坐标代入抛物线的解析式得:,解得:a=1,c=﹣8.∴抛物线的解析式为y=x2﹣2x﹣8.∵y=(x﹣1)2﹣9,∴D(1,﹣9).(2)将y=0代入抛物线的解析式得:x2﹣2x﹣8=0,解得x=4或x=﹣2,∴B(4,0).∵y=(x﹣1)2﹣9,∴抛物线的对称轴为x=1,∴E(1,0).∵将△EBP沿直线EP折叠,使点B的对应点B'落在抛物线的对称轴上,∴EP为∠BEF的角平分线.∴∠BEP=45°.设直线EP的解析式为y=﹣x+b,将点E的坐标代入得:﹣1+b=0,解得b=1,∴直线EP的解析式为y=﹣x+1.将y=﹣x+1代入抛物线的解析式得:﹣x+1=x2﹣2x﹣8,解得:x=或x=.∵点P在第四象限,∴x=.∴y=.∴P().【变式训练】已知二次函数的图象的顶点坐标为(3,-2),且与y轴交于(0,).(1)求函数的解析式;(2)若点(p,m)和点(q,n)都在该抛物线上,若p>q>5,判断m和n的大小.【答案】(1)y=(x-3)2-2.(2)m>n.【解析】(1)由题意设函数的解析式为y=a(x-3)2-2,根据题意得9a-2=解得a=,所以函数解析式是y=(x-3)2-2.(2)因为a=>0,所以抛物线开口向上,又因为二次函数的对称轴是直线x=3.所以当x>3时,y随x增大而增大,因为p>q>5>3,所以m>n.【能力提升】已知抛物线经过点(1,-2).(1)求的值;(2)若点A(m,y1)、B(n,y2)(m<n<3)都在该抛物线上,试比较y1与y2的大小.【答案】(1)a=-1;(2)y1<y2.【解析】(1)、∵抛物线经过点(1,-2),∴,解得a=-1;(2)、∵函数的对称轴为x=3,∴A(m,y1)、B(n,y2)(m<n<3)在对称轴左侧,又∵抛物线开口向下,∴对称轴左侧y随x的增大而增大,∵m<n<3,∴y1<y2.高中必备知识点3:分段函数一般地,如果自变量在不同取值范围内时,函数由不同的解析式给出,这种函数,叫作分段函数.典型考题【典型例题】函数1()01xf xx-⎧⎪=⎨⎪+⎩)0()0()0(<=>xxx,则))1((ff的值是___.【答案】0 【解析】∵函数f(x)100010x xxx x-⎧⎪==⎨⎪+⎩,>,,<,∴f (1)=1﹣1=0, f (f (1))=f (0)=0. 故答案为:0.【变式训练】已知函数,若,则_________.【答案】【解析】,故,填.【能力提升】函数__________.【答案】1. 【解析】 由题意得.故答案为:1.专题验收测试题1.如图,在四边形ABCD 中,//AD BC ,DC BC ⊥,4cm DC =,6cm BC =,3cm AD = ,动点P ,Q 同时从点B 出发,点P 以2cm /s 的速度沿折线BA AD DC --运动到点C ,点Q 以1cm/s 的速度沿BC运动到点C ,设P ,Q 同时出发s t 时,BPQ ∆的面积为2cm y ,则y 与t 的函数图象大致是( )A .B .C .D .【答案】B 【解析】解:作AE ⊥BC 于E ,根据已知可得,AB 2=42+(6-3)2, 解得,AB=5cm . 下面分三种情况讨论:当0≤t≤2.5时:P 点由B 到A ,21442255y t t t ==,y 是t 的二次函数.最大面积= 5 cm 2; 当2.5≤t≤4时,即P 点在AD 上时,1422y t t =⨯=, y 是t 的一次函数且最大值=21448cm 2⨯⨯=;当4≤t≤6时,即P 点从D 到C 时,()211226,2y t t t t =⋅-=-+y 是t 的二次函数 故符合y 与t 的函数图象是B . 故选:B .2.如图,在四边形ABCD 中,AD ∥BC ,DC ⊥BC ,DC =4cm ,BC =6cm ,AD =3cm ,动点P ,Q 同时从点B 出发,点P 以2cm /s 的速度沿折线BA ﹣AD ﹣DC 运动到点C ,点Q 以1cm /s 的速度沿BC 运动到点C ,设P ,Q 同时出发xs 时,△BPQ 的面积为ycm 2.则y 与x 的函数图象大致是( )A.B.C.D.【答案】B【解析】作AE⊥BC于E,根据已知可得,AB2=42+(6﹣3)2,解得,AB=5cm.当0≤x≤2.5时:P点由B到A,△BPQ的面积从小到大,且达到最大此时面积=12×2.5×4=5cm2.当2.5≤x≤4时,即P点在AD上时,1422y x x=⨯=,且增大值为:21448cm2⨯⨯=;当4≤x≤6时,即P点从D到C时,y=1(122)2x x⋅-=﹣x2+6x.故符合y与x的函数图象大致是B.故选B.3.如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P不与点B、C重合),现将△PCD沿直线PD折叠,使点C落到点C′处;作∠BPC′的角平分线交AB于点E,设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是()A. B.C. D.【答案】D【解析】解:如图,连接DE ,∵△PC′D 是△PCD 沿PD 折叠得到, ∴∠CPD =∠C′PD , ∵PE 平分∠BPC′, ∴∠BPE =∠C′PE , ∴∠EPC′+∠DPC′=12×180°=90°, ∴△DPE 是直角三角形,∵BP =x ,BE =y ,AB =3,BC =5,∴AE =AB ﹣BE =3﹣y ,CP =BC ﹣BP =5﹣x , 在Rt △BEP 中,PE 2=BP 2+BE 2=x 2+y 2,在Rt △ADE 中,DE 2=AE 2+AD 2=(3﹣y )2+52, 在Rt △PCD 中,PD 2=PC 2+CD 2=(5﹣x )2+32, 在Rt △PDE 中,DE 2=PE 2+PD 2, 则(3﹣y )2+52=x 2+y 2+(5﹣x )2+32, 整理得,﹣6y =2x 2﹣10x , 所以y =21533x x -+(0<x <5), 纵观各选项,只有D 选项符合. 故选:D .4.某种圆形合金板材的成本y (元)与它的面积(cm 2)成正比,设半径为xcm ,当x =3时,y =18,那么当半径为6cm 时,成本为( ) A .18元 B .36元C .54元D .72元【答案】D 【解析】解:根据题意设y =k πx 2, ∵当x =3时,y =18, ∴18=k π•9,则k=2π,∴y=kπx2=2π•π•x2=2x2,当x=6时,y=2×36=72,故选:D.5.把一个足球垂直于水平地面向上踢,该足球距离地面的高度(米)与所经过的时间(秒)之间的关系为. 若存在两个不同的的值,使足球离地面的高度均为(米),则的取值范围()A.B.C.D.【答案】C【解析】∵a≥0,由题意得方程10t-t2=a有两个不相等的实根∴△=b2-4ac=102+4××a>0得0≤a<50又∵0≤t≤14∴当t=14时,a=h=10×14-×142=42所以a的取值范围为:42≤a<50故选:C.6.汽车刹车后行驶的距离s(单位:米)关于行驶的时间t(单位:秒)的函数解析式为s=-6t2+bt(b为常数).已知t=时,s=6,则汽车刹车后行驶的最大距离为()A.米B.8米C.米D.10米【答案】C【解析】解:把t=,s=6代入s=-6t2+bt得,6=-6×+b×,解得,b=15∴函数解析式为s=-6t2+15t=-6(t-)2+,∴当t=时,s取得最大值,此时s=,故选:C.7.已知直线y=n与二次函数y=(x﹣2)2﹣1的图象交于点B,点C,二次函数图象的顶点为A,当△ABC是等腰直角三角形时,则n的值为()A.1 B.C.2﹣D.2+【答案】A【解析】设B(x1,n)、C(x2,n),作AD⊥BC,垂足为D连接AB,AC,∵y=(x﹣2)2﹣1,∴顶点A(2,﹣1),AD=n﹣(﹣1)=n+1∵直线y=n与二次函数y=(x﹣2)2﹣1的图象交于点B、C,∴(x﹣2)2﹣1=n,化简,得x2﹣4x+2﹣2n=0,x1+x2=4,x1x2=2﹣2n,∴BC=|x1﹣x2|=,∵点B、C关于对称轴直线AD对称,∴D为线段BC的中点,∵△ABC是等腰直角三角形,∴AD=BC,即BC=2AD=2(n+1),∴(2+2n)=(n+1)2,化简,得n2=1,∴n=1或﹣1,n=﹣1时直线y=n经过点A,不符合题意舍去,所以n=1.故选:A.8.如图,跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某运动员起跳后的x与y的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为()A.10m B.20m C.15m D.22.5m【答案】C【解析】根据题意知,抛物线y=ax2+bx+c(a≠0)经过点(0,54.0)、(40,46.2)、(20,57.9),则,解得:,所以x=-=15(m).故选C.9.足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:t 0 1 2 3 4 5 6 7 …h 0 8 14 18 20 20 18 14 …下列结论:①足球距离地面的最大高度为20m;②足球飞行路线的对称轴是直线t=;③足球被踢出9s时落地;④足球被踢出1.5s时,距离地面的高度是11m,其中正确结论的个数是()A.1 B.2 C.3 D.4【答案】B【解析】解:由题意,抛物线的解析式为y=at(t-9),把(1,8)代入可得a=-1,∴y=-t2+9t=-(t-4.5)2+20.25,∴足球距离地面的最大高度为20.25m,故①错误,∴抛物线的对称轴t=4.5,故②正确,∵t=9时,y=0,∴足球被踢出9s时落地,故③正确,∵t=1.5时,y=11.25,故④错误,∴正确的有②③.故选B.10.某一型号飞机着陆后滑行的距离S(单位:米)关于滑行的时间t(单位:秒)之间的函数解析式是S =﹣1.5t2+60t,则该型号飞机着陆后滑行()秒才能停下来.A.600 B.300 C.40 D.20【答案】D【解析】解:由题意,s=﹣1.5t2+60t,=﹣1.5(t2﹣40t+400﹣400)=﹣1.5(t﹣20)2+600,即当t=20秒时,飞机才能停下来.故选:D.11.如图是抛物线形拱桥,P处有一照明灯,水面OA宽4m,从O、A两处双测P处,仰角分别为α、β,且tanα=12,tanβ=23,以O为原点,OA所在直线为x轴建立直角坐标系.P点坐标为_____;若水面上升1m,水面宽为_____m.【答案】33,2⎛⎫⎪⎝⎭; 22 【解析】解:(1)过点P 作PH ⊥OA 于H ,如图. 设PH =3x , 在Rt △OHP 中, ∵tanα=PH 1OH 2=, ∴OH =6x . 在Rt △AHP 中, ∵tanβ=32PH AH =, ∴AH =2x ,∴OA =OH +AH =8x =4, ∴x =12, ∴OH =3,PH =23, ∴点P 的坐标为(3,23); 故答案是:(3,23); (2)若水面上升1m 后到达BC 位置,如图,过点O (0,0),A (4,0)的抛物线的解析式可设为y =ax (x ﹣4),∵P (3,23)在抛物线y =ax (x ﹣4)上, ∴3a (3﹣4)=23,解得a =﹣12,∴抛物线的解析式为y =﹣12x (x ﹣4).当y =1时,﹣12x (x ﹣4)=1,解得x 1=2+2,x 2=2﹣2,∴BC =(2+2)﹣(2﹣2)=22. 故答案是:22.12.某一房间内A 、B 两点之间设有探测报警装置,小车(不计大小)在房间内运动,当小车从AB 之间经过时,将触发报警.现将A 、B 两点放置于平面直角坐标系xOy 中(如图)已知点A ,B 的坐标分别为(0,4),(5,4),小车沿抛物线y =ax 2-2ax -3a 运动.若小车在运动过程中只触发一次报警,则a 的取值范围是______【答案】a <-43或a >13【解析】解:抛物线y=ax 2-2ax-3a=a (x+1)(x-3),∴其对称轴为:x=1,且图象与x 轴交于(-1,0),(3,0). 当抛物线过点(0,4)时,代入解析式得4=-3a , ∴a=43-,由对称轴为x=1及图象与x 轴交于(-1,0),(3,0)可知,当a <43-时,抛物线与线段AB 只有一个交点;当抛物线过点(5,4)时,代入解析式得25a-10a-3a=4,∴a=13,同理可知当a >13时,抛物线与线段AB 只有一个交点. 故答案为:a <43-或a >13.13.为了节省材料,某农场主利用围墙(围墙足够长)为一边,用总长为80m的篱笆围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等,则能围成的矩形区域ABCD的面积最大值是___m2.【答案】300.【解析】如图,∵三块矩形区域的面积相等,∴矩形AEFD面积是矩形BCFE面积的2倍,∴AE=2BE,设BC=x,BE=FC=a,则AE=HG=DF=2a,∴DF+FC+HG+AE+EB+EF+BC=80,即8a+2x=80,∴a=﹣x+10,3a=﹣x+30,∴矩形区域ABCD的面积S=(﹣x+30)x=﹣x2+30x,∵a=﹣x+10>0,∴x<40,则S=﹣x2+30x(0<x<40);∵S=﹣x2+30x=﹣(x﹣20)2+300(0<x<40),且二次项系数为﹣<0,∴当x=20时,S有最大值,最大值为300m2.故答案为:300.14.某民房发生火灾.两幢大楼的部分截面及相关数据如图,小明在甲楼A处透过窗户E发现乙楼F处出现火灾,此时A,E,F在同一直线上.跑到一楼时,消防员正在进行喷水灭火,水流路线呈抛物线,在1.2m 高的D处喷出,水流正好经过E,F.若点B和点E、点C和点F的离地高度分别相同,现消防员将水流抛物线向上平移5m,再向左后退_____m,恰好把水喷到F处进行灭火.【答案】5【解析】由图可知:A(0,21.2),B(0,9.2),C(0,6.2),D(0,1.2),∵点B和点E、点C和点F的离地高度分别相同,∴E(20,9.2),设AE的直线解析式为y=kx+b,,∴,∴y=﹣x+21.2,∵A,E,F在同一直线上.∴F(25,6.2),设过D,E,F三点的抛物线为y=ax2+bx+c,∴,∴,水流抛物线向上平移5m,设向左退了m米,∴D(0,6.2),设平移后的抛物线为,经过点F,∴m=5或m=﹣25(舍),∴向后退了5米.故答案为5.15.某网店销售某种商品,成本为30元/件,当销售价格为60元件/时,每天可售出100件,经市场调查发现,销售单价每降1元,每天销量增加10件.当销售单价为__________元时,每天获取的利润最大.【答案】50【解析】解:设当销售单价为x元时,每天获取的利润为y元,则y=(x-30)[100+10(60-x)]=-10x2+1000x-21000=-10(x-50)2+4000,∴当x=50时,y有最大值,且为4000,故答案为:50.16.教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x(m)之间的关系为.由此可知,铅球推出的距离是__________m.【答案】10【解析】在中,当,解得(舍去).即铅球推出的距离是10m.故答案为:1017.已知某种水果的批发单价与批发量的函数关系如图1所示.(1)请说明图中①、②两段函数图象的实际意义;(2)写出批发该种水果的资金金额w(元)与批发量m(kg)之间的函数关系式;在图2的坐标系中画出该函数图象;指出金额在什么范围内,以同样的资金可以批发到较多数量的该种水果;(3)经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图3所示,该经销商拟每日售出60kg以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案,使得当日获得的利润最大.【答案】(1)详见解析;(2)详见解析;(3)经销商应批发80kg该种水果,日零售价定为6元/kg,当日可获得最大利润160元.【解析】解:(1)图①表示批发量不少于20kg且不多于60kg的该种水果,可按5元/kg批发,图②表示批发量高于60kg的该种水果,可按4元/kg批发;(2)由题意得:5(2060)4(60)m mwm m≤≤⎛=<⎝,函数图象如图所示.由图可知批发量超过60时,价格在4元中,所以资金金额满足240<w≤300时,以同样的资金可批发到较多数量的该种水果;(3)设日最高销售量为xkg(x>60),日零售价为p,设x=pk+b,则由图②该函数过点(6,80),(7,40),代入可得:x=320﹣40p,于是p=32040x-,销售利润y=x(32040x-﹣4)=﹣140(x﹣80)2+160当x=80时,y最大值=160,此时p=6,即经销商应批发80kg该种水果,日零售价定为6元/kg,当日可获得最大利润160元.18.某商品现在的售价为每件30元,每星期可卖出160件,市场调查反映,如调整价格,每涨价1元,每星期要少卖出2件.已知商品的进价为每件10元.(1)在顾客得到实惠的情况下,如何定价商家才能获得4200元的利润?(2)如何定价才能使利润最大?【答案】(1)在顾客得到实惠的情况下,售价为40(80舍)元时商家才能获得4200元的利润;(2)售价为60元时利润最大为5000元.【解析】(1)设商品的涨价x元,由题意得:(30+x-10)(160-2x)=4200,整理得:x2-60x+500=0,解得:x=10或50,故为尽可能让利于顾客并使每周利润为4200元,取x的值为10,所以,在顾客得到实惠的情况下,售价为40元时商家才能获得4200元的利润;(2)由题意得:y=(30+x-10)(160-2x)=-2x2+120x+3200,=-2(x-30)2+5000∵-2<0,∴当x=30时,y取得最大值,此时y=5000(元),即当售价为60元时,会获得每周销售最大利润,每周最大销售利润为5000元.19.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm,花园的面积为Sm2.(1)若花园的面积为192m2,求x的值;(2)写出花园面积S与x的函数关系式.x为何值时,花园面积S有最大值?最大值为多少?(3)若在P处有一棵树与墙CD,AD的距离分别是a(14≤a≤22)和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),设花园面积S的最大值为y,直接写出y与a的关系式.【答案】(1)花园的面积为192m 2,x 的值为12m 或16m ;(2)x 为14m 时,花园面积S 有最大值,最大值为196m 2;(3)当x =28﹣a 时,函数有最大值,y=﹣(14﹣a )2+196.【解析】解:(1)依题意得 S =x (28﹣x ),当S =192时,有S =x (28﹣x )=192,即x 2﹣28x +192=0,解得:x 1=12,x 2=16,答:花园的面积为192m 2,x 的值为12m 或16m ;(2)由题意可得出:S =x (28﹣x )=﹣x 2+28x=﹣(x ﹣14)2+196,答:x 为14m 时,花园面积S 有最大值,最大值为196m 2;(3)依题意得:286x a x -≥⎧⎨≥⎩, 解得:6≤x ≤28﹣a ,S =x (28﹣x )=﹣x 2+28x =﹣(x ﹣14)2+196,∵a =﹣1<0,当x ≤14,y 随x 的增大而增大,又6≤x ≤28﹣a ,∴当x =28﹣a 时,函数有最大值,∴y =﹣(28﹣a ﹣14)2+196=﹣(14﹣a )2+196.20.某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y (本)与每本纪念册的售价x (元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本. (1)求出y 与x 的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?【答案】(1)y=﹣2x+80;(2)每本纪念册的销售单价是25元;(3)该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元.【解析】试题分析:(1)待定系数法列方程组求一次函数解析式.(2)列一元二次方程求解.(3)总利润=单件利润销售量:w=(x-20)(-2x+80),得到二次函数,先配方,在定义域上求最值.试题解析:(1)设y与x的函数关系式为y=kx+b.把(22,36)与(24,32)代入,得解得∴y=-2x+80.(2)设当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是x元,根据题意,得(x-20)y=150,即(x-20)(-2x+80)=150.解得x1=25,x2=35(舍去).答:每本纪念册的销售单价是25元.(3)由题意,可得w=(x-20)(-2x+80)=-2(x-30)2+200.∵售价不低于20元且不高于28元,当x<30时,y随x的增大而增大,∴当x=28时,w最大=-2×(28-30)2+200=192(元).答:该纪念册销售单价定为28元时,能使文具店销售该纪念册所获利润最大,最大利润是192元.21.数学兴趣小组几名同学到某商场调查发现,一种纯牛奶进价为每箱40元,厂家要求售价在40~70元之间,若以每箱70元销售平均每天销售30箱,价格每降低1元平均每天可多销售3箱.老师要求根据以上资料,解答下列问题,你能做到吗?(1)写出平均每天销售量y(箱)与每箱售价x(元)之间的函数关系;(2)写出平均每天销售利润W(元)与每箱售价x(元)之间的函数关系;(3)现该商场要保证每天盈利900元,同时又要使顾客得到实惠,那么每箱售价为多少元?(4)你认为每天赢利900元,是牛奶销售中的最大利润吗?为什么?【答案】(1)y=﹣3x+240;(2)w=﹣3x2+360﹣9600;(3)50;(4)不是,理由见解析.【解析】(1)y=30+3(70﹣x)=﹣3x+240;(2)w=(x﹣40)(﹣3x+240)=﹣3x2+360﹣9600;(3)当w=900时,(x﹣40)(﹣3x+240)=900整理得:x2﹣120x+3500=0∴x1=50,x2=70,∵要使顾客得到实惠,∴x=70舍去∴每箱价格定为50元;(4)由w=(x﹣40)(﹣3x+240)=﹣3x2+360﹣9600得w=﹣3(x﹣60)2+1200w最大=1200(元)∴赢利900元不是销售的最大利润.22.(本题满分10分)我市某高科技公司生产一种矩形新型材料板,其长宽之比为3∶2,每张材料板的成本c与它的面积成正比例。

初高中数学衔接之因式分解二次函数的最值问题

初高中数学衔接之因式分解二次函数的最值问题

初高中数学衔接必会知识 3 ----- 二次函数的最值问题【要点回顾】1.二次函数2 (0)y ax bx c a =++≠的最值.二次函数在自变量x 取任意实数时的最值情况(当0a >时,函数在2b x a=-处取得最小值244ac b a -,无最大值;当0a <时,函数在2b x a=-处取得最大值244ac b a -,无最小值.2.二次函数最大值或最小值的求法.第一步确定a 的符号,a >0有最小值,a <0有最大值;第二步配方求顶点,顶点的纵坐标即为对应的最大值或最小值.3.求二次函数在某一范围内的最值.如:2y ax bx c =++在m x n ≤≤(其中m n <)的最值.第一步:先通过配方,求出函数图象的对称轴:0x x =;第二步:讨论:[1]若0a >时求最小值或0a <时求最大值,需分三种情况讨论:①对称轴小于m 即0x m <,即对称轴在m x n ≤≤的左侧;②对称轴0m x n ≤≤,即对称轴在m x n ≤≤的内部;③对称轴大于n 即0x n >,即对称轴在m x n ≤≤的右侧。

[2] 若0a >时求最大值或0a <时求最小值,需分两种情况讨论: ①对称轴02m n x +≤,即对称轴在m x n ≤≤的中点的左侧; ②对称轴02m n x +>,即对称轴在m x n ≤≤的中点的右侧; 说明:求二次函数在某一范围内的最值,要注意对称轴与自变量的取值范围相应位置,具体情况,参考例4。

【例题选讲】例1求下列函数的最大值或最小值.(1)5322--=x x y ; (2)432+--=x x y .例2当12x ≤≤时,求函数21y x x =--+的最大值和最小值.例3当0x ≥时,求函数(2)y x x =--的取值范围.例4当1t x t ≤≤+时,求函数21522y x x =--的最小值(其中t 为常数). 分析:由于x 所给的范围随着t 的变化而变化,所以需要比较对称轴与其范围的相对位置.解:函数21522y x x =--的对称轴为1x =.画出其草图. (1) 当对称轴在所给范围左侧.即1t >时:当x t =时,2min 1522y t t =--; (2) 当对称轴在所给范围之间.即1101t t t ≤≤+⇒≤≤时: 当1x =时,2m i n 1511322y =⨯--=-; (3) 当对称轴在所给范围右侧.即110t t +<⇒<时:当1x t =+时,22min 151(1)(1)3222y t t t =+-+-=-.综上所述:2213,023,0115,122t t y t t t t ⎧-<⎪⎪=-≤≤⎨⎪⎪-->⎩例5某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m (件)与每件的销售价x (元)满足一次函数1623,3054m x x =-≤≤.(1) 写出商场卖这种商品每天的销售利润y 与每件销售价x 之间的函数关系式;(2) 若商场要想每天获得最大销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?【巩固练习】1.抛物线2(4)23y x m x m =--+-,当m = _____ 时,图象的顶点在y 轴上;当m = _____ 时,图象的顶点在x 轴上;当m = _____ 时,图象过原点.2.用一长度为l 米的铁丝围成一个长方形或正方形,则其所围成的最大面积为 ________ .3.设0a >,当11x -≤≤时,函数21y x ax b =--++的最小值是4-,最大值是0,求,a b 的值.4.已知函数221y x ax =++在12x -≤≤上的最大值为4,求a 的值.5.求关于x 的二次函数221y x tx =-+在11x -≤≤上的最大值(t 为常数).。

初中数学二次函数知识点归纳

初中数学二次函数知识点归纳

初中数学二次函数知识点归纳二次函数是数学中的一个重要概念,是高中数学中的一部分,也是初中数学的基础。

掌握了二次函数的知识,可以帮助我们解决现实生活中的许多问题。

在这篇文章中,我将对初中数学二次函数的知识点进行全面的归纳与总结。

一、二次函数的定义与图像特征二次函数是形如f(x) = ax^2 + bx + c的函数,其中a、b和c都是实数且a≠0。

下面是二次函数的图像特征:1. 函数的顶点:二次函数的图像是一个抛物线,这个抛物线的顶点的横坐标可以通过求导或者用公式x = -b/2a来求得。

顶点的纵坐标即为函数的最小值或最大值,具体取决于二次函数的开口方向。

2. 函数的对称轴:二次函数的对称轴是通过顶点并与y轴垂直的一条直线,可以通过找到顶点坐标的横坐标来得到对称轴的方程。

3. 函数的开口方向:当a大于0时,二次函数的图像开口向上;当a小于0时,二次函数的图像开口向下。

4. 函数的零点:二次函数的零点是使得函数值等于零的横坐标,可以通过解方程ax^2 + bx + c = 0来求得。

根据判别式Δ=b^2-4ac的正负可以得到二次函数的零点个数和类型。

二、二次函数的性质1. 判别式:对于二次函数f(x)=ax^2+bx+c,判别式Δ=b^2-4ac可以判断二次函数的零点的类型。

当Δ>0时,函数有两个不相等的实数根;当Δ=0时,函数有两个相等的实数根;当Δ<0时,函数无实数根。

2. 零点与因式分解:对于给定的二次函数f(x)=ax^2+bx+c,若其零点为x1和x2,则可以将二次函数因式分解为f(x)=a(x-x1)(x-x2)的形式。

3. 轴对称性:二次函数的图像关于对称轴对称。

也就是说,对于任意横坐标为x的点,当点的纵坐标为y时,存在一个对称于横坐标轴上的点(-x,y)也在图像上。

4. 幂函数与二次函数关系:二次函数是幂函数x^2的逐项系数不为0的特例。

通过将二次函数进行平移、压缩、拉伸等变换,可以将二次函数变换为幂函数的形式。

初高中衔接教育在中考中的应用——二次函数、一元二次方程、一元二次不等式的关系

初高中衔接教育在中考中的应用——二次函数、一元二次方程、一元二次不等式的关系

初高中衔接教育在中考中的应用——二次函数、一元二次方程、一元二次不等式的关系中文要求:一、初高中衔接教育在中考中的应用1、二次函数在中考中的应用(1)二次函数的定义:二次函数是一种可以准确表示具有某种特征曲线的函数,它是单调函数的一种,关于横轴对称,可以用于求解各种坐标运动等场合。

(2)二次函数在中考中的应用:在中考中,可以应用二次函数来解答坐标运动的题目,需要运用抛物线的两个焦点、横坐标或纵坐标的变化,以及声明方程的解析式可让抛物线变得更加清晰明了。

2、一元二次方程在中考中的应用(1)一元二次方程的定义:一元二次方程是多项式不超过2次的方程,比如ax2+bx+c=0,它可以使用因式分解法、公式法及图解法解答。

(2)一元二次方程在中考中的应用:一元二次方程可以用来描述各种问题,比如方程的根,物体的运动轨迹等。

在中考中能够应用到解答椭圆的相关题目,可以使用一元二次方程的形式推导一元二次椭圆的方程,从而可以更加清晰的描述运动轨迹及寻求极值点。

3、一元二次不等式在中考中的应用(1)一元二次不等式的定义:一元二次不等式是一种不等式方程,它包括两部分,一部分为一元二次多项式,另一部分为不等式号。

比如ax2+bx+c>0,可以求得解集。

(2)一元二次不等式在中考中的应用:一元二次不等式可以用来表达物体的运动轨迹、计算几何图形的面积,以及求解椭圆的相关题目等。

在中考中,用一元二次不等式可以更加精准的描述物体的运动轨迹和表现出形状,可以使用这种形式提高中考成绩。

二、结论通过上述分析,可以知道,初高中衔接教育在中考中应用二次函数、一元二次方程以及一元二次不等式等知识点,在解决坐标运动的题目、计算几何图形的面积以及描述物体的运动轨迹等等方面更加精准,可以大大提高考试成绩。

二次函数所有知识点

二次函数所有知识点

二次函数所有知识点二次函数是一种二次方程的形式,可以表示为y = ax^2 + bx + c,其中a、b、c为常数,且a不等于0。

它是初中数学的一个重要内容,也是高中数学的一个基础概念。

下面将介绍二次函数的所有知识点,包括定义、图像、性质、解析式、求解、应用等方面。

一、定义和图像:1. 二次函数的定义:二次函数是形如y = ax^2 + bx + c的函数,其中a、b、c是常数,且a不等于0。

2.二次函数的图像:二次函数的图像是一条抛物线,开口的方向由a 的正负决定,开口向上对应a大于0,开口向下对应a小于0。

抛物线的顶点坐标为(-b/2a,f(-b/2a)),其中f(x)为二次函数的解析式。

二、性质和变换:1. 零点和根:对于二次函数y = ax^2 + bx + c,其零点即为使得函数值等于0的x值,可以用求根公式x = (-b ± √(b^2 - 4ac)) / (2a)来求出。

2.对称轴:二次函数的对称轴为过顶点的直线,其方程为x=-b/2a。

3.对称性:二次函数关于对称轴有轴对称性,即函数值的符号关系和x关于对称轴的关系相同。

4.极值和最值:对于开口向上的二次函数,其顶点是最小值点,对于开口向下的二次函数,其顶点是最大值点。

5.平移和伸缩:二次函数可以通过平移和伸缩变换得到,平移可以改变顶点的位置,伸缩可以改变开口的大小。

6.切线和法线:二次函数的切线是与抛物线仅有一个交点的直线,法线是与切线垂直的直线,通过切点可求出切线和法线的斜率。

三、解析式和方程:1. 一般式和顶点式:二次函数的解析式可以有多种表示方法,常见的有一般式和顶点式。

一般式为y = ax^2 + bx + c,顶点式为y = a(x - h)^2 + k,其中(h, k)为顶点的坐标。

2.平方完成和配方法:求解二次方程可以使用平方完成、配方法和求根公式等方法。

平方完成是将一般式转化成顶点式的过程,配方法是将一般式变形成可用求根公式求解的形式。

初高中数学衔接知识(二次函数)

初高中数学衔接知识(二次函数)

2a
4a
今后解决二次函数 问题时,要善于借助
函数图像,利用数形
结合的思想方法解决
问题.
(2)当 a 0时,函数 y ax2 bx c 图象开口向下,顶点坐标为( b , 4ac b2 ) ,对称轴为 2a 4a
直线 x b .在对称轴的左侧, y 随着 x 的增大而增大;在对称轴的右侧, y 随着 x 的增大而减小; 2a
2020年5月25日星期一
三、二次函数的最值问题
【例 5】当 2 x 2 时,求函数 y x2 2x 3 的最大值和最小值.
解:作出函数的图象.当 x 1时, ymin 4 ,当 x 2 时, ymax 5 .
【例 6】当1 x 2 时,求函数 y x2 x 1 的最大值和最小值. 解:作出函数的图象.当 x 1时, ymax 1,当 x 2 时, ymin 5 .
1.一般式: y ax2 bx c (a 0) . 2.顶点式: y a(x h)2 k(a 0) ,顶点坐标是 (h, k) . 3.交点式: y a(x x1)(x x2 ) (a 0) ,其中 x1, x2 是二次函数图象与 x 轴交点的横坐标.
【例 2】已知二次函数的图象过点(-1,-22),(0,-8),(2,8),求此二次函数的表达式.
解:∵ y 3x2 6x 1 3(x 1)2 4 .
∴函数图象的开口向下,
对称轴方程 x 1,顶点坐标为(-1,4), 当 x 1时, ymax 4 . 在对称轴的左侧,y 随着 x 的增大而增大;在对称轴的右侧,y 随着 x 的增大而减小 (如图) .
2020年5月25日星期一
二、二次函数的三种表示方式
【例 3】 已知二次函数的最大值为 2,图像的顶点在直线 y x 1上,并且图象经过点(3,-1),

初中二次函数最全知识点总结

初中二次函数最全知识点总结

初中二次函数最全知识点总结二次函数是初中数学中的重要知识点,也是高中数学的基础。

下面是对二次函数的最全知识点总结:一、二次函数的定义和表示:1. 定义:二次函数是形如 y = ax^2 + bx + c(a ≠ 0)的函数,其中 a、b、c 是常数,且 a 不等于 0。

2. 一般式:二次函数的一般形式为 y = ax^2 + bx + c。

3.顶点式:二次函数的顶点式为y=a(x-h)^2+k,其中(h,k)是顶点坐标。

4.描述:二次函数的图像为抛物线,开口向上或向下,对称轴为x=-b/(2a),顶点坐标为(-b/(2a),f(-b/(2a)))。

二、二次函数的图像:1.开口方向:当a大于0时,抛物线开口向上;当a小于0时,抛物线开口向下。

2.对称轴:对称轴是垂直于x轴的抛物线的轴线,其方程为x=-b/(2a)。

3. 零点:即二次函数与 x 轴的交点,由二次方程 ax^2 + bx + c =0 求得。

a) 判别式:Δ = b^2 - 4ac,当Δ 大于 0 时,有两个不同实根;当Δ等于 0 时,有一个重根;当Δ 小于 0 时,无实数根。

b)零点公式:x=(-b±√Δ)/(2a)。

4.最值:当a大于0时,抛物线开口向上,最小值为顶点的纵坐标;当a小于0时,抛物线开口向下,最大值为顶点的纵坐标。

5.对称性:二次函数关于顶点对称,即f(x)=f(2h-x)。

6.平移:通过改变顶点坐标可以实现二次函数的平移,顶点坐标为(h,k),则平移后的顶点坐标为(h+p,k+q)。

三、常用二次函数的性质和应用:1.单调性:当a大于0时,抛物线开口向上,函数单调递增;当a小于0时,抛物线开口向下,函数单调递减。

2.单调区间:根据二次函数的开口方向和最值确定函数的单调区间。

3.奇偶性:二次函数一般是奇函数,即f(-x)=-f(x),因为二次项的系数是奇数。

4.零点个数和位置:根据二次函数的开口方向和零点的位置确定零点的个数和位置。

初中二次函数知识点

初中二次函数知识点

初中二次函数知识点二次函数是高中数学中的一个重要内容,也是初中数学的基础。

掌握了二次函数的知识,对于学习高中数学和解决实际问题都有很大的帮助。

下面我将详细介绍一下初中阶段二次函数的知识点。

一、二次函数的定义及特点二次函数是形如y=ax^2+bx+c(a≠0)的函数,其中a、b、c为常数,a决定了抛物线的开口方向,b决定了抛物线的位置和宽度,c决定了抛物线与y轴的交点。

1.函数图像的对称性:二次函数的图像关于x轴对称,即对于函数y=ax^2+bx+c的图像,若(x, y)在图像上,则点(x, -y)也在图像上。

2.零点:二次函数的零点就是函数的根,即方程ax^2+bx+c=0的解。

3.顶点:二次函数的图像的最高点或最低点称为顶点,顶点坐标可以通过顶点公式求得:x=-\frac{b}{2a}, y= -\frac{b^2}{4a}+c。

二、二次函数的图像1.抛物线开口方向:二次函数的图像的开口方向由二次项的系数a的正负决定。

若a>0,则抛物线开口向上,若a<0,则抛物线开口向下。

2.抛物线的位置和宽度:二次函数的图像的位置和宽度主要由一次项的系数b决定。

若b>0,则抛物线向左移动,若b<0,则抛物线向右移动。

抛物线的宽度与1除以a的绝对值有关,即抛物线的宽度取决于平方项的系数a。

3.抛物线与坐标轴的交点:若二次函数的图像与x轴有交点,则称该二次函数有实根;若图像与x轴没有交点,则称该二次函数无实根。

实根的个数由判别式D=b^2-4ac的值决定。

4.抛物线的对称轴:二次函数的图像的对称轴和顶点有关。

对称轴即为经过顶点的直线,它的方程为x=-\frac{b}{2a}。

三、二次函数的性质1.单调性:当a>0时,二次函数是开口向上的抛物线,函数的值随着自变量的增大而增大;当a<0时,二次函数是开口向下的抛物线,函数的值随着自变量的增大而减小。

2.最值:二次函数的最大值或最小值就是顶点的纵坐标,其中a>0时为最小值,a<0时为最大值。

初中二次函数知识点

初中二次函数知识点

初中二次函数知识点初中阶段,学生开始接触二次函数的概念和性质。

二次函数是解析几何中的重要内容,它是数学中的一个分支,学好二次函数对于学习高中的数学内容也是非常重要的。

本篇文章将从二次函数的定义、图像、性质等多个方面来介绍二次函数的相关知识点。

一、二次函数的定义与表示二次函数是一种形如y=ax²+bx+c(其中a≠0)的函数,其中x是自变量,y是函数的值。

其中a、b、c是常数,a称为二次函数的“二次系数”,b称为“一次系数”,c称为“常数项”。

二次函数的定义域是一切实数。

二次函数的图像是一条平滑的曲线,也叫做抛物线。

二次函数的图像的形状与二次系数a有关,当a>0时,图像开口朝上,称为正抛物线;当a<0时,图像开口朝下,称为负抛物线。

二、二次函数的图像1. 平移:对于二次函数y=ax²+bx+c,如果将x平移h个单位,就可以得到函数y=a(x-h)²+b(x-h)+c。

这个公式表示了二次函数的平移。

平移能够影响图像的位置,但不会改变图像的形状。

2. 纵向伸缩:对于二次函数y=ax²+bx+c,如果令y=k(ax²+bx+c),其中k是一个正常数,就可以得到函数y=kax²+kbx+kc。

这个公式表示了二次函数的纵向伸缩。

当k>1时,函数的图像会被纵向拉伸;当03. 横向伸缩:对于二次函数y=ax²+bx+c,如果令y=(1/a)(ax²+bx+c),其中a≠0,就可以得到函数y=((1/a)x²+(b/a)x+(c/a))。

这个公式表示了二次函数的横向伸缩。

当,a,>1时,函数的图像会被横向压缩;当04. 指标形式:二次函数y=ax²+bx+c还可以写成指标形式y=a(x-h)²+k,其中(h,k)是抛物线的顶点坐标。

指标形式能够更方便地表示二次函数的平移和伸缩。

三、二次函数的性质1.对称性:任意一个二次函数关于抛物线的顶点对称。

2019年初升高数学衔接辅导之二次函数y=ax2+bx+c的图像和性质(含答案)

2019年初升高数学衔接辅导之二次函数y=ax2+bx+c的图像和性质(含答案)

04二次函数y =ax 2+bx +c 的图像和性质高中必备知识点1:二次函数图像的伸缩变换问题 函数y =ax 2与y =x 2的图象之间存在怎样的关系? 为了研究这一问题,我们可以先画出y =2x 2,y =12x 2,y =-2x 2的图象,通过这些函数图象与函数y =x 2的图象之间的关系,推导出函数y =ax 2与y =x 2的图象之间所存在的关系. 先画出函数y =x 2,y =2x 2的图象. 先列表:再描点、连线,就分别得到了函数y =x 2,y =2x 2的图象(如图2-1所示),从图2-1我们可以得到这两个函数图象之间的关系:函数y =2x 2的图象可以由函数y =x 2的图象各点的纵坐标变为原来的两倍得到.同学们也可以用类似于上面的方法画出函数y =12x 2,y =-2x 2的图象,并研究这两个函数图象与函数y =x 2的图象之间的关系. 通过上面的研究,我们可以得到以下结论:二次函数y =ax 2(a ≠0)的图象可以由y =x 2的图象各点的纵坐标变为原来的a 倍得到.在二次函数y =ax 2(a ≠0)中,二次项系数a 决定了图象的开口方向和在同一个坐标系中的开口的大小.典型考题【典型例题】二次函数的图象如图所示,有下列结论:①;②;③;④,其中正确的结论个数是A.1个B.2 个C.3 个D.4 个【变式训练】下列说法错误的是( )A.二次函数y=-2x2中,当x=0时,y有最大值是0B.二次函数y=4x2中,当x>0时,y随x的增大而增大C.在三条抛物线y=2x2,y=-0.5x2,y=-x2中,y=2x2的图象开口最大,y=-x2的图象开口最小D.不论a是正数还是负数,抛物线y=ax2(a≠0)的顶点一定是坐标原点【能力提升】抛物线y=x2,y=﹣3x2,y=﹣x2,y=2x2的图象开口最大的是()A.y=x2B.y=﹣3x2C.y=﹣x2D.y=2x2高中必备知识点2:二次函数图像的平移变换函数y =a (x +h )2+k 与y =ax 2的图象之间存在怎样的关系?同样地,我们可以利用几个特殊的函数图象之间的关系来研究它们之间的关系.同学们可以作出函数y =2(x +1)2+1与y =2x 2的图象(如图2-2所示),从函数的同学我们不难发现,只要把函数y =2x 2的图象向左平移一个单位,再向上平移一个单位,就可以得到函数y =2(x +1)2+1的图象.这两个函数图象之间具有“形状相同,位置不同”的特点.类似地,还可以通过画函数y =-3x 2,y =-3(x -1)2+1的图象,研究它们图象之间的相互关系.通过上面的研究,我们可以得到以下结论:二次函数y =a (x +h )2+k (a ≠0)中,a 决定了二次函数图象的开口大小及方向;h 决定了二次函数图象的左右平移,而且“h 正左移,h 负右移”;k 决定了二次函数图象的上下平移,而且“k 正上移,k 负下移”.由上面的结论,我们可以得到研究二次函数y =ax 2+bx +c (a ≠0)的图象的方法:由于y =ax 2+bx +c =a (x 2+b x a )+c =a (x 2+b x a+224b a )+c -24b a224()24b b aca x a a-=++, 所以,y =ax 2+bx +c (a ≠0)的图象可以看作是将函数y =ax 2的图象作左右平移、上下平移得到的,于是,二次函数y =ax 2+bx +c (a ≠0)具有下列性质:(1)当a >0时,函数y =ax 2+bx +c 图象开口向上;顶点坐标为24(,)24b ac b a a--,对称轴为直线x =-2ba;当x <2b a -时,y 随着x 的增大而减小;当x >2b a -时,y 随着x 的增大而增大;当x =2ba-时,函数取最小值y =244ac b a -.(2)当a <0时,函数y =ax 2+bx +c 图象开口向下;顶点坐标为24(,)24b ac b a a--,对称轴为直线x =-2ba;当x <2b a -时,y 随着x 的增大而增大;当x >2b a -时,y 随着x 的增大而减小;当x =2ba-时,函数取最大值y =244ac b a -.典型考题【典型例题】如图,已知抛物线C 1:y =﹣x 2+4,将抛物线C 1沿x 轴翻折,得到抛物线C 2(1)求出抛物线C 2的函数表达式;(2)现将抛物线C 1向左平移m 个单位长度,平移后得到的新抛物线的顶点为M ,与x 轴的交点从左到右依次为A ,B ;将抛物线C 2向右也平移m 个单位长度,平移后得到的新抛物线的顶点为N ,与x 轴交点从左到右依次为D ,E .在平移过程中,是否存在以点A ,N ,E ,M 为顶点的四边形是矩形的情形?若存在,请求出此时m 的值;若不存在,请说明理由.【变式训练】如图,抛物线轴的负半轴相交于点,将抛物线平移得到抛物线相交于点,直线于点,且.(1)求点的坐标;(2)写出一种将抛物线平移到抛物线的方法;(3)在轴上找点,使得的值最小,求点的坐标.【能力提升】已知抛物线y=﹣x2+bx+c经过点B(﹣1,0)和点C(2,3).(1)求此抛物线的函数表达式;(2)如果此抛物线上下平移后过点(﹣2,﹣1),试确定平移的方向和平移的距离.专题验收测试题1.抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:从上表可知,下列说法正确的有多少个①抛物线与x轴的一个交点为(﹣2,0);②抛物线与y轴的交点为(0,6);③抛物线的对称轴是直线x=;④抛物线与x轴的另一个交点为(3,0);⑤在对称轴左侧,y随x增大而减少.A.2 B.3 C.4 D.52.如图,一条抛物线与x轴相交于A(x1,0)、B(x2,0)两点(点B在点A的右侧),其顶点P在线段MN上移动,M、N的坐标分别为(﹣1,2)、(1,2),x1的最小值为﹣4,则x2的最大值为()A.6 B.4 C.2 D.﹣23.如图,已知抛物线y=x2+bx+c与直线y=x交于(1,1)和(3,3)两点,现有以下结论:①b2﹣4c>0;②3b+c+6=0;③当x2+bx+c>2x时,x>2;④当1<x<3时,x2+(b﹣1)x+c<0,其中正确的序号是()A.①②④B.②③④C.②④D.③④4.定义运算“※”为:a※b=,如:1※(﹣2)=﹣1×(﹣2)2=﹣4.则函数y=2※x 的图象大致是()A.B.C.D.5.若抛物线y=ax2+2ax+4a(a>0)上有A(32,y1)、B(2,y2)、C(32,y3)三点,则y1、y2、y 3的大小关系为( ). A .y 1<y 2<y 3B .y 1<y 3<y 2C .y 3<y 1<y 2D .y 2<y 3<y 16.下列函数是二次函数的是( ). A .y =2x B .y =1x+x C .y =x +5D .y =(x +1)(x ﹣3)7.下列对二次函数2y x x =-的图象的描述,正确的是( ) A .经过原点 B .对称轴是y 轴 C .开口向下D .在对称右侧部分是向下的8.已知函数y =(x ﹣a )(x ﹣b )(其中a >b )的图象如图所示,则函数y =ax +b 的图象大致是( )A .B .C .D .9.如图,已知抛物线y =ax 2+bx +c 经过点(﹣1,0),以下结论:①2a +b >0;②a +c <0;③4a +2b +c >0;④b 2﹣5a 2>2a c .其中正确的是( )A .①②B .③④C .②③④D .①②③④10.二次函数y =ax 2+bx +c (a ≠0)的大致图象如图所示,顶点坐标为(﹣2,﹣9a ),下列结论:①abc >0;②4a +2b +c >0;③5a ﹣b +c =0;④若方程a (x +5)(x ﹣1)=﹣1有两个根x 1和x 2,且x 1<x 2,则﹣5<x 1<x 2<1;⑤若方程|ax 2+bx +c |=2有四个根,则这四个根的和为﹣4.其中正确的结论有( )A .2个B .3个C .4个D .5个11.如图,与抛物线y =x 2﹣2x ﹣3关于直线x =2成轴对称的函数表达式为______.12.已知关于x 的一元二次方程ax 2+bx +c =5的一个根是2,且二次函数y =ax 2+bx +c 的对称轴是直线x =2,则抛物线y =ax 2+bx +c 的顶点坐标为_____.13.二次函数21212y x x =-+ 中,二次项系数为____,一次项是____,常数项是___ 14.如图,二次函数y =ax 2+bx +c (a ≠0).图象的顶点为D ,其图象与x 轴的交点A 、B 的横坐标分别为﹣1、3,与y 轴负半轴交于点C .下面三个结论:①2a +b =0;②a +b +c >0;③只有当12a =时,△ABD 是等腰直角三角形;那么,其中正确的结论是_____.(只填你认为正确结论的序号)15.把二次函数y=x2+2x+3的图象向左平移1个单位长度,再向下平移1个单位长度,就得到二次函数____的图象.16.已知当2≤x≤3时,关于x的多项式x2﹣2kx+k2﹣k﹣1(k为大于2的常数)有最小值﹣2,则常数k的值为___.17.已知二次函数y=a(x-m)2-a(x-m)(a,m为常数,且a≠0).(1)求证:不论a与m为何值,该函数的图象与x轴总有两个公共点;(2)设该函数的图象与x轴的两个交点为A(x1,0),B(x2,0),且x12+x22=25,求m的值;(3)设该函数的图象的顶点为C,与x轴交于A,B两点,且△ABC的面积为1,求a的值.18.如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,且与y轴交于点C,点D是抛物线的顶点,抛物线对称轴DE交x轴于点E,连接B D.(1)求经过A,B,C三点的抛物线的函数表达式;(2)点P是线段BD上一点,当PE=PC时,求点P的坐标.19.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣2,0),B(4,0),与直线y=32x﹣3交于点C(0,﹣3),直线y=32x﹣3与x轴交于点D.(1)求该抛物线的解析式(2)点P是抛物线上第四象限上的一个动点连接PC,PD,当△PCD的面积最大时,求点P的坐标;(3)将抛物线的对称轴向左平移3个长度单位得到直线l,点E是直线l上一点,连接OE,BE,若直线l上存在使sin∠BEO最大的点E,请直接写出满足条件的点E的坐标;若不存在,请说明理由.20.已知抛物线y=ax2+bx+2经过A(﹣1,0),B(2,0),C三点.直线y=mx+12交抛物线于A,Q两点,点P是抛物线上直线AQ上方的一个动点,作PF⊥x轴,垂足为F,交AQ于点N.(1)求抛物线的解析式;(2)如图①,当点P运动到什么位置时,线段PN=2NF,求出此时点P的坐标;(3)如图②,线段AC的垂直平分线交x轴于点E,垂足为D,点M为抛物线的顶点,在直线DE上是否存在一点G,使△CMG的周长最小?若存在,请求出点G的坐标;若不存在,请说明理由.21.现有一次函数y=mx+n和二次函数y=mx2+nx+1,其中m≠0,(1)若二次函数y=mx2+nx+1经过点(2,0),(3,1),试分别求出两个函数的解析式.(2)若一次函数y=mx+n经过点(2,0),且图象经过第一、三象限.二次函数y=mx2+nx+1经过点(a,y1)和(a+1,y2),且y1>y2,请求出a的取值范围.(3)若二次函数y=mx2+nx+1的顶点坐标为A(h,k)(h≠0),同时二次函数y=x2+x+1也经过A点,已知﹣1<h<1,请求出m的取值范围.22.如图,在直角坐标系中,直线y=13x+1与x轴、y轴的交点分别为A、B,以x=﹣1为对称轴的抛物线y=﹣x2+bx+c与x轴分别交于点A、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,设抛物线的对称轴l与x轴交于一点D,连接PD,交AB于E,求出当以A、D、E为顶点的三角形与△AOB相似时点P的坐标;(3)若点Q在第二象限内,且tan∠AQD=2,线段CQ是否存在最小值?如果存在直接写出最小值,如果不存在,请说明理由.专题04二次函数y=ax2+bx+c的图像和性质高中必备知识点1:二次函数图像的伸缩变换问题函数y=ax2与y=x2的图象之间存在怎样的关系?为了研究这一问题,我们可以先画出y =2x 2,y =12x 2,y =-2x 2的图象,通过这些函数图象与函数y =x 2的图象之间的关系,推导出函数y =ax 2与y =x 2的图象之间所存在的关系. 先画出函数y =x 2,y =2x 2的图象. 先列表:再描点、连线,就分别得到了函数y =x 2,y =2x 2的图象(如图2-1所示),从图2-1我们可以得到这两个函数图象之间的关系:函数y =2x 2的图象可以由函数y =x 2的图象各点的纵坐标变为原来的两倍得到.同学们也可以用类似于上面的方法画出函数y =12x 2,y =-2x 2的图象,并研究这两个函数图象与函数y =x 2的图象之间的关系. 通过上面的研究,我们可以得到以下结论:二次函数y =ax 2(a ≠0)的图象可以由y =x 2的图象各点的纵坐标变为原来的a 倍得到.在二次函数y =ax 2(a ≠0)中,二次项系数a 决定了图象的开口方向和在同一个坐标系中的开口的大小.典型考题【典型例题】二次函数的图象如图所示,有下列结论:①;②;③;④,其中正确的结论个数是A.1个B.2 个C.3 个D.4 个【答案】C【解析】由图象可得,,,故错误,当时,,故正确,当时,,由得,,则,得,故正确,,得,故正确,故选:C.【变式训练】下列说法错误的是( )A.二次函数y=-2x2中,当x=0时,y有最大值是0B.二次函数y=4x2中,当x>0时,y随x的增大而增大C.在三条抛物线y=2x2,y=-0.5x2,y=-x2中,y=2x2的图象开口最大,y=-x2的图象开口最小D.不论a是正数还是负数,抛物线y=ax2(a≠0)的顶点一定是坐标原点【答案】C【解析】A、a=-2<0,抛物线开口向下,当x=0时,y有最大值是0,故该选项正确;B、二次函数y=4x2中,当x>0时,y随x的增大而增大,故该选正确;C、因为|2|>|-1|>|-0.5|,所以,y=2x2的图象开口最小,y=-0.5x2的图象开口最大,故该选错误;D、不论a是正数还是负数,抛物线y=ax2(a≠0)的顶点一定是坐标原点,故该选正确.故选C.【能力提升】抛物线y=x2,y=﹣3x2,y=﹣x2,y=2x2的图象开口最大的是()A.y=x2B.y=﹣3x2C.y=﹣x2D.y=2x2【答案】A【解析】∵二次函数中|a|的值越小,则函数图象的开口也越大,又∵,∴抛物线y=x2,y=﹣3x2,y=﹣x2,y=2x2的图象开口最大的是y=x2,故选A.高中必备知识点2:二次函数图像的平移变换函数y=a(x+h)2+k与y=ax2的图象之间存在怎样的关系?同样地,我们可以利用几个特殊的函数图象之间的关系来研究它们之间的关系.同学们可以作出函数y=2(x+1)2+1与y=2x2的图象(如图2-2所示),从函数的同学我们不难发现,只要把函数y=2x2的图象向左平移一个单位,再向上平移一个单位,就可以得到函数y=2(x +1)2+1的图象.这两个函数图象之间具有“形状相同,位置不同”的特点.类似地,还可以通过画函数y =-3x 2,y =-3(x -1)2+1的图象,研究它们图象之间的相互关系.通过上面的研究,我们可以得到以下结论:二次函数y =a (x +h )2+k (a ≠0)中,a 决定了二次函数图象的开口大小及方向;h 决定了二次函数图象的左右平移,而且“h 正左移,h 负右移”;k 决定了二次函数图象的上下平移,而且“k 正上移,k 负下移”.由上面的结论,我们可以得到研究二次函数y =ax 2+bx +c (a ≠0)的图象的方法:由于y =ax 2+bx +c =a (x 2+b x a )+c =a (x 2+b x a+224b a )+c -24b a224()24b b aca x a a-=++, 所以,y =ax 2+bx +c (a ≠0)的图象可以看作是将函数y =ax 2的图象作左右平移、上下平移得到的,于是,二次函数y =ax 2+bx +c (a ≠0)具有下列性质:(1)当a >0时,函数y =ax 2+bx +c 图象开口向上;顶点坐标为24(,)24b ac b a a--,对称轴为直线x =-2ba;当x <2b a -时,y 随着x 的增大而减小;当x >2b a -时,y 随着x 的增大而增大;当x =2ba-时,函数取最小值y =244ac b a -.(2)当a <0时,函数y =ax 2+bx +c 图象开口向下;顶点坐标为24(,)24b ac b a a--,对称轴为直线x =-2ba;当x <2b a -时,y 随着x 的增大而增大;当x >2b a -时,y 随着x 的增大而减小;当x =2ba-时,函数取最大值y =244ac b a -.典型考题【典型例题】如图,已知抛物线C 1:y =﹣x 2+4,将抛物线C 1沿x 轴翻折,得到抛物线C 2(1)求出抛物线C 2的函数表达式;(2)现将抛物线C 1向左平移m 个单位长度,平移后得到的新抛物线的顶点为M ,与x 轴的交点从左到右依次为A ,B ;将抛物线C 2向右也平移m 个单位长度,平移后得到的新抛物线的顶点为N ,与x 轴交点从左到右依次为D ,E .在平移过程中,是否存在以点A ,N ,E ,M 为顶点的四边形是矩形的情形?若存在,请求出此时m 的值;若不存在,请说明理由.【答案】(1)y =x 2﹣4(2)当m =3时,以点A ,N ,E ,M 为顶点的四边形是矩形 【解析】(1)∵抛物线C 1的顶点为(0,4), ∴沿x 轴翻折后顶点的坐标为(0.﹣4),∴抛物线C 2的函数表达式为y =x 2﹣4;(2)存在连接AN ,NE ,EM ,MA ,依题意可得:M (﹣m ,4),N (m ,﹣4),∴M,N关于原点O对称OM=ON,原C1、C2抛物线与x轴的两个交点分别(﹣2,0),(2,0),∴A(﹣2﹣m,0),E(2+m,0),∴A,E关于原点O对称,∴OA=OE∴四边形ANEM为平行四边形,∴AM2=22+42=20,ME2=(2+m+m)2+42=4m2+8m+20,AE2=(2+m+2+m)2=4m2+16m+16,若AM2+ME2=AE2,∴20+4m2+8m+20=4m2+16m+16,解得m=3,此时△AME是直角三角形,且∠AME=90,∴当m=3时,以点A,N,E,M为顶点的四边形是矩形.【变式训练】如图,抛物线轴的负半轴相交于点,将抛物线平移得到抛物线相交于点,直线于点,且.(1)求点的坐标;(2)写出一种将抛物线平移到抛物线的方法;(3)在轴上找点,使得的值最小,求点的坐标.【答案】(1)A(-2,0),B(3,5),C(8,10);(2)先将向右平移5个单位,再向上平移5个单位得到;(3)P(0,).【解析】(1)M1:y=x2-4与x轴的负半轴相交于点A,∴A(-2,0),∵AB=BC,C(8,m),∴,设AB直线解析式为y=kx+b,∵y=x2-4与相交于点A和B,∴m=10,∴B(3,5),C(8,10);(2)∵抛物线M1平移得到抛物线M2,∴a=1,∵B(3,5),C(8,10)在抛物线y=x2+bx+c上,∴y=x2-10+26=(x-5)2+1,由M1平移得到抛物线M2先向右平移5个单位长度,再向上平移5个单位长度;(3)作点B关于y轴的对称点B',连接CB'与y轴的交点即为P,∴B'(-3,5),设直线B'C的直线解析式为y=mx+n,.【能力提升】已知抛物线y=﹣x2+bx+c经过点B(﹣1,0)和点C(2,3).(1)求此抛物线的函数表达式;(2)如果此抛物线上下平移后过点(﹣2,﹣1),试确定平移的方向和平移的距离.【答案】(1)y=﹣x2+2x+3;(2)将抛物线向上平移4个单位.【解析】(1)把B(﹣1,0)和点C(2,3)代入y=﹣x2+bx+c得,解得,所以抛物线解析式为y=﹣x2+2x+3;(2)把x=﹣2代入y=﹣x2+2x+3得y=﹣4﹣4+3=﹣5,点(﹣2,﹣5)向上平移4个单位得到点(﹣2,﹣1),所以需将抛物线向上平移4个单位.专题验收测试题1.抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:从上表可知,下列说法正确的有多少个①抛物线与x轴的一个交点为(﹣2,0);②抛物线与y轴的交点为(0,6);③抛物线的对称轴是直线x=;④抛物线与x轴的另一个交点为(3,0);⑤在对称轴左侧,y随x增大而减少.A.2 B.3 C.4 D.5【答案】C【解析】的对称性,逐一判断.【详解】根据图表,抛物线与x轴的一个交点为(﹣2,0),∴①正确;根据图表,抛物线与y轴交与(0,6),②正确;∵抛物线经过点(0,6)和(1,6),∴对称轴为x=,∴③正确;设抛物线经过点(x,0),∴x=解得:x=3∴抛物线一定经过(3,0),④正确;在对称轴左侧,y随x增大而增大,∴⑤错误,故选C.2.如图,一条抛物线与x轴相交于A(x1,0)、B(x2,0)两点(点B在点A的右侧),其顶点P在线段MN上移动,M、N的坐标分别为(﹣1,2)、(1,2),x1的最小值为﹣4,则x2的最大值为()A.6 B.4 C.2 D.﹣2【答案】B【解析】由题意可知,当P在M点时,x1有最小值﹣4,∵M的坐标分别为(﹣1,2),∴x2=2;∴x2与对称轴的距离是3;当P在N点时,x2有最大值,∵N的坐标分别为(1,2),∴x2的最大值为4.故选B.3.如图,已知抛物线y=x2+bx+c与直线y=x交于(1,1)和(3,3)两点,现有以下结论:①b2﹣4c>0;②3b+c+6=0;③当x2+bx+c>2x时,x>2;④当1<x<3时,x2+(b﹣1)x+c<0,其中正确的序号是()A.①②④B.②③④C.②④D.③④【答案】C【解析】∵函数y=x2+bx+c与x轴无交点,∴b2﹣4ac<0;∴b2﹣4c<0故①不正确;当x=3时,y=9+3b+c=3,即3b+c+6=0;故②正确;把(1,1)(3,3)代入y=x2+bx+c,得抛物线的解析式为y=x2﹣3x+3,当x=2时,y=x2﹣3x+3=1,y=2x=1,抛物线和双曲线的交点坐标为(2,1)第一象限内,当x>2时,x2+bx+c>2x;或第三象限内,当x<0时,x2+bx+c>2x;故③错误;∵当1<x<3时,二次函数值小于一次函数值,∴x2+bx+c<x,∴x2+(b﹣1)x+c<0.故④正确;故选:C.4.定义运算“※”为:a※b=,如:1※(﹣2)=﹣1×(﹣2)2=﹣4.则函数y=2※x 的图象大致是()A.B.C.D.【答案】C【解析】解:y=2※x=,当x>0时,图象是y=对称轴右侧的部分;当x<0时,图象是y=对称轴左侧的部分,所以C选项是正确的.5.若抛物线y=ax2+2ax+4a(a>0)上有A(32,y1)、B(2,y2)、C(32,y3)三点,则y1、y2、y3的大小关系为( ).A.y1<y2<y3B.y1<y3<y2C.y3<y1<y2D.y2<y3<y1【答案】B【解析】解:抛物线的对称轴是x=﹣1,开口向上,且与x轴无交点,∴与对称轴距离越近的点对应的纵坐标越小.A、B、C三点与对称轴距离按从小到大顺序是A、C、B,∴y1<y3<y2,故选:B.6.下列函数是二次函数的是( ).A .y =2xB .y =1x +xC .y =x +5D .y =(x +1)(x ﹣3)【答案】D【解析】解:A 、y =2x ,是一次函数,故此选项错误;B 、y =1x +x ,不是整式,故此选项错误;C 、y =x +5,是一次函数,故此选项错误;D 、y =(x +1)(x ﹣3),是二次函数,故此选项正确.故选:D .7.下列对二次函数2y x x =-的图象的描述,正确的是()A .经过原点B .对称轴是y 轴C .开口向下D .在对称右侧部分是向下的【答案】A【解析】解:A 、当x =0时,y =x 2﹣x =0,∴抛物线经过原点,选项A 正确;B 、∵122ba -=, ∴抛物线的对称轴为直线12x =,选项B 不正确;C 、∵a =1>0,∴抛物线开口向上,选项C 不正确;D 、∵a >0,抛物线的对称轴为直线12x =, ∴当12x >时,y 随x 值的增大而增大,选项D 不正确.故选:A .8.已知函数y=(x﹣a)(x﹣b)(其中a>b)的图象如图所示,则函数y=ax+b的图象大致是()A.B.C.D.【答案】C【解析】解:∵y=(x﹣a)(x﹣b)=x2﹣(a+b)x+ab,∵抛物线的开口向上知二次项系数>0,与y轴的交点为在y轴负半轴上,∴ab<0,∵对称轴在y轴的右侧,二次项系数大于0,∴﹣(a+b)>0.∴a+b<0,∵a>b,∴a>0,b<0,∴y=ax+b的图象是C选项,故选:C.9.如图,已知抛物线y=ax2+bx+c经过点(﹣1,0),以下结论:①2a+b>0;②a+c<0;③4a+2b+c >0;④b2﹣5a2>2a c.其中正确的是( )A .①②B .③④C .②③④D .①②③④【答案】B【解析】 解:由图象可知a <0,0<﹣2b a <1, ∴b <﹣2a ,∴2a +b <0,所以①错误; ∵﹣2b a>0,a <0, ∴b >0,当x =﹣1时,y 1=a ﹣b +c =0,∴a +c =b >0,所以②错误;∵当x =2时,y >0,∴4a +2b +c >0﹣﹣﹣﹣②,所以③正确;∵过(﹣1,0),代入得a ﹣b +c =0,∴b 2﹣2ac ﹣5a 2=(a +c )2﹣2ac ﹣5a 2=c 2﹣4a 2=(c +2a )(c ﹣2a )又∵4a +2b +c >04a +2(a +c )+c >0即2a +c >0①∵a <0,∴c >0则c ﹣2a >0②由①②知(c +2a )(c ﹣2a )>0,所以b 2﹣2ac ﹣5a 2>0,即b 2﹣5a 2>2ac ,所以④正确. 故选:B .10.二次函数y =ax 2+bx +c (a ≠0)的大致图象如图所示,顶点坐标为(﹣2,﹣9a ),下列结论:①abc >0;②4a +2b +c >0;③5a ﹣b +c =0;④若方程a (x +5)(x ﹣1)=﹣1有两个根x 1和x 2,且x 1<x 2,则﹣5<x 1<x 2<1;⑤若方程|ax 2+bx +c |=2有四个根,则这四个根的和为﹣4.其中正确的结论有( )A .2个B .3个C .4个D .5个【答案】A【解析】 解:∵抛物线的开口向上,则a >0,对称轴在y 轴的左侧,则b >0,交y 轴的负半轴,则c <0,∴abc <0,所以①结论错误;∵抛物线的顶点坐标(﹣2,﹣9a ), ∴﹣b 2a -=﹣2,244ac b a-=﹣9a , ∴b =4a ,c =﹣5a ,∴抛物线的解析式为y =ax 2+4ax ﹣5a ,∴4a +2b +c =4a +8a ﹣5a =7a >0,所以②结论正确,5a ﹣b +c =5a ﹣4a ﹣5a =﹣4a <0,故③结论错误,∵抛物线y =ax 2+4ax ﹣5a 交x 轴于(﹣5,0),(1,0),∴若方程a (x +5)(x ﹣1)=﹣1有两个根x 1和x 2,且x 1<x 2,则﹣5<x 1<x 2<1,正确,故结论④正确,若方程|ax 2+bx +c |=1有四个根,设方程ax 2+bx +c =1的两根分别为x 1,x 2,则122x x +=﹣2,可得x 1+x 2=﹣4,设方程ax 2+bx +c =1的两根分别为x 3,x 4,则342x x +=﹣2,可得x 3+x 4=﹣4,所以这四个根的和为﹣8,故结论⑤错误,故选:A .11.如图,与抛物线y =x 2﹣2x ﹣3关于直线x =2成轴对称的函数表达式为______.【答案】y =(x ﹣3)2﹣4【解析】解:y =x 2﹣2x ﹣3的顶点是(1,﹣4),(1,﹣4)关于x =2的对称点是(3,﹣4),y =x 2﹣2x ﹣3关于直线x =2成轴对称的函数表达式为y =(x ﹣3)2﹣4,故答案为:y =(x ﹣3)2﹣4.12.已知关于x 的一元二次方程ax 2+bx +c =5的一个根是2,且二次函数y =ax 2+bx +c 的对称轴是直线x =2,则抛物线y =ax 2+bx +c 的顶点坐标为_____.【答案】(2,5)【解析】解:∵二次函数y =ax 2+bx +c 的对称轴是直线x =2,方程ax 2+bx +c =5的一个根是2,∴当x =2时,y =ax 2+bx +c =5,∴抛物线的顶点坐标是(2,5).故答案为:(2,5).13.二次函数21212y x x =-+ 中,二次项系数为____,一次项是____,常数项是___ 【答案】12 -2x , 1 【解析】∵y =ax 2+bx +c (a ,b ,c 是常数且a ≠0).在一般形式中ax 2叫二次项,bx 叫一次项,c 是常数项.其中a ,b ,c 分别叫二次项系数,一次项系数,常数项∴21212y x x =-+ 中,二次项系数为12,一次项是-2x ,常数项是1. 故答案是:12; -2x;1. 14.如图,二次函数y =ax 2+bx +c (a ≠0).图象的顶点为D ,其图象与x 轴的交点A 、B 的横坐标分别为﹣1、3,与y 轴负半轴交于点C .下面三个结论:①2a +b =0;②a +b +c >0;③只有当12a =时,△ABD 是等腰直角三角形;那么,其中正确的结论是_____.(只填你认为正确结论的序号)【答案】①③【解析】解:①∵图象与x 轴的交点A ,B 的横坐标分别为﹣1,3,∴AB =4,∴对称轴x =﹣b 2a =1, 即2a +b =0.故选项正确;②由抛物线的开口方向向上可推出a >0,而﹣b 2a=1, ∴b <0,∵对称轴x =1,∴当x =1时,y <0,∴a +b +c <0.故选项错误;③要使△ABD 为等腰直角三角形,必须保证D 到x 轴的距离等于AB 长的一半; D 到x 轴的距离就是当x =1时y 的值的绝对值.当x =1时,y =a +b +c ,即|a +b +c |=2,∵当x=1时y<0,∴a+b+c=﹣2,又∵图象与x轴的交点A,B的横坐标分别为﹣1,3,∴当x=﹣1时y=0,即a﹣b+c=0,x=3时y=0,即9a+3b+c=0,解这三个方程可得:b=﹣1,a=12,c=﹣32,故选项正确.故答案为:①③.15.把二次函数y=x2+2x+3的图象向左平移1个单位长度,再向下平移1个单位长度,就得到二次函数____的图象.【答案】y=(x+2)2+1或y=x2+2x+5.【解析】∵y=x2+2x+3=(x+1)2+2,∴抛物线y=x2+2x+3先向左平移1个单位,再向下平移1个单位,平移后的函数关系式是:y=(x+2)2+1或y=x2+2x+5.故答案为:y=(x+2)2+1或y=x2+2x+5.16.已知当2≤x≤3时,关于x的多项式x2﹣2kx+k2﹣k﹣1(k为大于2的常数)有最小值﹣2,则常数k的值为___.【答案】4.【解析】解:x2﹣2kx+k2﹣k﹣1=(x﹣k)2﹣k﹣1(k>2),①当2<k≤3时,当x=k时取最小值,∴﹣k﹣1=﹣2,∴k=2,不合题意;②当k>3时,当x=3时取最小值,∴9﹣6k+k2﹣k﹣1=﹣2,∴k=4或2.5,∵k>3,∴k=4;综上,k=4;故答案为:4.17.已知二次函数y=a(x-m)2-a(x-m)(a,m为常数,且a≠0).(1)求证:不论a与m为何值,该函数的图象与x轴总有两个公共点;(2)设该函数的图象与x轴的两个交点为A(x1,0),B(x2,0),且x12+x22=25,求m的值;(3)设该函数的图象的顶点为C,与x轴交于A,B两点,且△ABC的面积为1,求a的值.【答案】(1)证明见解析;(2)m的值为-4或3;(3)a的值是±8.【解析】(1)证明:令y=0,a(x-m)2-a(x-m)=0,△=(-a)2-4a×0=a2,∵a≠0,∴a2>0,∴不论a与m为何值,该函数的图象与x轴总有两个公共点;(2)解:y=0,则a(x-m)2-a(x-m)=a(x-m)(x-m-1)=0,解得x1=m,x2=m+1,∵x12+x22=25,∴m2+(m+1)2=25,解得m1=-4,m2=3.故m的值为-4或3;(3)解:∵x1=m,x2=m+1,∴AB=(m+1)-m=1,y=a(x-m)2-a(x-m)=a(x-m-12)2-4a,△ABC的面积=12×1×|-4a|=1,解得a=±8.故a的值是±8.18.如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,且与y轴交于点C,点D是抛物线的顶点,抛物线对称轴DE交x轴于点E,连接B D.(1)求经过A,B,C三点的抛物线的函数表达式;(2)点P是线段BD上一点,当PE=PC时,求点P的坐标.【答案】(1)y=﹣x2+2x+3;(2)点P的坐标为(2,2).【解析】解:(1)∵抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,∴10930b cb c--+=⎧⎨-++=⎩,解得23bc=⎧⎨=⎩,∴所求的抛物线的函数表达式为y=﹣x2+2x+3;(2)如图,连接PC,PE.抛物线的对称轴为x=222(1)ba-=-⨯-=1.当x=1时,y=4,∴点D的坐标为(1,4).设直线BD的解析式为y=kx+b,则4 30 k bk b+=⎧⎨+=⎩,解得26kb=-⎧⎨=⎩.∴直线BD的解析式为:y=2x+6,设点P的坐标为(x,﹣2x+6),又C(0,3),E(1,0),则PC2=x2+(3+2x﹣6)2,PE2=(x﹣1)2+(﹣2x+6)2,∵PC=PE,∴x2+(3+2x﹣6)2=(x﹣1)2+(﹣2x+6)2,解得,x=2,则y =﹣2×2+6=2, ∴点P 的坐标为(2,2).19.如图,在平面直角坐标系中,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A (﹣2,0),B (4,0),与直线y =32x ﹣3交于点C (0,﹣3),直线y =32x ﹣3与x 轴交于点D . (1)求该抛物线的解析式(2)点P 是抛物线上第四象限上的一个动点连接PC ,PD ,当△PCD 的面积最大时,求点P 的坐标;(3)将抛物线的对称轴向左平移3个长度单位得到直线l ,点E 是直线l 上一点,连接OE ,BE ,若直线l 上存在使sin ∠BEO 最大的点E ,请直接写出满足条件的点E 的坐标;若不存在,请说明理由.【答案】(1)233384y x x =--;(2)P (3,﹣815);(3)点E 的坐标为(﹣2,)或(﹣2,﹣. 【解析】解:(1)用交点式函数表达式得:y =a (x +2)(x ﹣4)=a (x 2﹣2x ﹣8),即﹣8a =﹣3,解得:a =38, 则函数的表达式为:233384y x x =--;(2)y =32x ﹣3,令y =0,则x =2,即点D (2,0),连接OP ,设点P (x ,233384x x --), S △PCD =S △PDO +S △PCO ﹣S △OCD =22133113272(3)323(3)2842288x x x x ⨯-+++⨯⨯-⨯⨯=--+, ∵﹣38<0,∴S △PCD 有最大值, 此时点P (3,﹣815); (3)如图,经过点O 、B 的圆F 与直线l 相切于点E ,此时,sin ∠BEO 最大,过圆心F 作HF ⊥x 轴于点H ,则OH =12OB =2=OA ,OF =EF =4,∴HF =,过点E 的坐标为(﹣2,﹣;同样当点E 在x 轴的上方时,其坐标为(﹣2,;故点E 的坐标为(﹣2,2,﹣).20.已知抛物线y =ax 2+bx +2经过A (﹣1,0),B (2,0),C 三点.直线y =mx +12交抛物线于A ,Q 两点,点P 是抛物线上直线AQ 上方的一个动点,作PF ⊥x 轴,垂足为F ,交AQ 于点N .(1)求抛物线的解析式;(2)如图①,当点P运动到什么位置时,线段PN=2NF,求出此时点P的坐标;(3)如图②,线段AC的垂直平分线交x轴于点E,垂足为D,点M为抛物线的顶点,在直线DE上是否存在一点G,使△CMG的周长最小?若存在,请求出点G的坐标;若不存在,请说明理由.【答案】(1)y=﹣x2+x+2;(2)点P的坐标为(12,94);(3)在直线DE上存在一点G,使△CMG的周长最小,此时G(﹣38,1516).【解析】(1)∵抛物线y=ax2+bx+2经过A(﹣1,0),B(2,0),∴将点A和点B的坐标代入得:204220a ba b-+=⎧⎨++=⎩,解得a=﹣1,b=1,∴抛物线的解析式为y=﹣x2+x+2.(2)直线y=mx+12交抛物线与A、Q两点,把A(﹣1,0)代入解析式得:m=12,∴直线AQ的解析式为y=12x+12.设点P的横坐标为n,则P(n,﹣n2+n+2),N(n,12n+12),F(n,0),∴PN=﹣n2+n+2﹣(12n+12)=﹣n2+12n+32,NF=12n+12.∵PN=2NF,即﹣n2+12n+32=2×(12n+12),解得:n=﹣1或12.当n=﹣1时,点P与点A重合,不符合题意舍去.∴点P的坐标为(12,94).(3)∵y=﹣x2+x+2,=﹣(x﹣12)2+94,∴M(12,94).如图所示,连结AM交直线DE与点G,连结CG、CM此时,△CMG的周长最小.设直线AM的函数解析式为y=kx+b,且过A(﹣1,0),M(12,94).根据题意得:1924k bk b-+=⎧⎪⎨+=⎪⎩,解得3232kb⎧=⎪⎪⎨⎪=⎪⎩.∴直线AM的函数解析式为y=32x+32.∵D为AC的中点,∴D(﹣12,1).设直线AC的解析式为y=kx+2,将点A的坐标代入得:﹣k+2=0,解得k=2,∴AC的解析式为y=2x+2.设直线DE的解析式为y=﹣12x+c,将点D的坐标代入得:14+c=1,解得c=34,∴直线DE的解析式为y=﹣12x+34.将y=﹣12x+34与y=32x+32联立,解得:x=﹣38,y=1516.∴在直线DE上存在一点G,使△CMG的周长最小,此时G(﹣38,1516).21.现有一次函数y=mx+n和二次函数y=mx2+nx+1,其中m≠0,(1)若二次函数y=mx2+nx+1经过点(2,0),(3,1),试分别求出两个函数的解析式.(2)若一次函数y=mx+n经过点(2,0),且图象经过第一、三象限.二次函数y=mx2+nx+1经过点(a,y1)和(a+1,y2),且y1>y2,请求出a的取值范围.(3)若二次函数y=mx2+nx+1的顶点坐标为A(h,k)(h≠0),同时二次函数y=x2+x+1也经过A 点,已知﹣1<h <1,请求出m 的取值范围. 【答案】(1)y =x ﹣2,y =12-x 2+32+1;(2)a <12;(3)m <﹣2或m >0. 【解析】(1)将点(2,0),(3,1),代入一次函数y =mx +n 中,0213m nm n =+⎧⎨=+⎩, 解得12m n =⎧⎨=-⎩,∴一次函数的解析式是y =x ﹣2,再将点(2,0),(3,1),代入二次函数y =mx 2+nx +1,04211931m n m n =++⎧⎨=++⎩, 解得1232m n ⎧=-⎪⎪⎨⎪=⎪⎩,∴二次函数的解析式是213122y x =-++. (2)∵一次函数y =mx +n 经过点(2,0), ∴n =﹣2m ,∵二次函数y =mx 2+nx +1的对称轴是x =n 2m-, ∴对称轴为x =1,又∵一次函数y =mx +n 图象经过第一、三象限, ∴m >0, ∵y 1>y 2, ∴1﹣a >1+a ﹣1, ∴a <12. (3)∵y =mx 2+nx +1的顶点坐标为A (h ,k ), ∴k =mh 2+nh +1,且h =n 2m-,又∵二次函数y=x2+x+1也经过A点,∴k=h2+h+1,∴mh2+nh+1=h2+h+1,∴11 hm=-+,又∵﹣1<h<1,∴m<﹣2或m>0.22.如图,在直角坐标系中,直线y=13x+1与x轴、y轴的交点分别为A、B,以x=﹣1为对称轴的抛物线y=﹣x2+bx+c与x轴分别交于点A、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,设抛物线的对称轴l与x轴交于一点D,连接PD,交AB于E,求出当以A、D、E为顶点的三角形与△AOB相似时点P的坐标;(3)若点Q在第二象限内,且tan∠AQD=2,线段CQ是否存在最小值?如果存在直接写出最小值,如果不存在,请说明理由.【答案】(1)y=﹣x2﹣2x+3;(2)点P的坐标是(﹣1,4)或(﹣2,3);(3)存在,CQ【解析】解:(1)∵直线y=13x+1与x轴交点为A,∴点A的坐标为(﹣3,0),∵抛物线的对称轴为x=﹣1,∴点C的坐标为(1,0),∵抛物线y=﹣x2+bx+c与x轴分别交于点A、C,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年3月5日星期四
课堂小结 1.如何确定二次函数的最值? 2.二次函数与一元二次方程有何关系?
作业: 1.已知抛物线y=x2+2x+m+1。
(1)若抛物线与x轴只有一个交点,求m的值。 (2)若抛物线与直线y=x+2m只有一个交点,求m的值。
2.先学作业(第三课时导学案)
2020年3月5日星期四
122,.∴|
4a
|
2

a


1 2

∴二∴次二函次数函的数表的达表式达为式为y y 1x12 x2xx3或3 y或y1x12 x2xx3.3 . 22 22 22 2 2
说明:在今后的解题过程中,要善于利用条件,选择恰当的方法来解决问题.
通过上面的几道例题,同学们能否归纳出:在什么情况下,分别利用函数的一般式、顶点式、交点
∴可又设顶二点次到函x 数轴为的距y 离 a为(x2,3)(∴x 顶1点) (的a 纵0坐) 标,为即 2y 或 a-x22. 2ax 3a .
顶点∴的可纵设坐二标次为函数为12ya2a4(ax21)24a2,或 y a(x 1)2 2 .
4a
∵二∵次函函数数图图象象过的点顶(1点,到0),x 轴的∴距a离为
(2)下列二次函数的图象与 x 轴有交点吗?如果有, 交点的横坐标是多少?
y
y = x2- x + x2+ x - 2 3
2
-3 -2 -1O1
-1
y = x2 - 6x + 9
123456 x
2020年3月5日星期四
问题2 当 x 取公共点的横坐标时,函数值是多少?
y
y = x2- x + 1 6
2020年3月5日星期四
练习1、判断下列各抛物线是否与x轴相交, 如果相交,求出交点的坐标。 (1)y=6x2-2x+1 (2)y=-15x2+14x+8 (3)y=x2-4x+4
2020年3月5日星期四
练习3、已知抛物线y=x2-(m2+8)x+2 (m2+6). 求证:不任m为何实数,抛物线与x轴都有两个不 同的交点,
当 x b 时,函数取最大值 y 4ac b2 .
2a
4a
2020年3月5日星期四
【例 1】 请您求出二次函数 y 3x2 6x 1的图象的开口方向、对称轴方程、顶点坐标、最大值 (或最小值),并指出当 x 取何值时, y 随 x 的增大而增大(或减小),并画出该函数的图象.
5
4
3
y = x2+ x - 2
2
1
-3 -2 --1O1 -2
y = x2 - 6x + 9
123456 x
2020年3月5日星期四
问题3 由二次函数的图象,你能得出相应的一元二次方程 的根吗?二次函数与一元二次方程具有怎样的联系?
y
y = x2- x + 1 6
5
4
3
y = x2+ x - 2
课堂互动探究1.二次函数 y ax2 bx c (a 0)的 图像和性质
(1)当 a 0 时,函数 y ax2 bx c 图象开口向上,顶点坐标为( b , 4ac b2 ) ,对称轴为 2a 4a
直线 x b .在对称轴的左侧, y 随着 x 的增大而减小;在对称轴的右侧, y 随着 x 的增大而增大; 2a
【例 3】 已知二次函数的最大值为 2,图像的顶点在直线 y x 1上,并且图象经过点(3,-1),
求此二次函数的解析式.
2020年3月5日星期四
【例 4】已知二次函数的图象过点(-3,0),(1,0),且顶点到 x 轴的距离等于 2,求此二次函数的
表达式.
解解:法:一法二∵二∵次二函次数函的数图的象图过象点过(点-(3-,30,),0)(,1,(10,),0), ∴对称轴为直线 x 1.
第二课时
2020年3月5日星期四
课堂互动探究1、二次函数的最值问题
【例 5】当 2 x 2 时,求函数 y x2 2x 3 的最大值和最小值.
解:作出函数的图象.当 x 1时, ymin 4 ,当 x 2 时, ymax 5 .
【例 6】当1 x 2 时,求函数 y x2 x 1 的最大值和最小值. 解:作出函数的图象.当 x 1时, ymax 1,当 x 2 时, ymin 5 .
解:∵ y 3x2 6x 1 3(x 1)2 4 .
∴函数图象的开口向下,
对称轴方程 x 1,顶点坐标为(-1,4), 当 x 1时, ymax 4 . 在对称轴的左侧,y 随着 x 的增大而增大;在对称轴的右侧,y 随着 x 的增大而减小 (如图) .
2020年3月5日星期四
2
1
-3 -2 -1-O1 -2
y = x2 - 6x + 9
123456 x
x2+ x - 2 = 0 x2 - 6x + 9 = 0 x2- x + 1 = 0
2020年3月5日星期四
二次函数y=ax²+bx+c与一元二次方程ax²+bx+c=0有什么 关系?
归纳 一般地,从二次函数 y = ax2 + bx + c 的图象可知: (1)如果抛物线 y = ax2 + bx + c 与 x 轴有公共点,
当 x b 时,函数取最小值 y 4ac b2 .
2a
4a
利用数形结合的思想
方法解决问题. 今后
解决二次函数问题时,
要善于借助函数图像
(2)当 a 0时,函数 y ax2 bx c 图象开口向下,顶点坐标为( b , 4ac b2 ) ,对称轴为 2a 4a
直线 x b .在对称轴的左侧, y 随着 x 的增大而增大;在对称轴的右侧, y 随着 x 的增大而减小; 2a
2020年3月5日星期四
第一课时
二次函数 y ax2 bx c (a 0)是初中函数的主要内 容.也是高中学习的重要基础.在初中,大家已经知道 二次函数在自变量取任意实数时的最值情况.
本讲我们将在这个基础上继续学习当自变量 x在某 个范围内取值时,函数的最值问题.
2020年3月5日星期四
课堂互动探究2 、二次函数的三种表示方式
1.一般式: y ax2 bx c (a 0) . 2.顶点式: y a(x h)2 k(a 0) ,顶点坐标是 (h, k) . 3.交点式: y a(x x1)(x x2 ) (a 0) ,其中 x1, x2 是二次函数图象与 x 轴交点的横坐标. 【例 2】已知二次函数的图象过点(-1,-22),(0,-8),(2,8),求此二次函数的表达式.
初高中知识衔接模块三
2020年3月5日星期四
教学目标:
1.理解二次函数的概念,能快速画出二次函数简图。 2.进一步掌握二次函数的性质。 3.会用待定系数法求二次函数解析式。 4.掌握二次函数与一元二次方程的关系。
教学重难点:
重点:二次函数的图像和性质。 难点:给定区间内求二次函数的最值。
教学手段:五环教学法
2020年3月5日星期四
由上述两例可以看到,二次函数在自变量 x 的给定范围内,对应的图象是抛物线上的一段.那么最高
点的纵坐标即为函数的最大值,最低点的纵坐标即为函数的最小值.
根据二次函数对称轴的位置,函数在所给自变量 x 的范围的图象形状各异.下面给出一些常见情况:
2020年3月5日星期四
课堂互动探究2、二次函数的一元二次方程的关系 问题1
式来求二次函数的表达式?
2020年3月5日星期四
课堂小结 二次函数有哪些性质?
二次函数有哪些表示方法?
作业:
1.求下列抛物线的开口方向、对称轴、顶点坐标、
最大(小)值及y随x的变化情况,并画出其图象.
(1)y=x2-2x-3;
(2)y=1+6 x-x2.
2.先学作业(第二课时导学案)
2020年3月5日星期四
公共点的横坐标是 x0,那么当 x = x0 时,函数值是 0, 因此 x = x0 是方程 ax2 + bx + c = 0 的一个根.
(2)二次函数 y = ax2 + bx + c 的图象与 x 轴的位置 关系有三种:没有公共点,有一个公共点,有两个公共 点. 这对应着一元二次方程 ax2 + bx + c = 0 的根的三种 情况:没有实数根(Δ=b2-4ac<0) ,有两个相等的实数 根(Δ=b2-4ac=0) ,有两个不等的实数根(Δ=b2-4ac> 0) .
相关文档
最新文档