大学高数考试试题
大学高数历年期末试题
⼤学⾼数历年期末试题2010-2011年⼀. 填空题 (共4⼩题,每⼩题4分,共计16分) 1.22(1,0)ln(),y z xe x y dz =++=设则2.设xy y x y x f sin ),(+-=,则dx x x f dy y ??11 0 ),(=3.设函数21cos ,0()1,0xx f x xx x πππ+?<=-??+-≤≤?以为周期,()s x 为的()f x 的傅⾥叶级数的和函数,则(3)s π-= .4.设曲线为圆周222Ry x =+,则曲线积分dsx y x C+)—(322=⼆.选择题(共4⼩题,每⼩题4分,共计16分)1. 设直线为32021030,x y z x y z ++=??--+=?平⾯为4220x y z -+-=,则() .(A) 平⾏于平⾯ (B) 在平⾯上(C) 垂直于平⾯ (D) 与相交,但不垂直2.设有空间区域2222:x y z R Ω++≤,则Ω等于().(A) 432R π (B) 4R π (C) 434R π (D) 42R π3.下列级数中,收敛的级数是().(A) ∑∞=+-1)1()1(n n nn n (B) ∑∞=+-+11)1(n nn n(C)nn en -∞=∑13 (D)∑∞=+1)11ln(n nnn4. 设∑∞=1n na是正项级数,则下列结论中错误的是()(A )若∑∞=1n na收敛,则∑∞=12n na也收敛(B )若收敛,则11+∞=∑n n naa 也收敛(C )若∑∞=1n na 收敛,则部分和有界(D )若∑∞=1n na收敛,则1lim 1<=+∞→ρnn n a a三.计算题(共8⼩题,每⼩题8分,共计64分)1.设函数具有⼆阶连续偏导数,),(2y x y x f u +=,求y x u2.2.求函数y x xy z +-=23在曲线12+=x y 上点(1,2)处,沿着曲线在该点偏向轴正向的切线⽅向的⽅向导数. 解:3.计算,)(2dxdyyx}4),({22≤+=yxyxD.4.设⽴体由锥⾯z=及半球⾯1z=+.已知上任⼀点(),,x y z处的密度与该点到x y o平⾯的距离成正⽐(⽐例系数为0 K>),试求⽴体的质量.6. 计算第⼆类曲⾯积分??∑++dxdyzxxydxdzxyzdydz2,其中为球⾯2x外侧.7.求幂级数nnxn∑∞=+111的和函数。
大学高等数学上下考试题库(及答案)
高数试题1(上)及答案一.选择题(将答案代号填入括号内,每题3分,共30分).1.下列各组函数中,是相同的函数的是( ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =1 2.函数()00x f x a x ≠=⎨⎪=⎩ 在0x =处连续,则a =( ).(A )0 (B )14(C )1 (D )23.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ).(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微5.点0x =是函数4y x =的( ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点6.曲线1||y x =的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭(C )1f C x ⎛⎫+ ⎪⎝⎭(D )1f C x ⎛⎫-+ ⎪⎝⎭8.x x dxe e -+⎰的结果是( ).(A )arctan xe C + (B )arctan xeC -+ (C )x x e e C --+ (D )ln()x x e e C -++9.下列定积分为零的是( ).(A )424arctan 1x dx x ππ-+⎰ (B )44arcsin x x dx ππ-⎰ (C )112x xe e dx --+⎰ (D )()121sin x x x dx -+⎰ 10.设()f x 为连续函数,则()12f x dx '⎰等于( ).(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f -二.填空题(每题4分,共20分)1.设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.21xy x =-的垂直渐近线有条. 4.()21ln dxx x =+⎰.5.()422sin cos xx x dx ππ-+=⎰.三.计算(每小题5分,共30分) 1.求极限①21lim xx x x →∞+⎛⎫⎪⎝⎭ ②()20sin 1lim x x x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分 ①()()13dx x x ++⎰②()0a > ③x xe dx -⎰四.应用题(每题10分,共20分) 1. 作出函数323y x x =-的图像.2.求曲线22y x =和直线4y x =-所围图形的面积.《高数》试卷1参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题1.2-2.33-3.24.arctan ln x c+5.2三.计算题1①2e②162.11xyx y'=+-3. ①11ln||23xCx+++②22ln||x a x C-++③()1xe x C--++四.应用题1.略2.18S=《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题3分,共30分) 1.下列各组函数中,是相同函数的是( ).(A) ()f x x =和()g x = (B) ()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =2.设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x →=( ). (A) 0 (B) 1 (C) 2 (D) 不存在3.设函数()y f x =在点0x 处可导,且()f x '>0, 曲线则()y f x =在点()()00,x f x 处的切线的倾斜角为{ }. (A) 0 (B)2π(C) 锐角 (D) 钝角 4.曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( ). (A) 12,ln2⎛⎫⎪⎝⎭(B) 12,ln 2⎛⎫- ⎪⎝⎭ (C)1,ln 22⎛⎫⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭5.函数2xy x e-=及图象在()1,2内是( ).(A)单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的 (D)单调增加且是凹的6.以下结论正确的是( ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在. 7.设函数()y f x =的一个原函数为12xx e ,则()f x =( ).(A) ()121xx e - (B) 12x x e - (C) ()121x x e + (D) 12xxe 8.若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+ 9.设()F x 为连续函数,则12x f dx ⎛⎫' ⎪⎝⎭⎰=( ). (A) ()()10f f - (B)()()210f f -⎡⎤⎣⎦ (C) ()()220f f -⎡⎤⎣⎦ (D) ()1202f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦10.定积分badx ⎰()a b <在几何上的表示( ).(A) 线段长b a - (B) 线段长a b - (C) 矩形面积()1a b -⨯ (D) 矩形面积()1b a -⨯ 二.填空题(每题4分,共20分)1.设 ()()2ln 101cos 0x x f x xa x ⎧-⎪≠=⎨-⎪=⎩, 在0x =连续,则a =________.2.设2sin y x =, 则dy =_________________sin d x . 3.函数211xy x =+-的水平和垂直渐近线共有_______条. 4.不定积分ln x xdx =⎰______________________.5. 定积分2121sin 11x x dx x -+=+⎰___________. 三.计算题(每小题5分,共30分)1.求下列极限:①()10lim 12xx x →+ ②arctan 2lim 1x x xπ→+∞-2.求由方程1yy xe =-所确定的隐函数的导数x y '. 3.求下列不定积分:①3tan sec x xdx ⎰②)0a > ③2x x e dx ⎰ 四.应用题(每题10分,共20分) 1.作出函数313y x x =-的图象.(要求列出表格)2.计算由两条抛物线:22,y x y x ==所围成的图形的面积.《高数》试卷2参考答案一.选择题:CDCDB CADDD二填空题:1.-2 2.2sin x 3.3 4.2211ln 24x x x c -+ 5.2π 三.计算题:1. ①2e ②1 2.2yx e y y '=- 3.①3sec 3xc + ②()22ln x a x c +++ ③()222x x x e c -++四.应用题:1.略 2.13S =《高数》试卷3(上)一、 填空题(每小题3分, 共24分)1. 函数219y x=-的定义域为________________________.2.设函数()sin 4,0,0xx f x x a x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时, ()f x 在0x =处连续.3. 函数221()32x f x x x -=-+的无穷型间断点为________________.4. 设()f x 可导, ()xy f e =, 则____________.y '=5. 221lim _________________.25x x x x →∞+=+- 6. 321421sin 1x xdx x x -+-⎰=______________. 7. 20_______________________.x t d e dt dx -=⎰ 8. 30y y y '''+-=是_______阶微分方程.二、求下列极限(每小题5分, 共15分)1. 01lim sin xx e x →-; 2. 233lim 9x x x →--; 3. 1lim 1.2xx x -→∞⎛⎫+ ⎪⎝⎭三、求下列导数或微分(每小题5分, 共15分)1. 2xy x =+, 求(0)y '. 2. cos x y e =, 求dy . 3. 设x y xy e +=, 求dydx .四、求下列积分 (每小题5分, 共15分)1. 12sin x dx x ⎛⎫+ ⎪⎝⎭⎰. 2.ln(1)x x dx +⎰.3.120xedx ⎰五、(8分)求曲线1cos x t y t=⎧⎨=-⎩在2t π=处的切线与法线方程.六、(8分)求由曲线21,y x =+ 直线0,0y x ==和1x =所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积. 七、(8分)求微分方程6130y y y '''++=的通解.八、(7分)求微分方程x yy e x'+=满足初始条件()10y =的特解. 《高数》试卷3参考答案一.1.3x< 2.4a = 3.2x = 4.'()x x e f e5.126.07.22x xe -8.二阶二.1.原式=0lim 1x xx→= 2.311lim36x x →=+ 3.原式=112221lim[(1)]2x x e x--→∞+= 三.1.221','(0)(2)2y y x ==+2.cos sin x dy xe dx =-3.两边对x 求写:'(1')x y y xy e y +==+'x y x y e y xy yy x e x xy++--⇒==-- 四.1.原式=lim 2cos x x C -+2.原式=2221lim(1)()lim(1)[lim(1)]22x x x d x x d x x +=+-+⎰⎰=22111lim(1)lim(1)(1)221221x x x x dx x x dx x x+-=+--+++⎰⎰=221lim(1)[lim(1)]222x x x x x C +--+++3.原式=1221200111(2)(1)222x x e d x e e ==-⎰五.sin 1,122dy dy tt t y dx dx ππ=====且 切线:1,1022y x y x ππ-=---+=即 法线:1(),1022y x y x ππ-=--+--=即六.12210013(1)()22S x dx x x =+=+=⎰11224205210(1)(21)228()5315V x dx x x dxx x x ππππ=+=++=++=⎰⎰七.特征方程:2312613032(cos 2sin 2)xr r r iy e C x C x -++=⇒=-±=+八.11()dxdxxx x y ee edx C -⎰⎰=+⎰1[(1)]x x e C x=-+ 由10,0y x C ==⇒=1xx y e x-∴=《高数》试卷4(上)一、选择题(每小题3分) 1、函数 2)1ln(++-=x x y 的定义域是( ).A []1,2-B [)1,2-C (]1,2-D ()1,2- 2、极限xx e ∞→lim 的值是( ).A 、 ∞+B 、 0C 、∞-D 、 不存在 3、=--→211)1sin(limx x x ( ).A 、1B 、 0C 、 21-D 、21 4、曲线 23-+=x x y 在点)0,1(处的切线方程是( ) A 、 )1(2-=x y B 、)1(4-=x y C 、14-=x y D 、)1(3-=x y 5、下列各微分式正确的是( ).A 、)(2x d xdx = B 、)2(sin 2cos x d xdx = C 、)5(x d dx --= D 、22)()(dx x d = 6、设⎰+=C xdx x f 2cos 2)( ,则 =)(x f ( ).A 、2sinxB 、 2sin x -C 、 C x +2sinD 、2sin 2x -7、⎰=+dx xx ln 2( ).A 、C x x++-22ln 212 B 、 C x ++2)ln 2(21C 、 C x ++ln 2lnD 、 C x x++-2ln 18、曲线2x y = ,1=x ,0=y 所围成的图形绕y 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、⎰=+101dx e e xx( ). A 、21lne + B 、22ln e + C 、31ln e + D 、221ln e + 10、微分方程 xe y y y 22=+'+'' 的一个特解为( ).A 、x e y 273=* B 、x e y 73=* C 、x xe y 272=* D 、x e y 272=*二、填空题(每小题4分)1、设函数xxe y =,则 =''y ; 2、如果322sin 3lim 0=→x mx x , 则 =m .3、=⎰-113cos xdx x ;4、微分方程 044=+'+''y y y 的通解是 .5、函数x x x f 2)(+= 在区间 []4,0 上的最大值是 ,最小值是 ;三、计算题(每小题5分) 1、求极限 x x x x --+→11lim 0; 2、求x x y sin ln cot 212+= 的导数;3、求函数 1133+-=x x y 的微分; 4、求不定积分⎰++11x dx ;5、求定积分⎰eedx x 1ln ; 6、解方程21xy xdx dy -=;四、应用题(每小题10分)1、 求抛物线2x y = 与 22x y -=所围成的平面图形的面积.2、 利用导数作出函数323x x y -= 的图象.参考答案一、1、C ; 2、D ; 3、C ; 4、B ; 5、C ; 6、B ; 7、B ; 8、A ; 9、A ; 10、D ;二、1、xe x )2(+; 2、94 ; 3、0 ; 4、xe x C C y 221)(-+= ; 5、8,0三、1、 1; 2、x 3cot - ; 3、dx x x 232)1(6+ ;4、C x x +++-+)11ln(212;5、)12(2e- ; 6、C x y =-+2212 ; 四、1、38; 2、图略《高数》试卷5(上)一、选择题(每小题3分) 1、函数)1lg(12+++=x x y 的定义域是( ).A 、()()+∞--,01,2B 、 ()),0(0,1+∞-C 、),0()0,1(+∞-D 、),1(+∞- 2、下列各式中,极限存在的是( ).A 、 x x cos lim 0→ B 、x x arctan lim ∞→ C 、x x sin lim ∞→ D 、xx 2lim +∞→3、=+∞→xx xx )1(lim ( ). A 、e B 、2e C 、1 D 、e1 4、曲线x x y ln =的平行于直线01=+-y x 的切线方程是( ). A 、 x y = B 、)1)(1(ln --=x x y C 、 1-=x y D 、)1(+-=x y 5、已知x x y 3sin = ,则=dy ( ).A 、dx x x )3sin 33cos (+-B 、dx x x x )3cos 33(sin +C 、dx x x )3sin 3(cos +D 、dx x x x )3cos 3(sin + 6、下列等式成立的是( ).A 、⎰++=-C x dx x 111ααα B 、⎰+=C x a dx a xx ln C 、⎰+=C x xdx sin cos D 、⎰++=C xxdx 211tan 7、计算⎰xdx x e x cos sin sin 的结果中正确的是( ).A 、C ex+sin B 、C x e x +cos sinC 、C x ex+sin sin D 、C x e x +-)1(sin sin8、曲线2x y = ,1=x ,0=y 所围成的图形绕x 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、设 a ﹥0,则=-⎰dx x a a22( ).A 、2a B 、22a πC 、241a 0 D 、241a π 10、方程( )是一阶线性微分方程.A 、0ln2=+'xyy x B 、0=+'y e y x C 、0sin )1(2=-'+y y y x D 、0)6(2=-+'dy x y dx y x二、填空题(每小题4分)1、设⎩⎨⎧+≤+=0,0,1)( x b ax x e x f x ,则有=-→)(lim 0x f x ,=+→)(lim 0x f x ;2、设 xxe y = ,则 =''y ;3、函数)1ln()(2x x f +=在区间[]2,1-的最大值是 ,最小值是 ;4、=⎰-113cos xdx x;5、微分方程 023=+'-''y y y 的通解是 .三、计算题(每小题5分) 1、求极限 )2311(lim 21-+--→x x x x ;2、求 x x y arccos 12-= 的导数;3、求函数21xx y -=的微分;4、求不定积分⎰+dx xxln 21 ;5、求定积分 ⎰eedx x 1ln ;6、求方程y xy y x =+'2满足初始条件4)21(=y 的特解.四、应用题(每小题10分)1、求由曲线 22x y -= 和直线 0=+y x 所围成的平面图形的面积.2、利用导数作出函数 49623-+-=x x x y 的图象.参考答案(B 卷)一、1、B ; 2、A ; 3、D ; 4、C ; 5、B ; 6、C ; 7、D ; 8、A ; 9、D ; 10、B.二、1、 2 ,b ; 2、xe x )2(+ ; 3、 5ln ,0 ; 4、0 ; 5、xxeC e C 221+.三、1、31 ; 2、1arccos 12---x x x ; 3、dx xx 221)1(1-- ; 4、C x ++ln 22 ; 5、)12(2e- ; 6、x e x y 122-= ;四、1、 29; 2、图略《高等数学》试卷1(下)一.选择题(3分⨯10)1.点1M ()1,3,2到点()4,7,22M 的距离=21M M ( ).A.3B.4C.5D.62.向量j i b k j i a+=++-=2,2,则有( ).A.a ∥bB.a ⊥bC.3,π=b aD.4,π=b a3.函数1122222-++--=y x y x y 的定义域是( ).A.(){}21,22≤+≤y x y x B.(){}21,22<+<y x y xC.(){}21,22≤+<y xy x D (){}21,22<+≤y x y x4.两个向量a 与b垂直的充要条件是( ).A.0=⋅b aB.0 =⨯b aC.0 =-b aD.0 =+b a5.函数xy y x z 333-+=的极小值是( ). A.2 B.2- C.1 D.1- 6.设y x z sin =,则⎪⎭⎫ ⎝⎛∂∂4,1πyz=( ).A.22B.22-C.2D.2-7.若p 级数∑∞=11n p n 收敛,则( ). A.p 1< B.1≤p C.1>p D.1≥p8.幂级数∑∞=1n nnx 的收敛域为( ).A.[]1,1- B ()1,1- C.[)1,1- D.(]1,1-9.幂级数nn x ∑∞=⎪⎭⎫⎝⎛02在收敛域内的和函数是( ).A.x -11 B.x -22 C.x -12 D.x-21 10.微分方程0ln =-'y y y x 的通解为( ). A.xce y = B.xe y = C.xcxe y = D.cxe y = 二.填空题(4分⨯5)1.一平面过点()3,0,0A 且垂直于直线AB ,其中点()1,1,2-B ,则此平面方程为______________________.2.函数()xy z sin =的全微分是______________________________.3.设13323+--=xy xy y x z ,则=∂∂∂yx z 2_____________________________.4.x+21的麦克劳林级数是___________________________. 5.微分方程044=+'+''y y y 的通解为_________________________________. 三.计算题(5分⨯6)1.设v e z usin =,而y x v xy u +==,,求.,yz x z ∂∂∂∂ 2.已知隐函数()y x z z ,=由方程05242222=-+-+-z x z y x 确定,求.,yz x z ∂∂∂∂ 3.计算σd y x D⎰⎰+22sin ,其中22224:ππ≤+≤y x D . 4.如图,求两个半径相等的直交圆柱面所围成的立体的体积(R 为半径).5.求微分方程xe y y 23=-'在00==x y条件下的特解.四.应用题(10分⨯2)1.要用铁板做一个体积为23m 的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能使用料最省?2..曲线()x f y =上任何一点的切线斜率等于自原点到该切点的连线斜率的2倍,且曲线过点⎪⎭⎫⎝⎛31,1,求此曲线方程 .《高数》试卷2(下)一.选择题(3分⨯10)1.点()1,3,41M ,()2,1,72M 的距离=21M M ( ). A.12 B.13 C.14 D.152.设两平面方程分别为0122=++-z y x 和05=++-y x ,则两平面的夹角为( ). A.6π B.4π C.3π D.2π 3.函数()22arcsin yx z +=的定义域为( ).A.(){}10,22≤+≤y x y x B.(){}10,22<+<y x y xC.()⎭⎬⎫⎩⎨⎧≤+≤20,22πy x y x D.()⎭⎬⎫⎩⎨⎧<+<20,22πy x y x 4.点()1,2,1--P 到平面0522=--+z y x 的距离为( ). A.3 B.4 C.5 D.6 5.函数22232y x xy z --=的极大值为( ). A.0 B.1 C.1- D.216.设223y xy x z ++=,则()=∂∂2,1xz ( ).A.6B.7C.8D.9 7.若几何级数∑∞=0n nar是收敛的,则( ).A.1≤rB. 1≥rC.1<rD.1≤r8.幂级数()nn xn ∑∞=+01的收敛域为( ).A.[]1,1-B.[)1,1-C.(]1,1-D. ()1,1- 9.级数∑∞=14sin n n na是( ). A.条件收敛 B.绝对收敛 C.发散 D.不能确定 10.微分方程0ln =-'y y y x 的通解为( ). A.cxe y = B.xce y = C.xe y = D.xcxe y = 二.填空题(4分⨯5)1.直线l 过点()1,2,2-A 且与直线⎪⎩⎪⎨⎧-==+=t z t y t x 213平行,则直线l 的方程为__________________________.2.函数xye z =的全微分为___________________________. 3.曲面2242y x z -=在点()4,1,2处的切平面方程为_____________________________________. 4.211x+的麦克劳林级数是______________________. 5.微分方程03=-ydx xdy 在11==x y 条件下的特解为______________________________.三.计算题(5分⨯6)1.设k j b k j i a32,2+=-+=,求.b a ⨯2.设22uv v u z -=,而y x v y x u sin ,cos ==,求.,y z x z ∂∂∂∂ 3.已知隐函数()y x z z ,=由233=+xyz x 确定,求.,yz x z ∂∂∂∂ 4.如图,求球面22224a z y x =++与圆柱面ax y x 222=+(0>a )所围的几何体的体积.5.求微分方程023=+'+''y y y 的通解. 四.应用题(10分⨯2) 1.试用二重积分计算由x y x y 2,==和4=x 所围图形的面积.2.如图,以初速度0v 将质点铅直上抛,不计阻力,求质点的运动规律().t x x =(提示:g dt x d -=22.当0=t 时,有0x x =,0v dtdx=)《高等数学》试卷3(下)一、选择题(本题共10小题,每题3分,共30分) 1、二阶行列式 2 -3 的值为( )4 5A 、10B 、20C 、24D 、222、设a=i+2j-k,b=2j+3k ,则a 与b 的向量积为( ) A 、i-j+2k B 、8i-j+2k C 、8i-3j+2k D 、8i-3i+k3、点P (-1、-2、1)到平面x+2y-2z-5=0的距离为( ) A 、2 B 、3 C 、4 D 、54、函数z=xsiny 在点(1,4π)处的两个偏导数分别为( ) A 、,22 ,22 B 、,2222- C 、22- 22- D 、22- ,22 5、设x 2+y 2+z 2=2Rx ,则yzx z ∂∂∂∂,分别为( ) A 、z y z R x --, B 、z y z R x ---, C 、zyz R x ,-- D 、zyz R x ,- 6、设圆心在原点,半径为R ,面密度为22y x +=μ的薄板的质量为( )(面积A=2R π)A 、R 2AB 、2R 2AC 、3R 2AD 、A R 2217、级数∑∞=-1)1(n nnn x 的收敛半径为( )A 、2B 、21C 、1D 、3 8、cosx 的麦克劳林级数为( )A 、∑∞=-0)1(n n)!2(2n x n B 、∑∞=-1)1(n n )!2(2n x n C 、∑∞=-0)1(n n )!2(2n x n D 、∑∞=-0)1(n n)!12(12--n x n9、微分方程(y``)4+(y`)5+y`+2=0的阶数是( ) A 、一阶 B 、二阶 C 、三阶 D 、四阶 10、微分方程y``+3y`+2y=0的特征根为( ) A 、-2,-1 B 、2,1 C 、-2,1 D 、1,-2 二、填空题(本题共5小题,每题4分,共20分) 1、直线L 1:x=y=z 与直线L 2:的夹角为z y x =-+=-1321___________。
大学高数下册试题及答案
大学高数下册试题及答案《高等数学》测试题一一、选择题1.设有直线及平面,则直线A.平行于平面;B.在平面上;C.垂直于平面;D.与平面斜交. 2.二元函数在点处A.连续、偏导数存在; B.连续、偏导数不存在;C.不连续、偏导数存在;D.不连续、偏导数不存在. 3.设为连续函数,,则=A.; B.;C.D.. 4.设是平面由,,所确定的三角形区域,则曲面积分=A.7;B.;C.;D.. 5.微分方程的一个特解应具有形式A.;B.;C.;D.. 二、填空题1.设一平面经过原点及点,且与平面垂直,则此平面方程为;2.设,则=;3.设为正向一周,则0 ;4.设圆柱面,与曲面在点相交,且它们的交角为,则正数; 5.设一阶线性非齐次微分方程有两个线性无关的解,若也是该方程的解,则应有 1 . 三、设由方程组确定了,是,的函数,求及与. 解:方程两边取全微分,则解出从而四、已知点及点,求函数在点处沿方向的方向导数. 解:,从而五、计算累次积分). 解:依据上下限知,即分区域为作图可知,该区域也可以表示为从而六、计算,其中是由柱面及平面围成的区域. 解:先二后一比较方便,七.计算,其中是抛物面被平面所截下的有限部分. 解:由对称性从而八、计算,是点到点在上半平面上的任意逐段光滑曲线. 解:在上半平面上且连续,从而在上半平面上该曲线积分与路径无关,取九、计算,其中为半球面上侧. 解:补取下侧,则构成封闭曲面的外侧十、设二阶连续可导函数,适合,求.解:由已知即十一、求方程的通解. 解:解:对应齐次方程特征方程为非齐次项,与标准式比较得,对比特征根,推得,从而特解形式可设为代入方程得十二、在球面的第一卦限上求一点,使以为一个顶点、各面平行于坐标面的球内接长方体的表面积最小. 解:设点的坐标为,则问题即在求最小值。
令,则由推出,的坐标为附加题:1.判别级数是否收敛?如果是收敛的,是绝对收敛还是条件收敛?解:由于,该级数不会绝对收敛,显然该级数为交错级数且一般项的单调减少趋于零,从而该级数条件收敛2.求幂级数的收敛区间及和函数. 解:从而收敛区间为,3.将展成以为周期的傅立叶级数. 解:已知该函数为奇函数,周期延拓后可展开为正弦级数。
大学高数极限考试题及答案
大学高数极限考试题及答案# 大学高数极限考试题及答案一、选择题1. 下列函数中,极限不存在的是()A. \( f(x) = \frac{x^2 - 1}{x - 1} \) 当 \( x \to 1 \)B. \( g(x) = \sin(x) \) 当 \( x \to \pi \)C. \( h(x) = x^2 \) 当 \( x \to 2 \)D. \( k(x) = \frac{\sin(x)}{x} \) 当 \( x \to 0 \)答案:A2. 计算极限 \( \lim_{x \to \infty} \frac{x^2}{x + 1} \) 的结果是()A. \( \infty \)B. \( 1 \)C. \( 0 \)D. \( \frac{1}{2} \)答案:A二、填空题1. \( \lim_{x \to 0} x \cdot \sin(\frac{1}{x}) = \) ______答案:02. \( \lim_{x \to 1} (x^2 - 1) = \) ______答案:0三、计算题1. 计算极限 \( \lim_{x \to 3} \frac{x^2 - 9}{x - 3} \)。
解答:\( \lim_{x \to 3} \frac{x^2 - 9}{x - 3} = \lim_{x \to 3}\frac{(x - 3)(x + 3)}{x - 3} = \lim_{x \to 3} (x + 3) = 3 + 3 = 6 \)2. 计算极限 \( \lim_{x \to 0} \frac{\sin(x)}{x} \)。
解答:使用洛必达法则(L'Hôpital's Rule):\( \lim_{x \to 0} \frac{\sin(x)}{x} = \lim_{x \to 0}\frac{\cos(x)}{1} = \cos(0) = 1 \)四、证明题1. 证明 \( \lim_{x \to 0} \frac{\sin(x)}{x} = 1 \)。
高数第一章测试题
高数第一章测试题高等数学作为大学课程中的重要基础学科,对于很多同学来说是一个不小的挑战。
而第一章往往是为后续的学习打下基石的关键部分。
接下来,就让我们一起通过这份测试题来检验一下对第一章知识的掌握程度。
一、选择题(每题 5 分,共 30 分)1、函数\(f(x) =\frac{1}{x 1}\)的定义域为()A \(x \neq 1\)B \(x > 1\)C \(x < 1\)D \(x \neq 0\)2、设\(f(x) =\sqrt{x}\),则\(f(f(4))\)的值为()A 2B \(\sqrt{2}\)C 4D \(\sqrt{4}\)3、当\(x \to 0\)时,下列函数中与\(x\)等价无穷小的是()A \(x^2\)B \(\sin x\)C \(1 \cos x\)D \(e^x 1\)4、函数\(f(x) = x^3 3x + 1\)的单调递增区间是()A \((\infty, -1)\)和\((1, +\infty)\)B \((-1,1)\)C \((\infty, +\infty)\)D 以上都不对5、曲线\(y = x^2 + 1\)在点\((1, 2)\)处的切线方程为()A \(2x y = 0\)B \(x 2y + 3 = 0\)C \(2x + y 4 = 0\)D \(x + 2y 5 = 0\)6、设函数\(f(x)\)在\(x = 0\)处连续,且\(f(0) =2\),则\(\lim_{x \to 0} f(x)\)的值为()A 0B 1C 2D 不存在二、填空题(每题 5 分,共 30 分)1、函数\(f(x) =\ln(x + 1)\)的导数为________。
2、极限\(\lim_{x \to 1} \frac{x^2 1}{x 1}\)的值为________。
3、曲线\(y = e^x\)在点\((0, 1)\)处的切线斜率为________。
大学高数期末考试题与答案
第一学期高等数学期末考试试卷答案一.计算题(本题满分 35 分,共有 5 道小题,每道小题 7 分),1.求极限lim1 cos x x2 x.3 x 0 si n x解:1 cosx x x x2 1 1 c o xs 1cosx x 2x21 2lim lim lim si n 3 x x 3 x 3 x 0 x 0 x 0x ln 1 cosx x ln 1 c oxs 1 cosx ln 1 cosxe 2 1 e 2 1 xln 2 2 lim lim limlimx 3 1 cosx x 3 x 2x 0 x 0 x 0 x 0xln 2l i m s inx 1 .x 0 1 c o sx 2x 4与 x 2 3x2.设 x 0 时,fx 是等价无穷小, f t dt 与 Ax k等价无穷小,求常数 k 与 A .2 0 解:3 x3 x f t dt由于当 x 0 时, f t dt 与 Ax k等价无穷小,所以 lim 0 k 1 .而0 x 0 Ax3 x21 x 31f t dt f 3 x 2 23 3 x 2f 3 x 2 3 3 x 2x 3 x 31lim 0 lim li m li mlimAx kxx 0 Akx k 1 x 0 2Akx k 1 x 0 6Akx k 1 x 0 6Akx k 1x 32所以, lim11.因此, k 1, A 1. x 0 6 Akx k 163 x 2ax b dx 中不含有对数函数,求常数 a 与b应满足的条件.2 .如果不定积分x 1 1x 2解:x 2ax b 化为部分分式,有将2 1 x 2x 1x 2ax bA B CxD ,x 1 2 1 x 2x 1 x 1 21 x 2因此不定积分x 2ax bdx 中不含有对数函数的充分必要条件是上式中的待定系数x 1 2 x 21A C 0 .即x 2ax bB D B 1 x 2D x 1 22 22 2 .1 x 2x 1 1 x 2x 1 x 1 1 x所以,有x 2ax b B 1 x 2 D x 1 2 B D x 2 2DxB D .比较上式两端的系数,有 1 B D , a 2D , b B D .所以,得 b 1.525.计算定积分 min 1, x 2 dx . 0解:m i n1, x 2 x 2x 2 11 x2 1 1 x 12 x 1 x 2x 2 2 x .31x35521 2 2 13 所以, min 1, x 2 dx 1dx 2 x dx x 2 dx .0 0 1 2 85.设曲线 C 的极坐标方程为 r a sin 3,求曲线 C 的全长. 3解:曲线 r a sin 3一周的定义域为 0 3 ,即 03 .因此曲线 C 的全长为 3 3 2 2 3 3 3 s r r d 2 6 a 24 2 2aa s i n s i n c o s d a s i n d .0 0 3 3 3 0 3 2二.(本题满分 45 分,共有 5 道小题,每道小题 9 分),6.求出函数f x sin x lim 2n 的所有间断点,并指出这些间断点的类型. n 1 2 x解:sin x x1 21sin x x 1 2 2f x lim 2n.1 1 n12 x x 2 20 x 1 2因此 x 1 1 1 是函数 f x与 x 2 2 的间断点. 2l i m f x l i m 0 0 , lim f x lim si nx 1 ,因此 x 1x 的第一类可 是函数 f 1 x 1 x 1 1 2x 2 2 x2 2去型间断点.li mf x lim s i n x1 ,limf x lim 0 0 1 是函数 f x 的第一类可去型 ,因此 x 1 x 1x 1 x 1 2 x2 2 2 2 间断点.7.设 是函数 f x arcsin x 在区间 0, b 上使用 Lagrange (拉格朗日) 中值定理中的 “中值 ”, 求极限 lim .b 0 b 解:f x ar c s ixn 在区间0, b 上应用 Lagrange 中值定理,知存在 0, b ,使得arcsinb arcsin0 1 b 0 .1 2b 2所以, 21.因此,arcsinbb 22 12 2arcsinblim lim a r c s bin bb 2 2 lim2b 0 b 0 bb 0 b 2a r c sbin令t arcsinb,则有2lim t 2 2limt2 2lim sin t s i n tb 0b 2t 0t2 sin 2tt0 t 4lim 2t sin 2t lim 22cos2t 1 lim 1 cos2t1 lim2 s in2t 1 t 0 4t 3t 0 12t 26 t 0 t 2 6 t 0 2t 3所以, lim 1 .b 0 b31 x 18.设 fx e y 2 y dy ,求f x dx .0 0解:111f x dx xf xf x dxx 00 01 x在方程f x e y 2ydy 中,令x 1 ,得1 1 0f 1 e y 2 y dy e y 2 y dy 0 .0 0再在方程1 因此,1 xf xe1 x2f x e y 2y dy 两端对 x 求导,得,011 1f x dx xfx xf x dx xf x dx 00 0 01 11 11 x 2x 2e x2xe dx e xe dx e0 0 2 0 1e 1 .29.研究方程 e x a x2 a 0 在区间, 内实根的个数.解:设函数f x ax2 e x1, f x 2axe x ax2e x ax 2 x e x.令f x 0 ,得函数 f x 的驻点 x10, x2 2 .由于 a 0 ,所以lim fx lim ax2e x 1 ,x xlim f x lim 2ex1 a limx21 a lim2x1 a lim21 1.axe xexexx x x x x因此,得函数 f x 的性态x , 0 0 0, 2 2 2,f x 0 0f x 1 4ae 21 1⑴若 4ae 2 1 0,即 a e2时,函数f x ax2 e x1在, 0、0, 2、2, 内4各有一个零点,即方程e x a x2在, 内有 3 个实根.⑵若 4ae 2 1 0 ,即 a e2时,函数f x ax2 e x1在, 0、0, 内各有一个零4点,即方程 e x a x2在, 内有 2 个实根.⑶若 4ae 2 1 0 ,即 a e2时,函数f x ax 2e x 1 在, 0 有一个零点,即方程4e xa x 2在, 内有 1 个实根.10.设函数 f x 可导,且满足f x x f x 1 , f 0 0 .试求函数 f x 的极值.解:在方程 f x xf x 1 中令 tx ,得f t t f t 1 ,即f x x f x 1 .f x xf x x 中消去f x ,得在方程组xf x f x xf x x x2.1 x2x t 2积分,注意 f 0 0 ,得 f x f 0 t 0 1t 2 dt .即x t t 2 1 ln 1 x 2f x 2 dt x arctan x .0 1t 2由 f x x x 2f x 的驻点 x10, x21 .而f 1 2 x x 21 x 2得函数 x 1 x 22 .所以,f 0 1 0 , f1 1 0 .21ln 2所以, f0 0 是函数f x 极小值; f 1 1 是函数 f x 极大值.2 4三.应用题与证明题(本题满分20 分,共有 2 道小题,每道小题 10 分),11.求曲线 y x 的一条切线,使得该曲线与切线 l 及直线 x 0 和 x 2 所围成的图形绕 x 轴旋转的旋转体的体积为最小.解:设切点坐标为 t, t 1 ,可知曲线 y x 在 t , t 处的切线方程为,由 y 2 t yt11x t .x t ,或 y2 t2 t因此所求旋转体的体积为 2V1 2 82x tx dx 4 2t2 t4 3t所以, dV8 2 0 .得驻点 t2 ,舍去 t2 .由于 dt 4 3t 233d 2V16 0 ,因而函数 V 在 t 2 dt 24 3t 2 处达到极小值,而且也是最小值.因此所求切 t 2 t 3233 线方程为 y 3 x 1 .4 212.设函数 f x 在闭区间0, 1 上连续,在开区间0, 1 内可导,且2e f xarctan xdx 1, f 1 0 .2 证明:至少存在一点 0, 1 ,使得 f1.1 2arctan 解:因为 f x 在闭区间 0, 1 上连续,所以由积分中值定理,知存在20,,使得2e fx arctanxdx 2 e f arctan .0 2由于 e fx arctan xdx 1,所以, 2 e farctan 1 .再由 f 1 0 ,得 022e farctan e f1 arctan 1.4作函数 g xe f x arctan x ,则函数在区间 , 1 0, 1 上连续,在区间 , 1 内可导.所以由 Rolle 中值定理,存在, 1 0, 1 ,使得 g 0 .而 g x e fx f e fx 2 .x a r c t axnx1所以存在, 10, 1 ,使得e ff a r c t a ne f20 .1由于 e f0 ,所以 farctan 1 2 0,即 f11.12 arctan一个处处像别人表明自己优秀的,恰恰证明了他(她)并不优秀,或者说缺什么,便炫耀什么。
大学高数测试题及答案
大学高数测试题及答案一、选择题(每题5分,共20分)1. 函数f(x)=x^2在x=0处的导数是:A. 0B. 1C. 2D. -1答案:B2. 极限lim(x→0) (sin(x)/x)的值是:A. 0B. 1C. 2D. ∞答案:B3. 曲线y=x^3-3x+2在x=1处的切线斜率是:A. 0B. 1C. -2D. 2答案:D4. 函数f(x)=ln(x)的不定积分是:A. x^2B. x^3C. x*ln(x)D. x*ln(x) - x答案:D二、填空题(每题5分,共20分)1. 设函数f(x)=x^3+2x^2-5x+1,则f'(x)=______。
答案:3x^2+4x-52. 曲线y=x^2与直线x=2所围成的面积为______。
答案:4/33. 定积分∫(0到1) x dx的值是______。
答案:1/24. 函数y=e^x的泰勒展开式为______。
答案:1+x+x^2/2!+x^3/3!+...三、计算题(每题10分,共30分)1. 计算极限lim(x→∞) (1+1/x)^x。
答案:e2. 求函数f(x)=x^3-6x^2+11x-6在x=2处的值。
答案:f(2)=23. 求不定积分∫(2x^2-3x+1) dx。
答案:(2/3)x^3-(3/2)x^2+x+C四、证明题(每题15分,共30分)1. 证明:如果函数f(x)在区间[a,b]上连续,那么存在一点c∈(a,b),使得∫(a到b) f(x) dx = f(c)(b-a)。
答案:略2. 证明:函数f(x)=x^2在R上是凸函数。
答案:略。
大学高数考试题及答案详解
大学高数考试题及答案详解# 大学高数考试题及答案详解一、选择题1. 题目:函数 \( f(x) = x^2 \) 在区间 \( [0, 1] \) 上的定积分是:- A. \( \frac{1}{3} \)- B. \( \frac{1}{2} \)- C. \( \frac{3}{4} \)- D. \( \frac{2}{3} \)答案: C详解:根据定积分的计算公式,\( \int_{0}^{1} x^2 dx =\left[\frac{x^3}{3}\right]_{0}^{1} = \frac{1^3}{3} -\frac{0^3}{3} = \frac{1}{3} \)。
因此,正确答案为 C。
2. 题目:极限 \( \lim_{x \to 0} \frac{\sin x}{x} \) 的值是: - A. 1- B. 0- C. \( \frac{1}{2} \)- D. \( \infty \)答案: A详解:利用极限的性质和三角函数的极限,我们有 \( \lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{\cos x}{1} = 1\)。
因此,正确答案为 A。
二、填空题1. 题目:如果 \( \int_{a}^{b} f(x) dx = 4 \),那么\( \int_{a}^{b} 2f(x) dx = \) ________。
答案: 8详解:根据定积分的性质,如果 \( c \) 是一个常数,那么\( \int_{a}^{b} cf(x) dx = c \int_{a}^{b} f(x) dx \)。
因此,\( \int_{a}^{b} 2f(x) dx = 2 \int_{a}^{b} f(x) dx = 2 \times 4 = 8 \)。
2. 题目:函数 \( g(x) = e^x \) 的导数是 \( g'(x) = \)________。
大学高数试题(共7套)
第1 页共5页2010-2011学年第一学期考试卷 A课程:高等数学Ⅰ1(90学时)考试形式:闭卷考试一.填空题.填空题((每小题3分,本大题满分15分) 1.设函数îíì>£=1||01||1)(x x x f ,则)]([x f f = . 2.设函数ïîïíì³+<=0202sin )(x ax x xx x f ,当常数=a ____________时时,)(x f 在0x =处连续处连续. .3.曲线x e y 2=上点(0,1)处的切线方程为______ __. 4.曲线53523++-=x x x y 的凹区间为的凹区间为_______ _____. _______ _____. 5.若x e -是)(x f 的原函数,则dx x f x )(ln 2ò = . 二.选择题选择题((每小题3分,本大题满分15分)1. 1. 当当1x ®时,无穷小量x -1是x -1的( ).A. A. 高阶无穷小高阶无穷小; B. B. 低阶无穷小低阶无穷小;C. C. 等价无穷小等价无穷小;D. D. 同阶但不等价无穷小同阶但不等价无穷小. 2.若¥=®)(lim x f ax ,¥=®)(lim x g ax 则必有()A. ¥=+®)]()([lim x g x f a x ;B. ¥=-®)]()([limx g x f a x ;C. 0)()(1lim=+®x g x f ax ; D. ¥=®)(lim x kf ax ,(0¹k 为常数)3.3.函数函数xx x x f p sin )(3-=的可去间断点个数为().A .1; B. 2; C. 3; D. 1; B. 2; C. 3; D. 无穷多个无穷多个无穷多个. .4.设函数)(x f y =在点0x 处可导,且0)(0¹¢x f ,则xdy y xD -D ®D 0lim 等于().A. 0A. 0;;B. -1 B. -1;;C. 1 C. 1;;D. ¥ .5. 5. 设设)(x f 连续,且ò=24)(x x dt t f ,则)4(f = = (()A. 2A. 2;;B. 4 B. 4;;C. 8 C. 8;;D. 16 . 三.解答下列各题解答下列各题((每小题6分,本大题满分18分)1.)3ln(tan 2x x y ×=,求dy .2.求由方程0)cos(=-+xy e y x 所确定的隐函数()y f x =在0x =处的导数处的导数. .3.设îíì=+=ty tx cos 12,求dx dy 和22dx y d 。
湖南农业大学高等数学期末考试试卷(含答案)
湖南农业大学高等数学期末考试试卷(含答案)
一、高等数学选择题
1.设函数,则().
A、
B、
C、
D、
【答案】A
2.曲线在点处切线的方程为().
A、
B、
C、
D、
【答案】C
3.不定积分,其中为任意常数.
A、正确
B、不正确
【答案】B
4.设函数,,则函数.
A、正确
B、不正确
【答案】A
5.设为上的连续函数,且,则定积分().
A、
B、
C、
D、
【答案】D
一、一选择题
6.设函数,则导数.
A、正确
B、不正确
【答案】B
7.设函数,则().A、
B、
C、
D、
【答案】B
8.是微分方程.
A、正确
B、不正确
【答案】B
9.是偶函数.
A、正确
B、不正确
【答案】B
10.设,则.
A、正确
B、不正确
【答案】A
11.().
A、
B、
C、
D、
【答案】B
12.不定积分( ).
A、
B、
C、
D、
【答案】B
13.微分方程的通解是().A、
B、
C、
D、
【答案】A
一、一选择题
14.设函数,则().
A、
B、
C、
D、
【答案】D
15.曲线在点处切线的方程为().A、
B、
C、
D、
【答案】A
一、一选择题。
大学高等数学下考试题库(附答案)
《高等数学》试卷1(下)一。
选择题(3分10)1。
点到点的距离( ).A.3 B。
4 C。
5 D.62.向量,则有().A。
∥B。
⊥ C. D。
3.函数的定义域是( ).A. B.C。
D4。
两个向量与垂直的充要条件是( ).A. B. C. D.5.函数的极小值是( ).A。
2 B。
C。
1 D。
6。
设,则=()。
A. B. C. D。
7.若级数收敛,则()。
A. B。
C。
D.8。
幂级数的收敛域为().A. B C。
D。
9。
幂级数在收敛域内的和函数是( ).A. B。
C。
D。
10。
微分方程的通解为().A. B. C。
D。
二.填空题(4分5)1.一平面过点且垂直于直线,其中点,则此平面方程为______________________.2。
函数的全微分是______________________________.3.设,则_____________________________。
4.的麦克劳林级数是___________________________.5。
微分方程的通解为_________________________________.三。
计算题(5分6)1.设,而,求2。
已知隐函数由方程确定,求3.计算,其中.4.如图,求两个半径相等的直交圆柱面所围成的立体的体积(为半径)。
5.求微分方程在条件下的特解。
四.应用题(10分2)1.要用铁板做一个体积为2的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能使用料最省?2。
曲线上任何一点的切线斜率等于自原点到该切点的连线斜率的2倍,且曲线过点,求此曲线方程.《高数》试卷2(下)一。
选择题(3分10)1.点,的距离( )。
A. B. C. D.2.设两平面方程分别为和,则两平面的夹角为().A。
B。
C. D。
3。
函数的定义域为()。
A. B.C。
D.4。
点到平面的距离为( )。
A。
3 B.4 C。
5 D.65.函数的极大值为()。
A.0B.1C.D.6。
大学高等数学上考试题库(附答案)
《高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分).1.下列各组函数中,是相同的函数的是(). (A )2ln 2ln f x xg x x和(B )||f x x 和2g x x(C )f xx 和2g xx(D )||x f xx和g x 12.函数sin 420ln 10x x f xxax在0x 处连续,则a ().(A )0 (B )14(C )1 (D )23.曲线ln y x x 的平行于直线10x y 的切线方程为(). (A )1y x (B )(1)yx (C )ln 11y x x (D )y x4.设函数||f x x ,则函数在点0x处().(A )连续且可导(B )连续且可微(C )连续不可导(D )不连续不可微5.点0x 是函数4y x 的().(A )驻点但非极值点(B )拐点(C )驻点且是拐点(D )驻点且是极值点6.曲线1||yx 的渐近线情况是().(A )只有水平渐近线(B )只有垂直渐近线(C )既有水平渐近线又有垂直渐近线(D )既无水平渐近线又无垂直渐近线7.211fdx x x 的结果是().(A )1f Cx(B )1fCx(C )1fCx(D )1fCx8.xxdxe e的结果是().(A )arctan xeC (B )arctan xeC (C )xxeeC (D )ln()xxee C9.下列定积分为零的是().(A )424arctan 1x dx x(B )44arcsin x x dx (C )112xxee dx (D )121sin xx x dx10.设f x 为连续函数,则102f x dx 等于().(A )20f f (B )11102f f (C )1202f f (D )10f f 二.填空题(每题4分,共20分)1.设函数2100xex f xx a x在0x 处连续,则a.2.已知曲线y f x 在2x处的切线的倾斜角为56,则2f .3.21x yx的垂直渐近线有条.4.21ln dx x x.5.422sin cos x x x dx.三.计算(每小题5分,共30分)1.求极限①21limxxx x ②2sin 1limx xx x x e 2.求曲线ln yx y 所确定的隐函数的导数x y .3.求不定积分①13dx x x ②220dx a xa③xxe dx四.应用题(每题10分,共20分)1.作出函数323yxx 的图像.2.求曲线22yx 和直线4yx 所围图形的面积.《高数》试卷1参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题1.22.333.24.arctanln x c5.2三.计算题1①2e②162.11xyx y3. ①11ln||23xCx②22ln||x a x C③1xe x C四.应用题1.略2.18S《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题3分,共30分)1.下列各组函数中,是相同函数的是( ).(A)f x x 和2g x x(B) 211xf xx 和1y x (C)f xx 和22(sin cos )g xx x x (D)2ln f x x 和2ln g x x2.设函数2sin 21112111x xx fxx xx,则1lim x f x ().(A) 0 (B) 1(C) 2 (D) 不存在3.设函数yf x 在点0x 处可导,且fx >0, 曲线则yf x 在点00,x f x 处的切线的倾斜角为{ }. (A)(B)2(C) 锐角(D) 钝角4.曲线ln y x 上某点的切线平行于直线23y x ,则该点坐标是( ).(A)12,ln2(B)12,ln2(C)1,ln 22(D)1,ln 225.函数2xy x e 及图象在1,2内是().(A)单调减少且是凸的(B)单调增加且是凸的(C)单调减少且是凹的(D)单调增加且是凹的6.以下结论正确的是().(A) 若0x 为函数yf x 的驻点,则0x 必为函数yf x 的极值点. (B) 函数y f x 导数不存在的点,一定不是函数y f x 的极值点.(C) 若函数y f x 在0x 处取得极值,且0f x 存在,则必有0fx =0.(D) 若函数yf x 在0x 处连续,则0fx 一定存在.7.设函数yf x 的一个原函数为12x x e ,则f x =().(A) 121x x e (B)12xx e (C)121xx e (D) 12xxe8.若f x dxF xc ,则sin cos xf x dx ().(A)sin F x c(B)sin F xc (C) cos F xc(D)cos F x c9.设F x 为连续函数,则102x fdx =().(A)10f f (B)21f f (C)220f f (D)1202ff 10.定积分badx ab 在几何上的表示().(A) 线段长b a (B) 线段长a b (C) 矩形面积1a b (D) 矩形面积1b a 二.填空题(每题4分,共20分)1.设2ln 101cos 0xx f xxax, 在0x 连续,则a =________.2.设2sin y x , 则dy_________________sin d x .3.函数211x yx的水平和垂直渐近线共有_______条.4.不定积分ln x xdx ______________________.5. 定积分2121sin 11x x dx x___________.三.计算题(每小题5分,共30分) 1.求下列极限:①1lim 12xx x ②arctan 2lim 1xx x2.求由方程1yy xe 所确定的隐函数的导数x y .3.求下列不定积分: ①3tan sec x xdx②22dx a xa③2xx e dx四.应用题(每题10分,共20分) 1.作出函数313yx x 的图象.(要求列出表格)2.计算由两条抛物线:22,yx y x 所围成的图形的面积.《高数》试卷2参考答案一.选择题:CDCDB CADDD 二填空题: 1.-22.2sin x3.34.2211ln 24x xxc5.2三.计算题:1. ①2e②12.2yxe y y3.①3sec 3x c②22ln xax c③222xx x e c四.应用题:1.略2.13S《高数》试卷3(上)一、填空题(每小题3分, 共24分)1.函数219y x的定义域为________________________.2.设函数sin4,0,xx f xxa x, 则当a=_________时, f x 在0x 处连续.3. 函数221()32x f x xx的无穷型间断点为________________.4. 设()f x 可导, ()xyf e , 则____________.y5. 221lim_________________.25xx xx6. 321421sin 1x x dx xx=______________.7.2_______________________.x td e dtdx8. 30yyy是_______阶微分方程.二、求下列极限(每小题5分, 共15分)1.01limsin xx ex;2. 233lim9x x x; 3.1lim 1.2xxx三、求下列导数或微分(每小题5分, 共15分) 1.2x yx , 求(0)y . 2. cos xy e, 求dy .3.设x yxye, 求dy dx .四、求下列积分 (每小题5分, 共15分) 1.12sin x dx x.2.ln(1)x x dx .3.120xe dx五、(8分)求曲线1cos x t yt在2t处的切线与法线方程.六、(8分)求由曲线21,yx直线0,0y x和1x所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积.七、(8分)求微分方程6130yyy的通解.八、(7分)求微分方程xy ye x满足初始条件10y 的特解.《高数》试卷3参考答案一.1.3x2.4a3.2x4.'()x xe f e 5.126.07.22x xe8.二阶二.1.原式=0lim1x x x2.311lim36xx3.原式=112221lim[(1)]2xx e x 三.1.221','(0)(2)2y y x2.cos sin xdy xedx3.两边对x 求写:'(1')x yyxy ey 'x yx yey xy y y xex xy四.1.原式=lim 2cos xx C2.原式=2221lim(1)()lim(1)[lim(1)]22x x x d x x d x x=22111lim(1)lim(1)(1)221221x xxx dxx x dxx x=221lim(1)[lim(1)]222xxx x x C3.原式=12212111(2)(1)222xx e d x ee 五.sin 1,122dy dy t tt ydxdx 且切线:1,122yx yx即法线:1(),1022y x y x 即六.1221013(1)()22S xdxxx 11224205210(1)(21)228()5315Vx dx xxdxxxx七.特征方程:2312613032(cos2sin 2)xrr r iyeC x C x 八.11()dxdxxxxy ee edxC 1[(1)]xx e C x由10,yx C1xx yex《高数》试卷4(上)一、选择题(每小题3分)1、函数2)1ln(x x y 的定义域是(). A 1,2 B1,2 C 1,2 D1,22、极限xxe lim 的值是().A 、B 、C 、D 、不存在3、211)1sin(lim xx x (). A 、1B 、C 、21D 、214、曲线23xxy 在点)0,1(处的切线方程是()A 、)1(2xy B 、)1(4x y C 、14x yD 、)1(3x y 5、下列各微分式正确的是().A 、)(2x d xdx B 、)2(sin 2cos x d xdxC 、)5(x d dx D 、22)()(dx x d 6、设C x dxx f 2cos2)(,则)(x f ().A 、2sin xB 、2sinx C 、Cx 2sinD 、2sin2x 7、dx x x ln 2().A 、Cx x22ln 212B 、Cx 2)ln 2(21C 、Cxln 2ln D 、C xx 2ln 18、曲线2xy,1x ,0y 所围成的图形绕y 轴旋转所得旋转体体积V().A 、104dx x B 、1ydyC 、10)1(dyy D 、14)1(dxx 9、11dxeexx ().A 、21lne B 、22lne C 、31lne D 、221ln e 10、微分方程xeyyy22的一个特解为().A 、x e y273B 、x e y73C 、x xe y272D 、x e y272二、填空题(每小题4分)1、设函数xxe y,则y;2、如果322sin 3limxmxx , 则m .3、113cos xdxx ;4、微分方程044yyy 的通解是.5、函数x x x f 2)(在区间4,0上的最大值是,最小值是;三、计算题(每小题5分)1、求极限xxx x11lim;2、求x xys i n ln cot 212的导数;3、求函数1133xx y的微分;4、求不定积分11x dx ;5、求定积分eedx x 1ln ;6、解方程21xy x dxdy ;四、应用题(每小题10分)1、求抛物线2xy与22x y 所围成的平面图形的面积.2、利用导数作出函数323xxy 的图象.参考答案一、1、C ;2、D ;3、C ;4、B ;5、C ;6、B ;7、B ;8、A ;9、A ;10、D ;二、1、xe x )2(;2、94;3、0;4、xex C C y221)(;5、8,0三、1、1;2、x 3cot ;3、dx x x232)1(6;4、C x x )11ln(212;5、)12(2e ;6、Cxy2212;四、1、38;2、图略《高数》试卷5(上)一、选择题(每小题3分)1、函数)1lg(12x xy的定义域是().A 、,01,2B 、),0(0,1C 、),0()0,1(D 、),1(2、下列各式中,极限存在的是().A 、x x c o s l i m 0B 、xxarctan limC 、x xsin lim D 、xx2lim 3、xxxx )1(lim ().A 、eB 、2eC 、1D 、e14、曲线x x y ln 的平行于直线01y x 的切线方程是().A 、xyB 、)1)(1(ln x xy C 、1x yD 、)1(x y 5、已知x x y 3sin ,则dy ().A 、dx x x )3sin 33cos (B 、dx x x x )3cos 33(sinC 、dxx x)3sin 3(cos D 、dxx x x)3cos 3(sin 6、下列等式成立的是().A 、Cx dx x 111B 、Cx a dx a xxln C 、C x xdxsin cos D 、Cxxdx211tan 7、计算xdx x excos sin sin 的结果中正确的是().A 、C exsin B 、Cx excos sin C 、Cxexsin sin D 、Cx ex)1(sin sin 8、曲线2xy,1x ,0y 所围成的图形绕x 轴旋转所得旋转体体积V().A 、104dx x B 、1ydyC 、10)1(dyy D 、14)1(dxx 9、设a ﹥0,则dxx aa 022(). A 、2aB 、22aC 、241aD 、241a10、方程()是一阶线性微分方程.A 、ln2xy yx B 、0y e y xC 、0sin )1(2yy yx D 、0)6(2dyx ydxy x 二、填空题(每小题4分)1、设,0,1)(xb ax x ex f x,则有)(lim 0x f x,)(limx f x;2、设xxey,则y;3、函数)1ln()(2x x f 在区间2,1的最大值是,最小值是;4、113cos xdxx ;5、微分方程023yyy的通解是.三、计算题(每小题5分)1、求极限)2311(lim 21x xx x ;2、求x x y arccos 12的导数;3、求函数21xx y的微分;4、求不定积分dx xx ln 21;5、求定积分eedx x 1ln ;6、求方程y xyyx 2满足初始条件4)21(y 的特解.四、应用题(每小题10分)1、求由曲线22x y 和直线0y x 所围成的平面图形的面积.2、利用导数作出函数49623x xxy 的图象.参考答案( B 卷)一、1、B ;2、A ;3、D ;4、C ;5、B ;6、C ;7、D ;8、A ;9、D ;10、B.二、1、2,b ;2、xex )2(;3、5ln ,0;4、0;5、xxeC eC 221.三、1、31;2、1arccos 12x xx ;3、dx xx 221)1(1;4、C x ln 22;5、)12(2e;6、xexy122;四、1、29;2、图略高等数学模拟试卷一、填空题(每空3分,共42分)1、函数4lg(1)yxx 的定义域是;2、设函数20()0xx f x axx在点0x连续,则a;3、曲线45y x在(-1,-4)处的切线方程是;4、已知3()f x dx xC ,则()f x ;5、21lim(1)x xx= ;6、函数32()1f x xx的极大点是;7、设()(1)(2)2006)f x x x x x ……(,则(1)f ;8、曲线xyxe 的拐点是;9、21x dx= ;10、设32,ai j k b i jk ,且ab ,则= ;11、2lim()1xxaxb x ,则a,b;12、311lim xxx=;13、设()f x 可微,则()()f x d e=。
大学高等数学下考试题库(附答案)
. 选择题( 3 分 10) 高等数学》试卷 1(下)1. 点 M 1 2,3,1 到点 M 2 2,7,4 的距离 M 1M 2 )..42. 向量 a i 2 j k,b 2i j , 则有( ).A. a ∥ bB. a ⊥ bC. a,b 3D. a,b 3.函数 y 1y 21 的定义域是).A. x, yB. x,y1C. x, y x 2 x,y 1 x 24. 两个向量 a 与 b 垂直的充要条件是( ).A. a b 0B. a b 0C. a 0D. a5. 函数 z x 3 y 3 3xy 的极小值是 ).B. D.6. 设 z xsin y ,则1,4=( ).2 A. 2 B. 2 C.D.7. 若 p 级数 1 n 1p 收敛,则(A. p 1B. p 1C.D.p18. 幂级数n1n x 的收敛域为( n ).A. 1,1B 1,1 C.1,1 D. 1,1. 填空题( 4 分 5)1. 一 平 面 过 点 A 0,0,3 且 垂 直 于 直 线 AB ,2. 函数 z sin xy 的全微分是23. 设 z x 3y 2 3xy 3 xy 1,则zxy14. 1 的麦克劳林级数是2x5. 微分方程 y 4y 4y 0 的通解为三. 计算题( 5分 6)4. 如图,求两个半径相等的直交圆柱面所围成的立体的体9. 幂级数 在收敛域内的和函数是( 1 2 2A. B. C. D 1x 2x 1x n0 10. 微分方程 xy yln y 0 的通解为( 12xA xx.y ce B. y e C. x cxy cxe D. y e其 中 点 B2, 1,1 ,则 此 平 面 方 程为1. 设 z e u sinv ,而 uxy,vzz y ,求 , y2. 已知隐函数 z z x,y由方程x 22y 2z 24x 2z 5 0 确定,求 z , zxy3. 计算 sin x 2 y 2d D2 ,其中 D : 222y4R 为半径)积(4.n01 n n 2n 1 x n5. y C 1 C 2x e2x5. 求微分方程 y 3y e 2x 在 y x 0 0 条件下的特解四. 应用题( 10分 2) 1. 要用铁板做一个体积为 2m 3 的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能使用料最省12.. 曲线 y f x 上任何一点的切线斜率等于自原点到该切点的连线斜率的 2倍,且曲线过点 1,13求此曲线方程试卷 1 参考答案一. 选择题 CBCAD ACCBD 二. 填空题1. 2x y 2z 6 0.2. cos xy ydx xdy3. 6x 2y 9y 2 1 .三. 计算题z 2 x , z 2y x z 1 y z 12 3. 02dsind6216 34.R 3 . 33x2x5.y e e .四. 应用题1. 长、宽、高均为 3 2m 时,用料最省2.1 2.2. y x .3高数》试卷 2(下)一. 选择题( 3分 10)1.点M 1 4,3,1 ,M 27,1,2 的距离 M 1M 2( ) .A. 12B. 13C. 14D.152. 设两平面方程分别为 x 2y 2z 1 0和 x y 5 0 ,则两平面的夹角为( )A. B. C. D.6 4 3 23. 函数 z arcsin 2 x2y的定义域为().A.x, y 02x 2y 21 B.x, y0 x 2 y 2 1 C.x,y 02x2y2D.x, y 0 x 22y24.点P 1, 2,1 到平面 x 2y 2z 50的距离为()..4C1.ze xy ysin x y cos x y xzxy, e xsin x y cos x y y5. 函数 z 2xy 3x 2 2y 2 的极大值为().1 B.1 C. 1 D.26. 设 z x 2 3xy y 2 ,则 z 1,2 ().x.7 C7. 若几何级数 ar n 是收敛的,则() .n0A. r 1B. r 1C. r 1D. r 18. 幂级数 n 1x n 的收敛域为().n0A. 1,1B. 1,1C. 1,1D. 1,1 9. 级数 sin 4na 是() .n 1 n4A. 条件收敛B. 绝对收敛C. 发散D. 不能确定 10.微分方程 xy yln y 0的通解为(. 填空题( 4 分 5)x 3 ty t 平行,则直线 l 的方程为z 1 2t2. 函数 z e xy 的全微分为223. 曲面 z 2x 2 4y 2 在点 2,1,4 处的切平面方程为 ___________________________________________14.1 2 的麦克劳林级数是 _______________________ .1 x 25.微分方程 xdy 3ydx 0在 y x 1 1条件下的特解为 _____________________________________ .三. 计算题( 5分 6)1. 设a i 2j k,b 2j 3k ,求 a b.cx xA.y e B. y ce C. yxxe D. y cxe1. 直线 l 过点 A 2,2, 1 且与直线uv 2,而 u xcos y,v xsin y ,求zd 2x2.如图,以初速度 v 0将质点铅直上抛,不计阻力,求质点的运动规律x x t .(提示: d dt 2x g .当2. 设 z u 2v3. 已知隐函数x,y由 x 3 3 xyz 2确定,求1. 试用二重积分计算由 y x,y 2 x 和 x 4所围图形的面积 .t 0 时,有 x xdx dtv 0)0 的通解四. 应用题( 10分 2)xy2ax ( a 0 )所围的几何体的体积224a 2 与圆柱面 x 22y试卷 2 参考答案. 选择题 CBABA CCDBA. . 填空题x 2 y 2 z 1 1. 1122. e xy ydx xdy .3. 8x 8y z4.5. y x 3 .三. 计算题1. 8i 3 j 2k .z yz z xz 3.xxy z2,y2xy z32 3 2 4.a .3 2 35.yC 1e 2xC 2e x四. 应用题1. 16.3.2. x12 gt 2v 0t x 0.2《高等数学》试卷 3(下)一、选择题(本题共 10小题,每题 3 分,共 30分)1、二阶行列式 2 -3 的值为( )4.n0n 2nx2.z 2 z 3x sin ycos y cos y sin y , xy32x sin ycosy sin y cos y3 3 3x sin y cos y4 52 1A 、10B 、 20C 、24D 、22 2、设 a=i+2j-k,b=2j+3k , 则 a 与 b 的向量积为( ) A 、i-j+2kB 、8i-j+2kC 、 8i-3j+2kD 、8i-3i+k3、点 P (-1 、 -2 、 1)到平面 x+2y-2z-5=0 的距离为( ) A 、2 B 、3 C 、 4 D 、5A 、R 2AB 、2R 2AC 、3R 2AD 、 1 R 2A2n7、级数( 1)n x 的收敛半径为( ) n 1 n1A 、2B 、C 、1D 、 328、 cosx 的麦克劳林级数为()459、微分方程 (y``) 4+(y`) 5+y`+2=0 的阶数是( ) A 、一阶 B 、二阶 C 、三阶 D 、四阶 10 、微分方程 y``+3y`+2y=0 的特征根为( ) A 、 -2 , -1 B 、 2,1 C 、-2 ,1 D 、1,-2二、填空题(本题共 5 小题,每题 4分,共 20 分)1、直线 L 1: x=y=z 与直线 L 2: x 1 y 3 z 的夹角为 _______________( 1)nn02nxB 、(2n)!(n12n1)n (x 2n)! C( 1)nn02nx (2n)!(n01)n2n 1(2n 1)!4、函数 z=xsiny 在点( 1,)处的两个偏导数分别为( )42 , 2,2, 22 2 A 、B 、C 、D2 2222222222 2 2z z5 、设 x +y +z =2Rx ,则 , 分别为(xyxR zB 、x R , yC zz6、设圆心在原点,半径为 R ,面密度为 )x R y x R y, D 、 , z z z z2 2 2x 2 y 2的薄板的质量为( )(面积 A= R 2 )直线L3:x 1 y 2 z与平面3x 2y 6z 0之间的夹角为_____________________2 1 22、()的近似值为______ ,sin10 0的近似值为 ___________ 。
大学文科高数试题及答案
文科高等数学一、填空题1、函数x x f -=51)(的定义域是(5,∞-)2、已知极限32lim 22=-+-→x k x x x ,则2-=k 。
3、曲线),在(211+=x y 处切线斜率是:21 4、设x xy 2=,则)1(ln 2'2+=x x y x 5、若⎰⎰+=-+=C x dx x f C x dx x f )1()(,则6、已知)(cos x f x 是的一个原函数,则⎰+-=C x x x dx x xf sin cos )(。
二、选择题1、设{}{}=,则、、=,、、M P M P /531321=(B ) A 、{}5 B 、{}2 C 、{}1 D 、{}3 2、在112+-•=x x e e x y 其定义域(∞∞-,)内是(B ) A 、奇函数 B 、偶函数 C 、非奇非偶函数 D 、有界函数3、以下计算正确的是(D )A 、)(22ex d dx xe x =B 、x d x dxsin 12=-C 、)1(2x d xdx -= D 、x dx x 3ln 21= 5、下列在指定区间是单调增函数的为(C )A 、)1,1(,-=x yB 、),(,sin +∞-∞=x yC 、)0,(,2-∞-=x yD 、),0(,3+∞=-xy6、已知的值为处有极小值,则在a x x x ax x f 11)(023=---=(A )A 、1B 、31 C 、0 D 、31- 7、设函数32cos 21cos )(π=-=x x x a x f 在点处取得极值,则=a (C ) A 、0 B 、21 C 、1 D 、2三、判断题1、若有极限在点可导,则在点00)()(x x f x x f (V )2、极限d x e d bx xa =++∞→)1(lim (X ) 3、⎰+=C x f dx x f x xf )(21)(')(2222(X ) 4、已知.....718.2=e 是一个无理数,则⎰+=C x dx x e e (X ) 四、证明题 若⎪⎩⎪⎨⎧=≠=0,00,1sin sin )(2x x x x x f 证明:处可导在0)(=x x f 证明:xx x x f x f x x 1sin sin lim )0()(lim 200→→=-=01sin sin sin lim 0=•→x x x x x 处可导在0)(=∴x x f五、解答题 解不定积分⎰dx xx x 3sin cos 由原式=⎰⎰⎰⎪⎭⎫ ⎝⎛-==x xd x dx x x x x x 233sin 121)(sin sin sin cos=⎰+-dx xx x 22sin 121sin 2 =⎰+-xdx xx 22csc 21sin 2 =C x x x +--cot 21sin 22感谢下载!欢迎您的下载,资料仅供参考。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高数作业
一、单项选择题
1. 曲线x y ln =上某点的切线平行于直线32-=x y ,该点的坐标是( B )
A 、⎪⎭⎫ ⎝⎛2ln ,21;
B 、⎪⎭⎫ ⎝⎛-2ln ,21;
C 、⎪⎭⎫ ⎝⎛21ln
,2; D 、⎪⎭
⎫
⎝⎛
-21ln ,2 2.2x =是函数
22
1
32x y x x -=-+的( A )间断点 A.可去 B.跳跃 C.无穷 D.振荡
3. ()y x f ,在点()b a ,处两个偏导数存在是()y x f ,在点()b a ,处连续的( D )条件 A.充分而非必要 B.必要而非充分
C.充分必要
D.既非充分也非必要 4. 已知
2
()()x ay dx ydy
x y +++为某函数的全微分,则a 为( D )
A .-1
B . 0
C .1
D . 2 5. 设f(x)=lg3,则f(x+1)+f(x-1)=( A )
A.2lg3
B.0
C.1
D.2 二、填空题 6. 函数f(x)=
6
12
--x x 的定义域是 {x >3或x <-2}
7.
lim
+∞
→x 1
21
2
2
-+x x = 21
8. 设3x y =,则函数在1=x 处的微分为 2 dx
9. 设二元函数y x xy z 3
2
+=,则=∂∂∂y
x z 2
232x y + 10. 曲面221z x y =+-在点(2,1,4)处的切平面方程为 4260x y z +--= 三、计算题
11.计算=I ⎰⎰-2
2
2
x
y dy
e dx
)1(21
42
020
2
20
2
2
2
-----=
==⎰⎰⎰⎰⎰
e dy ye dx e
dy dy e
dx y y
y x
y
12.
求极限n →∞
⋅⋅⋅+
n →∞
+⋅⋅⋅+
1
=⎰
6
π=
13.计算322
d (1)
x x +⎰
令1tan ,arctan ,,sec 022cos x t t x t t ππ⎛⎫
==∈-=
> ⎪⎝⎭
, 原式
=dt
cos sin sec tdt t c c t ==+=+⎰
⎰
14.设曲线方程为sin cos 2x t y t =⎧⎨=⎩,求此曲线在点4t π
=处的切线方程
因为4
t π
=
时,2x =
,0y =,
4
4
2sin 2cos t t dy t
dx t
ππ==
-==-
故曲线在,0)2
点处的切线方程为:y x =--
15.求函数()()y y x e y x f x 2,22++=的极值
解:解方程组()()
()()⎪⎩⎪⎨⎧=+==+++=022,01422,22
2y e y x f y y x e y x f x
y
x x ,得驻点⎪⎭⎫
⎝⎛-1,21。
由于()()124,22+++==y y x e y x f A x xx ,()()142+==y e xy f B x xy ,()x
yy e y x f C 22,==在点⎪⎭⎫ ⎝⎛-1,21处,02>=e A ,0=B ,e C 2=,
224e B AC =-,所以函数在点⎪⎭
⎫
⎝⎛-1,21处取得极小值,极小值为21,21e f -=⎪⎭
⎫
⎝⎛-。
四、证明题
16.设函数()f x 在闭区间[,]a b 上连续,()g x 在[,]a b 上不变号,证明:至少存在一点[,]a b ξ∈,使得()()d ()()d b
b
a
a
f x
g x x f g x x ξ=⎰⎰.
证明:()m f x M ≤≤
()()()()mg x f x g x Mg x ≤≤ ()()()()b
b
b
a a
a
m g x dx f x g x dx M g x dx ≤≤⎰⎰
⎰
()()/()b
b a
a
m f x g x dx g x dx M ≤≤⎰
⎰
17.当0x ≥,对()f x 在[0,]b 上应用拉格朗日中值定理有: ()(0)()(0,)f b f f b b ξξ'-=∈
对于函数()arcsin f x x =,求极限0lim b b
ξ→ 解: ()arcsin f x x =在[0,]b 上应用拉格朗日中值定理有:
arcsin (0,)b b ξ=∈ 所以
221()(0,)arcsin b
b b
ξξ=-∈
因此22
222222224
00001()(arcsin )sin arcsin lim lim lim lim (arcsin )b b b t b
b b t t b b b b b t ξ→→→→---=== 222422000sin 22cos 221lim lim lim 3126t t t t t t t t t t →→→--====
故0lim b b ξ→=。