常见几款的无源滤波电路
详细介绍无源滤波电路常用的五种电路形式
详细介绍无源滤波电路常用的五种电路形式
滤波是信号处理里面比较重要的一个环节,通常减少直流当中的交流成分并获得比较平滑的直流电,在整流之后都要经过滤波电路,滤波常用的元器件是电容、电阻以及电感,这三个均属于无源器件,下面介绍无源滤波电路常用的五种电路形式。
一、电容滤波在输出端并联一个电容,这种电路较为简单,只有一个一般比较大的电解电容,输出电压随着输出电流变化而变化,外特性比较软,输出特性很差,因此适用于负载电流变化不大的电路,同时负载电流不是很大的场合;为了减少脉动成分,有时候会并联一大一小的电容。
二、电感滤波
电感滤波就是接入一个电感,由于电感有自感效应,当通过电流时候,电感两端会产生电动势来阻值电流的变化,因而能够起到起到滤波作用,随着电流的增加,一部分将储存在电感当中使电流缓慢增加;与此同时,当电流减小的时候,反向电动势又反过来阻碍它的减小,最终的结果是得到比较平滑的直流电,同时它的外特性也比较硬,因此适用于大电流的负载
三、复式滤波。
常见的滤波电路
常见的滤波电路
滤波电路是一种将信号中的某些频率成分滤除或衰减的电路。
在电子电路设计中,滤波电路的应用非常广泛。
常见的滤波电路有低通滤波器、高通滤波器、带通滤波器和带阻滤波器。
低通滤波器能够将某些高频信号滤除,只保留低频信号。
一般情况下,低通滤波器的截止频率越低,被保留的低频信号越多。
低通滤波器的常见类型有RC低通滤波器、RL低通滤波器和LC低通滤波器等。
高通滤波器则能够将某些低频信号滤除,只保留高频信号。
与低通滤波器相似,高通滤波器的截止频率越高,被保留的高频信号越多。
高通滤波器的常见类型有RC高通滤波器、RL高通滤波器和LC高通滤波器等。
带通滤波器能够保留某一段频率范围内的信号,同时将其他频率信号滤除。
带通滤波器的截止频率由两个参数确定,一个是下限截止频率,一个是上限截止频率。
带通滤波器的常见类型有RC带通滤波器、RL带通滤波器和LC带通滤波器等。
带阻滤波器则是将某一段频率范围内的信号滤除,同时保留其他频率信号。
带阻滤波器的截止频率同样由两个参数确定,一个是下限截止频率,一个是上限截止频率。
带阻滤波器的常见类型有RC 带阻滤波器、RL带阻滤波器和LC带阻滤波器等。
以上是常见的滤波电路类型介绍,对于电子电路工程师来说,熟练掌握不同滤波器类型的特点和应用,是非常重要的。
各种滤波器及其典型电路
第一章滤波器1.1 滤波器的基本知识1、滤波器的基本特性定义:滤波器是一种通过一定频率的信号而阻止或衰减其他频率信号的部件。
功能:滤波器是具有频率选择作用的电路或运算处理系统,具有滤除噪声和分离各种不同信号的功能。
类型:按处理信号形式分:模拟滤波器和数字滤波器。
按功能分:低通、高通、带通、带阻、带通。
按电路组成分:LC无源、RC无源、由特殊元件构成的无源滤波器、RC有源滤波器按传递函数的微分方程阶数分:一阶、二阶、…高阶。
如图1.1中的a、b、c、d图分别为低通滤波器、高通滤波器、带通滤波器、带阻滤波器传输函数的幅频特性曲线。
图1.1 几种滤波器传输特性曲线.2、模拟滤波器的传递函数与频率特性(一)模拟滤波器的传递函数模拟滤波电路的特性可由传递函数来描述。
传递函数是输出与输入信号电压或电流拉氏变换之比。
经分析,任意个互相隔离的线性网络级联后,总的传递函数等于各网络传递函数的乘积。
这样,任何复杂的滤波网络,可由若干简单的一阶与二阶滤波电路级联构成。
(二)模拟滤波器的频率特性模拟滤波器的传递函数H(s)表达了滤波器的输入与输出间的传递关系。
若滤波器的输入信号Ui是角频率为w的单位信号,滤波器的输出Uo(jw)=H(jw)表达了在单位信号输入情况下的输出信号随频率变化的关系,称为滤波器的频率特性函数,简称频率特性。
频率特性H(jw)是一个复函数,其幅值A(w)称为幅频特性,其幅角∮(w)表示输出信号的相位相对于输入信号相位的变化,称为相频特性(三)滤波器的主要特性指标1、特征频率:(1)通带截止频f p=wp/(2π)为通带与过渡带边界点的频率,在该点信号增益下降到一个人为规定的下限。
(2)阻带截止频f r=wr/(2π)为阻带与过渡带边界点的频率,在该点信号衰耗(增益的倒数)下降到一人为规定的下限。
(3)转折频率f c=wc/(2π)为信号功率衰减到1/2(约3dB)时的频率,在很多情况下,常以fc作为通带或阻带截频。
二阶无源滤波器
二阶无源滤波器一、实验目的1. 了解RC 无源滤波器的种类、基本结构及其特性。
2. 学会列写无源滤波器网络函数的方法。
3. 学会测量无源滤波器幅频特性的方法。
二、实验内容1. 列写无源低通、高通、带通和带阻滤波器的网络函数。
2. 用示波器观察二阶无源滤波器的幅频特性曲线。
三、实验仪器1. 信号与系统实验箱 一台 2. 信号系统实验平台3. 二阶无源滤波器模块(DYT3000-61) 一块 4. 20MHz 双踪示波器 一台 5. 连接线若干四、实验原理滤波器是一种能使有用频率信号通过而同时抑制(或大为衰减)无用频率信号的电子装置。
工程上常用它作信号处理、数据传送和抑制干扰等。
这里主要讨论模拟滤波器。
1. 基本概念及初步定义滤波器的一般结构如图17-1所示。
图中的V i (t )表示输入信号,V o (t )为输出信号。
假设滤波器是一个线性时不变网络,则在复频域内其传递函数(系统函数)为()()()o i V s A s V s图17-1 滤波电路的一般结构式中A (s )是滤波电路的电压传递函数,一般为复数。
对于频率来说(s =j ω)则有()()()j A j A j e φωωω= (式17-1)这里()A j ω为传递函数的模,()ϕω为其相位角。
此外,在滤波电路中关心的另一个量是时延τ(ω),它定义为()()()d s d ϕωτωω=-通常用幅频响应来表征一个滤波电路的特性,欲使信号通过滤波器的失真很小,则相位和时延响应亦需考虑。
当相位响应φ(ω)作线性变化,即时延响应τ(ω)为常数时,输出信号才可能避免失真。
2. 滤波电路的分类对于幅频响应,通常把能够通过的信号频率范围定义为通带,而把受阻或衰减的信号频率范围称为阻带,通带和阻带的界限频率叫做截止频率。
理想滤波电路在通带内应具有零衰减的幅频响应和线性的相位响应,而在阻带内应具有无限大的幅度衰减(()0A j ω=)。
通常通带和阻带的相互位置不同,滤波电路通常可分为以下几类:① 低通滤波器低通滤波电路的幅频响应如图17-2(a )所示,图中A 0表示低频增益∣A ∣增益的幅值。
电子滤波器电路图大全(七款电子滤波器电路设计原理图详解)
电子滤波器电路图大全(七款电子滤波器电路设计原理图详解)1、电子滤波器图6所示是电子滤波器。
电路中的VT1是三极管,起到滤波管作用,C1是VT1的基极滤波电容,R1是VT1的基极偏置电阻,RL是这一滤波电路的负载,C2是输出电压的滤波电容。
电子滤波电路工作原理如下:①电路中的VT1、R1、C1组成电子滤波器电路,这一电路相当于一只容量为C1×β1大小电容器,β1为VT1的电流放大倍数,而晶体管的电流放大倍数比较大,所以等效电容量很大,可见电子滤波器的滤波性能是很好的。
等效电路如图6(b)所示。
图中C为等效电容。
②电路中的R1和C1构成一节RC滤波电路,R1一方面为VT1提供基极偏置电流,同时也是滤波电阻。
由于流过R1的电流是VT1的基极偏置电流,这一电流很小,R1的阻值可以取得比较大,这样R1和C1的滤波效果就很好,使VT1基极上直流电压中的交流成分很少。
由于发射极电压具有跟随基极电压的特性,这样VT1发射极输出电压中交流成分也很少,达到滤波的目的。
③在电子滤波器中,滤波主要是靠R1和C1实现的,这也是RC 滤波电路,但与前面介绍的RC滤波电路是不同的。
在这一电路中流过负载的直流电流是VT1的发射极电流,流过滤波电阻R1的电流是VT1基极电流,基极电流很小,所以可以使滤波电阻R1的阻值设得很大(滤波效果好),但不会使直流输出电压下降很多。
④电路中的R1的阻值大小决定了VT1的基极电流大小,从而决定了VT1集电极与发射极之间的管压降,也就决定了VT1发射极输出直流电压大小,所以改变R1的大小,可以调整直流输出电压V的大小。
2、电子稳压滤波器图7所示是另一种电子稳压滤波器,与前一种电路相比,在VT1基极与地端之间接入了稳压二极管VD1。
电子稳压原理如下:在VT1基极与地端之间接入了稳压二极管VD1后,输入电压经R1使稳压二极管VD1处于反向偏置状态,此时VD1的稳压特性使VT1管的基极电压稳定,这样VT1发射极输出的直流电压也比较稳定。
常见的滤波电路有哪些
常见的滤波电路有哪些
滤波电路概述
滤波电路常用于滤去整流输出电压中的纹波,一般由电抗元件组成,如在负载电阻两端并联电容器C,或与负载串联电感器L,以及由电容,电感组成而成的各种复式滤波电路。
滤波是信号处理中的一个重要概念。
滤波分经典滤波和现代滤波。
滤波电路分类
1、无源滤波电路
无源滤波电路的结构简单,易于设计,但它的通带放大倍数及其截止频率都随负载而变化,因而不适用于信号处理要求高的场合。
2、有源滤波电路。
滤波电路主要有以下四种基本类型
七
①低通滤波器
i
R 1 R jC
1 1 1 jRC
1 0 1 j
1 RC
0
(c)
C
o
U i
R
(b)
U o
它们的截止存在的问题 (1)电路的增益小,最大为1 (2)带负载能力差
1 0.707
0
o
(d )
如在无源滤波电路输 出端接一负载电阻RL, 则其截止频率和增益 均随RL而变化。
简单二阶低通滤波 电路的幅频特性
由幅频特性可见ω>>ω0时衰减 的斜率为-40dB/十倍频。但在 ω0附近,其幅频特性与理想的 低通滤波特性相差较大。
0 -3dB
20 lg
Af ( ) / dB Af
-40dB/十倍 频
0.1 0.37 1
10
ω/ω0
改进
R
1
R
U
2
f
将电容C1的接 地端改接到集成 运放的输出端。
o
up
o
A A
up
高通
1
通
1
阻
2
通
o
带阻滤波器电路图
C
C
R
1
R
f
1 o 1 j 2 Q o 2 Rf 1 1 Af 1 Q R1 RC 22 Af
最简单的滤波电路图大全(八款最简单的滤波电路设计原理图详解)
最简单的滤波电路图大全(八款最简单的滤波电路设计原理图详解)滤波电路基本概念滤波的概念就是根据傅里叶分析和变换提出的一个工程概念。
电信号是不同频率的正弦波线性叠加而成的,组成信号的不同频率的正弦波叫做信号的频率成分或叫做谐波成分。
只允许一定频率范围内的信号成分正常通过,而阻止另一部分频率成分通过的电路,叫做滤波电路。
根据高等数学理论,任何一个满足一定条件的信号,都可以被看成是由无限个正弦波叠加而成。
换句话说,就是工程信号是不同频率的正弦波线性叠加而成的,组成信号的不同频率的正弦波叫做信号的频率成分或叫做谐波成分。
只允许一定频率范围内的信号成分正常通过,而阻止另一部分频率成分通过的电路,叫做经典滤波器或滤波电路。
滤波电路常用于滤去整流输出电压中的纹波,一般由电抗元件组成,如在负载电阻两端并联电容器C,或与负载串联电感器L,以及由电容,电感组成而成的各种复式滤波电路。
滤波电路作用滤波电路的基本作用是让某种频率的电流通过或阻止某种频率的电流通过。
滤波电路作用是尽可能减小脉动的直流电压中的交流成分,保留其直流成分,使输出电压纹波系数降低,波形变得比较平滑。
滤波电路工作原理整流电路的输出电压不是纯粹的直流,从示波器观察整流电路的输出,与直流相差很大,波形中含有较大的脉动成分,称为纹波。
为获得比较理想的直流电压,需要利用具有储能作用的电抗性元件(如电容、电感)组成的滤波电路来滤除整流电路输出电压中的脉动成分以获得直流电压。
脉动系数(S)=输出电压交流分量的基波最大值/输出电压的直流分量半波整流输出电压的脉动系数为S=1.57,全波整流和桥式整流的输出电压的脉动系数S≈O.67。
对于全波和桥式整流电路采用C型滤波电路后,其脉动系数S=1/(4(RLC/T-1)。
(T为整流输出的直流脉动电压的周期。
)最简单的滤波电路图(一)简单一阶低通有源滤波器一阶低通滤波器的电路如图13.04所示,其幅频特性见图13.05,图中虚线为理想的情况,实线为实际的情况。
无源滤波器
1.常用的三种无源滤波器的结构图及其工作原理1. 1 单调谐滤波器单调谐滤波器电路图如图1所示。
滤波器对n 次谐波的阻抗为:Zfn = Rfn+j(nωs-1/nωsC)式中: 下标fn 表示第n 次单调谐滤波器的频率;ωs为基波角频率。
图1 单调谐滤波器的电路原理图工作原理: 单调谐滤波器是利用串联L、C 谐振原理构成的, 谐振次数n 为: n=1/ωs√LC在谐振点处, Zfn = Rfn, 因Rfn很小, n次谐波电流主要由Rfn分流, 很少流入电网中, 对于其他次数的谐波, Zfn»Rfn, 谐波分流很少。
因此, 只要将滤波器的谐振次数设定为与需要滤除的谐波次数一样, 则该次谐波将流入无源滤波器, 从而起到滤除该次谐波的目的。
1. 2 高通滤波器高通滤波器也称为减幅滤波器, 图2中给出了四种形式的高通滤波器。
图 2 高通滤波器图2( a)为一阶高通滤波器, 一阶高通滤波器需要的电容太大, 基波损耗也太大, 因此一般不采用。
图2( b)为二阶高通滤波器, 二阶高通滤波器的滤波性能最好, 但与三阶高通滤波器相比, 其基波损耗也较高。
图2( c)为三阶高通滤波器, 三阶高通滤波器比二阶高通滤波器多一个电容器C 2, C2 容量与C1 相比很小, 它提高了滤波器对基波频率的阻抗, 从而大大减少了基波损耗, 这是三阶高通滤波器的主要优点。
图2( d)为C 型高通滤波器, C 型高通滤波器的性能介于二阶和三阶之间。
C2 与L 调谐在基波频率上, 故可大大减少基波损耗。
缺点是: 对基波频率失谐; 对元件参数漂移比较敏感。
1. 3 双调谐滤波器双调谐滤波器电路如图3所示。
双调谐滤波器有两个谐振频率, 同时吸收这两个频率的谐波, 其作用等效于两个并联的单调谐滤波器。
双调谐滤波器与两个单调谐滤波器相比, 其基波损耗较小, 且只有一个电感L1 承受全部冲击电压。
正常运行时, 串联电路的基波阻抗远大于并联电路的基波阻抗, 所以并联电路所承受的工频电压比串联电路的低的多。
无源带通滤波器电路
无源带通滤波器电路无源带通滤波器电路是一个重要的电子电路,被广泛应用于电子信号处理中。
它的作用就是从混合信号中分离出特定频率范围内的信号,同时将其他频率范围内的信号滤除。
无源带通滤波器电路的基本结构包括一个带通滤波器和一个缓冲放大器。
它由几个无源元件构成,如电容器、电感器和电阻器,并且不需要外部电源供电。
这种无源结构具有许多优点,例如成本低、无需外部电源和噪声小。
但是,它因为使用被动元件,不能增益电信号,因此需要放大器。
下面介绍几个无源带通滤波器电路的实现方法:1.LC谐振电路LC谐振电路是最简单的无源带通滤波器电路之一。
该电路由一个电感器和一个电容器组成,利用共振现象来实现频率选择。
当电感器和电容器的谐振频率达到信号频率时,电路的阻抗最小,信号可以通过。
在其他频率上,电路的阻抗较大,信号被滤除。
然后通过一个缓冲放大器来增益信号。
2.RC三角波发生器RC三角波发生器是用于产生三角波信号的电路。
它由一个RC滤波器和一个反相比较器组成。
当反相比较器的输出波形为方波时,RC滤波器的输出波形为一个带通滤波器频率响应,并且放大器将输入信号放大到正确的水平。
因此,RC三角波发生器实际上是一个带通滤波器电路。
3.T型网络T型网络是由两个并联的电容器和一个串联的电感器组成的。
该网络的阻抗变化与频率有关,因此可以被用作带通滤波器电路。
然后通过一个缓冲放大器来实现增益。
4.双TF网络双TF网络是由两个T型网络组成的,中间由一个电阻器连接。
该电路具有二阶滤波特性,因此可以被用作带通滤波器电路。
然后通过一个缓冲放大器来实现增益。
总之,无源带通滤波器电路可以用于许多电子电路中。
它主要具有成本低、无需外部电源和噪声小等优点。
但是需要注意的是,由于其无法增益电信号,因此需要结合缓冲放大器来使用,从而获得更好的性能。
四种常见滤波电路,一网打尽
四种常见滤波电路,一网打尽有源滤波电路为了提高滤波效果,解决π型RC滤波电路中交、直流分量对R的要求相互矛盾的问题,在RC电路中增加了有源器件-晶体管,形成了RC有源滤波电路。
常见的RC有源滤波电路如图Z0716所示。
它实质上是由C1、Rb、C2组成的π型RC滤波电路与晶体管T组成的射极输出器联接而成的电路。
该电路的优点是:1.滤波电阻Rb 接于晶体管的基极回路,兼作偏置电阻,由于流过Rb 的电流入很小,为输出电流Ie的1/(1+β),故Rb可取较大的值(一般为几十k Ω),既使纹波得以较大的降落,又不使直流损失太大。
2.滤波电容C2接于晶体管的基极回路,便可以选取较小的电容,达到较大电容的滤波效果,也减小了电容的体积,便于小型化。
如图中接于基极的电容C2 折合到发射极回路就相当于(1+β)C2的电容的滤波效果(因 ie = (1+ β)ib之故)。
3.由于负载凡接于晶体管的射极,故 RL上的直流输出电压UE≈UB,即基本上同RC无源滤波输出直流电压相等。
这种滤波电路滤波特性较好,广泛地用于一些小型电子设备之中。
复式滤波电路复式滤波电路常用的有LCГ型、LCπ型和RCπ型3种形式,如图Z0715所示。
它们的电路组成原则是,把对交流阻抗大的元件(如电感、电阻)与负载串联,以降落较大的纹波电压,而把对交流阻抗小的元件(如电容)与负载并联,以旁路较大的纹波电流。
其滤波原理与电容、电感滤波类似,这里仅介绍RCπ型滤波。
图Z0715(c)为RCπ型滤波电路,它实质上是在电容滤波的基础上再加一级RC滤波电路组成的。
其滤波原理可以这样解释:经过电容C1滤波之后,C1两端的电压包含一个直流分量与交流分量,作为RC2滤波的输入电压。
对直流分量而言,C2 可视为开路,RL上的输出直流电压为:对于交流分量而言,其输出交流电压为:由式可见,R愈小,输出的直流分量愈大;由式可见,RC2愈大,输出的交流分量愈小。
滤波效果愈好。
无源滤波电路与有源滤波电路电子技术
无源滤波电路与有源滤波电路 - 电子技术一、无源滤波电路一阶滤波电路无源二阶滤波电路二阶RC无源滤波电路可获得较陡的衰减斜率,更好的衰减通带以外的频率成分。
一般电路设计电路中常接受参数相同的电阻和电容,若要取得更好的滤波效果常接受R1=K*R2,C2=K*C1,,K=10。
这样既保证截止频率的全都性,又能错开电容的谐振频率点,起到更好的滤波效果。
二、有源滤波电路压控电压源型滤波电路二阶压控型高通滤波器压控带通滤波器带通滤波器只让某一频段的信号通过,而将此频段外的信号加以抑制或衰减,其抱负幅频特性如图:带通滤波器可由以ω1为截止角频率的高通滤波器和以ω2为截止角频率的低通滤波器串联而成。
其组成原理为:带阻滤波器用来特地抑制某一频段的信号,而让此频段以外的全部信号通过,其抱负幅频特性如图:带阻滤波器可由一个高通滤波器和一个低通滤波器并联而成。
或由带通滤波器与一减法器相连而成。
有源滤波器设计有源滤波器的设计主要包括以下四个过程:确定传递函数选择电路结构选择有源器件计算无源元件参数设计方法:公式法图表法计算机帮助设计法和类比法计算机帮助设计法1、通用EDA软件(multisim7)2、各IC公司的专业滤波器设计软件如:MAXIM公司, Burr-Brown的 filter42Linear Technology : FilterCAD 3.0集成有源滤波器集成化是电子技术进展的必定趋势。
集成有源滤波器主要分为两类:双二阶环滤波器开关电容技术除了美信公司的集成滤波芯片外,还有美国Linear Technology(凌特)公司生产的通用型(可组合为低通、带通、高通等)和低通SCF 两类。
通用型SCF主要有:LTC1059(2阶)、LTC1060(4阶)、LTC1061(6阶)、LTC1064(8阶)等。
低通SCF主要有:LTC1062/1063(5阶)、LTC1064(8阶)。
各种滤波器原理与设计
一阶低通滤波器有源低通滤波器计算利用R、L、C所组成的滤波电路称作无源滤波器,它有很多的缺点。
其中的电感L本身具有电阻与电容,使得输出结果会偏离理想值,而且会消耗电能。
若只利用 R、C再附加放大器则形成主动滤波器,它有很多的优点,例如:不使用电感使得输出值趋近理想值;在带通范围能提高增益,减少损失;用放大器隔离输出、入 端,使之可以使用多级串联。
1、一阶低通滤波器(一节RC网路) 838电子截止频率:126计算公式大全频率低于时→电压增益频率高于时→衰减斜率:每10倍频率20dB图1 电路组成 图2 响应曲线所谓低通滤波器(LPS:low pass filter)是允许低频讯号通过,而不允许高频讯号通过的滤波器。
图3所示是RC低通滤波电路,其电压回路公式:其增益可得实际增益为增益值是频率的函数,在低频区ω极小, RωC << 1,A V(ω) = 1讯号可通;在高频区ω极大, RωC >> 1,A V(ω) = 0信号不通。
RωC = 1时是通与不通的临界点,此时的频率定义为截止频率:。
图4所示RC低通滤波电路的增益随频率的变化是缓慢的,故其不是一个好的滤波电路。
图5所示是低通有源滤波器,它的增益显示在图6。
低通有源滤波器在低频区的增益为:V O /VI=(R1+R2)/R2其推导如下:在低频区RC串联之电位降都在电容,故V in = V C = Vp。
见图5,因负回馈,电路在线性工作区,于是我们有关系式:,可知电容C之电位降与电阻R2之电位降相同,又流过R1与R2之电流相同均为I,故得到电脑桌面背景图片在高频区RC串联之电位降都在电阻,故V C = V p = 0。
因负回馈,电路在线性工作区,于是有关系式:,得到R2之电位降为0,I = 0,V0 = 0。
图3 RC低通无源滤波电路图4 RC低通滤波电路之输出讯号振幅与频率的关系图5 低通有源滤波器图6 低通主动滤波器增益二阶低通滤波器(二节RC网路)有源二阶低通滤波器计算(二节RC网路)电路原理截止频率频率低于时→电压增益频率高于时→衰减斜率:每10倍频率40 dBEX:如图所示电路(假设为理想OP),当频率为159kHz时,其电压增益约为? 详解:(1)该电路为低通主动滤波器,所以其高频截止频率(f H)为(2)由于OPA为非反相放大器,所以其(倍),若以dB值表示,则为20 logAv =20 log10=20(dB)(3)输入频率159kHz为截止频率15.9kHz的10倍,由于输入讯号的频率每上升10倍时,该低通主动滤波器的增益将下降20dB(-20dB),故当输入讯号的频率为159kHz时,其电压增益已降为0dB(20-20=0)有源一阶高通滤波器计算(一节RC网路)有源一阶高通滤波器(一节RC网路)电路 响应曲线截止频率频率高于F L时→电压增益频率低于F L时→增加斜率:每10倍频率20dB二阶高通滤波器(二节RC网路) 二阶高通滤波器(二节RC网路) 电路源理 频率计算截止频率频率高于F L时→电压增益频率低于F L时→增加斜率:每10倍频率40 dB无源带通滤波器若想要接收某一特定频率的电波,需要用滤波电路来做筛选。
常用滤波电路
常用滤波电路
滤波电路是用于去除或减少信号中某些频率分量的电路,主要包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。
下面是一些常用的滤波电路及其原理:
一、低通滤波器(Low Pass Filter,LPF)
低通滤波器可以让低于某一频率的分量通过,而高于该频率的分量则被阻断。
在电路中,低通滤波器通常由一个电容和一个电阻组成,它们可以组成RC低通滤波器电路。
二、高通滤波器(High Pass Filter,HPF)
高通滤波器可以让高于某一频率的分量通过,而低于该频率的分量则被阻断。
在电路中,高通滤波器通常由电容和电感组成,它们可以组成RC高通滤波器或者RL高通滤波器电路。
三、带通滤波器(Band Pass Filter,BPF)
带通滤波器可以让指定的频率范围内的信号通过,而高于或低于该范围的信号被阻断。
在电路中,带通滤波器通常由一个并联的RLC电路组成。
四、带阻滤波器(Band Stop Filter,BSF)
带阻滤波器也被称为陷波滤波器,可以使指定的频率范
围内的信号被阻断,而高于或低于该范围的信号通过。
在电路中,带阻滤波器通常由一个串联的LC电路组成。
以上是一些常用的滤波电路,它们都有着不同的特点和适用范围。
在实际应用中,可以根据需要选择相应的滤波器进行设计。
RC无源滤波器电路及其原理
RC无源滤波器电路及其原理一、低通滤波器原理:低通滤波器(RC高通滤波器)可以通过传递低于截止频率的信号,并将高于截止频率的信号过滤掉。
低通滤波器电路是通过将电容器连接在输入信号和输出信号的路径上,通过对高频信号的衰减实现滤波。
RC低通滤波器的电路原理图如下:```Rinput ,/\/\/\/\,— outputC```电容C起到隔直阻交,在频率较低时阻抗高,电流难通过;而频率较高时阻抗低,电流容易通过。
当信号的频率较低时,经过电容的阻碍作用,导致电阻R处的电压下降;而当信号的频率较高时,电容的阻碍作用降低,电阻R处的电压保持稳定。
当频率为无穷大时,电容器变成短路,整个电压都被电阻消耗,输出电压为0;当频率为0时,电容器变成开路,输入信号全部通过。
所以,RC低通滤波器的截止频率定义为当输出电压下降到输入电压的70.7%时对应的频率。
在RC低通滤波器中,RC的值越小,截止频率越高;RC的值越大,截止频率越低。
通过改变RC的数值,可以实现对不同频率的信号进行滤波。
二、高通滤波器原理:高通滤波器(RC低通滤波器)可以通过传递高于截止频率的信号,并将低于截止频率的信号过滤掉。
高通滤波器电路是通过将电容器连接在输入信号和输出信号的路径上,通过对低频信号的衰减实现滤波。
RC高通滤波器的电路原理图如下:```Rinput ,—/\/\/\/\,— outputC```电容C起到隔直阻交,在频率较高时阻抗高,电流难通过;而频率较低时阻抗低,电流容易通过。
当信号的频率较高时,经过电容的阻碍作用,导致电阻R处的电压下降;而当信号的频率较低时,电容的阻碍作用降低,电阻R处的电压保持稳定。
当频率为无穷大时,电容器变成短路,输入信号全部通过;当频率为0时,电容器变成开路,整个电压都被电阻消耗,输出电压为0。
所以,RC高通滤波器的截止频率定义为当输出电压下降到输入电压的70.7%时对应的频率。
在RC高通滤波器中,RC的值越小,截止频率越高;RC的值越大,截止频率越低。
无源滤波原理初级篇
无源滤波装置主要接线形式工程上采用的滤波器接线形式主要有两种:(1)单调谐滤波器(2)高通滤波器单调谐滤波器是针对某次谐波频率的。
即主要滤除该次频率的谐波电流,作为在某次频率下串联电压谐振时,Xcn-Xln=0。
即Xcn=Xln,等值回路阻抗Zfn=Rn+j(Xcn-Xln) =Rn。
串联回路的相位角Φ=0,即电流与电压同相位。
串联谐振回路的品质因数Qn=Xcn/Rn=Xln/Rn。
高通滤波器作为对于某次谐波频率以上的各次谐波电流都能起到一定过滤作用,所以它的阻抗—频率特征曲线要求在n次以上为一通带式阻抗特征曲线,这种要求比较平滑的特征曲线由在电感两端并联电阻R构成。
即高通滤波器阻抗,在频率等于无穷大时,其阻抗最大也只有并联电阻R。
高通滤波器在高通频率范围内,其阻抗值变化较小,不会由于等值频率失谐而产生特大的阻抗,而单调谐滤波器的阻抗受等值频率失谐δ的影响很大。
但高通滤波器对特征谐波电流的滤波效果不如单调谐滤波器。
高通滤波器的等值串联阻抗为:Z hp =RXln/R2+Xln+j((R2Xln2/ R2+Xln2)-Xcn)高通滤波器的品质因数为:Q HP =R/XLN1.1滤波装置工作的基本原理单调谐滤波器的原理:注入系统的谐波电流为:Isn=In×Xfn/( Xfn+Xsn) 其中:In ——谐波电流发生量;Isn——注入系统的谐波电流;Xsn——系统的谐波阻抗;Xfn——滤波器的总谐波阻抗。
滤波器的总谐波阻抗为:Xfn=Rfn+j(2πfL-1/(2πfc)其中:Xf ——滤波器的总阻抗;Rfn——滤波器的总电阻;f ——流过滤波器的电流的频率;L ——电抗器的电感量;C ——电容器的电容量。
当在某次谐波下2πfL-1/(2πfc)=0时,Isn=InRfn/( Rfn+Rsn)。
一般地,Rfn<<Xsn,此时Isn<<In。
即谐波电流绝大部分流入滤波器,小部分流入系统。
同时,在基波电流(50HZ)时2πfL<1/ (2πfc),即滤波器为容性负载,它输出无功功率可进行功率因数补偿。
四种∏型RC滤波电路技术参数详介
四种n 型rc 滤波电路模拟电源数字电源0. 1UF 100UI 0. 1UFGND PND阻抗公式:Z=R+i( wL-l/wC) w=2nfR —电阻 wL ——感抗 1/«C ------容抗1.典型II 型RC 滤波电路图7・27所示是典型的II 型RC 淀波电路。
电路中的C 】、C2是两只滤波电容,Ri 是 清波电阻,。
、%和C2构成一节n 型RC 滤波电路.由于这种淀波电路的形式如同字母 II 且采用了电阻、电容,所以称为II 型RCit 波电跖 ADP3211AMNG (集成电路IC) 从电路中可以看出,II 型RC 沌波电路接在整流电路的输出墙,这一电路的温敝原理是:从整流电路输出的电压首先经过G 的滤波,将大部分的交流 成分滤除,见图中的交流电流示意图.H 祓电深图7-27典型的w 型少微交流'll泡经过J 滤波后的电压,再加到由R1和C2构成的it 波电路中,电容C2进一步对交 潦成分进行波波,有少■的交流电流泡过C2到达地线,见图中的电流所示.由于电容C2具有隔直作用.直流电流不能流过电容C2.而只能流过电阻RL见图中所示,所以.R1和C2分压电路对直流电压不存在分压衰减的作用・这样直流对交流电F 而(木变;C2大则滤波效;果好 !电压通过R1输出,_______________________因为C2的容宗很大.容抗很小,所以RI 、C2构成的分压电路对交流成分的衰诚最很大.达到了滤波的目的如大泌波电容C2的容量可以提高滤波效果,这是因为C2容量大容抗小.对交 流成分的衰减量更大。
~~因为流过负载的直流电流流过电阻幻,会在R1上产生很大的直流电压虹 磁R1的阻值不;波电路输出的直流输出电压仁减小RI 的阻攸越大•在R1上的电压降越大,使滤 能太大 !波电路输出的直流电压a 越低;流过负载的直流电流越大时•在R1上的电压降也越!大,使直流输出电压心也越低。
无源滤波器的类型
无源滤波器的类型无源滤波器 无源滤波器,又称LC滤波器,是利用电感、电容和电阻的组合设计构成的滤波电路,可滤除某一次或多次谐波,最普通易于采用的无源滤波器结构是将电感与电容串联,可对主要次谐波(3、5、7)构成低阻抗旁路;单调谐滤波器、双调谐滤波器、高通滤波器都属于无源滤波器。
无源滤波器由LC等被动元件组成,将其设计为某频率下极低阻抗,对相应频率谐波电流进行分流,其行为模式为提供被动式谐波电流旁路通道。
如图所示为无源滤波原理图。
无源滤波器的分类 1、调谐滤波器 调谐滤波器包括单调谐滤波器和双调谐滤波器,可以滤除某一次(单调谐)或两次(双调谐)谐波,该谐波的频率称为调谐滤波器的谐振频率。
2、高通滤波器 高通滤波器也称为减幅滤波器,主要包括一阶高通滤波器、二阶高通滤波器、三阶高通滤波器和c型滤波器,用来大幅衰减低于某一频率的谐波,该频率称为高通滤波器的截止频率。
3、影像参数滤波器 以影像参数理论为基础设计实现的滤波器。
这种滤波器是由若干个基本节(或半节)按联接处影像阻抗相等的原则级联组成的。
基本节按电路结构分有定k型和m导出型。
以LC低通滤波器为例,定k型低通基本节的阻带衰减随频率增加而单调增大;m导出型低通基本节则在阻带中某频率处有衰减峰,衰减峰的位置由m导出节中的m值控制。
各低通基本节级联后构成的低通滤波器,固有衰减等于各基本节的固有衰减之和,当滤波器两端终接的电源内阻抗和负载阻抗分别等于其两端的影像阻抗时,该滤波器的工作衰减和相移就分别等于其固有衰减和相移。
4、工作参数滤波器 这种滤波器不是由基本节级联组成和,而是用可以由R、L、C以及互感元件物理实现的网络函数去精确逼近滤波器的技术指标,然后由求得的网络函数实现相应的滤波器电路。
根据不同的逼近准则,可以得出不同的网络函数,从而实现不同类型的滤波器。
无源滤波器常用的三种电路类型 一、电容滤波 在输出端并联一个电容,这种电路较为简单,只有一个一般比较大的电解电容,输出电压随着输出电流变化而变化,外特性比较软,输出特性很差,因此适用于负载电流变化不大的电路,同时负载电流不是很大的场合;为了减少脉动成分,有时候会并联一大一小的电容。
无源带通滤波器电路,有源带通滤波器原理图
无源带通滤波器电路,有源带通滤波器原理图
1.根据幅频特性所表示的通过或阻止信号频率范围的不同,滤波器可分为低通滤波器(LPF)、高通滤波器(HPF)、带通滤波器(BPF)、和带阻滤波器(BEF)四种。
图4-1 分别为四种滤波器的实际幅频特性的示意图。
滤波器是对输入信号的频率具有选择性的一个二端口网络,它允许某些频率(通常是某个频率范围)的信号通过,而其它频率的信号幅值均要受到衰减或抑制。
这些网络可以由RLC 元件或RC 元件构成的无源滤波器,也可由RC 元件和有源器件构成的有源滤波器。
图4-1 四种滤波器的幅频特性
2.四种滤波器的传递函数和实验模拟电路:(a)无源低通滤波器 (b)有源低通滤波器 (c) 无源高通滤波器 (d)有源高通滤波器 (e)无源带通滤波器 (f)有源带通滤波器 (g)无源带阻滤波器 (h)有源带阻滤波器
图4-2 四种滤波器的实验电路
3.滤波器的网络函数H(jω),又称为正弦传递函数,它可用下式表示
式中A(ω)为滤波器的幅频特性,θ(ω)为滤波器的相频特性。
它们均可通过实验的方法来测量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常见几款的无源滤波电路
无源滤波器缺点:带负载能力差,无放大作用,特性不理想边沿不陡峭,各级互相影响。
RC滤波1,C值的选取:C不能选的太小,否则负载电容对滤波电路的影响很大,一般IC的输入电容往往有l~lOpF的输入电容。
C值选的太大,则会影响滤波电路的高频特性,因为大电容的高频特性一般都不好。
2,R值的选取:R值过小会加大电源的负载,R值过大则会消耗较多的能量。
RC滤波电路的最大缺陷就是他不仅消耗我们希望抑制的信号能量,而目也消耗我们希望保留的信号能量。
另外由于受电容高频特性的限制也不能用在太高频的场合,例如数MHz 以上需要用LC滤波器。
1. 电容滤波电路
电容滤波电路
分析电容滤波电路工作原理时,主要是用到了电容器的隔直通交特性和储能特性。
前面整流电路输出的脉动性直流电压可分解成一个直流电压和一组频率不同的交流电,交流电压部分就会从电容器流过到地,而直流电压部分却因电容器的通交隔直特性而不能接地才流到下一级电路。
这样电容器就把原单向脉动性直流电压中的交流部分的滤去掉了。
另外电容滤波电路也可以用电容储能特性来解释,当单向脉动直流电压处于高峰值时电容就充电,而当处于低峰值电压时就放电,这样把高峰值电压存储起来到低峰值电压处再释放。
把高低不平的单向脉动性直流电压转换成比较平滑的直流电压。
滤波电容的容量通常比较大,并且往往是整机电路中容量最大的一只电容器。
滤波电容的容量大,滤波效果好。
电容滤波电路是各种滤波电路中最常用一种。
电源滤波电容如何选取,掌握其精髓与方法,其实也不难。
1)理论上理想的电容其阻抗随频率的增加而减少(1/jwc),但由于电容两端引脚的电感效应,这时电容应该看成是一个LC串连谐振电路,自谐振频率即器件的SFR参数,这表示频率大于SFR值时,电容变成了一个电感,如果电容对地滤波,当频率超出FSR后,对。