数学几何图形
小学数学小学中所学过的几何图形有哪些
小学数学小学中所学过的几何图形有哪些小学数学学过的几何图形有三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形,这些几何图形一般称为基本图形或规则图形,我们的面积及周长都有相应的公式直接计算。
如下表:实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算。
一般我们称这样的图形为不规则图形。
那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。
例1:如右图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米求阴影部分的面积。
一句话:阴影部分的面积等于甲、乙两个正方形面积之和减去三个“空白”三角形(△ABG、△BDE、△EFG)的面积之和。
例2:如右图,正方形ABCD的边长为6厘米,△ABE、△ADF与四边形AECF的面积彼此相等,求三角形AEF的面积。
一句话:因为△ABE、△ADF与四边形AECF的面积彼此相等,都等于正方形ABCD面积的三分之一,也就是12厘米.解:S△ABE=S△ADF=S四边形AECF=12在△ABE中,因为AB=6.所以BE=4,同理DF=4,因此CE=CF=2,∴△ECF的面积为2×2÷2=2。
所以S△AEF=S四边形AECF-S△ECF=12-2=10(平方厘米)。
例3:两块等腰直角三角形的三角板,直角边分别是10厘米和6厘米。
如右图那样重合.求重合部分(阴影部分)的面积。
一句话:阴影部分面积=S△ABG-S△BEF,S△ABG和S△BEF都是等腰三角形。
总结:对于不规则图形面积的计算问题一般将它转化为若干基本规则图形的组合,分析整体与部分的和、差关系,问题便得到解决。
几何图形(39张PPT)数学
第6章 图形的初步知识
6.1 几何图形
学习目标 1.在具体情况中认识立方体、长方体、圆柱体、圆锥体、球体,并能理解和描述它们的某些特征,进一步认识点、线、面、体,体验几何图形是怎样从实际情况中抽象出来的.2.了解几何图形、立体图形与平面图形的概念.掌握重点 认识常见几何体并能描述它们的某些特征.突破难点 体验几何图形与现实生活中图形的关系,区分立体图形与平面图形.
解
返回
解 立方体由6个面围成,它们都是平的;圆柱由3个面围成,其中有2个平的,1个曲的.解 圆柱的侧面和两个底面相交成2条线,它们都是曲的.解 立方体有8个顶点,经过每个顶点有3条线段(棱).
典例精析
例1 (教材补充例题)如图所示的图形.平面图形有_____________;立体图形有_____________.
答案
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
①,②,⑥
③,④
⑤
②,③,⑤
①,④,⑥
19
13.如图是一个三棱柱,观察这个三棱柱,请回答下列问题:(1)这个三棱柱共有多少个面?(2)这个三棱柱一共有多少条棱?(3)这个三棱柱共有多少顶点?
解 这个三棱柱共有5个面.解 这个三棱柱一共有9条棱.解 这个三棱柱共有6个顶点.
C
解析 观察图形可知,其中一面、两面、三面涂色的小正方体的个数分别为x1=6,x2=12,x3=8,则x1-x2+x3=2.故选C.
1
2
3
4
5
6
7
8
9
10
11
12
七年级数学知识点几何图形
七年级数学知识点几何图形七年级数学知识点:几何图形几何图形是数学中非常重要的一部分,它是数学中的一种实物描述形式。
七年级学生首先学习的是基本的几何图形,如圆形、正方形、矩形、三角形和梯形等。
本文将介绍七年级数学知识点中的几何图形,以帮助学生更好地掌握这些知识点。
圆形圆形是一个非常简单的几何图形,它的特点是所有点到圆心的距离都相等。
圆形的面积公式为πr²,其中π≈3.14,r是圆的半径。
圆形的周长公式为2πr。
正方形正方形是四边相等、四个角都为直角的四边形。
正方形的面积公式为a²,其中a表示正方形的边长。
正方形的周长公式为4a。
矩形矩形是四边都有两条相对边相等的四边形。
矩形的面积公式为lw,其中l表示矩形的长度,w表示矩形的宽度。
矩形的周长公式为2(l+w)。
三角形三角形是一个有三个内角的几何图形。
三角形的面积公式为½bh,其中b表示三角形底边的长度,h表示三角形高的长度。
三角形的周长需要根据三角形类型来计算。
梯形梯形是一个有四边的几何图形,且有两条相对边是平行的。
梯形的面积公式为½(a+b)h,其中a、b分别是梯形的两边长度,h表示梯形的高。
梯形的周长需要根据梯形类型来计算。
除了上述基本图形,七年级还会学习到一些其他的几何图形,比如平行四边形、菱形、正六边形等。
这些图形的面积和周长公式都有一些特别之处,在学习的时候需要注意。
总结:几何图形是数学中的一个重要部分,学生需要掌握基本几何图形的面积和周长计算方法。
在学习的过程中,需要多做几何练习,加深对这些几何图形的理解。
只有掌握了几何图形的基本知识点,才能在数学学习中更加得心应手。
小学数学几何图形知识点解析
(小学数学几何图形知识点解析)一、引言在小学数学教育中,几何图形是一个重要的知识点,它涉及到形状、大小、位置关系等基本概念,对于培养学生的空间观念和思维能力具有重要的作用。
本文将从多个角度解析小学数学几何图形的知识点,帮助教师更好地指导学生学习,同时提高学生的数学素养。
二、知识点解析1.认识基本几何图形在小学阶段,学生需要认识一些基本的几何图形,如长方形、正方形、三角形、圆形等。
这些基本图形的形状、大小、位置关系等概念是学习其他几何知识的基础。
在教学中,教师可以通过实物展示、图片展示、模型演示等方式,帮助学生形成直观的认识。
2.测量几何图形的相关概念测量几何图形的相关概念包括长度、宽度、高度、周长、面积等。
这些概念是几何学的基础,也是学生需要掌握的基本技能。
在教学中,教师可以引导学生使用测量工具(如直尺、卷尺、量角器等)进行实际测量,培养学生的动手能力和观察能力。
3.几何图形的基本性质几何图形的基本性质包括对称性、平移性、旋转性等。
这些性质是理解其他几何知识的基础,也是培养学生空间观念和思维能力的重要内容。
在教学中,教师可以引导学生通过观察、比较、分析等方法,发现不同几何图形的性质,提高学生的观察能力和分析能力。
4.几何图形的位置关系几何图形的位置关系包括平行的性质、垂直的性质、三角形的高和底等。
这些概念是解决实际问题的基础,也是培养学生空间观念和空间想象能力的重要途径。
在教学中,教师可以引导学生通过观察、实践等方法,理解不同位置关系的特点,提高学生的空间想象能力和解决问题的能力。
三、教学方法与策略1.实物展示法:通过展示实物或模型,让学生直观地认识几何图形的基本形状和性质。
2.实践操作法:引导学生通过实际操作(如测量、折叠、剪切等)来理解和掌握几何图形的相关概念和性质。
3.问题引导法:教师可以通过提出一系列问题,引导学生逐步理解和掌握几何图形的相关概念和性质。
4.小组合作法:鼓励学生以小组形式进行合作学习和探究,通过交流和讨论来加深对几何图形的理解和掌握。
生活中的数学——生活中的几何图形
生活中的几何图形提到生活中的数学,几何图形就是最直观的体现。
日常生活中,我们接触的东西都有自己的形状,有些是规则的几何体,有些则是不规则的。
下面我们归归类,看看日常的几何图形都有哪些。
一、长方体与正方体长方体与正方体是日常生活中最常见的几何图形,正方体是长方体的特殊情况。
长方体的物品很多。
生活用品:电视机、电冰箱、电脑、衣柜、纸箱、箱包等等;刊物:教科书、练习册、杂志、报纸等等。
长方形叫做矩形,生活中的一些特殊的矩形常见的有五种:第一种:4:3矩形,长宽比例约为1.333.这种矩形的实例在生活中比较常见,一般的电脑显示器和电视机显示屏都是这种矩形,还有大多数数码照片也是这个比例.第二种:对折相似矩形,长宽比例约是1.414近似服从这个比例.它有一个特点:对折之后得到的矩形和原来的矩形是相似的(即对应的长宽比相等).大家可以测量一下自己的课本,验证一下.第三种:3:2矩形,长宽比例为1.5.这是大多数传统照片的长宽比例,这种比例是最中庸、最简单的,而且也比较符合人的眼睛的欣赏习惯.第四种:黄金矩形,长宽比例是1.632.这种矩形的特点是:(长+宽)/长=长/宽,这种矩形不仅在数学和艺术构图中应用广泛,而且我们生活中所用的银行卡、电话卡、饭卡等等,都是这种黄金矩形,可见其用途还是很广泛的.第五种:16:9矩形,长宽比例约为1.778.据文章中描述,这种矩形的主要用途就是宽屏彩电和宽屏液晶显示器.这是一种长宽比例比较大的矩形,适合欣赏一些优美的画面.二、球体球体也是日常生活中最常见的几何体,大大小小的物品更多了。
篮球、足球、排球、台球等球类运动的球大多是球体,橄榄球可不是哦,橄榄球可以看作是球体的一个变形体。
很多食品与药品都是球体的,如麻团、元宵、四喜丸子、药丸、苹果、桃子、李子等等三、线线是组成几何图形的最基本的要素之一,点成线,线成面。
日常生活中的电话线、筷子、竹竿等都可以看成线。
四、圆与球体不同,圆是平面图形,球体的截面都是圆。
初中数学常见的几何图形名称
初中数学常见的几何图形名称1.点(Point):在几何学中,点是最基本的几何对象,不具有大小和形状,仅有位置。
2.直线(Line):直线是由无限多个点连成的,它没有弯曲或弯折。
3.线段(Line Segment):线段是由两个端点和它们之间所有点构成的部分。
4.射线(Ray):射线是由一个起点和一个方向组成的直线。
5.角(Angle):两条射线共享一个起点所形成的图形。
6.三角形(Triangle):由三条边和三个顶点组成的图形。
7.直角三角形(Right Triangle):一个内角为90度的三角形。
8.直观三角形(Obtuse Triangle):一个内角大于90度的三角形。
9.锐角三角形(Acute Triangle):所有内角都小于90度的三角形。
10.等腰三角形(Isosceles Triangle):两边长度相等的三角形。
11.等边三角形(Equilateral Triangle):所有边长度相等的三角形。
12.四边形(Quadrilateral):由四条边和四个顶点组成的图形。
13.矩形(Rectangle):具有四个直角的四边形。
14.平行四边形(Parallelogram):具有两对平行边的四边形。
15.正方形(___):具有四个相等边和四个直角的四边形。
16.梯形(Trapezoid):具有一对平行边的四边形。
17.圆(Circle):由一条连续曲线上所有点的集合组成的图形。
18.弧(Arc):是圆上的一部分,由两个端点和圆弧之间的弦构成。
19.扇形(Sector):是圆心角和圆弧所围成的区域。
20.椭圆(Ellipse):离两个固定点距离之和等于常数的点的集合。
以上是初中数学中常见的几何图形和名称说明。
了解这些概念将有助于学生在学习几何学时更好地理解和应用。
数学的几何图形应用
数学的几何图形应用知识点1:几何图形的定义及分类•平面几何图形:三角形、四边形、五边形、六边形等•立体几何图形:正方体、长方体、圆柱体、圆锥体等知识点2:几何图形的性质与特点•三角形的性质:两边之和大于第三边,两边之差小于第三边•四边形的性质:四条边,四个角•圆的性质:直径等于半径的两倍,圆心到圆上任意一点的距离相等知识点3:几何图形的重要公式×底×高•三角形面积公式:S=12•圆的面积公式:S=πr2•长方体的体积公式:V=长×宽×高知识点4:几何图形的对称性•轴对称:图形可以沿着某条直线对折,两边完全重合•中心对称:图形可以围绕某个点旋转180度,两部分完全重合知识点5:几何图形的拼接与组合•拼接:将多个相同的几何图形组合在一起,形成一个新的图形•组合:将多个不同的几何图形组合在一起,形成一个新的图形知识点6:几何图形的实际应用•建筑设计:利用几何图形设计出美观、实用的建筑外观和结构•道路规划:利用几何图形规划出交通流畅、安全的道路系统•包装设计:利用几何图形设计出创意独特、实用的包装形式知识点7:几何图形的测量与计算•长度测量:利用尺子、卷尺等工具测量线段、角度等•面积计算:利用面积公式计算三角形、矩形、圆形等图形的面积•体积计算:利用体积公式计算长方体、圆柱体等立体图形的体积知识点8:几何图形的位置关系•平行:两条直线在同一平面内,永不相交•相交:两条直线在同一平面内,有一个交点•垂直:两条直线相交,且交角为90度知识点9:几何图形的运动•平移:将图形沿着某个方向移动,移动的距离和方向相同•旋转:将图形围绕某个点旋转,旋转的角度和方向相同知识点10:几何图形的推理与证明•直接证明:通过观察图形的特点,直接判断出结论的正确性•综合证明:通过多个已知条件,推导出结论的正确性•反证法:假设结论不成立,通过推理得出矛盾,从而证明结论的正确性以上是数学几何图形应用的知识点总结,希望对你有所帮助。
数学教案:几何图形优秀6篇
数学教案:几何图形优秀6篇作为一位优秀的人民教师,常常要根据教学需要编写教案,借助教案可以让教学工作更科学化。
如何把教案做到重点突出呢?牛牛范文为朋友们精心整理了6篇数学教案:几何图形,希望能够满足亲的需求。
数学教案:几何图形篇一一、活动目标:1、复习已学过的几何图形,让孩子了解几何图形的特征。
2、是孩子能够不受颜色、大小等条件的影响,分清几何图形。
二、活动准备:1、正方形、长方形、三角形、圆形、半圆形、梯形卡片若干。
2、(人均一套几何图形)及时贴图形一套。
三、活动过程:1、复习几何图形。
(1)图形的特征。
(2)让幼儿找一找教室里那些物品是什么形状的,并说出图形的名称。
2、找图形(分给幼儿人均一套)老师说出图形的名称,让幼儿拿出图形的名称。
3、游戏《图形娃娃找家》。
(1)教师交代游戏规则。
(2)师幼集体游戏。
4、教师小结:今天我们复习了几何图形,小朋友上课都很认真,活动也很积极,特别是林兴政小朋友表现最好(给表现好的小朋友发小红花)四、活动延伸:请幼儿回家后找一找自己家中的那些物品什么图形,回来后告诉老师和其他小朋友。
数学教案:几何图形篇二【活动目标】1、复习巩固对正方形、三角形和圆形的认识。
2、培养幼儿参与活动的积极性和思维的灵活性。
【活动准备】1、小兔手偶一个、魔术袋一个。
2、不同大小、不同颜色的圆形、三角形、正方形若干。
3、纸制小路(上面镂刻不同形状、不同大小、不同颜色的图形)。
【活动过程】1、创设情境,引起幼儿参与活动的兴趣。
森林里,小兔的房子被大风吹倒了,我们一起帮它造一座房子吧。
2、帮小兔造房子,复习几何图形。
引导幼儿从魔术袋里摸出不同图形,并用摸出的几何图形给小兔造房子,复习圆形、三角形、正方形。
3 、帮助森林里的小动物送建房子的材料,进一步巩固对几何图形的认识。
“森林里其他小动物的房子也被大风刮倒了,让我们也来帮他们选一些建房子的材料吧。
”自由选择不同的几何图形,并进行分类,巩固对图形的认识。
七年级上册数学《几何图形》精品教案范文5篇
七年级上册数学《几何图形》精品教案范文5篇七年级上册数学《几何图形》精品教案范文一1、内容结构分析《九年义务教育课程标准实验教科书middot;数学》七年级上册第四章是“几何图形初步”.这一章是义务教育第三学段“空间与图形”领域的起始章,在这一章,将在前面两个学段学习的“空间与图形”内容的基础上,让学生进一步欣赏丰富多彩的图形世界,看到更多的立体图形与平面图形,初步了解立体图形与平面图形之间的关系,并通过线段和角认识一些简单的图形,并能初步进行应用.2、教学重点与难点:教学重点:⑴数学与我们的成长密切相关;⑵数学伴随着人类的进步与发展,人类离不开数学;⑶人人都能学会数学,激发学生学习数学的兴趣;⑷将实际问题转化为数学问题;⑸积极参与数学学习活动,体验数学活动充满着探索与创造,感受数学的严谨性及数学规律的准确性.教学难点:⑴体会数学与我们的成长密切相关;⑵学生剪图拼图的具体操作;⑶尝试发现,提出并解决数学问题,体会与人合作交流的重要性.3、教学目标:⑴知识与技能:直观认识立体图形,掌握平面图形的基本知识;画出简单立体图形的三视图及平面展开图,根据三视图画出一些简单的实物图;进行线段的简单计算,正确区分线段、射线、直线.掌握角的基本概念,进行相关运算;巩固对角得度量及运算知识的掌握,能解决一些实际问题.⑵过程与方法:通过对*的学习,学会在具体的2情境中,抽象概括出数学原理;学会在解决问题的过程中,进行合理的想象,进行简单的、有条理的思考;通过小组合作、动手操作、实验验证的方法解决数学问题.⑶情感、态度与价值观:在探索知识之间的相互联系及应用的过程中,体验推理的意义,获取学习的经验.4、课时分配4.1几何图形4课时4.2直线、射线、线段3课时4.3角2课时4.4课题学习2课时小结3课时单元测试与评讲3课时七年级上册数学《几何图形》精品教案范文二教学目标:知识与技能:认识常见的几何图形,并能用自己的语言描述常见几何图形的特征过程与方法:1.经历从现实世界中抽象几何图形的过程,通过对比,概括出几何研究的对象2.在实物与几何图形之间建立对应关系,在复习小学学过的平面图形的基础上,建立几何图形的概念,发展空间观念情感态度价值观:体验数学学习的乐趣,提高数学应用意识。
初一数学第17讲:几何图形(教师版
第十七讲几何图形(相关知识点精讲,标题加粗,正文宋体5号,单倍行距,首行缩进2字符)一、平面图形1、概念:图形所表示的各个部分都在同一平面内的图形,如直线、三角形等。
2、常见的平面图形(1)多边形:由线段围成的封闭图形叫做多边形。
多边形中三角形是最基本的图形。
(2)圆:一条线段绕它的端点旋转一周而形成的图形。
(3)扇形:由一条弧和经过这条弧的端点的两条半径围成的图形叫做扇形。
二、立体图形1、概念:图形所表示的各个部分不在同一平面内的图形,如圆柱体。
2、常见的立体图形(1)柱体:A棱柱---有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边互相平行,由这些面围成的几何体叫做棱柱。
B 圆柱---以矩形的一边所在直线为旋转轴,其余各边围绕它旋转一周二形成的曲面所围成的集合体叫做圆柱。
(2)椎体:A棱锥—有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
B圆锥—以直角三角形的一条直角边所在的直线为旋转轴,其余各边旋转一周而形成的曲面围成的几何体叫做圆锥。
(3)球体:半圆以它的直径为旋转轴,旋转一周而形成的曲面所围成的几何体叫做球体。
(4)多面体:围成棱柱和棱锥的面都是平的面,想这样的立体图形叫做多面体。
三、从不同方向观察几何体从正面、上面、左面三个不同方向看一个物体,然后描出三张所看到的图(分别叫做正视图、俯视图、侧视图),这样就可以把立体图形转化为平面图形。
四、展开图1、立体图形的展开图有些立体图形是有一些平面图形围成的,把它们的表面适当剪开后在平面上展开得到的平面图形称为立体图形的展开图。
2、根据展开图判断立体图形的规律:A展开图全是长方形或正方形时------正方体或长方体;B展开图中含有三角形时-----棱锥或棱柱;若展开图中含有2个三角形3个长方形---- 三棱柱;若展开图中全是三角形(4个)-----三棱锥。
C展开图中含有圆和长方形-----圆柱;D展开图中含有扇形------圆锥。
初中数学48个几何模型及题型
初中数学的几何模型是学生学习数学时的重要内容之一,通过学习几何模型和解题,可以帮助学生对几何知识有更深层次的理解,提高数学解题能力。
本文将介绍初中数学中常见的48个几何模型及其相关题型,希望可以帮助学生系统地掌握几何知识。
一、直线和角1. 直线概念直线是由一点不停地延伸而成的。
在平面几何中,直线没有宽度和厚度,只有长度。
2. 角的概念两条相交直线之间的夹角叫做角。
角可以分为锐角、直角、钝角和平角。
3. 直线和角相关题型- 计算夹角的大小- 判断角的种类二、多边形1. 三角形三角形是最简单的多边形,其内角和为180度。
根据边的长度和角的大小,可以分为等腰三角形、等边三角形、直角三角形等不同种类。
2. 四边形四边形是具有四条边的几何图形,常见的四边形有矩形、正方形、平行四边形和菱形等。
3. 多边形相关题型- 计算多边形的内角和- 判断多边形的种类三、圆1. 圆的概念圆是由一个点到另一个点距离恒定的点的集合。
其中,点到圆心的距离为半径,圆上任意两点之间的距离称为弦。
2. 圆的性质圆的直径是圆的两个相对的端点,圆的周长和面积分别为2πr和πr²。
3. 圆相关题型- 计算圆的周长和面积- 判断圆的种类四、平面图形的平移、旋转和对称1. 平移平移是指将一个物体按照一定的规则移动到另一位置,移动前后的图形位置关系不变。
学生需要了解不同平移的规律和图形的位置关系。
2. 旋转旋转是指以某一点为中心,按一定角度将图形进行旋转。
学生需要掌握图形旋转的规律和性质。
3. 对称对称是指一个图形绕某条直线或点对称,对称轴可以分为水平对称轴、垂直对称轴和斜对称轴。
五、三视图和展开图1. 三视图三视图是指物体分别从正视图、侧视图和俯视图所得的图形。
学生需要根据给定的三视图还原出物体的整体图形。
2. 展开图展开图是将立体图形按一定规则展开成平面图形。
学生需要了解展开图的规律和方法。
六、空间图形1. 空间图形的概念空间图形是三维几何中的图形,包括圆柱、圆锥、球体、棱体等。
小学数学几何图形
1、用直尺把两点连接起来,就得到一条线段;把线段的一端无限延长,可以得到一条射线;把线段的两端无限延长,可以得到一条直线。
线段、射线都是直线上的一部分。
线段有两个端点,长度是有限的;射线只有一个端点,直线没有端点,射线和直线都是无限长的。
2、从一点引出两条射线,就组成了一个角。
角的大小与两边叉开的大小有关,与边的长短无关。
角的大小的计量单位是(°)。
3、角的分类:小于90度的角是锐角;等于90度的角是直角;大于90度小于180度的角是钝角;等于180度的角是平角;等于360度的角是周角。
4、相交成直角的两条直线互相垂直;在同一平面不相交的两条直线互相平行。
5、三角形是由三条线段围成的图形。
围成三角形的每条线段叫做三角形的边,每两条线段的交点叫做三角形的顶点。
6、三角形按角分,可以分为锐角三角形、直角三角形和钝角三角形。
按边分,可以分为等边三角形、等腰三角形和任意三角形。
7、三角形的内角和等于180度。
8、在一个三角形中,任意两边之和大于第三边。
9、在一个三角形中,最多只有一个直角或最多只有一个钝角。
10、四边形是由四条边围成的图形。
常见的特殊四边形有:平行四边形、长方形、正方形、梯形。
11、圆是一种曲线图形。
圆上的任意一点到圆心的距离都相等,这个距离就是圆的半径的长。
通过圆心并且两端都在圆的线段叫做圆的直径。
12、有一些图形,把它沿着一条直线对折,直线两侧的图形能够完全重合,这样的图形就是轴对称图形。
这条直线叫做对称轴。
13、围成一个图形的所有边长的总和就是这个图形的周长。
14、物体的表面或围成的平面图形的大小,叫做它们的面积。
15、平面图形的面积计算公式推导:【1】平行四边形面积公式的推导过程?(1)把平行四边形通过剪切、平移可以转化成一个长方形。
(2)长方形的长等于平行四边形的底,长方形的宽等于平行四边形的高,长方形的面积等于平行四边形的面积。
(3)因为:长方形面积=长×宽,所以:平行四边形面积=底×高。
人教版初中数学《几何图形》_课件-完美版
2 (中考·宁波)如果一个多面体的一个面是多边形, 其余各面是有一个公共顶点的三角形,那么这个多 面体叫做棱锥.如图是一个四棱柱和一个六棱锥,它 们各有12条棱.下列棱柱中和九棱锥的棱数相等的是 ( B) A.五棱柱 B.六棱柱 C.七棱柱 D.八棱柱
【 获 奖 课 件 ppt】人 教版初 中数学 《几何 图形》 _课件 -完美版 1-课件 分析下 载
第四章 几何图形初步
4.1 几何图形
第1课时 认识几何图形
1 课堂讲解 u 几何图形
u 立体图形
u 平面图形
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
从城市宏伟的建筑到乡村简朴的住宅,从四通八 达的立交桥到街头巷尾的交通标志,从古老的剪纸艺 术到现代的城市雕塑,从自然界形态各异的动物到北 京的申奥标志(如图)……图形世界是多姿多彩的!
知识点 1 几何图形
下列图形 中有你认 识的几何 图形吗? 请指出来.
知1-导
Байду номын сангаас 知1-导
图中有: 球、棱锥、圆柱、长方体、三角形、长方形(矩形)、 线段、点······ 这些都是几何图形 几何图形指:从实物中抽象出来的各种图形. 几何图形可分为立体图形和平面图形两类.
知1-讲
1.几何图形:从形形色色的物体外形中得出的长方体、 圆柱、长方形、圆、三角形等都是几何图形.
知2-讲
总结
本题采用定义法识别图形: (1)柱体的基本特征:两个底面互相平行且完全相同,
当侧面是曲面图形时是圆柱,当侧面是平面图形 时是棱柱; (2)锥体的基本特征:一个底面一个“尖”,当侧面是 曲面图形时是圆锥,当侧面是三角形时是棱锥.
【 获 奖 课 件 ppt】人 教版初 中数学 《几何 图形》 _课件 -完美版 1-课件 分析下 载
初中数学:几何图形的初步认识
2.2线段2.2.1性质(1)线段公理:两点之间的所有连线中,线段最短; (2)两点之间的距离:两点之间线段的长度,叫做这两点之间的距离;(3)线段的中点到两端点的距离相等;(4)线段的大小关系和它们的长度的大小关系是一致的; (5)线段的比较:①目测法;②叠合法;③度量法。
2.2.2中点点M 把线段AB 分成相等的两条相等的线段AM 与BM ,点M 叫做线段AB 的中点。
(下图) (1)M 是线段AB 的中点;(2)AM=BM=0.5AB (或者AB=2AM=2BM )。
2.3直线(1)直线公理:经过两个点有且只有一条直线; (2)过一点的直线有无数条; (3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小;(4)直线上有无穷多个点;(5)两条不同的直线至多有一个公共点。
2.4射线(1)射线是向一个方面无限延伸的,一个端点,不可度量,不能比较大小; (2)射线上有无穷多个点;三、几何图形的初步认识1 几何图形的组成2 平面图形线:面和面相交的地方是线,分为直线和曲线;面:包围着体的是面,分为平面和曲面;体:几何体也简称体。
AMBAOBABtAB2.5直线、射线、线段2.5.1比较2.5.2表示(1)一个点可以用一个大写字母表示,如点A ;(2)一条直线可以用一个小写字母表示或用直线上两个点的大写字母表示,如直线l 、或者直线 AB ;(3)一条射线可以用一个小写字母表示或用端点和射线上另一点来表示(端点字母写在前面), 如射线l 、射线AB ;(4)一条线段可以用一个小写字母表示或用它的端点的两个大写字母来表示,如线段l 、线段 AB 。
2.6角 2.6.1定义(1)有公共端点的两条射线组成的图形叫做角; (2)两条射线的公共端点叫做这个角的顶点; (3)这两条射线叫做这个角的边;或:角也可以看成是一条射线绕着它的端点旋转而成的。
2.6.2分类(1)锐角:小于90°的角叫做锐角; (2)直角:90°的角叫做直角;(3)钝角:大于90°,小于180°的角叫做钝角;(4)平角:一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角叫做平角, 平角的度数为180°;(5)周角:终边继续旋转,当它又和始边重合时,所形成的角叫做周角;周角的度数为360°。
人教版七年级数学上册《几何图形》课件
巩固练习
展开
链接中考
1.如图是某个几何体的展开图,该几何体是( A ) A.三棱柱 B.三棱锥 C.圆柱 D.圆锥
2.小明从正面观察如图所示的两个物体,看到的是( C )
A.
B.
C.
D.
课堂检测
基础巩固题
1. 右图是一块带有圆形空洞和方形空洞的小木板,则下 列物体中既可以堵住圆形空洞,又可以堵住方形空洞的 是( B )
以上立体图形都是几何体,简称体.
1. 你知道这些几何体是由什么围成的吗? 2. 下图中的图形分别有哪些面?这些面有什么不同吗?
探究新知
1. 几何体是由面围成的. 2. 面分为平的面和曲的面.
探究新知
实际生活中的平面与曲面
平平面面
曲面ቤተ መጻሕፍቲ ባይዱ曲面
探究新知
说一说
如下图,围成这些立体图形的各个面中哪 些面是平的?哪些面是曲的?
A.
B.
C.
D.
课堂小结
几 何 图 形
点
交动 成成
线
交动 成成
面
围动 成成
体
构成图形的基本元素 无大小
直线 无粗细 曲线 平面 无厚薄 曲面
物体的图形
探究新知 知识点 1 从不同方向看同一个物体
他们为什么会出现争执?
这是数字“9”。 这是数字“6”。
探究新知 如图,把茶壶放在桌面上,那么下面五幅图片分别
是从哪个方向看得到的?
从正面看 从右面看 从左面看 从后面看 从上面看
探究新知 试一试 下面的五幅图分别是从什么方向看的?
1
背面
2
顶部
3
4
正面
素养目标
2.了解几何图形构成的基本元素是点、线、面、 体及其关系,能正确判定由点、线、面、体经 过运动变化形成的简单的几何图形.
初一数学《几何图形》
点的定义与性质
定义
点是几何学中最基本的元素,表示空 间中的一个位置。
性质
点没有大小和形状,只有位置。通过 不同的点可以确定不同的位置。
线的定义与分类
定义
线是点在空间中的运动轨迹,表示一维空间。
分类
直线、曲线、折线等。
面的定义与分类
定义
面是由线的运动轨迹所形成ቤተ መጻሕፍቲ ባይዱ二维图形。
分类
平面、曲面等。
点、线、面的关系
VS
性质
圆是中心对称图形,对称中心为圆心;圆 也是轴对称图形,对称轴为经过圆心的任 意直线。
圆的周长与面积
周长
圆的周长计算公式为 $C = 2pi r$,其中 $C$ 表示圆的周长,$r$ 表示圆的半径,$pi$ 是一个常数(约等于3.14159)。
面积
圆的面积计算公式为 $S = pi r^2$,其中 $S$ 表示圆的面积,$r$ 表示圆的半径, $pi$ 是一个常数(约等于3.14159)。
初一数学《几何图形》
contents
目录
• 几何图形概述 • 点、线、面 • 三角形 • 四边形 • 圆形 • 立体图形
01 几何图形概述
定义与分类
定义
几何图形是由点、线、面等基本 元素构成的具有大小和形状的空 间实体。
分类
根据基本元素的不同,几何图形 可以分为点、线、面、体等类型 。
几何图形的基本属性
圆与其他图形的关联
与三角形的关系
圆内接三角形是指三个顶点都在圆上的三角 形,此时三角形的三边都与圆相切。
与正方形的关系
当圆的大小与正方形的边长相等时,正方形 的四个顶点都在圆上。
06 立体图形
立体图形的定义与分类
数学几何图形
(1)圆形 (2)多边形 (3)弓形 (4)多弧形
在一个平面内,一动点以一定点为中心,以一 定长度为距离旋转一周所形成的封闭曲线叫做圆。 在同一平面内,到定点的距离等于定长的点的 集合叫做圆。圆可以表示为集合{M||MO|=r},圆的 标准方程是(x - a) ² + (y - b) ² = r ²。其中,(a , b)是圆心,r 是半径。 圆形是一种圆锥曲线,由平行于圆锥底面的平 面截圆锥得到。 包括正圆,椭圆,多焦点圆——卵圆。
数学几何图形介绍
几何图形,即从实物中抽象出的各种图形,可 帮助人们有效的刻画错综复杂的世界。生活中到处 都有几何图形,我们所看见的一切都是由点、线、 面等基本几何图形组成的。几何源于西文西方的测 地术,解决点线面体之间的关系。无穷尽的丰富变 化使几何图案本身拥有无穷魅力。
中文名:几何图形 外文名:Geometric figure 适用领域:数理科学 类 型:立体图形、平面图形
包括圆锥体和棱锥体,棱锥分为三棱锥、四棱 锥及N棱锥;棱锥体积为V=⅓SH。
包括圆柱、圆台、圆锥、球、球冠、弓环、圆 环、堤环、扇环、枣核形等。其表面积公式为: S=2πRL,体积公式为: V = 2πRS (其中L是基图 的周长,S是基图的面积,R是重心到轴的距离)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2006年安徽(理科)
2006年安徽(文科)
2006年北京(理科)
A
αA
A
D
A
D
2006年北京(文科)
2006年福建(理科)
A 1
D A 1
D A
B
C
E
F
P
O
G
A
B
C
E
P
2006年福建(文科)
2006年广东(文理科)
2006
年湖北(理科)
1
A 1
D P
1112
1213
161317
14211051140
1105
14217
16130
16016013016
15120130
120
15112
14
112
14
D
•••
B
C 1
A 1
D P
2006年湖北(文科)
2006年湖南(理科)
2006年湖南(文科)
A
C
Q Q
B
1
B 1
N
1
B 1
N
2006年江苏(文理科)
B
P
C F
E
1
A 2
图Q 1
图
B
P
C F
E
1
A 2
图1
图
信号源
2
图1
图A
C
C
Q M
A
2006年江西(理科)
B D
D .
C .B .
A .
B
C E 4
图B
P
C F
E
1
A 3图Q M
A
1
A 1
1
C
2006年江西(文科)
2006年辽宁(理科)
B
C
B
C 1A 1
1
C D .
C .B .
A .
D
2006年辽宁(文科)
2006年全国Ⅰ(理科)
2006年全国Ⅰ(文科) 2006年全国Ⅱ(理科)
A
B C
E
D 1
A 1
B 1
C ()
元
A
B
'
A '
B β
α
l
A
B
M
C N
1
l 2
l H A
B
M
C
N
1
l 2
l P
A
B
C
D
E
F
C
C C
A B
C
D E F
2006年全国Ⅱ(文科) 2006年山东(理科)
A
A
B
C
D 1
A 1
B 1
C 1
D 1
A 1
B C
C A
B C
O E
F
D 1
A 1
B 1
C
2006年山东(文科)
2006年陕西(理科)
2006年陕西(文科)
P
A
B
C
D
O
M
P
A
B
C
D
O
B
C
1
B C A
2006年上海(理科)
2006年上海(文科)
2006年四川(理科)
A
B
C D 1
A 1
B 1
C 1
D P
Q
N
M
K
E H
F A
B
C
D
1
A 1
B 1
C 1
D P
N
M
E 1
2
3
P P 6
P A
1
A 1
B 1
A
A
C D
P
E
O 30
B
1
l 2
l (,)
M p q O
C
2006年四川(文科)
2006年天津(理科)
2006年天津(文科)
2006年浙江(理科)
A 1
A 1
P
2006年浙江
(文科)
2006年重庆(理科)
A .
(kg)
体重1
A 1
P
M N
A
B
C
D
P
M N
A
B
C
D
C E
2006年重庆(文科)
1
B 1
1
图
1
B 1
A B
C
D
H
G
F
A
B
C
G
F
E
H
D
P
A
C
F
E
H
D
P
D .
C .
B .
3
图B 1
2
图。