大学物理A活页作业任务

合集下载

最新大学物理活页作业答案及解析((全套))

最新大学物理活页作业答案及解析((全套))

1.质点运动学单元练习(一)答案1.B 2.D 3.D 4.B5.3.0m ;5.0m (提示:首先分析质点的运动规律,在t <2.0s 时质点沿x 轴正方向运动;在t =2.0s 时质点的速率为零;,在t >2.0s 时质点沿x 轴反方向运动;由位移和路程的定义可以求得答案。

)6.135m (提示:质点作变加速运动,可由加速度对时间t 的两次积分求得质点运动方程。

)7.解:(1))()2(22SI jt i t r -+=)(21m ji r+= )(242m ji r-=)(3212m ji r r r-=-=∆)/(32s m ji t r v -=∆∆=(2))(22SI j t i dtrd v -== )(2SI jdt vd a -==)/(422s m j i v-=)/(222--=s m ja8.解:t A tdt A adt v totoωω-=ωω-==⎰⎰sin cos 2t A tdt A A vdt A x tot oω=ωω-=+=⎰⎰cos sin9.解:(1)设太阳光线对地转动的角速度为ωs rad /1027.73600*62/5-⨯=π=ωs m th dt ds v /1094.1cos 32-⨯=ωω==(2)当旗杆与投影等长时,4/π=ωth s t 0.31008.144=⨯=ωπ=10.解: ky yv v t y y v t dv a -====d d d d d d d -k =y v d v / d y⎰⎰+=-=-C v ky v v y ky 222121,d d 已知y =y o ,v =v o 则20202121ky v C --= )(2222y y k v v o o -+=2.质点运动学单元练习(二)答案1.D 2.A 3.B 4.C5.14-⋅==s m t dt ds v ;24-⋅==s m dtdva t ;2228-⋅==s m t Rv a n ;2284-⋅+=s m e t e a nt6.s rad o /0.2=ω;s rad /0.4=α;2/8.0s rad r a t =α=;22/20s m r a n =ω=7.解:(1)由速度和加速度的定义)(22SI ji t dt rd v +==;)(2SI idtvd a ==(2)由切向加速度和法向加速度的定义)(124422SI t t t dt d a t +=+=)(12222SI t a a a t n +=-=(3)())(122/322SI t a v n+==ρ8.解:火箭竖直向上的速度为gt v v o y -︒=45sin火箭达到最高点时垂直方向速度为零,解得s m gtv o /8345sin =︒=9.解:s m uv /6.3430tan =︒=10.解:l h v u ≤;u hl v ≥3.牛顿定律单元练习答案1.C 2.C 3.A 4.kg Mg T 5.36721==;2/98.02.0s m MT a == 5.x k v x 22=;x x xv k dtdxk dt dv v 222== 221mk dt dv mf x x == 6.解:(1)ma F F N T =θ-θsin cosmg F F N T =θ+θcos sinθ-θ=θ+θ=sin cos ;cos sin ma mg F ma mg F N T(2)F N =0时;a =g cot θ7.解:mg R m o ≥ωμ2Rg o μ≥ω 8.解:由牛顿运动定律可得dtdv t 1040120=+ 分离变量积分()⎰⎰+=tovdt t dv 4120.6 )/(6462s m t t v ++=()⎰⎰++=t oxdt t tdx 6462.5 )(562223m t t t x +++=9.解:由牛顿运动定律可得dtdvmmg kv =+- 分离变量积分⎰⎰-=+t o vv o dt m k mg kv kdv ot m kmg kv mg o -=⎪⎪⎭⎫ ⎝⎛+ln ⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+-=mg kv k m mg kv mg k m t o o 1ln ln10.解:设f 沿半径指向外为正,则对小珠可列方程 a v m f mg 2cos =-θ,t vm mg d d sin =θ,以及 ta v d d θ=,θd d v a t =,积分并代入初条件得 )cos 1(22θ-=ag v ,)2cos 3(cos 2-=-=θθmg av m mg f .4.动量守恒和能量守恒定律单元练习(一)答案1.A ; 2.A ; 3.B ; 4.C ; 5.相同 6.2111m m t F v +∆=;2212m t F v v ∆+= 7.解:(1)t dt dxv x 10==;10==dtdv a x x N ma F 20==;m x x x 4013=-=∆J x F W 800=∆=(2)s N Fdt I ⋅==⎰40318.解:()1'v m m mv +=()221221'2121o kx v m m mv ++= ()''m m k mm vx +=9.解: 物体m 落下h 后的速度为 gh v 2=当绳子完全拉直时,有 ()'2v M m gh m +=gh mM m v 2'+=gh mM mMMv I I T 22'22+===10.解:设船移动距离x ,人、船系统总动量不变为零0=+mv Mu等式乘以d t 后积分,得0=+⎰⎰totomvdt Mudt0)(=-+l x m Mx m mM mlx 47.0=+=5.动量守恒和能量守恒定律单元练习(二)答案1.C 2.D 3.D 4.C 5.18J ;6m/s 6.5/37.解:摩擦力mg f μ=由功能原理 2121210)(kx x x f -=+- 解得 )(22121x x mg kx +=μ.8.解:根据牛顿运动定律 Rv m F mg N 2cos =-θ由能量守恒定律mgh mv =221质点脱离球面时 RhR F N -=θ=cos ;0 解得:3R h =9.解:(1)在碰撞过程中,两球速度相等时两小球间距离最小 v v v )(212211m m m m +=+ ①212211m m v m v m v ++=(2) 两球速度相等时两小球间距离最小,形变最大,最大形变势能等于总动能之差22122221)(212121v v v m m m m E p +-+=② 联立①、②得 )/()(212122121m m m m E p +-=v v10.解:(1)由题给条件m 、M 系统水平方向动量守恒,m 、M 、地系统机械能守恒.0)(=--MV V u m ① mgR MV V u m =+-2221)(21 ② 解得: )(2m M M gRmV +=;MgRm M u )(2+=(2) 当m 到达B 点时,M 以V 运动,且对地加速度为零,可看成惯性系,以M 为参考系 R mu mg N /2=-M mg m M mg R mu mg N /)(2/2++=+=mg MmM M mg m M Mmg N 23)(2+=++=6.刚体转动单元练习(一)答案1.B 2.C 3.C 4.C5.v = 1.23 m/s ;a n = 9.6 m/s 2;α = –0.545 rad/ s 2;N = 9.73转。

同济大学普通物理活页作业问题详解

同济大学普通物理活页作业问题详解

中,始终保持它离地面的高度不变,此时直杆下落的加速度应为
M
(A) g ;
(B) m g ; M
(C) M m g ;
(D) M m g ;
m
M
M m
(E) M m g 。 M
选择题 6 图
( C)
7.水平地面上放一物体 A,它与地面间的滑动摩擦系数为 。现
加一恒力 F,如图所示。欲使物体 A 有最大加速度,则恒力 F 与
(C) 必须等于 2gR ;
(D) 还应由汽车的质量 M 决定。
( B)
五、 填空题
1.一质量为 2 kg 的质点在力 F 20t 8 N 的作用下,沿 Ox 轴作直线运动。在 t 0 时, 质点的速度为 3m·s-1。质点在任意时刻的速度为 v 5t 2 4t 3。
2.质量为 M 的小艇在靠岸时关闭发动机,此刻的船速为 v0 ,设水对小艇的阻力 f 正比于船
速 v ,即
f
kv ( k 为比例系数)。小艇在关闭发动机后还能行驶 x
Mv0 k
的距离。
3.一气球的总质量为 m,以大小为 a 的加速度铅直下降,今欲使它以大小为 a 的加速度铅
直上升,则应从气球中抛掉压舱沙袋的质量为
2ma ag
。(忽略空气阻力)
4.如图所示,质量为 m 的物体 A 用平行于斜面的细线
大高度?
解:取 Ox 向上为正方向,则火箭头部的加速度为 a (g 0.0005 v2 ) ,又 a dv v dv , dt dx
从而得
1
v dv (g 0.0005v2 ) dx
当火箭头部达到最大高度 hmax时, v 0 ,因此
dx hmax 0
0 150
g

大学物理活页作业(马文蔚主编)答案

大学物理活页作业(马文蔚主编)答案

1.B 2.D 3.D 4.B5.3.0m ;5.0m (提示:首先分析质点的运动规律,在t <2.0s 时质点沿x 轴正方向运动;在t =2.0s 时质点的速率为零;,在t >2.0s 时质点沿x 轴反方向运动;由位移和路程的定义可以求得答案。

)6.135m (提示:质点作变加速运动,可由加速度对时间t 的两次积分求得质点运动方程。

)7.解:(1))()2(22SI jt i t r -+=)(21m ji r+= )(242m ji r-=)(3212m ji r r r-=-=∆)/(32s m ji t r v -=∆∆=(2))(22SI j t i dtrd v -== )(2SI jdtvd a -==)/(422s m ji v-=)/(222--=s m ja8.解:1.B 2.D 3.D 4.B5.3.0m ;5.0m (提示:首先分析质点的运动规律,在t <2.0s 时质点沿x 轴正方向运动;在t =2.0s 时质点的速率为零;,在t >2.0s 时质点沿x 轴反方向运动;由位移和路程的定义可以求得答案。

)6.135m (提示:质点作变加速运动,可由加速度对时间t 的两次积分求得质点运动方程。

)7.解:(1))()2(22SI jt i t r -+=)(21m ji r+= )(242m ji r-=)(3212m ji r r r-=-=∆)/(32s m ji t r v -=∆∆=(2))(22SI j t i dtrd v -== )(2SI j dtvd a -==)/(422s m ji v-=)/(222--=s m ja8.解:t A tdt A adt v tot oωω-=ωω-==⎰⎰sin cos 2t A tdt A A vdt A x tot oω=ωω-=+=⎰⎰cos sin9.解:(1)设太阳光线对地转动的角速度为ωs rad /1027.73600*62/5-⨯=π=ωs m th dt ds v /1094.1cos 32-⨯=ωω==(2)当旗杆与投影等长时,4/π=ωth s t 0.31008.144=⨯=ωπ=10.解: ky yv v t y y v t dv a -====d d d d d d d -k =y v d v / d y⎰⎰+=-=-C v ky v v y ky 222121,d d 已知y =y o ,v =v o 则20202121ky v C --= )(2222y y k v v o o -+=2.质点运动学单元练习(二)答案1.D 2.A3.B 4.C5.14-⋅==s m tdt dsv ;24-⋅==s m dtdva t ;2228-⋅==s m t Rv a n ;2284-⋅+=s m e t e a nt6.s rad o /0.2=ω;s rad /0.4=α;2/8.0s rad r a t =α=;22/20s m r a n =ω=7.解:(1)由速度和加速度的定义)(22SI ji t dt rd v +==;)(2SI idtvd a ==(2)由切向加速度和法向加速度的定义)(124422SI t t t dt d a t +=+=)(12222SI t a a a t n +=-=(3)())(122/322SI t a v n+==ρ8.解:火箭竖直向上的速度为gt v v o y -︒=45sin 火箭达到最高点时垂直方向速度为零,解得s m gtv o /8345sin =︒=9.解:s m uv /6.3430tan =︒=10.解:l h v u ≤;u hl v ≥ 3.牛顿定律单元练习答案1.C 2.C 3.A4.kg Mg T 5.36721==;2/98.02.0s m MT a == 5.x k v x 22=;x x xv k dtdxk dt dv v 222== 221mk dt dv mf x x == 6.解:(1)ma F F N T =θ-θsin cosmg F F N T =θ+θcos sinθ-θ=θ+θ=sin cos ;cos sin ma mg F ma mg F N T(2)F N =0时;a =g cot θ7.解:mg R m o ≥ωμ2 Rgo μ≥ω 8.解:由牛顿运动定律可得dtdv t 1040120=+分离变量积分()⎰⎰+=to vdt t dv 4120.6 )/(6462s m t t v ++=()⎰⎰++=toxdt t t dx 64620.5 )(562223m t t t x +++=9.解:由牛顿运动定律可得dtdv mmg kv =+- 分离变量积分⎰⎰-=+to vv o dt m k mg kv kdv o t m k mg kv mg o -=⎪⎪⎭⎫ ⎝⎛+ln ⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+-=mg kv k m mg kv mg k m t o o 1ln ln10.解:设f 沿半径指向外为正,则对小珠可列方程1. av m f mg 2cos =-θ,tvm m g d d sin =θ,以及 ta v d d θ=,θd d v at =,积分并代入初条件得 )cos 1(22θ-=ag v ,)2cos 3(cos 2-=-=θθmg av m mg f .4.动量守恒和能量守恒定律单元练习(一)答案1.A ; 2.A ; 3.B ; 4.C ; 5.相同6.2111m m t F v +∆=;2212m t F v v ∆+=7.解:(1)t dt dxv x 10==;10==dtdv a x x N ma F 20==;m x x x 4013=-=∆J x F W 800=∆=(2)s N Fdt I ⋅==⎰40318.解:()1'v m m mv +=()221221'2121o kx v m m mv ++= ()''m m k mm vx +=9.解: 物体m 落下h 后的速度为 gh v 2=当绳子完全拉直时,有 ()'2v M m gh m +=gh mM m v 2'+=gh mM mMMv I I T 22'22+===10.解:设船移动距离x ,人、船系统总动量不变为零0=+mv Mu等式乘以d t 后积分,得0=+⎰⎰totomvdt Mudt0)(=-+l x m Mx m mM mlx 47.0=+=5.动量守恒和能量守恒定律单元练习(二)答案1.C 2.D 3.D 4.C5.18J ;6m/s 6.5/37.解:摩擦力mg f μ=由功能原理 2121210)(kx x x f -=+-解得 )(22121x x m g kx +=μ.8.解:根据牛顿运动定律 Rv m F mg N 2cos =-θ由能量守恒定律 mgh mv =221质点脱离球面时 RhR F N -=θ=cos ;0 解得:3R h =9.解:(1)在碰撞过程中,两球速度相等时两小球间距离最小 v v v )(212211m m m m +=+ ①212211m m v m v m v ++=(2) 两球速度相等时两小球间距离最小,形变最大,最大形变势能等于总动能之差22122221)(212121v v v m m m m E p +-+=② 联立①、②得 )/()(212122121m m m m E p +-=v v10.解:(1)由题给条件m 、M 系统水平方向动量守恒,m 、M 、地系统机械能守恒.0)(=--MV V u m ①mgR MV V u m =+-2221)(21 ②解得: )(2m M M gRmV +=;MgRm M u )(2+=(2) 当m 到达B 点时,M 以V 运动,且对地加速度为零,可看成惯性系,以M 为参考系 R mu mg N /2=-M mg m M mg R mu mg N /)(2/2++=+=mg MmM M mg m M Mmg N 23)(2+=++=6.刚体转动单元练习(一)答案1.B 2.C 3.C 4.C5.v = 1.23 m/s ;a n = 9.6 m/s 2;α = –0.545 rad/ s 2;N = 9.73转。

大学物理活页作业问题详解(全套)

大学物理活页作业问题详解(全套)

1.质点运动学单元练习(一)答案1.B 2.D 3.D 4.B5.3.0m ;5.0m (提示:首先分析质点的运动规律,在t <2.0s 时质点沿x 轴正方向运动;在t =2.0s 时质点的速率为零;,在t >2.0s 时质点沿x 轴反方向运动;由位移和路程的定义可以求得答案。

)6.135m (提示:质点作变加速运动,可由加速度对时间t 的两次积分求得质点运动方程。

)7.解:(1))()2(22SI jt i t r -+=)(21m ji r+= )(242m ji r-=)(3212m ji r r r-=-=∆)/(32s m ji t r v -=∆∆=(2))(22SI j t i dtrd v -== )(2SI j dt vd a -==)/(422s m j i v-=)/(222--=s m ja8.解:t A tdt A adt v totoωω-=ωω-==⎰⎰sin cos 2t A tdt A A vdt A x totoω=ωω-=+=⎰⎰cos sin9.解:(1)设太阳光线对地转动的角速度为ωs rad /1027.73600*62/5-⨯=π=ωs m th dt ds v /1094.1cos 32-⨯=ωω==(2)当旗杆与投影等长时,4/π=ωth s t 0.31008.144=⨯=ωπ=10.解: ky yv v t y y v t dv a -====d d d d d d d -k =y v d v / d y⎰⎰+=-=-C v ky v v y ky 222121,d d 已知y =y o ,v =v o 则20202121ky v C --= )(2222y y k v v o o -+=2.质点运动学单元练习(二)答案1.D 2.A 3.B 4.C5.14-⋅==s m t dt ds v ;24-⋅==s m dtdva t ;2228-⋅==s m t Rv a n ;2284-⋅+=s m e t e a nt6.s rad o /0.2=ω;s rad /0.4=α;2/8.0s rad r a t =α=;22/20s m r a n =ω=7.解:(1)由速度和加速度的定义)(22SI ji t dt rd v +==;)(2SI idtvd a ==(2)由切向加速度和法向加速度的定义)(124422SI t t t dt d a t +=+=)(12222SI t a a a t n +=-=(3)())(122/322SI t a v n+==ρ8.解:火箭竖直向上的速度为gt v v o y -︒=45sin 火箭达到最高点时垂直方向速度为零,解得s m gtv o /8345sin =︒=9.解:s m uv /6.3430tan =︒=10.解:l h v u ≤;u hl v ≥3.牛顿定律单元练习答案1.C 2.C 3.A 4.kg Mg T 5.36721==;2/98.02.0s m MT a == 5.x k v x 22=;x x xv k dtdxk dt dv v 222== 221mk dt dv mf x x == 6.解:(1)ma F F N T =θ-θsin cosmg F F N T =θ+θcos sinθ-θ=θ+θ=sin cos ;cos sin ma mg F ma mg F N T(2)F N =0时;a =g cot θ7.解:mg R m o ≥ωμ2Rg o μ≥ω 8.解:由牛顿运动定律可得dtdv t 1040120=+ 分离变量积分()⎰⎰+=tovdt t dv 4120.6 )/(6462s m t t v ++=()⎰⎰++=t oxdt t tdx 6462.5 )(562223m t t t x +++=9.解:由牛顿运动定律可得dtdv mmg kv =+- 分离变量积分⎰⎰-=+t o vv o dt m k mg kv kdv ot m kmg kv mg o -=⎪⎪⎭⎫ ⎝⎛+ln ⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+-=mg kv k m mg kv mg k m t o o 1ln ln10.解:设f 沿半径指向外为正,则对小珠可列方程 a v m f mg 2cos =-θ,tvm mg d d sin =θ,以及 ta v d d θ=,θd d v at =,积分并代入初条件得 )cos 1(22θ-=ag v ,)2cos 3(cos 2-=-=θθmg av m mg f .4.动量守恒和能量守恒定律单元练习(一)答案1.A ; 2.A ; 3.B ; 4.C ; 5.相同 6.2111m m t F v +∆=;2212m t F v v ∆+=7.解:(1)t dt dxv x 10==;10==dtdv a x x N ma F 20==;m x x x 4013=-=∆J x F W 800=∆=(2)s N Fdt I ⋅==⎰40318.解:()1'v m m mv +=()221221'2121o kx v m m mv ++= ()''m m k mm vx +=9.解: 物体m 落下h 后的速度为 gh v 2=当绳子完全拉直时,有 ()'2v M m gh m +=gh mM m v 2'+=gh mM mMMv I I T 22'22+===10.解:设船移动距离x ,人、船系统总动量不变为零0=+mv Mu等式乘以d t 后积分,得0=+⎰⎰totomvdt Mudt0)(=-+l x m Mx m mM mlx 47.0=+=5.动量守恒和能量守恒定律单元练习(二)答案1.C 2.D 3.D 4.C 5.18J ;6m/s 6.5/37.解:摩擦力mg f μ=由功能原理 2121210)(kx x x f -=+- 解得 )(22121x x mg kx +=μ.8.解:根据牛顿运动定律 Rv m F mg N 2cos =-θ由能量守恒定律mgh mv =221质点脱离球面时 RhR F N -=θ=cos ;0 解得:3R h =9.解:(1)在碰撞过程中,两球速度相等时两小球间距离最小 v v v )(212211m m m m +=+ ①212211m m v m v m v ++=(2) 两球速度相等时两小球间距离最小,形变最大,最大形变势能等于总动能之差22122221)(212121v v v m m m m E p +-+=② 联立①、②得 )/()(212122121m m m m E p +-=v v10.解:(1)由题给条件m 、M 系统水平方向动量守恒,m 、M 、地系统机械能守恒.0)(=--MV V u m ①mgR MV V u m =+-2221)(21 ② 解得: )(2m M M gRmV +=;MgRm M u )(2+=(2) 当m 到达B 点时,M 以V 运动,且对地加速度为零,可看成惯性系,以M 为参考系 R mu mg N /2=-M mg m M mg R mu mg N /)(2/2++=+=mg MmM M mg m M Mmg N 23)(2+=++=6.刚体转动单元练习(一)答案1.B 2.C 3.C 4.C5.v = 1.23 m/s ;a n = 9.6 m/s 2;α = –0.545 rad/ s 2;N = 9.73转。

大学物理活页作业(马文蔚主编)答案

大学物理活页作业(马文蔚主编)答案

运动方程。)
7.解:(1)
r

2ti

(2

t
2
)
j
( SI )
r1 2i j (m)
r2 4i 2 j (m)
r r2 r1 2i 3 j (m)
v

r

2i

3j
t
(m / s)
(2) v
mr 2 J
(2)设绳子对物体(或绳子对轮轴)的拉力为 T,则根据牛顿运动定律和转动定律 得:
mg – T=ma
T r=J
由运动学关系有: a = r
联立解得:
mgJ T
J mr 2
1 质点运动学单元练习一答案—11
10.解:以中心 O 为原点作坐标轴 Ox、Oy 和 Oz 如图所示,取质量为 dm dxdy
式中面密度 为常数,按转动惯量定义,
Jz
(x2

y 2 )dm

b
2 b
dx

a
2 a
(
x
2


y 2 )dy

(ab3 12
a3b)
2
2
薄板的质量 m ab
所以
Jz

m (a2 12

b2 )
7.刚体转动单元练习(二)答案
1.C
2.A
3.D
4.B
5.
3
o

1 3
Ep

1 2
mv12

1 2
m2v
2 2

1 2
(m1
m2 )v 2

大学物理A活页作业

大学物理A活页作业

练习1 质点运动学(一)班级 学号 姓名 成绩 .1. 一质点在平面上运动,已知质点位置矢量的表示式为 j bt i at r 22 (其中a 、b 为常量),则该质点作(A) 匀速直线运动. (B) 变速直线运动.(C) 抛物线运动. (D)一般曲线运动. [ ] 2.一质点在平面上作一般曲线运动,其瞬时速度为v ,瞬时速率为 ,某一时间内的平均速度为v ,平均速率为v ,它们之间的关系必定有:(A )v v v,v (B )v v v,v(C )v v v,v (D )v v v,v [ ]3.一质点沿直线运动,其运动学方程为x = 6 t -t 2 (SI),则在t 由0至4s 的时间间隔内,质点的位移大小为___________,在t 由0到4s 的时间间隔内质点走过的路程为_______________.4.一质点作直线运动,其坐标x 与时间t 的关系曲线如图所示.则该质点在第 秒瞬时速度为零;在第 秒至第 秒间速度与加速度同方向.5. 有一质点沿x 轴作直线运动,t 时刻的坐标为x = 4.5 t 2 – 2 t 3 (SI) .试求:(1) 第2秒内的平均速度;(2) 第2秒末的瞬时速度;(3) 第2秒内的路程.6. 什么是矢径?矢径和对初始位置的位移矢量之间有何关系?怎样选取坐标原点才能够使两者一致?练习2 质点动力学(一)班级 学号 姓名 成绩 .1.质量分别为m 1和m 2的两滑块A 和B 通过一轻弹簧水平连结后置于水平桌面上,滑块与桌面间的摩擦系数均为 ,系统在水平拉力F 作用下匀速运动,如图所示.如突然撤消拉力,则刚撤消后瞬间,二者的加速度a A 和a B 分别为 (A) a A =0 , a B =0. (B) a A >0 , a B <0. (C) a A <0 , a B >0. (D) a A <0 , a B[ ]2. 体重、身高相同的甲乙两人,分别用双手握住跨过无摩擦轻滑轮的绳子各一端.他们从同一高度由初速为零向上爬,经过一定时间,甲相对绳子的速率是乙相对绳子速率的两倍,则到达顶点的情况是(A)甲先到达. (B)乙先到达.(C)同时到达. (D)谁先到达不能确定.[ ]3. 分别画出下面二种情况下,物体A 的受力图. (1) 物体A 放在木板B 上,被一起抛出作斜上抛运动,A 始终位于B 的上面,不计空气阻力; (2) 物体A 的形状是一楔形棱柱体,横截面为直角三角形,放在桌面C 上.把物体B轻轻地放在A 的斜面上,设A 、B 间和A 与桌面C 间的摩擦系数皆不为零,A 、B 系统静止.4.质量为m 的小球,用轻绳AB 、BC 连接,如图,其中AB 水平.剪断绳AB 前后的瞬间,绳BC 中的张力比 T : T ′=____________.5. 如图所示,A ,B ,C 三物体,质量分别为M=0.8kg, m=m 0=0.1kg ,当他们如图a 放置时,物体正好做匀速运动。

物理学活页作业课程设计

物理学活页作业课程设计

物理学活页作业课程设计一、选题背景作为物理学教师,我们需要寻找不同的教学方法,以提高学生的兴趣和学习效果。

本课程设计的选题背景是为了探讨一种有趣、互动的物理学教学方法。

我们经常说:“学以致用”,为此本课程将以具体的物理实验为背景,设计一种活页作业方案,利用这种互动性的教学方案,让学生能够更好地了解物理学知识和学习方法。

二、活页作业的设计思路(一)课程设计目标本课程的主要目的是让学生了解物理实验原理。

同时通过小组合作讨论和互动,让学生在活动中体会自己的角色,并强化其在团队中合作的能力。

最重要的是,本课程的设计还旨在提高学生的物理学知识和实践能力。

(二)课程设计流程本课程设计分为以下三个主要环节:1.物理实验探究。

在第一环节中,学生将参与由教师设计的实验。

此环节将帮助学生了解和掌握实验原理及其应用,让学生亲身体验实验操作和结果分析过程。

这也为第二环节提供了有力的支持。

2.小组讨论与辩论。

在本环节里,学生将分成若干个小组,探讨实验本身的相关问题,理解实验结果,并依照实验结果的不同解释途径,进行小组内的辩论。

这应该是一个非常互动和有趣的活动,通过本环节,学生能够清晰、地在小组内表达自己的观点和思考方式,同时获得大量的反馈,这将进一步加深他们对物理学知识的理解。

3.探究主题书面作业。

在本环节中,学生将的任务是在小组内完成一项探究主题书面作业,包括分析数据,并总结主题等。

通过此项任务,学生将会不断地加深对实验结果的理解和掌握,并掌握科学研究的基本步骤和科学探究的规律。

最终,在全班范围内讨论结果,培养孩子们学术交流的能力。

(三)活页作业的制作本次课程将涉及很多活页工作的设计。

如果没有相关的设计能力,也没有关系。

一个组织良好的活页模板可以极大地协助组织者完成相关的工作。

以下将为大家介绍针对这三个环节设计的活页模板。

当然,物理学老师可以基于自己的实验内容进行相关的修改和适应。

1. 研究报告模板是本次活页作业的研究报告模板截图。

大学物理活页习题集答案

大学物理活页习题集答案

大学物理活页习题集答案
大学物理活页习题集答案:探索物理世界的奥秘
物理作为一门自然科学,探索着自然界的规律和物质世界的奥秘。

而大学物理
活页习题集则是帮助学生理解和掌握物理知识的重要工具。

通过解答这些习题,学生们能够加深对物理理论的理解,提高解决物理问题的能力,同时也能够培
养他们的逻辑思维和分析问题的能力。

在大学物理活页习题集中,涵盖了各种各样的物理问题,涉及到力学、热学、
光学、电磁学等多个领域。

通过解答这些问题,学生们能够将课堂上学到的理
论知识应用到实际问题中,从而加深对物理学的理解。

同时,这些习题也能够
帮助学生们发现物理学中的一些规律和定律,培养他们的科学研究精神。

除了对学生们的理论知识进行巩固和提高外,大学物理活页习题集还能够培养
学生们的解决问题的能力。

在解答这些问题的过程中,学生们需要进行逻辑推理、分析问题、找出问题的关键点,这些能力对于他们将来的科研和工作都是
非常重要的。

总的来说,大学物理活页习题集答案不仅是学生们学习物理知识的重要工具,
更是帮助他们培养解决问题的能力和科学研究精神的重要途径。

通过不断地解
答这些习题,学生们能够更好地理解和掌握物理知识,同时也能够培养自己的
科学素养和综合能力。

希望学生们能够认真对待大学物理活页习题集,不断地
提高自己的物理水平,为将来的科研和工作打下坚实的基础。

大学物理A活页作业答案

大学物理A活页作业答案

练习1 质点运动学(一)参考答案1. B ;2. D;3. 8m, 10m.4. 3, 3 6;5. 解:(1) 5.0/-==∆∆t x v m/s(2) v = d x /d t = 9t - 6t 2v (2) =-6 m/s(3) S = |x (1.5)-x (1)| + |x (2)-x (1.5)| = 2.25 m6. 答:矢径r是从坐标原点至质点所在位置的有向线段.而位移矢量是从某一个初始时刻质点所在位置到后一个时刻质点所在位置的有向线段.它们的一般关系为0r r r-=∆0r 为初始时刻的矢径, r 为末时刻的矢径,△r为位移矢量.若把坐标原点选在质点的初始位置,则0r =0,任意时刻质点对于此位置的位移为△r =r,即r既是矢径也是位移矢量.练习2 质点动力学(一)参考答案1.D2.C3.4. l/cos 2θ5.如图所示,A ,B ,C 三物体,质量分别为M=0.8kg, m= m 0=0.1kg ,当他们如图a 放置时,物体正好做匀速运动。

(1)求物体A 与水平桌面的摩擦系数;(2)若按图b 放置时,求系统的加速度及绳的张力。

解:(1)mM m )(m 00+=+===μμ联立方程得:g m M N NT T g (2)(1)(2)BA NBA f A PCA NA PBgMm m m M T gMm m a Ma Mg T a m m T g m m ++=+==-+=-+)(计算结果,得到利用)()(0''0'0)1(μ6.解:(1) 子弹进入沙土后受力为-Kv ,由牛顿定律tmK d d v v =- ∴ ⎰⎰=-=-vv v vvvd d ,d d 0tt m K t m K ∴ mKt /0e -=v v(2) 求最大深度 解法一: txd d =vt x mKt d ed /0-=vt x m Kt tx d e d /000-⎰⎰=v∴ )e1()/(/0mKt K m x --=vK m x /0max v =解法二:xm t x x m t mK d d )d d )(d d (d d vvv v v ===- ∴ v d Kmdx -=v v d d 0max⎰⎰-=K mx x ∴ K m x /0max v =练习3 刚体力学(一)参考答案1. B2. C挂重物时, mg -T = ma =mR β, TR =J β,P =mg由此解出 JmR mgR+=2β而用拉力时, mg R = J β' JmgR=/β 故有 β'>β3. ma 2 ,21 ma 2 , 21ma 2 . 4. 4.0rad/s5. 质量为m 1, m 2 ( m 1 > m 2)的两物体,通过一定滑轮用绳相连,已知绳与滑轮间无相对滑动,且定滑轮是半径为R 、质量为 m 3的均质圆盘,忽略轴的摩擦。

物理学活页作业(4)

物理学活页作业(4)

_____________________________________《物理学》活页作业 第4次作业___第三章 动量守恒定律和能量守恒定律班级、姓名:___________________ 学号:__________ 成绩:___________1.一个质点同时在n 个力的作用下的位移为)(86SI j i r -=∆,其中一个力为恒力)(125SI j i F +=,则此力在该位移过程中所作的功为 [ ](A ) -66J (B ) 66J(C ) -130J (D ) 130J2. 一颗子弹在枪筒里前进时所受的合力大小为56106003F t ⨯=-(SI ),子弹从枪口射出时的速率为300m/s ,假设子弹离开枪口时的合力刚好为零,则(1) 子弹走完枪筒全长所用的时间t = ____ ___;(2) 子弹在枪筒中所受力的冲量I = ________ __ 。

3. 质量为m 的小球自高为y 0处沿水平方向以速率v 0抛出,与地面碰撞后跳起的最大高度为y 0/2,水平速率为v 0/2,则碰撞过程中:(1) 地面对小球的竖直冲量的大小为______________;(2) 地面对小球的水平冲量的大小为______________。

4. 如图,光滑平面上有一质量为M 的物块,一质量为m 的子弹以速率V沿斜下方与水平线成θ角的方向射入物块,若桌面离地的高度为h ,求木块落地时的速率V= 。

5. 一物体在介质中按规律2x ct =作直线运动,c 为一常量.设介质对物体的阻力正比于速度的平方.试求物体由00x =运动到x l =时,阻力所做的功(已知阻力系数为k ).xy O m y 0021v 021y0v。

《大学物理A》教学大纲

《大学物理A》教学大纲

《大学物理A》教学大纲一、课程基本信息课程名称:大学物理 A课程类别:必修课程学分:具体学分课程总学时:具体学时授课对象:适用专业先修课程:高等数学二、课程性质、目的和任务大学物理 A 是高等院校理工科各专业学生一门重要的必修基础课程。

本课程旨在使学生熟悉自然界物质的结构、性质、相互作用及其运动的基本规律,为后续专业课程的学习以及将来从事科学研究和工程技术工作打下坚实的物理基础。

通过本课程的学习,学生应达到以下目标:1、掌握物理学的基本概念、基本理论和基本方法,能够运用所学知识分析和解决简单的物理问题。

2、培养学生的科学思维能力和创新意识,提高学生的科学素养和综合能力。

3、了解物理学在现代科学技术和社会发展中的应用,激发学生对科学的兴趣和探索精神。

三、课程教学内容及要求(一)力学1、质点运动学(1)理解质点、参考系、坐标系等基本概念。

(2)掌握位置矢量、位移、速度、加速度等物理量的定义及计算。

(3)熟练掌握质点运动学方程的建立及求解。

2、质点动力学(1)掌握牛顿运动定律的内容及应用。

(2)理解惯性系和非惯性系的概念,掌握惯性力的计算。

(3)掌握功、功率、动能、势能等概念及计算,熟练掌握动能定理和机械能守恒定律的应用。

3、刚体的定轴转动(1)理解刚体的概念,掌握刚体定轴转动的运动学描述。

(2)掌握转动惯量的概念及计算,熟练掌握刚体定轴转动定律和角动量守恒定律的应用。

(二)热学1、气体动理论(1)理解理想气体的模型,掌握理想气体状态方程。

(2)掌握压强和温度的微观本质,了解能量均分定理。

(3)掌握麦克斯韦速率分布律。

2、热力学基础(1)掌握热力学第一定律的内容及应用,理解热功转换的关系。

(2)掌握热力学第二定律的两种表述,了解熵的概念及熵增加原理。

(三)电磁学1、静电场(1)掌握库仑定律、电场强度的定义及计算。

(2)熟练掌握高斯定理的应用,理解电场线和电通量的概念。

(3)掌握电势的定义及计算,了解电场强度与电势的关系。

2-活页作业-第二章-20090222

2-活页作业-第二章-20090222

作业编号 ________ 姓名 ________________ 学号 ___________ 教学班级 ___________ 教师 ______动力学基本定律1.已知水星的半径是地球半径的0.4倍, 则水星表面上的重力加速度为 质量为地球的0.04倍,设在地球上的重力加速度为(A) 0.1g. (B) 0.25g. (C) 4 g. (D) 2.5g.(A )向上作加速运动(B) 向上作匀速运动 5.如图2.3所示,一水平圆盘,半径为r ,边缘放置一质量为 m 的 物体A 它与盘的静摩擦系数为 7圆盘绕中心轴 0O 专动,当其角速度-■小于或等于 ____________ 时,物A 不致于飞出.6 .在定轴转动中,如果合外力矩的方向与角速度的方向一致,则 以下说法正确的是:(A) 合力矩增大时,物体角速度一定增大;(B) 合力矩减小时,物体角速度一定减小;(C) 合力矩减小时,物体角加速度不一定变小;(D) 合力矩增大时,物体角加速度不一定增大7 .均匀细棒OA 可绕通过其一端 O 而与棒垂直的水平固定光滑轴转动, 如图2.4所示,今使棒从水平位置由静止开始自由下落,在棒摆动到竖立位 置的过程中,下述说法哪一种是正确的?(A)角速度从小到大,角加速度从大到小. (B)角速度从小到大,角加速度从小到大 . 2 .如图2.1 (A )所示,m A >丄m B 时,算出 m B 向右的加速度为a ,今去掉m A 而代之以拉力T= m A g , 如图2.1 ( B )所示,算出m B 的加速度a •,贝U(A ) a > a . (B ) a = a '. (C ) a< a: ( D ) 无法判断. 3.如图2.2所示,假使物体沿着铅直面上圆弧 轨道下滑,轨道是光滑的,在从 A 至C 的下滑过程 中,下面哪种说法是正确的? 图2.1 (A) 它的加速度方向永远指向圆心 . (B) 它的速率均匀增加. (C) 它的合外力大小变化, 方向永远指向圆心 (D) 它的合外力大小不变. (E) 轨道支持力大小不断增加. 4.手提一根下端系着重物的轻弹簧, 竖直向上作匀加速运动, 当手突然停止运动的瞬间,物体将 (C ) 立即处于静止状态 (D )在重力作用下向上作减速运动 :O A I* -(C) 角速度从大到小,角加速度图2.4 从大到小.(D) 角速度从大到小,角加速度从小到大&一艘速度为V o的摩托艇,当发动机关闭后,受到一个与速度方向相反的阻力中k为常量。

物理学活页作业(3)答案

物理学活页作业(3)答案

选(B)
第三章 动量守恒和能量守恒
物理学
第五版
第三章补充例题
C
第三章 动量守恒和能量守恒
3 A、B两个物体,质量分别为mA= 100kg,mB=60kg,装置如图所示。两斜面 的倾角分别为α=300和 β =600。如果物体 与斜面间无摩擦,滑轮和绳的质量忽略不计, 问: (1)系统将向哪边运动? (2)系统的加速度是多大? (3)绳中的张力多大?
A B
a
β
结束 目录
已知:mA=100kg
mB=60kg β=600
A
a =300
求: a 解:(1) T
B
a
A
β
T mA g
T mAg sina = mAa
mB g sinβ T = mBa
mB g sinβ mAg sina a= mA+ mB 3 100× 1 60 2 2 = 60 +100
物理学
第五版
第三章补充例题
1 已知在半径为R的光滑球面上,一 物体自顶端静止下滑, 问物体在何处脱离球 2 v 面? FN 解 m g cos FN m
当物体在A处脱离球 面时, FN 0
1 2 mgR (1 cos ) mv 2
R
R
A
mg
2 解得: cos 3
× ×
T
B
a mBg
9.8 = 0.12m/s2
结束 目录
(2)
T = mAa + mAg sina
= 100 0.2 +100 9.8 =12 + 490 = 520N
× × ×
1 2
结束 目录
4 质量为m的子弹以速度v0水平射入沙 土中.子弹所受阻力与速度大小成正比,比 例系数为k,忽略子弹重力的影响,求: (1)子弹射入沙土后,速度随时间的变化规律 (2)子弹射入沙土的最大深度.

大学物理活页作业答案(上册)

大学物理活页作业答案(上册)

11.B 2.D 3.D 4.B5.3.0m ;5.0m (提示:首先分析质点的运动规律,在t <2.0s 时质点沿x 轴正方向运动;在t =2.0s 时质点的速率为零;,在t >2.0s 时质点沿x 轴反方向运动;由位移和路程的定义可以求得答案。

)6.135m (提示:质点作变加速运动,可由加速度对时间t 的两次积分求得质点运动方程。

)7.解:(1))()2(22SI jt i t r -+=)(21m ji r+= )(242m ji r-=)(3212m ji r r r-=-=∆)/(32s m ji t r v -=∆∆=(2))(22SI j t i dtrd v -== )(2SI jdt vd a -==)/(422s m j i v-=)/(222--=s m ja8.解:t A tdt A adt v totoωω-=ωω-==⎰⎰sin cos 2t A tdt A A vdt A x totoω=ωω-=+=⎰⎰cos sin9.解:(1)设太阳光线对地转动的角速度为ωs rad /1027.73600*62/5-⨯=π=ωs m th dt ds v /1094.1cos 32-⨯=ωω==(2)当旗杆与投影等长时,4/π=ωth s t 0.31008.144=⨯=ωπ=10.解: ky yv v t y y v t dv a -====d d d d d d d -k =y v d v / d y⎰⎰+=-=-C v ky v v y ky 222121,d d 已知y =y o ,v =v o 则20202121ky v C --= )(2222y y k v v o o -+=2质点运动学单元练习二答案—321.D 2.A 3.B 4.C5.14-⋅==s m t dt ds v ;24-⋅==s m dtdva t ;2228-⋅==s m t Rv a n ;2284-⋅+=s m e t e a nt6.s rad o /0.2=ω;s rad /0.4=α;2/8.0s rad r a t =α=;22/20s m r a n =ω=7.解:(1)由速度和加速度的定义)(22SI ji t dt rd v +==;)(2SI idtvd a ==(2)由切向加速度和法向加速度的定义)(124422SI t t t dt d a t +=+=)(12222SI t a a a t n +=-=(3)())(122/322SI t a v n+==ρ8.解:火箭竖直向上的速度为gt v v o y -︒=45sin 火箭达到最高点时垂直方向速度为零,解得s m gtv o /8345sin =︒=9.解:s m uv /6.3430tan =︒=10.解:l h v u ≤;u hl v ≥2质点运动学单元练习二答案—531.C 2.C 3.A 4.kg Mg T 5.36721==;2/98.02.0s m MT a == 5.x k v x 22=;x x xv k dtdxk dt dv v 222== 221mk dt dv mf x x == 6.解:(1)ma F F N T =θ-θsin cosmg F F N T =θ+θcos sinθ-θ=θ+θ=sin cos ;cos sin ma mg F ma mg F N T(2)F N =0时;a =g cot θ7.解:mg R m o ≥ωμ2Rg o μ≥ω 8.解:由牛顿运动定律可得dtdv t 1040120=+ 分离变量积分()⎰⎰+=tovdt t dv 4120.6 )/(6462s m t t v ++=()⎰⎰++=t oxdt t tdx 6462.5 )(562223m t t t x +++=9.解:由牛顿运动定律可得dtdv mmg kv =+- 分离变量积分⎰⎰-=+t o vv o dt m k mg kv kdv ot m kmg kv mg o -=⎪⎪⎭⎫ ⎝⎛+ln ⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+-=mg kv k m mg kv mg k m t o o 1ln ln10.解:设f 沿半径指向外为正,则对小珠可列方程 a v m f mg 2cos =-θ,tvm mg d d sin =θ,以及 ta v d d θ=,θd d v at =,积分并代入初条件得 )cos 1(22θ-=ag v ,)2cos 3(cos 2-=-=θθmg av m mg f .2质点运动学单元练习二答案—741.A ; 2.A ; 3.B ; 4.C ; 5.相同 6.2111m m t F v +∆=;2212m t F v v ∆+=7.解:(1)t dt dxv x 10==;10==dtdv a x x N ma F 20==;m x x x 4013=-=∆J x F W 800=∆=(2)s N Fdt I ⋅==⎰40318.解:()1'v m m mv +=()221221'2121o kx v m m mv ++= ()''m m k mm vx +=9.解: 物体m 落下h 后的速度为 gh v 2=当绳子完全拉直时,有 ()'2v M m gh m +=gh mM m v 2'+=gh mM mMMv I I T 22'22+===10.解:设船移动距离x ,人、船系统总动量不变为零0=+mv Mu等式乘以d t 后积分,得0=+⎰⎰totomvdt Mudt0)(=-+l x m Mx m mM mlx 47.0=+=2质点运动学单元练习二答案—95.1.C 2.D 3.D 4.C 5.18J ;6m/s 6.5/37.解:摩擦力mg f μ=由功能原理 2121210)(kx x x f -=+- 解得 )(22121x x mg kx +=μ.8.解:根据牛顿运动定律 Rv m F mg N 2cos =-θ由能量守恒定律mgh mv =221质点脱离球面时 RhR F N -=θ=cos ;0 解得:3R h =9.解:(1)在碰撞过程中,两球速度相等时两小球间距离最小 v v v )(212211m m m m +=+ ①212211m m v m v m v ++=(2) 两球速度相等时两小球间距离最小,形变最大,最大形变势能等于总动能之差22122221)(212121v v v m m m m E p +-+=② 联立①、②得 )/()(212122121m m m m E p +-=v v10.解:(1)由题给条件m 、M 系统水平方向动量守恒,m 、M 、地系统机械能守恒.0)(=--MV V u m ①mgR MV V u m =+-2221)(21 ② 解得: )(2m M M gRmV +=;MgRm M u )(2+=(2) 当m 到达B 点时,M 以V 运动,且对地加速度为零,可看成惯性系,以M 为参考系 R mu mg N /2=-M mg m M mg R mu mg N /)(2/2++=+= mg MmM M mg m M Mmg N 23)(2+=++=2质点运动学单元练习二答案—11 6.1.B2.C3.C4.C5.v = 1.23 m/s ;a n = 9.6 m/s 2;α = –0.545 rad/ s 2;N = 9.73转。

大学物理活页作业答案全套

大学物理活页作业答案全套

1.质点运动学单元练习(一)答案1.B 2.D 3.D 4.B5.;(提示:首先分析质点的运动规律,在t <时质点沿x 轴正方向运动;在t =时质点的速率为零;,在t >时质点沿x 轴反方向运动;由位移和路程的定义可以求得答案。

)6.135m (提示:质点作变加速运动,可由加速度对时间t 的两次积分求得质点运动方程。

)7.解:(1))()2(22SI jt i t r -+=)(21m ji r+= )(242m ji r-=)(3212m ji r r r-=-=∆)/(32s m ji t r v -=∆∆=(2))(22SI j t i dtrd v -== )(2SI jdt vd a -==)/(422s m j i v-=)/(222--=s m ja8.解:t A tdt A adt v totoωω-=ωω-==⎰⎰sin cos 2t A tdt A A vdt A x totoω=ωω-=+=⎰⎰cos sin9.解:(1)设太阳光线对地转动的角速度为ωs rad /1027.73600*62/5-⨯=π=ωs m th dt ds v /1094.1cos 32-⨯=ωω==(2)当旗杆与投影等长时,4/π=ωth s t 0.31008.144=⨯=ωπ=10.解: ky yv v t y y v t dv a -====d d d d d d d -k =y v d v / d y⎰⎰+=-=-C v ky v v y ky 222121,d d 已知y =y o ,v =v o 则20202121ky v C --= )(2222y y k v v o o -+=ωths2.质点运动学单元练习(二)答案1.D 2.A 3.B 4.C5.14-⋅==s m t dt ds v ;24-⋅==s m dtdva t ;2228-⋅==s m t Rv a n ;2284-⋅+=s m e t e a nt6.s rad o /0.2=ω;s rad /0.4=α;2/8.0s rad r a t =α=;22/20s m r a n =ω=7.解:(1)由速度和加速度的定义)(22SI ji t dt rd v +==;)(2SI idtvd a ==(2)由切向加速度和法向加速度的定义)(124422SI t t t dt d a t +=+=)(12222SI t a a a t n +=-=(3)())(122/322SI t a v n+==ρ8.解:火箭竖直向上的速度为gt v v o y -︒=45sin 火箭达到最高点时垂直方向速度为零,解得s m gtv o /8345sin =︒=9.解:s m uv /6.3430tan =︒=10.解:l h v u ≤;u hl v ≥3.牛顿定律单元练习答案1.C 2.C 3.A 4.kg Mg T 5.36721==;2/98.02.0s m MT a == 5.x k v x 22=;x x xv k dtdxk dt dv v 222== 221mk dt dv mf x x == 6.解:(1)ma F F N T =θ-θsin cosmg F F N T =θ+θcos sinθ-θ=θ+θ=sin cos ;cos sin ma mg F ma mg F N T(2)F N =0时;a =g cot θ7.解:mg R m o ≥ωμ2Rg o μ≥ω 8.解:由牛顿运动定律可得dtdv t 1040120=+ 分离变量积分()⎰⎰+=tovdt t dv 4120.6 )/(6462s m t t v ++=()⎰⎰++=t oxdt t tdx 6462.5 )(562223m t t t x +++=9.解:由牛顿运动定律可得dtdv mmg kv =+- 分离变量积分⎰⎰-=+t o vv o dt m k mg kv kdv ot m kmg kv mg o -=⎪⎪⎭⎫ ⎝⎛+ln ⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+-=mg kv k m mg kv mg k m t o o 1ln ln10.解:设f 沿半径指向外为正,则对小珠可列方程 a v m f mg 2cos =-θ,t vm mg d d sin =θ,以及 ta v d d θ=,θd d v a t =,积分并代入初条件得 )cos 1(22θ-=ag v ,)2cos 3(cos 2-=-=θθmg av m mg f .4.动量守恒和能量守恒定律单元练习(一)答案1.A ; 2.A ; 3.B ; 4.C ; 5.相同 6.2111m m t F v +∆=;2212m t F v v ∆+=7.解:(1)t dt dxv x 10==;10==dtdv a x x N ma F 20==;m x x x 4013=-=∆J x F W 800=∆=(2)s N Fdt I ⋅==⎰40318.解:()1'v m m mv +=()221221'2121o kx v m m mv ++= ()''m m k mm vx +=9.解: 物体m 落下h 后的速度为 gh v 2=当绳子完全拉直时,有 ()'2v M m gh m +=gh mM m v 2'+=gh mM mMMv I I T 22'22+===10.解:设船移动距离x ,人、船系统总动量不变为零0=+mv Mu等式乘以d t 后积分,得0=+⎰⎰totomvdt Mudt0)(=-+l x m Mx m mM mlx 47.0=+=5.动量守恒和能量守恒定律单元练习(二)答案1.C 2.D 3.D 4.C 5.18J ;6m/s 6.5/37.解:摩擦力mg f μ=由功能原理 2121210)(kx x x f -=+- 解得 )(22121x x mg kx +=μ.8.解:根据牛顿运动定律 Rv m F mg N 2cos =-θ由能量守恒定律mgh mv =221质点脱离球面时 RhR F N -=θ=cos ;0 解得:3R h =9.解:(1)在碰撞过程中,两球速度相等时两小球间距离最小 v v v )(212211m m m m +=+ ①212211m m v m v m v ++=(2) 两球速度相等时两小球间距离最小,形变最大,最大形变势能等于总动能之差22122221)(212121v v v m m m m E p +-+=② 联立①、②得 )/()(212122121m m m m E p +-=v v10.解:(1)由题给条件m 、M 系统水平方向动量守恒,m 、M 、地系统机械能守恒.0)(=--MV V u m ①mgR MV V u m =+-2221)(21 ② 解得: )(2m M M gRmV +=;MgRm M u )(2+=(2) 当m 到达B 点时,M 以V 运动,且对地加速度为零,可看成惯性系,以M 为参考系 R mu mg N /2=-M mg m M mg R mu mg N /)(2/2++=+= mg MmM M mg m M Mmg N 23)(2+=++=6.刚体转动单元练习(一)答案1.B2.C3.C4.C5.v = m/s ;a n = m/s 2;α = – rad/ s 2;N = 转。

大学物理活页作业答案及解析((全套))

大学物理活页作业答案及解析((全套))

1、质点运动学单元练习(一)答案1.B2.D3.D4.B5.3、0m;5、0m(提示:首先分析质点得运动规律,在t <2、0s 时质点沿x 轴正方向运动;在t =2、0s 时质点得速率为零;,在t >2、0s 时质点沿x 轴反方向运动;由位移与路程得定义可以求得答案。

)6.135m(提示:质点作变加速运动,可由加速度对时间t 得两次积分求得质点运动方程。

)7.解:(1))()2(22SI jt i t r)(21m ji r)(242m ji r)(3212m ji r r r)/(32s m ji t r v(2))(22SI j t i dtrd v )(2SI jdt vd a)/(422s m j i v)/(222 s m ja8.解:t A tdt A adt v totosin cos 2t A tdt A A vdt A x totocos sin9.解:(1)设太阳光线对地转动得角速度为ωs rad /1027.73600*62/5s m th dt ds v /1094.1cos 32(2)当旗杆与投影等长时,4/ th s t 0.31008.14410.解: ky yv v t y y v t dv ad d d d d d d -k y v d v / d yC v ky v v y ky 222121,d d 已知y =y o ,v =v o 则20202121ky v C )(2222y y k v v o o2、质点运动学单元练习(二)答案1.D2.A3.B4.C5.14 s m t dt ds v ;24s m dtdva t ;2228 s m t Rv a n ;2284 s m e t e a nt6.s rad o /0.2 ;s rad /0.4 ;2/8.0s rad r a t ;22/20s m r a n7.解:(1)由速度与加速度得定义)(22SI ji t dt rd v ;)(2SI idtv d a(2)由切向加速度与法向加速度得定义)(124422SI t t t dt d a t)(12222SI t a a a t n(3))(122/322SI t a v n8.解:火箭竖直向上得速度为gt v v o y 45sin 火箭达到最高点时垂直方向速度为零,解得s m gtv o /8345sin9.解:s m uv /6.3430tan10.解:l h v u ;u hl v 3、牛顿定律单元练习答案1.C2.C3.A4.kg Mg T5.36721;2/98.02.0s m MT a5.x k v x 22 ;x x xv k dt dxk dt dv v 222 221mk dt dv mf x x 6.解:(1)ma F F N T sin cosmg F F N T cos sinsin cos ;cos sin ma mg F ma mg F N T(2)F N =0时;a =g cot θ7.解:mg R m o 2Rg o8.解:由牛顿运动定律可得dtdv t 1040120 分离变量积分t o vdt t dv 4120.6 )/(6462s m t tvtoxdt t tdx 64620.5 )(562223m t t t x9.解:由牛顿运动定律可得dtdv mmg kv 分离变量积分t o vv o dt m k mg kv kdv ot m kmg kv mg olnmg kv k m mg kv mg k m t o o 1ln ln10.解:设f 沿半径指向外为正,则对小珠可列方程a v m f mg 2cos ,t vm mg d d sin ,以及 ta v d d, d d v a t ,积分并代入初条件得 )cos 1(22 ag v ,)2cos 3(cos 2mg av m mg f .4、动量守恒与能量守恒定律单元练习(一)答案1.A;2.A;3.B;4.C;5.相同6.2111m m t F v;2212m t F v v 7.解:(1)t dt dxv x 10;10 dtdv a x x N ma F 20 ;m x x x 4013J x F W 800(2)s N Fdt I40318.解: 1'v m m mv221221'2121o kx v m m mv''m m k mm vx9.解: 物体m 落下h 后得速度为 gh v 2当绳子完全拉直时,有 '2v M m gh mgh mM m v 2'gh mM mMMv I I T 22'2210.解:设船移动距离x ,人、船系统总动量不变为零0 mv Mu等式乘以d t 后积分,得totomvdt Mudt0)( l x m Mx m mM mlx 47.05、动量守恒与能量守恒定律单元练习(二)答案1.C2.D3.D4.C5.18J;6m/s6.5/37.解:摩擦力mg f由功能原理 2121210)(kx x x f解得 )(22121x x mg kx 、8.解:根据牛顿运动定律 Rv m F mg N 2cos由能量守恒定律mgh mv 221质点脱离球面时 RhR F Ncos ;0 解得:3R h9.解:(1)在碰撞过程中,两球速度相等时两小球间距离最小 v v v )(212211m m m m ①212211m m v m v m v(2) 两球速度相等时两小球间距离最小,形变最大,最大形变势能等于总动能之差22122221)(212121v v v m m m m E p② 联立①、②得 )/()(212122121m m m m E pv v 10.解:(1)由题给条件m 、M 系统水平方向动量守恒,m 、M 、地系统机械能守恒.0)( MV V u m ① mgR MV V u m 2221)(21 ② 解得: )(2m M M gRmV ;MgRm M u )(2(2) 当m 到达B 点时,M 以V 运动,且对地加速度为零,可瞧成惯性系,以M 为参考系 R mu mg N /2M mg m M mg R mu mg N /)(2/2mg MmM M mg m M Mmg N 23)(26、刚体转动单元练习(一)答案1.B2.C3.C4.C5.v = 1、23 m/s;a n = 9、6 m/s 2;α = –0、545 rad/ s 2;N = 9、73转。

新世纪大学物理活页习题集(1-9)

新世纪大学物理活页习题集(1-9)

1-101 质点运动学一、选择题(在下列各题中,均给出了4个~6个答案,其中有的只有1个是正确答案,有的则有几个是正确答案,请把正确答案的英文字母序号填在题后的括号内) 1.在下列关于质点运动的表述中,不可能出现的情况是:( ) A.一质点具有恒定的速率,但却有变化的速度; B.一质点向前的加速度减少了,其前进速度也随之减少; C.一质点加速度值恒定,而其速度方向不断改变; D.一质点具有零速度,同时具有不为零的加速度。

2.在下列关于加速度的表述中,正确的是:( ) A.质点沿x 轴运动,若加速度a <0,则质点必作减速运动; B.质点作圆周运动时,加速度方向总是指向圆心; C.在曲线运动中,质点的加速度必定不为零; D.质点作曲线运动时,加速度方向总是指向曲线凹的一侧; E.若质点的加速度为恒矢量,则其运动轨迹必为直线; F.质点作抛物运动时,其法向加速度a n 和切向加速度τa 是不断变化的,因此,加速度a=22τa a n +也是变化的。

3.如图1-1所示,质点作匀速圆周运动,其半径为R ,从A 点出发,经半个圆周而达到B 点,则在下列表达式中,不正确的是: ( )01班号 学号 姓名 成绩A.速度增量Δv =0,速率增量Δv =0;B.速度增量Δv =-2vj ,速率增量Δv =0;C.位移大小|Δr |=2R ,路程s=πRD.位移Δr=-2Ri ,路程s=πR 。

4.一运动质点在某瞬时位于矢径r (x ,y)的端点处,其速度大小为: ( )A.dt dr ;B.dtr d ; C.dt r d ; D.22⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛dt dy dt dx 。

5.一质点在平面上运动,已知质点位置矢量的表示式为j bt i at r 22+= (其中a ,b 为常量)则该质点作:( ) A.匀速直线运动; B.变速直线运动;C.抛物线运动;D.一般曲线运动。

6.已知质点的运动方程为:x =Atcos θ+Bt 2cos θ,y=Atsin θ+Bt 2sin θ,式中A 、B 、θ均为恒量,且A >0,B >0,则质点的运动为: ( )A.圆周运动;B.抛体运动;C.椭圆运动;D.匀加速直线运动;E.匀减速直线运动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

练习1 质点运动学(一)班级 学号 姓名 成绩 .1. 一质点在平面上运动,已知质点位置矢量的表示式为 j bt i at r 22 (其中a 、b 为常量),则该质点作 (A) 匀速直线运动. (B) 变速直线运动.(C) 抛物线运动. (D)一般曲线运动. [ ]2.一质点在平面上作一般曲线运动,其瞬时速度为v,瞬时速率为 ,某一时间内的平均速度为v,平均速率为v ,它们之间的关系必定有:(A )v v v,v (B )v v v,v(C )v v v,v (D )v v v,v[ ]3.一质点沿直线运动,其运动学方程为x = 6 t -t 2 (SI),则在t 由0至4s 的时间间隔内,质点的位移大小为___________,在t 由0到4s 的时间间隔内质点走过的路程为_______________. 4.一质点作直线运动,其坐标x 与时间t 的关系曲线如图所示.则该质点在第 秒瞬时 速度为零;在第 秒至第 秒间速度与加速度同方向.5. 有一质点沿x 轴作直线运动,t 时刻的坐标为x = 4.5 t 2 – 2 t 3 (SI) .试求:(1) 第2秒内的平均速度; (2) 第2秒末的瞬时速度; (3) 第2秒内的路程.6. 什么是矢径?矢径和对初始位置的位移矢量之间有何关系?怎样选取坐标原点才能够使两者一致?练习2 质点动力学(一)班级 学号 姓名 成绩 .1.质量分别为m 1和m 2的两滑块A 和B 通过一轻弹簧水平连结后置于水平桌面上,滑块与桌面间的摩擦系数均为 ,系统在水平拉力F 作用下匀速运动,如图所示.如突然撤消拉力,则刚撤消后瞬间,二者的加速度a A 和a B 分别为(A) a A =0 , a B =0. (B) a A >0 , a B <0.(C) a A <0 , a B >0. (D) a A <0 , a B =0.[ ]2. 体重、身高相同的甲乙两人,分别用双手握住跨过无摩擦轻滑轮的绳子各一端.他们从同一高度由初速为零向上爬,经过一定时间,甲相对绳子的速率是乙相对绳子速率的两倍,则到达顶点的情况是(A)甲先到达. (B)乙先到达.(C)同时到达. (D)谁先到达不能确定. [ ]3. 分别画出下面二种情况下,物体A 的受力图.(1) 物体A 放在木板B 上,被一起抛出作斜上抛运动,A 始终位于B 的上面,不计空气阻力;(2) 物体A 的形状是一楔形棱柱体,横截面为直角三角形,放在桌面C 上.把物体B 轻轻地放在A 的斜面上,设A 、B 间和A 与桌面C 间的摩擦系数皆不为零,A 、B 系统静止. 4.质量为m 的小球,用轻绳AB 、BC 连接,如图,其中AB 水平. 剪断绳AB 前后的瞬间,绳BC 中的张力比 T : T ′=____________.5. 如图所示,A ,B ,C 三物体,质量分别为M=0.8kg, m=m 0=0.1kg ,当他们如图a 放置时,物体正好做匀速运动。

(1)求物体A 与水平桌面的摩擦系数;(2)若按图b 放置时,求系统的加速度及绳的张力。

6. 质量为m 的子弹以速度v 0水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为K,忽略子弹的重力,求:AABBC (1) (2) 0vBm ACB(1) 子弹射入沙土后,速度随时间变化的函数式;(2) 子弹进入沙土的最大深度.练习3 刚体力学(一)班级学号姓名成绩 . 1. 有两个力作用在一个有固定转轴的刚体上:(1) 这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2) 这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3) 当这两个力的合力为零时,它们对轴的合力矩也一定是零;(4) 当这两个力对轴的合力矩为零时,它们的合力也一定是零.在上述说法中,(A) 只有(1)是正确的.(B) (1) 、(2)正确,(3) 、(4) 错误.(C) (1)、(2) 、(3) 都正确,(4)错误.(D) (1) 、(2) 、(3) 、(4) 都正确.[]2. 一轻绳绕在有水平轴的定滑轮上,滑轮的转动惯量为J,绳下端挂一物体.物体所受重力为P,滑轮的角加速度为 .若将物体去掉而以与P相等的力直接向下拉绳子,滑轮的角加速度 将(A) 不变.(B) 变小.(C) 变大.(D) 如何变化无法判断.[]3. 三个质量均为m的质点,位于边长为a的等边三角形的三个顶点上.此系统对通过三角形中心并垂直于三角形平面的轴的转动惯量J0=________,对通过三角形中心且平行于其一边的轴的转动惯量为J A=__________,对通过三角形中心和一个顶点的轴的转动惯量为J B=__________.4. 一作定轴转动的物体,对转轴的转动惯量J = 3.0 kg ·m 2,角速度 0=6.0 rad/s .现对物体加一恒定的制动力矩M =-12 N ·m ,当物体的角速度减慢到 = 2.0 rad/s 时,物体已转过了角度 =_________________.5. 质量为m 1, m 2 ( m 1 > m 2)的两物体,通过一定滑轮用绳相连,已知绳与滑轮间无相对滑动,且定滑轮是半径为R 、质量为 m 3的均质圆盘,忽略轴的摩擦。

求:滑轮的角加速度 。

(绳轻且不可伸长)6. 质量m = 1.1 kg 的匀质圆盘,可以绕通过其中心且垂直盘面的水平光滑固定轴转动,对轴的转动惯量J =221mr (r 为盘的半径).圆盘边缘绕有绳子,绳子下端挂一质量m 1=1.0 kg 的物体,如图所示.起初在圆盘上加一恒力矩使物体以速率 0=0.6 m/s 匀速上升,如撤去所加力矩,问经历多少时间圆盘开始作反方向转动.练习4 机械振动(一)班级 学号 姓名 成绩 .1.轻质弹簧下挂一个小盘,小盘作简谐振动,平衡位置为原点,位移向下为正,并采用余弦表示。

小盘处于最低位置时刻有一个小物体不变盘速地粘在盘上,设新的平衡位置相对原平衡位置向下移动的距离小于原振幅,且以小物体与盘相碰为计时零点,那么以新的平衡位置为原点时,新的位移表示式的初相在 (A) 0~ 之间. (B) 之间.(C)之间. (D) 3之间. [ ]m 1m ,r2.一质点沿x 轴作简谐振动,振动方程为 )π31π2cos(1042t x (SI).从t = 0时刻起,到质点位置在x = -2 cm 处,且向x 轴正方向运动的最短时间间隔为(A) s 81 (B) s 61 (C) s 41(D)s 31 (E) s 21[ ]3.一质点沿x 轴作简谐振动,振动范围的中心点为x 轴的原点.已知周期为T ,振幅为A . (1) 若t = 0时质点过x = 0处且朝x 轴正方向运动,则振动方程为 x =___________________.(2) 若t = 0时质点处于A x 21处且向x 轴负方向运动,则振动方程为 x =_______________.4. 一质点作简谐振动.其振动曲线如图所示.根据此图, 它的周期T =___________,用余弦函数描述时初相 =_________________.5. 一物体作简谐振动,其速度最大值 m = 3×10-2 m/s ,其振幅A = 2×10-2 m .若t = 0时,物体位于平衡位置且向x 轴的负方向运动. 求:(1) 振动周期T ; (2) 加速度的最大值a m ; (3) 振动方程的数值式.6. 在竖直面内半径为R 的一段光滑圆弧形轨道上,放一小物体,使其静止于轨道的最低处.然后轻碰一下此物体,使其沿圆弧形轨道来回作小幅度运动. 试证:(1) 此物体作简谐振动;(2) 此简谐振动的周期gπ2RT/练习5 机械波(一)班级 学号 姓名 成绩 .1. 在下面几种说法中,正确的说法是: (A) 波源不动时,波源的振动周期与波动的周期在数值上是不同的. (B) 波源振动的速度与波速相同.(C) 在波传播方向上的任一质点振动相位总是比波源的相位滞后(按差值不大于 计).(D) 在波传播方向上的任一质点的振动相位总是比波源的相位超前.(按差值不大于 计)[ ]2. 图示一沿x 轴正向传播的平面简谐波在t = 0时刻的波形.若振动以余弦函数表示,且此题各点振动初相取 到之间的值,则(A) O 点的初相为π210 .(B) 1点的初相为01 . (C) 2点的初相为02 . (D) 3点的初相为03 . [ ]3. 一横波的表达式是 )30/01.0/(π2sin 2x t y 其中x 和y 的单位是厘米、t 的单位是秒, 此波的波长是_____________cm ,波速是___________________m/s .4. 一平面余弦波沿Ox 轴正方向传播,波动表达式为 ])(π2cos[xT t A y , 则x = -处质点的振动方程是____________________________________;若以x = 处为新的坐标轴原点,且此坐标轴指向与波的传播方向相反,则对此新的坐标轴, 该波的波动表达式是__________________________________.xO1 u2 3 45. 如图所示,一平面简谐波沿Ox 轴正向传播,波速大小为u ,若P 处质点的振动方程为)cos( t A y P ,求(1) O 处质点的振动方程;(2) 该波的波动表达式;(3) 与P 处质点振动状态相同的那些质点的位置. 6. 一平面简谐波沿Ox 轴的负方向传播,波长为,P 处质点的振动规律如图所示. (1) 求P 处质点的振动方程; (2) 求此波的波动表达式;(3) 若图中 21 d ,求坐标原点O 处质点的振动方程.练习6 气体动理论基础(一)班级 学号 姓名 成绩 .1. 一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m .根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值(A) m kT x32 . (B) mkT x 3312.(C) m kT x /32. (D) m kT x/2 . [ ] 2. 下列各式中哪一式表示气体分子的平均平动动能?(式中M 为气体的质量,m 为气体分子质量,N 为气体分子总数目,n 为气体分子数密度,N A 为阿伏加得罗常量) (A) pV M m23. (B)pV M M mol23. (C)npV 23. (D) pV N MM A 23mol . [ ] xO PLut (s)0 -A1P d3. 在容积为102 m3的容器中,装有质量100 g 的气体,若气体分子的方均根速率为200 m·s1,则气体的压强为________________.4. 有一瓶质量为M的氢气(视作刚性双原子分子的理想气体,其摩尔质量为M),温度为T,mol则氢分子的平均平动动能为______________,氢分子的平均动能为__________________,该瓶氢气的内能为____________________.5. 容器内有M = 2.66 kg氧气,已知其气体分子的平动动能总和是E K=4.14×105 J,求:(1) 气体分子的平均平动动能;(2) 气体温度.(阿伏伽德罗常量N A=6.02×1023 /mol,玻尔兹曼常量k=1.38×10-23 J·K1 )6. 容器内有11 kg二氧化碳和2 kg氢气(两种气体均视为刚性分子的理想气体),已知混合气体的内能是8.1×106 J.求:(1) 混合气体的温度;(2) 两种气体分子的平均动能.(二氧化碳的M mol=44×10kg·mol,玻尔兹曼常量k=1.38×10J·K摩尔气体常量R=8.31 J·mol1·K)练习7 热力学基础(一)班级学号姓名成绩 . 1. 置于容器内的气体,如果气体内各处压强相等,或气体内各处温度相同,则这两种情况下气体的状态(A) 一定都是平衡态. (B) 不一定都是平衡态. (C) 前者一定是平衡态,后者一定不是平衡态. (D) 后者一定是平衡态,前者一定不是平衡态. [ ] 2. 如图所示,一定量理想气体从体积V 1,膨胀到体积V 2分别经历的过程是:A →B 等压过程,A →C 等温过程;A →D 绝热过程,其中吸热量最多的过程(A) 是A →B. (B) 是A →C. (C) 是A →D.(D) 既是A →B 也是A →C , 两过程吸热一样多。

相关文档
最新文档