运用公式法—平方差公式

合集下载

公式法之平方差公式

公式法之平方差公式

公式法之平方差公式平法差公式是指在代数运算中,存在一种形如(a+b)(a-b)的乘法运算规则,可以将两个相邻的平方差式表示为一个乘法式,从而简化计算。

平方差公式的推导可以通过展开乘法(a+b)(a-b)的过程进行,具体推导如下:首先,我们假设a和b是任意实数。

那么(a+b)可以看作是一个单位,(a-b)可以看作是一个差数。

我们将其展开:(a+b)(a-b)=a(a-b)+b(a-b)接下来,我们将展开式中的乘法运算进行分配:=a*a-a*b+b*a-b*b= a^2 - ab + ba - b^2由于ab和ba表示的是相同的乘法运算,所以我们可以将它们合并:= a^2 - ab + ab - b^2=a^2-b^2可以看到,展开式的结果是a^2和b^2的差。

这个差就是平方差公式的核心内容。

因此,平方差公式可以表示为:(a+b)(a-b)=a^2-b^2这个公式在代数运算中非常常用,并且在很多数学问题的解答中都会用到。

通过使用平方差公式,可以将两个相邻的平方差式简化为一个乘法式,从而可以更方便地进行运算。

举例来说,假设我们需要计算(3+2)(3-2)的值。

根据平方差公式,可以得到:(3+2)(3-2)=3^2-2^2=9-4=5因此,(3+2)(3-2)的值等于5平方差公式在解决二次方程、因式分解、简化分数等问题中都有广泛的应用。

通过运用平方差公式,可以将复杂的运算问题转化为简单的代数运算,从而更加容易进行计算和解答。

总结起来,平方差公式是一种代数运算规则,可以将两个相邻的平方差式表示为一个乘法式。

通过使用平方差公式,可以简化计算过程,提高计算效率。

在数学问题的解答中,平方差公式具有广泛的应用价值。

这就是平方差公式的基本原理和推导过程。

3 公式法(要点梳理、类型讲解)

3 公式法(要点梳理、类型讲解)

公式法(知识讲解)【学习目标】1. 能运用平方差公式、完全平方公式把简单的多项式进行因式分解;2. 会综合运用提公因式法和平方差公式、完全平方公式把多项式分解因式;3.发展综合运用知识的能力和逆向思维的习惯;4.能运用平方差公式和完全平方公式的因式分解解决实际问题。

【知识要点】要点一、公式法——平方差公式两个数的平方差等于这两个数的和与这两个数的差的积,即:特别说明:(1)逆用乘法公式将特殊的多项式分解因式.(2)平方差公式的特点:左边是两个数(整式)的平方,且符号相反,右边是两个数(整式)的和与这两个数(整式)的差的积.(3)套用公式时要注意字母和的广泛意义,、可以是字母,也可以是单项式或多项式.要点二、公式法——完全平方公式两个数的平方和加上(减去)这两个数的积的2倍,等于这两个数的和(差)的平方. 即,. 形如,的式子叫做完全平方式.特别说明:(1)逆用乘法公式将特殊的三项式分解因式;(2)完全平方公式的特点:左边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍. 右边是两数的和(或差)的平方.(3)完全平方公式有两个,二者不能互相代替,注意二者的使用条件.(4)套用公式时要注意字母和的广泛意义,、可以是字母,也可以是单项式或多项式.要点三、因式分解步骤 ()()22a b a b a b -=+-a b a b ()2222a ab b a b ++=+()2222a ab b a b -+=-222a ab b ++222a ab b -+a b a b(1)如果多项式的各项有公因式,先提取公因式;(2)如果各项没有公因式那就尝试用公式法;(3)如用上述方法也不能分解,那么就得选择分组或其它方法来分解(以后会学到). 要点四、因式分解注意事项(1)因式分解的对象是多项式;(2)最终把多项式化成乘积形式;(3)结果要彻底,即分解到不能再分解为止.【典型例题】类型一、公式法➽➼判断能否用公式法的辨析1.下列各式:①22x y --;②22114a b -+;③22a ab b ++;④222x xy y -+-;⑤2214mn m n -+,能用公式法分解因式的有( ) A .2个B .3个C .4个D .5个【答案】B 【分析】利用平方差公式与完全平方公式逐一把各因式分解因式,从而可得答案. 解:22x y --不能分解因式,故①不符合题意;222211111111,4222a b ab ab ab ⎛⎫⎛⎫⎛⎫-+=-=+- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭故②符合题意; 22a ab b ++不能分解因式,故③不符合题意; ()()2222,222x xy y x y x xy y =--+=---+-故④符合题意; 22211,42mn m n mn ⎛⎫-+=- ⎪⎝⎭故⑤符合题意; 故选B【点拨】本题考查的是利用公式法分解因式,掌握“平方差公式与完全平方公式分解因式”是解本题的关键.举一反三:【变式1】下列多项式不能用完全平方公式分解因式的是( )A .212a a -+B .2168x x --+C .22222a b m n abmn --D .2269ab a b --【答案】C【分析】根据完全平方公式的结构()2222a b a ab b ±=±+逐项分析判断即可求解. 解:A. 212a a -+()21a =-能用完全平方公式因式分解,故该选项不符合题意;B. 2168x x --+()24x =--,能用完全平方公式因式分解,故该选项不符合题意;C. 22222a b m n abmn --,平方项异号,不能用完全平方公式因式分解,故该选项符合题意;D. 2269ab a b --()23a b =--,能用完全平方公式因式分解,故该选项不符合题意. 故选C .【点拨】本题考查了完全平方公式因式分解,掌握完全平方公式是解题的关键.【变式2】对于多项式(1)22x y -;(2)22x y --;(3)24x y -;(4)24x -+中,能用平方差公式分解的是( )A .(1)(2)B .(1)(3)C .(1)(4)D .(2)(4) 【答案】C【分析】由于平方差公式必须只有两项,并且是两个数差的形式,利用这个特点即可确定哪几个能用平方差公式分解. 解:平方差公式必须只有两项,并且是两个数平方差的形式,(1)22x y -两平方项符号相反,可以利用平方差公式;(2)22x y --,两平方项符号相同,不能运用平方差公式;(3)42x y -虽然是两项,并且是差的形式,但不是平方差的形式;(4)24x -+,两平方项符号相反,可以利用平方差公式.所以(1)(4)能用平方差公式分解.故选:C .【点拨】此题考查了平方差公式的特点,只要抓住平方差公式的特点:两平方项,符号相反,熟记公式结构特点是解题的关键. 类型二、运用平方差公式和完全平方公式进行因式分解2.因式分解:(1) 24x - (2) 321025m m m -+【答案】(1) ()()22x x +- (2) ()25m m -【分析】(1)根据平方差公式分解即可;(2)先提取公因式,再用完全平方公式分解即可.(1)解:24x -222x =-()()22x x =+-;(2)解:321025m m m -+2(1025)m m m =-+2(5)m m =-.【点拨】本题主要考查了因式分解,掌握因式分解的方法是解题关键.注意一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.举一反三:【变式1】分解因式:(1) 41x - (2) 3222x x y xy -+【答案】(1) ()()()2111x x x +-+ (2) ()2x x y - 【分析】(1)利用两次平方差公式进行因式分解即可得;(2)综合利用提公因式法和完全平方公式进行因式分解即可得.(1)解:原式()()2211x x -=+,()()()2111x x x +-+=;(2)解:原式()222x x xy y =-+, ()2x x y =-.【点拨】本题考查了因式分解,熟练掌握因式分解的方法,准确计算是解题关键.【变式2】因式分解:(1) 29a - (2) 244x x -+【答案】(1) ()()33a a +- (2) ()22x - 【分析】(1)直接利用平方差公式()()22a b a b a b -=+-进行因式分解即可得;(2)直接利用完全平方公式()2222a ab b a b ±+=±进行因式分解即可得.解:(1)()()2933a a a -=+- (2)()22442x x x -+=-【点拨】本题考查了因式分解,熟记乘法公式是解题关键. 类型三、综合运用平方差公式和完全平方公式进行因式分解3.因式分解(1) 22ma ma m ++ (2) ()222416x x +- 【答案】(1) 2(1)m a + (2) 22(2)(2)x x +-【分析】(1)先提取公因式,再用完全平方式因式分解.(2)先用平方差公式因式分解,再用完全平方公式因式分解.解:(1)22ma ma m ++2(21)m a a =++2(1)m a =+(2)()222416x x +- 22(44)(44)x x x x =+++-22(2)(2)x x =+-【点拨】此题考查了因式分解,解题的关键是熟悉因式分解的基本步骤1.提取公因式;2.套用公式.举一反三:【变式1】把下列各式因式分解:(1) 32242a a a -+;(2) ()()2294a x y b y x -+-. 【答案】(1) ()221a a - (2) ()()()3232x y a b a b -+-【分析】(1)先提取公因式2a ,然后用完全平方公式分解即可;(2)先提取公因式x -y ,然后用平方差公式分解即可.(1)解:32242a a a -+()2221a a a =-+()221a a =-.(2)解:()()2294a x y b y x -+- ()()2294a x y b x y =---()()2294x y a b =--()()()3232x y a b a b =-+-.【点拨】本题主要考查了因式分解,掌握运用提取公因式法和公式法因式分解是解答本题的关键.【变式2】分解因式:(1) 228168ax axy ay -+-(2) ()22222936x y x y +-; 【答案】(1)28()a x y --(2)22(3)(3)x y x y +-【分析】(1)先提公因式,再根据完全平方公式分解因式即可;(2)根据平方差公式和完全平方公式分解因式即可.解:(1)原式228(2)a x xy y =--+28()a x y =-- (2)原式2222(9)(6)x y xy =+-2222(96)(96)x y xy x y xy =+++-22(3)(3)x y x y =+-【点拨】本题考查了因式分解,涉及提公因式法和公式法,熟练掌握分解因式的步骤是解题的关键.类型四、运用公式法进行因式分解进行简便运算4.用简便方法计算.(1)227.29 2.71- (2)4413423.7 1.35555-⨯+⨯-⨯ 【答案】(1)45.8;(2)-20【分析】(1)利用平方差公式进行计算;(2)提出45,然后进行计算即可. 解:(1)227.29 2.71-=(7.29+2.71)(7.29-2.71)=10×4.58=45.8;(2)4413423.7 1.35555-⨯+⨯-⨯ =4(23.7 1.3 2.6)5⨯-+- =4(25)5⨯- =-20【点拨】本题考查了利用因式分解进行简便计算,掌握因式分解的方法是关键. 举一反三:【变式1】利用因式分解计算:(1)9788597879788⨯+⨯+⨯; (2)23.86 3.86 3.85-⨯.【答案】(1)97800;(2)0.0386【分析】(1)提取公因式978后进行计算;(2)提取公因式3.86后进行计算. 解:(1)原式()9788578=⨯++97800=.(2)原式()3.86 3.86 3.85=⨯-0.0386=.【点拨】本题考查利用因式分解对有理数进行简便运算,利用提取公因式因式分解是解答此题的关键.【变式2】计算:2 0182-4 038×2 018+2 0192.【答案】1.试题分析:根据完全平方公式特征进行因式分解,进行简便计算即可.解:2 0182-4 038×2 018+2 0192=2 0182-2×2 018×2 019+2 0192=(2 018-2 019)2=1.。

沪教版七年级数学上册 公式法—平方差公式(第1课时)

沪教版七年级数学上册 公式法—平方差公式(第1课时)

5.观察下列计算过程:
32-12=9-1=8=8×1; 52-32=25-9=16=8×2; 72-52=49-25=24=8×3; 92-72=81-49=32=8×4;
......
你能从上式中得出什么结论?说明理由.
解:根据上列各式得出的结论是
两个连续奇数的平方差是8的整数倍.
设两个连续奇数为2n+1、2n-1(n为正整数)
(2) 16a2-9b2
公式中的a和b 表示单项式
(1)解:原式 =62-(5x)2
(2)解:原式 =(4a)2-(3b)2
=(6+5x)(6-5x)
=(4a+3b)(4a-3b)
★在使用平方差公式分解因式时,步骤为: 1.变形(明确哪个相当于 a , 哪个相当于 b. ) 2.分解
例题2:分解因式:
当堂练习
1.利用因式分解计算:
“数”与“式” 的相互变换
(1) 10122-9882
(2) 9×1222-4×1332
解(1)原式=(1012+988)(1012-988)(2) 原式=(3×122)2 -(2×133)2
=2000×24
=3662 -2662
=4800
=(366+266)(366-266)
可以,因为 4x 2 可写为 (2x) 2 9 y 2可写为 (3y)2
,所以原式可看作两数的平方差,即: 4x2 9y2 (2x)2 (3y)2 (2x 3y)(2x 3y)
a 2 ▲ b 2 ( a ▲ b )( a ▲ b )
(1)公式左边:
★多项式含有两项,且这两项异号,并且能写 成( )2-( )2的形式。

(3)a2 -(-b)2 = a2 - b2 = (a+b)(a-b) 能

合作学习初体验--《运用公式法(1)平方差公式》课堂实录

合作学习初体验--《运用公式法(1)平方差公式》课堂实录

合作学习初体验--《运用公式法(1)平方差公式》课堂实录
张淑芬;张坤伟
【期刊名称】《黑龙江教育(中学教学案例与研究)》
【年(卷),期】2003(000)011
【摘要】@@ 课堂实录:rn一、创设情境rn师:同学们,大家知道2008年将在我国首都北京举行一次什么盛会吗?rn生:(全体)奥运会.rn师:是的,是第29届世界奥林
匹克运动会.那么,谁知道这次奥林匹克运动会的三大主题是什么?rn生A:绿色奥运、人文奥运、科技奥运.
【总页数】3页(P4-6)
【作者】张淑芬;张坤伟
【作者单位】无
【正文语种】中文
【中图分类】G63
【相关文献】
1.“平方差公式”课堂实录与评析 [J], 张艳丽;尚艳芬;
2."平方差公式"课堂实录与评析 [J], 张艳丽;尚艳芬
3.浅谈前端学习任务单在和美数学课堂中的运用——以人教版数学八年级上册“1
4.2.1平方差公式”为例 [J], 王中仙;
4.基于核心素养的“S·C·S”小组合作学习模式的实践与反思——以“平方差公式
法因式分解”为例 [J], 陈新统
5.合作学习初体验——《运用公式法(1)平方差公式》课堂实录 [J], 张淑芬;张坤伟
因版权原因,仅展示原文概要,查看原文内容请购买。

运用公式法——平方差公式(1)

运用公式法——平方差公式(1)
例把下列各式分解因式:
(1) 1-25b2; (2) x2y2-1/4 ; (3) 4/9m2-0.01n2.
讲解之前让学生思考,后教师再给出规范解题过程,其中把多项式写成两数平方差这一步骤予以重点阐述,使学生充分认识到经过简单的变形后,具备“平方差”形式的多项式可以运用平方差公式分解.
3.能力测试
(2)运用提公因式法分解因式的步骤是什么?
(3)你能将a2-b2分解因式吗?你是如何思考的?
2.合作探究
问题(1)平方差公式等式的左右两边在形式上有什么不同?从左到右的恒等变形叫什么?问题(ຫໍສະໝຸດ )这种因式分解是根据什么方法进行的?
问题(3)平方差公式的项、指数、符号有什么特点?
当学生思考并回答上述问题后,教师应适当指出:多项式的乘法公式的逆向(从右到左)的应用就是多项式因式分解公式,,如果被分解的多项式符合公式的条件,就可以直接写出因式分解的结果,这种分解因式的方法称为运用公式法.
运用公式法
教学内容
运用公式法
教学目标
1.理解平方差公式
2.会用平方差公式分解因式
3.培养学生逆向思维的意识.
教学重点
掌握公式的结构特征,将所给多项式进行因式分解.
教学难点
选择适当方法因式分解.
教学探究
平方差公式特点的辨析
教学方法
启发式
教学用具
小黑板
教学时数
一课时
教学过程
1.复习引入
(1)你能叙述多项式因式分解的定义吗?
(1)同类变式:
课本例3后练习第1、2、3题.
(2)思维迁移:
①两个连续奇数的平方差一定是( )
A . 16倍数; B . 8的倍数;
C . 12的倍数; D . 4的倍数.

4.3公式法(1)平方差公式

4.3公式法(1)平方差公式
-(2a+1) (2a-1)
C. -(2a +1)(2a+1) D.
2. 把下列各式分解因式:
1)18-2b²
2) x4 –1
1)原式=2(9-b2)=2(3+b)(3-b) 2)原式=(x²+1)(x+1)(x-1)
3.x2-64因式分解为( D ). (A)(x-16)(x+4); (B) (x-32)(x+32); (C) (x+16)(x-4); (D) (x-8)(x+8). 4. 64a8-b2因式分解为( C ). (A) (64a4-b)(a4+b); (B) (16a2-b)(4a2+b); (C) (8a4-b)(8a4+b); (D) (8a2-b)(8a4+b).
⑶在乘法公式中,“平方差”是计算结果; 在因式分解中,“平方差”是要分解的多项式。
引例: 对照平方差公式怎样将下面的多项式分解因式 (1)x2-16 (2)9m2-4n2 解:(1) x2-16 x x 44 =x2 - 42 = ( + ) ( - ) ……① a2 - b2 = (a+ b) (a - b) (2) 9m2-4n2 3m 3m 2n 2n =(3m)2 - (2n)2=( + ) (
( 4 ) –9x² + 4m
2 4 (5)x y -9
2
=(2m+3x)(2m-3x)
解:2) 4x² - m² n²
原式=(xy2)2-32 =(xy2+3)(xy2-3)
=(2x)² - (mn)²
=(2x+mn)(2x-mn)
下列多项式可否用平方差公式分解 因式,如果可以应分解成什么式 子?如果不可以请说明理由。

初中数学《公式法-平方差公式》教学设计及说课稿模板

初中数学《公式法-平方差公式》教学设计及说课稿模板

初中数学《公式法-平方差公式》教学设计及说课稿模板《公式法-平方差公式》教学设计一、教学目标【知识与技能】理解和掌握公式(平方差)的结构特征,会运用公式法(1)因式分解。

【过程与方法】培养观察、分析能力,深化逆向思维能力和数学应用意识,渗透整体思想。

【情感态度价值观】让学生在自主学习的过程中探究新知,体验获取新知的喜悦,增强学习数学的兴趣和信心。

二、教学重难点【教学重点】会运用公式法(1)因式分解。

【教学难点】准确理解和掌握公式的结构特征,并灵活运用公式法因式分解。

三、教学过程(一)引入新课提问:1.我们学过哪些因式分解的方法?2.我们学过哪些整式乘法的公式?(二)探索新知课件展示以下问题,由学生独立完成:1.还记得七年级学过的整式的乘法公式吗?2.你能用数学语言描述平方差公式吗?3.如果将平方差公式反过来,就可以得到一个什么样的公式:这种因式分解的方法叫做公式法。

请用数学语言描述这一公式。

4.思考:什么样的多项式可以用这一公式因式分解?(1)公式有什么结构特征?(二次二项式)(2)两个平方项的符号有什么特点?(3)公式中的字母a、b可以表示什么?小组内三分钟内交流答案,把解决不了的难点归纳总结出来由老师帮忙解决。

(三)课堂练习让学生自己尝试完成书上的例1和例2。

(四)小结作业提问:今天学到了什么?本节课的课后作业我设计为:完成书后练习题。

四、板书设计《栽蒜苗(二)-折线统计图》说课稿尊敬的各位考官大家好,我是今天的X号考生,今天我说课的题目是《公式法-平方差公式》。

新课标指出:数学课程要面向全体学生,适应学生个性发展的需要,使得人人都能获得良好的数学教育,不同的人在数学上都能得到不同的发展。

今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。

一、说教材首先谈谈我对教材的理解,《公式法-平方差公式》是北师大版-初中数学-八年级下册-第四章-第3节-《公式法》的内容,因式分解是代数中一种重要的恒等变形,它是在学生学习了整式运算的基础上提出来的,是整式乘法的逆向变形。

因式分解公式法1——平方差公式

因式分解公式法1——平方差公式

19y
2
4x
2
21 25x
2
9 2 2 3 m 16 n 25
把 x y x y 因式分解.
2 2
因式分解:
1x y y x
2
2
216a b
2
9a b
2

x y
4
4
因式分解.
将下列多项式因式分解:
分解因式注意事项:
1、有公因式可提的要先提公因式,再用公式法。
2、分解之后要看每一项是否分解彻底。
3、答案要写成最简形式。
作业
课作:习题3.3A组第1题 家作:基训P28 1至9题
分解因式
你会做了吗?
x 25
2
解:原式=
x 5 x 5x 5
2 2
3.3 因式分解—— 公式法1 平方差公式
一、回顾旧知
2-b2 a 1、(a+b)(a-b)=_________. 平方差公式 。 这个公式叫____________
整式乘法 从左边到右边的这个过程叫___________ 。 (a+b)(a-b) 2、反过来,a2-b2=__________. 因式分解 从左边到右边的这个过程叫___________ 。 3、因此,a2-b2= (a+b)(a-b)是因式分解 中的一个公式。
1x
4
16
29x4 36y 2
把 x y x
3 2
5
因式分解.
将下列多项式因式分解:
13x
3
12x
2a
3
ab
2
交流与探讨: 归纳:因式分解的一般步骤: 1)提公因式 2)运用公式 注意:分解必须彻底。

运用公式法——平方差公式教案

运用公式法——平方差公式教案

运⽤公式法——平⽅差公式教案运⽤公式法——平⽅差公式教案教学⽬标(⼀)知识认知要求1.使学⽣了解运⽤公式法分解因式的意义;2.使学⽣掌握⽤平⽅差公式分解因式.3.使学⽣了解,提公因式法是分解因式的⾸先考虑的⽅法,再考虑⽤平⽅差公式分解因式.(⼆)能⼒训练要求1.通过对平⽅差公式特点的辨析,培养学⽣的观察能⼒.2.训练学⽣对平⽅差公式的运⽤能⼒.(三)情感与价值观要求在引导学⽣逆⽤乘法公式的过程中,培养学⽣逆向思维的意识,同时让学⽣了解换元的思想⽅法.教学重点让学⽣掌握运⽤平⽅差公式分解因式.教学难点将单项式化为平⽅形式,再⽤平⽅差公式分解因式;培养学⽣多步骤分解因式的能⼒. 教学过程⼀、创设问题情境,引⼊新课在前两节课中我们学习了因式分解的定义,即把⼀个多项式分解成⼏个整式的积的形式,还学习了提公因式法分解因式,即在⼀个多项式中,若各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从⽽将多项式化成⼏个因式乘积的形式.如果⼀个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,只要我们记住因式分解是多项式乘法的相反过程,就能利⽤这种关系找到新的因式分解的⽅法,本节课我们就来学习另外的⼀种因式分解的⽅法——公式法.⼆、新课讲解1.请看乘法公式(a +b )(a -b )=a 2-b 2 (1)左边是整式乘法,右边是⼀个多项式,把这个等式反过来就是a 2-b 2=(a +b )(a -b )(2)左边是⼀个多项式,右边是整式的乘积.⼤家判断⼀下,第⼆个式⼦从左边到右边是否是因式分解?符合因式分解的定义,因此是因式分解.对,是利⽤平⽅差公式进⾏的因式分解.第(1)个等式可以看作是整式乘法中的平⽅差公式,第(2)个等式可以看作是因式分解中的平⽅差公式.2.公式讲解请⼤家观察式⼦a 2-b 2,找出它的特点.公式的特点下⾯按公式分类,⼀⼀进⾏阐述.(1)平⽅差公式:))((22b a b a b a -+=-这⾥a ,b 可以表⽰数、单项式、多项式.公式的特点是:①左侧为两项;②两项都是平⽅项;③两项的符号相反.(是⼀个⼆项式,每项都可以化成整式的平⽅,整体来看是两个整式的平⽅差.如果⼀个⼆项式,它能够化成两个整式的平⽅差,就可以⽤平⽅差公式分解因式,分解成两个整式的和与差的积.)如x 2-16=(x )2-42=(x +4)(x -4).9 m 2-4n 2=(3 m )2-(2n )2=(3 m +2n )(3 m -2n )3.例题讲解例1 :把下列各式分解因式:(1)25-16x 2; (2)9a 2-41b 2. 解:(1)25-16x 2=52-(4x )2=(5+4x )(5-4x ); (2)9a 2-41b 2=(3a )2-(21b )2 =(3a +21b )(3a -21b ). 例2 :把下列各式分解因式:(1)9(m +n )2-(m -n )2;(2)2x 3-8x .解:(1)9(m +n )2-(m -n )2=[3(m +n )]2-(m -n )2=[3(m +n )+(m -n )][3(m +n )-(m -n )]=(3 m +3n + m -n )(3 m +3n -m +n )=(4 m +2n )(2 m +4n )=4(2 m +n )(m +2n )(2)2x 3-8x =2x (x 2-4)=2x (x +2)(x -2)说明:例1是把⼀个多项式的两项都化成两个单项式的平⽅,利⽤平⽅差公式分解因式;例2的(1)是把⼀个⼆项式化成两个多项式的平⽅差,然后⽤平⽅差公式分解因式,例2的(2)是先提公因式,然后再⽤平⽅差公式分解因式,由此可知,当⼀个题中既要⽤提公因式法,⼜要⽤公式法分解因式时,⾸先要考虑提公因式法,再考虑公式法. 补充例题3:判断下列分解因式是否正确.(1)(a +b )2-c 2=a 2+2ab +b 2-c 2.(2)a 4-1=(a 2)2-1=(a 2+1)·(a 2-1).解:(1)不正确.本题错在对分解因式的概念不清,左边是多项式的形式,右边应是整式乘积的形式,但(1)中还是多项式的形式,因此,最终结果是未对所给多项式进⾏因式分解.(2)不正确.错误原因是因式分解不到底,因为a 2-1还能继续分解成(a +1)(a -1).应为a 4-1=(a 2+1)(a 2-1)=(a 2+1)(a +1)(a -1).例4 :把下列各式分解因式:(1)22b a 9-;(2)22m n 4+-;(3)22b 9a 161-;(4)422c b 25a 16-;(5)09.0y x 4122+-。

因式分解——运用公式法

因式分解——运用公式法

因式分解——运用公式法因式分解是将一个多项式化简成一系列乘积的过程。

通常有两种方法用于进行因式分解:公式法和分组法。

公式法可以概括为以下几种常用的因式分解公式:1.a²-b²=(a+b)(a-b)这是平方差公式,用于因式分解差的平方。

例如,我们可以将x²-4分解为(x+2)(x-2)。

2. a³ + b³ = (a + b)(a² - ab + b²)这是立方和公式,用于因式分解和的立方。

例如,我们可以将x³+8分解为(x+2)(x²-2x+4)。

3. a³ - b³ = (a - b)(a² + ab + b²)这是立方差公式,用于因式分解差的立方。

例如,我们可以将x³-8分解为(x-2)(x²+2x+4)。

4. a⁴ + b⁴ = (a² + √2ab + b²)(a² - √2ab + b²)这是四次和公式,用于因式分解和的四次方。

例如,我们可以将x⁴+16分解为(x²+4√2x+4)(x²-4√2x+4)。

5. a⁴ - b⁴ = (a² - √2ab + b²)(a² + √2ab + b²)这是四次差公式,用于因式分解差的四次方。

例如,我们可以将x⁴-16分解为(x²-4√2x+4)(x²+4√2x+4)。

除了以上这些常用的因式分解公式外,还有一些其他形式的因式分解公式,以及一些特殊的因式分解技巧。

例如,对于一个二次方程式ax² + bx + c,我们可以使用求根公式x = (-b ± √(b² - 4ac)) / 2a 来因式分解。

根据求根公式,我们可以将二次方程ax² + bx + c 分解为两个因式的乘积 (x - x₁)(x - x₂),其中 x₁和 x₂是由求根公式得到的两个根。

因式分解知识点归纳

因式分解知识点归纳

因式分解知识点回顾1、因式分解的概念:把一个多项式分解成几个整式的积的形式,叫做因式分解。

因式分解和整式乘法互为逆运算2、常用的因式分解方法:(1)提取公因式法:ma + mb + mc = m(a + b + c)(2)运用公式法:平方差公式:a2—b2 = (a + b)(a—b);完全平方公式:a2土2ab + b2= (a土b)2(3)十字相乘法:x2 + (a + b)x + ab = (x + a)(x + b)因式分解的一般步骤:(1)如果多项式的各项有公因式,那么先提公因式;(2)提出公因式或无公因式可提,再考虑可否运用公式或十字相乘法; (3)对二次三项式,应先尝试用十字相乘法分解,不行的再用求根公式法。

(4)最后考虑用分组分解法5、同底数幂的乘法法则:a m・a n = a m+n( m, n都是正整数)同底数幕相乘,底数不变,指数相加。

注意底数可以是多项式或单项式。

如:(a + b)2•(a + b)3 = (a + b)56、幂的乘方法则:(a m)n = a mn( m, n都是正整数)幕的乘方,底数不变,指数相乘。

如:(-35)2= 310幕的乘方法则可以逆用:即a mn = (a m ) n = (a n ) m如:46 = (42)3 = (43)27、积的乘方法则:(ab)n = a n b n( n是正整数)积的乘方,等于各因数乘方的积。

如:(一 2 x 3 y 2 z )5 = (-2)5 • (x 3)5 • ( y 2)5 • z 5 = -32 x 15 y 10 z 58、同底数幂的除法法则:a m + a n = a m - n ( a牛0, m, n都是正整数,且m n)同底数幕相除,底数不变,指数相减。

如:(ab)4 + (ab) = (ab)3 = a3b39、零指数和负指数;a 0 = 1,即任何不等于零的数的零次方等于1。

1a - p =——(a中0, p是正整数),即一个不等于零的数的-p次方等于这个数的P次方的倒数。

2.3运用公式法

2.3运用公式法
4( x 2 2 x 1) 7 4( x 1) 2 7
任何一个正奇 你发现了什么规 数都可以表示 律?能用因式分 解来说明你发现 成两个相邻自 的规律吗? 然数的平方差。 对于正奇数 2n+1(n为自然 2 2 数),有 n 1 n
1 3 5 7 …
1 12 02
3 22 12
5 32 22
7 42 32


ห้องสมุดไป่ตู้

n 1 n n 1 n 2n 1
1.把下列各式分解因式
(1)(a 2 b 2 ) 2 4 a 2 b 2
(1)x -12xy+36y (1)18a2-50 4 2 2 4 (2)16a +24a b +9b (2)-3ax2+3ay4 2 2 (3)-2xy-x -y (3)(a+b)2-4a2 2 (4)4-12(x-y)+9(x-y) (4)-25x2y2+100 2+2a2x+a3; (5) ax 2 2 (5)4(a-b) -9(2a+3b) 2+6xy-3y2. (6) - 3 x 2 2 2 (6)(x +3x) -(x+1)
已知3a+b=10000,3a-b=0.0001, 求 b2-9a2 的值.
3.下列各式中,不能用完全平方公式分解的是( ) A、x4+6x2y2+9y4 B、x2n-2xnyn+y2n C、x6-4x3y3+4y6 D、x4+x2y2+y4
4.如果100x2+kxy+y2可以分解为(10x-y)2,那么k的值是( A、20 B、-20 C、10 D、-10 5.如果x2+mxy+9y2是一个完全平方式,那么m的值为( A 、6 B、±6 C、3 D、±3 ) )

初中数学基本公式

初中数学基本公式

(一)运用公式法:我们知道整式乘法与因式分解互为逆变形。

如果把乘法公式反过来就是把多项式分解因式。

于是有:a2-b2=(a+b)(a-b)a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2如果把乘法公式反过来,就可以用来把某些多项式分解因式。

这种分解因式的方法叫做运用公式法。

(二)平方差公式1.平方差公式(1)式子: a2-b2=(a+b)(a-b)(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。

这个公式就是平方差公式。

(三)因式分解1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。

2.因式分解,必须进行到每一个多项式因式不能再分解为止。

(四)完全平方公式(1)把乘法公式(a+b)2=a2+2ab+b2 和 (a-b)2=a2-2ab+b2反过来,就可以得到:a2+2ab+b2 =(a+b)2a2-2ab+b2 =(a-b)2这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。

把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。

上面两个公式叫完全平方公式。

(2)完全平方式的形式和特点①项数:三项②有两项是两个数的的平方和,这两项的符号相同。

③有一项是这两个数的积的两倍。

(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。

(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。

这里只要将多项式看成一个整体就可以了。

(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。

(五)分组分解法我们看多项式am+ an+ bm+ bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.如果我们把它分成两组(am+ an)和(bm+ bn),这两组能分别用提取公因式的方法分别分解因式.原式=(am +an)+(bm+ bn)=a(m+ n)+b(m +n)做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能继续分解,所以原式=(am +an)+(bm+ bn)=a(m+ n)+b(m+ n)=(m +n)•(a +b).这种利用分组来分解因式的方法叫做分组分解法.从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式.(六)提公因式法1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式.2. 运用公式x2 +(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于一次项的系数.2.将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:①列出常数项分解成两个因数的积各种可能情况;②尝试其中的哪两个因数的和恰好等于一次项系数.3.将原多项式分解成(x+q)(x+p)的形式.(七)分式的乘除法1.把一个分式的分子与分母的公因式约去,叫做分式的约分.2.分式进行约分的目的是要把这个分式化为最简分式.3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分.4.分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3.5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方.6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减.(八)分数的加减法1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变.3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备.4.通分的依据:分式的基本性质.5.通分的关键:确定几个分式的公分母.通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.6.类比分数的通分得到分式的通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。

公式法

公式法

因 式 分 解类型二、公式法1、利用平方差公式因式分解:()()b a b a b a -+=-22注意:①条件:两个二次幂的差的形式;②平方差公式中的a 、b 可以表示一个数、一个单项式或一个多项式;③在用公式前,应将要分解的多项式表示成22b a -的形式,并弄清a 、b 分别表示什么。

例如:分解因式:(1)291x -; (2)221694b a -; (3)22)(4)(n m n m --+2、利用完全平方公式因式分解:()2222b a b ab a ±=+± 注意:①是关于某个字母(或式子)的二次三项式;②其首尾两项是两个符号相同的平方形式;③中间项恰是这两数乘积的2倍(或乘积2倍的相反数);④使用前应根据题目结构特点,按“先两头,后中间”的步骤,把二次三项式整理成 222)(2b a b ab a ±=+±公式原型,弄清a 、b 分别表示的量。

例如:分解因式:(1)2961x x +-; ⑵ 36)(12)(2+---n m n m 1682++x x典型例题:例1 用平方差公式分解因式:(1)22)(9y x x -+-; (2)22331n m - 说明 因式分解中,多项式的第一项的符号一般不能为负;分数系数一般化为整系数。

例2 分解因式:(1)ab b a -5;(2))()(44n m b n m a +-+. 说明 将公式法与提公因式法有机结合起来,先提公因式,再运用公式.例3 判断下列各式能否用完全平方公式分解因式,为什么?(1)962+-a a ; (2)982+-x x ; (3)91242--x x ; (4)223612y x xy ++-. 说明 可否用公式,就要看所给多项式是否具备公式的特点.例4 把下列各式分解因式:⑴ 442-+-x x ; ⑵ 22914942y x xy -- ⑶ mn n m 4422+-- 说明:在使用完全平方公式时,要保证平方项前的符号为正,当平方项前的符号是负号 时,先提出负号.例5 分解因式:⑴ 22363ay axy ax ++. ⑵ 22222)(624b a b a +-说明 ⑴分解因式时,首先考虑有无公因式可提,当有公因式时,先提再分解. ⑵分解因式必须进行彻底,直至每个因式都不能再分解为止.例6 分解因式:⑴ 22)(9))(2(6)2(n m n m m n n m +++---;⑵ 4224168b b a a +-;⑶ 1)2(2)2(222++++m m m m .⑷ 63244914b b a a +- ⑸ 1)2(6)2(92+---b a b a说明 在运用完全平方公式的过程中,再次体现换元思想的应用,可见换元思想是重 要而且常用思想方法,要真正理解,学会运用.例7 若25)4(22+++x a x 是完全平方式,求a 的值. 说明 根据完全平方公式特点求待定系数a ,熟练公式中的“a 、b ”便可自如求解.例8 已知2=+b a ,求222121b ab a ++的值. 说明 将所求的代数式变形,使之成为b a +的表达式,然后整体代入求值.例9 已知1=-y x ,2=xy ,求32232xy y x y x +-的值. 说明 这类问题一般不适合通过解出x 、y 的值来代入计算,巧妙的方法是先对所求的代数式进行因式分解,使之转化为关于xy 与y x -的式子,再整体代入求值.例10 证明:四个连续自然数的积加1,一定是一个完全平方数.说明 可用字母表示出四个连续自然数,通过因式分解说明结果是完全平方数.例11 已知x 和y 满足方程组⎩⎨⎧=-=+346423y x y x ,求代数式2249y x -的值。

公式法——平方差公式

公式法——平方差公式

(1)a4-9a2b2; (3)2x4- 1 ;
8
(2)m2x4-16m2y4; (4)3(m+n)2-27n2.
解: (1) a4-9a2b2
(2) m2x4-16m2y4
=a2(a2-9b2)
=m2(x4-16y4)
=a2(a+3b)(a-3b). =m2(x2+4y2)(x2-4y2) =m2(x2+4y2)(x+2y)(x-2y).
1 分解因式:
(1)a2- 1 b2; 25
(2)-(x+2)2+16(x-1)2;
(3)m4(m-2)+4(2-m);(4)-a4+16.
2 下列各式不能用平方差公式分解因式的是( )
A.-x2+y2 C.-m2-n2
B.x2-(-y)2 D.4m2- 1 n2
9
3 下列各式中,可用平方差公式分解因式的个数有
九、要点梳理(课文回放)。
作者用细腻的笔触、传神的语言介绍了 《蒙娜 丽莎》 画像, 具体介 绍了___ ______ _,___ ______ _,特 别详细 描写了 蒙娜丽 莎的___ ______ _和___ ______ _,以 及她___ ______ _、___ ______ _和___ ______ _;最 后用精 炼而饱 含激情 的语言 告诉大 家,蒙 娜丽莎 给人带 来了心 灵的震 撼,留 下了永 不磨灭 的印象 。 综合能力日日新
4.四周一片( ),听不到一点声响。 5.越是在紧张时刻,越要保持头脑的( )。
八、句子工厂。
1.世界上有多少人能亲睹她的风采呢? (陈述 句)
_________________________________ ______ ______ ______ ______ ______ ______ ______ 2.达·芬奇的“蒙娜丽莎”是全人类文 化宝库 中一颗 璀璨的 明珠。 (缩写 句子) ___________________________________ ______ ______ ______ ______ ______ ______ ____ 3.我在她面前只停留了短短的几分钟。 她已经 成了我 灵魂的 一部分 。(用 关联词 连成一 句话) __________________________________ ______ ______ ______ ______ ______ ______ _____

平方差公式因式分解

平方差公式因式分解

2.下列多项式可不可以可不可以用平方差公式? 2.下列多项式可不可以可不可以用平方差公式?如 下列多项式可不可以可不可以用平方差公式 果可以,应分解成什么式子?如果不可以, 果可以,应分解成什么式子?如果不可以,说明为 什么? 什么? x2+y2 -x2+y2 -x2 -y2 a4 -b2
练习3、下列多项式中, 练习 、下列多项式中,哪些可以运用平 方差公式来分解因式? 方差公式来分解因式?可以的把它分解因 式。
( )
3
)
2

2
口答: 口答:
1.填空: 填空: 填空
4x2=(2x )2 36a4=( 6a2 )2 81n6=( 9n3 )2
10p 100p4q2=( 2q )2
25m2=( 5m )2 0.49b2=(0.7b )2 64x2y2=(8xy 9 c 2 =( 16 )2 3 _ c)2 4
例1把下列各式因式分解(1 ) x Nhomakorabea2
+ 12 x + 36
x + y
2 2
2
( 2 ) − 2 xy +
(3) ( a + b ) − 6 ( a + b ) + 9
(4 ) − a
2
− 4 b + 4 ab
2
例2把下列各式因式分解 把下列各式因式分解
(1)3ax2+6ax+3ax ) )(a+b)2-12(a+b)2+36 (2)( )( ) ( ) )(a+b)4-18(a+b)2+81 (3)( )( ) ( )
练习2、把下列各题的括号内, 练习 、把下列各题的括号内,填入适当 的单项式, 的单项式,使等式成立

公式法——平方差公式

公式法——平方差公式

公式法——平方差公式平方差公式是二次方程求解过程中常用的一个公式,它能够帮助我们简化计算,在解决一些特定类型二次方程问题时非常有用。

平方差公式的形式为:(a+b)(a-b)=a²-b²简单来说,平方差公式可以用来计算两个数相乘的结果的平方差。

当我们遇到形式为(a+b)(a-b)的表达式时,我们可以利用平方差公式将其化简为a²-b²的形式。

下面,我们将详细介绍平方差公式的用法和相关的解题技巧。

首先,我们来看一个简单的例子。

例题:计算(3+2)(3-2)的值。

解法:根据平方差公式,我们将表达式(3+2)(3-2)化简为3²-2²的形式。

可以计算得到3²=9,2²=4,因此,(3+2)(3-2)=9-4=5通过这个例子,我们可以看到平方差公式的使用过程非常简单,只需要计算两个数的平方然后相减即可。

下面,我们来讨论一下平方差公式在解决二次方程问题时的应用。

首先,我们来解决一个常见的二次方程问题:找到一个数的平方与另一个数的平方之差。

例题:已知a²-b²=45,并且a>b,求a和b的值。

解法:根据平方差公式,我们可以将表达式a²-b²化简为(a+b)(a-b)。

所以,我们可以得到(a+b)(a-b)=45、根据已知条件,我们可以知道a+b>a-b,即a>b,所以(a+b)和(a-b)一定是正数。

因此,我们需要将45分解为两个正数之积。

我们可以列出45的所有正因数对:(1,45),(3,15),(5,9)。

通过尝试,我们发现只有(5,9)满足条件,即(a+b)=9,(a-b)=5解方程组得到:a+b=9a-b=5我们可以通过消元法或代入法得到a=7,b=2因此,上述二次方程的解为a=7,b=2通过这个例题,我们可以看到平方差公式在解决二次方程问题时的应用非常灵活。

它可以帮助我们简化计算,找到问题的解。

公式法——平方差

公式法——平方差

公式法——平方差公式法,平方差公式法,也称为代数方法或笔算方法,是一种通过使用数学公式和恒等式来解决问题的方法。

它是数学中常用的一种解题方法,适用于各种数学题目,包括代数、几何、微积分等。

其中,平方差是一种常见的公式法问题类型。

平方差是指一个数字的平方与另一个数字的平方之间的差。

解决平方差问题的一种常见方法是使用平方差公式。

平方差公式表示为:(a+b)(a-b)=a^2-b^2这个公式可以将一个数字的平方与另一个数字的平方之间的差表示为两个数字的和与差的乘积。

通过使用这个公式,我们可以简化平方差问题的解决过程。

下面我们将通过几个例子来介绍平方差的求解过程。

例1:求解81的平方与5的平方之差。

解:根据平方差公式,我们有:(81+5)(81-5)=81^2-5^2使用计算器或者手工计算,我们可以得到:(81+5)(81-5)=86×76=6536也就是说,81的平方与5的平方之差为6536例2:求解24的平方与9的平方之差。

解:同样地,根据平方差公式,我们有:(24+9)(24-9)=24^2-9^2计算得到:(24+9)(24-9)=33×15=495所以24的平方与9的平方之差为495除了使用平方差公式,我们还可以运用一些简化技巧来求解平方差问题。

例3:求解64的平方与16的平方之差。

解:在这个问题中,我们可以观察到64和16都是平方数,并且它们之间的关系很特殊。

所以我们可以不使用平方差公式,而是直接计算它们的差。

64^2-16^2=(64+16)(64-16)=80×48=3840通过直接计算,我们得到64的平方与16的平方之差为3840。

在解决平方差问题时,我们还应该注意一些常见的特殊情况。

例4:求解81的平方与-81的平方之差。

解:这个问题中涉及到正负数的平方。

根据平方差公式,我们有:(81+(-81))(81-(-81))=81^2-(-81)^2化简并计算得到:0×162=0所以81的平方与-81的平方之差为0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

- (x +
2 q)
(3)原式=[(x+p)+(x+q)][(x+p)-(x+q)]
=(2x+p+q)(p-q)
学一学

4 y 能否化为 □-△ 2 2
例2 :把下列各式分解因式

4 x
ቤተ መጻሕፍቲ ባይዱ

解:原式=(x2)2-(y2)2
=(x2+y2)(x2-y2)
=(x2+y2)(x+y)(x-y)
分解因式,必 须进行到每一 个多项式因式 都不能再分解 为止!
回顾交流
说说平方差公式的特点
2−b2= a
(a+b)(a−b)
相同部分a 相反部分 ± b
①一边: 平方差 ②一边: 和与差的积
形象地表示为
2 2 □-△=(□+△)(□-△)
学以致用
例1、把下列各式分解因式: (1) 4x2- 9 1 2 先化为 (2)9a2- b 4 (3) (x+ p)2 - (x + q)2
首先提取公因式 然后考虑用公式 最终分解要彻底 而且必是连乘式!
8xy ④64x2y2 = (_____)2 1 1 2 b ⑤ b = (_____)2 2 4 9 2 2 3 ⑥ c =( ) c 16 4
回顾 & 思考 ☞
口算
1) ( x 5)( x 5) _______
9x 2) (3x y)(3x y) ______
2
x 25
2、把下列各式分解因式:
2 - 1 b2 (1)a
25
2-4b2 (2)9a
(3)9(m+ n)2 - (m - n)2
4+16 (4)-a
2y-4y (5)x
想一想
在多项式x² , x² +y² -y²,-x² , -x² 中, +y² -y² 能利用平方差公式分解的有( B ) A 1个 B 2个 C 3个 D 4个
随堂练习
1、判断正误
(1)x² =(x+y)(x+y) +y²
(
)
(2)x² =(x+y)(x-y) -y²
(
)
) )
(3)-x² =(-x+y)(-x-y)( +y²
(4)-x²-y²=-(x+y)(x-y) (
回顾 & 小结 ☞
你有什么收获
①运用a2−b2= (a+b)(a−b)分解因式
②分解因式顺序
回顾 & 思考 ☞ 把下列各式分解因式:
(1)9a2-12ab+4b2
2+12xy-9y2 (2)-4x
(3)(a+c)2+14(a+c)(b-c)+49(b-c)2
回顾 & 思考 ☞ 填空
5x ①25 x2 = (_____)2 ②36a4
6a2 2 = (_____)
0.7 b ③0.49 b2 = (_____)2
□-△
2
2
解(1)原式= (2x)2-32 =(2x+3)(2x-3) 2 2 1 b) (2 )原式 (3a) ( 2
1 b)(3a 1 b) =(3a 2 2
学一学

把(x+p)和(x+q)各 看成一个整体,设 x+p=m,x+q=n,则 原式化为m2-n2
(3) (x+
2 p)
2
y
2
3)
(1 3a)(1 3a)
2 2
1 - 9a2 ______ (整式乘法)
(a b)(a b) a b
a b (a b)(a b)
2 2
(分解因式)
—平方差公式
学习目标
1、理解分解因式公式法的依据 和意义; 2、能够准确熟练运用平方差公 式分解因式;
相关文档
最新文档