第一讲 空间几何体的三视图、表面积与体积
空间几何体的三视图、直观图、表面积与体积
(2)给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的 连线是圆柱的母线;②有一个面是多边形,其余各面都是三角形的几何体是棱 锥面;③直角三角形绕其任意一边所在直线旋转一周所形成的几何体都是圆锥;
第七章 立体几何
球 2.三视图与直观图
半圆
Go the distance
直径所在的直线
第 1 讲 空间几何体的三视图、直观图、表面积与体积
(1)三视图: ①三视图:空间几何体在正投影下在投影面上留下的轮廓线.三视图包括
一.知识梳理
1.空间几何体的结构特征
几何体
底面
棱柱
互相平行
多面体 棱锥
是多边形
侧面 都是四边形,且相邻两个侧面的公
④棱台的上下底面可以不相似,但棱长一定相等.其中正确的命题的个数是
Go the distance
()
A.0
B.1
C .2
D.3
【变式 1】
(1)下列说法中正确的是( )
A. 棱柱的侧面中,至少有两个面互相平行 B. 棱柱中两个互相平行的平面一定是棱柱的底面 C. 棱柱中一条侧棱的长叫棱柱的高 D. 棱柱的侧面是平行四边形,它的底面一定不是平行四边形
球 二.要点整合
S表 S侧 S底 S表 S侧 S上 S下
S 4 R2
V 1 Sh 3
V
1 3
(
S上
S下
S上S下 )h
V 4 R3 3
1.辨明三个易误点
(1)台体可以看成是由锥体截得的,但一定强调截面与底面平行.
高考理科数学第1讲 空间几何体的三视图、表面积与体积及空间位置关系的判定(小题速做)
专题四 立体几何
核心知识 突破热点 高考押题 限时规范训练
大二轮复习 数学(理)
第 1 讲 空间几何体的三视图、表面积与 体积及空间位置关系的判定(小题速做)
核心知识 突破热点 高考押题 限时规范训练
大二轮复习 数学(理)
[高考领航]——————————我知道了高考航向是什么!
(3) 面 面 平 行 的 判 定 定 理 : a ⊂ β , b ⊂ β , a_____∩______b = P , a_____∥______α,b_____∥______α⇒α∥β.
(4)面面平行的性质定理:α_____∥______β,α______∩_____γ=a, β____∩_______γ=b⇒a∥b.
核心知识 突破热点 高考押题 限时规范训练
大二轮复习 数学(理)
由球的截面的性质可得直三棱柱外接球的球心 O 就是线段 EE1 的 中点.
连接 OA,AE,A1E1.在△ABC 中,AC⊥AB,所以 BC= AB2+AC2 = 32+42=5,所以 EA=12BC=52.又 OE=12AA1=12×12=6,由球的截 面的性质可得 OE⊥平面 ABC,
核心知识 突破热点 高考押题 限时规范训练
大二轮复习 数学(理)
2.几何体与球组合体的结论 (1)设长方体的有公共顶点的三条棱长为 a、b、c,则体对角线长为 ______a_2_+__b_2_+__c_2 __. (2)棱长为 a 的正方体的体对角线长等于外接球的直径,即 3a=2R. (3)若球面上四点 P、A、B、C 构成的线段 PA、PB、PC 两两垂直, 且 PA=a,PB=b,PC=c,则 4R2=__a_2+__b_2_+__c_2_,把有关元素“补形” 成为一个球内接长方体(或其他图).
2020高考数学核心突破《专题5 立体几何 第1讲 空间几何体的三视图、表面积与体积》
专题五 第1讲1.(教材回归)一个几何体的三视图如图所示,则该几何体的表面积为( D )A .3πB .4πC .2π+4D .3π+4解析 由题中三视图知该几何体是底面半径为1,高为2的半个圆柱,故其表面积S =2×12×π×12+π×1×2+2×2=3π+4.故选D.2.(2017·山东烟台模拟)一个几何体的三视图如图所示,其中俯视图是一个正三角形及其内切圆,则该几何体的体积为( A )A .163-16π3B.163-16π3C .83-8π3D.83-8π3解析 由三视图可知,几何体为一个棱长为4的正三棱柱去掉了一个内切圆柱.V三棱柱=⎝⎛⎭⎫12×4×4×sin 60°×4=16 3.在俯视图中,设内切圆半径为r ,则内切圆圆心与各顶点连接分三角形为3个全等的小三角形,由三角形面积可得12×4×4×sin 60°=3×⎝⎛⎭⎫12×4×r ,解得r =233.故V 圆柱=πr 2h =π×⎝⎛⎭⎫2332×4=16π3.∴几何体的体积V =V 三棱柱-V 圆柱=163-16π3.故选A.3.一个正方体被一个平面截去一部分后,剩余部分的三视图如图所示,则截去部分体积与剩余部分体积的比值为( D )A.18 B.17 C.16 D.15解析 如图,由已知条件可知,截去部分是以△ABC 为底面且三条侧棱两两垂直的正三棱锥D -ABC .设正方体的棱长为a ,则截去部分的体积为16a 3,剩余部分的体积为a 3-16a 3=56a 3.它们的体积之比为15.故选D.4.(考点聚焦)一个四面体的三视图如图所示,则该四面体的表面积是( B )A .1+ 3B .2+3C .1+2 2D .2 2解析 四面体的直观图如图所示.侧面SAC ⊥底面ABC ,且△SAC 与△ABC 均为腰长是2的等腰直角三角形,SA =SC =AB =BC =2,AC =2.设AC 的中点为O ,连结SO ,BO ,则SO ⊥AC ,∴SO ⊥平面ABC ,∴SO ⊥BO .又OS =OB =1,∴SB =2,故△SAB 与△SBC 均是边长为2的正三角形,故该四面体的表面积为2×12×2×2+2×34×(2)2=2+ 3.5.已知底面边长为1,侧棱长为2的正四棱柱的各顶点均在同一个球面上,则该球的体积为( D )A.32π3 B .4π C .2πD.4π3解析 正四棱柱的外接球的球心为上下底面的中心连线的中点,所以球的半径r =⎝⎛⎭⎫222+⎝⎛⎭⎫222=1,球的体积V =4π3r 3=4π3.故选D.6.一个球与一个正三棱柱的三个侧面和两个底面都相切,已知这个球的体积是32π3,那么这个三棱柱的体积是( D )A .963B .163C .24 3D .48 3解析 如图,设球的半径为R ,由43πR 3=32π3,得R =2. 所以正三棱柱的高h =4. 设其底面边长为a , 则13·32a =2,所以a =43, 所以V =34×(43)2×4=48 3.故选D. 7.(书中淘金)如图,在棱长为6的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别在C 1D 1与C 1B 1上,且C 1E =4,C 1F =3,连接EF ,FB ,BD ,DE ,DF ,则几何体EFC 1DBC 的体积为( A )A .66B .68C .70D .72解析 如图,连接DC 1,那么几何体EFC 1-DBC 被分割成三棱锥D -EFC 1及四棱锥D -CBFC 1,那么几何体EFC 1DBC 的体积为V =13×12×3×4×6+13×12×(3+6)×6×6=12+54=66.故所求几何体EFC 1DBC 的体积为66.8.(2017·湖北八校联考)如图,网格纸上小正方形的边长为1,粗线画的是某多面体的三视图,则该多面体的外接球的表面积为__41π__.解析 由三视图可知该几何体是如图所示的三棱锥A -BCD ,将该三棱锥放在棱长为4的正方体中,E 是棱的中点,所以三棱锥A -BCD 和三棱柱EFD -ABC 的外接球相同.设外接球的球心为O ,半径为R ,△ABC 的外接圆的圆心是M ,则OM =2.在△ABC 中,AB =AC =25,由余弦定理得cos ∠CAB =AC 2+AB 2-BC 22AC ·AB =20+20-162×25×25=35,所以sin ∠CAB =45,由正弦定理得2CM =BC sin ∠CAB =5,则CM =52.所以R =OC =OM 2+CM 2=412,则外接球的表面积为S =4πR 2=41π.9.一个几何体的三视图如图所示(单位:m),则该几何体的体积为 83π m 3.解析 由三视图知该几何体由两个相同的圆锥和一个圆柱组成.其中,圆锥的底面半径和圆柱的底面半径均为1,圆锥的高均为1,圆柱的高为2.因此该几何体的体积为V =2×13π×12×1+π×12×2=83π (m 3).10.(数学文化)我国古代数学家祖暅是著名数学家祖冲之之子,祖暅原理叙述道:“夫叠基成立积,缘幂势既同,则积不容异:”意思是:夹在两个平行平面之间的两个几何体被平行于这两个平行平面的任意平面所截,如果截得的两个截面面积总相等,那么这两个几何体的体积相等,其最著名之处是解决了“牟合方盖”中的体积问题,其核心过程为:如图中正方体ABCD -A 1B 1C 1D 1,求图中四分之一的圆柱体BB 1C 1-AA 1D 1和四分之一圆柱体AA 1B 1-DD 1C 1公共部分的体积V ,若图中正方体的棱长为2,则V =163.(在高度h 处的截面:用平行于正方体上下底面的平面去截,记截得两圆柱体公共部分所得面积为S 1,截得正方体所得面积为S 2,截得四棱锥C 1-ABCD 所得面积S 3,S 1=R 2-h 2,S 2=R 2,S 3=h 2,S 2-S 1=S 3)解析 由题意可知,用平行于底面的平面截得的面积满足S 2-S 1=S 3,其中S 1表示两个圆柱的公共部分的截面面积,S 2表示截得正方体的截面面积,S 3表示截得锥体的截面面积.由祖暅原理可知:正方体体积减去两个圆柱的公共部分体积等于锥体体积,即23-V =13×22×2,即V =23-13×22×2=163.。
专题5 第1讲 空间几何体的三视图、表面积与体积
1.如图,网格纸上小正方形的边长为 1,粗线画出的是某几何体的正 视图和侧视图,且该几何体的体积为83,则该几何体的俯视图可以是( )
第二编
本资料分享自 千人教师QQ群 323031380 期 待你的加入与 分享
讲专题
专题五 立体几何与空间向量 第1讲 空间几何体的三视图、表面
积与体积
「考情研析」 1.从具体内容上,主要考查:①三视图的识别和简单应 用;②简单几何体的表面积与体积的计算;③球与多面体(或旋转体)的组合 等. 2.从高考特点上,试题主要以选择题或填空题的形式呈现.
A.4π C.36π
B.16π D.643π
答案
解析 设该圆柱的底面半径为 R,则圆柱的高为 2R, 则圆柱的表面积 S=S 底+S 侧=2×πR2+2·π·R·2R=54π,解得 R2=9, 即 R=3. ∴圆柱的体积为 V=πR2×2R=54π, ∴该圆柱的内切球的体积为32×54π=36π.故选 Cπ
D.24+4π
答案
解析 由三视图可知,几何体是一个高为 3,底面半径为 4 的圆锥的14, 故该几何体的表面积 S=12×3×4+12×3×4+14×π×42+14×π×4× 32+42 =12+9π.故选 B.
解析
(2)(2020·河南省百校联盟 6 月质监考试)如图,用平行于母线的竖直平
134,
VC
-ABE=
1 3
×12×2×2×2=
4 3
,所
以所求
几何
体的
体积
为
VC-ADFE+VC-ABE=134+43=6.
高中数学 第1讲 空间几何体的三视图、表面积和体积
第1讲空间几何体的三视图、表面积和体积高考定位 1.三视图的识别和简单应用;2.简单几何体的表面积与体积计算,主要以选择题、填空题的形式呈现,在解答题中,有时与空间线、面位置证明相结合,面积与体积的计算作为其中的一问.真题感悟1.(2018·全国Ⅲ卷)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()2.(2018·全国Ⅰ卷)已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A.122πB.12πC.82πD.10π3.(2019·全国Ⅲ卷)学生到工厂劳动实践,利用3D打印技术制作模型.如图,该模型为长方体ABCD-A1B1C1D1挖去四棱锥O-EFGH后所得的几何体.其中O为长方体的中心,E,F,G,H分别为所在棱的中点,AB=BC=6 cm,AA1=4cm.3D打印所用原料密度为0.9 g/cm3,不考虑打印损耗,制作该模型所需原料的质量为________g.4.(2019·全国Ⅱ卷)中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图①).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图②是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1,则该半正多面体共有________个面,其棱长为________(本题第一空2分,第二空3分).考点整合1.空间几何体的三视图(1)几何体的摆放位置不同,其三视图也不同,需要注意长对正、高平齐、宽相等.(2)由三视图还原几何体:一般先从俯视图确定底面,再利用正视图与侧视图确定几何体.2.空间几何体的两组常用公式(1)柱体、锥体、台体、球的表面积公式:①圆柱的表面积S=2πr(r+l);②圆锥的表面积S=πr(r+l);③圆台的表面积S=π(r′2+r2+r′l+rl);④球的表面积S=4πR2.(2)柱体、锥体和球的体积公式:①V柱体=Sh(S为底面面积,h为高);②V锥体=13Sh(S为底面面积,h为高);③V球=43πR3.热点一空间几何体的三视图与直观图【例1】(1)(2018·全国Ⅰ卷)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在侧视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.217B.2 5C.3D.2(2)(2019·合肥质检)在正方体ABCD-A1B1C1D1中,E是棱A1B1的中点,用过点A,C,E的平面截正方体,则位于截面以下部分的几何体的侧视图为()探究提高 1.由直观图确定三视图,一要根据三视图的含义及画法和摆放规则确认.二要熟悉常见几何体的三视图.2.由三视图还原到直观图的思路(1)根据俯视图确定几何体的底面.(2)根据正视图或侧视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置.(3)确定几何体的直观图形状.【训练1】(1)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()A.1B.2C.3D.4(2)(2019·西安模拟)某几何体的三视图如图所示,那么这个几何体是()A.三棱锥B.四棱锥C.四棱台D.三棱台热点二几何体的表面积与体积角度1空间几何体的表面积【例2-1】某多面体的三视图如图所示,其中正视图和侧视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10B.12C.14D.16探究提高 1.由几何体的三视图求其表面积:(1)关键是分析三视图确定几何体中各元素之间的位置关系及度量大小;(2)还原几何体的直观图,套用相应的面积公式.2.(1)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理.(2)旋转体的表面积问题注意其侧面展开图的应用.【训练2】(2019·唐山模拟)已知某几何体的三视图如图所示(俯视图中曲线为四分之一圆弧),则该几何体的表面积为()A.1-π4 B.3+π2 C.2+π4 D.4角度2空间几何体的体积【例2-2】(1)(2019·浙江卷)祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm3)是()A.158B.162C.182D.324(2)(2019·天津卷)已知四棱锥的底面是边长为2的正方形,侧棱长均为 5.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为________.探究提高 1.求三棱锥的体积:等体积转化是常用的方法,转换原则是其高易求,底面放在已知几何体的某一面上.2.求不规则几何体的体积:常用分割或补形的思想,将不规则几何体转化为规则几何体以易于求解.【训练3】(1)(2019·北京卷)某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为________.(2)如图,已知正方体ABCD-A1B1C1D1的棱长为1,则四棱锥A1-BB1D1D的体积为________.热点三多面体与球的切、接问题【例3】(1)在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球.若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是()A.4πB.9π2 C.6π D.32π3(2)(多填题)(2019·湖南师大附中调研)在《九章算术》中,将底面为矩形且有一条侧棱与底面垂直的四棱锥称之为阳马.如图,若四棱锥P-ABCD为阳马,侧棱PA ⊥底面ABCD ,且PA =3,BC =AB =4,设该阳马的外接球半径为R ,内切球半径为r ,则R =________;内切球的体积V =________.探究提高 1.与球有关的组合体问题,一种是内切,一种是外接.球与旋转体的组合通常是作它们的轴截面解题,球与多面体的组合,通过多面体的一条侧棱和球心,或“切点”、“接点”作出截面图,把空间问题化归为平面问题.2.若球面上四点P ,A ,B ,C 且PA ,PB ,PC 两两垂直或三棱锥的三条侧棱两两垂直,可构造长方体或正方体确定直径解决外接问题.【训练4】 (1)(2019·河南百校联盟联考)一个圆锥的母线长为2,圆锥的母线与底面的夹角为π4,则圆锥的内切球的表面积为( ) A.8π B.4(2-2)2π C.4(2+2)2πD.32(4-2)249π(2)(2019·咸阳模拟)在三棱锥P -ABC 中,PA ⊥平面ABC ,AB ⊥BC ,若AB =2,BC =3,PA =4,则该三棱锥的外接球的表面积为( ) A.13πB.20πC.25πD.29π1.求解几何体的表面积或体积(1)对于规则几何体,可直接利用公式计算.(2)对于不规则几何体,可采用割补法求解;对于某些三棱锥,有时可采用等体积转换法求解.(3)求解旋转体的表面积和体积时,注意圆柱的轴截面是矩形,圆锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形的应用. (4)求解几何体的表面积时要注意S 表=S 侧+S 底.2.球的简单组合体中几何体度量之间的关系,如棱长为a 的正方体的外接球、内切球、棱切球的半径分别为32a,a2,22a.3.锥体体积公式为V=13Sh,在求解锥体体积时,不能漏掉13.A级巩固提升一、选择题1.(2019·长郡中学调研)半径为R的半圆卷成一个圆锥,则它的体积为()A.525πR3 B.324πR3 C.58πR3 D.38πR32.图1所示的是一个棱长为2的正方体被削去一个角后所得到的几何体的直观图,其中DD1=1,AB=BC=AA1=2.若此几何体的俯视图如图2所示,则可以作为其正视图的是()3.中国古代数学名著《九章算术》中,将底面是直角三角形的直棱柱称为“堑堵”.已知某“堑堵”的正视图和俯视图如图所示,则该“堑堵”的侧视图的面积为()A.18 6B.18 3C.18 2D.272 24.如图,在底面边长为1,高为2的正四棱柱ABCD-A1B1C1D1中,点P是平面A1B1C1D1内一点,则三棱锥P-BCD的正视图与侧视图的面积之和为()A.1B.2C.3D.45.(2019·贵阳调研)某几何体的三视图如图所示,则该几何体的体积为()A.6B.4C.223 D.2036.(2019·昆明诊断)如图所示的三棱锥D-ABC的四个顶点均在球O的球面上,△ABC和△DBC所在的平面互相垂直,AB=3,AC=3,BC=CD=BD=23,则球O的表面积为()A.4πB.12πC.16πD.36π7.(2018·全国Ⅲ卷)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为93,则三棱锥D-ABC体积的最大值为()A.12 3B.18 3C.24 3D.54 3二、填空题8.(2019·江苏卷)如图,长方体ABCD-A1B1C1D1的体积是120,E为CC1的中点,则三棱锥E-BCD的体积是________.9.(2019·广州调研)某几何体的正视图和俯视图如图所示,在下列图形中,可能是该几何体侧视图的图形是________(写出所有可能的序号).10.已知长方体ABCD-A1B1C1D1内接于球O,底面ABCD是边长为2的正方形,E为AA1的中点,OA⊥平面BDE,则球O的表面积为________.11.(2019·石家庄调研)我国齐梁时代的数学家祖暅提出了一条原理:“幂势既同,则积不容异”.意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.椭球体是椭圆绕其轴旋转所成的旋转体.如图,将底面直径都为2b,高皆为a的椭半球体和已被挖去了圆锥体的圆柱放置于同一平面β上,用平行于平面β且与平面β任意距离d处的平面截这两个几何体,可横截得到S圆及S环两截面.可以证明S圆=S环总成立.据此,半短轴长为1,半长轴长为3的椭球体的体积是________.B级能力突破12.(2019·南昌质检)一个几何体的三视图如图所示,则该几何体的体积为()A.5π3 B.5 C.2π3 D.π13.已知三棱锥S-ABC的所有顶点都在球O的球面上,SC是球O的直径.若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S-ABC的体积为9,则球O的表面积为________.14.(2019·雅礼中学调研)已知四棱锥P-ABCD的正视图是一个底边长为4、腰长为3的等腰三角形,图1、图2分别是四棱锥P-ABCD的侧视图和俯视图.(1)求证:AD⊥PC;(2)求四棱锥P-ABCD的体积及侧面PAB的面积.。
数学一轮复习第8章立体几何第1讲空间几何体的结构三视图表面积和体积试题2理
第八章立体几何第一讲空间几何体的结构、三视图、表面积和体积1。
[2020全国卷Ⅲ,8,5分][理]如图8-1—1为某几何体的三视图,则该几何体的表面积是()A.6+4√2B.4+4√2C。
6+2√3D。
4+2√32。
[2020浙江,5,4分]某几何体的三视图(单位:cm)如图8—1-2所示,则该几何体的体积(单位:cm3)是()A.73B.143C.3D.63。
[2021合肥市调研检测]表面积为324π的球,其内接正四棱柱(底面是正方形的直棱柱)的高是14,则这个正四棱柱的表面积等于()A。
567 B.576 C.240 D.49π4.[2021安徽省四校联考]在三棱锥A—BCD中,△ABC和△BCD 都是边长为2的正三角形,当三棱锥A-BCD的表面积最大时,其内切球的半径是()A。
2√2−√6 B。
2-√3 C。
√2D。
√665。
[数学文化题]《九章算术》与《几何原本》并称现代数学的两大源泉.在《九章算术》卷五商功篇中介绍了羡除(此处是指三面为等腰梯形,其他两侧面为直角三角形的五面体)体积的求法。
在如图8—1—3所示的羡除中,平面ABDA’是铅垂面,下宽AA'=3 m,上宽BD=4 m,深3 m,平面BCED是水平面,末端宽CE=5 m,无深,长6 m(直线CE到BD的距离),则该羡除的体积为()图8-1—3A.24 m3B.30 m3 C。
36 m3 D。
42 m36.[2020全国卷Ⅱ,10,5分][理]已知△ABC是面积为9√34的等边三角形,且其顶点都在球O的球面上。
若球O的表面积为16π,则O到平面ABC的距离为()A。
√3B。
32C.1 D。
√327.[2021安徽省示范高中联考]蹴鞠(如图8—1—4所示),又名“蹋鞠”“蹴球”“蹴圆"“筑球”“踢圆”等,“蹴”有用脚蹴、蹋、踢的含义,“鞠”最早系外包皮革、内实米糠的球.因而“蹴鞠”就是指古人以脚蹴、蹋、踢皮球的活动,类似今日的足球。
第1讲 空间几何体的三视图、表面积和体积
第1讲空间几何体的三视图、表面积和体积高考定位 1.三视图的识别和简单应用;2.简单几何体的表面积与体积计算,主要以选择题、填空题的形式呈现,在解答题中,有时与空间线、面位置证明相结合,面积与体积的计算作为其中的一问.真题感悟1.(2018·全国Ⅲ卷)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()解析由题意知,在咬合时带卯眼的木构件中,从俯视方向看,榫头看不见,所以是虚线,结合榫头的位置知选A.答案 A2.(2019·全国Ⅰ卷)已知三棱锥P-ABC的四个顶点在球O的球面上,P A=PB=PC,△ABC是边长为2的正三角形,E,F分别是P A,AB的中点,∠CEF=90°,则球O的体积为()A.86πB.46πC.26πD.6π解析 因为点E ,F 分别为P A ,AB 的中点,所以EF ∥PB , 因为∠CEF =90°,所以EF ⊥CE ,所以PB ⊥CE . 取AC 的中点D ,连接BD ,PD ,易证AC ⊥平面BDP , 所以PB ⊥AC ,又AC ∩CE =C ,AC ,CE平面P AC ,所以PB ⊥平面P AC ,所以PB ⊥P A ,PB ⊥PC ,因为P A =PB =PC ,△ABC 为正三角形,所以P A ⊥PC ,即P A ,PB ,PC 两两垂直,以P A ,PB ,PC 为从同一顶点出发的三条棱补成正方体.因为AB =2,所以该正方体的棱长为2,所以该正方体的体对角线长为6,故三棱锥P -ABC 的外接球的半径R =62,所以球O 的体积V =43πR 3=43π⎝ ⎛⎭⎪⎫623=6π,故选D.答案 D3.(2019·全国Ⅲ卷)学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体ABCD -A 1B 1C 1D 1挖去四棱锥O -EFGH 后所得的几何体.其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,AB =BC =6 cm ,AA 1=4 cm.3D 打印所用原料密度为0.9 g/cm 3,不考虑打印损耗,制作该模型所需原料的质量为________g.解析由题知挖去的四棱锥的底面是一个菱形,其对角线长分别为6 cm和4 cm,故V挖去的四棱锥=13×12×4×6×3=12(cm3).又V长方体=6×6×4=144(cm3),所以模型的体积为V长方体-V挖去的四棱锥=144-12=132(cm3),所以制作该模型所需原料的质量为132×0.9=118.8(g).答案118.84.(2019·全国Ⅱ卷)中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图①).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图②是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1,则该半正多面体共有________个面,其棱长为________(本题第一空2分,第二空3分).解析依题意知,题中的半正多面体的上部分有9个面,中间部分有8个面,下部分为9个面,共面9+8+9=26(个)面,因此题中的半正多面体共有26个面.注意到该半正多面体的俯视图的轮廓是一个正八边形,设题中的半正多面体的棱长为x,则22x+x+22x=1,解得x=2-1,故题中的半正多面体的棱长为2-1.答案262-1考点整合1.空间几何体的三视图(1)几何体的摆放位置不同,其三视图也不同,需要注意长对正、高平齐、宽相等.(2)由三视图还原几何体:一般先从俯视图确定底面,再利用正视图与侧视图确定几何体.2.空间几何体的两组常用公式(1)柱体、锥体、台体、球的表面积公式:①圆柱的表面积S=2πr(r+l);②圆锥的表面积S=πr(r+l);③圆台的表面积S=π(r′2+r2+r′l+rl);④球的表面积S=4πR2.(2)柱体、锥体和球的体积公式:①V柱体=Sh(S为底面面积,h为高);②V锥体=13Sh(S为底面面积,h为高);③V球=43πR3.热点一空间几何体的三视图与直观图【例1】(1)(2018·全国Ⅰ卷)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在侧视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.217B.2 5C.3D.2(2)(2019·合肥质检)在正方体ABCD-A1B1C1D1中,E是棱A1B1的中点,用过点A,C,E的平面截正方体,则位于截面以下部分的几何体的侧视图为()解析(1)由三视图可知,该几何体为如图①所示的圆柱,该圆柱的高为2,底面周长为16.画出该圆柱的侧面展开图,如图②所示,连接MN,则MS=2,SN=4.则从M到N的路径中,最短路径的长度为MS2+SN2=22+42=2 5.(2)如图所示,取B1C1的中点F,连接EF,AC,AE,CF,则EF∥AC,平面ACFE 即为平面ACE截正方体所得的截面,据此可得位于截面以下部分的几何体的侧视图如选项A所示.答案(1)B(2)A探究提高 1.由直观图确定三视图,一要根据三视图的含义及画法和摆放规则确认.二要熟悉常见几何体的三视图.2.由三视图还原到直观图的思路(1)根据俯视图确定几何体的底面.(2)根据正视图或侧视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置.(3)确定几何体的直观图形状.【训练1】(1)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()A.1B.2C.3D.4(2)(2019·西安模拟)某几何体的三视图如图所示,那么这个几何体是()A.三棱锥B.四棱锥C.四棱台D.三棱台解析(1)在正方体中作出该几何体的直观图,记为四棱锥P-ABCD,如图,由图可知在此四棱锥的侧面中,直角三角形的个数为3,分别是△P AD,△PCD,△P AB.(2)因为正视图和侧视图都为三角形,可知几何体为锥体,又因为俯视图为三角形,故该几何体为三棱锥.故选A.答案(1)C(2)A热点二几何体的表面积与体积角度1空间几何体的表面积【例2-1】某多面体的三视图如图所示,其中正视图和侧视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10B.12C.14D.16解析由三视图可画出几何体的直观图,该多面体中只有两个相同的梯形的面,=6×2=12.由于S梯形=12×(2+4)×2=6,所以这些梯形的面积之和为S全梯答案 B探究提高 1.由几何体的三视图求其表面积:(1)关键是分析三视图确定几何体中各元素之间的位置关系及度量大小;(2)还原几何体的直观图,套用相应的面积公式.2.(1)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理.(2)旋转体的表面积问题注意其侧面展开图的应用.【训练2】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为()A.8+3πB.8+4πC.8+5πD.8+6π解析由题图可知,该几何体为半圆柱挖去半球体后的几何体,其表面积为2×π2×4+π+2×4-π+4π2=8+6π.答案 D角度2空间几何体的体积【例2-2】(1)(2019·浙江卷)祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm3)是()A.158B.162C.182D.324(2)(2019·天津卷)已知四棱锥的底面是边长为2的正方形,侧棱长均为 5.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为________.解析(1)由三视图可知,该柱体是一个直五棱柱,如图,棱柱的高为6,底面可以看作由两个直角梯形组合而成,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3.则底面面积S =2+62×3+4+62×3=27. 因此,该柱体的体积V =27×6=162. 故选B.(2)由题意知圆柱的高恰为四棱锥的高的一半,圆柱的底面直径恰为四棱锥的底面正方形对角线的一半.因为四棱锥的底面正方形的边长为2,所以底面正方形对角线长为2,所以圆柱的底面半径为12.又因为四棱锥的侧棱长均为5,所以四棱锥的高为(5)2-12=2,所以圆柱的高为1.所以圆柱的体积V =π⎝ ⎛⎭⎪⎫122×1=π4.答案 (1)B (2)π4探究提高 1.求三棱锥的体积:等体积转化是常用的方法,转换原则是其高易求,底面放在已知几何体的某一面上.2.求不规则几何体的体积:常用分割或补形的思想,将不规则几何体转化为规则几何体以易于求解.【训练3】 (1)(2019·北京卷)某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为________.(2)如图,已知正方体ABCD -A 1B 1C 1D 1的棱长为1,则四棱锥A 1-BB 1D 1D 的体积为________.解析 (1)由三视图知,该几何体是如图所示的正方体ABCD -A 1B 1C 1D 1的棱长为4,去掉四棱柱MQD 1A 1-NPC 1B 1(其底面是一个上底为2,下底为4,高为2的直角梯形)所得的几何体,∵V 棱柱=4×(2+4)×22=24,∴所求几何体的体积V =43-24=40.(2)法一 连接A 1C 1交B 1D 1于点E ,则A 1E ⊥B 1D 1,A 1E ⊥BB 1,则A 1E ⊥平面BB 1D 1D ,所以A 1E 为四棱锥A 1-BB 1D 1D 的高,且A 1E =22,矩形BB 1D 1D 的长和宽分别为2,1,故V A 1-BB 1D 1D =13×1×2×22=13.法二 连接BD 1,将四棱锥A 1-BB 1D 1D 分成两个三棱锥B -A 1DD 1与B -A 1B 1D 1,V A 1-BB 1D 1D =V B -A 1DD 1+V B -A 1B 1D 1=13×12×1×1×1+13×12×1×1×1=13. 答案 (1)40 (2)13热点三 多面体与球的切、接问题【例3】 (1)在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( ) A.4π B.9π2 C.6πD.32π3(2)(多填题)(2019·湖南师大附中调研)在《九章算术》中,将底面为矩形且有一条侧棱与底面垂直的四棱锥称之为阳马.如图,若四棱锥P -ABCD 为阳马,侧棱P A ⊥底面ABCD ,且P A =3,BC =AB =4,设该阳马的外接球半径为R ,内切球半径为r ,则R =________;内切球的体积V =________.解析 (1)由AB ⊥BC ,AB =6,BC =8,得AC =10.要使球的体积V 最大,则球与直三棱柱的部分面相切,若球与三个侧面相切,设底面△ABC 的内切圆的半径为r . 则12×6×8=12×(6+8+10)·r ,所以r =2. 2r =4>3,不合题意.球与三棱柱的上、下底面相切时,球的半径R 最大. 由2R =3,即R =32.故球的最大体积V =43πR 3=92π.(2)在四棱锥P -ABCD 中,侧棱P A ⊥底面ABCD ,且底面为矩形,将该“阳马”补成长方体,则(2R )2=AB 2+AD 2+AP 2=16+16+9=41, 因此R =412.依题意Rt △P AB ≌Rt △P AD ,则内切球O 在侧面P AD 内的正视图是△P AD 的内切圆,故内切球的半径r =12(3+4-5)=1,则V =43πr 3=43π. 答案 (1)B (2)412 43π 探究提高 1.与球有关的组合体问题,一种是内切,一种是外接.球与旋转体的组合通常是作它们的轴截面解题,球与多面体的组合,通过多面体的一条侧棱和球心,或“切点”、“接点”作出截面图,把空间问题化归为平面问题.2.若球面上四点P ,A ,B ,C 且P A ,PB ,PC 两两垂直或三棱锥的三条侧棱两两垂直,可构造长方体或正方体确定直径解决外接问题.【训练4】 (1)(2019·河南百校联盟联考)一个圆锥的母线长为2,圆锥的母线与底面的夹角为π4,则圆锥的内切球的表面积为( ) A.8π B.4(2-2)2π C.4(2+2)2πD.32(4-2)249π(2)(2019·咸阳模拟)在三棱锥P -ABC 中,P A ⊥平面ABC ,AB ⊥BC ,若AB =2,BC =3,P A =4,则该三棱锥的外接球的表面积为( ) A.13π B.20π C.25πD.29π解析 (1)圆锥的母线长为2,母线与底面的夹角为π4,所以圆锥轴截面为等腰直角三角形,底面圆的半径为2,其内切圆半径即为圆锥的内切球的半径,可设圆锥内切球的半径为r ,则12×2r +12×2r +12×22r =12×2×2, ∴r =22+2=2-2, 所以,圆锥内切球的表面积为4πr 2=4(2-2)2π. (2)把三棱锥P -ABC 放到长方体中,如图所示,所以长方体的体对角线长为 22+32+42=29,所以三棱锥外接球的半径为292, 所以外接球的表面积为4π×⎝⎛⎭⎪⎫2922=29π. 答案 (1)B (2)D1.求解几何体的表面积或体积(1)对于规则几何体,可直接利用公式计算.(2)对于不规则几何体,可采用割补法求解;对于某些三棱锥,有时可采用等体积转换法求解.(3)求解旋转体的表面积和体积时,注意圆柱的轴截面是矩形,圆锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形的应用. (4)求解几何体的表面积时要注意S 表=S 侧+S 底.2.球的简单组合体中几何体度量之间的关系,如棱长为a 的正方体的外接球、内切球、棱切球的半径分别为32a ,a 2,22a .3.锥体体积公式为V =13Sh ,在求解锥体体积时,不能漏掉13.A级巩固提升一、选择题1.(2019·长郡中学调研)半径为R的半圆卷成一个圆锥,则它的体积为()A.525πR3 B.324πR3C.58πR3 D.38πR3解析设圆锥的底面圆的半径为r,高为h,由2πr=πR,得r=R2,因此h=R2-r2=32R,所以V圆锥=13πr 2·h=13π·⎝⎛⎭⎪⎫R22·32R=324πR3.答案 B2.图1所示的是一个棱长为2的正方体被削去一个角后所得到的几何体的直观图,其中DD1=1,AB=BC=AA1=2.若此几何体的俯视图如图2所示,则可以作为其正视图的是()解析由题意,根据该几何体的直观图和俯视图知,其正视图的长应为底面正方形的对角线长,宽为正方体的棱长,故排除B,D;在三视图中看不见的棱用虚线表示,故排除A,选C.答案 C3.某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为()A.3 2B.2 3C.2 2D.2解析根据三视图可得该四棱锥的直观图(四棱锥P-ABCD)如图所示,将该四棱锥放入棱长为2的正方体中.由图可知该四棱锥的最长棱为PD,PD=22+22+22=2 3.答案 B4.如图,在底面边长为1,高为2的正四棱柱ABCD-A1B1C1D1中,点P是平面A1B1C1D1内一点,则三棱锥P-BCD的正视图与侧视图的面积之和为()A.1B.2C.3D.4解析设点P在平面A1ADD1的射影为P′,在平面C1CDD1的射影为P″,如图所示.∴三棱锥P -BCD 的正视图与侧视图分别为△P ′AD 与△P ″CD , 因此所求面积S =S △P ′AD +S △P ″CD =12×1×2+12×1×2=2. 答案 B5.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( ) A.π B.3π4 C.π2D.π4解析 如图画出圆柱的轴截面ABCD ,O 为球心.球半径R =OA =1,球心到底面圆的距离为OM =12.∴底面圆半径r =OA 2-OM 2=32,故圆柱体积V =π·r 2·h =π·⎝ ⎛⎭⎪⎫322×1=3π4.答案 B6.(2019·昆明诊断)如图所示的三棱锥D -ABC 的四个顶点均在球O 的球面上,△ABC 和△DBC 所在的平面互相垂直,AB =3,AC =3,BC =CD =BD =23,则球O 的表面积为( )A.4πB.12πC.16πD.36π解析 如图所示,∵AB 2+AC 2=BC 2,∴∠CAB 为直角,即△ABC 外接圆的圆心为BC 的中点O ′.△ABC 和△DBC 所在的平面互相垂直,则球心在过△DBC 的圆面上,即△DBC 的外接圆为球的大圆,由等边三角形的重心和外心重合,易得球半径R =2,球的表面积为S =4πR 2=16π.答案 C7.(2018·全国Ⅲ卷)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为93,则三棱锥D -ABC 体积的最大值为( ) A.12 3 B.18 3 C.24 3D.54 3解析 设等边△ABC 的边长为x ,则12x 2sin 60°=93,得x =6.设△ABC 的外接圆半径为r ,则2r =6sin 60°,解得r =23,所以球心到△ABC 所在平面的距离d =42-(23)2=2,则点D 到平面ABC 的最大距离d 1=d +4=6.所以三棱锥D -ABC 体积的最大值V max =13S △ABC ×6=13×93×6=18 3. 答案 B 二、填空题8.(2019·江苏卷)如图,长方体ABCD -A 1B 1C 1D 1的体积是120,E 为CC 1的中点,则三棱锥E -BCD 的体积是________.解析 设长方体中BC =a ,CD =b ,CC 1=c ,则abc =120, ∴V E -BCD =13×12ab ×12c =112abc =10. 答案 109.(2019·广州调研)某几何体的正视图和俯视图如图所示,在下列图形中,可能是该几何体侧视图的图形是________(写出所有可能的序号).解析 如图a 三棱锥C -ABD ,正视图与俯视图符合题意,侧视图为①; 如图b 四棱锥P -ABCD ,正视图与俯视图符合题意,侧视图为②; 如图c 三棱锥P -BCD ,正视图与俯视图符合题意,侧视图为③.答案 ①②③10.已知长方体ABCD -A 1B 1C 1D 1内接于球O ,底面ABCD 是边长为2的正方形,E 为AA 1的中点,OA ⊥平面BDE ,则球O 的表面积为________.解析取BD的中点为O1,连接OO1,OE,O1E,O1A,则四边形OO1AE为矩形,∵OA⊥平面BDE,∴OA⊥EO1,即四边形OO1AE为正方形,则球O的半径R=OA=2,∴球O的表面积S=4π×22=16π.答案16π11.(2019·石家庄调研)我国齐梁时代的数学家祖暅提出了一条原理:“幂势既同,则积不容异”.意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.椭球体是椭圆绕其轴旋转所成的旋转体.如图,将底面直径都为2b,高皆为a的椭半球体和已被挖去了圆锥体的圆柱放置于同一平面β上,用平行于平面β且与平面β任意距离d处的平面截这两个几何体,可横截得到S圆及S环两截面.可以证明S圆=S环总成立.据此,半短轴长为1,半长轴长为3的椭球体的体积是________.解析∵S圆=S环总成立,则半椭球体的体积为πb2a-13πb2a=23πb2a,∴椭球体的体积V=43πb2a,∵椭球体半短轴长为1,半长轴长为3即b=1,a=3,故椭球体的体积V=43πb2a=4π.答案4πB级能力突破12.(2019·南昌质检)一个几何体的三视图如图所示,则该几何体的体积为()A.5π3B.5C.2π3D.π解析 由三视图可知,该几何体是一个组合体,它由半个圆锥与四分之一球体组成,其中圆锥的底面半径为1,高为2,体积为12×13×π×12×2=π3;球的半径为1,体积为14×43π×13=π3.所以该几何体的体积V =π3+π3=2π3. 答案 C13.已知三棱锥S -ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S -ABC 的体积为9,则球O 的表面积为________.解析 如图,连接OA ,OB ,因为SA =AC ,SB =BC ,SC 为球O 的直径,所以OA ⊥SC ,OB ⊥SC .因为平面SAC ⊥平面SBC ,平面SAC ∩平面SBC =SC ,且OA 平面SAC ,所以OA ⊥平面SBC .设球的半径为r ,则OA =OB =r ,SC =2r ,所以V A -SBC =13×S △SBC ×OA =13×12×2r ×r ×r =13r 3,所以13r3=9r=3,所以球的表面积为4πr2=36π.答案36π14.(2019·雅礼中学调研)已知四棱锥P-ABCD的正视图是一个底边长为4、腰长为3的等腰三角形,图1、图2分别是四棱锥P-ABCD的侧视图和俯视图.(1)求证:AD⊥PC;(2)求四棱锥P-ABCD的体积及侧面P AB的面积.(1)证明依题意,可知点P在平面ABCD上的射影是CD的中点E,如图连接PE,则PE⊥平面ABCD,因为AD平面ABCD,所以PE⊥AD,因为AD⊥CD,CD∩PE=E,CD,PE 平面PCD,AD⊥平面PDC,又PC平面PCD,∴AD⊥PC.(2)解依题意,在等腰三角形PCD中,PC=PD=3,DE=EC=2,在Rt△PED中,PE=PD2-DE2=5,∴四棱锥P-ABCD的体积为V=13×4×2×5=853.过E作EF⊥AB,垂足为F,连接PF,∵PE⊥平面ABCD,AB平面ABCD,∴AB⊥PE.∵EF平面PEF,PE平面PEF,EF∩PE=E,∴AB⊥平面PEF.∵PF平面PEF,∴AB⊥PF.依题意得EF=AD=2.在Rt△PEF中,PF=PE2+EF2=3,∴△P AB的面积为S=1 2·AB·PF=6.。
空间几何体的体积与表面积、三视图
空间几何体的三视图、直观图、表面积与体积1.空间几何体的结构特征2(1)在已知图形中建立直角坐标系xOy .画直观图时,它们分别对应x ′轴和y ′轴,两轴交于点O ′,使∠x ′O ′y ′=45°,它们确定的平面表示水平平面;(2)已知图形中平行于x 轴或y 轴的线段,在直观图中分别画成平行于x ′轴和y ′轴的线段;(3)已知图形中平行于x 轴的线段,在直观图中保持原长度不变;平行于y 轴的线段,长度为原来的12.3.空间几何体的三视图空间几何体的三视图是用正投影得到,这种投影下与投影面平行的平面图形留下的影子与平面图形的形状和大小是完全相同的,三视图包括主视图、左视图、俯视图. 4.柱、锥、台和球的表面积和体积题型一 空间几何体的结构特征 例1 (1)下列说法正确的是( )A .有两个平面互相平行,其余各面都是平行四边形的多面体是棱柱B .四棱锥的四个侧面都可以是直角三角形C .有两个平面互相平行,其余各面都是梯形的多面体是棱台D .棱台的各侧棱延长后不一定交于一点 (2)给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线; ②有一个面是多边形,其余各面都是三角形的几何体是棱锥; ③直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥; ④棱台的上、下底面可以不相似,但侧棱长一定相等. 其中正确命题的个数是( )A .0B .1C .2D .3如图是一个无盖的正方体盒子展开后的平面图,A ,B ,C是展开图上的三点,则在正方体盒子中,∠ABC 的值为( )A .30°B .45°C .60°D .90°题型二 空间几何体的三视图和直观图例2 (1)如图,某几何体的主视图与左视图都是边长为1的正方形,且体积为12,则该几何体的俯视图可以是( )(2)正三角形AOB 的边长为a ,建立如图所示的直角坐标系xOy ,则 它的直观图的面积是________.(1)(2013·湖南)已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的主视图的面积不可能等于 ( )A .1B. 2C.2-12D.2+12(2)如图,矩形O ′A ′B ′C ′是水平放置的一个平面图形的直观图,其中O ′A ′=6 cm ,O ′C ′=2 cm ,则原图形是( )A .正方形B .矩形C .菱形D .一般的平行四边形题型三 空间几何体的表面积与体积例3 (1)一个空间几何体的三视图如图所示,则该几何体的表面积为( )A .48B .32+817C .48+817D .80(2)已知某几何体的三视图如图所示,其中主视图、左视图均由直角三角形与半圆构成,俯视图由圆与内接三角形构成,根据图中的数据可得几何体的体积为( )A.2π3+12 B.4π3+16 C.2π6+16D.2π3+12(2012·课标全国)已知三棱锥S -ABC 的所有顶点都在球O 的球面上,△ABC是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积为 ( )A.26B.36C.23 D.22转化思想在立体几何计算中的应用典例:(12分)如图,在直棱柱ABC—A′B′C′中,底面是边长为3的等边三角形,AA′=4,M为AA′的中点,P是BC上一点,且由P沿棱柱侧面经过棱CC′到M的最短路线长为29,设这条最短路线与CC′的交点为N,求:(1)该三棱柱的侧面展开图的对角线长;(2)PC与NC的长;(3)三棱锥C—MNP的体积.1.【2017课标II ,文6】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为 A.90π B.63π C.42π D.36π2.【2017北京,文6】某三棱锥的三视图如图所示,则该三棱锥的体积为(A )60 (B )30 (C )20 (D )103.【2015高考陕西,文5】一个几何体的三视图如图所示,则该几何体的表面积为( ) A .3π B .4π C .24π+ D .34π+4.【2016高考天津文数】将一个长方形沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为( )5.【2015北京文7】某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为( )A .BCD .6.【2015新课标2文6】 一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为( )1A.8 1B.7 1C.6 1D.57. (2014课标全国Ⅰ,文8)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是( ).A .三棱锥B .三棱柱C .四棱锥D .四棱柱 8.【2015高考安徽,文9】一个四面体的三视图如图所示,则该四面体的表面积是( )(A )1+ (B )1+ (C )2+ (D )9.【2014湖北卷7】在如图所示的空间直角坐标系xyz O -中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为( )A.①和②B.③和①C. ④和③D.④和② 10.【2015高考重庆,文5】某几何体的三视图如图所示,则该几何体的体积为( )(A) 123π+ (B)136π(C) 73π (D) 52π11.【2015高考浙江,文2】某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( )A . 3cmB .123cm C .3233cm D .4033cm12.【2016高考山东文数】一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为( )(A )12+π33 (B)1+π33 (C)1+π36(D)1+π613. 【2014四川,文4】某三棱锥的侧视图、俯视图如图所示,则该三棱锥的体积是( )(锥体体积公式:13V Sh,其中S 为底面面积,为高) A 、 B 、 CD 、侧视图俯视图1122221114. 2016高考新课标Ⅲ文数]如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为( )(A )18+ (B )54+ (C )90 (D )8115.【2015高考湖南,文10】某工作的三视图如图3所示,现将该工作通过切削,加工成一个体积尽可能大的正方体新工件,并使新工件的一个面落在原工作的一个面内,则原工件材料的利用率为(材料利用率=新工件的体积/原工件的体积)( )A 、89πB 、827πC 、21)πD 、21)π16.【2016高考新课标1文数】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π3,则它的表面积是( )(A )17π (B )18π (C )20π (D )28π17.【2015高考北京,文7】某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为( )A .BCD .。
空间几何体的三视图、表面积与体积
名师解答 如图,三棱锥 S-ABC、M-ABC 内接于球 O, 右侧为该球过 SA 和球心的截面. 设 SM∩平面 ABC=P, 则点 P 为三角形 ABC 的重心, 且点 P 在 AD 上,SM=2R,AB=a,
3 3 3 所以 AD= a,PA= a,PD= a, 2 3 6
SP MP + tanα+tanβ PD PD 因此 tan(α+β)= = SP MP 1-tanαtanβ 1- · PD PD 3 a· 2R 6 PD· SM PD· SM 4 3 = 2 = = 2 R. 2 =- 3a PD -SP· MP PD2-PA2 a a - 12 3
又 SA∩AB=A,∴BC⊥平面 SAB,BC⊥SB, 1 AE= SC=BE, 2 ∴点 E 是三棱锥 S-ABC 的外接球的球心,即点 E 与点 O 重合, 1 1 OA= SC= SA2+AC2=2,故球 O 的表面积为 4π×OA2=16π. 2 2
例 2 如图 1,在棱长为 6 的正方体 ABCD-A1B1C1D1 中,E,F 分 别在 C1D1 与 C1B1 上,且 C1E=4,C1F=3,连接 EF,FB,DE,则 几何体 EFC1-DBC 的体积为( ) A.66 B.68 C.70 D.72
一级整合 常考题型 类型一 空间几何体的三视图 例 1 (1)(2014· 江西卷)一几何体的直观图如图,下列给出的四个俯视 图中正确的是( )
解析 (1)根据三视图的概念, 直接观察求解即可. 该几何体是组合体, 上面的几何体是一个五面体,下面是一个长方体,且五面体的一个面 即为长方体的一个面,五面体最上面的棱的两端点在底面的射影距左 右两边距离相等,因此选 B.
(2)柱体、锥体和球的体积公式: ①V 柱体=Sh(S 为底面面积,h 为高); 1 ②V 锥体= Sh(S 为底面面积,h 为高); 3 1 ③V 台= (S+ SS′+S′)h(不要求记忆); 3 4 3 ④V 球= πR . 3 二级排查 易错易混 1.未注意三视图中实、虚线的区别 在画三视图时应注意看到的轮廓线画成实线,看不到的轮廓线画成虚 线. 2.不能准确还原几何体致误 对由三视图还原几何体问题,要注意还原时一定要准确. 3.不能准确分析组合体的结构致误 对简单组合体表面积与体积的计算要注意其构成几何体的面积、体积 是和还是差.
高考数学二轮立体几何第1讲 空间几何体的三视图、表面积及体积
1.求表面积问题的思路是将立体几何问题转化为平面图形问题,
即空间图形平面化,这是解决立体几何的主要出发点.
2.求不规则几何体的表面积时,通常将所给几何体分割成柱、锥、台体,先求这些柱、 锥、台体的表面积,再通过求和或作差求得所给几何体的表面积.
题型二 求空间几何体的体积
[例 3] (1)(2019·天津高考)已知四棱锥的底面是边长为 2的正方形,侧棱长均为 5.若 圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中
心,则该圆柱的体积为________.
(2)(2019·江西省五校协作体试题)某几何体的三视图如图所示,正视图是一个上底为 2, 下底为 4 的直角梯形,俯视图是一个边长为 4 的等边三角形,则该几何体的体积为______.
[解题方略]
求空间几何体体积的常用方法 公式法 直接根据常见柱、锥、台等规则几何体的体积公式计算
(2)根据正(主)视图或侧(左)视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对
应的棱、面的位置;
(3)确定几何体的直观图形状. 3.由几何体的部分视图判断剩余的视图的思路 先根据已知的一部分视图,还原、推测直观图的可能形状,然后再找其剩下部分视图
的可能形状.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.
本小题虽然难度稍高,主要体现在计算量上,但仍是对基础知识、基本公式的考查.
考点一 空间几何体的三视图、直观图与截面图
[例 1] (1)中国古建筑借助榫卯将木构件连接起来.构件的凸出部
分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如
图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图
第1讲 空间几何体的三视图、表面积和体积(教案)
第1讲 空间几何体的三视图、表面积和体积1.以三视图为载体,考查空间几何体面积、体积的计算.2.考查空间几何体的侧面展开图及简单的组合体问题.热点一 三视图与直观图 1.一个物体的三视图的排列规则俯视图放在正(主)视图的下面,长度与正(主)视图的长度一样,侧(左)视图放在正(主)视图的右面,高度与正(主)视图的高度一样,宽度与俯视图的宽度一样.即“长对正、高平齐、宽相等”. 2.由三视图还原几何体的步骤一般先依据俯视图确定底面再利用正(主)视图与侧(左)视图确定几何体.例1 (1)将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧(左)视图为( )答案 D解析 所得几何体的轮廓线中,除长方体原有的棱外,有两条是原长方体的面对角线,它们在侧(左)视图中落在矩形的两条边上,另一条是原长方体的体对角线,在侧(左)视图中体现为矩形的自左下至右上的一条对角线,因不可见,故用虚线表示,由以上分析可知,故选D.(2)有一块多边形的菜地,它的水平放置的平面图形的斜二测直观图是直角梯形(如图所示),∠ABC =45°,AB =AD =1,DC ⊥BC ,则这块菜地的面积为________. 答案 2+22解析 如图,在直观图中,过点A 作AE ⊥BC ,垂足为点E ,则在Rt △ABE 中,AB =1,∠ABE =45°,∴BE =22. 而四边形AECD 为矩形,AD =1, ∴EC =AD =1,∴BC =BE +EC =22+1. 由此可还原原图形如图所示.在原图形中,A ′D ′=1,A ′B ′=2,B ′C ′=22+1, 且A ′D ′∥B ′C ′,A ′B ′⊥B ′C ′, ∴这块菜地的面积为 S =12(A ′D ′+B ′C ′)·A ′B ′ =12×⎝⎛⎭⎫1+1+22×2=2+22. 思维升华 空间几何体的三视图是从空间几何体的正面、左面、上面用平行投影的方法得到的三个平面投影图,因此在分析空间几何体的三视图问题时,先根据俯视图确定几何体的底面,然后根据正(主)视图或侧(左)视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置,再确定几何体的形状,即可得到结果.在还原空间几何体实际形状时,一般是以正(主)视图和俯视图为主,结合侧(左)视图进行综合考虑.跟踪演练1 (1)(2017·河北省武邑中学模拟)已知某锥体的正(主)视图和侧(左)视图如图,则该锥体的俯视图不可能是( )答案 D解析 A 项,该锥体是底面边长为2,高为3的正四棱锥. B 项,该锥体为底面半径为1,高为3的圆锥.C 项,该锥体是底面为等腰直角三角形,高为3的三棱锥.D 项,由于该图形不满足三视图原则“宽相等”,所以不可能是该锥体的俯视图,故D 项不符合题意. 故选D.(2)(2017·衡阳联考)如图所示,三棱锥V -ABC 的底面是以B 为直角顶点的等腰直角三角形,侧面VAC 与底面ABC 垂直,若以垂直于平面VAC 的方向作为正(主)视图的方向,垂直于平面ABC 的方向为俯视图的方向,已知其正(主)视图的面积为23,则其侧(左)视图的面积是( ) A.32B. 3 C .2 3 D .3 答案 B解析 设三棱锥的高为h ,AB =BC =2a ,则AC =2a ,S 正(主)视图=12×2a ×h =23⇒h =23a ,S 侧(左)视图=12ah =a 2×23a = 3.故选B.热点二 几何体的表面积与体积空间几何体的表面积和体积计算是高考中常见的一个考点,解决这类问题,首先要熟练掌握各类空间几何体的表面积和体积计算公式,其次要掌握一定的技巧,如把不规则几何体分割成几个规则几何体的技巧,把一个空间几何体纳入一个更大的几何体中的补形技巧.例2 (1)下图画出的是某几何体的三视图,网格纸上小正方形的边长为1,则该几何体的体积为( )A .48-πB .96-πC .48-2πD .96-2π 答案 D解析 由已知中的三视图可知,该几何体是一个长方体挖掉两个圆锥所得的组合体,所以几何体的体积为4×4×6-2×13×π×12×3=96-2π,故选D.(2)(2017·山东)由一个长方体和两个14圆柱构成的几何体的三视图如图,则该几何体的体积为________.答案 2+π2解析 该几何体由一个长、宽、高分别为2,1,1的长方体和两个半径为1,高为1的14圆柱体构成,∴V =2×1×1+2×14×π×12×1=2+π2.思维升华 (1)求多面体的表面积的基本方法就是逐个计算各个面的面积,然后求和.(2)求简单几何体的体积时若所给的几何体为柱体、锥体或台体,则可直接利用公式求解;求组合体的体积时若所给定的几何体是组合体,不能直接利用公式求解,则常用转换法、分割法、补形法等进行求解;求以三视图为背景的几何体的体积时应先根据三视图得到几何体的直观图,然后根据条件求解.跟踪演练2 (1)(2016·山东)一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( )A.13+23π B.13+23π C.13+26π D .1+26π 答案 C解析 由三视图知,半球的半径R =22,四棱锥为底面边长为1,高为1的正四棱锥,所以几何体的体积V =13×1×1×1+12×43π×⎝⎛⎭⎫223=13+26π,故选C.(2)(2017届云南省师范大学附属中学月考)如图,是某组合体的三视图,则外部几何体的表面积为( )A .4πB .12πC .24πD .36π答案 D解析 组合体为轴截面为等边三角形的圆锥和它的内切球,球的半径为r =2,圆锥的高为3r =6,圆锥底面半径为3r =23,圆锥母线长为23r =43,所以S 圆锥表=π()232+12()2π·23·43=36π,故选D.热点三 多面体与球与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图.如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径.球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.球与旋转体的组合,通常作它们的轴截面解题,球与多面体的组合,通过多面体的一条侧棱和球心(或“切点”“接点”)作出截面图.例3 (1)一个三棱锥的三视图如图所示,则该棱锥的外接球的体积为( )A .1 0002πB .1252πC.1 0002π3D.1252π3答案 D解析 由三视图可知该三棱锥为棱长为5,4,3的长方体切去四个小棱锥得到的几何体,∴该三棱锥的外接球和长方体的外接球相同. 设该三棱锥的外接球半径为R , ∴2R =52+42+32=5 2.∴R =522,∴外接球的体积为V =43πR 3=1252π3,故选D.(2)(2017届咸阳二模)已知一个三棱锥的所有棱长均为2,则该三棱锥的内切球的体积为____________. 答案354π解析 由题意可知,该三棱锥为正四面体,如图所示. AE =AB ·sin60°=62,AO =23AE =63, DO =AD 2-AO 2=233,三棱锥的体积V D -ABC =13S △ABC ·DO =13,设内切球的半径为r ,则V D -ABC =13r ()S △ABC +S △ABD +S △BCD +S △ACD =13,r =36,V 内切球=43πr 3=354π.思维升华 三棱锥P -ABC 可通过补形为长方体求解外接球问题的两种情形 (1)点P 可作为长方体上底面的一个顶点,点A ,B ,C 可作为下底面的三个顶点. (2)P -ABC 为正四面体,则正四面体的棱都可作为一个正方体的面对角线.跟踪演练3 (1)若在三棱锥P -ABC 中, AB =AC =1,AB ⊥AC ,P A ⊥平面ABC ,且直线P A 与平面PBC 所成角的正切值为12,则三棱锥P -ABC 的外接球的表面积为( )A .4πB .8πC .16πD .32π答案 A解析 如图,取BC 的中点D ,连接AD ,PD, ∵AB =AC ,∴AD ⊥BC ,又∵P A ⊥平面ABC ,∴BC ⊥P A ,又P A ,AD ⊂平面P AD ,P A ∩AD =A ,∴BC ⊥平面P AD ,过A 作AH ⊥PD 于点H ,易知AH ⊥平面PBC ,∴∠APD 是直线P A 与平面PBC 所成的角,∴tan ∠APD =AD AP =12,∵AD =12BC =22,∴AP =2,∵AB ,AC ,AP 相互垂直, ∴以AB ,AC ,AP 为棱的长方体的外接球就是三棱锥P -ABC 的外接球,∴三棱锥P -ABC 的外接球的半径为12+12+()222=1,三棱锥P -ABC 的外接球的表面积为4π,故选A.(2)(2017届石家庄质检)四棱锥P -ABCD 的底面ABCD 是边长为6的正方形,且P A =PB =PC =PD ,若一个半径为1的球与此四棱锥所有面都相切,则该四棱锥的高是( ) A .6 B .5 C.92 D.94答案 D解析 由题意知,四棱锥P -ABCD 是正四棱锥,球的球心O 在四棱锥的高PH 上,过正四棱锥的高作组合体的轴截面如图,其中PE ,PF 是斜高,G 为球面与侧面的切点.设PH =h ,易知Rt △PGO ∽Rt △PHF ,所以OG FH =POPF ,即13=h -1h 2+32,解得h =94,故选D.真题体验1.(2017·北京改编)某三棱锥的三视图如图所示,则该三棱锥的体积为________.答案 10解析 由三视图画出如图所示的三棱锥P -ACD ,过点P 作PB ⊥平面ACD 于点B ,连接BA ,BD ,BC ,根据三视图可知,底面ABCD 是矩形,AD =5,CD =3,PB =4, 所以V 三棱锥P ACD =13×12×3×5×4=10.2.(2017·全国Ⅱ)长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为________. 答案 14π解析 ∵长方体的顶点都在球O 的球面上, ∴长方体的体对角线的长度就是其外接球的直径. 设球的半径为R , 则2R =32+22+12=14.∴球O 的表面积为S =4πR 2=4π×⎝⎛⎭⎫1422=14π. 3.(2017·全国Ⅰ)已知三棱锥S —ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S —ABC 的体积为9,则球O 的表面积为________. 答案 36π解析 如图,连接OA ,OB .由SA =AC ,SB =BC ,SC 为球O 的直径知,OA ⊥SC ,OB ⊥SC .由平面SCA ⊥平面SCB ,平面SCA ∩平面SCB =SC ,OA ⊥SC 知,OA ⊥平面SCB . 设球O 的半径为r ,则 OA =OB =r ,SC =2r , ∴三棱锥S -ABC 的体积 V =13×12×SC ×OB ×OA =r 33,即r 33=9,∴r =3,∴S 球表=4πr 2=36π.4.(2017·江苏)如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________.答案 32解析 设球O 的半径为R ,∵球O 与圆柱O 1O 2的上、下底面及母线均相切, ∴圆柱O 1O 2的高为2R ,底面半径为R . ∴V 1V 2=πR 2·2R 43πR 3=32. 押题预测1.一个几何体的三视图及其尺寸如图所示,则该几何体的表面积为( )A .16B .82+8C .22+26+8D .42+46+8押题依据 求空间几何体的表面积或体积是立体几何的重要内容之一,也是高考命题的热点.此类题常以三视图为载体,给出几何体的特征,求几何体的表面积或体积. 答案 D解析 由三视图知,该几何体是底面边长为22+22=22的正方形,高PD =2的四棱锥P -ABCD ,因为PD ⊥平面ABCD ,且四边形ABCD 是正方形, 易得BC ⊥PC ,BA ⊥P A , 又PC =PD 2+CD 2=22+(22)2=23,所以S △PCD =S △P AD =12×2×22=22,S △P AB =S △PBC =12×22×23=2 6.所以几何体的表面积为46+42+8.2.在正三棱锥S -ABC 中,点M 是SC 的中点,且AM ⊥SB ,底面边长AB =22,则正三棱锥S -ABC 的外接球的表面积为( ) A .6π B .12π C .32πD .36π押题依据 灵活运用正三棱锥中线与线之间的位置关系来解决外接球的相关问题,是高考的热点. 答案 B解析 因为三棱锥S -ABC 为正三棱锥,所以SB ⊥AC ,又AM ⊥SB ,AC ∩AM =A ,所以SB ⊥平面SAC ,所以SB ⊥SA ,SB ⊥SC ,同理SA ⊥SC ,即SA ,SB ,SC 三线两两垂直,且AB =22,所以SA =SB =SC =2,所以(2R )2=3×22=12, 所以球的表面积S =4πR 2=12π,故选B.3.已知半径为1的球O 中内接一个圆柱,当圆柱的侧面积最大时,球的体积与圆柱的体积的比值为________.押题依据 求空间几何体的体积是立体几何的重要内容之一,也是高考的热点问题之一,主要是求柱体、锥体、球体或简单组合体的体积.本题通过球的内接圆柱,来考查球与圆柱的体积计算,设问角度新颖,值得关注. 答案423解析 如图所示,设圆柱的底面半径为r ,则圆柱的侧面积为S =2πr ×21-r 2=4πr1-r 2≤4π×r 2+(1-r 2)2=2π(当且仅当r 2=1-r 2,即r =22时取等号).所以当r =22时,V 球V 圆柱=4π3×13π⎝⎛⎭⎫222×2=423.A组专题通关1.一几何体的直观图如图,下列给出的四个俯视图中正确的是()答案 B解析由直观图可知,该几何体是由一个长方体和一个截角三棱柱组合而成.从上往下看,外层轮廓线是一个矩形,矩形内部有一条线段连接着两个三角形.2.(2017届太原模拟)某几何体的三视图如图所示,则该几何体中最长的棱长为()A.3 3 B.2 6C.21 D.2 5答案 B解析如图所示,在长、宽、高分别为3,4,2的长方体中,三视图表示的是如图所示的四棱锥P-ABCD,其最长的棱为BP=22+22+42=2 6 .故选B.3.(2017·日照模拟)某几何体的三视图如图所示,则该几何体的体积为( )A.9+36πB.6+36πC.3+36πD.12+36π答案 A解析 根据三视图可知,原几何体表示上部为底面圆半径为1,高为3的圆锥的12,下部为底面圆半径为1,高为2的圆柱的34,故该几何体的体积为V =V 1+V 2=12×13πr 2h 1+34×πr 2h 2=3π6+3π2=3+96π.4.(2017届四川省泸州市四诊)某几何体的正(主)视图和侧(左)视图如图(1)所示,它的俯视图的直观图是A ′B ′C ′,如图(2)所示,其中O ′A ′=O ′B ′=2,O ′C ′=3,则该几何体的表面积为( )A .36+12 3B .24+8 3C .24+12 3D .36+8 3答案 C解析 由图(2)可知,该几何体的俯视图是一个底面边长为4,高为23的等腰三角形,即该三角形为等边三角形,在如图所示的长方体中,长、宽、高分别为4,23,6,三视图还原为几何体是图中的三棱锥P -ABC ,且S △P AB =S △PBC =12×4×6=12, S △ABC =12×4×23=43,△P AC 是腰长为52,底面边长为4的等腰三角形, S △P AC =8 3.综上可知,该几何体的表面积为2×12+43+83=24+12 3.故选C.5.(2017届玉林、贵港质检)网络用语“车珠子”,通常是指将一块原料木头通过加工打磨,变成球状珠子的过程.某同学有一圆锥状的木块,想把它“车成珠子”,经测量,该圆锥状木块的底面直径为12 cm ,体积为96π cm 3,假设条件理想,他能成功,则该珠子的体积最大值是( ) A .36π cm 3B .12π cm 3C .9π cm 3D .72π cm 3 答案 A解析 由题可令圆锥的高为x cm ,可得13π·62·x =96π,则x =8,由底面直径为12,得母线长为10,可设轴截面的内切圆半径为r ,由12×12×8=12×()10+10+12r ,可得r =3.那么珠子的体积最大值为43π·33=36π(cm)3.故选A.6.(2017·哈尔滨师范大学附属中学模拟)已知三棱锥P —ABC 的四个顶点均在同一个球面上,底面△ABC 满足BA =BC =6, ∠ABC =π2,若该三棱锥体积的最大值为3,则其外接球的体积为( )A .8πB .16π C.16π3 D.32π3 答案 D解析 因为△ABC 是等腰直角三角形,所以外接圆的半径是r =12×12=3,设外接球的半径是R ,球心O 到该底面的距离为d ,如图,则S △ABC =12×6=3,BD =3,由题设V =13S △ABC ·h =13×3h =3,最大体积对应的高为PD =h =3,故R 2=d 2+3,即R 2=()3-R 2+3,解得R =2,所以外接球的体积是43πR 3=32π3,故选D.7.(2017届石家庄模拟)三棱锥S -ABC 中,侧棱SA ⊥底面ABC, AB =5, BC =8, ∠B =60°, SA =25,则该三棱锥的外接球的表面积为( ) A.643π B.2563π C.4363π D .2 048327π 答案 B解析 由题意知,侧棱SA ⊥底面ABC, AB =5,BC =8,∠B =60°,则根据余弦定理可得 AC =52+82-2×5×8×12=7,△ABC 的外接圆圆心2r =AC sin B =732∴r =73,三棱锥的外接球的球心到平面ABC 的距离d =12SA =5,则外接球的半径R =⎝⎛⎭⎫732+()52=643,则该三棱锥的外接球的表面积为S =4πR 2=2563π. 8.如图所示,图中阴影部分绕AB 旋转一周所形成的几何体的体积为________.答案140π3解析 由题意知,旋转一周后形成的几何体是一圆台去掉一个半球,其中圆台的体积为V =13×(π×22+π×22×π×52+π×52)×4=156π3,半球的体积V =12×43×π×23=16π3,则所求体积为156π3-16π3=140π3.9.体积为163的正四棱锥S —ABCD 的底面中心为O ,SO 与侧面所成角的正切值为22,那么过S —ABCD的各顶点的球的表面积为________. 答案 16π解析 如图,取AB 的中点为F ,连接SF ,过点O 作OG ⊥SF ,则∠OSG 为SO 与侧面所成的角,且tan ∠OSG =OF SO =22.设AB =2a ,则SO =2a ,所以13×4a 2×2a =163,得a = 2.延长SO 交外接球于E ,则EB ⊥SB ,由OB 2=SO ·OE ,得4=2·(2R -2), 所以R =2,S =4π×22=16π.10.(2017·天津市第一中学月考)某几何体的三视图如图所示(单位: cm),则该几何体的体积为________ cm 3.答案 6+32π解析 由三视图还原几何体如图所示,该几何体是一个半圆柱与一个直三棱柱的组合体,半圆柱的底面半径为1,高为3;直三棱柱底面是等腰直角三角形,直角边为2,高为3. 所以V =12×2×2×3+12×π×12×3=6+32π.11.如图,已知正方体ABCD-A1B1C1D1的棱长为2,点E为线段A1B1的中点,点F,G分别是线段A1D与BC1上的动点,当三棱锥E-FGC的俯视图的面积最大时,该三棱锥的正(主)视图的面积是________.答案 2解析由题意知,E点在底面的射影E′为AB的中点,F点在底面的射影F′在AD上,G点在底面的射影G′在BC上,三棱锥E-FGC的俯视图的面积是以E′C为底边,F′,G′到E′C的距离和为高的三角形的面积,又E′C为定值,所以当F点与D点重合,G点与B点重合时面积最大,此时正(主)视图的面积为12×2×2=2.12.已知三棱锥P-ABC的三条侧棱两两垂直,且AB=5,BC=7,AC=2,则此三棱锥外接球的表面积是______.答案8π解析如图P A, PB, PC两两垂直,设PC=h,则PB=BC2-PC2=7-h2,P A=AC2-PC2=4-h2,∵P A2+PB2=AB2,∴4-h2+7-h2=5,解得h=3,在三棱锥P-ABC中,P A, PB, PC两两垂直,且P A=1, PB=2,PC=3,∴以P A, PB, PC为棱构造一个长方体,则这个长方体的外接球就是三棱锥P-ABC的外接球,∴由题意可知,这个长方体的中心是三棱锥的外接球的球心,三棱锥的外接球的半径为R=1+4+32=2,∴外接球的表面积为S=4πR2=4π×()22=8π.B组能力提高13.四棱锥P-ABCD的三视图如图所示,则该四棱锥的外接球的表面积为()A.81π5B.81π20C.101π5 D .101π20答案 C解析 根据三视图还原几何体为一个四棱锥P -ABCD ,平面P AD ⊥平面ABCD ,由于△P AD 为等腰三角形,P A =PD =3,AD =4,四边形ABCD 为矩形,CD =2,过△P AD 的外心F 作平面P AD 的垂线,过矩形ABCD 的中心H 作平面ABCD 的垂线,两条垂线交于一点O ,O 为四棱锥外接球的球心,在三角形P AD 中,cos ∠APD =32+32-422×3×3=19,则sin ∠APD =459 ,2PF =AD sin ∠APD =4459=955 ,PF =9510 ,PE =9-4= 5 ,OH =EF =5-9510=510, BH =1216+4=5, OB =OH 2+BH 2=5100+5=50510, S =4π×505100=101π5.故选C.14.如图是某组合体的三视图,则内部几何体的体积的最大值为( )A.52()2-1π B.254()3-22π C .25()3-22π D.1256()52-7π 答案 D解析 内部几何体是底面为直角三角形的直三棱柱的内切球,内切球的半径即为底面直角三角形内切圆的半径,由等面积法易得r =ab a +b +5,且a 2+b 2=25.由基本不等式,知r =ab a +b +5≤ab2ab +5, 0<ab ≤a 2+b 22=252,即0<ab ≤522,当且仅当a =b =522时,等号成立.令t =ab ,则r ≤t 22t +5, f ()t =t 22t +5=15t 2+2t =15⎝⎛⎭⎫1t +152-15⎝⎛⎭⎫0<t ≤522是增函数,或f ′(t )=2t ()t +5()2t +52>0, 0<t ≤522,所以f ()t =t 22t +5在⎝⎛⎦⎤0,522上是增函数,所以r max =f ()t max =f ⎝⎛⎭⎫522=52()2-1,所以内切球的体积的最大值为43π()r max 3=1256()52-7π,故选D.15.(2017·上海市黄浦区模拟)三棱锥P -ABC 满足: AB ⊥AC, AB ⊥AP , AB =2, AP +AC =4,则该三棱锥的体积V 的取值范围是____________. 答案 ⎝⎛⎦⎤0,43 解析 由于AB ⊥AP ,AB ⊥AC ,AC ∩AP =A ,∴AB ⊥平面APC, V =13S △APC ·AB =23S △APC ,在△APC 中,AP+AC =4,所以AP ·AC ≤⎝⎛⎭⎪⎫AP +AC 22=4,所以S △APC =12·AP ·AC ·sin ∠P AC ≤ 2sin ∠P AC ,要使△APC 面积最大,只需AP =AC ,∠P AC =90°, S △APC 的最大值为12×2×2=2, V 的最大值为13×2×2=43,该三棱锥的体积V 的取值范围是⎝⎛⎦⎤0,43. 16.如图所示,三棱锥P -ABC 中,△ABC 是边长为3的等边三角形, D 是线=32,PB =段AB 的中点, DE ∩PB =E ,且DE ⊥AB ,若∠EDC =120°,P A 332,则三棱锥P -ABC 的外接球的表面积为________. 答案 13π解析 在三棱锥P -ABC 中, △ABC 是边长为3的等边三角形,设△ABC 的外心为O 1,外接圆的半径O 1A =32sin60°=3,在△P AB 中, P A =32,PB =332,AB =3,满足P A 2+PB 2=AB 2,所以△P AB 为直角三角形,△P AB 的外接圆的圆心为D ,由于CD ⊥AB ,ED ⊥AB, ∠EDC =120°为二面角P -AB -C 的平面角,分别过两个三角形的外心O 1,D 作两个半平面的垂线交于点O ,则O 为三棱锥P -ABC 的外接球的球心, 在Rt △OO 1D 中, ∠ODO 1=30°,DO 1=32,则cos30°=O 1D OD =32OD ,OD =1,连接OA ,设OA =R ,则R 2=AD 2+OD 2=⎝⎛⎭⎫322+12=134, S 球=4πR 2=4π×134=13π.。
第1讲 空间几何体的三视图、表面积与体积
答案:(2)118.8
︱高中总复习︱二轮·理数
方法技巧
(1)空间几何体的表面积是空间几何体暴露在外的所有面的面积之和,计 算时要正确区分空间几何体中哪些面暴露在外,哪些面成为空间几何体 内部的面; (2)体积计算的关键是求空间几何体的高,常常依靠面面垂直的性质定理, 即两个面垂直时,在一个面内垂直交线的直线垂直另一个平面; (3)常用割补法计算空间几何体的体积.
(A)4 3
(B)6
(C)2 5
(D)4
解析:(1)三视图还原成如图所示的几何体:三棱锥 S-ABC,则 SB=BC=4, SC=4 2 , AC=AB=2 5 , SA=6, 故选 B.
︱高中总复习︱二轮·理数
(2)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此 几何体的各个面中是直角三角形的个数为( ) (A)1 (B)2 (C)3 (D)4
解析:(2)三视图还原为如图所示三棱锥A-BCD: 由正方体的性质得△ABC,△BCD,△ACD为直角三角形,△ABD为正三角形. 故选C.
︱高中总复习︱二轮·理数
热点二 空间几何体的表面积和体积 例2:(1)(2019·河北示范高中4月联考)若某几何体的三视图如图所示,则该几 何体的表面积为( )
答案:(1) 10 11
3
︱高中总复习︱二轮·理数
(2)(2019·宁夏石嘴山三中数学能力测试)已知圆锥的顶点为 S,底面圆周上的两点 A,B 满足
△SAB 为等边三角形,且面积为 4 3 ,又知圆锥轴截面的面积为 8,则圆锥的表面积
高考数学立体几何专题1空间立体几何的三视图、表面积和体积
专题1空间立体几何的三视图、表面积和体积【考点点击】1.以选择、填空题形式考查空间位置关系的判断,及文字语言、图形语言、符号语言的转换,难度适中;2.以熟悉的几何体为背景,考查多面体或旋转体的侧面积、表面积和体积计算,间接考查空间位置关系的判断及转化思想等,常以三视图形式给出几何体,辅以考查识图、用图能力及空间想象能力,难度中等.3.几何体的三视图与表(侧)面积、体积计算结合;【重点知识】一、空间几何体1.柱体、锥体、台体、球的结构特征名称几何特征棱柱①有两个面互相平行(底面可以是任意多边形);②其余各面都是平行四边形,并且每相邻两个四边形的公共边互相平行棱锥①有一个面是多边形(底面);②其余各面是有公共顶点的三角形.棱台①底面互相平行;②所有侧棱延长后交于一点(即原棱锥的顶点)圆柱①有两个互相平行的圆面(底面);②有一个侧面是曲面(母线绕轴旋转一周形成的),且母线与底面垂直圆台①底面互相平行;②有一个侧面是曲面,可以看成母线绕轴旋转一周形成的球①有一个曲面是球面;②有一个球心和一条半径长R,球是一个几何体(包括内部),可以看成半圆以它的直径所在直线为旋转轴旋转一周形成的2.柱体、锥体、台体、球的表面积与体积名称体积表面积棱柱V棱柱=Sh(S为底面积,h为高)S棱柱=2S底面+S侧面棱锥V棱锥=13Sh(S为底面积,h为高)S棱锥=S底面+S侧面棱台V棱台=13h(S+SS′+S′)S棱台=S上底+S下底+S侧面圆柱V圆柱=πr2h(r为底面半径,h为高)S圆柱=2πrl+2πr2(r为底面半径,l为母线长)圆锥V圆锥=13πr2h(r为底面半径,h为高)S圆锥=πrl+πr2(r为底面半径,l为母线长)圆台V圆台=13πh(r2+rr′+r′2)S圆台=π(r+r′)l+πr2+πr′2球V球=43πR3(R为球的半径)S球=4πR2(R为球的半径)3.空间几何体的三视图和直观图(1)空间几何体的三视图三视图的正视图、侧视图、俯视图分别是从物体的正前方、正左方、正上方看到的物体轮廓线的正投影围成的平面图形,三视图的画法规则为“长对正、高平齐、宽相等”.(2)空间几何体的直观图空间几何体直观图的画法常采用斜二测画法.用斜二测画法画平面图形的直观图规则为“轴夹角45°(或135°),平行长不变,垂直长减半”.4.几何体沿表面某两点的最短距离问题一般用展开图解决;不规则几何体求体积一般用割补法和等积法求解;三视图问题要特别留意各种视图与观察者的相对位置关系.【考点分析】考点一空间几何体的结构【例1】已知正三棱锥PABC ,点P ,A ,B ,C 都在半径为3的球面上,若PA ,PB ,PC 两两相互垂直,则球心到截面ABC 的距离为________.【答案】33【解析】正三棱锥PABC 可看作由正方体PADCBEFG 截得,如图所示,PF 为三棱锥PABC 的外接球的直径,且PF ⊥平面ABC.设正方体棱长为a ,则22,2,1232=====BC AC AB a a ,3223222221=⨯⨯⨯=∆ABC S ,由,PAC B ABC P V V --=得222213131⨯⨯⨯⨯=⋅∆ABC S h ,所以332=h 因此球心到平面ABC 得距离为33考点二三视图、直观图【例2】下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()(A )20π(B )24π(C )28π(D )32π【答案】C【解析】由题意可知,圆柱的侧面积为12π2416πS =⋅⋅=,圆锥的侧面积为2π248πS =⋅⋅=,圆柱的底面面积为23π24πS =⋅=,故该几何体的表面积为12328πS S S S =++=,故选C.【例3】某三棱锥的三视图如图所示,则该三棱锥的表面积是()A .2+5B .4+5C .2+25D .5【答案】C【解析】该三棱锥的直观图如图所示:过D 作DE ⊥BC ,交BC 于E ,连接AE ,则BC =2,EC =1,AD =1,ED =2,ABCABD ACD BCD S S S S S ∆∆∆∆+++=表5225221152115212221+=⨯⨯+⨯⨯+⨯⨯+⨯⨯=考点三几何体的表面积【例4】长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为【答案】14π.【解析】球的直径是长方体的体对角线,所以222232114,4π14π.R S R =++===【例5】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是328π,则它的表面积是()(A )17π(B )18π(C )20π(D )28π【答案】A【解析】该几何体直观图如图所示:是一个球被切掉左上角的81,设球的半径为R ,则32834873ππ=⨯=R V ,解得R 2=,所以它的表面积是87的球面面积和三个扇形面积之和πππ172413248722=⨯⨯+⨯⨯=S 故选A .考点四几何体的体积【例6.】已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A .πB .3π4C .π2D .π4【答案】B【解析】绘制圆柱的轴截面如图所示,由题意可得:11,2AC AB ==,结合勾股定理,底面半径2213122r ⎛⎫=-= ⎪⎝⎭,由圆柱的体积公式,可得圆柱的体积是2233ππ1π24V r h ⎛==⨯⨯= ⎝⎭,故选B.考点五与球的组合体问题纵观近几年高考对于组合体的考查,重点放在与球相关的外接与内切问题上.要求学生有较强的空间想象能力和准确的计算能力,才能顺利解答.从实际教学来看,这部分知识是学生掌握最为模糊,看到就头疼的题目.分析原因,除了这类题目的入手确实不易之外,主要是学生没有形成解题的模式和套路,以至于遇到类似的题目便产生畏惧心理.本文就高中阶段出现这类问题加以类型的总结和方法的探讨.【例7】棱长为1的正方体1111ABCD A B C D -的8个顶点都在球O 的表面上,E F ,分别是棱1AA ,1DD 的中点,则直线EF 被球O 截得的线段长为()A .22B .1C .212+D .2解:由题意可知,球为正方体的外接球.平面11AA DD 截面所得圆面的半径12,22AD R ==11EF AA DD ⊂ 面,∴直线EF 被球O 截得的线段为球的截面圆的直径22R =.【例8】正四棱柱1111ABCD A B C D -的各顶点都在半径为R 的球面上,则正四棱柱的侧面积有最值,为.【例9】在正三棱锥S ABC -中,M N 、分别是棱SC BC 、的中点,且AM MN ⊥,若侧棱23SA =,则正三棱锥S ABC -外接球的表面积是.解:如图,正三棱锥对棱相互垂直,即,AC SB ⊥又,,,.SB MN MN AC MN AM MN SAC ∴⊥⊥∴⊥∥又平面于是,,,SB SAC SB SA SB SC ⊥∴⊥⊥平面从而.SA SC ⊥此时正三棱锥S ABC -的三条侧棱互相垂直并且相等,故将正三棱锥补形为正方体.球的半径23,3,436.2R SA R S R ππ=∴=∴==【例10】一个几何体的三视图如图所示,其中主视图和左视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为()A .12πB .C .3πD .【答案】C【解析】把原来的几何体补成以DA DC DP 、、为长、宽、高的长方体,原几何体四棱锥与长方体是同一个外接球,2=R l ,=2R ,234434S R πππ==⨯=球.【例11】在三棱锥P -ABC 中,PA =,侧棱PA 与底面ABC 所成的角为60°,则该三棱锥外接球的体积为()A .πB.3π C.4πD.43π解:如图所示,过P 点作底面ABC 的垂线,垂足为O ,设H 为外接球的球心,连接,,AH AO 因60,PAO PA ∠== 故2AO =,32PO =又△AHO 为直角三角形,222,,AH PH r AH AO OH ==∴=+22233344(),1,1.2233r r r V ππ∴=+-∴=∴=⨯=【例12】矩形ABCD 中,4,3,AB BC ==沿AC 将矩形ABCD 折成一个直二面角B ACD --,则四面体ABCD 的外接球的体积是()A.π12125 B.π9125C.π6125D.π3125解:由题意分析可知,四面体ABCD 的外接球的球心落在AC 的中点,此时满足,OA OD OB OC ===522AC R ∴==,343V R π=1256π=.【总结归纳】1个特征——三视图的长度特征“长对正,宽相等,高平齐”,即正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽。
空间几何体的三视图、表面积及体积
2022年高考数学总复习:空间几何体的三视图、表面积及体积1.柱体、锥体、台体、球的表面积与体积(1)空间几何体的三视图三视图的正视图、侧视图、俯视图分别是从物体的正前方、正左方、正上方看到的物体轮廓线的正投影围成的平面图形,三视图的画法规则为“长对正、高平齐、宽相等”.画三视图的基本要求:正(主)俯一样长,俯侧(左)一样宽,正(主)侧(左)一样高.三视图排列规则:俯视图放在正(主)视图的下面;侧(左)视图放在正(主)视图的右面.(2)空间几何体的直观图空间几何体直观图的画法常采用斜二测画法.用斜二测画法画平面图形的直观图规则为“轴夹角45°(或135°),平行长不变,垂直长减半”.Y易错警示i cuo jing shi1.未注意三视图中实、虚线的区别在画三视图时应注意看到的轮廓线画成实线,看不到的轮廓线画成虚线.2.不能准确分析组合体的结构致误对简单组合体表面积与体积的计算要注意其构成几何体的面积、体积是和还是差.3.台体可以看成是由锥体截得的,此时截面一定与底面平行.4.空间几何放置的方式不同时,对三视图可能会有影响.1.(2018·全国卷Ⅲ,3)中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( A )[解析]选A.由直观图可知选A.2.(文)(2018·全国卷Ⅰ,5)已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( B ) A.122π B.12πC.82π D.10π[解析]截面面积为8,所以高h=22,底面半径r=2,所以该圆柱表面积S=π·(2)2·2+2π·2·22=12π.(理)(2018·全国卷Ⅰ,7)某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在侧视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为( B )A.217 B.25C.3 D.2[解析]选B.将三视图还原为圆柱,M,N的位置如图1所示,将侧面展开,最短路径为M,N连线的距离,所以MN=42+22=2 5.3.(2018·浙江卷,3)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( C )A .2B .4C .6D .8[解析] 选C . 由三视图可知,该几何体是底面为直角梯形的直四棱柱,底面面积S =(1+2)×22=3,高h =2,所以V =Sh =6.4.(2018·北京卷,5)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( C )A .1B .2C .3D .4[解析] 选C .将四棱锥三视图转化为直观图,如图,侧面共有4个三角形,即△P AB ,△PBC ,△PCD ,△P AD , 由已知,PD ⊥平面ABCD ,又AD ⊂平面ABCD ,所以PD ⊥AD ,同理PD ⊥CD ,PD ⊥AB , 所以△PCD ,△P AD 是直角三角形.因为AB ⊥AD ,PD ⊥AB ,PD ,AD ⊂平面P AD ,PD ∩AD =D , 所以AB ⊥平面P AD ,又P A ⊂平面P AD , 所以AB ⊥P A ,△P AB 是直角三角形. 因为AB =1,CD =2,AD =2,PD =2,所以P A =PD 2+AD 2=22,PC =PD 2+CD 2=22, PB =P A 2+AB 2=3,在梯形ABCD 中,易知BC =5,△PBC 三条边长为22,3,5,△PBC 不是直角三角形. 综上,侧面中直角三角形个数为3.5.(文)(2018·全国卷Ⅰ,10)在长方体ABCD A 1B 1C 1D 1中,AB =BC =2,AC 1与平面BB 1C 1C 所成的角为30°,则该长方体的体积为( C )A .8B .6 2C .8 2D .83[解析]选C .如图,连接AC 1和BC 1,因为AB ⊥平面BB 1C 1C ,AC 1与平面BB 1C 1C 所成角为30°,所以∠AC 1B =30°, 所以AB BC 1=tan30°,BC 1=23,所以CC 1=22,所以V =2×2×22=8 2.(理)(2018·全国卷Ⅲ,10)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为93,则三棱锥D ABC 体积的最大值为( B )A .12 3B .18 3C .24 3D .543[解析] 设△ABC 的边长为a ,则S △ABC =12a 2sin C =34a 2=93,解得a =6,如图所示,当点D 在底面上的射影为三角形ABC 的中心H 时,三棱锥D ABC 的体积最大,设球心为O ,则在直角三角形AHO 中,AH =23×32×6=23,OA =R =4,则OH=OA 2-AH 2=16-12=2,所以DH =2+4=6,所以三棱锥D ABC 的体积最大值为V =13S △ABC ×DH =13×93×6=18 3. 6.(文)(2018·天津卷,11)如图,已知正方体ABCD A 1B 1C 1D 1的棱长为1,则四棱锥A 1BB 1D 1D 的体积为13.[解析] 连接A 1C 1,交B 1D 1于O 1点,依题意得A 1O 1⊥平面BB 1D 1D ,即A 1O 1为四棱锥A 1BB 1D 1D 的高,且A 1O 1=22,而四棱锥A 1BB 1D 1D 的底面为矩形,其面积为2,所以四棱锥A 1BB 1D 1D 的体积V =13Sh =13×2×22=13.(理)(2018·天津卷,11)已知正方体ABCD A 1B 1C 1D 1的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点E ,F ,G ,H ,M (如图),则四棱锥M EFGH 的体积为112.[解析] 依题意得:该四棱锥M EFGH 为正四棱锥,其高为正方体棱长的一半,即为12,正方形EFGH 的边长为22,其面积为12,所以四棱锥M EFGH 的体积V M EFGH =13Sh =13×12×12=112. 7.(2018·全国卷Ⅱ,16)已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若△SAB 的面积为515,则该圆锥的侧面积为402π.[解析] 如图:设SA =SB =l ,底面圆半径为r ,因为SA 与圆锥底面所成角为45°,所以l =2r ,在△SAB 中,AB 2=SA 2+SB 2-2SA ·SB ·cos ∠ASB =12r 2,AB =22r ,AB 边上的高为(2r )2-⎝⎛⎭⎫24r 2=304r ,△SAB 的面积为515, 所以12·22r ·304r =515,解得r =210,所以该圆锥的侧面积为πrl =π2r 2=402π.8.(2017·全国卷Ⅰ,16)已知三棱锥S -ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S -ABC 的体积为9,则球O 的表面积为36π.[解析] 如图,连接OA ,OB .由SA =AC ,SB =BC ,SC 为球O 的直径,知OA ⊥SC ,OB ⊥SC .由平面SCA ⊥平面SCB ,平面SCA ∩平面SCB =SC ,OA ⊥SC ,知OA ⊥平面SCB . 设球O 的半径为r ,则OA =OB =r ,SC =2r , ∴三棱锥S -ABC 的体积V =13×(12SC ·OB )·OA =r 33,即r 33=9, ∴r =3,∴S 球表=4πr 2=36π.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题五立体几何第一讲空间几何体的三视图、表面积与体积考点一空间几何体的三视图与直观图1.三视图的排列规则俯视图放在正(主)视图的下面,长度与正(主)视图的长度一样,侧(左)视图放在正(主)视图的右面,高度与正(主)视图的高度一样,宽度与俯视图的宽度一样.即“长对正、高平齐、宽相等”.2.原图形面积S与其直观图面积S′之间的关系S′=2 4S.[对点训练]1.(2018·全国卷Ⅲ)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()[解析]两个木构件咬合成长方体时,小长方体(榫头)完全嵌入带卯眼的木构件,易知俯视图可以为A,故选A.[答案] A2.(2018·河北衡水中学调研)正方体ABCD-A1B1C1D1中,E为棱BB1的中点(如图),用过点A,E,C1的平面截去该正方体的上半部分,则剩余几何体的左视图为()[解析]过点A,E,C1的截面为AEC1F,如图,则剩余几何体的左视图为选项C中的图形,故选C.[答案] C3.(2018·江西南昌二中模拟)一个几何体的三视图如图所示,在该几何体的各个面中,面积最小的面的面积为( )A .8B .4C .4 3D .4 2[解析] 由三视图可知该几何体的直观图如图所示,由三视图特征可知,P A ⊥平面ABC ,DB ⊥平面ABC ,AB ⊥AC ,P A =AB =AC =4,DB =2,则易得S △P AC =S △ABC =8,S △CPD =12,S 梯形ABDP =12,S △BCD =12×42×2=42,故选D.[答案] D4.如图所示,一个水平放置的平面图形的直观图是一个底面为45°,腰和上底长均为1的等腰梯形,则该平面图形的面积为________.[解析] 直观图的面积S ′=12×(1+1+2)×22=2+12.故原平面图形的面积S =S ′24=2+ 2. [答案] 2+ 2[快速审题] (1)看到三视图,想到常见几何体的三视图,进而还原空间几何体.(2)看到平面图形直观图的面积计算,想到斜二侧画法,想到原图形与直观图的面积比为24.由三视图还原到直观图的3步骤(1)根据俯视图确定几何体的底面.(2)根据正(主)视图或侧(左)视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置.(3)确定几何体的直观图形状.考点二 空间几何体的表面积与体积1.柱体、锥体、台体的侧面积公式(1)S 柱侧=ch (c 为底面周长,h 为高);(2)S 锥侧=12ch ′(c 为底面周长,h ′为斜高);(3)S 台侧=12(c +c ′)h ′(c ′,c 分别为上下底面的周长,h ′为斜高).2.柱体、锥体、台体的体积公式(1)V 柱体=Sh (S 为底面面积,h 为高);(2)V 锥体=13Sh (S 为底面面积,h 为高);(3)V 台=13(S +SS ′+S ′)h (不要求记忆).3.球的表面积和体积公式S 表=4πR 2(R 为球的半径),V 球=43πR 3(R 为球的半径).[对点训练]1.(2018·浙江卷)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( )A .2B .4C .6D .8[解析] 由三视图可知该几何体是直四棱柱,其中底面是直角梯形,直角梯形上,下底边的长分别为1 cm,2 cm ,高为2 cm ,直四棱柱的高为2 cm.故直四棱柱的体积V =1+22×2×2=6 cm 3,故选C.[答案] C2.(2018·哈尔滨师范大学附中、东北师范大学附中联考)某几何体的三视图如图所示,其中正视图是半径为1的半圆,则该几何体的表面积是( )A.(5-1)π2+2 B.(5+1)π2+2 C.π2+3 D.52π+2[解析] 由三视图知,此几何体为一个半圆锥,其底圆半径为1,高为2,故母线长为22+12=5,所以该几何体的表面积S =12π×1×5+12π×12+12×2×2=(5+1)π2+2,故选B. [答案] B3.一个几何体的三视图如图所示,则这个几何体的体积是( )A .1B .2C .3D .4[解析]由已知易得该几何体是一个以正视图为底面,高为2的四棱锥.由于正视图是一个上底边为2,下底边为4,高为2的直角梯形,故该四棱锥的底面积S =12×(2+4)×2=6,则V =13Sh =13×6×2=4,故选D.[答案] D4.(2018·太原一模)某几何体的三视图如图所示,则该几何体的表面积为( )A .6π+1 B.(24+2)π4+1 C.(23+2)π4+12 D.(23+2)π4+1 [解析] 由几何体的三视图知,该几何体为一个组合体,其中下部是底面直径为2,高为2的圆柱,上部是底面直径为2,高为1的圆锥的四分之一,所以该几何体的表面积为4π+π+3π4+2π4+1=(23+2)π4+1,故选D. [答案] D[快速审题] (1)看到求规则图形的表面积(体积),想到相应几何体的表面积(体积)公式.(2)看到求不规则图形的表面积,想到几何体的侧面展开图.(3)看到求不规则图形的体积,想到能否用割补思想、特殊值法等解决.求几何体表面积和体积关键过好“两关”(1)还原关,即利用“长对正,宽相等,高平齐”还原空间几何体的直观图.(2)公式关,即会利用空间几何体的体积或表面积公式求简单组合体的体积或表面积.考点三 多面体与球的切接问题与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图.角度1:与球的组合体中求棱柱(锥)的表面积或体积[解析] 设△ABC 的边长为a ,则S △ABC =12a ·a ·sin60°=93,解得a =6(负值舍去).△ABC 的外接圆半径r 满足2r =6sin60°,得r =23,球心到平面ABC 的距离为42-(23)2=2.所以点D 到平面ABC的最大距离为2+4=6,所以三棱锥D -ABC 体积的最大值为13×93×6=183,故选B.[答案] B角度2:与球的组合体中求球的表面积或体积[解析] 由AB ⊥BC ,AB =6,BC =8,得AC =10.要使球的体积V 最大,则球与直三棱柱的部分面相切,若球与三个侧面相切,设底面△ABC 的内切圆的半径为r .则12×6×8=12×(6+8+10)·r ,所以r =2.2r =4>3,不合题意.球与三棱柱的上、下底面相切时,球的半径R 最大.由2R =3,即R =32.故球的最大体积V =43πR 3=92π,故选B.[答案] B[探究追问] 若本例中的条件变为“直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上”,若AB =3,AC =4,AB ⊥AC ,AA 1=12,求球O 的表面积.[解] 将直三棱柱补形为长方体ABEC -A 1B 1E 1C 1,则球O 是长方体ABEC -A 1B 1E 1C 1的外接球.∴体对角线BC 1的长为球O 的直径.因此2R =32+42+122=13.故S 球=4πR 2=169π.“切”“接”问题的处理方法(1)“切”的处理:解决与球有关的内切问题主要是指球内切多面体与旋转体,解答时要先找准切点,通过作截面来解决.如果内切的是多面体,则多通过多面体过球心的对角面来作截面.(2)“接”的处理:把一个多面体的几个顶点放在球面上即球的外接问题.解决这类问题的关键是抓住外接的特点,即球心到多面体的顶点的距离等于球的半径.[对点训练]1.[角度1](2018·广东惠州二模)已知三棱锥S -ABC 的底面是以AB 为斜边的等腰直角三角形,AB =2,SA =SB =SC =2,则三棱锥S -ABC 的外接球的球心到平面ABC 的距离是( ) A.33 B .1 C. 3 D.332[解析] ∵三棱锥S -ABC 的底面是以AB 为斜边的等腰直角三角形,SA =SB =SC =2,∴S 在底面ABC 内的射影为AB 的中点,设AB 的中点为H ,连接SH ,CH ,∴SH ⊥平面ABC ,∴SH 上任意一点到A ,B ,C 的距离相等,易知SH =3,CH =1,∴Rt △SHC 中∠HSC =30°.在面SHC 内作SC 的垂直平分线MO ,交SH 于点O ,交SC 于点M ,则O 为三棱锥S -ABC 的外接球的球心.∵SC =2,∴SM =1,又∠OSM =30°,∴SO =233,OH =33,∴球心O 到平面ABC 的距离为33,故选A.[答案] A2.[角度2](2018·武汉调研)一个三棱锥的三视图如图所示,其中俯视图为等腰直角三角形,正视图和侧视图是全等的等腰三角形,则此三棱锥外接球的表面积为( )A .16πB .9πC .4πD .π[解析] 三棱锥如右图,设外接球半径为R ,AB =AC =2,∠BAC =90°,D 为BC 中点.SD ⊥面ABC .球心O 在SD 上,SD =2.在直角△ODC 中,OC =R ,OD =2-R ,DC = 2.则(2-R )2+(2)2=R 2,即R =32,故V -ABC 的外接圆的表面积为S =4πR 2=9π,故选B.[答案] B1.(2018·全国卷Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A.217 B.2 5 C.3 D.2[解析]由圆柱的三视图及已知条件可知点M与点N的位置如图1所示,设ME与FN为圆柱的两条母线,沿FN将圆柱的侧面展开,如图2所示,连接MN,MN即为从M到N的最短路径,由题意知,ME=2,EN=4,∴MN=42+22=25,故选B.[答案] B2.(2018·北京卷)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()A.1 B.2 C.3 D.4[解析]由三视图得四棱锥的直观图如图所示.其中SD⊥底面ABCD,AB⊥AD,AB∥CD,SD=AD=CD=2,AB=1.由SD⊥底面ABCD,AD,DC,AB⊂底面ABCD,得SD⊥AD,SD⊥DC,SD⊥AB,故△SDC,△SDA为直角三角形,又∵AB⊥AD,AB⊥SD,AD,SD⊂平面SAD,AD∩SD=D,∴AB⊥平面SAD,又SA⊂平面SAD,∴AB⊥SA,即△SAB也是直角三角形,从而SB=SD2+AD2+AB2=3,又BC=22+12=5,SC=22,∴BC2+SC2≠SB2,∴△SBC不是直角三角形,故选C.[答案] C3.(2017·浙江卷)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( )A.π2+1B.π2+3C.3π2+1D.3π2+3[解析]由三视图可知该几何体是由底面半径为1 cm ,高为3 cm 的半个圆锥和三棱锥S -ABC 组成的,如图,三棱锥的高为3 cm ,底面△ABC 中,AB =2 cm ,OC =1 cm ,AB ⊥OC .故其体积V =13×12×π×12×3+13×12×2×1×3=⎝ ⎛⎭⎪⎫π2+1cm 3,故选A. [答案] A4.(2018·天津卷)已知正方体ABCD -A 1B 1C 1D 1的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点E ,F ,G ,H ,M (如图),则四棱锥M -EFGH 的体积为________.[解析] 由题意知四棱锥的底面EFGH 为正方形,其边长为22,即底面面积为12,由正方体的性质知,四棱锥的高为12.故四棱锥M -EFGH 的体积V =13×12×12=112.[答案] 1125.(2017·江苏卷)如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________.[解析] 设圆柱内切球的半径为R ,则由题设可得圆柱O 1O 2的底面圆的半径为R ,高为2R ,∴V 1V 2=πR 2·2R 43πR 3=32. [答案] 321.该部分在高考中一般会以“两小”或“一小”的命题形式出现,这“两小”或“一小”主要考查三视图,几何体的表面积与体积.2.考查一个小题时,本小题一般会出现在第4~8题的位置上,难度一般;考查2个小题时,其中一个小题难度一般,另一小题难度稍高,一般会出现在第10~16题的位置上,本小题虽然难度稍高,主要体现在计算量上,但仍是对基础知识、基本公式的考查.热点课题12 补形法求几何体的表面积与体积[感悟体验]1.(2018·太原一模)某几何体的三视图如图所示,则该几何体的体积为()A.2 B.83C.4 D.20 9[解析]观察三视图并依托正方体,可得该几何体直观图为A1-ABEF,如图所示,其体积为V正方体-V AFD-BEC-VA1-BEC1B1-VA1-FEC1D1=2×2×2-12×2×1×2-13×2×(1+2)×2×12-13×1×2×2=83,故选B.[答案] B2.(2018·合肥联考)如图,网格纸上小正方形的边长为1,粗线(实线和虚线)表示的是某几何体的三视图,则该几何体外接球的体积为()A.24π B.29π C.48π D.58π[解析]如图,在3×2×4的长方体中构造符合题意的几何体(三棱锥A-BCD),其外接球即为长方体的外接球,表面积为4πR2=π(32+22+42)=29π,故选B.[答案] B专题跟踪训练(二十一)一、选择题1.(2017·北京卷)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为()A.3 2 B.2 3 C.2 2 D.2[解析]由三视图得该四棱锥的直观图如图中S-ABCD所示,由图可知,其最长棱为SD,且底面ABCD是边长为2的正方形,SB ⊥面ABCD,SB=2,所以SD=22+22+22=23,故选B.[答案] B2.(2018·益阳、湘潭高三调考)如图所示,网格纸上小正方形的边长为1,粗实线画出的是某三棱锥的三视图,则该三棱锥的体积为( )A.23B.43C.83 D .4[解析] 由三视图可得三棱锥为如图所示的三棱锥A -PBC (放到棱长为2的正方体中),则V A -PBC =13×S △PBC ×AB =13×12×2×2×2=43,故选B.[答案] B3.(2018·辽宁五校联考)一个长方体被一平面截去一部分后,所剩几何体的三视图如图所示,则该几何体的体积为( )A.36 B.48 C.64 D.72[解析]由几何体的三视图可得该几何体的直观图如图所示,将几何体分割为两个三棱柱,所以该几何体的体积为12×3×4×4+12×3×4×4=48,故选B.[答案] B4.(2018·广东七校联考)某一简单几何体的三视图如图所示,该几何体的外接球的表面积是()A .13πB .16πC .25πD .27π[解析] 由三视图知该几何体是一个底面为正方形的长方体,由正视图知该长方体的底面正方形的对角线长为4,所以底面边长为22,由侧视图知该长方体的高为3,设该几何体的外接球的半径为R ,则2R =(22)2+(22)2+32=5,解得R =52,所以该几何体的外接球的表面积S =4πR 2=4π×254=25π,故选C.[答案] C5.(2018·洛阳市高三第一次联考)已知球O 与棱长为4的正四面体的各棱相切,则球O 的体积为( )A.823πB.833πC.863πD.1623π[解析] 将正四面体补成正方体,则正四面体的棱为正方体相应面上的对角线,因为正四面体的棱长为4,所以正方体的棱长为2 2.因为球O 与正四面体的各棱都相切,所以球O 为正方体的内切球,即球O 的直径为正方体的棱长,其长为22,则球O 的体积V =43πR 3=823π,故选A.[答案] A6.(2018·河北第二次质检)《九章算术》是中国古代第一部数学专著,书中有关于“堑堵”的记载,“堑堵”即底面是直角三角形的直三棱柱.已知某“堑堵”被一个平面截去一部分后,剩下部分的三视图如图所示,则剩下部分的体积是( )A .50B .75C .25.5D .37.5[解析] 由题意及给定的三视图可知,剩余部分是在直三棱柱的基础上,截去一个四棱锥所得的,且直三棱柱的底面是腰长为5的等腰直角三角形,高为5.如图,图中几何体ABCC 1MN 为剩余部分,因为AM =2,B 1C 1⊥平面MNB 1A 1,所以剩余部分的体积V =V 三棱柱-V 四棱锥=12×5×5×5-13×3×5×5=37.5,故选D.7.(2018·广东广州调研)如图,网格纸上小正方形的边长为1,粗线画出的是某个几何体的三视图,则该几何体的表面积为()A.4+42+2 3 B.14+4 2C.10+42+2 3 D.4[解析]如图,该几何体是一个底面为直角梯形,有一条侧棱垂直于底面的四棱锥S-ABCD.连接AC,因为AC=22+42=25,SC =(25)2+22=26,SD=SB=22+22=22,CD=22+22=22,SB2+BC2=(22)2+42=24=SC2,故△SCD为等腰三角形,△SCB 为直角三角形.过D作DK⊥SC于点K,则DK=(22)2-(6)2=2,△SCD的面积为12×2×26=23,△SBC的面积为12×22×4=4 2.所求几何体的表面积为12×(2+4)×2+2×12×2×2+42+23=10+42+23,故选C.8.(2018·河南濮阳二模)已知三棱锥A -BCD 中,△ABD 与△BCD 是边长为2的等边三角形且二面角A -BD -C 为直二面角,则三棱锥A -BCD 的外接球的表面积为( )A.10π3 B .5π C .6π D.20π3[解析] 取BD 中点M ,连接AM ,CM ,取△ABD ,△CBD 的中心即AM ,CM 的三等分点P ,Q ,过P 作面ABD 的垂线,过Q 作面CBD 的垂线,两垂线相交于点O ,则点O 为外接球的球心,其中OQ =33,CQ =233,连接OC ,则外接球的半径R =OC =153,表面积为4πR 2=20π3,故选D.[答案] D9.(2018·广东揭阳一模)某几何体三视图如图所示,则此几何体的表面积为( )A .4π+16B .2(2+2)π+16C .4π+8D .2(2+2)π+8[解析] 由三视图知,该几何体是一个棱长为2的正方体和一个底面半径为2、高为1的圆柱的组合体,其表面积S 表=5×22+2π·2·1+2π·(2)2-22=2(2+2)π+16,故选B[答案] B10.(2018·福建福州质检)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,俯视图中的两条曲线均为圆弧,则该几何体的体积为( )A .64-32π3B .64-8πC .64-16π3 D .64-8π3[解析] 由三视图可知该几何体是由棱长为4的正方体截去14个圆锥和14个圆柱所得到的,且圆锥的底面半径为2,高为4,圆柱的底面半径为2,高为4,所以该几何体的体积为43-14⎝⎛⎭⎪⎫π3×4×4+π×4×4=64-16π3,故选C.[答案] C11.(2018·湖南十三校联考)三棱锥S -ABC 及其三视图中的正视图和侧视图如下图所示,则该三棱锥S -ABC 的外接球的表面积为( )A .32π B.1123π C.283πD.643π[解析] 设外接球的半径为r ,球心为O .由正视图和侧视图可知,该三棱锥S -ABC 的底面是边长为4的正三角形.所以球心O 一定在△ABC 的外心上方.记球心O 在平面ABC 上的投影点为点D ,所以AD =BD =CD =4×32×23=433,则由题可建立方程r 2-⎝⎛⎭⎪⎫4332+r 2-⎝ ⎛⎭⎪⎫4332=4,解得r 2=283.所以该三棱锥S -ABC 的外接球的表面积S =4πr 2=1123π,故选B.[答案] B12.(2018·中原名校联考)已知A ,B ,C ,D 是球O 表面上四点,点E 为BC 的中点,点AE ⊥BC ,DE ⊥BC ,∠AED =120°,AE =DE =3,BC =2,则球O 的表面积为( )A.73πB.28π3 C .4πD .16π[解析] 由题意可知△ABC 与△BCD 都是边长为2的正三角形,如图,过△ABC 与△BCD 的外心M ,N 分别作面ABC 、面BCD 的垂线,两垂线的交点就是球心O .连接OE ,可知∠MEO =∠NEO =12∠AED =60°,在Rt △OME 中,∠MEO =60°,ME =33,所以OE =2ME =233,连接OB ,所以球O 的半径R =OB =OE 2+BE 2=⎝ ⎛⎭⎪⎫2332+12=213,所以球O 的表面积为S =4πR 2=283π,故选B.[答案] B二、填空题13.(2018·沈阳质检)三棱锥P -ABC 中,D ,E 分别为PB ,PC 的中点,记三棱锥D -ABE 的体积为V 1,P -ABC 的体积为V 2,则V 1V2的值为________.[解析] 如图,设S △ABD =S 1,S △P AB =S 2,E 到平面ABD 的距离为h 1,C 到平面P AB 的距离为h 2,则S 2=2S 1,h 2=2h 1,V 1=13S 1h 1,V 2=13S 2h 2,所以V 1V 2=S 1h 1S 2h 2=14.[答案] 1414.(2018·宁夏银川一中模拟)如图为某几何体的三视图,则该几何体的体积为________.[解析]由三视图知,该几何体是一个高为2,底面直径为2的圆柱被一平面从上底面最右边缘斜向下45°切开所剩下的几何体,其体积为对应的圆柱的体积的一半,即V=12×π×12×2=π.[答案]π15.已知某几何体的三视图如图所示,则该几何体最长的棱长为________.[解析]依题意知,几何体是如图所示的三棱锥A-BCD.其中∠CBD=120°,BD=2,点C到直线BD的距离为3,BC=2,CD=23,AB =2,AB⊥平面BCD,因此AC=AD=22,所以该几何体最长的棱长为2 3.[答案]2 316.(2018·厦门一模)如图所示的是一个几何体的三视图,则该几何体的表面积为________.[解析]该几何体为一个长方体从正上方挖去一个半圆柱剩下的部分,长方体的长、宽、高分别为4,1,2,挖去半圆柱的底面半径为1,高为1,所以表面积为S=S长方体表-S半圆柱底-S圆柱轴截面+S半圆柱侧=2×4×1+2×1×2+2×4×2-π×12-2×1+12×2π×1=26.[答案]26。