高中数学离心率的求法题型总结.doc

合集下载

(完整版)求椭圆离心率范围的常见题型及解析

(完整版)求椭圆离心率范围的常见题型及解析

求椭圆离心率范围的常见题型解析解题关键:挖掘题中的隐含条件,构造关于离心率e 的不等式.一、利用曲线的范围,建立不等关系例1已知椭圆22221(0)x y a b a b+=>>右顶为A,点P 在椭圆上,O 为坐标原点,且OP 垂直于PA ,求椭圆的离心率e 的取值范围.例2已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12(,0),(,0)F c F c -,若椭圆上存在一点P 使1221sin sin a cPF F PF F =,则该椭圆的离心率的取值范围为()21,1-.二、利用曲线的平面几何性质,建立不等关系 例3已知12、F F 是椭圆的两个焦点,满足的点P 总在椭圆内部,则椭圆离心率的取值范围是( )A.(0,1) B.1(0,]2C.2(0,)2 D.2[,1)2xy OF 1F 2三、利用点与椭圆的位置关系,建立不等关系例4已知ABC ∆的顶点B 为椭圆12222=+by a x )0(>>b a 短轴的一个端点,另两个顶点也在椭圆上,若ABC ∆的重心恰好为椭圆的一个焦点F )0,(c ,求椭圆离心率的范围.四、利用函数的值域,建立不等关系例5椭圆12222=+by a x )0(>>b a 与直线01=-+y x 相交于A 、B 两点,且0=⋅OB OA (O为原点),若椭圆长轴长的取值范围为[]6,5,求椭圆离心率的范围.五、利用均值不等式,建立不等关系.例6 已知F 1、F 2是椭圆的两个焦点,P 为椭圆上一点,∠F 1PF 2=60°.求椭圆离心率的范围;解 设椭圆方程为x 2a 2+y 2b 2=1 (a>b>0),|PF 1|=m ,|PF 2|=n ,则m +n =2a.在△PF 1F 2中,由余弦定理可知, 4c 2=m 2+n 2-2mncos 60°=(m +n)2-3mn =4a 2-3mn ≥4a 2-3·⎝⎛⎭⎪⎫m +n 22=4a 2-3a 2=a 2 xy OA BF MC(当且仅当m =n 时取等号).∴c 2a 2≥14,即e ≥12.又0<e<1,∴e 的取值范围是⎣⎡⎭⎫12,1.例7 已知1F 、2F 是椭圆)0(12222>>=+b a by a x 的两个焦点,椭圆上一点P 使︒=∠9021PF F ,求椭圆离心率e 的取值范围.解析1:令n PF m pF ==21,,则a n m 2=+ 由21PF PF ⊥2224c n m=+∴ ()22222224a nm n m c=+≥+=∴ 即21222≥=ac e又12210<≤∴<<e e 六、利用焦点三角形面积最大位置,建立不等关系解析2:不妨设短轴一端点为B 则2245tan 21b b S PFF =︒=∆≤bc b c S BF F =⨯⨯=∆22121b ⇒≤c 2b ⇒≤2c 22c a -⇒≤2c 222ac e =⇒≥21故22≤e <1 七、利用实数性质,建立不等关系解析3:设()y x P ,,由21PF PF ⊥得1-=-⋅+cx y c x y ,即222x c y -=,代入12222=+by a x 得()22222c b c a x -= ,2220b c x ≥∴≥即222c a c-≥,22≥=∴a c e 又1<e 122<≤∴e 八、利用曲线之间位置关系,建立不等关系解析4:21PF PF ⊥ 为直径的圆上点在以21F F P ∴ 又P 在椭圆上,222c y x P =+∴为圆 与 12222=+by a x 的公共点.由图可知222a c b a c b <≤⇒<≤ ∴2222a c c a <≤-122<≤∴e 说明:椭圆上一点距中心距离最小值为短半轴长.九、利用21PF F ∠最大位置,建立不等关系解析4:椭圆12222=+by a x )0(>>b a 当P 与短轴端点重合时∠21PF F 最大无妨设满足条件的点P 不存在 ,则∠21PF F <0902245sin sin 001=<∠=<∴OPF a c 又10<<e 所以若存在一点P 则 122<≤e .。

(完整版)求椭圆离心率范围的常见题型及解析

(完整版)求椭圆离心率范围的常见题型及解析

求椭圆离心率范围的常见题型解析解题关键:挖掘题中的隐含条件,构造关于离心率e 的不等式.一、利用曲线的范围,建立不等关系例1已知椭圆22221(0)x y a b a b+=>>右顶为A,点P 在椭圆上,O 为坐标原点,且OP 垂直于PA ,求椭圆的离心率e 的取值范围.例2已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12(,0),(,0)F c F c -,若椭圆上存在一点P 使1221sin sin a cPF F PF F =,则该椭圆的离心率的取值范围为()21,1-.二、利用曲线的平面几何性质,建立不等关系 例3已知12、F F 是椭圆的两个焦点,满足的点P 总在椭圆内部,则椭圆离心率的取值范围是( )A.(0,1) B.1(0,]2C.2(0,)2 D.2[,1)2xy OF 1F 2三、利用点与椭圆的位置关系,建立不等关系例4已知ABC ∆的顶点B 为椭圆12222=+by a x )0(>>b a 短轴的一个端点,另两个顶点也在椭圆上,若ABC ∆的重心恰好为椭圆的一个焦点F )0,(c ,求椭圆离心率的范围.四、利用函数的值域,建立不等关系例5椭圆12222=+by a x )0(>>b a 与直线01=-+y x 相交于A 、B 两点,且0=⋅OB OA (O为原点),若椭圆长轴长的取值范围为[]6,5,求椭圆离心率的范围.五、利用均值不等式,建立不等关系.例6 已知F 1、F 2是椭圆的两个焦点,P 为椭圆上一点,∠F 1PF 2=60°.求椭圆离心率的范围;解 设椭圆方程为x 2a 2+y 2b 2=1 (a>b>0),|PF 1|=m ,|PF 2|=n ,则m +n =2a.在△PF 1F 2中,由余弦定理可知, 4c 2=m 2+n 2-2mncos 60°=(m +n)2-3mn =4a 2-3mn ≥4a 2-3·⎝⎛⎭⎪⎫m +n 22=4a 2-3a 2=a 2 xy OA BF MC(当且仅当m =n 时取等号).∴c 2a 2≥14,即e ≥12.又0<e<1,∴e 的取值范围是⎣⎡⎭⎫12,1.例7 已知1F 、2F 是椭圆)0(12222>>=+b a by a x 的两个焦点,椭圆上一点P 使︒=∠9021PF F ,求椭圆离心率e 的取值范围.解析1:令n PF m pF ==21,,则a n m 2=+ 由21PF PF ⊥2224c n m=+∴ ()22222224a nm n m c=+≥+=∴ 即21222≥=ac e又12210<≤∴<<e e 六、利用焦点三角形面积最大位置,建立不等关系解析2:不妨设短轴一端点为B 则2245tan 21b b S PFF =︒=∆≤bc b c S BF F =⨯⨯=∆22121b ⇒≤c 2b ⇒≤2c 22c a -⇒≤2c 222ac e =⇒≥21故22≤e <1 七、利用实数性质,建立不等关系解析3:设()y x P ,,由21PF PF ⊥得1-=-⋅+cx y c x y ,即222x c y -=,代入12222=+by a x 得()22222c b c a x -= ,2220b c x ≥∴≥即222c a c-≥,22≥=∴a c e 又1<e 122<≤∴e 八、利用曲线之间位置关系,建立不等关系解析4:21PF PF ⊥ 为直径的圆上点在以21F F P ∴ 又P 在椭圆上,222c y x P =+∴为圆 与 12222=+by a x 的公共点.由图可知222a c b a c b <≤⇒<≤ ∴2222a c c a <≤-122<≤∴e 说明:椭圆上一点距中心距离最小值为短半轴长.九、利用21PF F ∠最大位置,建立不等关系解析4:椭圆12222=+by a x )0(>>b a 当P 与短轴端点重合时∠21PF F 最大无妨设满足条件的点P 不存在 ,则∠21PF F <0902245sin sin 001=<∠=<∴OPF a c 又10<<e 所以若存在一点P 则 122<≤e .。

离心率的五种求法

离心率的五种求法

离心率的五种求法离心率是圆锥曲线中的一个重要的几何性质,在高考中频繁出现. 椭圆的离心率10<<e ,双曲线的离心率1>e ,抛物线的离心率1=e . 一、直接求出,a c ,求解e 已知标准方程或,a c 易求时,可利用离心率公式c e a=来求解。

例1. 过双曲线C :)0b (1by x 222>=-的左顶点A 作斜率为1的直线l ,若l 与双曲线M 的两条渐近线分别相交于点B 、C ,且|AB|=|BC|,则双曲线M 的离心率是( )A. 10B. 5C.310D. 25分析:这里的1,a c ==2b ,即可利用定义求解。

解:易知A (-1,0),则直线l 的方程为1x y +=。

直线与两条渐近线bx y -=和bx y =的交点分别为B )1b b ,1b 1(++-、C )1b b,1b 1(--,又|AB|=|BC|,可解得9b 2=,则10c =故有10ace ==,从而选A 。

二、变用公式)c e a =双曲线,)c e a ==椭圆,整体求出e例2. 已知双曲线22221(0,0)x y a b a b -=>>的一条渐近线方程为43y x =,则双曲线的离心率为( ) A.35 B. 34C.45D.23 分析:本题已知b a=34,不能直接求出a 、c ,可用整体代入套用公式。

解:因为双曲线的一条渐近线方程为43y x =,所以 43b a =,则53c e a ===,从而选A 。

1.设双曲线(a >0,b >0)的渐近线与抛物线21y x =+相切,则该双曲线的离心率等于( C )A. C. D.解:由题双曲线的一条渐近线方程为,代入抛物线方程整理得,因渐近线与抛物线相切,所以,即224b a =e ∴===2.过双曲线的右顶点作斜率为的直线,该直线与双曲线的两条渐近线的交点分别为.若12AB BC =uur uu u r,则双曲线的离心率是 ( )A .B .C .D . 答案:C【解析】对于,则直线方程为,直线与两渐近线的交点为B ,C ,,,222,4AB BC a b =∴=uur uu u r 因此 ,即224b a =,e ∴===3.过椭圆()的左焦点作轴的垂线交椭圆于点,为右焦点,若,则椭圆的离心率为( ) A . B . C . D .【解析】因为,再由有即2223b a =从而可得e ∴===B三、构造a 、c 的齐次式,解出e根据题设条件,借助a 、b 、c 之间的关系,构造a 、c 的关系(特别是齐二次式),进而得到关于e 的一元方程,从而解得离心率e 。

妙解离心率问题(解析版)

妙解离心率问题(解析版)

妙解离心率问题【目录】考点一:顶角为直角的焦点三角形求解离心率的取值范围问题考点二:焦点三角形顶角范围与离心率考点三:共焦点的椭圆与双曲线问题考点四:椭圆与双曲线的4a 通径体考点五:椭圆与双曲线的4a 直角体考点六:椭圆与双曲线的等腰三角形问题考点七:双曲线的4a 底边等腰三角形考点八:焦点到渐近线距离为b考点九:焦点到渐近线垂线构造的直角三角形考点十:以两焦点为直径的圆与渐近线相交问题考点十一:渐近线平行线与面积问题考点十二:数形结合转化长度角度求椭圆或双曲线的离心率、与双曲线的渐近线有关的问题,多以选择、填空题的形式考查,难度中等.考点要求考题统计考情分析离心率2023年新高考I 卷第5、16题,10分2023年甲卷第9题,5分2022年甲卷第10题,5分2022年浙江卷第16题,4分2021年甲卷第5题,5分2021年天津卷第8题,5分离心率问题一直是高考每年必考,对圆锥曲线概念和几何性质的考查为主,一般不会出太难,二轮复习我们需要掌握一些基本的性质和常规的处理方法,挖掘椭圆双曲线的几何性质下手.求离心率范围的方法一、建立不等式法:1.利用曲线的范围建立不等关系.2.利用线段长度的大小建立不等关系.F 1,F 2为椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为椭圆上的任意一点,PF 1 ∈a -c ,a +c ;F 1,F 2为双曲线x2a 2-y 2b2=1(a >0,b >0)的左、右焦点,P 为双曲线上的任一点,PF 1 ≥c -a .3.利用角度长度的大小建立不等关系.F 1,F 2为椭圆x 2a 2+y 2b2=1的左、右焦点,P 为椭圆上的动点,若∠F 1PF 2=θ,则椭圆离心率e 的取值范围为sin θ2≤e <1.4.利用题目不等关系建立不等关系.5.利用判别式建立不等关系.6.利用与双曲线渐近线的斜率比较建立不等关系.7.利用基本不等式,建立不等关系.1(2023•新高考Ⅰ)设椭圆C 1:x 2a2+y 2=1(a >1),C 2:x 24+y 2=1的离心率分别为e 1,e 2.若e 2=3e 1,则a =()A.233B.2C.3D.6【答案】A【解析】由椭圆C 2:x 24+y 2=1可得a 2=2,b 2=1,∴c 2=4-1=3,∴椭圆C 2的离心率为e 2=32,∵e 2=3e 1,∴e 1=12,∴c 1a 1=12,∴a 21=4c 21=4(a 21-b 21)=4(a 21-1),∴a =233或a =-233(舍去).故选:A .2(2023•甲卷)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的离心率为5,C 的一条渐近线与圆(x -2)2+(y -3)2=1交于A ,B 两点,则|AB |=()A.55B.255C.355D.455【答案】D【解析】双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的离心率为5,可得c =5a ,所以b =2a ,所以双曲线的渐近线方程为:y =±2x ,一条渐近线与圆(x -2)2+(y -3)2=1交于A ,B 两点,圆的圆心(2,3),半径为1,圆的圆心到直线y =2x 的距离为:|4-3|1+4=15,所以|AB |=21-15=455.故选:D .3(2022•甲卷)椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线AP ,AQ 的斜率之积为14,则C 的离心率为()A.32B.22C.12D.13【答案】A【解析】已知A (-a ,0),设P (x 0,y 0),则Q (-x 0,y 0),k AP =y 0x 0+a ,k AQ =y 0a -x 0,故k AP ⋅k AQ =y 0x 0+a ⋅y 0a -x 0=y 20a 2-x 20=14①,∵x 20a 2+y 20b 2=1,即y 20=b 2(a 2-x 20)a 2②,②代入①整理得:b 2a2=14,e =c a =1-b 2a 2=32.故选:A .4(2021•甲卷)已知F 1,F 2是双曲线C 的两个焦点,P 为C 上一点,且∠F 1PF 2=60°,|PF 1|=3|PF 2|,则C 的离心率为()A.7B.13C.72D.132【答案】C【解析】设|PF 1|=m ,|PF 2|=n ,则根据题意及余弦定理可得:m =3n12=m 2+n 2-4c22mn,解得m =67cn =27c ,∴所求离心率为2c 2a =2c m -n =2c 47c=72.故选:C .5(2021•天津)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点与抛物线y 2=2px (p >0)的焦点重合,抛物线的准线交双曲线于A ,B 两点,交双曲线的渐近线于C ,D 两点,若|CD |=2|AB |,则双曲线的离心率为()A.2B.3C.2D.3【答案】A【解析】解由题意可得抛物线的准线方程为x =-p2,由题意可得:p 2=c ,渐近线的方程为:y =±ba x ,可得A -c ,b 2a ,B -c ,-b2a ,C -c ,bc a ,D -c ,-bca,所以|AB |=2b 2a ,|CD |=2bca,由|CD |=2|AB |,解得:c =2b ,即a =b ,所以双曲线的离心率e =ca=2.故选:A .6(2022•甲卷)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为13,A 1,A 2分别为C 的左、右顶点,B 为C 的上顶点.若BA 1 ⋅BA 2=-1,则C 的方程为()A.x 218+y 216=1B.x 29+y 28=1C.x 23+y 22=1D.x 22+y 2=1【答案】B【解析】由椭圆的离心率可设椭圆方程为x 29m 2+y 28m 2=1(m >0),则A 1(-3m ,0),A 2(3m ,0),B (0,22m ),由平面向量数量积的运算法则可得:BA 1 ⋅BA 2=(-3m ,-22m )⋅(3m ,-22m )=-9m 2+8m 2=-1,∴m 2=1,则椭圆方程为x 29+y 28=1.故选:B .7(2022•全国)若双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线与直线y =2x +1垂直,则C 的离心率为()A.5 B.5C.54D.52【答案】D【解析】由双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的方程可得渐近线方程为y =±b a x ,由题意可得b a =12,所以双曲线的离心率e =c a =1+b 2a 2=1+14=52,故选:D .8(多选题)(2022•乙卷)双曲线C 的两个焦点为F 1,F 2,以C 的实轴为直径的圆记为D ,过F 1作D 的切线与C 交于M ,N 两点,且cos ∠F 1NF 2=35,则C 的离心率为()A.52B.32C.132D.172【答案】AC【解析】当直线与双曲线交于两支时,设双曲线的方程为x 2a 2-y 2b2=1(a >0,b >0),设过F 1的切线与圆D :x 2+y 2=a 2相切于点P ,则|OP |=a ,OP ⊥PF 1,又|OF 1|=c ,所以PF 1=OF 12-OP 2=c 2-a 2=b ,过点F 2作F 2Q ⊥MN 于点Q ,所以OP ⎳F 2Q ,又O 为F 1F 2的中点,所以|F 1Q |=2|PF 1|=2b ,|QF 2|=2|OP |=2a ,因为cos ∠F 1NF 2=35,∠F 1NF 2<π2,所以sin ∠F 1NF 2=45,所以|NF 2|=QF 2sin ∠F 1NF 2=5a 2,则|NQ |=|NF 2|⋅cos ∠F 1NF 2=3a2,所以|NF 1|=|NQ |+|F 1Q |=3a2+2b ,由双曲线的定义可知|NF 1|-|NF 2|=2a ,所以3a 2+2b -5a 2=2a ,可得2b =3a ,即b a =32,所以C 的离心率e =c a =1+b 2a 2=1+94=132.情况二:当直线与双曲线交于一支时,如图,记切点为A ,连接OA ,则|OA |=a ,|F 1A |=b ,过F 2作F 2B ⊥MN 于B ,则|F 2B |=2a ,因为cos ∠F 1NF 2=35,所以|NF 2|=5a 2,|NB |=3a2,|NF 2|-|NF 1|=5a 2-3a2-2b =a +2b =2a ,即a =2b ,所以e =c a =1+b 2a2=1+14=52,A 正确.故选:AC .9(2023•新高考Ⅰ)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2.点A 在C 上,点B 在y 轴上,F 1A ⊥F 1B ,F 2A =-23F 2B,则C 的离心率为.【答案】355【解析】(法一)如图,设F 1(-c ,0),F 2(c ,0),B (0,n ),设A (x ,y ),则F 2A =(x -c ,y ),F 2B=(-c ,n ),又F 2A =-23F 2B ,则x -c =23c y =-23n,可得A 53c ,-23n ,又F 1A ⊥F 1B ,且F 1A =83c ,-23n ,F 1B =(c ,n ),则F 1A ⋅F 1B =83c 2-23n 2=0,化简得n 2=4c 2.又点A 在C 上,则259c 2a 2-49n 2b 2=1,整理可得25c 29a 2-4n 29b2=1,代n 2=4c 2,可得25c 2a 2-16c 2b 2=9,即25e 2-16e 2e 2-1=9,解得e 2=95或15(舍去),故e =355.(法二)由F 2A =-23F 2B ,得|F 2A||F 2B |=23,设|F 2A |=2t ,|F 2B |=3t ,由对称性可得|F 1B |=3t ,则|AF 1 |=2t +2a ,|AB|=5t ,设∠F 1AF 2=θ,则sin θ=3t 5t =35,所以cos θ=45=2t +2a5t,解得t =a ,所以|AF 1 |=2t +2a =4a ,|AF 2|=2a ,在△AF 1F 2中,由余弦定理可得cos θ=16a 2+4a 2-4c 216a2=45,即5c 2=9a 2,则e =355.故答案为:355.10(2022•浙江)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左焦点为F ,过F 且斜率为b4a 的直线交双曲线于点A (x 1,y 1),交双曲线的渐近线于点B (x 2,y 2)且x 1<0<x 2.若|FB |=3|FA |,则双曲线的离心率是.【答案】364.【解析】(法一)如图,过点A 作AA ′⊥x 轴于点A ′,过点B 作BB ′⊥x 轴于点B ′,由于B (x 2,y 2)且x 2>0,则点B 在渐近线y =b a x 上,不妨设B m ,bam ,m >0,设直线AB 的倾斜角为θ,则tan θ=b 4a ,则|BB ||FB |=b 4a ,即b am |FB|=b 4a ,则|FB ′|=4m ,∴|OF |=c =4m -m =3m ,又|AA ||BB |=|AF ||BF |=13,则|AA |=13|BB |=bm 3a =bc 9a ,又|FA ||FB|=|AF ||BF |=13,则|FA |=13|FB |=4m 3,则|x 1|=3m -4m 3=5m 3=5c 9,∴点A 的坐标为-5c 9,bc9a ,∴25c 281a 2-b 2c 281a 2b 2=1,即c 2a2=8124=278,∴e =c a =364.(法二)由y =b 4a (x +c )y =b a x,解得B c 3,bc 3a,又|FB |=3|FA |,所以点A 的纵坐标为y 1=bc9a,代入方程y =b 4a (x +c )中,解得x 1=-5c 9,所以A -5c 9,bc 9a ,代入双曲线方程中,可得c 2a 2=278,所以e =c a =364.故答案为:364.考点一:顶角为直角的焦点三角形求解离心率的取值范围问题顶角为直角的焦点三角形求解离心率的取值范围问题,如图所示:椭圆:e =1sin α+cos α=12sin α+π4,根据α范围求解值域.双曲线:e =1cos α−sin α=12cos α+π4,根据α范围求解值域.1(2024·重庆沙坪坝·高三重庆八中校考阶段练习)已知椭圆x 2a 2+y 2b2=1a >b >0 上一点A ,它关于原点的对称点为B ,点F 为椭圆右焦点,且满足AF ⊥BF ,设∠ABF =α,且α∈π12,π3,则该椭圆的离心率e 的取值范围是()A.22,3-1B.22,63C.3-1,63D.63,62【答案】B【解析】如图所示,设椭圆得左焦点为F ,连接AF ,BF ,则四边形AFBF 为矩形,则AB =FF =2c ,AF =BF ,所以BF +BF =BF +AF =2a ,在Rt △ABF 中,由∠ABF =α,得AF =AB sin α=2c sin α,BF =AB cos α=2c cos α,所以2c sin α+2c cos α=2a ,所以c a =1sin α+cos α=12sin α+π4,因为α∈π12,π3,所以α+π4∈π3,7π12,所以2sin α+π4∈62,2 ,所以e =c a ∈22,63.故选:B .1(2024·高三单元测试)已知椭圆x 2a 2+y 2b2=1(a >b >0)上有一点A ,它关于原点的对称点为B ,点F 为椭圆的右焦点,且AF ⊥BF ,设∠ABF =α,且α∈π12,π6,则该椭圆的离心率e 的取值范围为()A.3-1,63 B.3-1,32C.64,63D.0,63【答案】A【解析】如图所示,设椭圆的左焦点为F ′,连接AF ′,BF ′.则四边形AFBF ′为矩形.因此|AB =|FF ′|=2c .|AF |+|BF |=2a .所以|AF |=2c sin α,|BF |=2c cos α.∴2c sin α+2c cos α=2a .∴e =1sin α+cos α=12sin α+π4,∵α∈π12,π6,∴α+π4∈π3,5π12,∴sin α+π4 ∈32,2+64,其中sin 5π12=sin π6+π4 =sin π6cos π4+cos π6sin π4=12×22+32×22=2+64,∴2sin α+π4 ∈62,1+32.∴e ∈3-1,63.故选:A .2(2024·宁夏银川·高三银川二中校考阶段练习)已知椭圆x 2a 2+y 2b2=1(a >b >0)上有一点A ,它关于原点的对称点为B ,点F 为椭圆的右焦点,且满足AF ⊥BF ,设∠ABF =α,且α∈π12,π4,则该椭圆的离心率e 的取值范围为()A.22,63 B.3-12,32C.3-1,63D.22,32【答案】A【解析】设椭圆的左焦点为F ′,连接AF ,BF ,可知四边形AFBF 为矩形,从而可知AB =FF =2c ,且AF +BF =2a ,由∠ABF =α,可得AF =2c sin α,BF =2c cos α,结合2c sin α+2c cos α=2a ,可得ca=1sin α+cos α,根据α∈π12,π4 ,求出范围即可.如图所示,设椭圆的左焦点为F ′,连接AF ,BF,则四边形AFBF 为矩形,所以AB =FF =2c ,AF +BF =AF +AF=2a ,由∠ABF =α,可得AF =AB ⋅sin α=2c sin α,BF =AB ⋅cos α=2c cos α,∴2c sin α+2c cos α=2a ,即c a =1sin α+cos α=12sin α+π4,∵α∈π12,π4,∴α+π4 ∈π3,π2 ,∴sin α+π4 ∈32,1 ,∴2sin α+π4 ∈62,2 ,∴e =c a ∈22,63.故选:A .3(2024·河南驻马店·高三统考期末)已知双曲线C :x 2a 2-y 2b2(a >b >0)右支上非顶点的一点A 关于原点O 的对称点为B ,F 为其右焦点,若AF ⋅BF =0,设∠BAF =θ且θ∈π4,5π12,则双曲线C 离心率的取值范围是()A.(2,2] B.[2,+∞) C.(2,+∞) D.(2,+∞)【答案】C【解析】如图所示,设双曲线的左焦点为F ,连接AF ,BF ,因为AF ⋅BF=0,所以四边形AFBF 为矩形,所以AB =FF =2c ,因为AF =2c cos θ,BF =2c sin θ,AF -AF =2a ,所以2c sin θ-2c cos θ=2a ,所以e =1sin θ-cos θ=12sin θ-π4,∵θ∈π4,5π12 ,∴θ-π4∈0,π6 ,2sin θ-π4 ∈0,22 ,∴e ∈2,+∞ ,故选:C考点二:焦点三角形顶角范围与离心率F 1,F 2是椭圆x 2a 2+y 2b2=1(a >b >0)的焦点,点P 在椭圆上,∠F 1PF 2=θ,则cos θ≥1−2e 2(当且仅当动点为短轴端点时取等号).1(2024·辽宁葫芦岛·高三统考期末)已知点F 1,F 2分别是椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点,点P 是椭圆上的一个动点,若使得满足ΔPF 1F 2是直角三角形的动点P 恰好有6个,则该椭圆的离心率为()A.12B.32C.22D.33【答案】C【解析】由题意知,椭圆的最大张角为900,所以b =c ,所以a =2c ,所以e =c a =22=22,故选:C .1(2024·江西抚州·高三统考期末)设F 1,F 2是椭圆的两个焦点,若椭圆上存在点p ,使∠F 1PF 2=120°,则椭圆离心率的取值范围是()A.0,32B.0,32C.32,1D.32,1【答案】D【解析】F 1(-c ,0),F 2(c ,0),c >0,设P x 1,y 1 ,则|PF 1|=a +ex 1,|PF 2|=a -ex 1.在△PF 1F 2中,由余弦定理得cos120°=-12=a +ex 1 2+a -ex 1 2-4c 22a +ex 1 a -ex 1,解得x 21=4c 2-3a 2e 2.∵x 21∈0,a 2,∴0≤4c 2-3a 2e 2<a 2,即4c 2-3a 2≥0.且e 2<1∴e =c a ≥32.故椭圆离心率的取范围是e ∈32,1 2(2024·宁夏·高三校联考阶段练习)已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点,若椭圆C 上存在点P ,使得PF 1⊥PF 2,则椭圆的离心率的取值范围为()A.12,22B.22,1 C.0,22D.12,22【答案】B【解析】若椭圆C 上存在点P ,使得PF 1⊥PF 2,即以F 1F 2为直径的圆与椭圆C :x 2a 2+y 2b2=1(a >b >0)有交点,设F 1(-c ,0),F 2(c ,0),x 2+y 2=c 2x 2a 2+y 2b 2=1,解得x 2=(2c 2-a 2)⋅a 2c 2≥0,即2c 2-a 2≥0,e ≥22,又0<e <1,故e ∈22,1.故选:B .3(2024·高三课时练习)已知椭圆x 2a 2+y 2b2=1(a >b >0)的两个焦点分别为F 1、F 2,若椭圆上存在点P 使得∠F 1PF 2是钝角,则椭圆离心率的取值范围是()A.0,22B.22,1C.0,12D.12,1【答案】B【解析】当动点P 从椭圆长轴端点处沿椭圆弧向短轴端点运动时,P 对两个焦点的张角∠F 1PF 2渐渐增大,当且仅当P 点位于短轴端点P 0处时,张角∠F 1PF 2达到最大值.∵椭圆上存在点P 使得∠F 1PF 2是钝角,∴△F 1P 0F 2中,∠F 1P 0F 2>90°,∴Rt △OP 0F 2中,∠OP 0F 2>45°,∴b <c ,∴a 2-c 2<c 2,∴a 2<2c 2,∴e >22,∵0<e <1,∴22<e <1.椭圆离心率的取值范围是22,1,故选B .考点三:共焦点的椭圆与双曲线问题sin 2α2e 椭2+cos 2α2e 双2=1,与基本不等式联姻求解离心率的取值范围1(2024·全国·高三专题练习)已知椭圆和双曲线有共同的焦点F 1,F 2,P 是它们的一个交点,且∠F 1PF 2=π3,记椭圆和双曲线的离心率分别为e 1,e 2,则当1e 1e 2取最大值时,e 1,e 2的值分别是()A.22,62B.12,52C.33,6 D.24,3【答案】A【解析】不妨设椭圆与双曲线的标准方程分别为:x 2a 2+y 2b 2=1a >b >0 ,c =a 2-b 2,x 2a 21-y 2b 21=1,c =a 21+b 21.设PF 1 =m ,PF 2 =n .m >n .则m +n =2a ,m -n =2a 1,∴m =a +a 1,n =a -a 1.因为∠F 1PF 2=π3,所以cos π3=m 2+n 2-2c 22mn =12,即a +a 1 2+a -a 1 2-4c 2=a +a 1 a -a 1 .∴a 2+3a 21-4c 2=0,∴1e 21+3e 22=4,∴4≥21e 21×3e 22,则1e 1e 2≤23,当且仅当e 1=22,e 2=62时取等号.故选:A .1(2024·湖南·高三校联考期末)已知椭圆和双曲线有共同的焦点F 1,F 2,P ,Q 分别是它们在第一象限和第三象限的交点,且QF 2⊥F 2P ,记椭圆和双曲线的离心率分别为e 1,e 2,则4e 21+e 22最小值等于.【答案】92【解析】设椭圆长半轴为a 1,双曲线实半轴为a 2,F 1-c ,0 ,F 2c ,0 ,P 为两曲线在第一象限的交点,Q 为两曲线在第三象限的交点,如图,由椭圆和双曲线定义与对称性知PF 1 +PF 2 =2a 1,PF 1 -PF 2 =2a 2,四边形PF 1QF 2为平行四边形,QF 2 =PF 1 =a 1+a 2,PF 2 =a 1-a 2,而QF 2⊥F 2P ,则PF 1⊥F 2P ,因此F 1F 2 2=PF 1 2+PF 2 2,即4c 2=a 1+a 2 2+a 1-a 2 2=2a 21+2a 22,于是有2c 2=a 21+a 22,则2=a 21c 2+a 22c 2,1e 21+1e 22=2,所以4e 21+e 22=12(4e 21+e 22)1e 21+1e 22=125+e 22e 21+4e 21e 22≥125+2e 22e 21⋅4e 21e 22=92,当且仅当e 21=34,e 22=32时取等号.故答案为:922(2024·湖北咸宁·校考模拟预测)已知中心在原点的椭圆与双曲线有公共焦点,左右焦点分别为F 1,F 2,且两条曲线在第一象限的交点为P ,△PF 1F 2是以PF 1为底边的等腰三角形,若PF 1 =24,椭圆与双曲线的离心率分别为e 1,e 2,则3e 1e 2的取值范围是()A.19,+∞B.1,+∞C.13,+∞D.12,+∞【答案】B 【解析】设椭圆与双曲线的半焦距为c ,椭圆长半轴为a 1,双曲线实半轴为a 2,PF 1 =r 1,PF 2 =r 2,∵△PF 1F 2是以PF 1为底边的等腰三角形,点P 在第一象限内,∴PF 2 =F 1F 2 ,PF 1 >PF 2 ,PF 2 +F 1F 2 >PF 1 ,即r 1=24,r 2=2c ,且r 1>r 2,2r 2>r 1,2c <24,4c >24,解得:6<c <12.在双曲线中,PF 1 -PF 2 =2a 2,∴e 2=c a 2=2c 2a 2=2c r 1-r 2=2c 24-2c =c12-c ;在椭圆中,PF 1 +PF 2 =2a 1,∴e 1=c a 1=2c 2a 1=2c r 1+r 2=2c 24+2c =c12+c;∴e 1e 2=c 12+c ⋅c 12-c =1144c2-1;∵6<c <12,∴36<c 2<144,则1<144c 2<4,∴0<144c 2-1<3,可得:1144c2-1>13,∴3e 1e 2的取值范围为1,+∞ .故选:B .考点四:椭圆与双曲线的4a 通径体椭圆与双曲线的4a 通径体如图,若AF 2⊥F 1F 2,易知AF 2 =b 2a ,若AF 1 =λF 1B (λ>1),则一定有AF 1 =λ+12⋅b 2a,根据AF 1 +AF 2 =2a 可得λ+32⋅b 2a =2a ,即λ+34⋅(1-e 2)=1⇒e =λ-1λ+31(2024·河南新乡·高三统考期末)设双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别是F 1、F 2,过F 1的直线交双曲线C 的左支于M 、N 两点,若MF 2 =F 1F 2 ,且2MF 1 =NF 1 ,则双曲线C 的离心率是()A.43B.53C.52D.32【答案】B【解析】如下图所示:MF 2 =F 1F 2 =2c ,由双曲线的定义可得MF 1 =MF 2 -2a =2c -2a ,所以,NF 1 =2MF 1 =4c -4a ,则NF 2 =NF 1 +2a =4c -2a ,由余弦定理可得cos ∠MF 1F 2=MF 12+F 1F 2 2-MF 2 22MF 1 ⋅F 1F 2=c -a2c ,cos ∠NF 1F 2=NF 12+F 1F 2 2-NF 2 22NF 1 ⋅F 1F 2=c -3a4c ,因为cos ∠NF 1F 2=cos π-∠MF 1F 2 =-cos ∠MF 1F 2,故c -3a 4c =-c -a 2c ,整理可得3c =5a ,故该双曲线的离心率为e =c a =53.故选:B .1(2024·甘肃庆阳·高三校联考阶段练习)已知F 1,F 2分别是椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点,过点F 1的直线交椭圆C 于M ,N 两点.若MN +NF 2 =2MF 2 ,且MF 2⊥NF 2,则椭圆C 的离心率为()A.33B.55C.22D.66【答案】B【解析】因为MN +NF 2 =2MF 2 ,所以可设NF 2 =m -d ,MF 2 =m ,MN =m +d m >0,d >0 ,因为MF 2⊥NF 2,所以m -d 2+m 2=m +d 2,解得m =4d ,因为NF 2 +MF 2 +MN =4a =3m ,所以NF 2 =a ,MF 2 =43a ,MN =53a ,所以cos ∠F 2MN =MF 2 MN=45,在△MF 1F 2中,F 1F 2 =2c ,MF 1 =2-MF 2 =23a ,由cos ∠F 2MF 1=23a 2+43a 2-(2c )22×23a ×43a =45,可得a 2=5c 2,即椭圆C 的离心率为55.故选:B .2(2024·湖南衡阳·校联考模拟预测)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1、F 2,过F 1作直线l 与椭圆相交于M 、N 两点,∠MF 2N =90°,且4F 2N =3F 2M ,则椭圆的离心率为()A.13B.12C.33D.55【答案】D【解析】如图所示,设F 1F 2 =2c ,∵4F 2N =3F 2M ,设F 2N =3t ,则F 2M =4t ,在Rt △F 2MN 中,MN =NF 22+MF 2 2=5t ,由椭圆定义可知F 1N =2a -3t ,F 1M =2a -4t ,F 1N +F 1M =MN =4a -7t =5t ,解得a =3t ,所以F 1N =2a -3t =3t =F 2N ,F 1M =2a -4t =2t ,在△F 1NF 2中,可得cos ∠NF 1F 2=c3t,在△F 1MF 2中,由余弦定理可得cos ∠MF 1F 2=c 2-3t 22ct,∵∠NF 1F 2+∠MF 1F 2=π,∴cos ∠NF 1F 2+cos ∠MF 1F 2=0,即c 3t +c 2-3t 22ct=0,解得c =35t 5,所以椭圆离心率e =c a =55.故选:D .考点五:椭圆与双曲线的4a 直角体如左图,若AF 2⊥AB ,AB 过原点,且AF 1=λF 1B ,∠AF 1F 2=α,则e cos α=λ−1 λ+1可得离心率.如右图,若BF 2⊥AC ,AB 过原点,且AF 2=λF 2C(0<λ<1),通过补全矩形,可得AF 1⊥AC ,AF 2 =λ+12⋅b 2a ,借助公式e cos α=λ−1 λ+1可得离心率.1(2024·山东济南·校联考)设F 1,F 2分别是椭圆E :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,过F 2的直线交椭圆于A ,B 两点,且AF 1 ⋅AF 2 =0,AF 2 =2F 2B,则椭圆E 的离心率为()A.23B.34C.53D.74【答案】C【解析】因为AF 2 =2F 2B ,不妨令AF 2 =2F 2B =2m m >0 ,过F 2的直线交椭圆于A ,B 两点,由椭圆的定义可得,AF 1 +AF 2 =2a ,BF 1 +BF 2 =2a ,则BF 1 =2a -m ,AF 1 =2a -2m ,又AF 1 ⋅AF 2=0,所以AF 1⊥AF 2,则△AF 1F 2和△AF 1B 都是直角三角形,则AF 1 2+AB 2=BF 1 2,即2a -2m 2+9m 2=2a -m 2,解得m =a3,所以AF 1 =43a ,AF 2 =23a ,又F 1F 2 =2c ,AF 1 2+AF 2 2=F 1F 2 2,所以169a 2+49a 2=4c 2,因此c 2a2=59,所以椭圆E 的离心率为c a =53.故选:C .1(2024·安徽池州·高三统考期末)设F 1、F 2分别是椭圆E :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,过点F 1-c ,0 的直线交椭圆E 于A ,B 两点,若AF 1=3 F 1B ,且AB ⊥AF 2,则椭圆E 的离心率是()A.12B.52C.32D.22【答案】D【解析】设FB 1=k (k 0 ⇒ AF 1=3k ,AB =4k ⇒ AF 2=2a -3k , BF 2|=2a -k ,再由BF 2|2= AF 2|2+|AB |2⇒AF 2 =3k ⇒ΔAF 1F 2是等腰直角三角形⇒c =22a ⇒e =22,故选D ,2(2024·湖北黄冈·高三统考期末)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别为F 1,F 2,过F 2的直线交椭圆于A ,B 两点,AF 2 =λF 2B ,且AF 1 ⋅AF 2 =0,椭圆C 的离心率为22,则实数λ=()A.23B.2C.13D.3【答案】D【解析】因为AF 2 =λF 2B ,设AF 2 =λF 2B =t (t >0),由椭圆的定义可得:AF 1 +AF 2 =2a ,则AF 1 =2a -t ,因为AF 1 ⋅AF 2=0,所以AF 1⊥AF 2,所以AF 1 2+AF 2 2=F 1F 2 2,即(2a -t )2+t 2=4c 2,又因为椭圆C 的离心率为22,所以a =2c ,则有(2a -t )2+t 2=4c 2=2a 2,所以t =a ,则λF 2B =a ,则F 2B =aλ,由BF 1 +BF 2 =2a ,所以BF 1 =2a -aλ,因为AF 1 ⋅AF 2 =0,所以AF 1⊥AF 2,所以AF 1 2+AB 2=BF 1 2,即a 2+a 21+1λ 2=2a -a λ2,解得:λ=3,故选:D .考点六:椭圆与双曲线的等腰三角形问题同角余弦定理使用两次1已知椭圆C 的焦点为F 1(-1,0),F 2(1,0),过F 2的直线与C 交于A ,B 两点.若│AF 2 =2F 2B ,AB │=BF 1 ,则C 的方程为()A.x 22+y 2=1B.x 23+y 22=1C.x 24+y 23=1D.x 25+y 24=1【答案】B【解析】法一:如图,由已知可设F 2B =n ,则AF 2 =2n ,BF 1 =AB =3n ,由椭圆的定义有2a =BF 1 +BF 2 =4n ,∴AF 1 =2a -AF 2 =2n .在△AF 1B 中,由余弦定理推论得cos ∠F 1AB =4n 2+9n 2-9n 22⋅2n ⋅3n =13.在△AF 1F 2中,由余弦定理得4n 2+4n 2-2⋅2n ⋅2n ⋅13=4,解得n =32.∴2a =4n =23,∴a =3,∴b 2=a 2-c 2=3-1=2,∴所求椭圆方程为x 23+y 22=1,故选B .法二:由已知可设F 2B =n ,则AF 2 =2n ,BF 1 =AB =3n ,由椭圆的定义有2a =BF 1 +BF 2 =4n ,∴AF 1 =2a -AF 2 =2n .在△AF 1F 2和△BF 1F 2中,由余弦定理得4n 2+4-2⋅2n ⋅2⋅cos ∠AF 2F 1=4n 2,n 2+4-2⋅n ⋅2⋅cos ∠BF 2F 1=9n 2 ,又∠AF 2F 1,∠BF 2F 1互补,∴cos ∠AF 2F 1+cos ∠BF 2F 1=0,两式消去cos ∠AF 2F 1,cos ∠BF 2F 1,得3n 2+6=11n 2,解得n =32.∴2a =4n =23,∴a =3,∴b 2=a 2-c 2=3-1=2,∴所求椭圆方程为x 23+y 22=1,故选B .1(2024·江西九江·高三九江一中校考期末)已知双曲线x 2a 2-y 2b2=1a >0,b >0 左右焦点为F 1,F 2,过F 2的直线与双曲线的右支交于P ,Q 两点,且PF 2=2F 2Q,若△PQF 1为以Q 为顶角的等腰三角形,则双曲线的离心率为()A.7B.2C.213D.3【答案】C【解析】由题意QF 1 -QF 2 =PQ -QF 2 =PF 2 =2a ,又PF 2=2F 2Q ,所以QF 2 =a ,从而QF 1 =3a ,PF 1 =4a ,PQ =3a ,△PF 1F 2中,cos ∠F 1PF 2=(4a )2+(2a )2-(2c )22×4a ×2a =5a 2-c 24a 2,△PF 1Q 中.cos ∠F 1PF 2=12PF 1PQ =2a 3a =23,所以5a 2-c 24a 2=23,7a 2=3c 2,所以e =c a =213,故选:C .2(2024·辽宁沈阳·高三沈阳二中校考阶段练习)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)左右焦点为F 1,F 2,过F 2的直线与双曲线的右支交于P ,Q 两点,且PF 2=3F 2Q,若△PQF 1为以Q 为顶角的等腰三角形,则双曲线的离心率为()A.3 B.2C.2D.3【答案】C【解析】由题意QF 1 -QF 2 =PQ -QF 2 =PF 2 =2a ,又PF 2=3F 2Q ,所以QF 2 =23a ,从而QF 1 =83a ,PF 1 =4a ,PQ =83a ,△PF 1F 2中,cos ∠F 1PF 2=(4a )2+(2a )2-(2c )22×4a ×2a =5a 2-c 24a2,△PF 1Q 中.cos ∠F 1PF 2=12PF 1PQ =2a 83a =34,所以5a 2-c 24a 2=34,2a 2=c 2,所以e =c a =2,故选:C .考点七:双曲线的4a 底边等腰三角形当F 2A =F 2B 或者AB =4a 时,令∠AF 1F 2=α,则一定存在①F 1M =F 2B ,②e =1cos2α1(2024·河南·高三校联考阶段练习)设F 2为双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点,直线l :x -3y +c =0(其中c 为双曲线C 的半焦距)与双曲线C 的左、右两支分别交于M ,N 两点,若MN⋅F 2M +F 2N=0,则双曲线C 的离心率是()A.153B.53C.13D.52【答案】D【解析】设双曲线C 的左焦点为F 1,如图,取线段MN 的中点H ,连接HF 2,则F 2M +F 2N =2F 2H.因为MN ⋅F 2M +F 2N =0,所以MN ⋅F 2H =0,即MN ⊥F 2H ,则MF 2 =NF 2 .设MF 2 =NF 2 =m .因为MF 2 -MF 1 =NF 1 -NF 2 =2a ,所以NF 1 -NF 2 +MF 2 -MF 1 =NF 1 -MF 1 =MN =4a ,则MH =NH =2a ,从而HF 1 =m ,故HF 2 =4c 2-m 2=m 2-4a 2,解得m 2=2a 2+2c 2.因为直线l 的斜率为13,所以tan ∠HF 1F 2=HF 2 HF 1=2c 2-2a 22a 2+2c2=13,整理得c 2-a 2a 2+c 2=19,即5a 2=4c 2⇒e =52,故选:D .1(2024·贵州·校联考模拟预测)设F 2为双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点,直线l :x -2y +c =0(其中c 为双曲线C 的半焦距)与双曲线C 的左、右两支分别交于M ,N 两点,若MN ⋅F 2M +F 2N=0,则双曲线C 的离心率是()A.53B.43C.153D.233【答案】C【解析】设双曲线C 的左焦点为F 1,如图,取线段MN 的中点H ,连接HF 2,则F 2M +F 2N =2F 2H .因为MN ⋅F 2M +F 2 N =0,所以MN ⋅F 2H =0,即MN ⊥F 2H ,则MF 2 =NF 2 .设MF 2 =NF 2 =m .因为MF 2 -MF 1 =NF 1 -NF 2 =2a ,所以|NF 1|-|NF 2|+|MF 2|-|MF 1|=NF 1∣-MF 1 = MN |=4a ,则|MH |=|NH |=2a ,从而|HF 1|=m ,故HF 2 =4c 2-m 2=m 2-4a 2,解得m 2=2a 2+2c 2.因为直线l 的斜率为12,所以tan ∠HF 1F 2=HF 2 HF 1 =2c 2-2a 22a 2+2c 2=12,整理得c 2-a 2a 2+c 2=14,即3c 2=5a 2,则c 2a 2=53,故e =c 2a 2=153.故选:C2(2024·全国·高三长垣市第一中学校联考开学考试)设双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过点F 1作斜率为33的直线l 与双曲线C 的左、右两支分别交于M ,N 两点,且F 2M +F 2N ⋅MN =0,则双曲线C 的离心率为()A.2B.3C.5D.2【答案】A【解析】如图,设D 为MN 的中点,连接F 2D .易知F 2M +F 2N =2F 2D ,所以F 2M +F 2N ⋅MN =2F 2D ⋅MN =0,所以F 2D ⊥MN .因为D 为MN 的中点,所以F 2M =F 2N .设F 2M =F 2N =t ,因为MF 2 -MF 1 =2a ,所以MF 1 =t -2a .因为NF 1 -NF 2 =2a ,所以NF 1 =t +2a .所以MN =NF 1 -MF 1 =4a .因为D 是MN 的中点,F 1D =F 1M +MD ,所以MD =ND =2a ,F 1D =t .在Rt △F 1F 2D 中,F 2D =4c 2-t 2;在Rt △MF 2D 中,F 2D =t 2-4a 2.所以4c 2-t 2=t 2-4a 2,解得t 2=2a 2+2c 2.所以F 2D =2c 2-2a 2,F 1D =t =2a 2+2c 2.因为直线l 的斜率为33,所以tan ∠DF 1F 2=F 2D F 1D =2c 2-2a 22a 2+2c2=33,所以c 2-a 2a 2+c 2=13,c 2=2a 2,c =2a ,所以离心率为ca= 2.故选:A3(2024·全国·模拟预测)已知F 1,F 2分别为双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点,过F 1的直线与双曲线C 的左支交于A ,B 两点,连接AF 2,BF 2,在△ABF 2中,sin ∠ABF 22=14,AB =BF 2 ,则双曲线C 的离心率为()A.3 B.2C.3D.2【答案】D【解析】设BF 1 =m ,则由双曲线定义可得BF 2 =2a +m ,AF 1 =2a ,AF 2 =4a ,由sin ∠ABF 22=14可得m =6a ,再在△BF 1F 2中根据余弦定理即可列出式子求出离心率.设BF 1 =m ,则由双曲线定义可得BF 2=2a +m ,AF 1 =AB -BF 1 =BF 2 -m =2a ,则AF 2 =4a ,则sin∠ABF 22=2a 2a +m =14,解得m =6a ,从而BF 2 =8a .在△BF 1F 2中,F 1F 2 2=BF 1 2+BF 2 2-2BF 1 ⋅BF 2 cos ∠F 1BF 2,即4c 2=36a 2+64a 2-2×6a ×8a ×1-2sin 2∠ABF 22 ,解得e =ca =2.故选:D .考点八:焦点到渐近线距离为b双曲线的特征三角形,如图所示,设渐近线l1:y=bax,l2:y=-bax,过右焦点作FM⊥l1,FN⊥l2,由于渐近线方程为y=±bax,故MF2OM=NF2ON=ba,且斜边OF2=c,故MF2OF2=NF2OF2=bc,故OM=ON=a,MF2=NF2=b.1(2024·河南新乡·高三校联考阶段练习)已知双曲线C:x2a2-y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,过F2作双曲线C的一条渐近线的垂线l,垂足为H,直线l与双曲线C的左支交于E点,且H恰为线段EF2的中点,则双曲线C的离心率为()A.2B.3C.2D.5【答案】D【解析】连结EF1,因为点O,H分别为F1F2和EF2的中点,所以OH⎳EF1,且EF1⊥EF2设点F2c,0到一条渐近线y=bax的距离d=bca2+b2=b,所以EF2=2b,又EF2-EF1=2a,所以EF1=2b-2a,Rt△EF1F2中,满足2b-2a2+4b2=4c2,整理为:b=2a,双曲线的离心率e=ca=a2+b2a2=5.故选:D1(2024·吉林白山·高三校联考阶段练习)已知双曲线x2a2-y2b2=1(a>0,b>0)的左右焦点分别为F1,F2,以OF1为直径的圆与双曲线的一条渐近线交于点M(异于坐标原点O),若线段MF1交双曲线于点P,且MF2⎳OP则该双曲线的离心率为()A.2B.3C.52D.6【答案】A【解析】不妨设渐近线的方程为y=-bax,因为MF2⎳OP,O为F1F2的中点,所以P为MF1的中点,将直线OM,MF1的方程联立y=-baxy=ab(x+c),可得M-a2c,abc,又F 1-c ,0 ,所以P -c +-a 2c 2,ab 2c 即P -a 2+c 22c ,ab 2c,又P 点在双曲线上,所以a 2+c 224a 2c 2-a 24c2=1,解得ca =2,所以该双曲线的离心率为2,故选:A .2(2024·山西运城·高三统考期末)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1、F 2,以OF 1为直径的圆与双曲线的一条渐近线交于点M ,若线段MF 1交双曲线于点P ,且PF 2 =5PF 1 ,则双曲线的离心率为()A.264B.344C.2D.3【答案】C【解析】根据题意,不妨取点M 在第二象限,题中条件,得到k MF 1=ab,记∠MF 1F 2=∠PF 1F 2=θ,求出cos θ=b c ,根据双曲线定义,得到PF 2 =5a 2,PF 1 =a 2,在△PF 1F 2中,由余弦定理,即可得出结果.因为以OF 1为直径的圆与双曲线的一条渐近线交于点M ,不妨取点M 在第二象限,所以MF 1⊥OM ,则k MF 1⋅k OM =-1,因为双曲线x 2a 2-y 2b2=1(a >0,b >0)的渐近线方程为y =±b a x ,则k OM =-b a ,所以k MF 1=a b ;记∠MF 1F 2=∠PF 1F 2=θ,则tan θ=a b ,由tan θ=a b sin 2θ+cos 2θ=1解得cos θ=b c ,因为PF 2 =5PF 1 ,由双曲线的定义可得PF 2 -PF 1 =2a ,所以PF 2 =5a 2,PF 1 =a2,由余弦定理可得:cos θ=bc =PF 1 2+F 1F 2 2-PF 2 22PF 1 ×F 1F 2=a 24+4c 2-25a242×a 2×2c,则2c 2-3a 2=ab ,所以2a 2+b 2 -3a 2=ab ,整理得2b 2-ab -a 2=0,解得b =a ,所以双曲线的离心率为e =c 2a 2=b 2+a 2a 2= 2.故选:C .3(2024·辽宁·统考模拟预测)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一个焦点为F ,过F 作双曲线C 的一条渐近线的垂线,垂足为A .若△OFA (O 为坐标原点)的面积等于14c 2(c 为双曲线C 的半焦距),则双曲线C 的离心率为()A.2B.3 C.2 D.5【答案】A【解析】设双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点F (c ,0),双曲线C 的一条渐近线方程设为bx +ay =0,可得AF =bc a 2+b 2=b ,OA =c 2-b 2=a ,△OAF 的面积为14c 2,即有12ab =14c 2,化为4a 2(c 2-a 2)=c 4,e 4-4e 2+4=0,解得e = 2.故选:A .4(2024·广西南宁·统考)已知双曲线E :x 2a 2-y 2b2=1(a >0,b >0)的左焦点为F 1,过点F 1的直线与两条渐近线的交点分别为M 、N 两点(点F 1位于点M 与点N 之间),且MF 1 =2F 1N,又过点F 1作F 1P ⊥OM 于P (点O 为坐标原点),且|ON |=|OP |,则双曲线E 的离心率e =()A.5B.3C.233D.62【答案】C【解析】不妨设M 在第二象限,N 在第三象限,如下图所示:因为ON =OP ,∠F 1OP =∠F 1ON ,所以△F 1OP ≅△F 1ON ,所以∠F 1PO =∠F 1NO =90°,F 1P =F 1N ,又l OM :y =-bax ,F 1-c ,0 ,所以F 1P =F 1N =-bca1+b 2a 2=b ,所以ON =OP =c 2-b 2=a ,所以MF 1 =2F 1N =2b ,因为tan ∠F 1OP =b a ,tan ∠MON =tan2∠F 1OP =3b a ,所以2ba 1-b 2a 2=3b a ,所以b 2a 2=c 2-a 2a2=e 2-1=13,所以e =233.故选:C .考点九:焦点到渐近线垂线构造的直角三角形利用几何法转化1(2024·江西九江·高三九江一中校考阶段练习)F 是双曲线x 2a 2-y 2b2=1a >0,b >0 的左焦点,过点F 作双曲线的一条渐近线的垂线,垂足为A ,交另一条渐近线于点B .若3FA =FB,则此双曲线的离心率为()A.2 B.53C.233D.3【答案】D【解析】由题意得:F -c ,0 ,双曲线渐近线方程为:y =±b ax若A 为直线FA 与y =-b a x 交点,B 为直线FA 与y =bax 交点则k FA =a b ∴直线FA 方程为:y =a bx +c ,与y =-b a x 联立可得:x A =-a 2c 直线FA 方程与y =b a x 联立可得:x B =a 2cb 2-a2由3FA =FB 得:3-a 2c +c =a 2c b 2-a 2+c ,即-3a 2+2c 2=a 2c 2c 2-2a 2∴-3+2e 2=e 2e 2-2,即e 4-4e 2+3=0,解得:e 2=3或1(舍)∴e =3由双曲线对称性可知,当A 为直线FA 与y =b a x 交点,B 为直线FA 与y =-bax 交点时,结论一致故选:D 1(2024·广西玉林·校考模拟预测)过双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点F 引一条渐近线的垂线,与另一条渐近线相交于第二象限,则双曲线C 的离心率的取值范围是()A.(2,+∞) B.(3,+∞)C.(2,+∞)D.(3,+∞)【答案】A【解析】由题意双曲线C :x 2a 2-y 2b2=1的渐近线y =±b a x ,右焦点F (c ,0),不妨设过右焦点F (c ,0)与双曲线的一条渐近线垂直的直线方程为y =-ab(x -c )与y =-b a x 联立得-b a x =-a b (x -c ),所以x =a 2c a 2-b 2,y =-abc a 2-b 2,所以交点坐标为a 2c a 2-b 2,-abca 2-b2,因为交点在第二象限,所以-abca 2-b 2>0a 2c a 2-b 2<0,因为a >0,b >0,c >0,所以a 2c >0,abc >0,所以a 2-b 2<0,即a<b ,因为c =a 2+b 2>a 2+a 2=2a ,所以e =ca>2aa=2,即e ∈2,+∞ 故选:A2(2024·江西新余·统考)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 ,过右焦点F 作C 的一条渐近线的垂线l ,垂足为点A ,l 与C 的另一条渐近线交于点B ,若AF =25AB,则C 的离心率为()A.305B.2C.233D.52【答案】A【解析】如下图所示:双曲线的渐近线方程为y =±b ax ,即bx ±ay =0,所以,AF =bc b 2+a 2=b ,则OA =OF 2-AF 2=c 2-b 2=a ,因为AF =25AB ,则AB =52b ,设∠AOF =α,则∠BOF =α,所以,∠AOB =2α,tan α=AF OA =b a ,tan2α=AB OA=5b2a ,由二倍角的正切公式可得tan2α=2tan α1-tan 2α,即2ba1-b a 2=5b 2a ,可得b 2a 2=15,因此,e =c a =1+b 2a2=1+15=305.故选:A .考点十:以两焦点为直径的圆与渐近线相交问题以F 1F 2为直径作圆,交一条渐近线y =bax 于点B ,BF 1交另一条渐近线于点A ,则令∠BOF 2=α,则∠BF 1F 2=α2,e =1+tan 2α1(2024·全国·校联考)过双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点F 作x 轴的垂线,与双曲线C 及其一条渐近线在第一象限分别交于A ,B 两点,且OF =2OA -OB(O 为坐标原点),则该双曲线的离心率是()A.2. B.3 C.322D.233【答案】D【解析】设双曲线的半焦距为c ,由x =cx 2a 2-y 2b2=1得到A c ,b 2a ,由y =b a x x =c 得到B c ,bca ,而F (c ,0),OF =2OA -OB ⇔OA =OF +OB2,即点A 是线段FB 的中点,所以bc a =2b 2a ,c =2b ,所以e =c a =2b c 2-b 2=233.故选:D1(2024·山西晋城·统考)设F 1,F 2是双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点,以线段F 1F 2为直径的圆与直线bx -ay =0在第一象限交于点A ,若tan ∠AF 2O =2,则双曲线C 的离心率为()A.53B.32C.3D.2【答案】A【解析】由题意可得|AO |=|OF 2|=c ,即有△AOF 2为等腰三角形,设∠OAF 2=∠AF 2O =α,则∠AOF 2=π-2α,所以tan ∠AOF 2=tan π-2α =-tan2α=2tan αtan 2α-1=2×222-1=43即为b a =43,所以e =c a =1+b 2a2=1+169=53,故选:A 2(2024·河北衡水·高三河北衡水中学校考阶段练习)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左,右焦点分别为F 1,F 2,若以F 1F 2为直径的圆和曲线C 在第一象限交于点P ,且△POF 2恰好为正三角形,则双。

求椭圆离心率范围的常见题型及解析

求椭圆离心率范围的常见题型及解析

求椭圆离心率范围的常见题型及解析解析解题关键:挖掘题中的隐含条件,构造关于离心率e的不等式。

一、利用曲线的范围,建立不等关系已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$右顶点为A,点P在椭圆上,O为坐标原点,且OP垂直于PA,求椭圆的离心率e的取值范围。

小改写:已知椭圆方程$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,右顶点为A,点P在椭圆上,且OP垂直于PA,求椭圆的离心率e的取值范围。

二、利用曲线的平面几何性质,建立不等关系已知F1、F2是椭圆的两个焦点,满足所有点P总在椭圆内部,则椭圆离心率的取值范围是()。

小改写:已知F1、F2是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的两个焦点,满足所有点P总在椭圆内部,则椭圆离心率的取值范围是()。

三、利用点与椭圆的位置关系,建立不等关系已知$\triangle ABC$的顶点B为椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$短轴的一个端点,另两个顶点也在椭圆上,若$\triangle ABC$的重心恰好为椭圆的一个焦点F(c,0),求椭圆离心率的范围。

小改写:已知椭圆方程$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,短轴的一个端点为B,另两个顶点也在椭圆上,$\triangle ABC$的重心恰好为椭圆的一个焦点F(c,0),求椭圆离心率的范围。

四、利用函数的值域,建立不等关系椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$与直线$x+y-1=0$相交于A、B两点,且OA·OB=(O为原点),若椭圆长轴长的取值范围为$[5,6]$,求椭圆离心率的范围。

高中数学高考数学离心率题型总结

高中数学高考数学离心率题型总结

F 2P F 1xy OF 2PF 1xy OF 2PF 1xyOQF 2PF 1xyO高中数学 高考数学离心率题型总结 求解含直角三角形的椭圆离心率二.典例剖析:例.若椭圆)0(,12222>>=+b a b y a x 短轴端点为P 满足21PF PF ^,求椭圆离心率。

圆离心率。

分析:利用椭圆半焦距、短半轴长的相等关系即2OF OP =,得到 2221222222=Þ=Þ=+=e e c c b a 的结论。

的结论。

变 式1.在椭圆)0(,12222>>=+b a b y a x 上有一点P (除短轴端点外),若21PF PF ^,求椭圆离心率取值范围。

,求椭圆离心率取值范围。

分析:点P 在椭圆上Þ b OP >;点P 在以O 为圆心,OP 为半径的圆上Þc OF OF OP ===21,所以得到c>b ,进而得到÷÷øöççèæÎÞ>Þ<+=1,2221222222e e c c b a 的结论。

变 式2. 满足21PF PF ^的所有点P 都在椭圆)0(,12222>>=+b a b y a x 内,求椭圆离心率取值范围。

内,求椭圆离心率取值范围。

分析:满足21PF PF ^的所有点P 都在椭圆内Þ以O 为圆心,OP 为半径的圆都在椭圆内Þb c <,进而得到÷÷øöççèæÎÞ<Þ>+=22,021222222e e c c b a 的结论。

的结论。

变 式3.过椭圆)0(,12222>>=+b a b y a x 右焦点2F 的直线交椭圆于QP 、两点且满足PQPF ^1,若135sin 1=ÐQP F ,求该椭圆离心率。

高三数学专题复习离心率的三种求法

高三数学专题复习离心率的三种求法

椭圆、双曲线离心率的三种求法椭圆的离心率 0 e 1 ,双曲线的离心率 e 1 ,抛物线的离心率e 1 .一、直接求出 a,c ,求解 e.已知圆锥曲线的标准方程或a ,c 易求时,可利用率心率公式ec来解决 .x2y2a→→例 1:已知 F 1(- 1,0),F 2(1 ,0)是椭圆 a 2+ b 2= 1 的两个焦点,若椭圆上一点 P 满足 |PF 1|+ |PF 2|= 4,则椭圆的离心率 e = ________.12变式练习 1:若椭圆经过原点,且焦点为F 1 1,0 , F 2 3,0 ,则其离心率为( ) CA .3B. 2C.1D.14324变式练习 2:如果双曲线的实半轴长为 2,焦距为 6,那么双曲线的离心率为() CA.3B.6C.3D.22 22二、构造 a,c 的齐次式,解出 e.根据题设条件,借助 a ,b ,c 之间的关系,构造 a ,c 的关系式(特别是齐次式),进而得到关于e 的方程,从而解得离心率 e.x 2 y 2例 2: (2012 ·江西 )椭圆 a 2+ b 2= 1(a>b>0)的左,右顶点分别是 A ,B ,左,右焦点分别是F 1, F 2,若 |AF 1|,5 |F 1F 2|, |F 1B|成等比数列,则此椭圆的离心率为________. 522变式练习 1:已知 F 1, F 2 是双曲线x2y 2 1( a 0,b 0 )的两焦点,以线段F 1 F 2 为边作正三角形 MF 1 F 2 ,ab若边 MF 1 的中点在双曲线上,则双曲线的离心率是() DA.423B.31C.31D.3 12变式练习 2:若双曲线虚轴的一个端点为M ,两个焦点为 FF, F MF21200,则双曲线的离心率为()B1, 2 1A.366D.3B.C.32322变式练习 3:设双曲线x2y 2 1( b a0 )的半焦距为 c ,直线 l 过 a,0, 0,b 两点 .已知原点到直线的距ab离为3 c ,则双曲线的离心率为 ( ) A4A. 2B. 3C. 223D. 3三、采用离心率的定义以及椭圆的定义求解例 3:设椭圆的两个焦点分别为F 1, F 2 ,过 F 2 作椭圆长轴的垂线交椭圆于点P ,若△ F 1PF 2 为等腰直角三角形,则椭圆的离心率是 ________. 21【跟踪训练】1.已知椭圆的长轴长是短轴长的2 倍,则椭圆的离心率等于() DA .13C .1D .3B .33222242.已知双曲线x y1的一条渐近线方程为 y x ,则双曲线的离心率为( )Aa 2b 23 54 C.5 3A. B. 4 D.3 3 2x 2 y 2 1 ( a 0,b 0 )的两个焦点, A 和 B 是以 O3.如图, F 1 和 F 2 分别是双曲线b 2 a 2y为圆心,以 OF 1 为半径的圆与该双曲线左支的两个交点,且△ F 2 AB 是等边三A角形,则双曲线的离心率为( )D F 1O F 2 xBA. 3B. 5C.5D.3 124.设 F 1 ,F 2 分别是双曲线x 2 y 2 1 的左、右焦点,若双曲线上存在点A ,使 F 1 AF 290 0 ,且 AF 13AF 2 ,22a b 则双曲线离心率为() B5B.10C.15D. 5A.222225.已知双曲线 xy 1( a 0,b0 )的右焦点为 F ,若过点 F 且倾斜角为600 的直线与双曲线的右支有且a 2b 2只有一个交点,则此双曲线离心率的取值范围是( ) CA. 1,2B. 1,2C. 2,D. 2,x 2y 21(a b 0) 的左顶点为 A ,左焦点为 F ,上顶点为 B ,若∠ BAO+∠ BFO=90 °,则6.已知椭圆 C : 22ab椭圆 C 的离心率是.5 12【走进高考】1. (2013 浙·江理 )如图 , F 1 , F 2 是椭圆 C 1 :x 2y 21与双曲线 C 2 的公共y4焦点,A,B分别是 C 1, C 2 在第二、四象限的公共点. 若四边形AAF 1 BF 2 为矩形 , 则 C 2 的离心率是 ( )D F 1OF 2xA. 2B . 3B(第 1 题图)C.3D . 6222.(2013 湖·南理 )设 F 1, F 2 是双曲线 C : x 2y 2 1(a 0,b0) 的两个焦点, P 是 C 上一点 ,若 PF 1PF 2 6a,a 2b 2且△ PF 1F 2 的最小内角为 30 , 则 C 的离心率为. 33.(2013 福·建理 )椭圆x 2y 21(a b 0) 的左、右焦点分别为F 1, F 2 ,焦距为2c,若直线 y3( xc) 与椭:22a b圆的一个交点 M 满足MF 1 F 2 2 MF 2 F 1 , 则该椭圆的离心率等于__________. 3 1x 2y 24.(2013 辽·宁理 ) 已知椭圆 C : a 2b 21(a b0) 的左焦点为F,C 与过原点的直线相交于A,B 两点 ,连接AF, BF, 若 AB10 , AF6 , cos ABF4 , 则 C 的离心率 e=______. 5575. (2014 江·西理 )过点 M (1,1) 作斜率为1的直线与椭圆 C : x 2y 21(a b0) 相交于 A, B ,若 M 是线段2 a 2 b 2AB 的中点,则椭圆C 的离心率为.226. (2014 浙·江理 )设直线 x 3 ym0(m 0)x 2 y 21( a b0 )两条渐近线分别交于点与双曲线b 2a 2A, B ,若点 P( m,0) 满足 PAPB , 则该双曲线的离心率是5__________.27. (2014 重·庆理 )设 F 1, F 2 分别为双曲线x 2y 21(a 0,b 0) 的左、右焦点,双曲线上存在一点P 使得a 2b2| PF 1 | |PF 2 | 3b, | PF 1 | | PF 2 9)B|ab ,则该双曲线的离心率为(4A.4B. 5C.9D.33348.(2015 新课标 II 理 )已知 A , B 为双曲线 E 的左,右顶点,点M 在 E 上,△ ABM 为等腰三角形,且顶角为 120°,则 E 的离心率为 () DA. 5B.2C. 3D. 2x 2y 2 1的一个焦点,若C 上存在点 P ,使线段 PF 的中点恰为其虚9.(2015 湖南理 )设 F 是双曲线 C :2b 2a轴的一个端点,则C 的离心率为. 5C 1:x2210.(2015 山东理 )平面直角坐标系xOy 中,双曲线 2y 2 1 a 0,b 0 的渐近线与抛物线C 2:abx 22 py p 0 交于点 O , A , B ,若△ OAB 的垂心为 C 2 的焦点,则 C 1 的离心率为. 322211.(2016 浙江理 )已知椭圆 C 1 : x2 +y 2=1(m>1) 与双曲线 C 2: x2 –y 2=1( n>0) 的焦点重合, e 1,e 2 分别为 C 1,mn C 2 的离心率,则( ) AA .m>n 且 e 1e 2>1B . m>n 且 e 1e 2<1C . m<n 且 e 1 e 2>1D . m<n 且 e 1e 2<112.(2016 新课标Ⅲ文理 )已知 O 为坐标原点,x 2y 21(a b0) 的左焦点,分别为 C 的F是椭圆C :a 2b 2A, B左,右顶点 . P 为 C 上一点,且 PFx 轴 .过点 A 的直线 l 与线段 PF 交于点 M ,与 y 轴交于点 E .若直A .1B.1C.2D.3 323413.( 2016 新课标Ⅱ理)已知F1, F2是双曲线 E : x222y2 1 的左,右焦点,点M 在 E 上,MF1与 x 轴垂直,a bsin MF2 F11,则 E 的离心率为() A 3(A)2(B)3(C)3(D)2 22–y214.( 2016 山东文理)已知双曲线E:x22 =1 ( a>0 , b>0).矩形 ABCD 的四个顶点在 E 上, AB, CDa b的中点为 E 的两个焦点,且2|AB|=3|BC|,则 E 的离心率是 _______. 2xOy F x2y2yb15.(2016 江苏 )如图,在平面直角坐标系中,是椭圆a 2b2 1(a>b>0) 的右焦点,直线 2 与椭圆交于 B,C 两点,且BFC90 ,则该椭圆的离心率是6 .316.(2017 新课标Ⅰ理15)已知双曲线 C:x2y21(a>0,b>0)的右顶点为A,以A为圆心,b为半径作a2b2圆 A,圆 A 与双曲线 C 的一条渐近线交于M、 N 两点 .若∠ MAN =60°,则 C 的离心率为 ________.2 3317.(2017 北京文 10)若双曲线x2y21的离心率为3,则实数 m=__________ . 2m18.(2017新课标Ⅱ理9)若双曲线C:221(a0 b0)的一条渐近线被圆x2y2 4 所截得x2y2,2a b的弦长为 2,则C的离心率为() AA .2B.3C.2 D .23319.(2017 新课标Ⅲ文11)已知椭圆 C:x2y21, ( a>b>0) 的左、右顶点分别为A1, A2,且以线段 A1A2 a2b2为直径的圆与直线bx ay2ab0 相切,则C的离心率为() AA .6B .321 33C.D.3320.(201814)x 2 y 2x 2y 2N北京理 已知椭圆M :a 2b 21(a b0),双曲线N :m 2n 2 1 .若双曲线 的两条渐近线与椭圆 M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为__________ ;双曲线 N 的离心率为 __________. 31221.(2018 江苏 8) 在平面直角坐标系 xOy 中,若双曲线x 2y 2 1(a0,b0)的右焦点 F (c,0) 到一条渐近线a 2b 2的距离为3 c ,则其离心率的值是. 2222.(2018 新课标Ⅱ理 12)已知 F 1, F 2 是椭圆 C:x 2y 2 1(a b 0) 的左、右焦点, A 是 C 的左顶点,点Pa 2b 2在过 A 且斜率为3的直线上,△ PF 1F 2 为等腰三角形,∠ F 1 2的离心率为 () D6F P=120 ,则 C21C .11A.B .3D .32423.(2018 新课标Ⅲ理 11)设 F 1,F 2 是双曲线 C:x 2y 21(a 0,b 0) 的左,右焦点, O 是坐标原点.过 F 2a 2b 2作 C 的一条渐近线的垂线,垂足为P .若 PF 1 6 OP ,则 C 的离心率为 ( ) CA . 5B . 2C . 3D . 2椭圆、双曲线离心率的三种求法椭圆的离心率 0 e 1 ,双曲线的离心率 e 1 ,抛物线的离心率e 1 .一、直接求出 a,c ,求解 e.已知圆锥曲线的标准方程或a ,c 易求时,可利用率心率公式ec来解决 .x2y2a→→例 1:已知 F 1(- 1,0),F 2(1 ,0)是椭圆 a 2+ b 2= 1 的两个焦点,若椭圆上一点 P 满足 |PF 1|+ |PF 2|= 4,则椭圆的离心率 e = ________.【答案】12→→1【解析】由椭圆定义及 |PF 1|+ |PF 2|= 4,得 2a = 4, a = 2, c = 1,e = .2变式练习 1:若椭圆经过原点,且焦点为F 1 1,0 , F 2 3,0 ,则其离心率为( )A .3B. 2C. 1D. 13424 【答案】 C【解析】由 F 1 1,0 , F 2 3,0 知2c 3 1 ,∴ c1 ,又∵椭圆过原点,∴ a c 1 , ac 3.∴ a2 , c 1 c 1,所以离心率 e.故选 C.a2变式练习 2:如果双曲线的实半轴长为 2,焦距为 6,那么双曲线的离心率为()A. 3B. 6C.3D.2222【答案】 C【解析】由题设a2 , 2c 6 ,则 c3 , e c3,因此选 C.a 2二、构造 a,c 的齐次式,解出 e.根据题设条件,借助 a ,b ,c 之间的关系,构造 a ,c 的关系式(特别是齐次式),进而得到关于 e 的方程,从而解得离心率 e.22例 2: (2012 ·江西 )椭圆 x2 y 2A ,B ,左,右焦点分别是, F ,若 |AF1|,a +b = 1(a>b>0)的左,右顶点分别是F 12|F 1F 2|, |F 1B|成等比数列,则此椭圆的离心率为 ________. 【答案】55【解析】由椭圆的定义知,|AF 1|= a - c , |F 1F 2 |= 2c , |BF 1 |= a + c.∵ |AF 1|, |F 1F 2|, |BF 1|成等比数列,因此4c 2=( a -c) ·(a + c),整理得 5c 2= a 2,两边同除以 a 2得 5e 2= 1,解得 e =5.522变式练习 1:已知 F 1 , F 2 是双曲线x2y2 1( a0, b 0 )的两焦点, 以线段 F 1F 2 为边作正三角形MF 1 F 2 ,ab若边 MF 1 的中点在双曲线上,则双曲线的离心率是( )A.423B.31C.31D.312【答案】 D【解析】如图,设 MF 1 的中点为 P ,∵ F 1(-c,0 ),M (0, 3c ),∴ P(c 3cc 2 3c 22,2 ).代入双曲线方程,得 4a 2 4b 2 1 .∴ c 4 8a 2c 2 4a 4 0 , e 4 8e 2 4 0 , e 24 2 3 ,∴ e 1 3 .故选 D.变式练习 2:若双曲线虚轴的一个端点为M ,两个焦点为 F 1 ,F 2 , F 1 MF 21200,则双曲线的离心率为 ()A. 3B. 6C. 6D.3323【答案】 B【解析】如图所示,不妨设 M 0,b , F 1c,0 , F 2 c,0 ,则 MF 1MF 2c 2 b 2 ,又 F 1 F 2 2c ,MF 1 2MF 222在 F 1MF 2 中, 由余弦定理,得 cosF 1 F 2,F 1MF 22 MF 1 MF 2222 22221cbcb4cc1 .即 2 c 2 b 2,∴ b2b 2c 22∵ b2c2a 2,∴2ca21,∴3a22c 2 ,∴ e 23 ,∴ e 6 ,故选 B.2 a 2222变式练习 3:设双曲线x 2y 2 1( b a0 )的半焦距为 c ,直线 l 过 a,0, 0,b 两点 .已知原点到直线的距a 2b 2离为3c ,则双曲线的离心率为 ()4A. 2B. 3C. 22 3D. 3【答案】 A【解析】由已知,直线l 的方程为 bx ayab0 ,由点到直线的距离公式,得ab 3 c .a 2b 24又 c 2 a 2 b 2 , ∴ 4ab 3c 2 ,两边平方,得 16a 2 c 2 a 23c 4 ,整理得 3e 416e 2 16 0 ,得 e 24或 e 24 .又 0 a b 2c 2 a 2 b 2 1 b 2 2 ,∴ e 2 4e 2,故选 A.3,∴ e a 2 a 2a 2,∴三、采用离心率的定义以及椭圆的定义求解例 3:设椭圆的两个焦点分别为 F 1, F 2 ,过 F 2 作椭圆长轴的垂线交椭圆于点P ,若△ F 1PF 2 为等腰直角三【答案】21c2c2c 2c 1 2 1 .【解析】 e2 2c 2ca 2a PF 1 PF 22 1【跟踪训练】1.已知椭圆的长轴长是短轴长的2 倍,则椭圆的离心率等于() A . 13C .1D .3B .2332答案: D解析: ∵椭圆的长轴长是短轴长的2 倍,∴ a=2b ,椭圆的离心率 c3 ,选 D.e2a224x ,则双曲线的离心率为(2.已知双曲线 xy 1的一条渐近线方程为y)a 2b 23A.5B.4C.5D.333 42答案: A解析: 双曲线焦点在 x 轴,由渐近线方程可得b 4,可得 ec 32425,故选 A.a3a33x2y21 ( a 0,b0 )的两个焦点, A 和 B 是以 O3.如图, F 1 和 F 2 分别是双曲线b 2a 2y为圆心,以 OF 1 为半径的圆与该双曲线左支的两个交点,且△ F 2 AB 是等边三A角形,则双曲线的离心率为( )F 1O F 2 xBA.3B.55 D. 3 1C.2答案: D解析: 连接 AF 1,∵ F 2 AB 是等边三角形,∴∠ AF 2F 1=30°,∠ F 1AF 2=90°.∴ |AF 1|=c , |AF 2|=3 c ,∴ 2a=( 3 - 1)c ,双曲线的离心率为 1+3 ,故选 D.4.设 F 1 ,F 2 分别是双曲线 x 2 y 21 的左、右焦点,若双曲线上存在点 A ,使 F 1 AF2 900 ,且 AF 13 AF 2 ,a 2b 2则双曲线离心率为( )A.5B. 10C. 15D. 5222答案: B解析:设 F ,F 分别是双曲线x 2 y 2 1的左、右焦点 .若双曲线上存在点 A ,使∠ F 1AF 2=90o ,且|AF 1|=3|AF 2 |, a 2 b 212设 |AF 2|=1, |AF 1|=3,在双曲线中 2a=|AF 1|- |AF 2 |=2, 2c= 22= 10 10AF 1AF 2 ,∴离心率 e=.25.已知双曲线x 2 y 2 1( a 0,b0 )的右焦点为 F ,若过点 F 且倾斜角为 600 的直线与双曲线的右支有且a 2b 2A. 1,2B. 1,2C. 2,D. 2,答案: C解析: 双曲线x 2y 2 1 ( a 0,b 0 )的右焦点为 F ,若过点 F 且倾斜角为60 0 的直线与双曲线的右支有且a 2b 2222只有一个交点,则该直线的斜率的绝对值小于等于渐近线的斜率b ,∴ b3 ,离心率 e 2= c2a2b ≥aaaa4,∴ e ≥ 2,故选 C.6.已知椭圆x 2 y 2的左顶点为 A ,左焦点为 F ,上顶点为 B ,若∠ BAO+∠ BFO=90 °,则C :a 2b 21(ab 0)椭圆 C 的离心率是 .答案:5 12解析: ∵∠ BAO+∠ BFO=90 °,∴ sin ∠ BAO =cos ∠ BFO ,∴b b 2c,∴ e23 5 ,e 235(舍去 ).a 2 a22∴ e5 1 .2【走进高考】1. (2013 浙·江理 )如图 , F 1 , F 2 是椭圆 C 1 :x 2y 21与双曲线 C 2 的公共y4焦点 , A, B 分别是 C 1, C 2 在第二、四象限的公共点. 若四边形AAF 1 BF 2 为矩形 , 则 C 2 的离心率是 ()F 1OF 2xA.2B . 3B(第 1 题图)C.3D . 6 22【答案】 D2.(2013 湖·南理 )设 F 1, F 2 是双曲线x 2 y 2的两个焦点, P 是 C 上一点 ,若 PF 1PF 26a,C : a 2 b 21(a 0,b0)且△ PF 1F 2 的最小内角为 30 , 则 C 的离心率为 .【答案】33.(2013 福·建理 )椭圆x 2y 21(ab 0) 的左、右焦点分别为F 1, F 2 ,焦距为 2c,若直线 y3( xc) 与椭:22a b圆的一个交点 M 满足MF 1 F 22 MF 2 F 1 , 则该椭圆的离心率等于 __________.【答案】3 14.(2013 辽·宁理 ) 已知椭圆 C :x 2y 21(a b 0) 的左焦点为F,C 与过原点的直线相交于A,B 两点 ,连接a 2b 2AF, BF, 若 AB10 , AF6 , cos ABF4, 则 C 的离心率 e=______.【答案】571x 225. (2014 江·西理 )过点 M (1,1) 作斜率为的直线与椭圆C : y1(a b 0) 相交于 A, B ,若 M 是线段 2a 2b 2AB 的中点,则椭圆 C 的离心率为.6. (2014 浙·江理 )设直线 x 3 y m 0(m 0)x 2 y 2 1( a b 0 )两条渐近线分别交于点与双曲线b 2a 2A, B ,若点 P(m,0) 满足 PA PB , 则该双曲线的离心率是 __________.7. (2014 重·庆理 )设 F 1, F 2 分别为双曲线x 2 y 2 的左、右焦点,双曲线上存在一点P 使得a 2b 21(a 0,b 0)| PF 1 | | PF 2 | 3b, | PF 1 | |PF 2 | 9ab ,则该双曲线的离心率为()A.4B.5C.9D.33 3 48.(2015 新课标 II 理 )已知 A , B 为双曲线 E 的左,右顶点,点 M 在 E 上,△ ABM 为等腰三角形,且顶角为 120°,则 E 的离心率为 ( )A. 5B.2C. 3D. 2【答案】 D9.(2015 湖南理 )设 F 是双曲线 C :x 2y 2 1的一个焦点,若 C 上存在点 P ,使线段 PF 的中点恰为其虚a 2b 2轴的一个端点,则C 的离心率为.【答案】510.(2015 山东理 )平面直角坐标系xOy 中,双曲线C 1:x 2 y 2 1 a 0,b 0 的渐近线与抛物线 C 2:a2b2x 22 py p 0 交于点 O , A , B ,若△ OAB 的垂心为 C 2 的焦点,则 C 1 的离心率为.答案:32x2y21(a 0,b 0) 的渐近线为 解析:C 1:2b 2aC 2 : x22 py( p0) 的焦点 F (0, p) ,则 k AF2b 2 pb 2 pb 2 ), B(yx ,则 A( , 2 a a a 2pb 2pb 25c 2a 2 2 a ,即 , 2pb b a 2 4 a 2a2 pb 2pb 2, ) . a a 2a 2b 29 c 3a 2 ,ea .4211.(2016 浙江理 )已知椭圆 C 1: x 2+y 2=1(m>1) 与双曲线 C 2: x2 –y 2=1( n>0) 的焦点重合, e 1,e 2 分别为 C 1,m 2n 2C 2 的离心率,则()A . m>n 且 e 1e 2>1B . m>n 且 e 1e 2<1C . m<n 且 e 1e 2>1D . m<n 且 e 1e 2<1【答案】 A考点: 1、椭圆的简单几何性质; 2、双曲线的简单几何性质.【易错点睛】 计算椭圆 C 1 的焦点时, 要注意 c 2 a 2b 2 ;计算双曲线 C 2 的焦点时,要注意c 2 a 2 b 2 .否则很容易出现错误.2212.(2016 新课标Ⅲ文理 )已知 O 为坐标原点, F 是椭圆 C :x2y2 1(a b 0) 的左焦点, A, B 分别为 C 的a b左,右顶点 . P 为 C 上一点,且 PF x 轴 .过点 A 的直线 l 与线段 PF 交于点 M ,与 y 轴交于点 E .若直线 BM经过 OE 的中点,则 C 的离心率为( )A .1B.1C.2D.33234【答案】 A考点:椭圆方程与几何性质.【思路点拨】求解椭圆的离心率问题主要有三种方法:( 1)直接求得 a ,c 的值,进而求得e 的值;( 2)建立 a,b, c 的齐次 等式,求得 b或转化为关于 e 的等式求解; (3) 通过特殊值或特殊位置,求出e .a13.( 2016 新课标Ⅱ理)已知x 2 y 2M 在E 上,与 x 轴垂直,F 1, F 2 是双曲线 E :a 2b 2 1 的左,右焦点,点MF 1sin MF 2F 11 ,则 E 的离心率为( )3(A ) 2(B )3(C ) 3(D )22【答案】 A考点:双曲线的性质 .离心率 .【名师点睛】区分双曲线中a ,b ,c 的关系与椭圆中 a , b ,c 的关系,在椭圆中a 2=b 2+c 2,而在双曲线中 c 2=a 2+ b 2.双曲线的离心率 e ∈ (1,+ ∞),而椭圆的离心率 e ∈ (0, 1).x 2 y 214.( 2016 山东文理)已知双曲线 E :–=1 ( a>0 , b>0).矩形 ABCD 的四个顶点在 E 上, AB , CDa 2b 2的中点为 E 的两个焦点,且2|AB|=3|BC|,则 E 的离心率是 _______.【答案】 2【解析】依题意,不妨设AB 6, AD 4 ,作出图象如下图所示 .则 2c 4,c 2;2a DF2DF1532,a 1, 故离心率c2 2 . a115.(2016 江苏 )如图,在平面直角坐标系xOy 中,F 是椭圆 x2y2的右焦点,直线yb 与椭a 2b21(a>b>0)2圆交于 B,C 两点,且BFC90,则该椭圆的离心率是.【答案】63考点:椭圆离心率【名师点睛】椭圆离心率的考查,一般分两个层次,一是由离心率的定义,只需分别求出a, c ,这注重考查椭圆标准方程中量的含义,二是整体考查,求 a,c的比值,这注重于列式,即需根据条件列出关于a,c 的一个齐次等量关系,通过解方程得到离心率的值.16.(2017 新课标Ⅰ理 15)已知双曲线 C:x2y2 1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作a2b2圆 A,圆 A 与双曲线 C 的一条渐近线交于M、 N 两点 .若∠ MAN=60°,则 C 的离心率为 ________.【答案】2 33【考点】双曲线的简单性质.【名师点睛】双曲线渐近线是其独有的性质,所以有关渐近线问题受到出题者的青睐.做好这一类问题要抓住以下重点:①求解渐近线,直接把双曲线后面的 1 换成 0 即可;②双曲线的焦点到渐近线的距离是 b ;③双曲线的顶点到渐近线的距离是ab. c17.(2017 北京文 10)若双曲线x2y21的离心率为3,则实数 m=__________ .m【答案】 29)若双曲线C:x2y2218.(2017 新课标Ⅱ理1(a 0,b0 )的一条渐近线被圆x 2 4 所y2a2b2截得的弦长为2,则C的离心率为()A . 2B.3C.223 D.3【答案】 Ax2y2为直径的圆与直线bx ay 2ab 0 相切,则 C 的离心率为()A .63C .213B .3D .33【答案】 A【解析】以线段A 1 A 2 为直径的圆是 x 2 y 2 a 2 ,直线 bx ay2ab 0 与圆相切,所以圆心到直线的距离d2aba ,整理为 a 23b 2 ,即 a 23 a2c22a23c 2 ,即 c 22 , ec6,故选 A.a 2b 2a 23a32222x yxy20.(2018 北京理14)已知椭圆 M :a 2b 2 1(ab0),双曲线N :m 2n 21 .若双曲线 N 的两条渐近线与椭圆 M 的四个交点及椭圆 M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为__________ ;双曲线 N 的离心率为 __________.【答案】3 1 22221.(2018 江苏 8) 在平面直角坐标系 xOy 中,若双曲线xy1(a0,b 0) 的右焦点 F (c,0) 到一条渐近线a 2b 2的距离为3c ,则其离心率的值是.2【答案】 22222.(2018 新课标Ⅱ理12)已知 F 1, F 2 是椭圆 C:x2y 2 1(a b 0) 的左、右焦点, A 是 C 的左顶点,点 Pab在过 A 且斜率为3的直线上,△ PF 1F 2 为等腰三角形,∠ F 1F 2P= 120,则 C 的离心率为 ()6A.2B .1C .1D .13 234【答案】 D2223.(2018 新课标Ⅲ理11)设 F 1,F 2 是双曲线 C:x2y 2 1(a 0,b 0) 的左,右焦点, O 是坐标原点.过 F 2ab作 C 的一条渐近线的垂线,垂足为 P .若PF 16 OP ,则 C 的离心率为 ()A . 5B . 2C . 3D . 2【答案】 C。

离心率的求法总结[精]

离心率的求法总结[精]

圆锥曲线中的离心率问题离心率两大考点:求值、求范围求值: 1. 利用a与c的关系式(或齐次式)2. 几何法3. 与其它知识点结合、不等关系求解.求范围: 1. 利用圆锥曲线相关性质建立a c、不等关系求解2. 运用数形结合建立a c3. 利用曲线的范围,建立不等关系4. 运用函数思想求解离心率5. 运用判别式建立不等关系求解离心率一、求离心率的值1. 利用a与c的关系式(或齐次式)题1:(成都市2010第二次诊断性检测)已知椭圆的一个焦点为F,若椭圆上存在点P,满足以椭圆短轴为直径的圆与线段PF相切于线段PF 的中点,则该椭圆的离心率为.题2:已知以双曲线C的两个焦点及虚轴的两个端点为原点的四边形中,有一个内角为60°,则双曲线C 的离心率为62题3:设双曲线()222200x y a b a b-=1>,>的渐近线与抛物线21y =x +相切,则该双曲线的离心率等于( )(A )3 (B )2 (C )5 (D )6解:由题双曲线()222200x y a b a b-=1>,>的一条渐近线方程为a bx y =,代入抛物线方程整理得02=+-a bx ax ,因渐近线与抛物线相切,所以0422=-a b ,即5522=⇔=e a c ,故选择C 。

题4:(2009浙江理) 过双曲线22221(0,0)x y a b a b-=>>的右顶点A 作斜率为-1的直线,该直线与双曲线的两条渐近线的交点分别为B ,C .若12AB BC =,则双曲线的离心率是( ) (A )2 (B )3(C )5(D )102. 几何法题1: 以椭圆的右焦点F ,为圆心作圆,使这圆过椭圆的中心,且交椭圆于点M ,若直线MF l (F l 为左焦点)是圆F2的切线,M 是切点,则椭圆的离心率是11211,2,3,31MF F F MF e题2: Fl ,F 2为椭圆的左、右两个焦点,过F 2的直线交椭圆于P 、Q 两点,PF 1PQ ,且1PF PQ ,求椭圆的离心率.题3:12212(05,,221A.B. C. 2 2 D. 21F F F P F PF 全国)设椭圆的两个焦点分别为、过作椭圆长轴的垂线交椭圆于点若为等腰直角三角形,则椭圆的离心率是( )---∆(采用离心率的定义以及椭圆的定义求解)解:如右图所示,有12222||||2122221c c cea a PF PF c c ===+===-++离心率的定义椭圆的定义故选D3. 与其它知识点结合题1:已知M 为椭圆上一点,F l ,F 2是其两个焦点,且∠MF l F 2= 2,∠MF 2F l =(≠ 0),则椭圆的离心率为( )(A)1—2sin (B)l —sin 2 (C)1-cos2 (D)2cos -1题2:已知P 为双曲线右支上一点,F l 、F 2是其左、右两焦点,且∠PF l F 2= 15°,∠PF 2F l =75°,则双曲线的离心率为 .2练习:.22221(0),34x y a b ab c 1.设双曲线半焦距为c,直线l 过点(a,0),(0,b)两点,已知原点到直线l 的距离为,则双曲线的离心率为( )A232.已知双曲线的渐近线为34yx ,则双曲线的离心率为 55,343.过双曲线的一个焦点F 作垂直于实轴的弦MN ,A 为双曲线的距F 较远的顶点,∠MAN=90°,双曲线的离心率等于 22b a ca221212224.(071(0,0)||5A. 3B. 5C.D. 13x y F F a b A B O OF a bF AB 安徽卷)和分别是双曲线的两个焦点,和是以为圆心,以为半径的圆与该双曲线左支的两个交点,且是等边三角形,则双曲线的离心率为( D )+-=>>∆22121222125.(07190,||3||,51015A. B. C. D. 5x y F F A F AF a bAF AF 全国Ⅱ)设、分别是双曲线的左、右焦点,若双曲线上存在点,使且则双曲线的离心率为( B )-=∠==二、求离心率的取值范围1. 利用圆锥曲线相关性质建立a c 、不等关系求解.题1:(2008福建)双曲线22221x y a b==(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为( )A.(1,3)B.(]1,3C.(3,+∞)D.[)3,+∞分析 求双曲线离心率的取值范围需建立不等关系,题设是双曲线一点与两焦点之间关系应想到用双曲线第一定义.如何找不等关系呢?解析:∵|PF 1|=2|PF 2|,∴|PF 1||PF 2|=|PF 2|=2a ,|PF 2|c a ≥-即2a c a ≥-∴3a c ≥ 所以双曲线离心率的取值范围为13e <≤,故选B.点评:本题建立不等关系是难点,如果记住一些双曲线重要结论(双曲线上任一点到其对应焦点的距离不小于c a -)则可建立不等关系使问题迎刃而解.题2:(04重庆)已知双曲线22221,(0,0)x y a b a b-=>>的左,右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则此双曲线的离心率e 的最大值为:( )A 43B 53C 2D 73∵|PF 1|=4PF 2|,∴|PF 1||PF 2|=3|PF 2|=2a ,|PF 2|c a ≥-即23a c a ≥-∴53a c ≥ 所以双曲线离心率的取值范围为513e <≤,故选B.练习:1. 已知1F ,2F 分别为22221x y a b-= (0,0)a b >>的左、右焦点,P 为双曲线右支上任一点,若212PF PF 的最小值为8a ,则该双曲线的离心率的取值范围是( )A (1,2]B (1,3]C [2,3]D [3,)+∞解析2221222222(2)442448PF a PF a PF a a a a PF PF PF +==++≥=,欲使最小值为8a ,需右支上存在一点P ,使22PF a =,而2PF c a ≥-即2a c a ≥-所以13e <≤.2. 利用曲线的范围,建立不等关系题1. 设椭圆22221(0)x y a b ab 的左右焦点分别为F 1、F 2,如果椭圆上存在点P ,使1290F PF ,求离心率e 的取值范围。

椭圆离心率求法总结

椭圆离心率求法总结

椭圆离心率的解法一、 运用几何图形中线段的几何意义。

基础题目:如图,O 为椭圆的中心,F 为焦点,A 为顶点,准线L 交OA 于B ,P 、Q 在椭圆上,PD ⊥L 于D ,QF ⊥AD 于F ,设椭圆的离心率为e ,则①e=错误!②e=错误!③e=错误!④e=错误!⑤e=错误!评:AQP 为椭圆上的点,根据椭圆的第二定义得,①②④。

∵|AO |=a,|OF |=c,∴有⑤;∵|AO |=a ,|BO|=错误!∴有③。

题目1:椭圆错误! +错误!=1(a>b 〉0)的两焦点为F1 、F2 ,以F1F2为边作正三角形,若椭圆恰好平分正三角形的两边,则椭圆的离心率e ?思路:A 点在椭圆外,找a 、b 、c 的关系应借助椭圆,所以取AF2 的中点B ,连接BF1 ,把已知条件放在椭圆内,构造△F1BF2分析三角形的各边长及关系。

解:∵|F1F2|=2c |BF1|=c |BF2|=错误!c c+错误!c=2a ∴e= 错误!= 错误!—1变形1:椭圆错误! +错误!=1(a 〉b >0)的两焦点为F1 、F2 ,点P 在椭圆上,使△OPF1 为正三角形,求椭圆离心率?解:连接PF2 ,则|OF2|=|OF1|=|OP|,∠F1PF2 =90°图形如上图,e=错误!—1变形2:椭圆错误! +错误!=1(a〉b >0)的两焦点为F1 、F2 ,AB为椭圆的顶点,P是椭圆上一点,且PF1 ⊥X轴,PF2 ∥AB,求椭圆离心率?解:∵|PF1|=错误!错误!|F2 F1|=2c |OB|=b |OA|=aPF2 ∥AB ∴错误!= 错误!又∵b= 错误!∴a2=5c2 e=错误!点评:以上题目,构造焦点三角形,通过各边的几何意义及关系,推导有关a与c的方程式,推导离心率。

二、运用正余弦定理解决图形中的三角形题目2:椭圆错误! +错误!=1(a〉b 〉0),A是左顶点,F是右焦点,B是短轴的一个顶点,∠ABF=90°,求e?解:|AO|=a |OF|=c |BF|=a |AB|=,a2+b2a2+b2+a2 =(a+c)2 =a2+2ac+c2 a2-c2—ac=0 两边同除以a2e2+e-1=0 e=错误! e=错误!(舍去) 变形:椭圆错误! +错误!=1(a 〉b 〉0),e=错误!, A 是左顶点,F 是右焦点,B 是短轴的一个顶点,求∠ABF?点评:此题是上一题的条件与结论的互换,解题中分析各边,由余弦定理解决角的问题。

(完整版)离心率专题讲解

(完整版)离心率专题讲解

椭圆上存在点P,使得点P作圆C2的两条切线互相垂直,
则椭圆离心率取值范围.
例2.已知A ,A 是椭圆 x2
12
a2

y2 b2
1(a

b
0)的左右顶点,若
椭圆上存在相异于A ,A 1
2点P,使得PO

PA 2
,
O坐标原点,
则椭圆离心率取值范围.
变2.已知F1,F2是椭圆E:
x2 a2

y2 b2
离心率专题讲解
绵阳东辰国际学校高中部: 江维硕
例1.已知F ,F 是椭圆E: x2
12
a2

y2 b2
1(a

b 0)的左右焦点,若
椭圆上存在点P,使得PF 1

PF 2
,
则椭圆离心率取值范围.
变1.已知椭圆C1:
x a
2 2

y2 b2
1(a
b 0)与圆C2:x2

y2 = b2 ,若
1(a

b
0)的左右焦点,
若椭圆上存在点P,使得
PF 1

PF 2
=2c2 ,则椭圆离心率最小值.
例3.已知椭圆 x2 a2

y2 b2
1(a

b
0)上一点A关于原点的对称点
为B, F为右焦点,若AF BF, ABF , [ , ],12 4 则椭圆离心来自取值范围.则椭圆离心率.
变4.已知F1,F2是双曲线
x2 a2

y2 b2
1(a
0, b
0)的左右焦点,
F1PF2的内心为I
,
若IPF1IPF2

关于高中数学离心率题型解法的有效解决技巧

关于高中数学离心率题型解法的有效解决技巧

关于高中数学离心率题型解法的有效解决技巧高中数学中,离心率是一个重要的知识点,也是一个容易出现的考试题型。

在解离心率题时,需要掌握一些有效的解决技巧,下面,将从概念、公式、图形和实例四个方面进行分析和讲解。

一、概念离心率是描述椭圆形和双曲线形质量分布集中程度的参数,也是描述椭圆形、双曲线形轨道形状的一个重要参数。

离心率的定义为$$e=\frac{c}{a}$$其中,$a$代表椭圆长轴的一半,$c$代表椭圆中心到焦点的距离。

二、公式离心率有一些常用的公式,包括离心率的计算公式、椭圆周长公式、椭圆面积公式、双曲线面积公式等,理解和记忆这些公式是解决各类离心率题的关键。

1、离心率的计算公式已知椭圆的长轴和短轴的长度$a,b$,离心率的计算公式为$$e=\sqrt{1-\frac{b^2}{a^2}}$$2、椭圆周长公式椭圆的面积公式为$$S=\pi ab$$4、双曲线面积公式由双曲线的定义可以知道,它分为两部分,两部分的面积是无限的。

因此,计算双曲线面积时,需要指定一定区域。

如果指定双曲线距离焦点距离$r_0$和双曲线上一点到直线$x=a$的距离$x$之间的区域,双曲线的面积为$$S=\pi b\cdot r_0-\frac{b}{2}\cdot x\sqrt{x^2+a^2}+\frac{b^2}{2a}\ln(x+\sqrt{x^2+a^2})$$三、图形图形是解离心率题的直观工具,掌握常见椭圆和双曲线的图像特点,可以帮助我们更好地理解和解决问题。

1、椭圆的图像特点椭圆沿长轴对称,焦点在长轴上,且距离轴心的距离为$\sqrt{a^2-b^2}$,长轴和短轴之间有如下关系:$$a>b$$双曲线的焦点在直线$x=\pm a$上,因此,双曲线的左右两侧没有交点,也称为渐近线。

双曲线的顶点在$x$轴上,曲线下半部分与$x$轴相交,上半部分不交。

四、实例以下是一道常见的离心率的实例:【例题】椭圆的长轴为$16$,短轴为$6$,离心率为$\dfrac{5}{8}$,求椭圆的面积。

高中数学-高考数学离心率题型总结

高中数学-高考数学离心率题型总结

高中数学 高考数学离心率题型总结 求解含直角三角形的椭圆离心率二.典例剖析:例.若椭圆)0(,12222>>=+b a by a x 短轴端点为P 满足21PF PF ⊥,求椭圆离心率。

分析:利用椭圆半焦距、短半轴长的相等关系即2OF OP =,得到2221222222=⇒=⇒=+=e e c c b a 的结论。

变式1.在椭圆)0(,12222>>=+b a b y a x 上有一点P 外〕,若21PF PF ⊥,求椭圆离心率取值X 围。

分析:点P 在椭圆上⇒b OP >;点P 在以O 为圆心,OP 为半径的圆上⇒c OF OF OP ===21,所以得到c>b ,进而得到⎪⎪⎭⎫⎝⎛∈⇒>⇒<+=1,2221222222e e c c b a 的结论。

变式2.满足21PF PF ⊥的所有点P 都在椭圆)0(,12222>>=+b a bya x 内,求椭圆离心率取值X 围。

分析:满足21PF PF ⊥的所有点P 都在椭圆内⇒以O 为圆心,OP 为半径的圆都在椭圆内⇒b c <,进而得到⎪⎪⎭⎫⎝⎛∈⇒<⇒>+=22,021222222e e c c b a 的结论。

变式3.过椭圆)0(,12222>>=+b a by a x 右焦点2F 的直线交椭圆于P 、两点且满足PQ PF ⊥1,若135sin 1=∠QP F ,求该椭圆离心率。

分析:在前面例题1和变式的基础上,将线段2PF 拉长和椭圆交于点Q ,此时内含于椭圆的直角三角形发生了一些变化。

求解离心率问题不能套用前面的方法了,此时必须抓住椭圆定义式和直角三角形相关性质。

解题思路和解题方法都发生了迁移,题目难度有了一定的提升。

在解题思维的迁移上,通过分析和探讨,把难度分解,把梯子放下来,让学生通过理性的分析,清晰思维过程,通过细致解答获得正确答案,进而获得成功的喜悦感,激发其学习兴趣。

求离心率的9种方法【解析版】

求离心率的9种方法【解析版】

求离心率的9种方法【解析版】专题:椭圆和双曲线的离心率第一节:常用求离心率的公式及推导过程汇总注:AFBFBF AF ==λλ或者而不是ABBFAB AF 或 ABBFAB AF 或 第二节:离心率求值一、椭圆离心率的求值1、定义法求离心率2、运用通径求离心率3、运用e=11k 12+-+λλ求离心率4、运用βαβαsin sin )sin(++==a c e 求离心率5、运用结论a k22b k AB OM-=•求离心率—— (A,B 为椭圆上的任意两点,M 为直线AB 的中点)6、运用正弦定理余弦定理求离心率7、运用相似比求离心率8、求出点的坐标带入椭圆方程建立等式 9、运用几何关系求离心率1、定义法求离心率【2018•新课标Ⅰ文】已知椭圆C 14222=+y a x 的一个焦点为(2,0),则C 的离心率为( ) A.31 B.21 C.22 D.322 【答案】C【解析】 14222=+y a x ,∵ ,则 。

【2016 新课标Ⅰ(文)5】直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( )A .13 B .12 C .23 D .34【答案】B【解析】由直角三角形的面积关系得bc=22124b b c ⨯+12c e a ==,故选B 【2010•广东7】若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是( )A.45 B.35 C.25D. 15【答案】B【解析】设长轴为2a ,短轴为2b ,焦距为2c ,则2222.a c b +=⨯ 即22222()44()a c b a c b a c +=⇒+==-. 整理得:2225230,5230c ac a e e +-=+-=35e e ⇒=或=-1(舍). 【2012江西文理】椭圆12222=+by a x (a >b >0)的左、右顶点分别是A ,B ,左、右焦点分别是F 1,F 2.若|AF 1|,|F 1F 2|,|F 1B|成等比数列,则此椭圆的离心率为 . 【答案】55【解析】因为椭圆12222=+by a x (a >b >0)的左、右顶点分别是A ,B ,左、右焦点分别是F 1,F 2.若|AF 1|,|F 1F 2|,|F 1B|成等比数列,所以(a ﹣c )(a+c )=4c 2,即a 2=5c 2,所以e=55. 2、运用通径求离心率【2014•江西文】设椭圆C 2222x y a b+=1(a >b >0)的左右焦点为F 1,F 2,过F 2作x 轴的垂线与C 相交于A ,B 两点,F 1B 与y 轴相交于点D ,若AD ⊥F 1B ,则椭圆C 的离心率等于 . 【答案】33【解析】解法一:不妨假设椭圆中的a=1,则F 1(﹣c ,0),F 2(c ,0),当x=c 时,由2222x y a b +=1得y=ab 2=b 2,即A (c ,b 2),B (c ,﹣b 2),设D (0,m ),∵F 1,D ,B 三点共线, ∴,解得m=﹣2b 2,即D (0,﹣2b 2),∴若AD ⊥F 1B ,在,即=﹣1,即3b 4=4c 2,则3b 2=2c=3(1﹣c 2)=2c ,即3c 2+2c ﹣3=0,解得c==,则c=,∵a=1,∴离心率e=a c =33,解法二:由题意得F 1(﹣c ,0),由通径长可得A (c,a 2b ),B (c,-a 2b ),又因DO ∥BF 2,,O 为F 1F 2中点所以D 为F 1B 的中点,则D (0,a 2b 2),若AD ⊥F 1B ,则,即1-cc 0-b -0c 2b -b 222=+•-a a a ,解得e=a c =33。

专题:椭圆的离心率解法大全

专题:椭圆的离心率解法大全

专题:椭圆的离心率一,利用定义求椭圆的离心率(a c e = 或 221⎪⎭⎫⎝⎛-=a b e )1,已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率=e2,椭圆1422=+m y x 的离心率为21,则=m [解析]当焦点在x 轴上时,32124=⇒=-m m ; 当焦点在y 轴上时,316214=⇒=-m mm , 综上316=m 或3 3,已知椭圆的焦距、短轴长、长轴长成等差数列,则椭圆的离心率是534,已知m,n,m+n 成等差数列,m ,n ,mn 成等比数列,则椭圆122=+ny m x 的离心率为 [解析]由⇒⎪⎩⎪⎨⎧≠=+=02222mn n m n nm n ⎩⎨⎧==42n m ,椭圆122=+n y m x 的离心率为22 5,已知)0.0(121>>=+n m nm 则当mn 取得最小值时,椭圆12222=+n y m x 的的离心率为236,设椭圆2222by a x +=1(a >b >0)的右焦点为F 1,右准线为l 1,若过F 1且垂直于x 轴的弦的长等于点F 1到l 1的距离,则椭圆的离心率是21。

二,运用几何图形中线段的几何意义结合椭圆的定义求离心率e1,在∆Rt ABC 中,90=∠A ,1==AC AB ,如果一个椭圆过A 、B 两点,它的一个焦点为C ,另一个焦点在AB 上,求这个椭圆的离心率 ()36-=e2, 如图所示,椭圆中心在原点,F 是左焦点,直线1AB 与BF 交于D,且901=∠BDB ,则椭圆的离心率为( ) [解析]=⇒=-⇒-=-⋅e ac c a cba b 221)(215-3,以椭圆的右焦点F 2为圆心作圆,使该圆过椭圆的中心并且与椭圆交于M 、N 两点,椭圆的左焦点为F 1,直线MF 1与圆相切,则椭圆的离心率是13-变式(1):以椭圆的一个焦点F 为圆心作一个圆,使该圆过椭圆的中心O 并且与椭圆交于M 、N 两点,如果∣MF∣=∣MO∣,则椭圆的离心率是13-4,椭圆x 2a 2 +y 2b 2=1(a>b >0)的两焦点为F 1 、F 2 ,以F 1F 2为边作正三角形,若椭圆恰好平分正三角形的两边,则椭圆的离心率e ?解:∵|F 1F 2|=2c |BF 1|=c |BF 2|=3c c+3c=2a ∴e= ca= 3-1变式(1):椭圆x 2 a 2 +y 2b 2 =1(a>b >0)的两焦点为F 1 、F 2 ,点P 在椭圆上,使△OPF 1 为正三角形,求椭圆离心率?解:连接PF 2 ,则|OF 2|=|OF 1|=|OP |,∠F 1PF 2 =90°图形如上图,e=3-1变式(2) 椭圆x 2 a 2 +y 2b 2=1(a>b >0)的两焦点为F 1 、F 2 ,AB 为椭圆的顶点,P 是椭圆上一点,且PF 1 ⊥X 轴,PF 2 ∥AB,求椭圆离心率?解:∵|PF 1|= b 2 a |F 2 F 1|=2c |OB |=b |OA |=a PF 2 ∥AB ∴|PF 1| |F 2 F 1|= b a 又 ∵b= a 2-c 2∴a 2=5c 2 e=55变式(3):将上题中的条件“PF 2 ∥AB ”变换为“PO ∥AB (O 为坐标原点)”相似题:椭圆x 2 a 2 +y 2 b 2 =1(a>b >0),A 是左顶点,F 是右焦点,B 是短轴的一个顶点,∠ABF=90°,求e?解:|AO |=a |OF |=c |BF |=a |AB |=a 2+b 2a 2+b 2+a 2 =(a+c)2 =a 2+2ac+c 2 a 2-c 2-ac=0 两边同除以a 2 e 2+e-1=0 e=-1+ 5 2 e=-1-52(舍去)变式(1):椭圆x 2a 2 +y 2b 2 =1(a>b >0),e=-1+ 52, A 是左顶点,F 是右焦点,B 是短轴的一个顶点,求∠ABF ?点评:此题是上一题的条件与结论的互换,解题中分析各边,由余弦定理解决角的问题。

高中数学离心率的求法题型总结

高中数学离心率的求法题型总结

离心率的五种求法椭圆的离心率10<<e ,双曲线的离心率1>e ,抛物线的离心率1=e . 一、直接求出a 、c ,求解e已知圆锥曲线的标准方程或a 、c 易求时,可利用率心率公式ace =来解决。

例1:已知双曲线1222=-y ax (0>a )的一条准线与抛物线x y 62-=的准线重合,则该双曲线的离心率为( )A.23 B. 23 C. 26 D. 332解:抛物线x y 62-=的准线是23=x ,即双曲线的右准线23122=-==c c c a x ,则02322=--c c ,解得2=c ,3=a ,332==a c e ,故选D变式练习1:若椭圆经过原点,且焦点为()0,11F 、()0,32F ,则其离心率为( )A.43 B. 32 C. 21 D. 41 解:由()0,11F 、()0,32F 知 132-=c ,∴1=c ,又∵椭圆过原点,∴1=-c a ,3=+c a ,∴2=a ,1=c ,所以离心率21==a c e .故选C.变式练习2:如果双曲线的实半轴长为2,焦距为6,那么双曲线的离心率为( )A.23 B. 26 C. 23 D 2 解:由题设2=a ,62=c ,则3=c ,23==a c e ,因此选C 变式练习3:点P (-3,1)在椭圆12222=+by a x (0>>b a )的左准线上,过点P 且方向为()5,2-=a 的光线,经直线2-=y 反射后通过椭圆的左焦点,则这个椭圆的离心率为( )A33 B 31 C 22D 21 解:由题意知,入射光线为()3251+-=-x y ,关于2-=y 的反射光线(对称关系)为0525=+-y x ,则⎪⎩⎪⎨⎧=+-=05532c c a 解得3=a ,1=c ,则33==a c e ,故选A二、构造a 、c 的齐次式,解出e根据题设条件,借助a 、b 、c 之间的关系,构造a 、c 的关系(特别是齐二次式),进而得到关于e 的一元方程,从而解得离心率e 。

高二文科数学离心率的五种求法(精)

高二文科数学离心率的五种求法(精)

离心率的五种求法椭圆的离心率0<e<1,双曲线的离心率e>1,抛物线的离心率e=1.一、直接求出a、c,求解e已知圆锥曲线的标准方程或a、c易求时,可利用率心率公式e=c来解决。

ax2例1:已知双曲线2-y2=1(a>0)的一条准线与抛物线y2=-6x的准线重合,则该双曲线的离心率为a() 3233 B. C. D. 2322223ac-132解:抛物线y=-6x的准线是x=,即双曲线的右准线x===,则2c2-3c-2=0,解得2cc2A.c=2,a=,e=c2,故选D =a3变式练习1:若椭圆经过原点,且焦点为F1(1,0)、F2(3,0),则其离心率为()3211 B. C. D. 4324解:由F1(1,0)、F2(3,0)知 2c=3-1,∴c=1,又∵椭圆过原点,∴a-c=1,a+c=3,∴a=2,c=1,c1所以离心率e==.故选C. a2A.变式练习2:如果双曲线的实半轴长为2,焦距为6,那么双曲线的离心率为() A. 36 B. C. D 2 222c3=,因此选C a2解:由题设a=2,2c=6,则c=3,e=x2y2变式练习3:点P(-3,1)在椭圆2+2=1(a>b>0)的左准线上,过点P且方向为=(2,-5)的光线,ab经直线y=-2反射后通过椭圆的左焦点,则这个椭圆的离心率为()A 112BCD 32325(x+3),关于y=-2的反射光线(对称关系)为5x-2y+5=0,则2解:由题意知,入射光线为y-1=-⎧a2c⎪=3c=1a=e==解得,,则,故选A ⎨ca3⎪-5c+5=0⎩二、构造a、c的齐次式,解出e根据题设条件,借助a、b、c之间的关系,构造a、c的关系(特别是齐二次式),进而得到关于e的一元方程,从而解得离心率e。

x2y2例2:已知F1、F2是双曲线2-2=1(a>0,b>0)的两焦点,以线段F1F2为边作正三角形MF1F2,若ab边MF1的中点在双曲线上,则双曲线的离心率是() +1 D. +1 2c解:如图,设MF1的中点为P,则P的横坐标为-,由焦半径公式2PF1=-exp-a, A. 4+2 B. 3-1 C.2c⎛c⎫c⎛⎫⎛c⎫即c=-⨯ -⎪-a,得⎪-2 ⎪-2=0,解得 a⎝2⎭⎝a⎭⎝a⎭ce==1+(1-3舍去),故选D ax2y2变式练习1:设双曲线2-2=1(0<a<b)的半焦距为c,直线L过(a,0),(0,b)两点.已知原点到直线ab的距离为3c,则双曲线的离心率为( ) 4A. 2B.C. 2D. 2 3解:由已知,直线L的方程为bx+ay-ab=0,由点到直线的距离公式,得aba2+b2=c, 422242又c=a+b, ∴4ab=3c,两边平方,得16a2c2-a2=3c4,整理得3e-16e+16=0, 2() c2a2+b2b2422=1+>2e=4,∴e=2,故选A 得e=4或e=,又0<a<b ,∴e=2=,∴223aaa22变式练习2:双曲线虚轴的一个端点为M,两个焦点为F1、F2,则双曲线的离心率为()∠F1MF2=1200,A B 6 C D 323解:如图所示,不妨设M(0,b),F1(-c,0),F2(c,0),则MF1=MF2=c2+b2,又F1F2=2c,在∆F1MF2中,由余弦定理,得cos∠F1MF2= MF1+MF2-F1F22MF1⋅MF2222,b2-c211c2+b2+c2+b2-4c2即-=,∴, =-22222b+c22c+b()()-a213222∵b=c-a,∴2,∴,∴,∴,故选B e==-3a=2ce=22222c-a222三、采用离心率的定义以及椭圆的定义求解例3:设椭圆的两个焦点分别为F1、F2,过F2作椭圆长轴的垂线交椭圆于点P,若∆F1PF2为等腰直角三角形,则椭圆的离心率是________。

离心率的求法(解析版)

离心率的求法(解析版)

第一篇圆锥曲线专题05离心率的求法一、求离心率值的问题求离心率的值需要构造一个含有,,a b c 或数字的等式,而等式关系如何构造,只能依照题目中给出的条件结合几何形状见招拆招,没套路可言。

1、基本方法:从定义出发,特别注意第一定义中的焦点三角形问题,以椭圆为例,在焦点三角形中三条边中蕴含了,a c 的关系,因此如果能找出三条边的关系也就可以求出离心率的值。

例1:如图,12,F F 是椭圆221:14x C y +=和双曲线2C 的公共焦点,若四边形12AF BF 为矩形,则双曲线的离心率为____________.【解析】关于共焦点的问题,c 相等,在椭圆里面1224AF AF a +==在12RT AF F ∆中满足2221212+=AF AF F F ,解得12AF AF则在双曲线中a c ==62e =例2:设椭圆的两个焦点分别是12,F F ,过2F 作椭圆长轴的垂线交椭圆于点P ,若12F PF ∆为等腰直角三角形,则椭圆的离心率为_________.2、几何法,几何方法不是方法,而是分析几何图形的能力,根据题目中给出的或隐含的条件找出等量关系即可,比如题目中给出的等腰,中垂线,垂直等条件都可能是破解题目的入手点。

例3:已知,A B 为双曲线E 的左右顶点,点M 在E 上,ABM ∆为等腰三角形且顶角为120︒,则E 的离心率为_________.上图中A,B 两点不是焦点,2AB a =,且条件中没有b 和c 的量,因此无法构成等量关系,但是注意双曲线的方程本身就是包含,a b 的等式,因此题目的关键不是构造等式而是求出点M 的坐标,代入到双曲线的方程中即可求出离心率。

【解析】从M 点作x 轴的垂线,垂足为C ,因为2,60BM a MBC ︒=∠=所以,BC a MC ==,所以点M 的坐标为(2)a 代入到双曲线中得2222(2)(3)1a a b -=整理得e =例4:设12,F F 分别是椭圆2222:1x y E a b+=的左右焦点,过点1F 的直线交椭圆E 于A,B 两点,11||3||AF BF =,若23cos 5AF B ∠=,求椭圆E 的离心率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

离心率的五种求法椭圆的离心率 0 e 1,双曲线的离心率 e1,抛物线的离心率 e 1.一、直接求出 a 、 c ,求解 e已知圆锥曲线的标准方程或a 、 c 易求时,可利用率心率公式ec来解决。

a例 1 :已知双曲线 x2y 2 1 ( a 0 )的一条准线与抛物线 y2 6x 的准线重合,则该双曲线的离心a 2率为()A.3 B.3 C.6D.2 32223解: 抛物线 y 26x 的准线是 x 3 ,即双曲线的右准线 x a2c 213,则2c23c2 0,2c c2解得 c2 , a3 ,e c2 3,故选 Da3变式练习 1:若椭圆经过原点,且焦点为F 1 1,0 、 F 2 3,0 ,则其离心率为()A.32C.114B.2D.3 4解:由 F 1 1,0 、 F 2 3,0 知 2c 3 1 ,∴ c 1 ,又∵椭圆过原点,∴ a c 1, a c 3 ,∴ a 2 ,c 1 ,所以离心率 e c 1a .故选 C.2变式练习 2 :如果双曲线的实半轴长为2 ,焦距为 6 ,那么双曲线的离心率为()A.3B.6C. 3D2222解: 由题设 a2 , 2c 6 ,则 c3 , ec3 ,因此选 Ca2变式练习 3 :点 P ( -3 ,1 )在椭圆 x2y21 a b 0)的左准线上, 过点 P且方向为 a2, 5的(a 2b 2光线,经直线 y 2反射后通过椭圆的左焦点,则这个椭圆的离心率为()A3B1C2D13322解:由题意知,入射光线为y15 x 3 ,关于 y2 的反射光线(对称关系)为 5x 2 y 5 0 ,2a2则 c5c二、构造3解得 a3 , c 1 c 3,则 e,故选 A5 0a3a 、 c 的齐次式,解出 e根据题设条件,借助a 、b 、c 之间的关系,构造 a 、 c 的关系(特别是齐二次式),进而得到关于e 的一元方程,从而解得离心率 e 。

例 2:已知 F 、 F 是双曲线 x2y 2 ( a 0, b 0 )的两焦点, 以线段 F F 为边作正三角形 MF F 2 ,12a 2b 2 11 2 1若边 MF 1 的中点在双曲线上,则双曲线的离心率是() A.42 3B. 3 1C. 3 1D.3 12c解: 如图,设 MF 1 的中点为 P ,则 P 的横坐标为PF 1 ex pa ,,由焦半径公式22cc即 ca ,得 c2c2 0 ,解得a2aac 13 ( 1 3 舍去),故选 Dea变式练习x 2y 2 1( 0 ab )的半焦距为c ,直线 L 过 a,0 , 0,b 两点 .已知原点1:设双曲线2b 2a到直线的距离为3c ,则双曲线的离心率为 ()4A.2B.3C.22 3D.3解: 由已知,直线L 的方程为 bx ay ab0 ,由点到直线的距离公式,得ab3c ,a 2b 24又 c 2 a2b 2 , ∴ 4ab 3c 2 ,两边平方,得 16a 2 c 2a 2 3c 4 ,整理得 3e 4 16e 216 0 ,得 e 24 或 e 24 ,又 0 a b ,∴ e 2 c 2a 2b 21 b2 2 ,∴ e 2 4 ,∴ e 2 ,故选 A3a 2a 2 a 2变式练习 2:双曲线虚轴的一个端点为 M ,两个焦点为 F 1、 F 2 ,F 1MF 2 1200 ,则双曲线的离心率为()A3B66D32C33解: 如图所示,不妨设 M 0,b , F 1c,0 , F 2 c,0 ,则MF 1MF 2c 2 b 2 ,又 F 1F 2 2c ,2MF 222在 F 1 MF 2 中, 由余弦定理,得 cosF 1MF 2 MF 1F 1F 22 MF 1 MF 2 ,1 c 2b 2c 2 b 24c 2b 2c 21 ,即2 c 2 b 2,∴2c 222b∵b 2 c 2 a 2a 2 13a 2 2c 2 23 6,故选 B ,∴a 2,∴,∴ e ,∴ e2 2c 2 2 2三、采用离心率的定义以及椭圆的定义求解例 3 :设椭圆的两个焦点分别为F1、 F2,过 F2作椭圆长轴的垂线交椭圆于点P ,若F1PF 2为等腰直角三角形,则椭圆的离心率是________。

解: e c 2c 2c 2c 12 1a 2a PF1 PF2 2 2c 2c 2 1四、根据圆锥曲线的统一定义求解例4:设椭圆x 2 y 21( a 0,b 0 )的右焦点为 F1,右准线为 l 1,若过 F1 a 2 b2且垂直于 x 轴的弦的长等于点F1到 l1的距离,则椭圆的离心率是.解:如图所示,AB 是过F1且垂直于x轴的弦,∵AD l1于D,∴AD为 F1到准线 l1的距离,根据椭AF1 1AB1 2圆的第二定义, eAD 2AD变式练习:在给定椭圆中,过焦点且垂直于长轴的弦长为 2 ,焦点到相应准线的距离为1,则该椭圆的离心率为()A 2 B2C1D22 4 2解: e AF2 2 2 2 AD 1 2五、构建关于 e 的不等式,求 e的取值范围例 5:设0, ,则二次曲线 x2 cot y 2 tan 1 的离心率的取值范围为()4A. 1B.1 2C.2D. 2,2 2,2,22另:由 x 2 cot y2 tan 1,0, ,得 a 2 tan , b 2 cot ,4∴ c2 a2 b2 tan cot ,∴e2 c 2 tan cot 1 cot 2a 2 tan∵0, ,∴ cot 2 1 ,∴ e2 2 ,∴ e 2,故选D4例 6 :如图,已知梯形ABCD 中, AB2 CD ,点 E 分有向线段 AC 所成的比为 ,双曲线过 C 、 D 、E 三点,且以 A 、 B 为焦点.当23e 的取值范围。

3时,求双曲线离心率4解: 以 AB 的垂直平分线为 y 轴,直线 AB 为 x 轴,建立如图所示的直角坐标系xoy ,则 CD y 轴 .因为双曲线经过点 C 、 D ,且以 A 、 B 为焦点,由双曲线的对称性知 C 、 D 关于 y 轴对称.依题意,记 Ac,0 , C c, h , E x 0 , y 0 ,2其中 c1 AB 为双曲线的半焦距, h 是梯形的高.2cc2 chx 2y 2x 02, y 01,则离由定比分点坐标公式得,设双曲线的方程为12 11a2 b2心率 ec ,由点 C 、 E 在双曲线上,所以,将点C 的坐标代入双曲线方程得c 2 h 2 1 ① a 2b 24ac 2 22将点 E 的坐标代入双曲线方程得2 h 21②4a21b 21再将 ec ①、②得e 2 h 2 1,∴h 2 e 2 1 ③a 4 b2b24e22 2h 2 21 ④4 1b21将③式代入④式,整理得e 2 4 412 ,∴13 234 e 2 2,由题设得:3423 3 7 e10 ,所以双曲线的离心率的取值范围为7 , 101e 22,解得34配套练习1. 设双曲线 x2y 2 1( a 0, b 0 )的离心率为 3 ,且它的一条准线与抛物线 y 24x 的准线重合,a 2b 2则此双曲线的方程为()x 2y 2 B.x 2 y 2 C.x 2 2 y 2 1x 2 y 2 1A.1481 33D.612249632 .已知椭圆的长轴长是短轴长的2 倍,则椭圆的离心率等于()1B .3 13A .3C .D .3223 .已知双曲线x 2y 21的一条渐近线方程为 y4x ,则双曲线的离心率为()a 2b 235B4 53A3CD3424 .在给定椭圆中,过焦点且垂直于长轴的弦长为2 ,焦点到相应准线的距离为 1 ,则该椭圆的离心率为A 2B2 122CD245 .在给定双曲线中,过焦点垂直于实轴的弦长为2 ,焦点到相应准线的距离为1,则该双曲线的离心2率为()2 B2C2D 2 2A26.如图, F 1 和 F 2 x 2 y 2 1( a 0,b 0 )的两个焦点, A 和 B 是以 O 为圆心,以 OF 1分别是双曲线2b 2a为半径的圆与该双曲线左支的两个交点,且F 2 AB 是等边三角形,则双曲线的离心率为( )A 3B5C5D 3 127. 设x 2y 2( ab 0 )的左、右焦点, P 是其右准线上纵坐标为3c ( c 为F 1、 F 2 分别是椭圆221a b半焦距)的点,且 F 1F 2F 2 P ,则椭圆的离心率是( )A3 11 5 12BCD2 2228.设 F 1、 F 2 分别是双曲线x 2 y 2 1的左、右焦点,若双曲线上存在点 A ,使 F 1 AF 2 900 ,且a 2b 2AF 1 3 AF 2 ,则双曲线离心率为()A5B10 C15D52229 .已知双曲线 x2y 2 1 ( a 0,b 0 )的右焦点为 F ,若过点 F 且倾斜角为 600 的直线与双曲线的a 2b 2右支有且只有一个交点,则此双曲线离心率的取值范围是( )A1,2B1,2C 2,D2,10 .椭圆x 2y 2 1( ab 0 )的焦点为 F 1 、 F 2 ,两条准线与 x 轴的交点分别为 M 、 N ,若a 2b 2MN2 F 1F 2 ,则该椭圆离心率的取值范围是()A . 0,1B .0,2C . 1,1D .2,12222答案: 1. 由ca 2 3, b6, c 3. 故选 D3,1 可得 aac2. 已知椭圆的长轴长是短轴长的2 倍,∴a 2b ,椭圆的离心率 ec 3 ,选 D 。

a23. 双曲线焦点在 x 轴 ,由渐近线方程可得 b4,可得 e c32 3 42 5 ,故选 Aa3 a3x 2 y 21( a > 2b 2a 2c1,据此求出 e =24. 不妨设椭圆方程为b 2b >0 ),则有2且2a 2acx 2 y21( a >0 , b >0 ),则有2b22且 ca 21e =2 ,选5. 不妨设双曲线方程为2b 2ac,据此解得a2C6. 解析:如图,F 1和 F 2 分别是双曲线x 2 r 2 1(a 0, b 0) 的两个焦点, A 和 B 是以 O为圆心,以a2b2O F 1 为半径的圆与该双曲线左支的两个交点,且△F 2 AB 是等边三角形,连接 AF 1,∠ AF 2 F 1 =30 °,|AF 1 |=c , |AF2|=3 c ,∴ 2a ( 3 1)c ,双曲线的离心率为 13,选 D 。

7. 由已知 ( a 2c ),所以 2ca 2 c) 2( 3c) 2化简得a 22c 2c 2P , 3 (e2 .cca8. 设 F 1,F 2分别是双曲线x 2 y 2 1 的左、右焦点。

相关文档
最新文档