16.1 二次根式导学案
二次根式全章导学案
![二次根式全章导学案](https://img.taocdn.com/s3/m/d2fe5a54ad51f01dc381f123.png)
§16.1.1《二次根式》导学案【学习目标】1、了解二次根式的概念,能判断一个式子是不是二次根式。
2、掌握二次根式有意义的条件。
【学习重点】二次根式有意义的条件. 【学习过程】【活动一】知识链接(5分钟)这些知识你还记得吗(先独立完成1分钟,后同桌互查1分钟。
)1、如果对于任意数x ,有x 2= a ,那么x 叫a 的________, 记为______,其中 a 是x 的______;所以a 一定是_______数。
2、如果对于一个正数x ,有x 2= a ,那么x 叫a 的________, 记为______,其中 a 仍是x 的______;所以a 一定是_______数。
3、正数a 的算术平方根为_______,0的算术平方根为_______;式子)0(0≥≥a a 的意义是 。
4的算术平方根为2,用式子表示为 =__________; 【活动二】自主交流 探究新知(25分钟) 1、二次根式定义的学习:(12分钟)完成P2—思考中的内容,阅读例1以上的内容,尝试完成下面的问题: 1) 思考:如何判定一个式子是否是二次根式23,16-,34,12+x 3)已知一个正方形的面积是5,那么它的边长是 。
4)下列各式一定是二次根式的是( )A 、12+xB 、12-xC 、1--xD 、x总结:二次根式应满足的条件: 。
2、 二次根式有意义的条件的学习:(13分钟)自学课本P--2页例1后,模仿例题的解答过程合作完成练习 : 1)x 取何值时,下列各二次根式有意义①43-x ③x--212)(1有意义,则a 的值为___________.(2)若在实数范围内有意义,则x 为( )。
B.负数C.非负数D.非正数总结:二次根式有意义的条件是: 【活动三】课内小结 (学生归纳总结) (3分钟)1.非负数a 的算术平方根a (a ≥0)叫做二次根式.二次根式的概念有两个要点:一是从形式上看,应含有二次根号;二是被开方数的取值范围有限制:被开方数a 必须是非负数。
二次根式导学案(一)
![二次根式导学案(一)](https://img.taocdn.com/s3/m/b242c5271711cc7931b716b7.png)
达标测评
课海拾贝
反思纠错
课海拾贝
反思纠错
课海拾贝
反思纠错
三、检测反馈
1、师生共同解决“自学指导”中的问题。
2、找同学演板3页练习1、2.
四、课堂小结:
本节课你有哪些收获?
(1)什么叫二次根式?
(2)二次根式在实数范围内有、无意义的条件是什么?
五、布置作业:
1、正式作业:课本第5页 习题 第1题
2、课外延伸
1.下列式子一定是二次根式的是()
A. B. C. D.
2.在 , , , , , 中,一定是二次根式的有:。
3.若 为二次根式,则m的取值为()
A.m≤2B.m<2C.m≥2D.m>2
4.使式子 无意义的x的取值范围是______________________。
5.当x________时,式子 有意义。
6.求使下列各式有意义的字母的取值范围:
(1) (2) (3)
学习过程
一、引入新课:
提问:(1)、 3的算术平方根是多少?
(2)、面积为a的正方形的边长是多少?
(3)、直角三角形的两直角边是1和2,则斜边是多少?
大家很容易知道答案分别是 、 和 ,像这样的式子就是我们本章要学习的二次根式。今天我们先来认识一下什么是二次根式。
二、展示目标,自主学习:
自学指导认真阅读课本第2页——3页内容,完成下列任务:
1、用带有根号的式子完成第2页“思考”填空,看看写出的结果有什么特点。
2、开平方时,被开方数只能是和,为什么?
3、一般的,我们把形如( )的式子叫做二次根式,叫做二次根号。
4、结合例1回答:
二次根式在实数范围内有意义的条件是。
人教八下第十六章 二次根式教学导学案
![人教八下第十六章 二次根式教学导学案](https://img.taocdn.com/s3/m/6d1b3d7425c52cc58bd6be81.png)
第十六章 二次根式16.1 二次根式第1课时 二次根式的概念学习目标1.能用二次根式表示实际问题中的数量和数量关系,体会研究二次根式的必要性.2.能根据算术平方根的意义了解二次根式的概念,知道二次根式本身是一个非负数,会求二次根式中被开方数字母的取值范围.重点:二次根式的概念,二次根式有意义的条件.难点:二次根式概念的理解,综合运用性质)0(0≥≥a a .学习过程1、回忆旧知识(1)什么叫做算术平方根?什么叫做平方根?(2)正数有几个平方根?0的平方根是多少?负数有平方根吗?2、用带根号的式子填空.(1)3的算术平方根是 .(2)直角三角形的两直角边是1和2,则斜边是 .(3)正方形的面积为3-b ,则边长为 .(4)自主完成课本第二页思考题.观察所列式子,有何共同特点?3、思考下列问题:开平方时,被开方数只能是 和 ,为什么?4、请写出二次根式的概念:5、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?3,16-,34)0(3≥a a ,12+x 请同学们思考并总结一下,判断一个式子是否是二次根式,需要考虑哪些要点:6、根据开平方时,被开方数只能是 和 这一依据,完成下题:例1:当x 是怎样的实数时,6-x 在实数范围内有意义?7、做完以上例题,请填空:当a 为正数时,a 是a 的 ,而0的算术平方根是 ,负数 ,只有非负数a 才有算术平方根.所以,在二次根式a 中,字母a 必须满足 , a 才有意义.8、扩展思考:当a 是怎样的实数时,a 在实数范围内有意义?a 呢?9、小结(1)通过本节课的学习,你的收获是?(2)通过本节课的学习,你认为需要提醒同伴注意些什么?(3)你还有问题要请教同学或老师吗?10.达标测试1.在式子12x -,13x -x 可以取2和3的是( )A .12x -B .13x - C D2.x 必须满足( ) A .x ≤2 B .x ≥2 C .x >2 D .x <23.x 可以取的最小整数为( )A .0B .1C .2D .34.有意义,则x 的取值范围为_________.5.若y= 22-,则(x+y )y =_________.6.已知a 、b 是一等腰三角形的两边的长,且满足等式,求等腰三角形的周长.7.小组精彩讨论的镜头:你想一起参加讨论吗?若参加你怎么评价这四位同学的解答?并写出你解答的过程?第2课时 二次根式的性质学习目标:1.掌握二次根式的基本性质:)0(0≥≥a a 、)0()(2≥=a a a 和a a =2;2.能利用上述性质公式对复杂的二次根式进行化简. 重点:二次根式的性质a a =2. 难点:综合运用性质a a =2进行化简和计算.学习过程1、回忆旧知(1)什么是二次根式,它有哪些性质?(2)二次根式52-x 有意义,则x . 2、计算并总结公式(1)计算:2)4(= 、2)16(= 、2)3(= 、2)21(= 、2)0(= 观察其结果归纳得到:当=≥2)(,0a a 时(2)、计算:=24 、=22.0 、=2)54( 、=220 观察其结果与根号内幂底数的关系,归纳得到:当=>2,0a a 时(3)、计算:-2)4(= 观察其结果与根号内幂底数的关系,归纳得到:当=<2,0a a 时(4)、计算:=20 ,所以当==2,0a a 时3、归纳总结 将上面做题过程中得到的结论综合起来,得到二次根式的两条非常重要的性质(公式):(1)当=≥2)(,0a a 时(2)=2a4、化简下列各式:(1)、=23.0 (2)、=-2)5.0( (3)、=-2)6( (4)、()22a = (0<a )5、请大家思考讨论二次根式的性质)0()(2≥=a a a 与a a =2有什么区别与联系.6、化简下列各式 (1))0(42≥x x (2) 4x (3))3()3(2≥-a a7、小结(1)通过本节课的学习,你的收获是?(2)通过本节课的学习,你认为需要提醒同伴注意些什么?(3)你还有问题要请教同学或老师吗?8、达标测试 1.要使ba 是二次根式,则应满足的条件是( ) A.a≥0且b≥0 B. a≥0且b >0 C.b a >0 D.ba ≥0且b≠0 2.把414写成一个正数平方的形式是( ) A.2212⎪⎭⎫ ⎝⎛ B. 2212⎪⎭⎫ ⎝⎛或2212⎪⎭⎫ ⎝⎛- C.2217⎪⎪⎭⎫ ⎝⎛ D. 2217⎪⎪⎭⎫ ⎝⎛或2217⎪⎪⎭⎫ ⎝⎛- 3.函数21-=x y 中自变量的取值范围在数轴上表示为( ) A. B. C. D.9.如图,实数a 、b 在数轴上的位置,化简:2a -2b -2)(b a -.10.已知x 、y 为实数,y=214422-+-+-x x x ,试求3x+4y 的值.11.甲同学和乙同学做一道相同的题目:化简a 1+2a a 122-+ ,其中a=51. 甲同学的做法是:原式=a 1+2)a a1(-=a 1+a 1-a=a 2-a =10-51=549;乙同学的做法是: 原式=a 1+2)a 1a (-=a 1+a-a 1=a=51. 到底谁错了?为什么?说明理由.16.2二次根式的乘除第1课时 二次根式的乘法学习目标1a ≥0,b ≥0)a ≥0,b ≥0),并利用它们进行计算和化简.2、通过学习和掌握知识目标的整个过程,培养学生对数学化简题目的敏锐度,同时培养学生的计算能力.重点:掌握二次根式乘法法则和积的算术平方根的性质.难点:会用积的算术平方根的性质对二次根式进行化简.学习过程1.填空:(1;(2=____;(3.2、学生交流活动总结规律.一般地,对二次根式的乘法规定为:反过来例1、计算(1(2(3)3(4例2、化简(1(3(4(53、巩固练习(1)计算: ①②55×215 ③312a ·231ay(2)化简4、判断下列各式是否正确,不正确的请予以改正:(1=(2=4请大家讨论:对于9×27的运算中不必把它变成243 后再进行计算,你有什么好办法?注:1、当二次根式前面有系数时,可类比单项式乘以单项式法则进行计算:即系数之积作为积的系数,被开方数之积为被开方数.2、化简二次根式达到的要求:(1)被开方数进行因数或因式分解.(2)分解后把能开尽方的开出来.5、小结(1)通过本节课的学习,你的收获是?(2)通过本节课的学习,你认为需要提醒同伴注意些什么?(3)你还有问题要请教同学或老师吗?6、.达标测试1.下列计算正确的是( ) A.912=912⨯=231 B.)4()9(-⨯-=49-⨯-=(-3)×(-2)=6 C.22y x +=y x y x +=+22 D.b a 224=ab a 642⋅=2|a|ab 62.如果232a a +=2+-a a ,则实数a 的取值范围是( )A.a≥0B.0≤a≤2C.-2≤a≤0D.a≤-23.把a a1-根号外的因式移入根号内的结果是( ) A.a - B.a -- C.a D.a -9.计算:(1)27×123×385(2)3031×2140×3222310.某公路规定行驶汽车的速度每小时不得超过70千米,当发生交通事故时,交通警察通常根据刹车后车轮滑过的距离估计车辆行驶的速度,所用的经验公式是v=16df ,其中v 表示车速(单位:千米/小时),d 表示刹车后车轮滑过的距离(单位:米),f 表示磨擦因数.经测量,d=20米,f=1.25,请你帮助判断一下,肇事汽车当时的速度是否超出了规定的速度?11.小明在微机课上设计了一幅矩形图片,矩形的周长是π140cm ,宽是π35cm ,他又想设计一个面积与其相等的圆,请你帮助小明求出圆的半径.第2课时二次根式的除法学习目标1、掌握二次根式的除法法则和商的算术平方根的性质.2、通过学习和掌握知识目标的整个过程,使学生能熟练进行二次根式的除法运算及化简.3、培养学生的数学学习兴趣,感受实数的应用价值.重点: 掌握和应用二次根式的除法法则和商的算术平方根的性质.难点: 正确依据二次根式的除法法则和商的算术平方根的性质进行二次根式的化简.学习过程1、计算: (1)38×(-46) (2)3612ab ab ⨯2、填空: (1; 规律:(2;(3;(4.一般地,对二次根式的除法规定:3、计算:(1(2(3(44、化简: (1(2(3(4注:1、当二次根式前面有系数时,类比单项式除以单项式法则进行计算:即系数之商作为商的系数,被开方数之商为被开方数.2、化简二次根式达到的要求:(1)被开方数不含分母;(2)分母中不含有二次根式.5、阅读下列运算过程:==== 数学上将这种把分母的根号去掉的过程称作“分母有理化”.利用上述方法化简:(1)3=_____ ___ (4=___ ___ 6、小结(1)通过本节课的学习,你的收获是?(2)通过本节课的学习,你认为需要提醒同伴注意些什么?(3)你还有问题要请教同学或老师吗?7、达标测试1.如果6-x x =6-x x 成立,那么( ) A.x≥6 B.0≤x≤6 C.x≥0 D.x>62.下列各数中,与32的积为有理数的是( ) A.32+ B.32- C.32+- D.39.计算:32212332b b b ⋅÷10.(1A ..2E .0问题的答案是(只需填字母): ;(2.11.在进行二次根式化简时,我们有时会碰上如35,32,132+一样的式子,其实我们还可以将其进一步化简: 553535535=⨯⨯= (一) 32=363332=⨯⨯ (二) 132+=))(()-(1313132-+⨯=131313222---=)()( (三) 以上这种化简的步骤叫做分母有理化.132+还可以用以下方法化简:132+=1313+-=131)3(22+-=13)13)(13(+-+=13-.(四) (1)请用不同的方法化简352+. (2)①参照(三)式得 352+=____________;②参照(四)式得352+=__________. (2)化简:12121...571351131-+++++++++n n第3课时最简二次根式学习目标:1、理解最简二次根式的概念,把二次根式化成最简二次根式,熟练进行二次根式的乘除混合运算.2、使学生能熟练进行二次根式的乘除运算及化简.重点:最简二次根式的运用.难点:会判断二次根式是否是最简二次根式和二次根式的乘除混合运算.学习过程1、化简(1)496x = (2=(3= (4= (5= 观察上面计算题1的最后结果,可以发现这些式子中的二次根式有如下两个特点:(1).被开方数不含分母; (2).被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式.2、化简:(1) 2083、比较下列数的大小(1)8.2与432 (2)7667--与 注:1、化简二次根式的方法有多种,比较常见的是运用积、商的算术平方根的性质和分母有理化.2、判断是否为最简二次根式的两条标准:(1)被开方数不含分母;(2)被开方数中所有因数或因式的幂的指数都小于2.4、知识应用:设长方形的面积为S,相邻两边长分别为a,b.已知S=23,b=5.求a 的长.5、计算:(1)6·a 3·b 31 (2)16141÷ (3)50511221832++-6、探究计算:(1)(38+)×6 (2)22)6324(÷-7、探究计算:(1))52)(32(++ (2)2)232(-8、练习计算:(1)12)323242731(-- (2))32)(532(+-(3)2)3223(+ (4)(9、小结(1)通过本节课的学习,你的收获是?(2)通过本节课的学习,你认为需要提醒同伴注意些什么?(3)你还有问题要请教同学或老师吗?10、达标训练2.下列二次根式中,是最简二次根式的是( )A.22xB.12+bC.a 4D.x1 3.下列判断正确的是( ) A .3<3<2 B .2<2+3<3 C .1<5-3<2 D .4<3·5<59.下列各式中,哪些是最简二次根式?哪些不是?为什么?15,24,ab 27,2235y x +,23,23,24m m +,2x10.把下列各式化成最简二次根式(1)500 (2)323b a (3)b a c abc 4322-(4)ay x 22-(x >y ) 11.比较下来各组数的大小(1)3与22 (2) 52与33 (3) 27与113 (4) 132-与63-(5) 3131-与7121- (6)3π与64216.3 二次根式的加减一、学习目标1、理解同类二次根式,并能判定哪些是同类二次根式.2、理解和掌握二次根式加减的方法.3、先提出问题,分析问题,在分析问题中,渗透对二次根式进行加减的方法的理解.再总结经验,用它来指导根式的计算和化简.重点:二次根式化简为最简根式.难点:会判定是否是最简二次根式.学习过程1、计算. (1)x x 32+; (2)222532x x x +-;(3)y x x 32++; (4)22223aa a +-2、学生活动:计算下列各式.(1)(2)(3(4)由此可见,二次根式的被开方数相同也是可以合并的,如(与整数中同类项的意义相类似我们把33与32-;a 3、a 2-与a 4这样的几个二次根式,称为同类二次根式)如: 所以,二次根式加减时,可以先将二次根式化成最简二次根式,•再将同类二次根式进行合并.例1.计算 (1(2例2.计算(1)( 2)+归纳: 第一步,将不是最简二次根式的项化为最简二次根式;第二步,将相同的最简二次根式进行合并.3、练习计算 (1) )27131(12-- (2) )512()2048(-++4、小结(1)通过本节课的学习,你的收获是?(2)通过本节课的学习,你认为需要提醒同伴注意些什么?(3)你还有问题要请教同学或老师吗?5、达标训练2.下列各组中,是同类二次根式的是( ) A.45.0与81.0 B. b a 23与22abC.2x 与32xD.x x 3与xx 122 3.计算12⎪⎪⎭⎫ ⎝⎛-+4831375的结果是( ) A .6 B .43 C .23+6 D .129.(1)计算:⎛÷ ⎝(202)10.(1)先化简,再求值: (a-3)(a+3)-a(a-6),其中a=5+21.(5)已知:a=2-1,求142--a a a ÷⎪⎭⎫ ⎝⎛--12a a 的值.11.有这样一道题:计算4422---+x x x x +4422-+--x x x x -2x (x >2)的值,其中x=1005,某同学把“x=1005”错抄成“x=1050”,但他的计算结果是正确的,请回答这是怎么回事?试说明理由.。
二次根式导学案
![二次根式导学案](https://img.taocdn.com/s3/m/f351d6856529647d2728526c.png)
第16章 二次根式导学案16.1 二次根式(1)一、学习目标1、了解二次根式的概念,能判断一个式子是不是二次根式。
2、掌握二次根式有意义的条件。
3、掌握二次根式的基本性质:)0(0≥≥a a 和)0()(2≥=a a a 二、学习重点、难点重点:二次根式有意义的条件;二次根式的性质. 难点:综合运用性质)0(0≥≥a a 和)0()(2≥=a a a 。
三、学习过程(一)复习引入:(1)已知x 2= a , x 是a 的________, 记为______,a 一定是_______数。
(2)正数a 的算术平方根为_______,0的算术平方根为_______; (二)预习指导1、什么叫做二次根式?2、如何确定一个二次根式有无意义?3、式子a 表示什么意义?4、式子)0(0≥≥a a 的意义是什么?5、理解公式)0()(2≥=a a a (三)达标训练1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?3,16-,34,,12+x 2、a 取何值时,下列各二次根式有意义? (1)43-a (2) 32+a (3)a - (4)a -5 (5)11+x3、(1a 的值为___________.(2)若在实数范围内有意义,则x 为( )。
A.正数B.负数C.非负数D.非正数4、计算 :(1) 2)4( (2) (3)2)5.0( (4)2)31(2)3(5、化简:(1)49 (2)2)6(- (3)2)(π-- (4)(2)2-(四)拓展延伸1、(1)在式子xx+-121中,x 的取值范围是____________.(2)已知42-x +y x +2=0,则x-y = _____________.(3)已知y =x -3+23--x ,则x y = _____________。
(4)若20a -=,则 2a b -= 。
2、计算( ) A. 169 B.-13 C±13 D.133、已知的值不能确定4、下列计算中,不正确的是 ( )。
八年级数学下册 16.1 二次根式导学案1(新版)新人教版
![八年级数学下册 16.1 二次根式导学案1(新版)新人教版](https://img.taocdn.com/s3/m/108d970d1a37f111f0855b90.png)
八年级数学下册 16.1 二次根式导学案1(新版)新人教版1、知道二次根式的概念。
2、知道二次根号下被开方数是非负数,并会加以应用。
【定向导学互动展示当堂反馈】课堂元素自学合学展学学法指导(内容学法成果。
时间)互动策略(内容形式时间)展示方案(内容方式时间)概念认知例题导析(学习内容)认真自研教材P2-3完成下列自研探究:旧知链接 :1、a的算是平方根的定义2、填空:(1)面积为3的正方形的边长为,面积为s的正方形的边长为。
(2)等腰直角三角形的面积为7平方厘米,则它的腰长为。
(3)一个物体从高处自由落下,落到地面的时间t(s)与开始下落的高度h(m)满足关系式h=1/2gt2,用含h和g的关系式表示t为。
3、我们把形如的式子叫做二次根式,称为二次根号。
4、判断题:下列式子,哪些是二次根式,哪些不是二次根式:、、、(x>0)、、、、(x≥0,y ≥0)、5、例2、当x是多少时,在实数范围内有意义?解:由得:。
当时,在实数范围内有意义、小对子交流分享准备询问对子的问题:。
;互助组:4人冲刺挑战旧知链接2共同体:8人在学科组长的带领下:•做好展示任务分工,完成版面设计,做好展示前的预演。
展示方案提示:展示单元一:二次根式判定,运用。
应用探究例1:判定下列代数式中哪些一定是二次根式:,,,,,(x≦0),,例2:已知:再实数范围内有意义,求X的取植范围。
(2)当x是多少时,+在实数范围内有意义?(3)当 X是怎样的实数时有意义,()2 呢?展示方案二利用“(a≥0)”解决具体问题3要使二次根式在实数范围内有意义,必须满足被开方数是非负数。
应用探究例3:已知y=++5,求的值、梳理小结查学课本3页练习1,2第2页思考题评学(回家25分钟)日清三层级能力提升达标题自评:师评:基础题:1、当x 时,在实数范围内有意义。
2、计算:。
3、已知a=,则代数式的值是。
4、若+=0,求a2004+b2004的值。
八年级数学下册 16.1 二次根式导学案(新版)新人教版
![八年级数学下册 16.1 二次根式导学案(新版)新人教版](https://img.taocdn.com/s3/m/45fe42b20975f46527d3e1cf.png)
八年级数学下册 16.1 二次根式导学案(新
版)新人教版
16、1二次根式学习目标
1、理解二次根式的概念,并利用(a≥0)的意义解答具体题目
2、提出问题,根据问题给出概念,应用概念解决实际问题、重点形如(a≥0)的式子叫做二次根式的概念难点利用
“(a≥0)”解决具体问题、预习引导活动
4、思考下列问题:①的运算结果是3,是不是二次根式?3是不是?②定义中为什么要加≥0?若a<0,表示什么?有无意义?③当 a=0时,表示什么?结果是什么?当 a>0时,表示什么?可不可能为负数?(≥0)是什么样的数呢?
问题导学课本思考
1、当x是怎样的实数时,下列二次根式有意义?
,,课本思考2:当x是怎样的实数时,,有意义?
1、若,则x和m的取值范围是x_____;m______、
2、已知,求的值各是多少?活动
5、完成课本探究1活动
6、对中的运算顺序、运算结果进行分析,归纳出:一个非负数先开方再平方,结果不变、练习:课本例2活动
7、完成课本探究2活动
8、对中的运算顺序、运算结果进行分析,归纳出:一个非负数先平方再开方,结果不变;一个负数先平方再开方结果为相反数、练习:课本例3补充练习:
1、化简:,;
2、直角三角形的三边分别为a,b,c,其中c为斜边,则式子-与式子有什么关系?当堂检测作业P5习题
1、2
3、4板书设计知识与方法的建构教师学生反思小结。
二次根式概念导学案
![二次根式概念导学案](https://img.taocdn.com/s3/m/1180431359eef8c75fbfb3f6.png)
0.3
⑵ ⑹
3 a3
⑶
1 ( ) 2 2
⑺
⑷
3
a 2 a 2
⑸ a2 1
a
⑻ 2x x0
学:
代数式有意义应考虑以下三个方面: (1)二次根式的被开方数 为非负数。 (2)分式的分母不为 0.(3)零指数幂、负整数指 数幂的底数不能为 0 当 x 是怎样实数时,下列各式在实数范围内有意义? (1) x 2 ⑵
x2 有意义,则 x 的取值范围是( 3x 1
1 3
)
B、 x
C、x≥-2 且 x
1 3
D、以上答案都错
7.已知 y 2 4 y 4 x y 0 ,求 xy 的值
展:小组展示成果,提出质疑 评:
1. 组内互助,解决质疑并进行小组评价。 2.知识方法小结:(交流后填空) (1)二次根式的定义:_________________________ (2)二次根式有意义的条件:_______________________ (3)二次根式的性质:
§16.1 二次根式的概念(第一课时) 学习目标: 1、了解二次根式的概念,2、理解二次根式有意义的条件,3、 并会求二次根式中所含字母的取值范围。 4、理解二次根式的 非负性 学习重难点:二次根式有意义的条件和非负性的理解和应用 学法指导:小组合作交流 一对一检查过关
二次备课
导:
看书后填空:二次根式应满足两个条件: (1) 形式上必须是 a 的形式。 (2) 被开方数必须是 判断下列格式哪些是二次根式? ⑴ 数。
二次备课
⑥ x 3 其中是二次根式的有 时,式子 2 x 3 是二次根式。
3、下列语句正确的是( ) A、二次根式中的被开方数只能是正数 B、式子 2 x 是二次根式 C、3 的平方根是 3 D、2 是 2 的平方 4.若
新课标人教版第十六章二次根式导学案
![新课标人教版第十六章二次根式导学案](https://img.taocdn.com/s3/m/880e2cc431126edb6f1a10f9.png)
2.熟练进行二次根式的乘除法运算;
3.理解同类二次根式的定义,熟练进行二次根式的加减法运算;
4.了解最简二次根式的定义,能运用相关性质进行化简二次根式;
【重点难点】
二次根式的计算和化简;二次根式的混合运算.
【知识回顾】
1.二次根式的概念:形如
的式子叫做二次根式。
2.二次根式的性质:
⑴ a 0(a≥0)
1.二次根式乘法运算的法则:
2.化简:
⑴ 200 =
3.计算:
⑵ x3 x2 y =
1
⑴ × 24 =
2
⑵ a3 · ab =
【自主学习】 1.计算并用“>”、“<”或“=”填空.
⑴9 16
9
⑵ 25
16
36
25
⑶ 49
36
64
【合作探究】
1.已知 9 x 9 x ,且 x 为偶数,求 x 1 x2 5x 4 的值.
2
m 3n 2 3m2
⑶· ·
3 mnn
⑵ 1 3 ×2 3 ×(- 1 10 )
5
2
2
⑷
xy5 ×(- 3
x3y )×3
x
y
2
y5
16.3 二次根式在加减(1) 【学习目标】
1.理解和掌握二次根式加减的法则; 2.会利用二次根式在加减法则进行计算. 【重点难点】 二次根式在加减法则;熟练进行二次根式在加减运算. 【旧知回顾】 1.最简二次根式:
⑴ 6 8 3
⑵ 4 6 3 2 2 2
⑶
5
6 3
5
⑷
2
5
3 2 5
3
⑸ 3 2 2 2
⑹ 2 5 2 2
人教版数学八年级下册16.1《二次根式(1)》导学案
![人教版数学八年级下册16.1《二次根式(1)》导学案](https://img.taocdn.com/s3/m/4e1a73a577232f60dccca16d.png)
16.1二次根式〔1〕 学案学习目标:1.了解二次根式的意义;2.会判断二次根式,能求简单的二次根式中字母的取值范围。
学习重点:二次根式的概念及意义。
学习难点:二次根式的判断与字母取值范围确实定。
学习过程:一、温故互查1.什么叫平方根?2.什么叫算数平方根?3.〔算数〕平方根的性质平方根式是二、设问导读 感受新知阅读课本,完成以下问题在课本思考框的问题中,结果分别是 ,结果都分别是表示65,S ,2,5h 的 . 我们知道:一个正数有两个平方根,它们 ;0的平方根是 ;在实数范围内, 数没有平方根。
因此,开平方时,被开方数只能是 .【归纳】一般地,我们把形如〔a≥0〕的式子叫做 ,“〞称为 .【注意】二次根式应满足两个条件:1.形式..上必须是a 的形式; .三、自我检测例1.当x 是怎样的实数时,2 x 在实数范围内有意义?例2.当a<0时,a 有意义吗?【归纳】a 的双重非负性:1. a≥0 ; 2.四、稳固训练1.、1x x>0〕、、、1x y+〔x≥0,y ≥0〕.2.当x 是多少时,x 35-在实数范围内有意义?【课本练习】 1、2五、拓展提升1.当x 是怎样的实数时,以下各式在实数范围内有意义?〔1〕48-+x x 〔2〕2x 〔3〕3x2.〔1〕,求x y的值.〔2=0,求a 2021+b 2021的值.六、小结评价1.请你说说对二次根式的认识?〔口述给组长〕2.小组对你这节课表现进展评价:〔较好;好;一般;差;较差〕组长:。
八年级下16.1二次根式导学学案1
![八年级下16.1二次根式导学学案1](https://img.taocdn.com/s3/m/99f3f21a14791711cc7917e8.png)
16.1二次根式导学学案教学目标:(1) 了解二次根式的概念。
(2) 掌握二次根式的基本性质。
(3) 在学生原有知识的基础上,经历知识产生的过程,探索新知识;(4) 体会用类比的思想研究二次根式,体验研究数学问题的常用方法:由特殊到一般,由简单到复杂.(5) 教学中为学生创造大量的操作.思考和交流的机会,关注学生思考问题的过程,鼓励学生在探索规律的过程中从多个角度进行考虑,品尝成功的喜悦,激发学生应用数学的热情,培养学生主动探索,敢于实践,善于发现的科学精神以及合作精神,树立创新意识。
教学重点:教学难点:教学过程:一.情景创设1.回顾:什么叫平方根? 什么叫算术平方根?2.思考(1)面积为3的正方形边长面积为S正方形边长为。
(2)一个物体做自由落体运动,落地时间t,和高度h满足关h= t25,如果用含h的式子表示t,t=(3)圆的面积为S,则圆的半径是 .(4)正方形的面积为3b,则边长为 .3.对上面(1)~(4)题的结果,你能发现它们有什么共同的特征吗? 3、前面我们学习了平方根和算术平方根的意义,引进了一个新的记号 a ,现在请同学们思考并回答下面两个问题:1. a 表示什么?2.a需要满足什么条件?为什么?教师与学生共同归纳:二.新课讲解1、问题: ( a )2(a≥0)等于什么?说说你的理由并举例验证。
2、判断:(1)0=(0 )2对不对?(2)-5=(-5 )2对不对?教师与学生共同归纳:3、二次根式概念 形如 a (a ≥0)的式子叫做二次根式.【说明】 二次根式必须具备以下特点;(1) ; (2) 。
学生举出二次根式的几个例子 判断-5 , a (a<0).3a .-a (a<o)是不是二次根式三、例题与练习例1.要使式子x -1 有意义,字母x 的取值必须满足什么条件? (思考:若将式子x -1 改为1-x ,则字母x 的取值必须满足什么条件?)练习:a 取何值时,下列二次根式有意义. (1)1+a (3) a 101- (2) a211- (4)2)1(-a例2:计算:(1)2)3(; (2)2)32(; (3) 2)(b a + (a+b ≥0)练习.(1)=2)32( (2)2)32(教师与学生共同归纳:练习:计算:(1)=4 (2)=-2)5.1( (3)=-2)1(x (x≥1)练习:P8 1,2四、引导学生总结:1、 2、 3、五、作业:P5习题16.1 1题六、教学反思。
16.1二次根式 1课时 导学案-人教版八年级数学下册
![16.1二次根式 1课时 导学案-人教版八年级数学下册](https://img.taocdn.com/s3/m/0f508cc903d276a20029bd64783e0912a2167cfd.png)
16.1 二次根式 1课时导学案-人教版八年级数学下册一、知识回顾在前面的学习中,我们学习了根式的概念和性质,了解了根式的化简、加减乘除等基本运算法则。
本节课我们将学习二次根式的相关知识。
请回顾以下问题:1.什么是根式?2.根式有哪几种运算法则?3.如何对根式进行化简操作?二、学习目标1.理解二次根式的概念;2.掌握二次根式的化简;3.能够利用二次根式的化简规律进行计算。
三、学习内容1. 二次根式的定义在代数中,我们把形如√a(a≥0)的式子称为二次根式,其中a称为被开方数,√称为二次根号。
2. 二次根式的化简对于二次根式的化简,我们可以利用一些化简规律来简化表达式。
(1)同底合并如果两个二次根式的底数相同,那么可以将它们合并为一个二次根式。
例如:√2 + √2 = 2√2(2)相乘化简如果二次根式与非二次根式相乘,可以移动根号进行化简。
例如:2√2 * 3 = 6√2(3)理数根号化简对于能整除被开方数的完全平方数,可以进行化简。
例如:√36 = 63. 二次根式的运算(1)加减运算相同底数的二次根式可以进行加减运算。
例如:√3 + √5 = √3 + √5(2)乘法运算二次根式的乘法运算仍然适用分配律。
例如:(√2 + √3)* (√2 + √3) = √2 * √2 + √2 * √3 + √2 * √3 + √3 * √3 = 2 + 2√6 + 3 = 5 + 2√6(3)除法运算对于二次根式的除法,可以利用有理化分母的方法进行运算。
例如:√6 / √2 = (√6 / √2) * (√2 / √2) = √12 / 2 = 2√24. 二次根式的化简综合运用将以上所学知识综合运用,化简以下二次根式:(1)3√6 + 2√8(2)√12 * √27(3)(√5 + √3)* (√5 - √3)(4)(√3 + √7)/ (√3 - √7)四、学习总结本节课我们学习了二次根式的概念和性质,掌握了二次根式的化简和运算法则。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16.1 二次根式导学案(1)
一、学习目标
1、了解二次根式的概念,能判断一个式子是不是二次根式。
2、掌握二次根式有意义的条件。
3、掌握二次根式的基本性质:)0(0≥≥a a 和)0()(2≥=a a a
二、学习重点、难点
重点:二次根式有意义的条件;二次根式的性质. 难点:综合运用性质)0(0≥≥a a 和)0()(2≥=a a a 。
三、学习过程
(一)复习引入:
(1)已知x 2 = a ,那么a 是x 的______; x 是a 的________, 记为______, a 一定是_______数。
(2)4的算术平方根为2,用式子表示为 =__________;
正数a 的算术平方根为_______,0的算术平方根为_______;
式子)0(0≥≥a a 的意义是 。
(二)提出问题
1、式子a 表示什么意义?
2、什么叫做二次根式?
3、如何确定一个二次根式有无意义?
(三)自主学习
自学课本第2页例前的内容,完成下面的问题:
1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?
3,16-,34,5-,)0(3≥a a ,12+x
2、计算 :
(1) 2)4( (2) 2)5.0( (3) (4)2)3
1(
根据计算结果,你能得出结论: ,其中0≥a , )0()(2≥=a a a 的意义是 。
3、当a 为正数时指a 的 ,而0的算术平方根是 ,负
数 ,只有非负数a 才有算术平方根。
所以,在二次根式
中,字母a 必须满足 ,
才有意义。
(三)合作探究 2)3(________
)(2=a 4
1、学生自学课本第2页例题后,模仿例题的解答过程合作完成练习 : x 取何值时,下列各二次根式有意义? ①43-x
③
2、(
1有意义,则a 的值为___________.
(2在实数范围内有意义,则x
为( )。
A.正数
B.负数
C.非负数
D.非正数
(四)拓展延伸 1、(1)在式子x
x +-121中,x 的取值范围是____________. (2)已知42-x +y x +2=0,则x-y = _____________.
(3)已知y =x -3+23--x ,则x y = _____________。
2、由公式)0()(2≥=a a a ,我们可以得到公式a=2)(a ,利用此公式可以把任意一个非负数写成一个数的平方的形式。
(1)把下列非负数写成一个数的平方的形式:5 0.35
(2)在实数范围内因式分解
①72-x ② 4a 2-11
(五)达标测试 A 组
(一)填空题: 1、 =________; 2、 在实数范围内因式分解:
(1)x 2-9= x 2 - ( )2= (x+ ____)(x-____)
(2) x 2 - 3 = x 2 - ( ) 2 = (x+ _____) (x- _____)
(二)选择题:
1、计算 ( )
A. 169
B.-13 C±13 D.13
2、已知 的值不能确定
3、下列计算中,不正确的是 ( )。
x
--212
53⎪⎪⎭⎫ ⎝⎛的值为2)13(-0,x =则为( )
A. 3= 2)3( B 0.5=2)5.0( C .2)3.0(=0.3 D 2)75(=35
B 组
(一)选择题:
1、下列各式中,正确的是( )。
A.
B C D
2、 如果等式2)(x -= x 成立,那么x 为( )。
A x ≤0; B.x=0 ; C.x<0; D.x ≥0
(二)填空题:
1、 若20a -=,则 2a b -= 。
2、分解因式: X 4
- 4X 2 + 4= ________.
3、当x= 时,代数式
其最小值是 。
训练案
一、选择题
1.下列式子中,是二次根式的是( )
D.x
2.下列式子中,不是二次根式的是( )
D.1x
3.已知一个正方形的面积是5,那么它的边长是( )
A.5 C.
15
D.以上皆不对 二、综合提高题
1.某工厂要制作一批体积为1m 3的产品包装盒,其高为0.2m ,按设计需要,•底面应做成正方形,试问底面边长应是多少?
4949+=+4
994⨯=⨯2424-=-653625=
2.当x 是多少时,
x
+x 2在实数范围内有意义?
3.
4.x 有( )个.
A.0
B.1
C.2
D.无数
5.已知a 、b ,求a 、b 的值.
二次根式(2)
一、学习目标
1、掌握二次根式的基本性质:a a =2
2、能利用上述性质对二次根式进行化简.
二、学习重点、难点 重点:二次根式的性质a a =2. 难点:综合运用性质a a =2进行化简和计算。
三、学习过程
(一)复习引入:
(1)什么是二次根式,它有哪些性质?
(2x 。
(3)在实数范围内因式分解:
x 2-6= x 2 - ( )2= (x+ ____)(x-____)
(二)提出问题
1、式子a a =2表示什么意义?
2、如何用a
a =2来化简二次根式?
3、在化简过程中运用了哪些数学思想?
(三)自主学习
自学课本第3页的内容,完成下面的题目: 1、计算:=24 =22.0 =2)54(
=220
观察其结果与根号内幂底数的关系,归纳得到: 当=>a a ,0时
2、计算:=-2)4( =-2
)2.0( =-2)54( =-2)20( 观察其结果与根号内幂底数的关系,归纳得到:当=<a a ,0时
3、计算:=20 当==a a ,0时
(四)合作交流
1、归纳总结
将上面做题过程中得到的结论综合起来,得到二次根式的又一条非常重要的性质:⎪⎩
⎪⎨⎧<-=>==0a a 0a 00a a 2
a a 2、化简下列各式:
______=
______
=_______
=
_____a 0=(<) 3、请大家思考、讨论二次根式的性质)0()(2≥=a a a 与a a =2有什么区别与联系。
(五)展示反馈
1、化简下列各式 (1))0(42≥x x (2) 4x
2、化简下列各式 (1))3()3(2≥-a a (2)
()232+x (x <-2)
(六)精讲点拨 利用a a =2可将二次根式被开方数中的完全平方式“开方”出来,达到化简的目的,进行化简的关键是准确确定“a ”的取值。
(七)拓展延伸
(1)a 、b 、c 为三角形的三条边,则=--+-+c a b c b a 2)(____________. (2) 把(2-x)2
1-x 的根号外的(2-x )适当变形后移入根号内,得( ) A 、x -2B 、2-x C 、x --2 D 、2--x
(3) 若二次根式26x -+有意义,化简│x-4│-│7-x │。
(八)达标测试:
A 组
1、填空:(1)、2)12(-x -2)32(-x )2(≥x =_________.
(2)、2)4(-π=
2、已知2<x <3,化简:3)2(2-+-x x
B 组
1、 已知0 <x <1,化简:4)1(2+-x x -4)1(2-+x
x
2、 边长为a 的正方形桌面,正中间有一个边长为
3
a 的正方形方孔.若沿图中虚线锯开,可以拼成一个新的正方形桌面.你会拼吗?试求出新的正方形边长.
训练案 一、选择题
1.下列各式中15、3a 、21b -、22a b +、220m +、144-,二次根式的个数是( ).
A.4
B.3
C.2
D.1
2.数a 没有算术平方根,则a 的取值范围是( ).
A.a>0
B.a ≥0
C.a<0
D.a=0
二、填空题
1.()2=________.
2.x+1是一个_______数.
三、综合提高题
1.计算(1)2 (2)-2 (3)(
12)2
(5) 2.=0,求x y 的值.
3.在实数范围内分解下列因式:
(1)x 2-2 (2)x 4-9 (3)3x 2-5
4 若-3≤x ≤2时,试化简│x-2│。