机器人运动学.
第三章机器人运动学
第三章机器人运动学机器人运动学是研究机器人如何在二维或三维空间中进行运动的学科。
它涉及到机器人的轨迹规划、运动控制和路径规划等重要内容。
本章将介绍机器人运动学的基本概念和常用模型,帮助读者全面了解机器人的运动规律和控制原理。
1. 机器人运动学的基本概念机器人运动学是研究机器人位置和姿态变化的学科,包括正运动学和逆运动学两个方面。
正运动学研究机器人的末端执行器的位置和姿态如何由关节变量确定;逆运动学则研究机器人如何通过末端执行器的位置和姿态来确定关节变量的值。
机器人的运动学建模一般采用DH(Denavit-Hartenberg)参数表示方法。
DH 参数是由Denavit和Hartenberg提出的一种机器人坐标系的选择和旋转轴的确定方法。
通过定义一系列关节坐标系,建立起机器人的坐标系链,并确定各个关节的旋转轴和约定的方向,可以方便地描述机器人的运动学特性。
2. 机器人正运动学机器人正运动学是研究机器人末端执行器位置和姿态如何由关节变量确定的问题。
在机器人的正运动学中,常用的方法有几何法和代数法。
2.1 几何法几何法是一种较为直观的方法,通过对机器人各个关节坐标系的位置和旋转进行推导,得到机器人末端执行器的位置和姿态。
几何法适用于无约束和无外力干扰的情况,可以简单快速地推导出机器人的正运动学方程。
2.2 代数法代数法是一种基于运动学链的代数运算的方法,通过DH参数建立起机器人的坐标系链,并通过矩阵运算推导出机器人的正运动学方程。
代数法在机器人正运动学的推导和计算过程中更具有普适性和灵活性。
3. 机器人逆运动学机器人逆运动学是研究机器人如何通过末端执行器的位置和姿态来确定关节变量的值的问题。
机器人逆运动学在机器人运动规划和路径控制中起到重要的作用。
机器人逆运动学的求解一般采用迭代方法,通过迭代计算来逼近解析解,实现对机器人关节变量的求解。
逆运动学的求解过程中可能会出现奇异点和多解的情况,需要通过约束条件和优化方法来处理。
机器人运动学
机器人运动学随着科技的不断发展,机器人已经逐渐成为了人们生活中不可或缺的一部分。
机器人的出现不仅改变了人们生活的方方面面,还为工业、医疗等领域带来了巨大的变革。
作为机器人领域的核心技术之一,机器人运动学是机器人技术中的重要组成部分。
本文将从机器人运动学的基本概念、运动学分析、运动规划等方面进行详细的阐述。
一、机器人运动学的基本概念机器人运动学是研究机器人运动的学科,主要研究机器人的运动规律、运动学模型、运动学分析和运动规划等问题。
机器人运动学的基本概念包括机器人的自由度、坐标系、位姿等。
1. 机器人的自由度机器人的自由度是指机器人能够自由运动的方向和数量。
机器人的自由度通常是由机器人的关节数量决定的。
例如,一个具有6个关节的机器人,其自由度就是6。
机器人的自由度越大,机器人的运动能力就越强。
2. 坐标系坐标系是机器人运动学中的重要概念,用于描述机器人的位置和姿态。
机器人通常使用笛卡尔坐标系或者极坐标系来描述机器人的位置和姿态。
在机器人运动学中,通常使用基座坐标系和工具坐标系来描述机器人的运动。
3. 位姿位姿是机器人运动学中的另一个重要概念,用于描述机器人的位置和姿态。
位姿通常由位置和方向两个部分组成。
在机器人运动学中,通常使用欧拉角、四元数或旋转矩阵来描述机器人的位姿。
二、机器人运动学分析机器人运动学分析是指对机器人的运动进行分析和计算,以确定机器人的运动规律和运动学模型。
机器人运动学分析通常涉及到逆运动学、正运动学和雅可比矩阵等内容。
1. 逆运动学逆运动学是机器人运动学分析中的重要内容,用于确定机器人关节的运动规律。
逆运动学通常包括解析解法和数值解法两种方法。
解析解法是指通过数学公式来计算机器人关节的运动规律,数值解法是指通过计算机模拟来计算机器人关节的运动规律。
2. 正运动学正运动学是机器人运动学分析中的另一个重要内容,用于确定机器人末端执行器的位置和姿态。
正运动学通常包括前向运动学和反向运动学两种方法。
第3章 机器人运动
3 齐次坐标变换 3.1齐次坐标变换 3.1齐次坐标变换 假设机器人手部拿一个钻头在 工件上实施钻孔作业,已知钻 头中心P点相对于手腕中心的 位置,求P点相对于基座的位 置。
x i o
zb kb yb jb o, ib xb P
z
k
j
y
分别在基座和手部设置为固定坐标系和动坐标系, 如图所示。
P点 相对于固定坐标系
1 4 0 −3 0 7 0 1
T中第一列的三个元素(0,1,0)T表示活动坐标系的u轴与 固定坐标系三个坐标轴之间的投影,故u轴平行于y轴;T中第 二列的三个元素(0,0,1)T表示活动坐标系的v轴与固定坐 标系三个坐标轴之间的投影,故v轴平行于z轴;T中第三列的 三个元素(1,0,0)T表示活动坐标系的w轴与固定坐标系三 个坐标轴之间的投影,故轴w平行于x轴;T中第四列的三个元 素(4,-3,7)T表示活动坐标系的原点与固定坐标系原点之 间的距离。
b
3.3.2 举例 ⋅ i i
z kb k o, xb i o xi y j y j
1 0 0 R = 0 1 0 0 0 1
所以
x0 X 0 = y0 z0
0 0 1 0 0 1 0 0
1 0 A = Trans( x0 , y0 , z0 ) = 0 0
上面所述的坐标变换每步都是相对于固定坐标系进行的,也可以 相对于动坐标系进行变换: 坐标系 {o , : u , v, w} 初始与固定坐标系 {o:x, y, z} 相重合,首先相对于固定坐标系平移
4i − 3 j + 7 k ;然后绕活动系的v轴旋转900;最后绕w轴旋转900。
变换的几何表示如图所示。这是合成变换矩阵为
机器人运动学
58
斯坦福机器人反向运动学方程求解
• 已知斯坦福机器人的运动学方程为T6=A1A2A3A4A5A6, 以及T6 矩阵与各杆参数a、α、d,求关节变量θ1~θ6 , 其中θ3= d3。
• 求θ1:
59
斯坦福机器人反向运动学方程求解
• 求θ1:
• “+”号对应右肩位姿,“-”号对应左肩位姿。60
斯坦福机器人反向运动学方程求解
2 机器人运动学
• • • • 齐次坐标及动坐标系、对象物位姿的描述 齐次变换 机器人连杆坐标系及其齐次变换矩阵 机器人运动学方程及其求解
1
齐次坐标及动坐标系、对象物位姿的描述 • • • • • 点的直角坐标描述 点的齐次坐标描述 坐标轴方向的齐次坐标描述 动坐标系位姿的齐次坐标描述 对象物位姿的齐次坐标描述
n cos30 cos60 cos90 0 T 0.866 0.500 0.000 0
P 2 1 cos90 0 T 0.500 0.866 0.000 0 a 0.000 0.000 1.000 0
2
点的直角坐标描述
式中:Px、Py、Pz是点P在坐标 系{A}中的三个位置坐标分量。
点的直角坐标描述
3
点的齐次坐标描述
• 齐次坐标的表示不是惟一的,将其各元素同 乘一非零因子ω后,仍然代表同一点P,即
4
坐标轴方向的齐次坐标描述
坐标轴方向的描述
5
• 4 1列阵[a b c w]T中第四个元素不为零,则表示空 间某点的位置; • 4 1列阵[a b c w]T 中第四个元素为零,且满足 a2 + b2 + c2 = 1,则表示某轴(矢量)的方向。
44
正向运动学方程求解
机器人 运动学
机器人运动学机器人运动学机器人运动学是研究机器人运动规律和运动控制的学科。
它是机器人技术的重要组成部分,对于机器人的设计、控制和应用具有重要意义。
机器人运动学主要研究机器人在空间中的运动规律,包括位置、速度和加速度等。
通过研究机器人的运动学特性,可以实现对机器人的精确控制和规划。
机器人运动学主要包括正运动学和逆运动学两个方面。
正运动学是指根据机器人关节的位置和长度,求解机器人末端执行器的位置。
它通过解析几何、向量运算和矩阵变换等数学方法,将机器人关节的位置参数转化为末端执行器的位置参数,从而实现对机器人的位置控制。
逆运动学是指根据机器人末端执行器的位置,求解机器人关节的位置和长度。
逆运动学是机器人运动学的核心内容,也是机器人控制的关键问题之一。
通过逆运动学,可以实现对机器人末端执行器的精确控制,从而实现机器人在空间中的精确定位和定向。
机器人运动学的研究还包括机器人的姿态和轨迹规划。
姿态是指机器人在空间中的朝向和姿势,轨迹是指机器人在运动过程中的路径和速度。
通过研究机器人的姿态和轨迹规划,可以实现机器人在复杂环境中的灵活运动和避障控制。
机器人运动学的应用非常广泛。
在工业领域,机器人运动学被应用于自动化生产线的控制和优化,实现了生产效率的提高和生产成本的降低。
在医疗领域,机器人运动学被应用于手术机器人的控制和操作,实现了微创手术和精确手术的目标。
在军事领域,机器人运动学被应用于无人飞机和无人车辆的控制和导航,实现了作战效能的提高和战场风险的降低。
机器人运动学的发展离不开先进的传感器和控制技术的支持。
传感器可以实时感知机器人的位置和环境信息,控制技术可以根据机器人的位置和运动规律,实现对机器人的精确控制和运动规划。
总结起来,机器人运动学是研究机器人运动规律和运动控制的学科,主要包括正运动学、逆运动学、姿态和轨迹规划等内容。
机器人运动学的研究和应用对于机器人技术的发展和应用具有重要意义,将为我们创造更多的便利和机会。
机器人技术基础课件第三章-机器人运动学精选全文完整版
如此类推,对于六连杆机器人,有下列矩阵:
06T 01T 12T 23T 34T 45T 56T
3.2 3.2 机械手运动学方程
26
0 6
T
3.1.4 连杆变换矩阵及其乘积
06T 01T12T 23T 34T 45T 56T
机器人运动学方程
此式右边表示了从固定参考系到手部坐标系的各连杆
一个六连杆机械手可具有六个自由度,每个连杆含 有一个自由度,并能在其运动范围内任意定位与定向。 其中三个自由度用于规定位置,而另外三个自由度用 来规定姿态。
8
3.1.1 连杆坐标系
机械手的运动方向
机器人手部的位置和姿态也可以
用固连于手部的坐标系{B}的位姿
来表示
关节轴为ZB, ZB轴的单位方向 矢量α称为接近矢量,指向朝外。
(1) 坐标系{i-1}绕xi-1轴转角αi-1,使Zi-1与Zi平行,算子为Rot(x, αi-1) ; (2) 沿Xi-1轴平移ai-1,使Zi-1和Zi共线, 算子为Trans(ai-1,0,0); (3)绕Zi轴转角θi; 使得使Xi-1与Xi平行, 算子为Rot(z,θi);
(4) 沿Zi轴平移di。使得i-1系和i系重合, 算子为Trans(0,0,di)。
3.2.1 机器人正运动学方程
连杆 i 1
2
3
连杆长 度ai-1
0
a0
a1
连杆偏距 di 0
0
d2
连杆扭角 αi-1 00
00
-900
关节角 θi
θ1(00) θ2(00) θ3(00)
3.2.1 机器人正运动学方程
该3自由度机器人的运动学方程为:
机器人运动学
R3
Z
三个平移自由度 T1, T2, T3
三个旋转自由度 R1, R2, R3
T3
T1
T2
Y R2
X
2019/3/31
R1
2.2 刚体位姿描述
方位描述
第三章
机器人运动学
利用固定于物体的坐标系描述方位 (orientation)。方位又称为姿 态 (pose)。
在刚体 B上设置直角坐标系 {B} ,利用与 {B} 的坐标轴平行 的三个单位矢量表示B的姿态。
A
p R ( x , ) p
B
zB
zA
Bp
P
yB
{A}
1 0 R ( x , ) 0 c 0 s
c R ( y , ) 0 s 0 s 1 0 , 0 c
0 s c
s c 0 0 0 1
2019/3/31
i A iB A jB r11 r12
第三章
机器人运动学
2.2 刚体位姿描述
位置与姿态的表示 相对于参考坐标系{A},坐标系{B}的原点位置和坐标轴的 方位可以由位置矢量和旋转矩阵描述。刚体B在参考坐标 系{A}中的位姿利用坐标系{B}描述。
{ B}
当表示位置时 当表示方位时
zA
iB
jB
A
kA 坐标系{B}的三个单位主矢量在坐标系{A}中的描述:
pBo
kB
yA
{ A iB , A jB , A k B }
坐标系{B}相对于坐标系{A}的姿态描述:
A B
O
R { iB , jB , k B }
A A A
第三章机器人运动学
αi
3.2.3连杆附加坐标系的规定
(4)建立连杆坐标系的步骤
确定关节轴,并画出轴的延长线。 找出关节轴i和i+1的公垂线或交点,作为坐标系i的原点。 规定Zi的指向是沿着第i个关节轴。 规定Xi轴得指向是沿着轴i和i+1的公垂线的方向,如果关节轴 i和i+1相交,则Xi轴垂直于关节轴i和i+1所在的平面。 Yi 轴的方向由右手定则确定。 当第一个关节变量为0时,规定坐标系{0}和{1} 重合,对于坐 标系{N},尽量选择坐标系使得连杆参数为0.
3.2.3连杆附加坐标系的规定
为了描述每个连杆和相邻连杆之间的相对位置关系,需要在每个连杆 上定义一个固连坐标系. (1)连杆中的中间连杆 规定: 坐标系{i}的Z轴称为Zi,与 关节轴i重合; 坐标系{i}的原点位于公垂 线ai与关节轴i的交点处. Xi轴沿ai方向由关节i指向 关节i+1 (若: ai =0,则Xi垂直于Zi和Zi+1所 在的平面;按照右手定则绕Xi轴的 转角定义为αi ,由于Xi轴的符号 有两种,则转角的符号也有两种.) Yi轴由右手定则确定
3.2.5 PUMA560运动学方程
(2)连续连杆变换 定义了连杆坐标系和相应得连杆参数,就能建立运动学 方程,坐标系{N}相对于坐标系{0}的变换矩阵为:
0 N
0
T T T T
0 1 1 2 2 3
N 1 N
T
变换矩阵 NT 是关于n个关节变量的函数,这些变量可以通 过放置在关节上的传感器测得,则机器人末端连杆再基坐标系 (笛卡尔坐标系)中的位置和姿态就能描述出来。
2) joint angle 关节角 描述两个相邻连杆绕公共轴线旋 转的夹角θi. 当i为转动关节时,关节角为一变量.
机器人运动学
机器人运动学机器人运动学是研究机器人运动和姿态变化的一门学科。
它通过分析机器人的构造和动力学参数,研究机器人在特定环境下的运动规律和遵循的动力学约束,以实现机器人的准确控制和运动规划。
本文将从机器人运动学的基本概念、运动学模型、运动学正解和逆解等方面进行介绍。
1. 机器人运动学的基本概念机器人运动学是机器人学中的一个重要分支,主要研究机器人在空间中的运动状态、末端执行器的位置和姿态等基本概念。
其中,运动状态包括位置、方向和速度等;末端执行器的位置和姿态是描述机器人末端执行器在空间中的位置和朝向。
通过研究和分析这些基本概念,可以实现对机器人运动的控制和规划。
2. 运动学模型运动学模型是机器人运动学研究的重要工具,通过建立机器人的运动学模型,可以描述机器人在运动过程中的运动状态和姿态变化。
常见的运动学模型包括平面机器人模型、空间机器人模型、连续关节机器人模型等。
每种模型都有其独特的参数和运动学关系,可以根据实际情况选择合适的模型进行分析和研究。
3. 运动学正解运动学正解是指根据机器人的构造和动力学参数,求解机器人末端执行器的位置和姿态。
具体而言,根据机器人的关节角度、关节长度和连杆长度等参数,可以通过连乘法求解机器人末端执行器的位姿。
运动学正解是机器人运动学中的常见问题,解决这个问题可以帮助我们了解机器人在空间中的运动规律和运动范围。
4. 运动学逆解运动学逆解是指根据机器人末端执行器的位置和姿态,求解机器人的关节角度。
反过来,控制机器人的运动状态就需要求解逆运动学问题。
运动学逆解是机器人运动学研究的重要内容之一,它的解决可以帮助我们实现对机器人的准确定位和控制。
总结:机器人运动学是研究机器人运动和姿态变化的学科,通过运动学模型、运动学正解和运动学逆解等方法,可以描述机器人的运动状态、末端执行器的位置和姿态。
深入研究机器人运动学,可以实现对机器人的准确控制和运动规划。
随着机器人技术的不断发展,机器人运动学的研究也得到了越来越广泛的应用和重视。
机器人学基础_第3章机器人运动学
移动连杆坐标系的建立
移动连杆坐标系的规定:
• 坐标轴Zi:与i+1关节的轴线重合; • 坐标轴Xi:沿移动关节i轴线与关节i+1轴线的公垂线,指向i+1关节; • 坐标轴Yi:按右手直角坐标系法则确定; • 坐标原点Oi: (1)当关节i轴线和关节i+1轴线相交时,取交点; (2)当关节i轴线和关节i+1轴线异面时,取两轴线的公垂线与关节i轴
动到使其原点与连杆i坐标系原点重合的地方。 • (4) 绕Xi旋转αi角,使Zi–1转到与Zi同一直线上。 • 连杆i–1的坐标系经过上述变换与连杆i的坐标系
重合。如果把表示相邻连杆相对空间关系的矩阵 称为A矩阵,那么根据上述变换步骤,从连杆i到 连杆i–1的坐标变换矩阵Ai为
•
(3.13)
• 同理,对联轴器的齐次坐标变换矩阵有 •
• 手部的位置矢量为固定参考系原点指向手 部坐标系{B}原点的矢量P,手部的方向矢 量为n、o、a。于是手部的位姿可用4 4 矩阵表示为
•
•
nX oX a X PX
T
nY
oY
aY
PY
nZ 0
oz 0
aZ 0
PZ 1
• 思考:
• ①说明位姿矩阵的左上角3×3矩阵的几何 意义。
• ②分别说明n, o, a, P的几何意义。
a1 = l 1 =100
a2 = l 2 =100
旧课复习与总结
转动连杆坐标系的建立
• 坐标轴Zi:与i+1关节的轴线重合; • 坐标轴Xi:沿连杆i两关节轴线的公垂线,指向i+1关节; • 坐标轴Yi:按右手直角坐标系法则确定; • 坐标原点Oi: (1)当关节i轴线和关节i+1轴线相交时,取交点; (2)当关节i轴线和关节i+1轴线异面时,取两轴线的公垂
第1章 机器人运动学
• 答:①左上角3X3矩阵表示新坐标系在旧坐 标系中的旋转方向。 • ②左上角3X3矩阵中的各列表示新坐标系的 各坐标轴的单位矢量在旧坐标系的各坐标 轴上的投影;各行表示旧坐标系的各坐标 轴的单位矢量在新坐标系的各坐标轴上的 投影;P表示新坐标系相对旧坐标系的平移 量,其各分量表示平移后新坐标系在旧坐 标系中的矢量。
• 例1.3 图1.7表示手部抓握物体Q,物体是 边长为2个单位的正立方体,写出表达该手 部位姿的矩阵表达式。
• 解 因为物体Q形心与手部坐标系OXYZ的坐标原点 O相重合,则手部位置的 4 1列阵为 • 手部坐标系X轴的方向可用单位矢量n来表示:
• 同理,手部坐标系Y轴与Z轴的方向可分别用单位矢 量o和a来表示:
• 1.1.2 动系的位姿表示 • 一、连杆的位姿表示 • 设有一个机器人的连杆,若给 定了连杆PQ上某点的位置和 该连杆在空间的姿态,则称该 连杆在空间是完全确定的。 • 如图1.4所示,O为连杆上任 一点,OXYZ为与连杆固接 的一个动坐标系,即为动系。 连杆PQ在固定坐标系OXYZ 中的位置可用一齐次坐标表示 为 • (1.5)
1.1.1 齐次坐标
• 二、齐次坐标表示 • 将一个n维空间的点用n + 1维坐标表示,则该 n + 1维坐标即为n维坐标的齐次坐标。一般情况 下w称为该齐次坐标中的比例因子,当取w = 1 时,其表示方法称为齐次坐标的规格化形式,即 • P = [PX PY PZ 1]T (1.2) • 当w不为1时,则相当于将该列阵中各元素同时乘 以一个非零的比例因子w,仍表示同一点P,即 • P = [a b c w]T(1.3) • 式中:a = wPX;b = wPY;c = wPZ。
第1章 机器人运动学
第1章 机器人运动学
机器人学-第3章_机器人运动学
1, di)表示。
空间机械臂坐标系选择
为了获得机械臂末端执行器在3维空间的位置和姿态,需要在每个连杆上 定义与连杆固连的坐标系来描述相邻连杆之间的位置关系。
根据固连坐标系所在连杆的编号对固连坐标系命名,如在固连在连杆i上 的固连坐标系称为坐标系{i}。
若ai =0,两Z轴相交,则选Xi垂于Zi和Zi+1 ,坐标系{i}的选择不是唯一的。
9
轴i θi
轴 i-1
连杆坐标系中连杆参数确定
θi-1
连杆 i-1
DH参数按以下方法确定:
Zi
ai =沿Xi轴,从Zi移动到Zi+1的距离;
Yi
i =绕Xi轴,从Zi旋转到Zi+1的角度;
di =沿Zi轴,从Xi-1移动到Xi的距离;
系{1}与坐标系{0}重合。
对于坐标系{n},原点位置可以在关节轴
上任意选取, Xn的方向也是任意的。但在选 择时应尽量使更多的连杆参数为1=0 1=-90o d1=0
Y2
a2=L2 2=0 q2=-90o d2=L1
(b)
Z1
X2
Y2
Y1
X1
a1=0 1=90o d1=0
相邻连杆间坐标变换公式
建立 {P}、{Q}和{R}3个中间坐标系, 其中{i}和{i-1}是固定在连杆 i 和 i-1 上的固 连坐标系,如图3-13所示。
连杆 i-1 Zi
ZP
Xi ai
di ZQ XQ
ZR
qi
Zi-1
Xi-1XR ai-1
XP
i-1
1. 绕 Xi-1 轴旋转 i-1角
《机器人运动学》课件
机器人正向运动学建模
正向运动学
根据机器人关节参数,计算机器人末端执行器在笛卡尔坐标 系中的位置和姿态的过程。
正向运动学模型
描述机器人末端执行器位置和姿态与关节参数之间关系的数 学模型。
机器人逆向运动学建模
逆向运动学
已知机器人末端执行器在笛卡尔坐标系中的位置和姿态,求解机器人关节参数 的过程。
逆向运动学模型
02
它主要关注机器人在三维空间中 的位置和姿态,以及如何通过关 节运动来实现这些位置和姿态的 变化。
机器人运动学的研究内容
机器人位姿表示
研究如何用数学表达式表示机 器人在三维空间中的位置和姿
态。
运动学方程
建立机器人末端执行器位姿与 关节状态之间的数学关系,即 运动学方程。
运动学逆解与正解
研究如何通过给定的位姿求解 关节状态(逆解),以及如何 通过给定的关节状态求解位姿 (正解)。
关节坐标系
基于机器人关节建立的坐标系,常用于描述机器 人的关节运动状态。
工作坐标系
基于机器人工作需求建立的坐标系,常用于描述 机器人末端执行器的位置和姿态。
CHAPTER 03
机器人运动学建模
齐次变换与坐标变换
齐次变换
描述空间中物体位置和方向变化的数 学工具,包括平移和旋转。
坐标变换
将一个坐标系中的位置和方向信息转 换到另一个坐标系中的过程,涉及到 齐次变换的应用。
关节空间的轨迹规划
定义
关节空间是指机器人的各个关节角度 构成的坐标系,关节空间的轨迹规划 是指通过控制机器人的关节角度来实 现机器人的运动。
方法
常用的方法包括多项式插值、样条曲 线插值等,通过设定起始和目标位置 的关节角度,计算出一条平滑的关节 角度路径。
第三章-机器人运动学
在 量B。坐标系中的矢量rB
5i
9
j
0k
,求该点在A坐标系中的矢
解:由题意可得平移变换矩阵和旋转变换矩阵分别为:
轴移动6个单位,再绕z轴旋转30°,
求平移变换矩阵和旋转变换矩阵。
假设某点在B坐标系中的矢量rB
5i
9
j
0k
求该点在A坐标系中的矢量。
例:已知B坐标系的初始位置与A坐标系重合,首先把B坐标
系沿A坐标系的x轴移动12个单位,并沿y轴移动6个单位,再
绕z轴旋转30°,求平移变换矩阵和旋转变换矩阵。假设某点
机器人的位姿
机器人位姿的表示 位置可以用一个3×1的位置矩阵来描述。
p
px py
x
y
pz z
z
p(x,y,z)
o y
x
机器人的位姿
姿态可以用坐标系三个 坐标轴两两夹角的余弦值( 三个h坐标轴的单位矢量)组 成3×3的姿态矩阵来描述。
z
zh
xh oh p(x,y,z)
o
yh
y
x
cos(x, xh ) R cos(y, xh )
zi zj
oi
xi
oj
xj
yj yi
直角坐标变换
齐次变换及运算
旋转变换
——旋转变换矩阵,是一个3×3的矩阵,其中的每个元素 就是i坐标系和j坐标系相应坐标轴夹角θ的余弦值,它表明了 姿态(方向)。θ角的正负按右手法则确定,即由轴的矢端 看,逆时钟为正。
直角坐标变换
齐次变换及运算
联合变换
设i坐标系j和坐标系之间存在先平移变换,后
cos(z, xh )
cos(x, yh ) cos(y, yh ) cos(z, yh )
机器人运动学
机器人运动学介绍机器人运动学是机器人学中的一个重要分支,研究机器人的运动学原理和方法。
它关注的是机器人在二维或三维空间中的运动规律,包括位置、速度和加速度等。
机器人运动学是机器人控制的基础,它对于实现精确的运动控制和路径规划非常关键。
掌握机器人运动学理论和方法,能够帮助我们设计出更高效、更安全的机器人系统。
在本文档中,我们将介绍机器人运动学的基本概念和常用方法,包括前向运动学、逆向运动学和雅可比矩阵等。
前向运动学前向运动学是机器人运动学中的一种基本方法,用于计算机器人末端执行器的位置和姿态。
它通过将每个关节的运动传递下去,从而得到机器人的整体姿态。
在前向运动学中,我们需要了解机器人的连杆长度、关节角度和坐标系的定义。
通过这些参数,我们可以构建一个运动学模型,用于计算机器人的末端执行器位置和姿态。
通常,采用矩阵变换的方法来表示前向运动学。
我们可以通过一系列的坐标转换和旋转矩阵,将关节角度转化为末端执行器的位置和姿态。
逆向运动学逆向运动学是机器人运动学中的另一种重要方法,与前向运动学相反,它通过已知机器人末端执行器的位置和姿态,计算各个关节的角度。
逆向运动学常用于机器人路径规划和精确定位。
在机器人控制中,我们通常通过末端执行器的位置和姿态,来确定关节角度,从而实现期望的运动。
逆向运动学的计算过程相对复杂,通常采用优化算法或迭代求解的方法。
我们需要根据机器人的运动学模型和关节限制条件,对目标函数进行建模,并求解使目标函数最小化的关节角度。
雅可比矩阵雅可比矩阵是机器人运动学中的一个重要工具,用于描述机器人的运动学性能和控制能力。
它描述了机器人末端执行器的速度和姿态变化,对于路径规划和动力学分析非常有用。
雅可比矩阵的计算采用了线性近似的方法,通过对机器人运动学模型的导数进行计算。
它可以描述机器人关节角度和末端执行器的关系,从而可以帮助我们分析机器人的运动性能和控制精度。
雅可比矩阵在机器人运动学中有广泛的应用,例如用于机器人轨迹规划、碰撞检测和机器人力学优化等方面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y
z
x
• 试求立方体中心在机座坐标系∑0中的位置 • 该手爪从上方把物体抓起,同时手爪的开合方向与物体的Y轴同向, 那么,求手爪相对于∑0的姿态是什么?
解 1:
已知 摄T物 T1 , 摄T机 T2 , 求机T物
有:机T物 机T摄
1 0 0 - 1 0 0 0 0
摄
-1 T物 (T2) T1
y
o
z
x
0 10 0 1 0 1 1 0 0 10 0 20 - 1 10 0 0 - 1 9 0 1 0 0 0 1
z物 z机 y机
O机
0 - 1 0 0
1 0 0 0
0 11 0 10 1 1 0 1
x物
O物
px py 机T 手爪 pz 1
z机 y机
O机
z物 x物
O物
nx sx ax ny sy ay 实际要求 nz sz az 0 0 0
y物
a:
手爪开合方向与物体 y向重合
有s [ 1 0 0]T
b : 从上向下抓,指出手爪 的a方向物体z方向相反
杆件坐标系间的变换过程 -相邻关节坐标系的齐次变换
• 将xi-1轴绕zi-1轴转i 角度,将其与xi轴平行; • 沿zi-1轴平移距离di ,使zi-1轴与zi轴重合; • 沿xi轴平移距离Li,使两坐标系原点及x轴重 合; • 绕xi 轴转i角度,两坐标系完全重合.
D-H变换矩阵
cos i sin i cos i sin i sin i ai cos i sin cos cos cos sin a sin i i i i i i i i 1 Ai 0 sin i cos i di 0 0 1 0
y物
因此物体位于机座坐标系的(11,10,1)T 处,它的X,Y,Z轴分别与机座坐标系的 ∑O机根据T2画出 -Y,X,Z轴平行。
∑O物根据T1画出
解 2:
nx sx ax ny sy ay 实际要求 nz sz az 0 0 0
a:
px py 机T 手爪 pz 1
y
o
z
x
z物 z机 y机
O机
x物
O物
y物
手爪开合方向与物体 y向重合 有s [ 1 0 0]T
b : 从上向下抓,指出手爪 的a方向物体z方向相反
则有a [0 0 1]T
j i c: n s a 1 0 0 0
k 0 0i j 0k [0 1
机器人运动学
2005年3月24日
运动学正问题
杆件参数的意义 坐标系的建立原则 杆件坐标系间的变换过程-相邻关节坐标 系的齐次变换 机器人的运动学方程
杆件参数的意义- li 和 i
串联关节,每个杆件最多与 2 个杆件相连,如 Ai 与 Ai-1 和 Ai+1相连。由运动学的观点来看,杆件的作用仅在于它能保 持其两端关节间的形态不变。这种形态由两个参数决定,一 是杆件的长度 li(ai),一个是杆件的扭转角 i Ai+
1
• li 关节Ai轴和Ai+1轴
线公法线的长度 • i 关节i轴线与i+1 轴线在垂直于li平面 内的夹角
Ai
i
li
杆件参数的意义- d i和 i
确定杆件相对位置关系,由另外2个参数决定,一个是杆 件的距离: d i ,一个是杆件的回转角:
i
Ai+
1
• d i 是从第i-1坐标系
的原点到Zi-1轴和 Xi轴的交点沿Zi-1 轴测量的距离 • i 绕 Zi-1轴由Xi-1 轴转向Xi轴的关节 角
li li 1 di
zi 1 oi 1
i
xi 1
Li —沿 xi 轴, zi-1 轴与 xi 轴交点到 0i 的距离 αi — 绕 xi 轴,由 zi-1 转向zi di — 沿 zi-1 轴,zi-1 轴和 xi 交点至∑0i –1 坐标系原点的距离 θi — 绕 zi-1 轴,由 xi-1转向 xi
例题:
在机器人工作台上加装一电视摄像机,摄像机可见到固联 着6DOF关节机器人的机座坐标系原点,它也可以见到被操作 物体(立方体)的中心,如果在物体中心建一局部坐标系,则 摄像机所见到的这个物体可由齐次变换矩阵T1来表示,如果摄 像机所见到的机座坐标系为矩阵T2表示。
0 1 T1 0 0 1 0 1 0 0 10 0 -1 9 0 0 1 1 0 0 - 1 T2 0 0 0 0 0 - 10 0 20 - 1 10 0 1
1
0]T
0 1 0 1 0 0 因此:姿态矩阵为 0 - 1 0
0 1 0 11 当手爪中心 1 0 0 10 机 与物体中心 T物 0 0 -1 1 重合时 0 0 1 0
y
s
z
O
a
y
o
z
x
x
n
Ai-1 Ai
i
li li 1 di
i
坐标系的建立原则
• 为右手坐标系 • 原点Oi:设在Li与 Ai+1轴线的交点上 • Zi轴:与Ai+1关节轴 重合,指向任意
Ai+
1
Ai-1
Ai
i
yi zi xi oi yi 1
• Xi轴:与公法线Li 重合,指向沿Li由 Ai轴线指向Ai+1轴线 • Yi轴:按右手定则
机器人的运动学方程
0
Ti 逆问题
多解性,剔除多余解原则
根据关节运动空间合适的解 选择一个与前一采样时间最接近的解 根据避障要求得选择合适的解 逐级剔除多余解
可解性
所有具有转动和移动关节的系统,在一个单一串联中 总共有6个(或小于6个)自由度时,是可解的,一般 是数值解,它不是解析表达式,而是利用数值迭代原 理求解,它的计算量要比解析解大 如若干个关节轴线相交和或多个关节轴线等于0或90° 的情况下,具有6个自由度的机器人可得到解析解