高考数学快速提升成绩题型训练——抽象函数(最新编写)
2022届新高考数学抽象函数专题练习
专题8 抽象函数一、单选题1.函数()f x 是R 上的增函数,点()0,1A −,()3,1B 是其图象上的两点,则()11f x +<的解集为( ) A .()[),14,−∞−+∞ B .()[) ,12,−∞−+∞ C .1,2D .()1,42.已知函数()f x 在定义域R 上单调,且(0,)x ∈+∞时均有(()2)1f f x x +=,则(2)f −的值为( ) A .3B .1C .0D .1−3.单调增函数()f x 对任意,x y R ∈满足()()()f x y f x f y +=+,若()()33920x x xf k f ⋅+−−<恒成立,则k 的取值范围是( )A .()1− B .()1−∞C .(1⎤⎦D .)1,⎡+∞⎣4.定义在R 上的奇函数()f x 满足()()2f x f x −=,当(]0,1x ∈,()2log f x x x =−,则20212f ⎛⎫= ⎪⎝⎭( )A .32B .12C .12−D .32−5.已知定义在R 上的函数()f x 满足()()()f x y f x f y −=−,且当0x <时,()0f x >,则关于x 的不等式()()()()2222f mx f m f m x f x +>+(其中0m << )A .2x m x m ⎧⎫<<⎨⎬⎩⎭B .{|x x m <或2}x m > C .2x x m m ⎧⎫<<⎨⎬⎩⎭D .{|x x m >或2}x m<6.已知函数()f x 是R 上的偶函数,且()f x 的图象关于点()1,0对称,当[]0,1x ∈时,()22xf x =−,则()()()()0122020f f f f ++++的值为( )A .2−B .1−C .0D .17.已知奇函数()f x 的定义域为R ,若()2f x +为偶函数,且()11f −=−,则()()20172016f f += A .2−B .1−C .0D .18.已知函数()f x 是定义在R 上的奇函数,当0x >时,()2f x x x =+,则不等式()()ln 1f x f <−的解集为( ) A .()0,e B .1,e ⎛⎫−∞ ⎪⎝⎭C .(10,e ⎛⎫⎪⎝⎭D .1,e⎛⎫+∞ ⎪⎝⎭二、多选题9.已知函数()f x 满足x R ∀∈,有()(6)f x f x =−,且(2)(2)f x f x +=−,当[1,1]x ∈−时,)()lnf x x =,则下列说法正确的是( )A .(2021)0f =B .(2020,2022)x ∈时,()f x 单调递增C .()f x 关于点(1010,0)对称D .(1,11)x ∈−时,方程()sin 2f x x π⎛⎫=⎪⎝⎭的所有根的和为30 10.已知()f x 是定义在R 上的偶函数,()()11f x f x −=−+,且当[]0,1x ∈时,()22f x x x =+−,则下列说法正确的是( )A .()f x 是以4为周期的周期函数B .()()201820212f f +=−C .函数()2log 1y x =+的图象与函数()f x 的图象有且仅有3个交点D .当[]3,4x ∈时,()2918f x x x =−+11.已知函数()f x 的定义域为R ,且在R 上可导,其导函数记为()f x '.下列命题正确的有( ) A .若函数()f x 是奇函数,则()f x '是偶函数 B .若函数()'f x 是偶函数,则()f x 是奇函数 C .若函数()f x 是周期函数,则()f x '也是周期函数 D .若函数()f x '是周期函数,则()f x 也是周期函数12.已知函数()y f x =是R 上的奇函数,对于任意x ∈R ,都有(4)()(2)f x f x f +=+成立,当[)0,2x ∈时,()21=−x f x ,给出下列结论,其中正确的是( )A .(2)0f =B .点(4,0)是函数()y f x =的图象的一个对称中心C .函数()y f x =在[6,2]−−上单调递增D .函数()y f x =在[6,6]−上有3个零点 三、填空题13.写出一个满足()()2f x f x =−的奇函数()f x =______.14.已知函数()f x 是R 上的奇函数,且()y f x =的图象关于1x =对称,当[0,1]x ∈时,()21x f x =−,计算(0)(1)(2)(3)(2021)f f f f f +++++=________.15.函数()f x 为定义在R 上的奇函数,且满足()(2)f x f x =−,若(1)3f =,则(1)(2)(50)f f f +++=__________.16.设()f x 是定义在R 上的函数,且()()2f x f x =+,在区间[)1,1−上,(),102,015x a x f x x x +−≤<⎧⎪=⎨−≤<⎪⎩,其中a ∈R .若5922f f ⎛⎫⎛⎫−= ⎪ ⎪⎝⎭⎝⎭,则()5f a 的值是________.四、解答题17.已知定义在R 上的函数()f x ,()g x 满足: ①()01f =;②任意的x ,R y ∈,()()()()()f x y f x f y g x g y −=−.(1)求()()22f xg x −的值;(2)判断并证明函数()f x 的奇偶性.18.已知函数()f x 满足对,x y R ∀∈,都有()()()f x y f x f y +=+,且(1)2f =. (1)求(0)f 与(2)f −的值;(2)写出一个符合题设条件的函数()f x 的解析式(不需说明理由),并利用该解析式解关于x 的不等式(21)1()1f x f x +≥−.19.如果存在一个非零常数T ,使得对定义域中的任意的x ,总有f x Tf x 成立,则称()f x 为周期函数且周期为T .已知()f x 是定义在R 上的奇函数,且()y f x =的图象关于直线x a =(0a ≠,为常数)对称,证明:()f x 是周期函数.20.已知函数()()y f x x =∈R .(1)若()f x 满足(1)y f x =+为R 上奇函数且(1)=−y f x 为R 上偶函数,求(3)(5)f f −+的值;(2)若函数()()y g x x =∈R 满足1(3)2g x +=x ∈R 恒成立,函数()()()h x f x g x =+,求证:函数()h x 是周期函数,并写出()h x 的一个正周期;(3)对于函数()y f x =,()()y k x x =∈R ,若(())()f k x f x =对x ∈R 恒成立,则称函数()y f x =是“广义周期函数”, ()k x 是其一个广义周期,若二次函数2()(0)f x ax bx c a =++≠的广义周期为()k x (()k x x =不恒成立),试利用广义周期函数定义证明:对任意的12,x x ∈R ,12x x ≠,()()12f x f x =成立的充要条件是12b x x a+=−.参考答案1.C【解析】解法一:因为()f x 是R 上的增函数,()0,1A −,()3,1B 是其图象上的两点,所以函数()f x 的草图如图所示.由图象得,()()11111013f x f x x +<⇔−<+<⇔<+<,即12x −<<.解法二:因为()f x 是R 上的增函数,()0,1A −,()3,1B 是其图象上的两点,所以当03x ≤≤时,()11f x −≤≤.又已知()11f x +<,即()111f x −<+<, 所以013x <+<,解得12x −<<. 故选:C2.A【解析】根据题意,函数()f x 在定义域R 上单调,且(0,)x ∈+∞时均有(()2)1f f x x +=, 则()2f x x +为常数,设()2f x x t +=,则()2f x x t =−+,则有()21f t t t =−+=,解可得1t =−,则()21f x x =−−,故(2)413f −=−=; 故选:A. 3.B【解析】因为()()()f x y f x f y +=+,所以()()3392(3392)0x x x x x xf k f f k ⋅+−−=⋅+−−<又对任意,x y R ∈满足()()()f x y f x f y +=+, 所以(0)(0)(0)f f f =+, 解得(0)0f =,由()f x 为R 上单调增函数可得33920x x x k ⋅+−−<,令30x t =>,即2(1)20k t t +−−<恒成立, 即21k t t+<+,而2t t +≥,当且仅当2t t=,即t =所以1k +<1k <, 故选:B 4.D【解析】因为()f x 满足()()2f x f x −=,所以()f x 的图像关于x=1对称. 又()f x 为定义在R 上的奇函数,所以()()()22f x f x f x =−=−−, 所以()()()42f x f x f x +=−+=, 所以()f x 为周期函数,且周期T =4. 所以2021552524222f f f ⎛⎫⎛⎫⎛⎫=⨯+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,而25511132log 222222f f f⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=−=−=−−− ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, 所以20212f ⎛⎫= ⎪⎝⎭32−.故选:D 5.A【解析】任取12x x <,由已知得()120f x x −>,即()()120f x f x −>,所以函数()f x 单调递减.由()()()()2222f mx f m f m x f x +>+可得()()()()2222f mx f x f m x f m −>−,即()22f mx x f −>()22m x m −,所以2222mx x m x m −<−,即()22220mx m x m −++<,即()()20mx x m −−<,又因为0m << 所以2m m>,此时原不等式解集为2x m x m ⎧⎫<<⎨⎬⎩⎭.故选:A 6.D【解析】因为()f x 是R 上的偶函数,所以()()f x f x −=, 又()f x 的图象关于点()1,0对称,则()(2)f x f x =−−,所以()(2)f x f x −=−−,则()(2)f x f x =−+,得(4)(2)()f x f x f x +=−+=, 即(4)()f x f x +=−,所以()f x 是周期函数,且周期4T =,由[]0,1x ∈时,()22xf x =−,则(0)1,(1)0f f ==,(2)(0)1f f =−=−,(3)(3)(1)0f f f =−==,则(0)(1)(2)(3)0f f f f +++=, 则()()()()0122020f f f f ++++(0)5050(0)1f f =+⨯==故选:D 7.D【解析】奇函数()f x 的定义域为R ,若(2)f x +为偶函数, (0)0f ∴=,且(2)(2)(2)f x f x f x −+=+=−−,则(4)()f x f x +=−,则(8)(4)()f x f x f x +=−+=, 则函数()f x 的周期是8,且函数关于2x =对称, 则(2017)(25281)f f f =⨯+=(1)(1)(1)1f =−−=−−=,(2016)(2528)(0)0f f f =⨯==,则(2017)(2016)011f f +=+=, 故选D . 8.C【解析】因为当0x >时,()2f x x x =+,且函数()f x 是定义在R 上的奇函数,所以0x <时,()()()()22f x f x x x x x ⎡⎤=−−=−−+−=−+⎣⎦, 所以()22,0,0x x x f x x x x ⎧−+<=⎨+>⎩,作出函数图象:所以函数()f x 是()+−∞∞,上的单调递增, 又因为不等式()()ln 1f x f <−,所以ln 10x x <−⎧⎨>⎩,即10x e <<,故选:C. 9.CD【解析】由题设知:2221()ln(1)lnln(1)()1f x x x x x f x x x−=++==−+−=−+−,故()f x 在[1,1]x ∈−上为奇函数且单调递减,又(2)(4)(2)f x f x f x +=−=−,即关于21x k =+、(2,0)k ,k Z ∈对称,且最小周期为4, A :(2021)(50541)(1)ln(21)0f f f =⨯+==−≠,错误;B :(2020,2022)x ∈等价于(0,2)x ∈,由上易知:(0,1)上递减,(1,2)上递增,故()f x 不单调,错误;C :由上知:()f x 关于(2,0)k 对称且k Z ∈,所以()f x 关于(1010,0)对称,正确;D :由题意,只需确定()f x 与sin 2xy π=在(1,11)x ∈−的交点,判断交点横坐标的对称情况即可求和,如下图示,∴共有6个交点且关于5x =对称,则16253410x x x x x x +=+=+=, ∴所有根的和为30,正确. 故选:CD 10.ACD【解析】对于A 选项,由已知条件可得()()()()1113f x f x f x f x +=−−=−−=−, 所以,函数()f x 是以4为周期的周期函数,A 选项正确;对于B 选项,()()()2018202f f f ==−=,()()202110f f ==,则()()201820212f f +=,B 选项错误;对于C 选项,作出函数()2log 1y x =+与函数()f x 的图象如下图所示:当[]0,1x ∈时,()[]221922,024f x x x x ⎛−=+⎫−=−∈− ⎪⎝⎭,结合图象可知,()22f x −≤≤.当3x >时,()2log 12x +>,即函数()2log 1y x =+与函数()f x 在()3,+∞上的图象无交点, 由图可知,函数()2log 1y x =+与函数()f x 的图象有3个交点,C 选项正确; 对于D 选项,当[]3,4x ∈时,[]41,0x −∈−,则[]40,1x −∈,所以,()()()()()2244442918f x f x f x x x x x =−=−=−+−−=−+,D 选项正确. 故选:ACD. 11.AC【解析】解:由导数的定义:()()()=lim x f x x f x f x x ∆→+∆−∆'选项A :()()()()()()00=lim=lim=x x f x x f x f x f x x f x f x xx∆→∆→−+∆−−−−∆∆∆''−,即()f x '是偶函数,故A 正确;选项B :如()sin 1f x x =+不是奇函数,而()cos f x x '=为偶函数;故B 错误, 选项C :()()()()()()00=lim=limx x f x T x f x T f x x f x f x T f x xx∆→∆→++∆−++∆−=∆∆''+即()f x '也是周期函数,故C 正确;选项D :如()sin f x x x =+不是周期函数,但()1cos f x x '=+是周期函数;故D 错误, 故选:AC. 12.AB【解析】在(4)()(2)f x f x f +=+中,令2x =−,得(2)0f −=,又函数()y f x =是R 上的奇函数,所以(2)(2)0f f =−=,(4)()f x f x +=,故()y f x =是一个周期为4的奇函数,因(0,0)是()f x 的对称中心,所以(4,0)也是函数()y f x =的图象的一个对称中心,故A 、B 正确;作出函数()f x 的部分图象如图所示,易知函数()y f x =在[6,2]−−上不具单调性,故C 不正确;函数()y f x =在[6,6]−上有7个零点,故D 不正确. 故选:AB 13.πsin2x (答案不唯一) 【解析】取()sin2f x x π=,下面为证明过程:显然,其定义域为R ; 由()sin sin ()22f x x x f x ππ⎛⎫⎛⎫−=−=−=− ⎪ ⎪⎝⎭⎝⎭,故()sin 2f x x π=为奇函数;又()(2)sin 2sin sin ()222f x x x x f x ππππ⎡⎤⎛⎫−=−=−== ⎪⎢⎥⎣⎦⎝⎭.故答案为:sin 2x π(答案不唯一).14.1【解析】由题意,()()f x f x −=−且(2)()f x f x −=,∴()(2)()(2)(2)f x f x f x f x f x −=+=−=−−=−,即()(4)f x f x =+, ∴()f x 是周期为4的函数.令10x −≤<,则01x <−≤,而[0,1]x ∈时()21x f x =−,∴1()()(21)12xxf x f x −=−−=−−=−, ∴(0)(2)0,(1)1,(3)(1)1f f f f f ====−=−,即(0)(1)(2)(3)0f f f f +++=, 而(0)(1)(2)(3)(2021)505[(0)(1)(2)(3)]f f f f f f f f f +++++=⨯+++(5054)f +⨯(50541)f +⨯+(0)(1)1f f =+=.故答案为:115.3【解析】()(2)f x f x =−,(2)()f x f x ∴+=−,又()f x 为奇函数,(2)()(),(4)(2)()f x f x f x f x f x f x ∴+=−=−+=−+=()f x ∴是周期为4的周期函数,()f x 是定义在R 上的奇函数,(0)0,(4)(0)0f f f ∴=∴==,(2)(0)0,(3)(1)(1)3f f f f f ===−=−=−(1)(2)(3)(4)0f f f f ∴+++=,()()()()()12...50012123f f f f f ∴+++=⨯++=.故答案为:3.16.25− 【解析】因为()()2f x f x =+, 所以511222f f a ⎛⎫⎛⎫−=−=−+ ⎪ ⎪⎝⎭⎝⎭,9112210f f ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,所以11210a −+=,解得35a =, 所以()()()25315f a f f ==−=−. 故答案为:25− 17.(1)1;(2)偶函数,证明见解析.【解析】(1)依题意,()()()()()()22f x g x f x f x g x g x −=−()()01f x x f =−==.(2)由(1)知()()22001f g −=,∴()()220010g f =−=,即()00g =,∴()()()()()()()000f x f x f f x g g x f x −=−=−=,又因为()f x 的定义域为R ,所以函数()f x 为偶函数.18.(1)(0)0f =,(2)4f −=−;(2)31(,](,)22−∞−+∞(答案不唯一). 【解析】(1)由()()()f x y f x f y +=+,令0x y ==,得(0)2(0)f f =,所以(0)0f =,令1,1x y ==−,得(0)(1)(1)f f f =+−,因为(1)2f =,所以(1)2f −=−,令1x y ==−,得(2)(1)(1)4f f f −=−+−=−,(2)答案不唯一,例如:()2f x x =满足条件.由(21)1()1f x f x +≥−,得2(21)2(21)23110212121x x x x x x +++≥⇔−=≥−−−, 解得:32x ≤−或12x >, 故解集为31(,](,)22−∞−+∞ 19.证明见解析【解析】∵()f x 是定义在R 上的奇函数,∴()()f x f x −=−,∵()y f x =的图象关于直线x a =(0a ≠,为常数)对称,所以()()f a x f a x +=−,∴(2)[()][()]()()f a x f a a x f a a x f x f x +=++=−+=−=−.从而(4)(2)()f a x f a x f x +=−+=.∴()f x 是周期函数,且周期为4a .20.(1)0;(2)证明见解析,正周期为24;(3)证明见解析.【解析】(1)因为()f x 满足(1)y f x =+为R 上奇函数,所以(1)(1)f x f x −=−+,所以()(2)0f x f x −++=,又因为()f x 满足(1)=−y f x 为R 上偶函数,所以(1)(1)f x f x −−=−,所以()(2)f x f x −=−,所以有(2)(2)0f x f x −++=,所以(2)(2)f x f x +=−−,所以(4)()f x f x +=−,所以(8)(4)()f x f x f x +=−+=,所以()f x 的一个周期为8,所以(3)(5)2(5)f f f −+=,在()(2)0f x f x −++=中令1x =−,得(1)(1)0f f +=,所以(1)0f =,在(4)()f x f x +=−中令1x =,得(5)(1)f f −=,所以(5)(1)0f f =−=,所以(3)(5)0f f −+=;(2)因为11(3)22g x +=≥,所以1(6)2g x +=12=因为[]11(3)1(3)122g x g x ⎡⎡+−+=+−⎢⎢⎣⎣ 21()()4g x g x =−+ 21()2g x ⎡⎤=−⎢⎥⎣⎦,所以111(6)()222g x g x +==+−()g x =,所以函数()g x 的一个周期为6,因为()()()h x f x g x =+,所以(24)(83)(64)()()()h x f x g x f x g x h x +=+⨯++⨯=+=,所以()h x 是周期函数,一个正周期为24;(3)充分性:当12b x x a +=−时,12b x x a=−−, 此时()()221222222b b b f x f x a x b x c ax bx c f x a a a ⎛⎫⎛⎫⎛⎫=−−=−−+−−+=++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以充分性满足;必要性:因为二次函数2()(0)f x ax bx c a =++≠的广义周期为()k x ,所以(())()f k x f x =,所以22(())()a k x bk x c ax bx c ++=++,所以22()[()]0a k x x b k x x ⎡⎤−+−=⎣⎦,又因为()k x x =不恒成立,所以[()]0a k x x b ++=,所以()b k x x a =−−,又因为()()12f x f x =,且()()()11f k x f x =,所以()()()21f k x f x =,因为12x x ≠,所以1212()b b k x x x x a a +=−−+≠−, 所以()12k x x =,即12b x x a −−=,也即12b x x a +=−, 所以必要性满足.所以:对任意的12,x x ∈R ,12x x ≠,()()12f x f x =成立的充要条件是12b x x a +=−.。
压轴题型03 抽象函数问题(解析版)-2023年高考数学压轴题专项训练
压轴题03抽象函数问题抽象函数是高中数学的一个难点,也是近几年来高考的热点。
考查方法往往基于一般函数,综合考查函数的各种性质。
本节给出抽象函数中的函数性质的处理策略,供内同学们参考。
抽象函数是指只给出函数的某些性质,而未给出函数具体的解析式及图象的函数。
由于抽象函数概念抽象,性质隐而不显,技巧性强,因此学生在做有关抽象函数的题目时,往往感觉无处下手。
○热○点○题○型1定义域问题解决抽象函数的定义域问题——明确定义、等价转换。
函数的定义域是指自变量的取值范围,求抽象函数的定义域的关键是括号内式子的地位等同(即同一对应法则后括号内的式子具有相同的取值范围)。
○热○点○题○型2求值问题通过观察已知与未知的联系,巧妙地赋值,赋值法是解此类问题的常用技巧。
○热○点○题○型3值域问题○热○点○题○型4解析式问题通常情况下,给某些变量适当赋值,使之在关系中“消失”,进而保留一个变量,是实现这种转化的重要策略。
○热○点○题○型5单调性与奇偶性问题○热○点○题○型6周期性与对称性问题○热○点○题○型7几类抽象函数解法(1)求解方法:1.借鉴函数模型进行类比探究(化抽象为具体)2.赋值法(令0=x 或1,求出)0(f 或)1(f 、令x y =或x y -=等等)(2)几种抽象函数模型:1.正比例函数:)0()(≠=k kx x f ——————————)()()(y f x f y x f ±=±;2.幂函数:2)(x x f =——————————————)()()(y f x f xy f =,)()()(y f x f y x f =;注:反比例函数:1)(-=x x f 一类的抽象函数也是如此,有部分资料将幂函数模型写成反比例函数模型。
3.指数函数:x a x f =)(———————————)()()(y f x f y x f =+,)()()(y f x f y x f =-4.对数函数:x x f a log )(=————————)()()(y f x f xy f +=,)()()(y f x f yxf -=5.三角函数:x x f tan )(=————————————)()(1)()()(y f x f y f x f y x f -+=+6.余弦函数:x x f cos )(=———————)()(2)()(y f x f y x f y x f =-++一、单选题1.已知定义在()0,∞+上的函数()f x 满足()()()102f xy f x f y +--=,若一组平行线()1,2,...,i x x i n ==分别与()y f x =图象的交点为()11,x y ,()22,x y ,...,(),n n x y ,且()2121n i i x x f -+=⎡⎤⎣⎦,其中1,2,...,i n =,则1nii y n==∑A .1B .12C .2nD .2n 【答案】B【分析】令1x y ==得到()112f =;令1,n i i x x y x -+==得到()()11n i i f x f x -++=,代入计算得(6)()6f x f x +-≥,则(2016)f =A .2015B .2016C .2017D .2018【答案】D【分析】根据递推式可得(6)()6f x f x +-=,再由(2016)f =[(2016)(2010][(2010)(2004)]......[(6)(0)](0)f f f f f f f -+-++-+即可得答案.【详解】解:(2)()2,f x f x +-≤ (4)(2)2,f x f x ∴+-+≤(6)(4)2f x f x ∴+-+≤三是相加得:(6)()6f x f x +-≤,又(6)()6f x f x +-≥,则(6)()6f x f x +-=,当且仅当(2)()2f x f x +-=时等号成立,(2016)f =[(2016)(2010][(2010)(2004)]......[(6)(0)](0)f f f f f f f -+-++-+633622018=⨯+=,故选:D.3.已知定义域为R 的函数()f x 满足()31f x +是奇函数,()21f x -是偶函数,则下列结论错误的是()A .()f x 的图象关于直线=1x -对称B .()f x 的图象关于点(1,0)对称C .()31f -=D .()f x 的一个周期为8【答案】C【分析】根据()31f x +是奇函数,可得()()20f x f x +-+=,判断B;根据()21f x -是偶函数,推出()()2f x f x --=,判断A;继而可得()()4f x f x +=-,可判断D ;利用赋值法求得(1)0f =,根据对称性可判断C.【详解】由题意知()31f x +是奇函数,即()()()()3131,11f x f x f x f x -+=-+∴-+=-+,即()()2f x f x -+=-,即()()20f x f x +-+=,故()f x 的图象关于点(1,0)对称,B 结论正确;又()21f x -是偶函数,故()()()()2121,11f x f x f x f x --=-∴--=-,即()()2f x f x --=,故()f x 的图象关于直线=1x -对称,A 结论正确;由以上可知()()()22f x f x f x =--=--+,即()()22f x f x -=-+,所以()()4f x f x +=-,则()()4()8x x f f f x =-=++,故()f x 的一个周期为8,D 结论正确;由于()()3131f x f x -+=-+,令0x =,可得(1)(1),(1)0f f f =-∴=,而()f x 的图象关于直线=1x -对称,故()30f -=,C 结论错误,故选:C【点睛】方法点睛:此类抽象函数的性质的判断问题,解答时一般要注意根据函数的相关性质的定义去解答,比如奇偶性,采用整体代换的方法,往往还要结合赋值法求得特殊值,进行解决.4.已知定义在R 上的函数()f x 在(),4-∞-上是减函数,若()()4g x f x =-是奇函数,且()40g =,则不等式()0f x ≤的解集是A .(](],84,0-∞-⋃-B .[)[)8,40,--⋃+∞C .[][)8,40,--⋃+∞D .[]8,0-【答案】C【详解】∵()()4g x f x =-是奇函数,∴函数()()4g x f x =-图象的对称中心为(0,0),∴函数()f x 图象的对称中心为()4,0-.又函数()f x 在(),4-∞-上是减函数,∴函数()f x 在()4,-+∞上为减函数,且()()400f g -==.∵()()400g f ==,∴()80f -=.画出函数()f x 图象的草图(如图).结合图象可得()0f x ≤的解集是[][)8,40,--⋃+∞.选C .点睛:本题考查抽象函数的性质及利用数形结合求不等式的解集.解题时要从函数()f x 的性质入手,同时也要把函数()()4g x f x =-的性质转化为函数()f x 的性质,进一步得到函数()f x 的单调性和对称性,进而画出其图象的草图,根据图象写出不等式的解集.其中在解题中不要忘了()f x 是定义在R 上的函数,故应该有()()400f g -==这一结论,即函数()f x 的图象中要有()4,0-这一个点.5.已知函数()y f x =是定义域为R 的偶函数,当0x ≥时()()()5sin ,014211,14xx x f x x π⎧⎛⎫≤≤ ⎪⎪⎝⎭⎪=⎨⎛⎫⎪+> ⎪⎪⎝⎭⎩,若关于x 的方程()()20f x af x b ⎡⎤++=⎣⎦有6个根,则实数a 的取值范围是()A .59,24⎛⎫-- ⎪⎝⎭B .9,14⎛⎫-- ⎪⎝⎭C .59,24⎛⎫-- ⎪⎝⎭9,14⎛⎫⋃-- ⎪⎝⎭D .5,12⎛⎫-- ⎪⎝⎭二、多选题(共0分)6.下列说法中错误的为()A .若函数()f x 的定义域为[]0,2,则函数()2f x 的定义域为[]0,1B .若(121f x =+,则()[)2243,1,f x x x x ∞=++∈+C .函数的421x x y =++值域为:1,4⎡⎫-+∞⎪⎢⎣⎭D .已知()25,1,1x ax x f x a x x⎧---≤⎪=⎨>⎪⎩在R 上是增函数,则实数a 的取值范围是[]3,2--7.若定义在R 上的函数()f x 满足:(ⅰ)存在R a +∈,使得()0f a =;(ⅱ)存在R b ∈,使得()0f b ≠;(ⅲ)任意12,R x x ∈恒有()()()()1212122f x x f x x f x f x ++-=.则下列关于函数()f x 的叙述中正确的是()A .任意x ∈R 恒有()()4f x a f x +=B .函数()f x 是偶函数C .函数()f x 在区间[]0,a 上是减函数D .函数()f x 最大值是1,最小值是-18.已知的定义域为R ,且对任意,有1f x f y f x y ⋅=+-,且当1x >时,()1f x >,则()A .()11f =B .()f x 的图象关于点()()1,1f 中心对称C .()f x 在R 上不单调D .当1x <时,()01f x <<故选:AD9.已知定义域为()0,∞+的函数()f x 满足:①()0,x ∀∈+∞,()()55f x f x =;②当(]1,5x ∈时,()5f x x =-,则()A .105f ⎛⎫= ⎪⎝⎭B .m Z ∀∈,()30mf =C .函数()f x 的值域为[)0,∞+D .n Z ∃∈,()512019nf +=10.已知()f x 为非常值函数,若对任意实数x ,y 均有()()()1f x y f x f y +=+⋅,且当0x >时,()0f x >,则下列说法正确的有()A .()f x 为奇函数B .()f x 是()0,∞+上的增函数C .()1f x <D .()f x 是周期函数对于D:因为()f x 是()0,∞+上的增函数,又因为()f x 为奇函数且()00f =,所以()f x 是(),-∞+∞上的增函数,故()f x 不是周期函数,故D 错误.故选:ABC.11.定义在R 上的函数()f x 满足()()()312f x f x f +++=,()()24f x f x -=+,若1122f ⎛⎫= ⎪⎝⎭,则()A .()f x 是周期函数B .1(2022)2f =C .()f x 的图象关于1x =对称D .200111002k k f k =⎛⎫-=- ⎪⎝⎭∑可得())1(3f x f x +=-,从而可得()f x 是周期为4的周期函数,是解决本题的关键.12.已知函数()f x ,()g x 的定义域均为R ,其导函数分别为()f x ',()g x '.若()()32f x g x -+=,()()1f x g x ''=+,且()()20g x g x -+=,则()A .函数()2g x +为偶函数B .函数()f x 的图像关于点()2,2对称C .()202410i g n ==∑D .()202414048i f n ==-∑【答案】ACD【分析】由()()1f x g x ''=+,可设()()()1,R f x a g x b a b +=++∈,,由()()32f x g x -+=,得()()321g x a g x b --+=++,赋值1x =,则有2a b -=,即()()31g x g x -=+,函数()g x 的图像关于直线2x =对称,又()()20g x g x -+=得()()4g x g x =+,()f x 也是周期为4的函数,通过赋值可判断选项【详解】因为()()1f x g x ''=+,所以()()()1,R f x a g x b a b +=++∈.又因为()()32f x g x -+=,所以()()23f x g x +=-.于是可得()()321g x a g x b --+=++,令1x =,则()()31211g a g b --+=++,所以2a b -=.所以()()31g x g x -=+,即函数()g x 的图像关于直线2x =对称,即()()4g x g x -=+.因为()()20g x g x -+=,所以函数()g x 的图像关于点()1,0对称,即()()20g x g x ++-=,所以()()24g x g x +=-+,即()()2g x g x =-+,于是()()4g x g x =+,所以函数()g x 是周期为4的周期函数.因为函数()g x 的图像关于直线2x =对称,所以()2g x +的图像关于y 轴对称,所以()2g x +为偶函数,所以A 选项正确.将()g x 的图像作关于y 轴对称的图像可得到()y g x =-的图像,再向右平移3个单位长度,可得到()()33y g x g x =--=-⎡⎤⎣⎦的图像,再将所得图像向下平移2个单位长度,即可得到()()32g x f x --=的图像,因此函数()f x 也是周期为4的函数.又()g x 的图像关于点()1,0对称,所以()f x 的图像关于点()2,2-对称,所以B 选项不正确.因为()()20g x g x -+=,令1x =,得()()110g g +=,即()10g =,所以()()130g g ==;令0x =,得()()200g g +=,所以()()240g g +=,所以()()()()12340g g g g +++=,所以()202410i g n ==∑,所以C 选项正确.因为()()32f x g x =--,所以()()0322f g =-=-,()()2122f g =-=-,()()122f g =-,()()302f g =-,()()402f f ==-,则有()()()()()()()123422202f f f f g g +++=-+-+-()28+-=-,可得()202414048i f n ==-∑,所以D 选项正确.故选:ACD .【点睛】方法点睛:一般地,若函数的图像具有双重对称性,则一定可以得到函数具有周期性,且相邻的两条对称轴之间的距离为半个周期;相邻的两个对称中心之间的距离也是半个周期;相邻的一条对称轴和一个对称中心之间的距离为四分之一个周期.三、填空题13.下列命题中所有正确的序号是__________.①函数1()3x f x a -=+(1a >)在R 上是增函数;②函数(1)f x -的定义域是(1,3),则函数()f x 的定义域为(2,4);③已知53()8f x x ax bx =++-,且(2)8f -=,则(2)8f =-;④11()122x f x =--为奇函数.⑤函数()f x =[]0,4(3)构造奇函数求对应的函数值;(4)定义法判断函数奇偶性;(5)直接法求具体函数的值域.14.给出下列四个命题:①函数与函数表示同一个函数;②奇函数的图象一定通过直角坐标系的原点;③函数的图像可由的图像向上平移1个单位得到;④若函数的定义域为,则函数的定义域为;⑤设函数是在区间上图象连续的函数,且,则方程在区间上至少有一实根;其中正确命题的序号是_____________.(填上所有正确命题的序号)【答案】③⑤【详解】试题分析:①因为函数的定义域为R ,函数的定义域为{}|>0x x ,所以函数与函数不表示同一个函数;②奇函数的图像一定通过直角坐标系的原点,此命题错误,若奇函数在x=0处没定义,则奇函数的图像就不过原点;③函数的图像可由的图像向上平移1个单位得到;,正确.④因为函数的定义域为,所以0<2<2,0<x<1x 即,所以函数的定义域为[0,1];⑤设函数是在区间上图象连续的函数,且,则方程在区间上至少有一实根,正确.考点:函数的定义;奇函数的性质;图像的变换;抽象函数的定义域;函数零点存在性定理.点评:此题考查的知识点较多,较为综合,属于中档题.抽象函数的有关问题对同学们来说具有一定的难度,特别是求函数的定义域,很多同学解答起来总感棘手,鉴于此,我们在学习时要善于总结.①已知的定义域求的定义域,其解法是:若的定义域为,则在中,,从中解得x 的取值范围即为的定义域;②已知的定义域,求的定义域,其解法是:若的定义域为,则由确定的的范围即为的定义域.15.已知函数()241f x x -+-的定义域为[]0,m ,则可求得函数()21f x -的定义域为[]0,2,求实数m 的取值范围__________.【答案】[]24,【详解】 函数()21f x -的定义域为[]0,2,02,1213x x ∴≤≤∴-≤-≤,令241t x x =-+-,则13t -≤≤,由题意知,当[]0,x m ∈时,[]1,3t ∈-,作出函数241t x x =-+-的图象,如图所示,由图可得,当0x =或4x =时,1t =-,当2x =时,3,24t m =∴≤≤,时[]1,3t ∈-,∴实数m 的取值范围是24m ≤≤,故答案为24m ≤≤.16.给出下列说法:①集合{}1,2,3A =,则它的真子集有8个;②2(),((0,1))f x x x x=+∈的值域为(3,)+∞;③若函数()f x 的定义域为[0,2],则函数(2)()2f xg x x =-的定义域为[)0,2;④函数()f x 的定义在R 上的奇函数,当0x >时,()1f x x =-+,则当0x <时,()1f x x =-⑤设53()=5f x ax bx cx +++(其中,,a b c 为常数,x R ∈),若(2012)3f -=-,则(2012)13f =;其中正确的是_______(只写序号).【答案】②⑤【详解】试题分析:①集合{1,2,3}A =,则它的真子集有个;③由函数()f x 的定义域为[0,2]得:,解得;④设,则,所以,又因为()f x 是定义在R 上的奇函数,所以()f x =-;⑤设g(x)=,则g(x)是奇函数且()f x =g(x)+5,因为(2012)3f -=-,所以,所以.考点:本题考查真子集的性质、抽象函数的定义域、函数的奇偶性.点评:此题主要考查集合子集个数的计算公式、函数的奇偶性和抽象函数定义域的求法,是一道基础题,若一个集合的元素个数为n ,则其子集的个数为2n ,真子集的个数为2n -1个.17.函数()f x 满足()11f x f x ⎛⎫= ⎪+⎝⎭对任意[)0,x ∈+∞都成立,其值域是f A ,已知对任何满足上述条件的()f x 都有(){},0f y y f x x a A =≤≤=,则a 的取值范围为___________.18.对任意集合M ,定义()0,M f x x M⎧=⎨∉⎩,已知集合S 、T X ⊆,则对任意的x X ∈,下列命题中真命题的序号是________.(1)若S T ⊆,则()()S T f x f x ≤;(2)()1()X S S f x f x =-ð;(3)()()()S T S T f x f x f x =⋅ ;(4)()()1()[2S S T T f x f x f x ++= (其中符合[]a 表示不大于a 的最大正数)19.设()1f x -为()cos 488f x x x ππ=-+,[]0,x π∈的反函数,则()()1y f x f x -=+的最大值为_________.R ,对任意的都有且当0x ≥时,则不等式()0xf x <的解集为__________.【答案】(2,0)(0,2)- 【详解】当0x ≥时,由()220f x x x =->,得2x >;由()220f x x x =-<,得02x <<.∵()()f x f x -=-,∴函数()f x 为奇函数.∴当0x <时,由()220f x x x =->,得20x -<<;由()220f x x x =-<,得2x <-.不等式()0xf x <等价于()00x f x >⎧⎨<⎩或()00x f x <⎧⎨>⎩,解得02x <<或20x -<<.∴不等式()0xf x <的解集为()()2,00,2-⋃.答案:()()2,00,2-⋃21.已知函数21,0()21,0,x x f x x x x +≤⎧=⎨-+>⎩若关于x 的方程2()()0f x af x -=恰有5个不同的实数解,则实数a 的取值范围是_____.【答案】01a <<【分析】采用数形结合的方法,由2()()0f x af x -=确定有两个解()0f x =或()f x a =,在通过图象确定a 的范围.【详解】由2()()0f x af x -=得()0f x =或()f x a =,如图,作出函数()f x 的图象,由函数图象,可知()0f x =的解有两个,故要使条件成立,则方程()f x a =的解必有三个,此时0<a <1.所以a 的取值范围是(0,1).故答案为:01a <<.22.已知函数()f x 满足1(1)()f x f x +=-,且()f x 是偶函数,当[1,0]x ∈-时,2()f x x =,若在区间[1,3]-内,函数()()log (2)a g x f x x =-+有个零点,则实数a 的取值范围是______________.【答案】所以可得132a log ≥+(),∴实数a 的取值范围是[5+∞,).故答案为[5+∞,).考点:函数的周期性的应用,函数的零点与方程的根的关系【名师点睛】本题主要考查函数的周期性的应用,函数的零点与方程的根的关系,体现了转化的数学思想,属于基础题.四、双空题23.设函数()f x 是定义在整数集Z 上的函数,且满足()01f =,()10f =,对任意的x ,y ∈Z 都有()()()()2f x y f x y f x f y ++-=,则()3f =______;()()()()22222122023122023f f f f 2++⋅⋅⋅+=++⋅⋅⋅+______.五、解答题24.已知()f x 定义域为R 的函数,S ⊆R ,若对任意1212,,x x x x S ∈-∈R ,均有()()12f x f x S -∈,则称()f x 是S 关联.(1)判断函数()()12112f x xg x x =-=-、是否是[)1,+∞关联,并说明理由:(2)若()f x 是{}2关联,当[)0,2x ∈时,()2f x x x =-,解不等式:()02f x ≤≤;(3)判断“()f x 是{}2关联”是“()f x 是[]1,2关联”的什么条件?试证明你的结论.25.设函数(),f x x x M=⎨-∈⎩其中P ,M 是非空数集.记f (P )={y |y =f (x ),x ∈P },f (M )={y |y =f (x ),x ∈M }.(Ⅰ)若P=[0,3],M=(﹣∞,﹣1),求f(P)∪f(M);(Ⅱ)若P∩M=∅,且f(x)是定义在R上的增函数,求集合P,M;(Ⅲ)判断命题“若P∪M≠R,则f(P)∪f(M)≠R”的真假,并加以证明.【答案】(Ⅰ)[0,+∞);(Ⅱ)P=(﹣∞,0)∪(0,+∞),M={0};(Ⅲ)真命题,证明见解析【解析】(Ⅰ)求出f(P)=[0,3],f(M)=(1,+∞),由此能过求出f(P)∪f(M).(Ⅱ)由f(x)是定义在R上的增函数,且f(0)=0,得到当x<0时,f(x)<0,(﹣∞,0)⊆P.同理可证(0,+∞)⊆P.由此能求出P,M.(Ⅲ)假设存在非空数集P,M,且P∪M≠R,但f(P)∪f(M)=R.证明0∈P∪M.推导出f(﹣x0)=﹣x0,且f(﹣x0)=﹣(﹣x0)=x0,由此能证明命题“若P∪M≠R,则f(P)∪f(M)≠R”是真命题.【详解】(Ⅰ)因为P=[0,3],M=(﹣∞,﹣1),所以f(P)=[0,3],f(M)=(1,+∞),所以f(P)∪f(M)=[0,+∞).(Ⅱ)因为f(x)是定义在R上的增函数,且f(0)=0,所以当x<0时,f(x)<0,所以(﹣∞,0)⊆P.同理可证(0,+∞)⊆P.因为P∩M=∅,所以P=(﹣∞,0)∪(0,+∞),M={0}.(Ⅲ)该命题为真命题.证明如下:假设存在非空数集P,M,且P∪M≠R,但f(P)∪f(M)=R.首先证明0∈P∪M.否则,若0∉P∪M,则0∉P,且0∉M,则0∉f(P),且0∉f(M),即0∉f(P)∪f(M),这与f(P)∪f(M)=R矛盾.若∃x0∉P∪M,且x0≠0,则x0∉P,且x0∉M,所以x0∉f(P),且﹣x0∉f(M).因为f(P)∪f(M)=R,所以﹣x0∈f(P),且x0∈f(M).所以﹣x0∈P,且﹣x0∈M.所以f(-x0)=﹣x0,且f(-x0)=﹣(﹣x0)=x0,根据函数的定义,必有﹣x0=x0,即x0=0,这与x0≠0矛盾.综上,该命题为真命题.【点睛】本题考查函数新定义问题,考查学生的创新意识,考查命题真假的判断与证明,考查并集定义等基础知识,考查运算求解能力,是中档题.26.已知()f x 是定义在[]1,1-上的奇函数,且(1)1f =.若对任意的[],1,1m n ∈-,0m n +≠都有()()0f m f n m n+>+.(1)用函数单调性的定义证明:()f x 在定义域上为增函数;(2)若()()214f a f a +>,求a 的取值范围;(3)若不等式()()122f x a t ≤-+对所有的[]1,1x ∈-和[]1,1a ∈-都恒成立,求实数t 的取值范围.于难题.根据抽象函数的单调性解不等式应注意以下三点:(1)一定注意抽象函数的定义域(这一点是同学们容易疏忽的地方,不能掉以轻心);(2)注意应用函数的奇偶性(往往需要先证明是奇函数还是偶函数);(3)化成()()()()f g x f h x ≥后再利用单调性和定义域列不等式组.27.已知函数()f x ,若存在非零实数a 、b ,使得对定义域内任意的x ,均有()f x a +=()f x b +成立,则称该函数()f x 为阶梯周期函数.(1)判断函数()[]|sin |()f x x x x π=+∈R 是否为阶梯周期函数,请说明理由.(其中[]x 表示不超过x 的最大整数,例如:[3,5]4-=-,[2,1]2=)(2)已知函数()g x ,x ∈R 的图像既关于点(1,0)对称,又关于点(3,2)对称.①求证:函数()g x 为阶梯周期函数;②当[0,4]x ∈时,()[,]g x p q ∈(p 、q 为实数),求函数()g x 的值域.【答案】(1)是,理由见解析;(2)①证明见解析;②[4,4]n p n q ++,n ∈Z .【解析】(1)根据阶梯周期函数的定义求解判断.(2)①根据函数()g x 的图像既关于点(1,0)对称,又关于点(3,2)对称,得到()()()()2064g x g x g x g x ⎧-++=⎪⎨-++=⎪⎩求解.②根据①的结论,分[]()4,44,x n n n N ∈+∈和[]()4,44,x n n n N ∈--+∈两种情况讨论求解.【详解】(1)因为()()(1)[1]|sin 1|[]1|sin |1f x x x x x f x ππ+=+++=++=+,所以存在1,1a b ==,使得函数()f x 为阶梯周期函数(2)①因为函数()g x 的图像既关于点(1,0)对称,又关于点(3,2)对称,所以()()()()2064g x g x g x g x ⎧-++=⎪⎨-++=⎪⎩,两式相减得:()()624g x g x +-+=,即()()44g x g x +=+所以函数()g x 为阶梯周期函数;②当[]()4,44,x n n n N ∈+∈时,[]40,4x n -∈,由()()44g x g x +=+,得()()()444242...g x g x g x =-+=-⨯+⨯=()[]()444,4g x n n n p n q n N =-+∈++∈,当[]()4,44,x n n n N ∈--+∈时,[]40,4x n +∈,由()()44g x g x +=+,得()()()444242...g x g x g x =+-=+⨯-⨯=()[]()444,4g x n n n p n q n N =+-∈-+-+∈,综上:函数()g x 的值域是[4,4]n p n q ++n ∈Z .【点睛】关键点点睛:本题关键是阶梯周期函数定义的理解以及()f x 若关于点(),a b 对称,则()()22f x f a x b -++=结合应用.28.已知函数()f x 对于任意的,x y ∈R ,都有()()()f x y f x f y +=+,当0x >时,()0f x <,且1(1)2f =-.(1)求(0)f ,(1)f -的值;(2)当34x -≤≤时,求函数()f x 的最大值和最小值;(3)设函数2()()3()g x f x m f x =--,判断函数g (x )最多有几个零点,并求出此时实数m的取值范围.29.已知函数,如果存在给定的实数对,使得恒成立,则称()f x 为“S -函数”.(1)判断函数()1f x x =,()23xf x =是否是“S -函数”;(2)若()3tan f x x =是一个“S -函数”,求出所有满足条件的有序实数对(),a b ;(3)若定义域为R 的函数()f x 是“S -函数”,且存在满足条件的有序实数对()0,1和()1,4,当[]0,1x ∈时,()f x 的值域为[]1,2,求当[]2018,2018x ∈-时函数()f x 的值域.1(1)3f =-.(1)求证()f x 是奇函数;(2)求()f x 在区间[3,3]-上的最大值和最小值.【答案】(1)详见解析;(2)最小值-1,最大值1.【分析】(1)利用赋值法,令0x =,0y =代入函数式,可求得(0)f ,再令y x =-代入函数式,即可31.已知函数的定义域为,且同时满足①13f =;②2f x ≥恒成立,③若12120,0,1x x x x ≥≥+≤,则有()()()12122f x x f x f x ++-≥.(1)试求函数()f x 的最大值和最小值;(2)试比较f (12n)与122n +(n ∈N )的大小.(3)某人发现:当12nx =(n ∈N )时,有()22f x x <+,由此他提出猜想:对一切x ∈(0,1],都有()22f x x <+,请你判断此猜想是否正确,并说明理由.32.已知,1,2,n 是定义在M 上的一系列函数,满足:()1f x x =,()()11i i x f x f i x ++-⎛⎫== ⎪⎝⎭N .(1)求()()()234,,f x f x f x 的解析式;(2)若()g x 为定义在M 上的函数,且()11x g x g x x -⎛⎫+=+ ⎪⎝⎭.①求()g x 的解析式;②若方程()()()()222121318420x m x x g x x x x x ---++++++=有且仅有一个实根,求实数m 的取值范围.都有()()f x s f x s +-=,则称()y f x =是S -关联的.(1)判断函数2y x =和函数[]y x =是否是{1}-关联的,无需说明理由.([]x 表示不超过x 的最大整数)(2)若函数()y f x =是{2}-关联的,且在[0,2)上,()2x f x =,解不等式2()4f x <<.(3)已知正实数,a b 满足a b <,且函数()y f x =是[,]a b -关联的,求()f x 的解析式.【答案】(1)函数2y x =不是{1}-关联的,函数[]y x =是{1}-关联的;(2)(1,3)x ∈(3)()f x x C=+【分析】(1)根据()y f x =是S -关联的定义逐个判断可得结果;(2)根据函数()y f x =是{2}-关联的定义求出()f x 在[2,4)上的解析式,将()f x 代入2()4f x <<可解得结果;(3)根据()()f x t f x t +-=,得()()()f x t x t f x x +-+=-,令()()g x f x x =-,得()()g x t g x +=34.已知定义域为的函数y f x =满足:①对0,x ∈+∞,恒有22f x f x =;②当(]1,2x ∈时,()2f x x =-.(1)求18f ⎛⎫⎪⎝⎭的值;(2)求出当(12,2n n x +⎤∈⎦,Z n ∈时的函数解析式;(3)求出方程()12f x x =在(]0,100x ∈中所有解的和.【答案】(1)0;35.f(x)=x3+2ax2+bx+a,g(x)=x2﹣3x+2,其中x∈R,a、b为常数,已知曲线y=f(x)与y=g(x)在点(2,0)处有相同的切线l.(Ⅰ)求a、b的值,并写出切线l的方程;(Ⅱ)若方程f(x)+g(x)=mx有三个互不相同的实根0、x1、x2,其中x1<x2,且对任意的x∈[x1,x2],f(x)+g(x)<m(x﹣1)恒成立,求实数m的取值范围.【答案】(Ⅰ)x﹣y﹣2=0(Ⅱ)(﹣,0)【详解】试题分析:(I)利用曲线y=f(x)与y=g(x)在点(2,0)处有相同的切线l,可得f(2)=g(2)=0,f'(2)=g'(2)=1.即为关于a、b的方程,解方程即可.(II)把方程f(x)+g(x)=mx有三个互不相同的实根转化为x1,x2是x2﹣3x+2﹣m=0的两相异实根.求出实数m的取值范围以及x1,x2与实数m的关系,再把f(x)+g(x)<m(x ﹣1)恒成立问题转化为求函数f(x)+g(x)﹣mx在x∈[x1,x2]上的最大值,综合在一起即可求出实数m的取值范围.解:(I)f'(x)=3x2+4ax+b,g'(x)=2x﹣3.由于曲线y=f(x)与y=g(x)在点(2,0)处有相同的切线l.故有f(2)=g(2)=0,f'(2)=g'(2)=1.由此得,解得,所以a=﹣2,b=5..切线的方程为x﹣y﹣2=0.(II)由(I)得f(x)=x3﹣4x2+5x﹣2,所以f(x)+g(x)=x3﹣3x2+2x.依题意,方程x(x2﹣3x+2﹣m)=0,有三个互不相等的实根0,x1,x2,故x1,x2是x2﹣3x+2﹣m=0的两相异实根.所以△=9﹣4(2﹣m)>0,解得m>﹣.又对任意的x∈[x1,x2],f(x)+g(x)<m(x﹣1)恒成立,特别地取x=x1时,f(x1)+g(x1)<m(x1﹣1)成立,得m<0.由韦达定理得x1+x2=3>0,x1x2=2﹣m>0.故0<x1<x2.对任意的x∈[x1,x2],x﹣x2≤0,x﹣x1≥0,x>0.则f(x)+g(x)﹣mx=x(x﹣x1)(x﹣x2)≤0,又f(x1)+g(x1)﹣mx1=0.所以f(x)+g(x)﹣mx在x∈[x1,x2]上的最大值为0.于是当m<0,对任意的x∈[x1,x2],f(x)+g(x)<m(x﹣1)恒成立,综上得:实数m的取值范围是(﹣,0).点评:本题主要考查函数,导数,不等式等基础知识,同时考查综合运用数学知识进行推理论证的能立,以及函数与方程和特殊与一般的思想.。
抽象函数解题-题型大全(例题-含答案)
高考抽象函数技巧总结由于函数概念比较抽象,学生对解有关函数记号()f x 的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。
现将常见解法及意义总结如下: 一、求表达式: 1.换元法:即用中间变量表示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力。
例1:已知 ()211xf x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u u f u u u -=+=--∴2()1xf x x-=- 2.凑合法:在已知(())()f g x h x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁,还能进一步复习代换法。
例2:已知3311()f x x x x+=+,求()f x解:∵22211111()()(1)()(()3)f x x x x x x x x x x+=+-+=++-又∵11||||1||x x x x +=+≥ ∴23()(3)3f x x x x x =-=-,(|x |≥1)3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。
例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x .解:设()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+=22222()24ax bx a c x x +++=++比较系数得2()41321,1,2222a c a abc b +=⎧⎪=⇒===⎨⎪=⎩∴213()22f x x x =++ 4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式.例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x解:∵()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。
数学中的抽象函数问题练习题
数学中的抽象函数问题练习题在数学的学习中,抽象函数问题常常让同学们感到困惑和棘手。
抽象函数没有给出具体的解析式,需要我们通过题目所给的条件和性质,运用逻辑推理和数学方法来求解。
下面为大家准备了一些典型的抽象函数问题练习题,让我们一起来挑战一下吧!一、函数的单调性问题例 1:已知函数$f(x)$对于任意的实数$x_1$,$x_2$,都有$f(x_1+ x_2) = f(x_1) + f(x_2)$,且当$x > 0$时,$f(x) > 0$,判断函数$f(x)$的单调性。
分析:要判断函数的单调性,我们可以设$x_1 < x_2$,然后通过变形得出$f(x_2) f(x_1)$的正负性。
解:设$x_1 < x_2$,则$x_2 x_1 > 0$,因为当$x > 0$时,$f(x) > 0$,所以$f(x_2 x_1) > 0$。
$f(x_2) = f(x_1 +(x_2 x_1))= f(x_1) + f(x_2 x_1)$所以$f(x_2) f(x_1) = f(x_2 x_1) > 0$,即$f(x_2) > f(x_1)$因此,函数$f(x)$在其定义域上是增函数。
练习 1:设函数$f(x)$对任意实数$x$,$y$都有$f(x + y) = f(x)+ f(y)$,且当$x < 0$时,$f(x) < 0$,$f(1) = 2$,求$f(x)$在区间$-3, 3$上的最大值和最小值。
二、函数的奇偶性问题例 2:已知函数$f(x)$的定义域为$R$,且对于任意的实数$x$,都有$f(x) = f(x)$,当$x > 0$时,$f(x) = x^2 + 1$,求$f(x)$的解析式。
分析:因为函数是奇函数,所以$f(0) = 0$,然后利用奇函数的性质求出$x < 0$时的解析式。
解:因为$f(x) = f(x)$,所以$f(0) = 0$当$x < 0$时,$x > 0$,所以$f(x) =(x)^2 + 1 = x^2 + 1$因为$f(x) = f(x)$,所以$f(x) = f(x) =(x^2 + 1) = x^2 1$所以$f(x) =\begin{cases} x^2 + 1, & x > 0 \\ 0, & x = 0 \\x^2 1, & x < 0 \end{cases}$练习 2:已知函数$f(x)$对任意实数$x$,$y$都有$f(x + y) + f(x y) = 2f(x)f(y)$,且$f(0) \neq 0$,判断函数$f(x)$的奇偶性。
高考数学 考前三个月 练透高考必会题型 专题3 第10练 化解抽象函数快捷有效的几个途径 文 新人教
高考数学考前三个月练透高考必会题型专题3 第10练化解抽象函数快捷有效的几个途径文新人教版[内容精要] 抽象函数有关知识在有些省市已经属于常考内容,考查形式以选择题和填空题为主,考查的知识主要是函数性质,要求对函数的性质非常熟悉才能解决,解决办法主要是利用赋值和特殊值来解决.题型一与抽象函数有关的函数性质问题例1 已知f(x)是定义在R上的偶函数,且以2为周期,则“f(x)为[0,1]上的增函数”是“f(x)为[3,4]上的减函数”的( )A.既不充分也不必要的条件B.充分而不必要的条件C.必要而不充分的条件D.充要条件破题切入点周期函数的概念,同时考查单调性及充要条件.答案 D解析①∵f(x)在R上是偶函数,∴f(x)的图象关于y轴对称.∵f(x)为[0,1]上的增函数,∴f(x)为[-1,0]上的减函数.又∵f(x)的周期为2,∴f(x)为区间[-1+4,0+4]=[3,4]上的减函数.②∵f(x)为[3,4]上的减函数,且f(x)的周期为2,∴f(x)为[-1,0]上的减函数.又∵f(x)在R上是偶函数,∴f(x)为[0,1]上的增函数.由①②知“f(x)为[0,1]上的增函数”是“f(x)为[3,4]上的减函数”的充要条件.题型二与抽象函数有关的函数零点问题例2 设函数f(x)在R上满足f(2-x)=f(2+x),f(7-x)=f(7+x),且在闭区间[0,7]上,只有f(1)=f(3)=0,则方程f(x)=0在闭区间[-2 011,2 011]上的根的个数为( ) A.802 B.803 C.804 D.805破题切入点将条件转化为我们所熟悉的知识.答案 D解析f(7-x)=f(7+x)=f(2+(5+x))=f(2-(5+x))=f(-3-x),即f(x+10)=f(x),所以函数的周期为10,且对称轴为x=2,x=7,在[0,10]内,f(1)=f(3)=f(11)=f(13),所以一个周期内只有2个零点,在[0,2 011]内2 011=201×10+1有201×2+1=403个,在[-2 011,0]内-2 011=201×(-10)-1,有201个周期且f(-1)≠0,此时有201×2=402个零点,合计805,故选D.题型三与抽象函数有关的新概念问题例3 设V是全体平面向量构成的集合.若映射f:V→R满足:对任意向量a=(x1,y1)∈V,b=(x2,y2)∈V,以及任意λ∈R,均有f(λa+(1-λ)b)=λf(a)+(1-λ)f(b),则称映射f具有性质P,现给出如下映射:①f1:V→R,f1(m)=x-y,m=(x,y)∈V;②f2:V→R,f2(m)=x2+y,m=(x,y)∈V;③f3:V→R,f3(m)=x+y+1,m=(x,y)∈V.其中,具有性质P的映射的序号为________.(写出所有具有性质P的映射的序号)破题切入点准确把握性质P的含义.答案①③解析a=(x1,y1),b=(x2,y2),λa+(1-λ)b=(λx1+(1-λ)x2,λy1+(1-λ)y2).对于①,∵f1(m)=x-y,∴f(λa+(1-λ)b)=[λx1+(1-λ)x2]-[λy1+(1-λ)·y2]=λ(x1-y1)+(1-λ)(x2-y2),而λf(a)+(1-λ)f(b)=λ(x1-y1)+(1-λ)(x2-y2),∴f(λa+(1-λ)b)=λf(a)+(1-λ)f(b),∴①具有性质P.对于②,f2(m)=x2+y,设a=(0,0),b=(1,2),λa+(1-λ)b=(1-λ,2(1-λ)),f(λa +(1-λ)b)=(1-λ)2+2(1-λ)=λ2-4λ+3,而λf(a)+(1-λ)f(b)=λ(02+0)+(1-λ)(12+2)=3(1-λ),又λ是任意实数,∴f(λa+(1-λ)b)≠λf(a)+(1-λ)f(b),故②不具有性质P.对于③,f3(m)=x+y+1,f(λa+(1-λ)b)=[λx1+(1-λ)x2]+[λy1+(1-λ)y2]+1=λ(x1+y1)+(1-λ)(x2+y2)+1,又λf(a)+(1-λ)f(b)=λ(x1+y1+1)+(1-λ)(x2+y2+1)=λ(x1+y1)+(1-λ)(x2+y2)+λ+(1-λ)=λ(x1+y1)+(1-λ)(x2+y2)+1,∴f(λa+(1-λ)b)=λf(a)+(1-λ)f(b).∴③具有性质P.综上,具有性质P的映射的序号为①③.总结提高(1)让抽象函数不再抽象的方法主要是赋值法和单调函数法,因此学会赋值、判断并掌握函数单调性和奇偶性是必须过好的两关,把握好函数的性质.(2)解答抽象函数问题时,学生往往盲目地用指数、对数函数等来代替函数来解答问题而导致出错,要明确抽象函数是具有某些性质的一类函数而不是具体的某一个函数,因此掌握这类函数的关键是把握函数的性质以及赋值的方法.1.设f(x)为偶函数,对于任意的x>0,都有f(2+x)=-2f(2-x),已知f(-1)=4,那么f(-3)等于( )A.2 B.-2 C.8 D.-8答案 D解析∵f(x)为偶函数,∴f(1)=f(-1)=4,f(-3)=f(3),当x=1时,f(2+1)=(-2)·f(2-1),∴f(3)=(-2)×4=-8,∴f(-3)=-8.2.对于函数y=f(x),x∈R,“y=|f(x)|的图象关于y轴对称”是“y=f(x)是奇函数”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件答案 B解析若函数y=f(x)是奇函数,则f(-x)=-f(x).此时|f(-x)|=|-f(x)|=|f(x)|,因此y=|f(x)|是偶函数,其图象关于y轴对称,但当y=|f(x)|的图象关于y轴对称时,未必能推出y=f(x)为奇函数,故“y=|f(x)|的图象关于y轴对称”是“y=f(x)是奇函数”的必要而不充分条件.3.函数f (n )=log n +1(n +2)(n ∈N *),定义:使f (1)·f (2)·…·f (k )为整数的数k (k ∈N *)叫做企盼数,则在区间[1,10]内这样的企盼数共( )A .2个B .3个C .4个D .5个答案 A解析 依题意有f (1)=log 23,f (2)=log 34,f (3)=log 45,…,f (k )=log k +1(k +2),则有f (1)·f (2)·f (3)·…·f (k )=log 2(k +2).令log 2(k +2)=m ,则k =2m -2,由k ∈[1,10]得1≤2m -2≤10,∴3≤2m ≤12,∵k ∈N *,∴m =2,3,故所求的企盼数共有2个.4.设函数f (x )和g (x )分别是R 上的偶函数和奇函数,则下列结论恒成立的是( )A .f (x )+|g (x )|是偶函数B .f (x )-|g (x )|是奇函数C .|f (x )|+g (x )是偶函数D .|f (x )|-g (x )是奇函数答案 A解析 由f (x )是偶函数,可得f (-x )=f (x ),由g (x )是奇函数可得g (-x )=-g (x ),故|g (x )|为偶函数,∴f (x )+|g (x )|为偶函数.5.定义在R 上的偶函数f (x )满足f (2-x )=f (x ),且在[-3,-2]上是减函数,α,β是钝角三角形的两个锐角,则下列不等式中正确的是( )A .f (sin α)>f (cos β)B .f (sin α)<f (cos β)C .f (cos α)<f (cos β)D .f (cos α)>f (cos β) 答案 B解析 因为f (x )为R 上的偶函数,所以f (-x )=f (x ),又f (2-x )=f (x ),所以f (x +2)=f (2-(x +2))=f (-x )=f (x ),所以函数f (x )以2为周期,因为f (x )在[-3,-2]上是减函数,所以f (x )在[-1,0]上也是减函数,故f (x )在[0,1]上是增函数,因为α,β是钝角三角形的两个锐角,所以α+β<π2,α<π2-β, 则0<sin α<sin ⎝ ⎛⎭⎪⎫π2-β=cos β<1, 故f (sin α)<f (cos β),选B.6.已知函数y =f (x )和y =g (x )的定义域及值域均为[-a ,a ](常数a >0),其图象如图所示,则方程f (g (x ))=0根的个数为 ( )A .2B .3C .5D .6答案 D解析 由f (x )的图象可知方程f (x )=0有三个根,分别设为x 1,x 2,x 3,因为f (g (x ))=0,所以g (x )=x 1,g (x )=x 2或g (x )=x 3,因为-a <x 1<a ,g (x )∈[-a ,a ],所以由g (x )的图象可知y =x 1与y =g (x )的图象有两个交点,即方程g (x )=x 1有两个根,同理g (x )=x 2,g (x )=x 3各有两个根,所以方程f (g (x ))=0有6个根.7.若对于定义在R 上的函数f (x ),存在常数t (t ∈R ),使得f (x +t )+tf (x )=0对任意实数x 均成立,则称f (x )是t 阶回旋函数,则下列命题正确的是________.(填序号)①f (x )=2x 是-12阶回旋函数; ②f (x )=sin(πx )是1阶回旋函数;③f (x )=x 2是1阶回旋函数;④f (x )=log a x 是0阶回旋函数.答案 ②解析 对于函数f (x )=sin πx ,由诱导公式可知当t =1时满足f (x +1)+f (x )=sin π(x +1)+sin πx =0,故f (x )=sin πx 是1阶回旋函数,②正确.8.设y =f (x )是定义在R 上的偶函数,满足f (x +1)=-f (x ),且在[-1,0]上是增函数,给出下列关于函数y =f (x )的判断:①y =f (x )是周期函数;②y =f (x )的图象关于直线x =1对称;③y =f (x )在[0,1]上是增函数;④f (12)=0. 其中正确判断的序号是________.答案 ①②④解析 由f (x +1)=-f (x )可得f (x +2)=f (x ),①正确;因为y =f (x )是定义在R 上的偶函数,可知y =f (x )的图象关于直线x =1对称,②正确;显然③错误;由f (-12+1)=-f (-12)=-f (12)=f (12)得f (12)=0,④正确. 9.函数f (x )的定义域为A ,若x 1,x 2∈A 且f (x 1)=f (x 2)时总有x 1=x 2,则称f (x )为单函数.例如,函数f (x )=2x +1(x ∈R )是单函数.下列命题:①函数f (x )=x 2(x ∈R )是单函数;②若f (x )为单函数,x 1,x 2∈A 且x 1≠x 2,则f (x 1)≠f (x 2);③若f :A →B 为单函数,则对于任意b ∈B ,它至多有一个原象;④函数f (x )在某区间上具有单调性,则f (x )一定是单函数.其中的真命题是________.(写出所有真命题的序号)答案 ②③解析 当f (x )=x 2时,不妨设f (x 1)=f (x 2)=4,有x 1=2,x 2=-2,此时x 1≠x 2,故①不正确;由f (x 1)=f (x 2)时总有x 1=x 2可知,当x 1≠x 2时,f (x 1)≠f (x 2),故②正确;若b ∈B ,b 有两个原象时,不妨设为a 1,a 2,可知a 1≠a 2,但f (a 1)=f (a 2),与题中条件矛盾,故③正确;函数f (x )在某区间上具有单调性时整个定义域上不一定单调,因而f (x )不一定是单函数,故④不正确.故答案为②③.10.(2013·湖南)设函数f (x )=a x +b x -c x ,其中c >a >0,c >b >0.(1)记集合M ={(a ,b ,c )|a ,b ,c 不能构成一个三角形的三条边长,且a =b },则(a ,b ,c )∈M 所对应的f (x )的零点的取值集合为________.(2)若a ,b ,c 是△ABC 的三条边长,则下列结论正确的是____________.(写出所有正确结论的序号)①∀x ∈(-∞,1),f (x )>0;②∃x ∈R ,使a x ,b x ,c x 不能构成一个三角形的三条边长;③若△ABC 为钝角三角形,则∃x ∈(1,2),使f (x )=0.答案 (1){x |0<x ≤1} (2)①②③解析 (1)∵c >a >0,c >b >0,a =b 且a ,b ,c 不能构成三角形的三边,∴0<2a ≤c ,∴c a ≥2.令f (x )=0得2a x =c x ,即⎝ ⎛⎭⎪⎫c ax =2. ∴x =log 2c a .∴1x =log 2c a≥1.∴0<x ≤1.(2)①∵a ,b ,c 是三角形的三条边长,∴a +b >c .∵c >a >0,c >b >0,∴0<a c <1,0<b c<1.∴当x ∈(-∞,1)时, f (x )=a x +b x -c x =c x ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a c x +⎝ ⎛⎭⎪⎫b c x -1>c x ⎝ ⎛⎭⎪⎫a c +b c -1=c x ·a +b -c c>0. ∴∀x ∈(-∞,1),f (x )>0.故①正确.②令a =2,b =3,c =4,则a ,b ,c 可以构成三角形.但a 2=4,b 2=9,c 2=16却不能构成三角形,故②正确.③∵c >a ,c >b ,且△ABC 为钝角三角形,∴a 2+b 2-c 2<0,又f (1)=a +b -c >0,f (2)=a 2+b 2-c 2<0,∴函数f (x )在(1,2)上存在零点,故③正确.11.已知定义在区间(0,+∞)上的函数f (x )满足f (x 1x 2)=f (x 1)-f (x 2),且当x >1时,f (x )<0.(1)求f (1)的值;(2)判断f (x )的单调性;(3)若f (3)=-1,解不等式f (|x |)<-2.解 (1)令x 1=x 2>0,代入得f (1)=f (x 1)-f (x 2)=0,故f (1)=0.(2)任取x 1、x 2∈(0,+∞),且x 1>x 2,则x 1x 2>1.∵当x >1时,f (x )<0.∴f (x 1x 2)<0,即f (x 1)-f (x 2)<0,有f (x 1)<f (x 2),故函数f (x )在区间(0,+∞)上单调递减.(3)由f (x 1x 2)=f (x 1)-f (x 2),得f (93)=f (9)-f (3). 而f (3)=-1,∴f (9)=-2.∵函数f (x )在区间(0,+∞)上单调递减,∴原不等式为f (|x |)<f (9).∴|x |>9,∴x <-9或x >9,∴不等式的解集为{x |x <-9或x >9}.12.设集合P n ={1,2,…,n },n ∈N *,记f (n )为同时满足下列条件的集合A 的个数: ①A ⊆P n ;②若x ∈A ,则2x ∉A ;③若x ∈∁P n A ,则2x ∉∁P n A .(1)求f (4);(2)求f (n )的解析式(用n 表示).解 (1)当n =4时,符合条件的集合A 为:{2},{1,4},{2,3},{1,3,4},故f (4)=4.(2)任取偶数x ∈P n ,将x 除以2,若商仍为偶数,再除以2,…,经过k 次以后,商必为奇数,此时记商为m ,于是x =m ·2k ,其中m 为奇数,k ∈N *.由条件知,若m ∈A ,则x ∈A ⇔k 为偶数;若m ∉A ,则x ∈A ⇔k 为奇数.于是x 是否属于A 由m 是否属于A 确定.设Q n 是P n 中所有奇数的集合,因此f (n )等于Q n 的子集个数.当n 为偶数(或奇数)时,P n 中奇数的个数是n 2⎝ ⎛⎭⎪⎫或n +12,所以f (n )=⎩⎪⎨⎪⎧2n 2,n 为偶数,2n +12,n 为奇数.。
专题13 导数运算法则在抽象函数中的应用(学生版) -2025年高考数学压轴大题必杀技系列导数
专题13 导数运算法则在抽象函数中的应用导数与不等式都是高考中的重点与难点,与抽象函数有关的导数问题更是一个难点,求解此类问题的关键是根据导数的运算法则构造合适的函数,再利用导数的运算法则确定所构造函数的性质,最后再利用函数性质求解.(一) 抽象函数的奇偶性及应用若()()f x f x -=两边求导得()()f x f x ¢¢--=,即()()f x f x ¢¢-=-,即若可导函数()f x 是偶函数,则()f x ¢是奇函数,同理可得:若可导函数()f x 是奇函数,则()f x ¢是偶函数.【例1】(2024届上海市奉贤区高三二模)已知定义域为R 的函数()y f x =,其图象是连续的曲线,且存在定义域也为R 的导函数()y f x =¢.(1)求函数()e e x xf x -=+在点()()0,0f 的切线方程;(2)已知()cos sin f x a x b x =+,当a 与b 满足什么条件时,存在非零实数k ,对任意的实数x 使得()()f x kf x -=-¢恒成立?(3)若函数()y f x =是奇函数,且满足()()23f x f x +-=.试判断()()22f x f x +=¢-¢对任意的实数x 是否恒成立,请说明理由.【解析】(1)由题可知,()e e x x f x -¢=-,所以切线的斜率为(0)0f ¢=,且(0)2f =,所以函数在点()()0,0f 的切线方程为()200y x -=-,即2y =;(2)由题可知()sin cos f x a x b x ¢=-+,又因为定义域上对任意的实数x 满足()()f x kf x ¢-=-,所以cos sin sin cos a x b x ak x bk x -=-,即b aka bk -=ìí=-î,当R k Î且0k ¹时,0a b ==,当1k =时,0a b +=,当1k =-时,0a b -=;(3)因为函数()y f x =在定义域R 上是奇函数,所以()()f x f x -=-, 所以()()()f x x f x ¢¢¢-×-=-,所以()()f x f x ¢¢-=,所以()y f x ¢=是偶函数,因为()()23f x f x +-=,所以()()()()223f x f x x ¢¢¢¢+-×-=,即()()20f x f x ¢¢--=,即()()2f x f x ¢¢=-,因为()()f x f x ¢¢-=,所以()()2f x f x ¢¢-=-,即()()2f x f x ¢¢=+,所以()y f x ¢=是周期为2的函数,所以()()()22f x f x f x ¢¢¢=+=-,所以()()()()22f x f x f x f x ¢¢¢¢-=-==+. (二)和差型抽象函数的应用解答此类问题时一般要根据题意构造辅助函数求解,构造时要结合所求的结论进行分析、选择,然后根据所构造的函数的单调性求解.如给出式子()f x k ¢-,可构造函数()()y f x kx b =-+,给出式子()f x kx ¢-,可构造函数()212y f x x b =-+ ,一般地,若给出()()f x g x ¢¢±通常构造函数()()y f x g x c =±+.【例2】已知()()y f x x =ÎR 的导函数()f x ¢满足()3f x ¢>且(1)3f =,求不等式()3f x x >的解集.【解析】令()()3F x f x x =-,则()()30F x f x ¢¢=->,∴()F x 在R 上为单调递增.又∵(1)3f =,∴(1)(1)30F f =-=,则()3f x x >可转化为()0(1)F x F >=,根据()F x 单调性可知不等式()3f x x >的解集为(1,)+∞.(三)积型抽象函数的应用若给出形如()()()()f x g x f x g x ¢¢+的式子通常构造函数()()y f x g x c =+ ,如给出()()xf x nf x ¢+可构造函数()ny x f x =,如给出()()f x nf x ¢+,可构造函数()e nx y f x =,如给出()()tan f x f x x ¢+,可构造函数()sin y f x x =.【例3】(2024年全国高考名校名师联席命制数学押题卷)若函数()f x 在[],a b 上满足()()()0g x f x f x ¢=³且不恒为0,则称函数()f x 为区间[],a b 上的绝对增函数,()g x 称为函数()f x 的特征函数,称任意的实数(),c a b Î为绝对增点(()f x ¢为函数()f x 的导函数).(1)若1为函数()()e xf x a x =-的绝对增点,求a 的取值范围;(2)绝对增函数()f x 的特征函数()g x 的唯一零点为0x .(ⅰ)证明:0x 是()f x ¢的极值点;(ⅱ)证明:()g x 不是绝对增函数.【解析】(1)因为函数()()e x f x a x =-,所以()()1e xf x a x =--¢,则()()()()21e xf x f x x a x a =--+¢.由()()0f x f x ¢³得()()10x a x a --+³,解得1x a £-或x a ³,所以()f x 为区间(],1a -∞-及区间[),a +∞上的绝对增函数.又1为函数()f x 的绝对增点,所以11a <-或1a >,解得2a >或1a <,所以a 的取值范围为()(),12,-∞+∞U .(2)(ⅰ)设()f x 为区间[],a b 上的绝对增函数,由题意知()00g x =,当0x x ¹时,()()00,,g x x a b >Î.①若()00f x =,存在Δ0x >,且()f x 在区间()00Δ,x x x -上单调递增,则在区间()00Δ,x x x -上,()()0,0f x f x >¢<,则()0g x <,与()0g x >矛盾.若()00f x =,存在Δ0x >,且()f x 在区间()00Δ,x x x -上单调递减,则在区间()00Δ,x x x -上,()()0,0f x f x ¢<>,则()0g x <,与()0g x >矛盾.若()00f x =,存在Δ0x >,且()f x 在区间()00Δ,x x x -上不单调,则存在()'000Δ,x x x x Î-,且()00f x ¢¢=,此时()00g x ¢=与()g x 有唯一零点0x 矛盾.所以()00f x ¹.②若()00f x ¹,不妨设()00f x >,则()00f x ¢=,且存在1Δ0x >,使得当()0101Δ,Δx x x x x Î-+时,()0f x >,且当()()010001Δ,,Δx x x x x x x Î-+U 时,()0f x ¢>,即1Δ0x $>,使()f x ¢在()010Δ,x x x -上单调递减,在()001,Δx x x +上单调递增.所以0x 为()f x ¢的极值点.同理,当()00f x <时也成立.(ⅱ)若()g x 为绝对增函数,则()()0g x g x ×¢³在[],a b 上恒成立,又()0g x ³恒成立,所以()0g x ¢³恒成立.令()()e x x g x j =×,所以()0x j ³,且()()()()e 0xx g x g x j ¢¢=×+³,所以()x j 在(),a b 上单调递增.又()00x j =,所以当()0,x a x Î时,()0x j <,则()0g x <,与()0g x ³矛盾,所以假设不成立,所以()g x 不是绝对增函数.【例4】定义在π(0,2上的函数()f x ,其导函数是()f x ¢,且恒有()()tan f x f x x <¢×成立,比较π6æöç÷èø与π3f æöç÷èø的大小.【解析】因为π(0,)2x Î,所以sin 0x >,cos 0x >.由()()tan f x f x x <¢,得()cos ()sin f x x f x x <¢.即()sin ()cos 0f x x f x x ¢->.令()()sin f x g x x =,π(0,2x Î,则2()sin ()cos ()0f x x f x xg x sin x ¢-¢=>.所以函数()()sin f x g x x =在π(0,2xÎ上为增函数,则π()(6g g <π3,即ππ()()63ππsin sin63f f <,所以π()612f <ππ(()63f <.(四)商型抽象函数的应用若给出形如()()()()f x g x f x g x ¢¢-的式子通常构造函数()()f x y cg x =+ ,如给出()()xf x nf x ¢-可构造函数()n f x y x =,给出()()f x nf x ¢-,可构造函数()nx f x y e =,给出()()tan f x f x x ¢-,可构造函数()sin f xy x=.【例5】(2024届湖北省襄阳市第五中学高三第二次适应性测试)柯西中值定理是数学的基本定理之一,在高等数学中有着广泛的应用.定理内容为:设函数f (x ),g (x )满足:①图象在[],a b 上是一条连续不断的曲线;②在(),a b 内可导;③对(),x a b "Î,()0g x ¢¹,则(),a b x $Î,使得()()()()()()f b f a fg b g a g x x --¢¢=.特别的,取()g x x =,则有:(),a b x $Î,使得()()()f b f a f b ax -¢=-,此情形称之为拉格朗日中值定理.(1)设函数()f x 满足()00f =,其导函数()f x ¢在()0,+∞上单调递增,证明:函数()f x y x=在()0,∞+上为增函数.(2)若(),0,e a b "Î且a b >,不等式ln ln 0a b b a m b a a b æö-+-£ç÷èø恒成立,求实数m 的取值范围.【解析】(1)由题()()()00f x f x f xx -=-,由柯西中值定理知:对0x ">,()0,x x $Î,使得()()()()001f x f f f x x x -==¢¢-,()()f x f xx =¢,又()f x ¢在()0,∞+上单调递增,则()()f x f x ¢>¢,则()()f x f x x¢>,即()()0xf x f x ->¢,故()f x y x=在()0,∞+上为增函数;(2)22ln ln ln ln 0a b b a a a b b m m b a a b a b -æö-+-£Û£ç÷-èø,取()ln f x x x =,()2g x x =,因为a b >,所以由柯西中值定理,(),b a x $Î,使得()()()()()()22ln ln 1ln 2f a f b f a a b b g a g b a b g x xx x--+===-¢-¢,由题则有:1ln 2m xx+£,设()()1ln 0e 2x G x x x+=<<,()2ln 2xG x x -¢=,当01x <<时,()0G x ¢>,当1e x <<时,()0G x ¢<,所以()G x 在()0,1上单调递增,在()1,e 上单调递减,所以()()max 112G x G ==,故12m ³,所以实数m 的取值范围是1,2éö+∞÷êëø.【例6】已知函数()f x 在()0,1恒有()()2xf x f x ¢>,其中()f x ¢为函数()f x 的导数,若a ,b 为锐角三角形两个内角,比较22cos (sin ),sin (cos )f f b a a b 的大小.【解析】设()()2()01f x g x x x =<<,则()()()()()243220x f x x f x x f x f x g x x x ¢¢×-××-×¢==>所以函数()g x 在()0,1上单调递增.a ,b 为锐角三角形两个内角,则π2a b +>所以ππ022b a <-<<,由正弦函数sin y x =在π0,2æöç÷èø上单调递增.则π0cos sin sin 12b b a æö<=-<<ç÷èø所以()()cos sin g g b a <,即()()22cos sin cos sin f f b a b a<所以()()22sin cos cos sin f f a b b a ×<×.(五)根据()()()f x f x g x ±-=构造函数若给出形如()()()f x f x g x ¢±=的式子通常构造偶函数或奇函数.【例7】设函数()f x 在R 上存在导函数'()f x ,x R "Î,有3()()f x f x x --=,在(0,)+∞上有22'()30f x x ->,若2(2)()364f m f m m m --³-+-,求实数m 的取值范围.【解析】因为()()3f x f x x --=,所以33()()()22x x f x f x --=-- 令3()()()()2x g x f x g x g x =-\=- 即函数()g x 为偶函数,因为()0,∞+上有()22'30f x x ->,所以23()()02x g x f x ¢¢=-> 即函数()g x 在(0,)+∞单调递增;又因为()()22364f m f m m m --³-+-所以33(2)(2)()(2)()22m m g m g m f m f m ---=---+2(2)()3640f m f m m m =--+-+³即(2)()g m g m -³,所以2m m -³,解得1m £ ,故选B.(六)信息迁移题中的抽象函数求解此类问题关键是如何利用题中的信息.【例8】已知定义在R 上的函数()f x 的导函数为()f x ¢,若()1f x ¢£对任意x ÎR 恒成立,则称函数()f x 为“线性控制函数”.(1)判断函数()sin f x x =和()e xg x =是否为“线性控制函数”,并说明理由;(2)若函数()f x 为“线性控制函数”,且()f x 在R 上严格增,设A B 、为函数()f x 图像上互异的两点,设直线AB 的斜率为k ,判断命题“01k <£”的真假,并说明理由;(3)若函数()f x 为“线性控制函数”,且()f x 是以(0)T T >为周期的周期函数,证明:对任意12,x x 都有()()12f x f x T -£.【解析】(1)()cos 1f x x =£¢,故()sin f x x =是“线性控制函数”;()1e 1g ¢=>,故()e x g x =不是“线性控制函数”.(2)命题为真,理由如下:设()()()()1122,,,A x f x B x f x ,其中12x x <由于()f x 在R 上严格增,故()()12f x f x <,因此()()1212f x f x k x x -=>-由于()f x 为“线性控制函数”,故()1f x ¢£,即()10f x ¢-£令()()F x f x x =-,故()()10F x f x ¢¢=-£,因此()F x 在R 上为减函数()()()()()()()()112212121212121101f x x f x x f x f x F x F x k k x x x x x x ------=-==£Þ£---,综上所述,01k <£,即命题“01k <£”为真命题.(3)根据(2)中证明知,对任意a b <都有()()1f a f b k a b-=£-由于()f x 为“线性控制函数”,故()1f x ¢³-,即()10f x ¢+³令()()G x f x x =+,故()()10G x f x ¢=+³¢,因此()F x 在R 上为增函数()()()()()()()()()()101f a a f b b f a f b G a G b f a f b a b a b a b a b+-+---+==³Þ³-----因此对任意a b <都有()()[]1,1f a f b a b-Î--,即()()1f a f b a b -£-当12x x =时,则()()120f x f x T -=£恒成立当12x x ¹时,若21x x T -£,则()()()()1212121f x f x f x f x x x T--³³-,故()()12f x f x T-£若21x x T ->时,则存在[)311,x x x T Î+使得()()32f x f x =故1()()()()131313f x f x f x f x x x T--³>-,因此()()()()1213f x f x f x f x T-=-<综上所述,对任意12,x x 都有()()12f x f x T -£.(事实上,对任意12,x x 都有()()122Tf x f x -£,此处不再赘述)【例9】定义:若曲线C 1和曲线C 2有公共点P ,且在P 处的切线相同,则称C 1与C 2在点P 处相切.(1)设()()221,8f x x g x x x m =-=-+.若曲线()y f x =与曲线()y g x =在点P 处相切,求m 的值;(2)设()3h x x =,若圆M :()()2220x y b r r +-=>与曲线()y h x =在点Q (Q 在第一象限)处相切,求b 的最小值;(3)若函数()y f x =是定义在R 上的连续可导函数,导函数为()y f x ¢=,且满足()()f x f x ¢³和()f x <都恒成立.是否存在点P ,使得曲线()sin y f x x =和曲线y =1在点P 处相切?证明你的结论.【解析】(1)设点11(,)P x y ,由22()1,()8f x xg x x x m =-=-+,求导得()2,()28f x x g x x ¢¢=-=-,于是11228x x -=-,解得12x =,由11()()f x g x =,得2212282m -=-´+,解得9m =,所以m 的值为9.(2)设切点3222(,),0Q x x x >,由()3h x x =求导得2()3h x x ¢=,则切线的斜率为222()3h x x ¢=,又圆M :222()x y b r +-=的圆心(0,)M b ,直线MQ 的斜率为322x bx -,则由3222213x x x b -×=-,得32213b x x =+,令31(),03x x x x j =+>,求导得221()33x x xj ¢=-,当0x <<()0x j ¢<,当x >()0x j ¢>,即函数()j x 在上递减,在)+∞上递增,因此当x =()x j ,所以当2x min b =(3)假设存在0(,1)P x 满足题意,则有00()sin 1f x x =,对函数()sin y f x x =求导得:()sin ()cos y f x x f x x ¢¢=+,于是0000()sin ()cos 0f x x f x x ¢+=,即0000()sin ()cos f x x f x x ¢=-,平方得222222000000[()]sin [()]cos [()](1sin )f x x f x x f x x ¢==-,即有2222200000[()]sin [()]sin [()]f x x f x x f x ¢+=,因此2200201[()]1[()][()]fx f x f x ¢×+=,整理得224000[()][()][()]f x f x f x ¢+=,而恒有()()f x f x ¢³成立,则有2200[()][()]f x f x ¢³,从而4200[()]2[()]f x f x ³,显然0()0f x ¹,于是20[()]2f x ³,即0|()|f x ³与()f x <所以假设不成立,即不存在点P 满足条件.【例1】(2024年全国统一考试数学押题卷)函数与函数之间存在位置关系.已知函数()f x 与()g x 的图象在它们的公共定义域D 内有且仅有一个交点()()00,x f x ,对于1x D "Î且()10,x x Î-∞,2x D Î且()20,x x Î+∞,若都有()()()()11220f x g x f x g x éùéù-×-<ëûëû,则称()f x 与()g x 关于点()()00,x f x 互穿;若都有()()()()11220f x g x f x g x éùéù-×->ëûëû,则称()f x 与()g x 关于点()()00,x f x 互回.已知函数()f x 与()g x 的定义域均为R ,导函数分别为()f x ¢与()g x ¢,()f x 与()g x 的图象在R 上有且仅有一个交点()(),m f m ,()f x ¢与()g x ¢的图象在R 上有且仅有一个交点()(),m f m ¢.(1)若()e xf x =,()1g x x =+,试判断函数()f x 与()g x 的位置关系.(2)若()f x ¢与()g x ¢关于点()(),m f m ¢互回,证明:()f x 与()g x 关于点()(),m f m 互穿且()()()()0f x g x f x g x ¢¢-×->éùéùëûëû在(),m +∞上恒成立.(3)研究表明:若()f x ¢与()g x ¢关于点()(),m f m ¢互穿,则()f x 与()g x 关于点()(),m f m 互回且()()()()0f x g x f x g x ¢¢-×->éùéùëûëû在(),m +∞上恒成立.根据以上信息,证明:23e 126!ixx x x x i ³++++×××+(i为奇数).【解析】(1)设()()()()e 1e 1x xH x f x g x x x =-=-+=--,则()e 1xH x ¢=-,当0x <时,()0H x ¢<,当0x >时,()0H x ¢>,()H x \在(),0∞-上单调递减,在()0,∞+上单调递增,所以()()00e 10H x H ³=-=,即()()f x g x ³,当且仅当0x =时取等号.又()f x 与()g x 的图象在R 上有且仅有一个交点()0,1,\函数()f x 与()g x 关于点()0,1互回.(2)设1x m <,2x m >,则()()()()11220f x g x f x g x ¢¢¢¢éùéù-×->ëûëû,(互回的定义的应用)设()()()h x f x g x =-,则()()()h x f x g x ¢¢¢=-,故()()120h x h x ¢¢>.①若()()12,h x h x ¢¢均大于零,因为()()()0h m f m g m ¢¢¢=-=,(提示:()f x ¢与()g x ¢的图象交于点()(),m f m ¢.所以()0h x ¢³,所以()h x 单调递增,又()()()0h m f m g m =-=,(提示:()f x 与()g x 的图象交于点()(),m f m )所以()10h x <,()20h x >,所以()()()()()()1211220h x h x f x g x f x g x ×=-×-<éùéùëûëû,()()120h x h x ¢×>,所以()f x 与()g x 关于点()(),m f m 互穿且()()()()0f x g x f x g x ¢¢-×->éùéùëûëû在(),m +∞上恒成立.②若()()12,h x h x ¢¢均小于零,因为()()()0h m f m g m ¢¢¢=-=,所以()0h x ¢£,所以()h x 单调递减,又()()()0h m f m g m =-=,所以()10h x >,()20h x <,所以()()()()()()1211220h x h x f x g x f x g x ×=-×-<éùéùëûëû,()()120h x h x ¢×>,所以()f x 与()g x 关于点()(),m f m 互穿且()()()()0f x g x f x g x ¢¢-×->éùéùëûëû在(),m +∞上恒成立.综上,()f x 与()g x 关于点()(),m f m 互穿且()()()()0f x g x f x g x ¢¢-×->éùéùëûëû在(),m +∞上恒成立.(3)设()e xi f x =,()23126!ii x x x g x x i =+++++L (N *i Î)则()()'1e xi i f x f x -==(2i ³),()()()231'11261!i i i x x x g x x g x i --=+++++=-L (2i ³)(关键:寻找()'i f x 与()1i f x -,()'i g x 与()1i g x -,2i ³之间的关系)易知()1e xf x =,()11g x x =+,由(1)可知()1f x 与()1g x 关于点()0,1互回.因为()()00e 10i i f g ===,所以*N i "Î,()i f x 与()i g x 的图象交于点()0,1.由(2)得()2f x 与()2g x 关于点()0,1互穿,(提示:()()21f x f x ¢=,()()21g x g x ¢=)由(3)得()3f x 与()3g x 关于点()0,1互回,易得当i 为奇数时,()i f x 与()i g x 关于点()0,1互回,所以()1,0x "Î-∞,()20,x Î+∞,有()()()()11220i i i i f x g x f x g x éùéù-×->ëûëû(i 为奇数).(提示:互回的定义的应用)由题意得()()()()2212120i i i i f x g x f x g x --éùéù-×->ëûëû对任意正整数i 恒成立,(提示:由本问信息可得)所以()()()()121222220i i i i f x g x f x g x ----éùéù-×->ëûëû()()()()222232320i i i i f x g x f x g x ----éùéù-×->ëûëû,L ,()()()()222212120f xg x f x g x éùéù-×->ëûëû累乘得()()()()()()222121212120i i i i f x g x f x g x f x g x --éùéùéù-×-->ëûëûëûL 所以()()()()2212120i i f x g x f x g x éùéù-×->ëûëû易知()()12120f x g x ->,(点拨:()()11f x g x ³,当且仅当0x =时等号成立,又()20,x Î+∞,所以()()1212f x g x >.所以()()220i i f x g x ->.因为()()()()11220i i i i f x g x f x g x éùéù-×->ëûëû,(i 为奇数),所以()()110i i f x g x ->(i 为奇数),因为()()00i i f g =,所以()()i i f x g x ³(i 为奇数),即23e 126!ixx x x x i ³++++¼+(i 为奇数),得证.【例2】(2024届上海市普陀区桃浦中学高三上学期期末)对于一个在区间I 上连续的可导函数()y f x =,在I 上任取两点()11(,)x f x ,()22(,)x f x ,如果对于任意的1x 与2x 的算术平均值的函数值大于等于对于任意的1x 与2x 的函数值的算术平均值,则称该函数在I 上具有“M 性质”.如果对于任意的1x 与2x 的几何平均值的函数值大于等于对于任意的1x 与2x 的函数值的几何平均值,则称()y f x =在I 上具有“L 性质”.(1)如果函数log a y x =在定义域内具有“M 性质”,求a 的取值范围.(2)对于函数ln y ax x =-,若该函数的一个驻点是1=x e ,求a ,并且证明该函数在2,x e éùÎ+∞ëû上具有“L 性质”.(3)设存在,m n I Î,使得()()f m f n =.①证明:取(,)m n x Î,则有()()()()f m f n f m n x ¢-=-②若[,]I a b =,设命题p :函数()y f x =具有“M 性质”,命題:()q f x ¢为严格减函数,试证明p 是q 的必要条件.(可用结论:若函数()f x 在区间I 上可导,且在区间I 上连续,若有(,)a b I Í,且()()f a f b =,则()f x 在区间I 上存在驻点)【解析】(1)由函数()log a f x x =在(0,)+∞上具有“M 性质”,可得对任意()1212121,(0,),log log log log 22aa a a x x x x x x +Î+∞³+=又12x x +³1a >;(2)令1()ln ,()g x ax x g x a x ¢=-=-由10e g æö¢=ç÷èø,得ea =则()e ln g x x x =-,在10,e æöç÷èø上严格减:在1,e æö+∞ç÷èø上严格增.要证()g x 在)2e ,é+∞ë上具有“L 性质”.需证g³即证()()212gg x g x éù³×ëû,而(222212 e ln gx x éù==-ëû()()()()()2121122121221e ln e ln e e ln l n ln ln g x g x x x x x x x x x x x x x ×=--=-++×则()()2212121lnln 4x x x x =-()121221ln ln n e l ln x x x x x x +-³,需证()()()212121221121ln ln e ln ln ln ln 4x x x x x x x x x x +-++³,由()212121ln ln ln ln 4x x x x+³,()()122112e ln ln x x x xx x +-12ln ln x x éù=××ëû2e==故只需证0³,下面给出证明:设ln ()x h x x =,则21ln ()x h x x -¢=,即在(e,)+∞上()0,()h x h x<¢递减,所以0hh éù-£ëû,即0³.综上,()()()212121221121ln ln e ln ln ln ln 4x x x x x x x x p x x +-++成立,故g³,得证.(3)①令()(()())()()g x f m f n x f x m n =---,()()()()()g x f m f n f x m n ¢¢=---,由可用结论,令x x =为该函数的驻点,则0()()()()()g f m f n f m n x x ¢¢==---,即取(,)m n x Î,则有()()()()f m f n f m n x ¢-=-,得证.②取12,(,)x x a b Î,设12,(0,1),{1,2}k x x u k <ÎÎ,记01220012,x x x h x x x x =+=-=-,则1020,x x h x x h =-=+,由①中的结论,则有:()()()0001f x h f x hf x u h ¢+-=+(1)()()()0002f x h f x hf x u h ¢--=-(2)由(1)-(2),得()()()()()00001022f x h f x h f x h f x u h f x u h ¢¢éù-++-=+--ëû对()f x ¢在区间[]0201,x u h x u h -+使用①中的结论,则:()()()2120102()f u u h h f x u h f x u h x ¢¢¢¢éù+=+--ëû,其中,()0201,x u h x u h x Î-+.由于()f x ¢是严格减函数,则()0f x ¢¢£,即()()()0002f x h f x h f x ++-³,即()()121222f x f x x x f ++æö³ç÷èø.所以p 是q 的必要条件.【例3】已知函数()f x 的定义域为[)0,∞+,导函数为()f x ¢,若()()1f x f x x <¢+恒成立,求证:()()3210f f -<.【解析】设函数()()()01f xg x x x =³+,因为()()1f x f x x <¢+,0x ³,所以()()()10x f x f x ¢+-<,则()'g x ()()()()2101x f x f x x -=+¢+<,所以()g x 在[)0,∞+上单调递减,从而()()13g g >,即()()1324f f >,所以()()3210f f -<.【例4】已知函数()f x 满足()()1'xf x f x e +=,且()01f =,判断函数()()()2132g x f x f x =-éùëû零点的个数.【解析】()()()()1''1x x x f x f x e f x e f x e +=Û+=()'1x e f x éùÛ=ëû,∴()xe f x x c =+,()xx c f x e +=,∵()01f =代入,得1c =,∴()1xx f x e +=.()()()()213002g x f x f x f x =-=Þ=éùëû或()16f x =,()1001xx f x x e +=Þ=Þ=-;()()1116166x x x f x e x e +=Þ=Þ=+,如图所示,函数x y e =与函数()61y x =+的图像交点个数为2个,所以()16f x =的解得个数为2个;综上,零点个数为3个.【例5】已知定义在R 上的函数()f x 的导数为()f x ¢,且满足()()2sin f x f x x +-=,当0x ³时()sin cos f x x x x ¢>-- ,求不等式()π22f x f x æö--ç÷èøsin 2cos x x <+的解集.【解析】设()()sin g x f x x =-,则()()sin g x f x x -=-+,所以()()g x g x --=()()f x f x --2sin 0x -=,所以()g x 是偶函数,设()()sin 0h x x x x =-³,则()1cos 0h x x ¢=-³,所以()()0h x h ¢³,即sin 0x x -³,所以0x ³时()sin cos cos f x x x x x ¢>--³- , 所以0x ³时()()cos 0g x f x x ¢¢=+>,()g x 在[)0,+∞上是增函数,所以()π22f x f x æö--ç÷èøsin 2cos x x<+()2sin 2f x xÛ-ππsin 22f x x æöæö<---ç÷ç÷èøèø()π22g x g x æöÛ<-ç÷èø()π22g x g x æöÛ<-ç÷èøπ22x x Û<-Û()22π22x x æö<-ç÷èøππ3022x x æöæöÛ+-<ç÷ç÷èøèøππ26x Û-<<,故选C.【例6】已知定义域为R 的函数()y f x =,其导函数为()y f x ¢¢=,满足对任意的x ÎR 都有()1f x ¢<.(1)若()sin 4xf x ax =+,求实数a 的取值范围;(2)若存在0M >,对任意x ÎR ,成立()f x M £,试判断函数()y f x x =-的零点个数,并说明理由;(3)若存在a 、()b a b <,使得()()f a f b =,证明:对任意的实数1x 、[]2,x a b Î,都有()()122b af x f x --<.【解析】(1)若()sin 4x f x ax =+,则cos ()4xf x a ¢=+,由题意,对任意的x ÎR 都有()1f x ¢<,则1cos 4x a +<,即1cos 14xa <+<-,所以cos cos 1441x xa <---<,由于1cos 4x -的最小值为34,cos 14x --的最大值为34-,所以3344a -<<,即实数a 的取值范围为33,44æö-ç÷èø;(2)依题意,()10y f x ¢¢=-<,所以,()y f x x =-在R 上为减函数,所以至多一个零点;()f x M £Þ()M f x M -<<,,当1x M =--时,()()110y f x x f M M =-=--++>,当1x M =+时,()()110y f x x f M M =-=+--<,所以()y f x x =-存在零点,综上存在1个零点;(3)因为()1f x ¢<,由导数的定义得()()12121f x f x x x -<-,即()()1212f x f x x x -<-,不妨设12a x x b £££若122b ax x --£,则()()12122b a f x f x x x --<-£若122b a x x -->,则()()()()()()1212f x f x f x f b f a f x -=-+-()()()()12f x f b f a f x <-+-12b x x a<-+-()22b a b ab a --<--=.1.若定义域为D 的函数()y f x =使得()y f x ¢=是定义域为D 的严格增函数,则称()f x 是一个“T 函数”.(1)分别判断()13=x f x ,()32f x x =是否为T 函数,并说明理由;(2)已知常数0a >,若定义在()0,∞+上的函数()y g x =是T 函数,证明:()()()()132g a g a g a g a +-<+-+;(3)已知T 函数()y F x =的定义域为R ,不等式()0F x <的解集为(),0∞-.证明:()F x 在R 上严格增.2.对于一个函数()f x 和一个点(),M a b ,令()()22()()s x x a f x b =-+-,若()()00,P x f x 是()s x 取到最小值的点,则称P 是M 在()f x 的“最近点”.(1)对于1()(0)f x x x=>,求证:对于点()0,0M ,存在点P ,使得点P 是M 在()f x 的“最近点”;(2)对于()()e ,1,0xf x M =,请判断是否存在一个点P ,它是M 在()f x 的“最近点”,且直线MP 与()y f x =在点P 处的切线垂直;(3)已知()y f x =在定义域R 上存在导函数()f x ¢,且函数 ()g x 在定义域R 上恒正,设点()()()11,M t f t g t --,()()()21,M t f t g t ++.若对任意的t ÎR ,存在点P 同时是12,M M 在()f x 的“最近点”,试判断()f x 的单调性.3.(2024届江苏省盐城市滨海县高三下学期高考适应性考试)根据多元微分求条件极值理论,要求二元函数(,)z f x y =在约束条件(,)g x y 的可能极值点,首先构造出一个拉格朗日辅助函数(,,)(,)(,)L x y f x y g x y l l =+,其中l 为拉格朗日系数.分别对(,,)L x y l 中的,,x y λ部分求导,并使之为0,得到三个方程组,如下:(,,)(,)(,)0(,,)(,)(,)0(,,)(,)0x x x y y y L x y f x y g x y L x y f x y g x y L x y g x y ll l l l l =+=ìï=+=íï==î,解此方程组,得出解(,)x y ,就是二元函数(,)z f x y =在约束条件(,)g x y 的可能极值点.,x y 的值代入到(,)f x y 中即为极值.补充说明:【例】求函数22(,)f x y x xy y =++关于变量x 的导数.即:将变量y 当做常数,即:(,)2x f x y x y =+,下标加上x ,代表对自变量x 进行求导.即拉格朗日乘数法方程组之中的,,x y L L L l 表示分别对,,x y λ进行求导.(1)求函数222(,)2f x y x y xy xy =++关于变量y 的导数并求当1x =处的导数值.(2)利用拉格朗日乘数法求:设实数,x y 满足22(,)410g x y x y xy =++-=,求(,)2f x y x y =+的最大值.(3)①若,,x y z 为实数,且1x y z ++=,证明:22213x y z ++³.②设0a b c >>>,求221121025()a ac c ab a a b ++-+-的最小值.4.(2024届浙江省宁波市宁波九校高三上学期期末)我们把底数和指数同时含有自变量的函数称为幂指函数,其一般形式为()()()()()01v x y u x u x u x =>¹,,幂指函数在求导时可以将函数“指数化"再求导.例如,对于幂指函数x y x =,()()()()ln ln ln e e e ln 1x x x x x x x y x x ¢¢¢¢éù====+êúëû.(1)已知()10x xf x xx -=>,,求曲线()y f x =在1x =处的切线方程;(2)若0m >且1m ¹,0x >.研究()112xxm g x æö+=ç÷èø的单调性;(3)已知a b s t ,,,均大于0,且a b ¹,讨论2t s s a b æö+ç÷èø和2st t a b æö+ç÷èø大小关系.5.(湖北省八市高三下学期3月联考)英国数学家泰勒发现的泰勒公式有如下特殊形式:当()f x 在0x =处的()*n n ÎN 阶导数都存在时,()()()()()()()()323000002!3!!n n f f f f x f f x x x x n =++++¢¢×××+¢+×××.注:()f x ¢¢表示()f x 的2阶导数,即为()f x ¢的导数,()()()3n f x n ³表示()f x 的n 阶导数,该公式也称麦克劳林公式.(1)根据该公式估算1sin 2的值,精确到小数点后两位;(2)由该公式可得:246cos 12!4!6!x x x x =-+-+×××.当0x ³时,试比较cos x 与212x-的大小,并给出证明(不使用泰勒公式);(3)设*n ÎN ,证明:()111142tannk n n n k n k=>-+++å.6. 函数()f x 满足22()(e )(2)ex f x f x -+=(e 为自然数的底数),且当1x £时,都有()()0f x f x ¢+>(()f x ¢为()f x 的导数),比较20202022(2022)(2020),e ef f 的大小 .7.设函数()f x 在R 上可导,其导函数为()f x ¢,且2()()0f x xf x ¢+>.求证: ()0f x ³.8.已知函数()f x 及其导函数()f x ¢的定义域均为R ,()23f x +是偶函数,记()()g x f x ¢=,()2g x +也是偶函数,求()2023f ¢的值.9. 定义在()0,∞+上的函数()y f x =有不等式()()()23f x xf x f x ¢<<恒成立,其中()y f x ¢=为函数()y f x =的导函数,求证:()()2481f f <<.10.已知()f x ¢为定义域R 上函数()f x 的导函数,且()()20f x f x ¢¢+-=,1x ³, ()()()120x f x f x -+>¢且()31f =,求不等式()()241f x x >-的解集11.定义在区间(0,)+∞上函数()f x 使不等式2()'()3()f x xf x f x <<恒成立,('()f x 为()f x 的导数),求(2)(1)f f 的取值范围.12.设()y f x =是定义在R 上的奇函数.若()(0)f x y x x=>是严格减函数,则称()y f x =为“D 函数”.(1)分别判断y x x =-和sin y x =是否为D 函数,并说明理由;(2)若1112xy a =-+是D 函数,求正数a 的取值范围;(3)已知奇函数()y F x =及其导函数()y F x ¢=定义域均为R .判断“()y F x ¢=在()0,∞+上严格减”是“()y F x =为D 函数”的什么条件,并说明理由.13.设M 是定义在R 上且满足下列条件的函数()f x 构成的集合:①方程()0f x x -=有实数解;②函数()f x 的导数()f x ¢满足0()1f x ¢<<.(1)试判断函数sin ()24x x f x =+是否集合M 的元素,并说明理由;(2)若集合M 中的元素()f x 具有下面的性质:对于任意的区间[],m n ,都存在0[,]x m n Î,使得等式()0()()()f n f m n m f x ¢-=-成立,证明:方程()0f x x -=有唯一实数解.(3)设1x 是方程()0f x x -=的实数解,求证:对于函数()f x 任意的23,x x R Î,当211x x -<,311x x -<时,有()()322f x f x -<.14.设定义在R 上的函数()f x 的导函数为()f x ¢,若()()2f x f x ¢+>,()02024f =,求不等式2022()2e xf x >+(其中e 为自然对数的底数)的解集。
抽象函数练习题高三复习
抽象函数练习题高三复习抽象函数是高中数学中的一个重要概念,对于高三学生来说,熟练掌握抽象函数的相关知识是非常关键的。
本文将为大家介绍一些抽象函数的练习题,帮助大家巩固复习,提高解题能力。
题目1:已知函数$f(x)=x^2-2x+1$,求$f(x+1)$的解析式。
解析:首先,将$x+1$代入函数$f(x)$的解析式中,即可求得$f(x+1)$的解析式。
将$x+1$代入$f(x)$中的$x$,得到:$f(x+1)=(x+1)^2-2(x+1)+1$展开括号并化简,得到:$f(x+1)=x^2+2x+1-2x-2+1$合并同类项,得到最终的解析式:$f(x+1)=x^2+1$题目2:已知函数$g(x)=3x-2$,求$g(2x+1)$的解析式。
解析:类似地,将$2x+1$代入函数$g(x)$的解析式中,即可求得$g(2x+1)$的解析式。
将$2x+1$代入$g(x)$中的$x$,得到:$g(2x+1)=3(2x+1)-2$展开并化简,得到:$g(2x+1)=6x+3-2$合并同类项,得到最终的解析式:$g(2x+1)=6x+1$通过这两道题的练习,我们可以加深对于抽象函数的理解。
在解题过程中,将给定的表达式代入函数的解析式中,根据运算规则进行化简求解,最终得到新的解析式。
题目3:已知函数$h(x)=\frac{1}{x}$,求$h\left(\frac{1}{x}\right)$的解析式。
解析:将$\frac{1}{x}$代入函数$h(x)$的解析式中,即可求得$h\left(\frac{1}{x}\right)$的解析式。
将$\frac{1}{x}$代入$h(x)$中的$x$,得到:$h\left(\frac{1}{x}\right)=\frac{1}{\frac{1}{x}}$将分子分母取倒数,得到最终的解析式:$h\left(\frac{1}{x}\right)=x$在这道题中,我们使用了取倒数的运算规则,将原函数中的$x$的倒数代入得到新的解析式。
高中数学中抽象函数的解法及练习
抽象函数问题相关解法因为函数概念比较抽象,学生对解相关函数记号()f x 的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地掌握函数的性质,培养灵活性;提升解题水平,优化学生数学思维素质。
现将常见解法及意义总结如下:一、求表达式: 1.换元法:即用中间变量表示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形水平。
例1:已知()211xf x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u uf u u u-=+=--∴2()1xf x x-=- 2.凑配法:在已知(())()f g x h x =的条件下,把()h x 拼凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁,还能进一步复习代换法。
例2:已知3311()f x x x x+=+,求()f x解:∵22211111()()(1)()(()3)f x x x x x x x x x x+=+-+=++-又∵11||||1||x x x x +=+≥ ∴23()(3)3f x x x x x =-=-,(|x |≥1)3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。
例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x .解:设()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+=22222()24ax bx a c x x +++=++比较系数得2()41321,1,2222a c a abc b +=⎧⎪=⇒===⎨⎪=⎩∴213()22f x x x =++ 4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式. 例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x解:∵()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。
抽象函数解题-题型大全(例题-含答案)
高考抽象函数技巧总结由于函数概念比较抽象,学生对解有关函数记号()f x 的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。
现将常见解法及意义总结如下: 一、求表达式: 1.换元法:即用中间变量表示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力。
例1:已知 ()211xf x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u u f u u u -=+=--∴2()1xf x x-=- 2.凑合法:在已知(())()f g x h x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁,还能进一步复习代换法。
例2:已知3311()f x x x x+=+,求()f x解:∵22211111()()(1)()(()3)f x x x x x x x x x x+=+-+=++-又∵11||||1||x x x x +=+≥ ∴23()(3)3f x x x x x =-=-,(|x |≥1)3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。
例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x .解:设()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+=22222()24ax bx a c x x +++=++比较系数得2()41321,1,2222a c a abc b +=⎧⎪=⇒===⎨⎪=⎩∴213()22f x x x =++ 4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式.例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x解:∵()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。
抽象函数-题型大全(例题-含答案)精编版
高考抽象函数技巧总结由于函数概念比较抽象,学生对解有关函数记号()f x 的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。
现将常见解法及意义总结如下: 一、求表达式: 1.换元法:即用中间变量表示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力。
例1:已知 ()211xf x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u u f u u u-=+=--∴2()1xf x x -=- 2.凑合法:在已知(())()fg xh x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁,还能进一步复习代换法。
例2:已知3311()f x x xx+=+,求()f x 解:∵22211111()()(1)()(()3)f x x x x x xx x x x+=+-+=++-又∵11||||1||x x x x +=+≥ ∴23()(3)3f x x x x x =-=-,(|x |≥1)3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。
例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x .解:设()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+=22222()24ax bx a c x x +++=++比较系数得2()41321,1,2222a c a abc b +=⎧⎪=⇒===⎨⎪=⎩∴213()22f x x x =++ 4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式.例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x解:∵()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。
高考数学函数专题训练《抽象函数》含答案解析
因为当 时, ,
所以 在 上单调递减
又因为 ,所以 为偶函数
因为
所以 ,即 ,故选D.
二、填空题
13.已知定义在 上的偶函数 的导函数为 ,对定义域内的任意 ,都有 成立,则使得 成立的 的取值范围为_____.
【答案】
【解析】由 是偶函数,所以当 时,由 得 ,
设 ,则 ,
即当 时,函数 为减函数,
则 且 ,则有 ,可得 ,
,故答案为0.
A. B.
C. D.
【答案】C
【解析】因为 是定义在 上的函数,对任意两个不相等的正数 ,都有 ,
故 ,∴函数 是 上的减函数,
∵ ,∴ ,∴ .故选C.
5.已知定义在 上的函数 满足 为偶函数,若 在 内单调递减,则下面结论正确的是
A. B.
C. D.
【答案】A
【解析】 , 的周期为6,又 为偶函数,
【答案】A
【解析】由 ,令 , ,则
时,
当 时,令 ,则 ,即
又 当 时,
令 ,则
,即
在 上单调递减
又
令 , ;令 , ;令 ,
数列 是以 为周期的周期数列
, , , ,
在 上单调递减
, , ,
故选 .
10.已知奇函数 是定义在 上的可导函数,其导函数为 ,当 时,有 ,则不等式 的解集为()
A. B. C. D.
,
,
, ,
又 在 内单调递减,
, ,故选A.
6.已知定义在实数集 上的函数 的图象经过点 ,且满足 ,当 时不等式 恒成立,则不等式 的解集为()
A. B. C. D.
【答案】A
【解析】 ,所以函数f(x)是偶函数,
高考数学复习:抽象函数模型与双函数归类
高考数学复习:抽象函数模型与双函数归类题型一:抽象函数具体化模型1:过原点直线型抽象函数模型1()()()f x y f x f y +=+---过原点直线型()f x kx =有以下性质①()00f =②奇函数:y x =-,则()()()0f x x f x f x -=+-=③可能具有单调性(结合其他条件)相似的模型()()()2y ()()22f x y f x y f x x f x f y f ++-=+⎛⎫+= ⎪⎝⎭1.(多选题)定义在R 上的函数()f x 满足()()()f x y f x f y +=+,当0x <时,()0f x >,则下列说法正确的是()A.()f x 在R 上单调递减B.复合函数()sin f x 为偶函数C.复合函数()cos f x 为偶函数D.当[]0,2πx ∈,不等式()1sin 02f x f ⎛⎫+-< ⎪⎝⎭的解集为π5π,66⎛⎫ ⎪⎝⎭2.(多选题)定义在R 上的函数()f x 满足()()()f x f y f x y +=+,则下列说法正确的是()A.()00f =B.()()()f x f y f x y -=-C.()f x 为奇函数D.()f x 在区间[],m n 上有最大值()f n 3.(多选题)(23-24高一上·安徽淮南·阶段练习)已知函数()f x 满足()()(),,f x y f x f y x y +=+∈R ,则()A.(0)0f =B.()(1),f k kf k =∈ZC.(),(0)x f x kf k k ⎛⎫=≠ ⎪⎝⎭D.()()0f x f x -<题型二:抽象函数具体化模型2:不过原点的直线型抽象函数模型2证明如下:()()()f x y f x f y b +=++(b 带正负,即+b 或-b )()()()f x y f x f y b b b +=+↔+++()()()()()()()b“同构”:=------是过原点的直线h x f x h x y h x h y h x f x kx b+↔↔↔=++=-1.(多选)已知函数()f x 的定义域为R ,且()10f =,若()()()2f x y f x f y +=++,则下列说法正确的是()A.()14f -=-B.()f x 有最大值C.()20244046f =D.函数()2f x +是奇函数2.(多选题)已知定义在R 上的函数()f x ,满足对任意的实数x ,y ,均有()()()1f x y f x f y +=+-,且当0x >时,()1f x <,则()A.(0)1f =B.(1)(1)1f f +-=C.函数()f x 为减函数D.函数()y f x =的图象关于点()0,1对称3.(多选)已知函数()f x 的定义域为R ,对任意实数x ,y 满足()()()2f x y f x f y +=++,且(2)0f =,则下列结论正确的是()A.(0)2f =-B.(4)6f -=-C.()2f x +为奇函数D.()f x 为R 上的减函数题型三:抽象函数具体化模型3:tanx 型抽象函数模型3()()()()()()1()()1()()f x f y f αf βf x y f αβf x f y f αf β+++=Û+=--所以复合()tan f x kx =(k 根据其余条件待定系数)1.(多选题)已知函数()f x 满足(1)1f =,()()()1()()f x f y f x y f x f y ++=-,则()A.()00f =B.()()f x f x -=-C.()f x 的定义域为RD.()f x 的周期为42.(多选题)已知函数()f x 的定义域为{}42,x x k k ≠+∈Z ,且()()()()()1f x f y f x y f x f y ++=-,()11f =,则()A.()00f =B.()f x 为偶函数C.()f x 为周期函数,且2为()f x 的周期D.()20231f =-3.已知定义在()1,1-上的函数()f x 满足:当0x >时,()0f x >,且对任意的x,()1,1y ∈-,均有()()()()()1f x y f x f y f x f y ⎡⎤+-=+⎣⎦.若()1ln 2f x f ⎛⎫< ⎪⎝⎭,则x 的取值范围是(e 是自然对数的底数)()A.B.1e ⎛ ⎝C.)D.)e1e ⎛⋃ ⎝题型四:抽象函数具体化模型4:一元二次型抽象函数模型4()()()()()()()()()2222222.=++2=+++2=2则f x y f x f y axy c f x ax bx c f x y a x y b x y c ax bx ay by c axy ax bx c ay by c axy c f x f y axy c+=++-=+++=++++++++++-++-此模型,b 的值无法推导,多依赖其他条件来待定系数确认.1.(多选题)已知定义在实数集R 上的函数()f x ,其导函数为()f x ',且满足()()()f x y f x f y xy +=++,()()110,12f f '==,则()A.()00f =B.()f x 的图像关于点1,02⎛⎫⎪⎝⎭成中心对称C.()202410122023f =⨯D.20241()10122024k f k ='=⨯∑2.(多选题)已知函数()f x 对任意,x y ∈R 恒有()()()41f x y f x f y xy +=+++,且()11f =,则()A.()01f =-B.()f x 可能是偶函数C.()28f =D.()f x 可能是奇函数3.(多选题)已知函数()f x 的定义域为()()()(),2,12f x y xy f x f y f ++=+=R ,则()A.()00f =B.()210f -=-C.()2y f x x =+是奇函数D.()2y f x x =-是偶函数题型五:抽象函数具体化模型5:余弦函数型抽象函数模型5余弦函数型()()2()()()cos ()()cos()cos()cos cos sin sin cos cos sin sin =2cos cos 2()()证明:f x y f x y f x f y f x kxf x y f x y x y x y x y x y x y x y x y f x f y kx++-==++-=++-=-++=(也可以直接用和差化积公式推导)备注:这类函数,还有可能是双曲余弦函数型,不过较少出现1.(多选题)已知定义在R 上的函数()f x ,对任意的,x y ∈R ,都有()()2()()f x y f x y f x f y ++-=,且1(1)2f =,则()A.(0)1f =B.()f x 是偶函数C.(3)1f n =-,*n ∈ND.20241()0n f n ==∑,*n ∈N 2.(多选题)已知函数()f x 对任意实数x 、y 都满足()()222x y y y f f x f x f +-⎛⎫⎛⎫= ⎪ ⎝⎭⎝+⎪⎭,且()11f =-,以下结论正确的有()A.102f ⎛⎫= ⎪⎝⎭B.()2f x +是偶函数C.()1f x +是奇函数D.()()()()12320251f f f f +++⋅⋅⋅+=-3.(多选题)已知定义在R 上的函数()f x ,满足()()()()222f x y f x y f x f y +-=+,且()11f =-,则下列说法正确的是()A.()01f =B.()f x 为偶函数C.()()2f x f x =D.2是函数()f x 的一个周期题型六:抽象函数具体化模型6:一元三次函数型抽象函数模型6()()()()3,f x y f x f y axy x y +=+++则()3f x ax bx =+(其中b 可以借助其他条件待定系数)1.(多选题)已知函数()f x 是定义域为R 的可导函数,若()()()()3f x y f x f y xy x y +=+++,且()03f '=-,则()A.()f x 是奇函数B.()f x 是减函数C.0f=D.1x =是()f x 的极小值点2.(多选题)已知定义域为R 的函数()f x 满足()()()()(),f x y f x f y xy x y f x +=++'+为()f x 的导函数,且()12f '=,则()A.()f x 为奇函数B.()f x 在2x =-处的切线斜率为7C.()312f =D.对()()()121212120,,22,,f x f x x x x x x x f ++⎛⎫∀∈+∞≠<⎪⎝⎭3.(多选题)已知定义在R 上的函数()f x 满足:()()()()3f x y f x f y xy x y +=+-+,则()A.()y f x =是奇函数B.若()11f =,则()24f -=C.若()11f =-,则()3y f x x =+为增函数D.若()30,0x f x x ∀>+>,则()3y f x x =+为增函数题型七:抽象函数具体化模型7:正弦函数型抽象函数模型7正弦函数型,或者正弦双曲函数型()()()()()()22x xe e sin 2则,或者是正弦双曲函数f x y f x y fx f y f x x f x -+-=--==1.已知函数()f x 的定义域为()()()()22R,f x y f x y f x f y +-=-,且当0x >时,()0f x >,则()A.()01f =B.()f x 是偶函数C.()f x 是增函数D.()f x 是周期函数2.(多选)已知函数()f x 的定义域为R,且()()()()()223,122fx y f x y f x f y f f x ⎛⎫+-=-+ ⎪⎝⎭为偶函数,则()A.(0)0f =B.()f x 为偶函数C.(3)(3)f x f x +=--D.20231()k f k ==∑3.(多选题)已知函数()f x 的定义域为R ,且()()()()22f x y f x y f x f y +-=-⎡⎤⎡⎤⎣⎦⎣⎦,()()11,21f f x =+为偶函数,则()A.()00f =B.()f x 为偶函数C.()()22f x f x +=--D.()202410k f k ==∑题型八:抽象函数具体化模型8:正余弦函数辅助角型抽象函数模型8正余弦函数辅助角型形如()()()2cos f x y f x y f x y++-=⋅()x sin x cos x a b 则,,值可以通过其他条件待定系数f a b =+1.已知函数()f x 的定义域为R ,且()π012f f ⎛⎫== ⎪⎝⎭,若()()()2cos f x y f x y f x y ++-=⋅,则函数()f x ()A.以π为周期B.最大值是1C.在区间ππ,44⎛⎫- ⎪⎝⎭上单调递减D.既不是奇函数也不是偶函数2.已知函数()f x 的定义域为()()()R,2cos f x y f x y f x y ++-=且()01f =,π2f ⎛⎫= ⎪⎝⎭那么()A.()f x 为偶函数B.()π1f =C.π2x =是函数的极大值点D.()f x 的最小值为2-3.(多选题)已知定义域为R 的函数()f x 对任意实数x 、y 满足()()()2cos f x y f x y f x y ++-=,且()00f =,π12f ⎛⎫= ⎪⎝⎭.其中正确的是()A.π142f ⎛⎫= ⎪⎝⎭B.()f x 为奇函数C.()f x 为周期函数D.()f x 在(0,π)内单调递减题型九:双函数:系数不是1型带系数:系数不为1,类比正弦余弦的带系数形式,提系数平移平移变换:左右或者上下()()()f x f x a ωϕωϕ+⇒++左加右减1.已知函数()f x 的定义域为R ,且112f x ⎛⎫+ ⎪⎝⎭是偶函数,()1f x -是奇函数,则()A.()00f =B.102f ⎛⎫= ⎪⎝⎭C.()10f =D.()30f =2.已知函数()21f x +是奇函数,()2f x +是偶函数,当[]2,3x ∈时,()3f x x =-,则下列选项不正确的是()A.()f x 在区间(2,0)-上单调递减B.()f x 的图象关于直线=1x -对称C.()f x 的最大值是1D.当(1,1)x ∈-时恒有()0f x <3.已知函数()f x 的定义域为R ,()22f x +为偶函数,()1f x +为奇函数,且当[]0,1x ∈时,()f x ax b =+.若()41f =,则35792222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.题型十:双函数:双函数综合常见结论:(1)关于对称:若函数()f x 关于直线x a =轴对称,则()(2)f x f a x =-,若函数()f x 关于点(,)a b 中心对称,则()2(2)f x b f a x =--,反之也成立;(2)关于周期:若()()f x a f x +=-,或1()()f x a f x +=,或1()()f x a f x +=-,可知函数()f x 的周期为2a .1.已知()4y f x =+是定义域为R 的奇函数,()2y g x =-是定义域为R 的偶函数,且()y f x =与()y g x =的图象关于y 轴对称,则()A.()y f x =是奇函数B.()y g x =是偶函数C.()y f x =关于点()2,0对称D.()y g x =关于直线4x =对称2.已知函数()(),f x g x 都是定义在R 上的函数,()12f x -+是奇函数,()2g x -是偶函数,且()()()23,21f x g x g --=-=,则()20231k f k ==∑()A.-4052B.-4050C.-1012D.-10103.已知函数()f x ,()g x 的定义域均为R ,(1)f x +是奇函数,()g x 是偶函数,()(2)f x g x =-,(2)1g =,则20231()k f k ==∑()A.2023-B.1-C.1D.20234(多选题)已知函数()(),f x g x 的定义域均为()(),111g x f x ++-=R ,()()121f x g x +-+=,且()y f x =的图像关于直线1x =对称,则以下说法正确的是()A.()f x 和()g x 均为奇函数B.()(),4x f x f x ∀∈=+R C.()(),2x g x g x ∀∈=+R D.302g ⎛⎫-= ⎪⎝⎭题型十一:双函数:导数型双函数性质原函数与导函数奇偶性的关系如下:原函数为奇函数,则其导数为偶函数。
抽象函数-题型大全(例题-含答案)之欧阳数创编
高考抽象函数技巧总结 时间:2021.03.02 创作:欧阳数由于函数概念比较抽象,学生对解有关函数记号()f x 的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。
现将常见解法及意义总结如下:一、求表达式:1.换元法:即用中间变量表示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力。
例1:已知 ()211x f x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u u f u u u -=+=--∴2()1x f x x -=- 2.凑合法:在已知(())()f g x h x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁,还能进一步复习代换法。
例2:已知3311()f x x x x +=+,求()f x 解:∵22211111()()(1)()(()3)f x x x x x x x x x x +=+-+=++-又∵11||||1||x x x x +=+≥ ∴23()(3)3f x x x x x =-=-,(|x |≥1)3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。
例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x .解:设()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+=22222()24ax bx a c x x +++=++比较系数得2()41321,1,2222a c a a b c b +=⎧⎪=⇒===⎨⎪=⎩∴213()22f x x x =++ 4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式.例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x解:∵()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。
高考抽象函数专题
抽象函数专题几类抽象函数模型练习题1.定义域为(0,+ )的函数f (x )满足f (xy )=f (x )+f (y ),假设f (4)=2,则f (2)的值为_________. 答案:12.解:因为f (4)=f (2)+f (2),f (2)=f (2)+f (2), 所以f (4)=4 f (2),f (2)=12.2.函数f (x )满足f (x +y 2)=f (x )+2[f (y )]2且f (1)≠0,则f (2018)的值为_______. 答案:1009.解:f (0)=0,f (1)=12,f (x +1)=f (x )+12,f (2018)=f (1)+2017×12=1009.3.(1)函数f (x )满足f (x +y )=f (x )+f (y )+x y +1,假设f (1)=1,则f (8)= A .-1 B .1C .19D .43答案:D . 解:因为f (1)=1,y =1代入f (x +y )=f (x )+f (y )+x y +1,得 f (x +1)-f (x )=x +2,因此: f (2)-f (1)=3 f (3)-f (2)=4 ……… f (8)- f (7)=9累加,得f (8)=43.(2)函数f (x)满足f (x+y)=f (x)+f (y)+xy+1,假设f (1)=1,则f (-8)=A.-1 B.1 C.19 D.43答案:C.解:因为f (1)=1,y=1代入f (x+y)=f (x)+f (y)+xy+1,得f (x+1)-f (x)=x +2,因此:f (1)-f (0)=2f (0)-f (-1)=1f (-1)-f (-2)=0f (-2)-f (-3)=-1f (-3)-f (-4)=-2f (-4)-f (-5)=-3f (-5)-f (-6)=-4f (-6)-f (-7)=-5f (-7)-f (-8)=-6累加,得f (-8)=19.另外:f (x-x)=f (x)+f (-x)-x 2+1f (0)=f (x)+f (-x)-x 2+1f (x)+f (-x)=x 2-24.定义在R上的函数f (x)满足f (x1+x2)=f (x1)+f (x2)+1,则以下说法正确的选项是A.f (x)为奇函数B.f (x)为偶函数C.f (x)+1为奇函数D.f (x)+1为偶函数答案:C解:x1=x2=0代入f (x1+x2)=f (x1)+f (x2)+1,得f (0)=-1.x1=x,x2=-x代入f (x1+x2)=f (x1)+f (x2)+1,得f (x)+f (-x)=-2,f (x)图象关于点(0,-1)对称,所以f (x)+1为奇函数.5.设f (x)是定义在(0,+∞)上的单调增函数,满足f (xy)=f (x)+f (y),f (3)=1,当f (x)+f (x -8)≤2时x的取值范围是A.(8,+∞) B.(8,9]C.[8,9]D.(0,8)答案:B 解:2=1+1=f (3)+f (3)=f (9),由f (x )+f (x -8)≤2,可得f [x (x -8)]≤f (9),因为f (x ) 是定义在(0,+∞)上的增函数,所以有⎩⎪⎨⎪⎧x >0,x -8>0,x (x -8)≤9,解得8<x ≤9.6.定义在[0,1]上的函数f (x )满足f (0)=0,f (x )+f (1-x )=2,f (x 5)=12 f (x ),当0≤ x 1< x 2≤1时,f (x 1)≤f (x 2),则f (325)的值为 .答案:127.(1)已知函数f (x )满足2xf (x )-3f (-x )-x +1=0,求f (x )的表达式. 解:因为2xf (x )-3f (-x )-x +1=0①,所以-2xf (-x )-3f (x )+x +1=0②. ①×2x 得4x 2f (x )-6 x f (-x )-2 x 2+2 x =0; ②×3得-6xf (-x )-9f (x )+3x +3=0②. 相减得4x 2f (x )+9f (x )-2 x 2+2 x -3x -3=0,所以f (x )=2 x 2+x +34x 2+9.(2)设函数f (x )满足f (x )-2f (1x )=x (x ≠0),求证:|f (x )|≥223.证明:因为f (x )-2f (1x )=x ①,所以f (1x )-2f (x )=1x ②.②×2得2f (1x )-4f (x )=2x③.①+③得f (x )=-x 3 -23x , |f (x )|=|x |3 +23|x|≥223.8.(12分)定义在R 上的单调函数f (x )满足f (x +y )=f (x )+f (y ),设f (3)=log 23. (1)判断函数()f x 的奇偶性;(2)假设f (k ⋅3x )+f (3x -9x -4)<0,求实数k 的取值范围. 解:(1)取x =y =0代入f (x )+f (y )=f (x +y ),得f (0)=0. 取y =-x 代入f (x )+f (-x )=f (0),得f (-x )=-f (x ). 所以f (x )为奇函数.(2)奇函数,(0)0f =,2(3)log 3f =,所以(3)(0)f f >, ()f x 是定义在R 上的单调函数,所以函数()f x 在R 上的单调递增函数,奇函数,不等式(3)(394)0x x x f k f ⋅+--<等价于(3)(394)x x x f k f ⋅<-++,因此3394x x x k ⋅<-++,即4133x xk <-++,因为413133x x -++≥-+=,当3log 2x =取等号,所以实数k 的取值范围是(,3)-∞. 9.(12分)已知定义在R 上的函数f (x )满足f (x )+f (y )=f (x +y ),当x >0时,f (x )<0,且f (1)=-23. (1)判断f (x )为奇偶性;(2)求证:f (x )在R 上是减函数;(3)求f (x )在[-3,6]上的最大值与最小值. 解:(1)取x =y =0代入f (x )+f (y )=f (x +y ),得f (0)=0. 取y =-x 代入f (x )+f (-x )=f (0),得f (-x )=-f (x ). 所以f (x )为奇函数.(2)设x 1,x 2∈R ,△x =x 2-x 1>0,那么△y =f (x 2)-f (x 1)=f (x 2)+f (-x 1)=f (x 2-x 1)=f (△x ). 因为△x >0,所以△y <0,所以f (x )在R 上是减函数. (3)因为f (1)=-23,所以f (2)=f (1)+f (1)=-43;f (3)=f (1)+f (2)=-2;f (-3)=- f (3)=2;f (6)=f (3)+f (3)=-4.由(2)知f (x )在[-3,6]上,所以求f (x )在[-3,6]上的最大值为f (-3)=2,最小值为f (6)=-4. 10.(12分)已知定义在区间(0,+∞)上的函数f (x )满足f (x 2x 1)=f (x 2)-f (x 1),且当x >1时,f (x )<0.(1)证明:f (x )为单调递减函数.(2)假设f (3)=-1,求f (x )在[2,9]上的最小值. 解:(1)设x 1,x 2∈(0,+∞),△x =x 2-x 1>0,那么△y =f (x 2)-f (x 1)=f (x 2x 1).因为当x >1时,f (x )<0,x 2x 1>1,所以f (x 2x 1)<0,△y >0,所以f (x )为单调递减函数.(2)因为f (x )在(0,+∞)上是单调递减函数,所以f (x )在[2,9]上的最小值为f (9).由f (x 1x 2)=f (x 1)-f (x 2)得,f (93)=f (9)-f (3),而f (3)=-1,所以f (9)=-2.所以f (x )在[2,9]上的最小值为-2. 11.(12分)定义域为(-∞,0)∪(0,+∞)的函数f (x )满足f (x )+f (y )=f (xy ). (1)求证:f (1x )=-f (x );(2)求证:f (x )为偶函数;(3)当x >1时,f (x )>0,求证:f (x )在(-∞,0)上单调递减. 解:(1)取x =y =1代入f (x )+f (y )=f (xy ),得f (1)=0.取y =1x 代入f (x )+f (y )=f (xy ),得f (x )+f (1x )=0,故f (1x )=-f (x ).(2)取y =-1代入f (x )+f (y )=f (xy ),得f (x )+f (-1)=f (-x ).取x =y =-1代入f (x )+f (y )=f (xy ),f (-1)+f (-1)=f (1),所以f (-1)=0. 所以f (x )=f (-x ),f (x )为偶函数. (3)解法1:设x 1,x 2∈(0,+∞),△x =x 2-x 1>0,那么 △y =f (x 2)-f (x 1)=f (x 2)+f (1x 1 )=f (x 2x 1).因为x 2x 1>1,所以f (x 2x 1)>0,△y >0,所以f (x )在(0,+∞)上单调递增.由(2)知f (x )为偶函数,所以f (x )在(-∞,0)上单调递减. 解法2:设x 1,x 2∈(-∞,0),△x =x 2-x 1>0,那么 △y =f (x 2)-f (x 1)=f (x 2)+f (1x 1 )=f (x 2x 1 )=-f (x 1x 2).因为x 1x 2>1,所以f (x 1x 2)>0,△y <0,所以f (x )在(-∞,0)上单调递减.12.(12分)设定义在R 上的函数y =f (x )满足f (a +b )=f (a )·f (b ).当x >0时,f (x )>1,且f (0)≠0. (1)求证:f (0)=1; (2)求证:f (x )>0;(3)求证:f (x )是R 上的增函数;(4)假设f (x )·f (2x -x 2)>1,求x 的取值范围. 解:(1)取a =b =0代入f (a +b )=f (a )·f (b ),得f (0)2=f (0),因为f (0)≠0,所以f (0)=1. (2)a =x ,b =-x 代入f (a +b )=f (a )·f (b ),得f (0)=f (x )·f (-x ),即f (x )=1 f 〔-x 〕 .当x >0时,f (x )>1; x =0时,f (x )=1;当x <0时,-x >0,f (-x )>1,所以f (x )=1f 〔-x 〕 ∈(0,1).综上,f (x )>0.(3)设x 1,x 2∈R ,△x =x 2-x 1>0,那么 △y =f (x 2)-f (x 1)=f (x 1+△x )-f (x 1) =f (x 1)f (△x )-f (x 1)=f (x 1)[f (△x )-1] .因为 △x =x 2-x 1>0,所以f (△x )>1,故△y >0,f (x )是R 上的增函数.(4)f (x )·f (2x -x 2)=f (x +2x -x 2)=f (3x -x 2),1=f (0),所以不等式f (x )·f (2x -x 2)>1可化为f (3x -x 2)> f (0).由(2)知3x -x 2>0,得x 的取值范围为(0,3). 13.(12分)已知定义在R 上的不恒为零的函数f (x )满足 f (xy )=y f (x )+x f (y ). (1)判断f (x )的奇偶性;(2)假设f (2)=2,*n ∈N ,设a n = f 〔2n 〕2n ,b n = f 〔2n 〕n,求证数列{a n }为等差数列,数列{b n }为等比数列. 解:(1)取x =y =1代入f (xy )=y f (x )+x f (y ),得f (1)=0. 取x =y =-1代入f (xy )=y f (x )+x f (y ),得f (-1)=0.取y =-1代入f (-x )=-f (x )+x f (-1),得f (-x )=-f (x ) ,所以f (x )为奇函数. (2)因为f (2n +1)=f (2·2n )=2 f (2n )+2n f (2),所以f (2n +1)=2 f (2n )+2n +1.同除以2n +1,得 f 〔2n+1〕2n+1 = f 〔2n 〕2n+1,即a n +1-a n =1,所以数列{a n }为等差数列.a 1 = f 〔2〕2 =1,所以 a n =a 1+(n -1)×1=n ,所以f (2n )=2n .因为b n +1b n=2,所以数列{b n }为等比数列.14.(12分)定义在(0,+∞)上的函数f (x )满足:①对任意实数m ,f (x m )=mf (x );②f (2)=1. (1)求证:f (xy )=f (x )+f (y );(2)求证:f (x )是(0,+∞)上的单调增函数; (3)假设f (x )+f (x -3)≤2,求x 的取值范围. 解:(1)因为x ,y 均为正数,根据指数函数性质可知,总有实数m ,n 使得x =2m ,y =2n . 于是f (xy )=f (2m 2n )=f (2m +n )=(m +n )f (2)=m +n .而m =m f (2) =f (2m ) =f (x ), n =n f (2) =f (2n ) =f (y ),所以f (xy )=f (x )+f (y ). (2)取x =y =1代入f (xy )=f (x )+f (y ),得f (1)=0. 取y =1x 代入f (1)=f (x )+f (1x ),得-f (x )=f (1x ).设x 1,x 2∈(0,+∞),△x =x 2-x 1>0,那么 △y =f (x 2)-f (x 1)=f (x 2)+f (1x 1)=f (x 2x 1).因为x 2x 1>1,根据指数函数性质可知,总有正实数r ,使得x 2x 1 =2r ,所以△y =f (2r )=r >0.因此f (x )是(0,+∞)上的单调增函数.(3)由(1)知假设f (x )+f (x -3)=f (x 2-3 x ),2 =f (2)+f (2)=f (4). 所以不等式f (x )+f (x -3)≤2即f (x 2-3 x )≤f (4). 由⎩⎪⎨⎪⎧x 2-3 x ≤4x >0x -3>0得x 的取值范围为(3,4] 15.(12分)定义在[0,1]上的函数f (x )满足f (x ) ≥0,f (1)=1.当x 1 ≥0,x 2 ≥0,x 1+x 2 ≤1时,f (x 1+x 2)≥ f (x 1)+f (x 2) .(1)求f (0); (2)求f (x )最大值;(3)当x ∈[0,1]时,4[f (x )]2-4(2-a )f (x )+5-4a 0≥,求实数a 的取值范围. 解:(1)因为f (x ) ≥0,所以f (0) ≥0.取x 1=x 2=0代入f (x 1+x 2) ≥f (x 1)+f (x 2)得f (0) ≤0,因此f (0)=0. (2)设x 1,x 2∈[0,1],△x =x 2-x 1>0,则△x ∈[0,1],所以f (△x ) ≥0. △y =f (x 2)-f (x 1)=f (x 1+△x ) -f (x 1) ≥f (x 1 )+f (△x ) -f (x 1)=f (△x ) ≥0. 所以函数f (x )在[0,1]上不是减函数,f (x )最大值是f (1)=1.(3)当x ∈[0,1]时,f (x ) ∈[0,1].假设f (x )=1,则4-4(2-a )+5-4a =10≥,不等式4[f (x )]2-4(2-a )f (x )+5-4a 0≥成立.假设f (x ) ∈[0,1),别离参数a ≤1-f (x ) +14[1-f (x )].因为1-f (x ) +14[1-f (x )]≥2[1-f (x )]14[1-f (x )]=1,当f (x )=12时等号成立.所以实数a 的取值范围是(-∞,1].备选:1.(12分,重庆)已知定义域为R 的函数f (x )满足f (f (x )-x 2+x )=f (x )-x 2+x . (1)假设f (2)=3,求f (1); (2)求f (0);(3)设有且仅有一个实数x 0,使得f (x 0)=x 0,求函数f (x )的解析表达式. 2.(12分)已知函数f (x )满足f (x +y )-f (y )=(x +2y +1)x ,且f (1)=0. (1)求f (0)的值;(2)当x 1,x 2 (0,12)时, f (x 1)+2<log a x 2,求a 的取值范围.3.(12分)已知偶函数f (x )满足f (xy )=f (x )+f (y ),且当x >1时,f (x )>0,f (2)=1. (1)求证:f (x )在(0,+∞)上是增函数; (2)解不等式f (2x 2-1)< 2. 4.(12分)已知函数f (x )满足f (m +n )=f (m )+f (n )-1,且f (-21)=0,当x >-12时,f (x )>0.求证:f (x )是单调递增函数. 5.(12分)已知函数f (x )满足f (xy )=f (x )f (y ),且f (x )≠0,当x >1时,f (x )<1.试判断f (x )在(0,+∞)上的单调性. 6.(12分)已知函数f (x )的定义域关于原点对称,且满足f (x -y )=f (x )f (y )+1f (x )-f (y ),存在正常数a ,使f (a )=1.求证:f (x )是奇函数.。
2025高考数学培优25讲2.2抽象函数
由 f x y f x y f x f y ,联想到余弦函数和差化积公式
cos x y cos x y 2cosxcosy ,可设 f x acosx ,则由方法一中 f 0 2, f 1 1知
a
2, acos
1 ,解得 cos
1
,取
f
x y
f f
x y .
指数函数
(6)对于指数函数 f x a x ,与其对应的抽象函数为 f x y f x f y .
(7)对于指数函数
f
x a x ,其抽象函数还可以是
f
x y
f f
x y
.其中
(a
0,
a
1)
对数函数
(8)对于对数函数 f x logax ,与其对应的抽象函数为 f xy f x f y .
4
则 f 2010 =
.
2.(多选题 2024·浙江·模拟预测)已知函数 f x 1 为偶函数,对 x R , f x 0 ,且
f x 1 f x f x 2 ,若 f 1 2 ,则以下结论正确的为( )
A. f 2 2 B. f 3 1
C. f 1 f 5
D.
f
1 2
f
A.幂函数
B.对数函数
C.指数函数
D.余弦函数
2.(2014·陕西·高考真题)下列函数中,满足“ f x y f x f y ”的单调递增函数是( )
1
A. f x x 2
B. f x x3
C.
f
x
1 2
x
D. f x 3x
3.(2024·河南新乡·一模)已知定义在 R 上的函数 f x 满足 x, y R ,
高考数学抽象函数题型汇编
抽象函数常见题型汇编抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数。
由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一。
本文就抽象函数常见题型及解法评析如下:一、定义域问题(一)已知的定义域,求的定义域,解法:若的定义域为,则中,从中解得的取值范围即为的定义域。
例题1:设函数的定义域为,则(1)函数的定义域为______;(2)函数的定义域为_______解析:(1)由已知有,解得,故的定义域为(2)由已知,得,解得,故的定义域为(二)已知的定义域,求的定义域。
解法:若的定义域为,则由确定的范围即为的定义域。
例题2:函数的定义域为,则的定义域为_____。
解析:由,得,所以,故填(三)已知的定义域,求的定义域。
解法:先由定义域求定义域,再由定义域求得定义域。
例题3:函数定义域是,则的定义域是_______ 解析:先求的定义域,的定义域是,,即的定义域是再求的定义域,,的定义域是(四)运算型的抽象函数求由有限个抽象函数经四则运算得到的函数的定义域,解法是:先求出各个函数的定义域,再求交集。
例题4:函数的定义域是,求的定义域。
解析:由已知,有,即函数的定义域由确定函数的定义域是【巩固1】已知函数的定义域是[1,2],求f(x)的定义域。
解析:的定义域是[1,2],是指,所以中的满足从而函数f(x)的定义域是[1,4]【巩固2】 已知函数的定义域是,求函数的定义域。
解析:的定义域是,意思是凡被f 作用的对象都在中,由此可得所以函数的定义域是【巩固3】f x ()定义域为(0),1,则y f x a f x a a =++-≤()()(||)12定义域是__。
解析:因为x a +及x a -均相当于f x ()中的x ,所以010111<+<<-<⎧⎨⎩⇒-<<-<<+⎧⎨⎩x a x a a x aa x a(1)当-≤≤120a 时,则x a a ∈-+(),1; (2)当012<≤a 时,则x a a ∈-(),1 二、解析式问题1. 换元法:即用中间变量表示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6. 设 f (x)是定义 R在上的函数,对任意 x,y∈R,有 f (x+y)+f (x-y )=2f ( x)f (y)且 f (0)≠ 0. (1)求证 f (0) =1; (2)求证: y=f (x)为偶函数 .
证明:(1)问题为求函数值,只需令 x=y=0 即可得。
(2)问题中令 x=0 即得 f (y)+f (- y )=2f (0)f (y),
2
n n(n 1)
n2
f (1) f (2) f (3) ... f (n) =
2
2=2
(3)任取 x1, x2
R, 且 x1
x2 ,则 f (x2) f (x1) f [( x2 x1) x1] f (x1) f (x2 x1) f (x1) 1 f (x1)
2
1
= f ( x2
x1
) 2
0
1 f (x2 x1)
即 2 1m 2
2m2
化简得 -1 ≤m< 1 。
2
3. 设 f(x)是 R 上的奇函数,且 f(x+3) =-f(x),求 f(1998)的值。 解:因为 f(x+3) =-f(x),所以 f(x+6)=f((x+3)+3) =-f(x+3)=f(x,)
故 6 是函数 f(x)的一个周期。又 f(x)是奇函数,且在 x=0 处有定义,
1 13.已知函数 f ( x) 的定义域为 R,对任意实数 m,n 都有 f ( m n) f (m) f ( n) 2 ,
且
f
(
1 )
0 ,当 x
2
(1)求 f (1);
1 时 , f ( x) >0.
2
(2)求和 f (1) f (2)
f (3) ...
f (n) (n
N *) ;
(3)判断函数 f ( x) 的单调性 ,并证明 .
∴ f ( x) 是奇函数。
f ( x)
f (0)
(2)∵ f (24) f (3) f (21) 2 f (3) f (18) ... 8 f (3)
又∵ f ( 3) a f (3) a f (24) 8a
11.已知 f (x) 是定义在 R 上的不恒为零的函数 ,且对于任意的 a, b R, 都满足 :
(1). 若 a>b,试比较 f (a)与 f (b)的大小;
(2). 若 f(k 3x ) f (3x 9x 2) <0 对 x∈[ -1,1] 恒成立,求实数 k 的取值范围。
f (a) f ( b)
解:(1). 因为 a>b,所以 a-b >0,由题意得
a b >0,
所以 f (a)+f (- b)> 0,又 f (x)是定义在 R上的奇函数,
(2)求证 : f (x) 在 R 上是单调减函数 ;
(3)若 a b c 0 且 b2 ac ,求证 : f ( a) f (c) 2 f (b) .
(1)解 : ∵对任意 x R, 有 f (x) >0, ∴令 x 0, y 2 得 , f (0) [ f (0)] 2 f (0) 1
(1)解:令 m
n
1 2
,则
f
(1 2
1) 2
2 f (1) 1 22
(2)∵ f (1) 1 , f (n 1)
2
1 f (1) f (n)
2
1 2
f (n)
1 f (1)
2
1 f ( n) 1
2
∴ f (n 1) f (n) 1
∴数列 f (n) 是以 1 为首项 ,1 为公差的等差数列 , 故
所以 f(x)=0 从而 f(1998)=f(6× 333)=f(0)=0。
4. 设函数 f ( x)对任意 x1 , x 2
1
0, 2
都有 f ( x1
x2 ) =f ( x1 ) f ( x2 ) ,
已知
f
(1) =2,求
f
(
1 ), 2
f
(1 ); 4
解:由 f ( x1 x2 ) =f ( x1 ) f ( x2 ) , x1 , x2
f (a ? b) af (b) bf (a) .
(1)求 f (0), f (1)的值 ;
(2)判断 f ( x) 的奇偶性 ,并证明你的结论 ;
(3)若 f (2)
2 , un
f (2 n ) (n
n
N * ) ,求数列 { un }的前 n 项和 sn .
(1)解:令 a b 0 ,则 f (0) 0
1
0, 2
知f
( x) =f
(
x) 2
f
(
x) 2
≥0,x
0,1
f (1)
1 f(
2
1 )
2
11 f( ) f( )
22
[
f
( 1 )] 2 2
,
f
( 1) =2,
f (1) 2
1
1
2 2.同理可得
f( ) 4
1
24
5. 已知 f (x)是定义在 R上的函数,且满足: f (x+2)[1 -f (x)]=1+f (x),
(1)求证 : f (x) 是奇函数 ;
(2)若 f ( 3) a,试用 a表示 f (24) .
(1)证明:令 y x ,得 f (x x) f (x) f ( x) f ( x)
令 x y 0 ,则 f (0) 2 f (0) f 0 0
∴ f (x) f ( x) 0 f ( x) f ( x)
f (1)=1997,求 f (2001)的值。
解:从自变量值 2001 和 1 进行比较及根据已知条件来看, 易联想到函数 f (x)是周期
函数。由条件得 f (x)≠ 1,故
1 f (x)
1
1 f (x+2)= 1
f f
( (
x) x)
,
f
(
x+4)
=
1
1 1
f (x) f (x)
1 f (x)
2010 届高考数学快速提升成绩题型训练 ——抽象函数
1. 已知函数 y = f ( x)( x∈R,x≠0) 对任意的非零实数 x1,x2 ,恒有 f( x1 x2 )= f( x1)+ f( x2 ), 试判断 f( x) 的奇偶性。 解:令 x1= -1 , x2 =x,得 f (- x)= f (-1)+ f ( x) ……①
且 f (0)=1. 所以 f (y)+f (-y )=2f (y),因此 y=f (x)为偶函数 .
说明:这类问题应抓住 f (x)与 f (-x )的关系,通过已知条件中等式进行变量赋值。
7. 已知定义在 R 上的偶函数 y=f(x)的一个递增区间为 (2,6),试判断(4,8)是 y=f(2-x) 的递增区间还是递减区间? 解:由 y=f(x)是偶函数且在( 2,6)上递增可知, y=f(x)在(- 6,- 2)上递减。
1 所以 f (x+8)= f ( x 4) f ( x) .
1 f ( x) .
所以 f (x)是以 8 为周期的周期函数, 从而 f (2001)=f (1)=1997
这类问题出现应紧扣已知条件,需用数值或变量来迭代变换,经过有限次迭代可直接
求出结果,或者在迭代过程中发现函数具有周期性,利用周期性使问题巧妙获解。
2 已知定义在 [-2,2]上的偶函数, f (x)在区间 [0,2]上单调递减,若 f (1-m)<f (m),求实
数 m 的取值范围
分析:根据函数的定义域, -m,m∈ [-2,2],
但是 1- m 和 m 分别在 [-2,0]和[0,2]的哪个区间内呢?
如果就此讨论,将十分复杂,如果注意到偶函数,
若 x0 0 ,则 f ( x) x2 x 0 ,则 f ( x) x 2 x , 但方程 x2 x x 有两个不相同的实根与题设茅盾,故 x0 0 若 x0 1,则 f ( x) x2 x 1 ,则 f (x) x2 x 1 ,
此时方程 x2 x 1 x (x 1)2 0 有两个相等的实根,
即有且仅有一个实数 x0 ,使得 f ( x0 ) x0 ∴ f ( x) x2 x 1 x R
(2) ∵对任意 x R,函数 f ( x) 满足 f ( f ( x) x2 x)) f ( x) x2 x ,有且仅有一个实
数 x0 ,使得 f ( x0 ) x0
∴对任意 x R,有 f (x) x2 x x0 上式中,令 x x0 ,则 f ( x0 ) x02 x0 x0
∵ f ( x0 ) x0,故 x0 x0 2 0 x0 0或 x0 1
所以 f (- b)=- f (b), f (a)- f (b)> 0,即 f (a)> f (b)
(2). 由(1)知 f (x)在 R上是单调递增函数,又 f (k 3x ) +f (3x 9 x 2) <0,
得 f (k 3x ) <f (9 x
3x
2) ,故 k 3x < 9x
3x
2 ,所以 k< 3x
2 3x
1
令 t = 3x
1
2
[ 3 ,3] , 所以 k<t+ t
1
2
,而 t+ t ≥2 2 ,即 k<2 2 - 1
9.已知函数 f (x) 是定义在( -∞,3]上的减函数,已知 f (a2 sin x) f (a 1 cos2 x) 对
x R恒成立,求实数 a 的取值范围。
解: f (a2 sin x) f (a 1 cos2 x) 等价于
ab
b