线性代数试卷A

合集下载

《线性代数》模拟试卷(A)卷

《线性代数》模拟试卷(A)卷

厦门大学网络教育2008-2009学年第一学期《线性代数》模拟试卷( A )卷一、单项选择题(每小题3分,共24分).1. 若111221226a a a a =,则121122212020021a a a a --的值为( ). A .12; B. -12; C. 18; D. 0. 2. 设A B 、为同阶方阵,则下面各项正确的是( ).A.若0AB =, 则0A =或0B =;B.若0AB =,则0A =或0B =;C.22()()A B A B A B -=-+;D.若A B 、均可逆,则111()AB A B ---=.3. 若方程组12312302403690x t x x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 的基础解系含有两个解向量,则 t =( ). A .2; B .4; C .6; D .8.4. 已知方程组A x b =对应的齐次方程组为0Ax =,则下列命题正确的是( ).A .若0Ax =只有零解,则Ax b =一定有唯一解;B .若0Ax =有非零解,则Ax b =一定有无穷解;C .若Ax b =有无穷解,则0Ax =一定有非零解;D .若Ax b =有无穷解,则0Ax =一定只有零解.5. 设12, u u 是非齐次线性方程组Ax b =的两个解,则以下结论正确的是( ).A .12u u +是Ax b =的解;B .12u u -是Ax b =的解;C .1ku 是Ax b =的解(1k ≠);D .12u u -是0Ax =的解. 6. 设123,,a a a 线性相关,则以下结论正确的是( ).A .12,a a 一定线性相关;B .13,a a 一定线性相关;C .12,a a 一定线性无关;D .存在不全为零的数123,,k k k ,使得1122330k a k a k a ++=.7. 若20000101A x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦与200010001B ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦相似,则x =( ). A .-1; B .0; C .1; D .2.8. 二次型f(x 1,x 2,x 3)=32232221x x 12x 3x 3x +++是( ).A. 正定的;B. 半正定的;C. 负定的;D. 不定的.二、填空题(每小题4分,共24分)1. 设802020301A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,*A 为A 的伴随矩阵,则*A =_________. 2. 非齐次线性方程组m n A x b ⨯=有唯一解的充分必要条件是_________.3. 设方程组123131232 1 2 53(8)8x x x x x x x a x ++=⎧⎪+=⎨⎪+++=⎩,当a 取__________时,方程组无解.4. 设向量组1(1,3,)a k =-,2(1,0,0)a =,3(1,3,2)a =-线性相关,则k =_________.5. 二次型3231212322213214225),,(x x x x x tx x x x x x x f +-+++=为正定二次型,则t 的取值范围是_____________.6. 3阶方阵A 的特征值分别为1,-2,3,则21()A -的特征值为_________.三、计算题(共38分).1. (10分) 计算行列式 3112513420111533D ---=---.2. (10分) 求123221343A ⎛⎫ ⎪= ⎪ ⎪⎝⎭的逆矩阵1A -.3. (10分)求向量组)11,9,5,8(),2,1,1,3(),10,7,1,1(),1,1,1,2(4321=--=-==αααα的一个极大线性无关组,并将其余向量用此极大线性无关组线性表示.4. (8分)已知111131111A -⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦,求A 的特征值. 四、证明题(每小题7分,共14分).1. 设列矩阵12(,,,)T n X x x x = 满足1T X X =,E 为n 阶单位阵,2T H E XX =-,证明: H 是对称阵,且T HH E =.2. 证明二次型22256444f x y z xy xz =---++是负定的.答案:一.1.A 1211121112111112222122212221212220220(1)22122021a a aa a a a a a a a a a a a a =-=-==--2. B 由矩阵的理论可得选项B3. C 基础解系含有两个解向量3()2()1r A r A ⇒-=⇒=,12312324006369000A t t ⎛⎫⎛⎫ ⎪ ⎪=→- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,6t =时,()1r A =4. C 当()()r A r A =时,Ax b =有解5. D 1212()2A u u Au Au b b b +=+=+=,因此12u u +不是Ax b =的解, 下面的选项类似讨论6. D 由线性相关的定义可得选项D7. B 相似矩阵具有相同的特征值8.D f 的矩阵是100036063A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,A 的各阶主子式为:1110a =>,103003=>,10003613366270063A ==⋅⋅-⋅=-<,因此f 为不定的 二.1.16 8022016124301A ==-=, 33***416A A A E A AA A ====⇒=2. n A r =)( 由方程组解的理论可得3. 0 方程组无解可得()(,)r A r A b ≠11211121112110120111011153880223001a a a ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥→--→-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥+--⎣⎦⎣⎦⎣⎦,(,)3r A b =,当0a =时,()2r A =。

12-13-1《线性代数试卷A》第一学期期末考试试卷

12-13-1《线性代数试卷A》第一学期期末考试试卷

河南理工大学 2012-2013 学年第 1 学期《线性代数》试卷(A 卷)1.设()()(),,,,,,,,t 3,1321111321===βββ若321βββ,,线性相关,则t =.2.矩阵()nn ija ⨯=A 的全体特征值的和等于 , 全体特征值的积等于.3.设A 为4阶方阵,2-=A ,则A 3-= .4.()234321,,B ,A =⎪⎪⎪⎭⎫ ⎝⎛=,则=AB.5.设三阶方阵⎪⎪⎪⎭⎫ ⎝⎛--=120350002A ,则A 的逆矩阵1-A =.6.设3阶方阵A 按列分块为()321ααα,,A =,且Ad e t =5,又设()231215432ααααα,,B ++=,则B =.7.设⎪⎪⎪⎭⎫ ⎝⎛--=11334221xA ,x 为某常数,B 为3阶非零矩阵,且0AB =,则x = . 8.设三元非齐次线性方程组的系数矩阵的秩为2,已知21ηη,是它的两个解向量.且⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=42232121ηη,该方程组的通解为.1.设A 与B 均为n 阶方阵,则下列结论中成立的为().(A) det(AB ) = 0,则0A =或0B =; (B) det(AB ) = 0,则det A = 0或det B = 0; (C) AB = 0,则0A =或0B =; (D) AB ≠ 0,则det A ≠ 0或det B ≠ 0.2. 设n 阶矩阵A 的行列式0≠A ,*A 是A 的伴随矩阵,则( ).(A) 2-=n *A A ; (B) 1+=n *A A ; (C) 1-=n *AA ;(D) 2+=n *AA .3. 已知A 、B 均为3阶方阵,且A 与B 相似,若A 的特征值为1,2,3,则()12-B 的特征值为( )(A) 2312,,; (B) 614121,,; (C) 321,,;(D) 3212,,.4. 向量组321,,βββ线性无关,324,,βββ线性相关,则有 .(A)1β可由324,,βββ线性表示; (B)3β可由42ββ,线性表示 ;(C)2β可由43ββ,线性表示;(D)4β可由32ββ,线性表示 .三、计算题1.(7分)计算行列式211112111121=n D .一、填空题,每小题4分二、选择题,每小题5分2.(7分)设⎪⎪⎪⎭⎫⎝⎛---=121011332A ,求1-A .3.(7分)求矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛---=1401131********12211A 的列向量组的一个最大线性无关组.4.(12分)λ取何值时,非齐次线性方程组⎪⎩⎪⎨⎧=++=++=++23213213211λλλλλx x x x x x x x x ,,(1)有唯一解;(2)无解;(3)有无穷多个解?5.(15分)已知二次型()322221321434x x x x x ,x ,x f ++=,求一个正交变换Py x =,把二次型()321x ,x ,x f 化为标准型.。

(完整版)线性代数测试试卷及答案

(完整版)线性代数测试试卷及答案

线性代数(A 卷)一﹑选择题(每小题3分,共15分)1。

设A ﹑B 是任意n 阶方阵,那么下列等式必成立的是( ) (A )AB BA = (B)222()AB A B = (C)222()2A B A AB B +=++ (D )A B B A +=+2。

如果n 元齐次线性方程组0AX =有基础解系并且基础解系含有()s s n <个解向量,那么矩阵A 的秩为( )(A) n (B) s (C ) n s - (D) 以上答案都不正确 3。

如果三阶方阵33()ij A a ⨯=的特征值为1,2,5,那么112233a a a ++及A 分别等于( ) (A) 10, 8 (B) 8, 10 (C) 10, 8-- (D) 10, 8--4。

设实二次型11212222(,)(,)41x f x x x x x ⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭的矩阵为A ,那么( )(A) 2331A ⎛⎫=⎪-⎝⎭ (B) 2241A ⎛⎫= ⎪-⎝⎭ (C) 2121A ⎛⎫= ⎪-⎝⎭(D) 1001A ⎛⎫= ⎪⎝⎭ 5. 若方阵A 的行列式0A =,则( ) (A ) A 的行向量组和列向量组均线性相关 (B )A 的行向量组线性相关,列向量组线性无关 (C ) A 的行向量组和列向量组均线性无关 (D )A 的列向量组线性相关,行向量组线性无关 二﹑填空题(每小题3分,共30分)1 如果行列式D 有两列的元对应成比例,那么该行列式等于 ;2。

设100210341A -⎛⎫⎪=- ⎪⎪-⎝⎭,*A 是A 的伴随矩阵,则*1()A -= ; 3. 设α,β是非齐次线性方程组AX b =的解,若λαμβ+也是它的解, 那么λμ+= ; 4. 设向量(1,1,1)T α=-与向量(2,5,)T t β=正交,则t = ; 5。

设A 为正交矩阵,则A = ;6。

设,,a b c 是互不相同的三个数,则行列式222111ab c a b c = ; 7。

(完整版)线性代数试卷及答案详解

(完整版)线性代数试卷及答案详解

《线性代数A 》试题(A 卷)试卷类别:闭卷考试时间:120分钟考试科目:线性代数考试时间:学号:姓名:3的一组标准正交基,=___________《线性代数A》参考答案(A卷)一、单项选择题(每小题3分,共30分)二、填空题(每小题3分,共18分)1、 256;2、 132465798⎛⎫ ⎪--- ⎪ ⎪⎝⎭; 3、112211221122000⎛⎫⎪- ⎪ ⎪-⎝⎭; 4、; 5、 4; 6、 2 。

三. 解:因为矩阵A 的行列式不为零,则A 可逆,因此1X A B -=.为了求1A B -,可利用下列初等行变换的方法:231211201012010*******121011411033110331023211027210027810027801141010144010144001103001103001103---⎛⎫⎛⎫⎛⎫⎪⎪⎪-−−→-−−→-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭-⎛⎫⎛⎫⎛⎫⎪⎪⎪−−→--−−→-−−→-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭―――――(6分)所以1278144103X A B -⎛⎫ ⎪==-- ⎪ ⎪⎝⎭.―――――(8分)四.解:对向量组12345,,,,ααααα作如下的初等行变换可得:1234511143111431132102262(,,,,)21355011313156702262ααααα--⎛⎫⎛⎫⎪ ⎪----- ⎪ ⎪=→ ⎪ ⎪--- ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭111431212011310113100000000000000000000--⎛⎫⎛⎫⎪⎪---- ⎪ ⎪→→⎪ ⎪⎪ ⎪⎪ ⎪⎝⎭⎝⎭――――(5分)从而12345,,,,ααααα的一个极大线性无关组为12,αα,故秩12345{,,,,}ααααα=2(8分)且3122ααα=-,4123ααα=+,5122ααα=--――――(10分) 五.解:对方程组的增广矩阵进行如下初等行变换:221121121121110113011311101112002421120113400(2)(1)42p p p p p p p p p p p p p p p p p p p p p ---⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪−−→--−−→-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--+--+⎝⎭⎝⎭⎝⎭-⎛⎫ ⎪−−→------- ⎪ ⎪-+-+⎝⎭(分)(1) 当10,(2)(1)0,p p p -≠-+-≠且时即1,2,p p ≠≠-且时系数矩阵与增广矩阵的秩均为3,此时方程组有唯一解.――――(5分) (2) 当1,p =时系数矩阵的秩为1,增广矩阵的秩为2,此时方程组无解.――――(6分)(3) 当2,p =-时此时方程组有无穷多组解. 方程组的增广矩阵进行初等行变换可化为1122112211221211033301112111033300001011011180000------⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪-−−→-−−→-- ⎪ ⎪ ⎪⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭--⎛⎫⎪−−→------ ⎪ ⎪⎝⎭(分)故原方程组与下列方程组同解:132311x x x x -=-⎧⎨-=-⎩ 令30,x =可得上述非齐次线性方程组的一个特解0(1,1,0)Tξ=--;它对应的齐次线性方程组13230x x x x -=⎧⎨-=⎩的基础解系含有一个元素,令31,x =可得1(1,1,1)T ξ=为该齐次线性方程组的一个解,它构成该齐次线性方程组的基础解系.此时原方程组的通解为001101,,.k k k k ξξ+这里为任意常数――――(12分)六.解:(1)由于A的特征多项式2124||222(3)(6)421I A λλλλλλ----=-+-=+----故A 的特征值为13λ=-(二重特征值),36λ=。

线性代数试卷及答案3套

线性代数试卷及答案3套

《线性代数》(A 卷 共四页)一.填空或选择填空(共30分,每小题3分)1.设],,,[A 432γγγα=,],,,[B 432γγγβ=,其中432,,,,γγγβα均为四维列向量. 已知4|A |=,1|B |=,则_____|B A |=+.2.设A 为)(m n m n >⨯矩阵,S 为n 阶可逆矩阵,且r r =)A (,)SA (r 1r =,则( ). A r r m >>1B m r r >>1C m r =1D r r =13.四维列向量组 T1]4,2,1,1[-=α,T2]2,1,3,0[=α,T3]14,7,0,3[=α,T 4]0,2,1,1[-=α的秩为_______,一个极大无关组为_____________.4.齐次线性方程组0=AX 有非零解的充分必要条件是( ). A A 的列向量组线性无关 B A 的行向量组线性无关 C A 的列向量组线性相关 D A 的行向量组线性相关5.设T1]0,2,1[=α,T2]1,0,1[=α都是三阶方阵A 的属于特征值12=λ的特征向量,而T]2,2,1[--=β,则______________=βA .6.设2=λ为可逆矩阵A 的一个特征值,则12A 31-⎪⎭⎫⎝⎛有一个特征值为_____=μ.78.下列矩阵中不与对角矩阵相似的是( ).A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡600540321B ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡653542321C ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡200020012D ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡200010012 9.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=001010100A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=100010001B ,则A 与B ( ). A 合同但不相似 B 合同且相似 C 不合同但相似D 不合同且不相似10.设实二次型312322213212),,(x cx ax bx ax x x x f +++=,当( )时,该二次型为正定二次型.A 0,0>+>c b aB 0,0>>b aC 0|,|>>b c aD 0,||>>b c a 二.计算下列行列式(共12分,每小题6分)1.67412120603115124-----=D ;2.111122111n nn a a a a a a D ---=+(空白处元素全为0).三.计算(共20分,每小题10分) 1.设A 为可逆矩阵,且B AB A +=-1*.1) 求证B 为可逆矩阵;2) 当⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=200620062A 时,求矩阵B . 2.求解如下线性方程组;若有无穷多解,请用其特解与导出组的基础解系联合表出通解.四.(18分)求一个正交替换SY X =,将如下实二次型化为标准形.32312123222132184422),,(x x x x x x x x x x x x f ++---=.五.(5分)求证秩为r 的实对称矩阵可以写成r 个秩为1的实对称矩阵之和.《线性代数》(B 卷)一.填空与选择(30分,每小题3分)1.设d a a a a a a a a a =333231232221131211,则=------333232213123222221211312121111432432432a a a a a a a a a a a a a a a ________.2.=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-10057002311003200______________________.3.设B A ,均为n 阶方阵,则有( ).A )B ()A ()B A (r r r +=+ B )B ()A ()AB (r r r =C )B ()A (B O O A r r r +=⎥⎦⎤⎢⎣⎡D )B ()A (B O O A r r r =⎥⎦⎤⎢⎣⎡ 4.设向量组4321,,,αααα线性无关,则14433221,,,αααααααα++++的秩为______.5.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----13222123a 与⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡λ00020002相似,则=λ______,=a ______. 6.设33⨯A 的全体特征值为3,2,1-,则( )为可逆矩阵.A A E -B E A 2+C E A 2-DE A 3-7.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100110111A 为线性变换σ在基321,,:(I)ξξξ下的矩阵,则σ在基321211,,:(II)ξξξξξξ+++下的矩阵为=B _______________.8.设T ]2,1[是实对称矩阵A 的特征向量,且0|A |<,则( )也是A 的特征向量.A R ∈k k ,]2,1[T B R ∈-k k ,]1,2[T 非零 C R ∈-+21T2T 1,,]1,2[]2,1[k k k k 不全为零D R ∈-+21T2T 1,,]1,2[]2,1[k k k k 全不为零9.实二此型32312123222132182292),,(x x x x x x x x x x x x f +++++=有标准形( ).A 23222192y y y ++ B 23222192y y y -+ C 23222192y y y -- D 2221y y +10.设B A ,均为n 阶正定矩阵,则( )不一定是正定矩阵.A B A + B BA AB + C ABA D ⎥⎦⎤⎢⎣⎡B O O A 二.(28分,前3小题各6分,第4小题10分)1.计算n 阶行列式(3≥n )0221202122011110 =n D .2.设n 阶方阵A 满足O E A A A =+--43223,求证E A 2-可逆,并求1)2(--E A .3.求向量组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=6211α,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=2102α,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=3013α,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=4234α的一个极大无关组,并用该极大无关组线性表示向量组中其他向量.。

线性代数考试(A)参考答案及评释学习资料

线性代数考试(A)参考答案及评释学习资料

线性代数考试(A)参考答案及评释华南农业大学期末考试试卷(A 卷)2005学年第一学期 考试科目:线性代数 考试类型:闭卷 考试时间:120分钟学号 姓名 年级专业这是题文 这是参考答案 填空题.(每小题3分,共30分)1.若行列式D 各行元素之和等于0,则该行列式等于0. 各行加到第一行上去, 则第一行全为零P98奇数阶实反对称阵的行列式为零P64定理2.7非齐次线性方程组有解的充要条件 41141222222n n n --**⎛⎫===⋅= ⎪⎝⎭A A A重要关系*=AA A E ( P34定理1.9); 1n -*=A A(p44题1.18)5.设()()1,1,5,3,9,2,3,5,TTαβ=--=---则α与β的距离为9.()8,3,2,29-===αβ由正交矩阵的定义T =A A E 立即得到1T -=A A 且1T ===A A A A E若λ是A 的特征值, 则1λ是1-A 的特征值, 因为()110x x x x λλ-=≠⇒=A A x . 参考P87定理4.4: ()ϕA 的特征值是()ϕλ.8.如果()222123123121323,,2246f x x x x x tx x x x x x x =+++++是正定的,则t 的取值范围是5t >.11212323t ⎛⎫⎪= ⎪ ⎪⎝⎭A 1231121110,10,123501223t t ∆=>∆==>∆==-> p100定理5.6由2=AA 推出()()22-+=-A E A E EEnglish!二、单选题(每题3分,共15分)1.n 元齐次线性方程组0,AX =秩()(),R A r r n =<则有基础解系且基础解系 含( D )个解向量.(A )n (B )r (C )r n - (D )n r - P62 line 5: 基础解系含n r -个解向量2. 设四阶方阵A 的秩为2,则其伴随矩阵A *的秩为( D )(A )1 (B )2 (C )3 (D )0.A的余子式(3阶子式)全为零.*A是零矩阵.3. 设A是n阶方阵,满足2A E=,则( B )(A)A的行列式为1 (B),-+不同时可逆.A E A E=(D)A的特征值全是1 (C)A的伴随矩阵*A A2000或.A E A E A E A E A E=⇒+-=⇒+=-=4. 设n阶方阵,,A B C满足ABC E=,其中E是n阶单位阵,则必有( C )(A)ACB E== (D) BAC E= (C) BCA E= (B) CBA E()()A E.p7性质1.2, p35定理1.10=⇒=A BC E BC或者141231234142332,3,4333411111111111111110000111111000101111101111100010000010001001000100010000101001000000i r r i c c c c r r r r r r r r x x x x x x x x x x x xxxxx x x x x-=+++-+-↔↔-------+---==----+-----====.2.给定向量组()()121,1,1,1,1,1,1,1,TTαα==--()32,1,2,1Tα=, ()41,1,1,1,Tα=--求1234,,,αααα的一个最大无关组和向量组的秩.()213141434212341121112111110212,,,112100021111021011211121021202120002000200020000r r r r r r r r r r A αααα---+-⎛⎫⎛⎫⎪ ⎪----- ⎪ ⎪==−−−→ ⎪⎪--⎪ ⎪---⎝⎭⎝⎭⎛⎫⎛⎫⎪ ⎪------⎪ ⎪−−−→−−−→ ⎪ ⎪--⎪ ⎪⎝⎭⎝⎭可见()1234,,,3R αααα=,124,,ααα是一个最大无关组。

全校各专业《线性代数》课程试卷及答案A卷

全校各专业《线性代数》课程试卷及答案A卷

全校各专业《线性代数》课程试卷及答案A 卷试卷 A 考试方式 闭卷 考试时间(120分钟)一、选择题(本题共4小题,每小题4分,满分16分。

每小题给出的四个选项中,只有一项符合题目要求) 1、设A ,B 为n 阶方阵,满足等式0=AB,则必有( ) (A)0=A 或0=B ; (B)0=+B A ; (C )0=A 或0=B ; (D)0=+B A 。

2、A 和B 均为n 阶矩阵,且222()2A B A AB B +=++,则必有( ) (A) A E =; (B)B E =; (C ) A B =. (D) AB BA =。

3、设A 为n m ⨯矩阵,齐次方程组0=Ax 仅有零解的充要条件是( )(A) A 的列向量线性无关; (B) A 的列向量线性相关; (C ) A 的行向量线性无关; (D) A 的行向量线性相关. 4、 n 阶矩阵A 为奇异矩阵的充要条件是( ) (A) A 的秩小于n ; (B) 0A ≠;(C) A 的特征值都等于零; (D) A 的特征值都不等于零; 二、填空题(本题共4小题,每题4分,满分16分)5、若4阶矩阵A 的行列式5A =-,A *是A 的伴随矩阵,则*A = 。

6、A 为n n ⨯阶矩阵,且220A A E --=,则1(2)A E -+= 。

7、已知方程组⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-+43121232121321x x x a a 无解,则a = 。

8、二次型2221231231213(,,)2322f x x x x x tx x x x x =++++是正定的,则t 的取值范围是 。

三、计算题(本题共2小题,每题8分,满分16分)9、计算行列式1111111111111111x x D y y+-=+-10、计算n 阶行列式121212333n n n n x x x x x x D x x x ++=+四、证明题(本题共2小题,每小题8分,满分16分。

完整版)线性代数试卷及答案

完整版)线性代数试卷及答案

完整版)线性代数试卷及答案线性代数A试题(A卷)试卷类别:闭卷考试时间:120分钟考试科目:线性代数学号:______ 姓名:______题号得分阅卷人一.单项选择题(每小题3分,共30分)1.设A经过初等行变换变为B,则(B)。

(下面的r(A),r(B)分别表示矩阵A,B的秩)。

A) r(A)。

r(B);(D)2.设A为n(n≥2)阶方阵且|A|=,则(C)。

A) A中有一行元素全为零;(B) A中必有一行为其余行的线性组合;(C) A有两行(列)元素对应成比例;(D) A的任一行为其余行的线性组合。

3.设A,B是n阶矩阵(n≥2),AB=O,则下列结论一定正确的是: (D)A) A=O或B=O。

(B) B的每个行向量都是齐次线性方程组AX=O的解。

(C) BA=O。

(D) R(A)+R(B)≤n.4.下列不是n维向量组α1,α2.αs线性无关的充分必要条件是(A)A) 存在一组不全为零的数k1,k2.ks使得k1α1+k2α2+。

+ksαs≠O;(B) 不存在一组不全为零的数k1,k2.ks使得k1α1+k2α2+。

+ksαs=O(C) α1,α2.αs的秩等于s;(D) α1,α2.αs 中任意一个向量都不能用其余向量线性表示。

5.设n阶矩阵(n≥3)A=,若矩阵A的秩为n-1,则a必为()。

11;(C) -1;(D)。

(A) 1;(B)6.四阶行列式a1a2a3a4b1b2b3b4的值等于()。

A) a1a2a3a4+b1b2b3b4;(B) (a1a2-b1b2)(a3a4-b3b4);(C)a1a2a3a4-b1b2b3b4;(D) (a2a3-b2b3)(a1a4-b1b4)。

1.设A为四阶矩阵且A=b,则A的伴随矩阵A的行列式为b^3.(C)2.设A为n阶矩阵满足A+3A+In=O,In为n阶单位矩阵,则A=−A−3In。

(C)9.设A,B是两个相似的矩阵,则下列结论不正确的是A与B的行列式相同。

《线性代数》试卷A及答案

《线性代数》试卷A及答案

《线性代数》试卷A适用专业: 试卷类型:闭卷 考试时间:120分钟 总分100分 考试日期: 一.选择题(2分×6=12分)1.排列4 1 3 2 5 的逆序数为( ) A.4 B.1 C.3 D.22. 设0λ是可逆矩阵A 的一个特征值,则13-A 必有特征值( )A.021λ B. 023λ C.30λ D. 20λ 3. 设A 为n 阶可逆阵,则下列成立的是( ) A.112)2(--=A A B. 11)2()2(--=T T A AC. [][]1111)()(----=TTA A D.[][]TTT AA 111)()(---=4.如果333231332221131211a a a a a a a a a =d,则行列式131211232221333231222333a a a a a a a a a ---=( )A. –6dB. 6dC. 4dD. –4d5.设A 为3阶方阵,且2=A ,则A 2=( ) A.4 B.8 C.16 D.216.已知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=403212221A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11a α,且αA 与α线性相关,则=a ( )。

A.1-B.1C. 2D.3二.填空题(2分×11=22分)1.设A 、B 均为3阶方阵,且|A |=3,|B |=-2,则|AB |=2. 设A 为方程组⎩⎨⎧=+=+02121x x x x λλ有非零解,则λ=3.已知3阶方阵A 的特征值为1,1,2-,则方阵2A 的特征值是 、 、4.向量组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321,211的正交化向量为5. A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321,B=[1,2,3],则BA= 6.设32212221321424),,(x x x x x x x x x f -++-=,则二次型矩阵为7.设y x ,为实数,则当=x , 且=y 时,010100=---yx y x8.设⎥⎦⎤⎢⎣⎡--=x A 112与⎥⎦⎤⎢⎣⎡=Λ31相似,则=x 三. 计算题:(总共66分)1.计算 600300301395200199204100103=D (6分) 2.求13211A -⎥⎦⎤⎢⎣⎡--=(4分)院系________________ 姓名_____________ 班级________________ 序号_______________3.设3351110243152113-----=D ,(1)求行列式D的值 ,(2)求4443424123A A A A +-+ (12分)4.讨论λ为何值时,线性方程组⎪⎩⎪⎨⎧=++=++=++23213213211λλλλλx x x x x x x x x 有:1)唯一解; 2)无解; 3)无穷多解?此时求出其通解(12分)5.求矩阵E A 2-的逆矩阵,其中A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡300041003 ( 10分)7.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=101121002A 。

2020-2021(1)《线性代数A》A卷参考答案

2020-2021(1)《线性代数A》A卷参考答案

3 ,1)T . 2
(3) 当 k 1时 R( A) 1; 当 k 2 时 R( A) 2; 当 k 1且 k 2 时 R( A) 3.
(12 分) (15 分)
P5
x1 3x2 2x3 x4 3
得 分
六、(12
分)求非齐次线性方程组
x1 x1
x2 x2
x4 x3
1 2




得分
阅卷人

一、 填空题(共 24 分,每小题 3 分)

1. n 阶行列式
1
2
n ( n 1)
(1) 2 1n .
n
3 5 2 1
2. 已 知 4 阶 行 列 式 D 1 1 1 3
0 5 1 3 ,D 的 (i, j) 元 的 代 数 余 子 式 记 作 Aij , 则
2 4 1 3
学院
考 专业 装


息 姓名
班级
栏 学号 线

集 美 大 学 试 卷 纸参考答案与评分标准
2020 — 2021 学年 第 一 学期
课程名称
适用 学院、专业、
年级
线性代数 A
试卷 卷别
考试 方式
A
闭卷 □√ 开卷 □
备注
1.本试卷共 8 页,答题前请检查;2.考试时间 120 分钟。
总分
题号






息 姓名
班级
栏 学号 线

1 2 3k

五、(15
分)设矩阵
A
1 k
2k 2
3 3


(1)求行列式 A ;

复旦大学《线性代数》2018-2019学年第二学期期末试卷A卷

复旦大学《线性代数》2018-2019学年第二学期期末试卷A卷

复旦大学考试试卷2018——2019学年第二学期时间:100分钟《线性代数》课程32学时2学分考试形式:闭卷总分:100分一、填空题(每小题3分,共15分)1、设2()3f x x =-,矩阵⎪⎪⎭⎫⎝⎛-=3 4 0 1A ,则)(A f =.2、设B A ,为n 阶矩阵,如果有n 阶可逆矩阵P ,使成立,则称A 与B 相似.3、n 元非齐次线性方程组m n A x b ⨯=有唯一解的充分必要条件是.4、已知二次型()323121232221321662355,,x x x x x x x x x x x x f -+-++=,则二次型f 对应的矩阵A =.5、设4阶方阵A 满足:0,30,2T A E A AA E <+==(其中E 是单位矩阵),则A 的伴随矩阵*A 必有一个特征值为.二、选择题(每小题3分,共15分)1、已知4阶方阵A 的伴随矩阵为*A ,且A 的行列式A =3,则*A =().(A )81.(B )27.(C )12.(D )9.2、设A 、B 都是n 阶方阵,且A 与B 有相同的特征值,并且A 、B 都有n 个线性无关的特征向量,则()。

(A )A 与B 相似.(B )A =B .(C )B A ≠,但0||=-B A .(D )A 与B 不一定相似,但||||B A =.3、设n 阶方阵A 为正定矩阵,下面结论不正确的是().(A )A 可逆.(B )1-A 也是正定矩阵.(C )0||>A .(D )A 的所有元素全为正.4、若n 阶实方阵2A A =,E 为n 阶单位阵,则().(A )()()R A R A E n +->.(B )()()R A R A E n +-<.(C )()()R A R A E n +-=.(D )无法比较()()R A R A E n +-与的大小.5、设1234123400110111c c c c αααα-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪===-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,,,,其中1234,,,c c c c 为任意常数,则下列向量组线性相关的为().(A )123ααα,,.(B )124ααα,,.(C )134ααα,,.(D )234ααα,,.三(本题满分10分)计算n (2n ≥)阶行列式n xa a a x a D aax=,n D 的主对角线上的元素都为x ,其余位置元素都为a ,且x a ≠.四(本题满分10分)设3阶矩阵,A B 满足关系:1100216,041007A BA A BA A -⎛⎫ ⎪ ⎪⎪=+= ⎪ ⎪ ⎪ ⎪⎝⎭且,求矩阵B .五(本题满分10分)设方阵A 满足220A A E --=(其中E 是单位矩阵),求11,(2)A A E --+.六(本题满分12分)已知向量组A :11412α⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,22131α⎛⎫ ⎪- ⎪= ⎪- ⎪⎝⎭,31541α⎛⎫ ⎪- ⎪= ⎪- ⎪-⎝⎭,43670α⎛⎫ ⎪- ⎪= ⎪- ⎪⎝⎭,(1)求向量组A 的秩;(2)求向量组A 的一个最大线性无关组,并把不属于该最大无关组的其它向量用该最大无关组线性表示.七(本题满分14分)设矩阵11111A ααββ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦与矩阵000010002B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦相似,(1)求,αβ;(2)求正交矩阵P ,使1P AP B -=.八(本题满分14分)设有线性方程组为23112131231222322313233323142434x a x a x a x a x a x a x a x a x a x a x a x a ⎧++=⎪++=⎪⎨++=⎪⎪++=⎩(1)证明:若1a ,2a ,3a ,4a 两两不等,则此方程组无解.(2)设13a a k ==,24a a k ==-(0k ≠),且已知1β,2β是该方程组的两个解,其中1(1, 1, 1)T β=-,2(1, 1, 1)T β=-,写出此方程组的通解.参考答案一、填空题(每小题3分,共15分)1、-2 08 6⎛⎫ ⎪⎝⎭;2、1P AP B -=;3、()(,)R A R A b n ==;4、513153333-⎛⎫⎪-- ⎪ ⎪-⎝⎭;5、43二、选择题(每小题3分,共15分)BADCC三(本题满分10分,见教材P44习题第5题)解:后面1n -列都加到第1列,得(1)(1)(1)n x n a a a x n ax aD x n a a x+-+-=+-xaa x a a a n x a n x c111])1([])1([1-+===-+÷])1([)(0101001])1([1)()()(1223a n x a x ax ax a n x n c a c c a c c a c nn -+-=---+====--+-+-+.四、(本题满分10分,与典型题解P172例6类似)解:111121166()6416327161B A E ----⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎢⎥⎪ ⎪ ⎪ ⎪=-=-==⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦.五、(本题满分10分,见练习册P118第五大题第1小题和典型题解P173例7)解:212022A E A EA A E A E A -----=⇒=⇒=.22212112()202(2)()(4A E A A E A E A A E A A ------=⇒+=⇒+===)或34E A-六、(本题满分12分,见教材P89习题3第2题,或典型题解P178例6)解:1213101141560112134700002110000--⎛⎫⎛⎫⎪ ⎪---⎪ ⎪→→ ⎪ ⎪--- ⎪ ⎪-⎝⎭⎝⎭,12()2,,R A αα=为所求的一个最大线性无关组,且312412,2αααααα=-+=-+.七、(本题满分14分,见典型题解P190例14)解:(1)由,A B 相似知,,A B 有相同的特征值,而B 的特征值为0,1,2,故得A 的特征值为1230,1,2λλλ===,从而有0010E A E A ⎧⋅-=⎪⎨⋅-=⎪⎩,由此解得0α=,β=0.(2)对于10λ=,解()00E A X ⋅-=,得特征向量101-⎛⎫⎪⎪ ⎪⎝⎭,单位化得:⎪⎪⎪⎪⎪⎭⎫⎝⎛-=210211p ;对于21λ=,解()0E A X -=,得特征向量为⎪⎪⎪⎭⎫⎝⎛=0101p ;对于32λ=,解()20E A X -=,得特征向量为101⎛⎫⎪⎪ ⎪⎝⎭,单位化得:⎪⎪⎪⎪⎪⎭⎫⎝⎛=210211p 令()⎪⎪⎪⎪⎪⎭⎫⎝⎛-==2102101021021,,321p p p P ,则P 为正交阵,且使1P AP B -=.八、(本题满分14分,见教材P87例3.13)解:(1)增广矩阵B 的行列式是4阶范德蒙行列式:231112322223143332344411||()11ji i j a a a a a a B aa a a a a aa≤<≤==-∏由于1a ,2a ,3a ,4a 两两不等,知||0B ≠,从而()4R B =,但系数矩阵A 的秩()3R A ≤,故()()R A R B ≠,因此方程组无解.(2)13a a k ==,24a a k ==-(0k ≠)时,方程组变为23123231232312323123x kx k x k x kx k x k x kx k x k x kx k x k⎧++=⎪-+=-⎪⎨++=⎪⎪-+=-⎩即2312323123x kx k x k x kx k x k⎧++=⎨-+=-⎩因为1201kk k=-≠-,故()()2R A R B ==,所以方程组有解,且对应的齐次方程组的基础解系含3-2=1个解向量,又1β,2β是原非齐次方程组的两个解,故21(2, 0, 2)T ξββ=-=-是对应齐次方程组的解;由于0ξ≠,故ξ是它的基础解系。

线性代数试卷及答案 卷A

线性代数试卷及答案 卷A

河南工业大学成教学院课程 线性代数 试卷专业班级: 卷A姓 名: 学 号:注:(1)不得在密封线以下书写班级、姓名。

(2)必须在密封线以下答题,不得另外加纸。

………………………………………密 封 线 ………………………………………………………一 .单项选择题(每题3分)1.若 111221226a a a a =,则 121122212020021a a a a -- 的值为( A )(A )12 (B) –12 (C) 18 (D) 02.设A 、B 都是n 阶矩阵,且AB=0,则下列一定成立的是( C )(A )A=0或B=0 (B) A 、B 都不可逆(C )A 、B 中至少有一个不可逆 (D )A+B=03. 若齐次线性方程组1231231230020kx x x x kx x x x x ++=⎧⎪+-=⎨⎪-+=⎩仅有零解,则( B )(A) 4k =或1K =- (B) K= 4-或K=1(C) 4K ≠且1K ≠- (D) 4K ≠-且1k ≠4. A 、B 均为n 阶可逆矩阵,则AB 的伴随矩阵()*AB =( D )(A) A B ** (B) 11||AB A B -- (C) 11B A -- (D) B A **5.设n 元齐次线性方程组0AX =的系数矩阵的秩为r ,则0AX =有非零解的充分必要条件是(D )(A )r n = (B ) r n ≥ (C ) r n > (D )r n <二 .填空题(每题3分)1.行列式 12342345_______32005000= 1602.若n n ⨯阶矩阵A 的行列式|A|=3,A *是A 的伴随矩阵,则A *__3^n-1____3. A 为n n ⨯阶矩阵,且2320A A E -+=,则1A -=______4. n1100⎡⎤=⎢⎥⎣⎦___1__(n 为正整数)5. 设1101A -⎡⎤=⎢⎥⎣⎦, 则1(2A)________=-三.计算题(共63分)1. 计算行列式12n12n 12nb a a a a b a a a a b a +++(12分)解:r2-r1、r3=r1、...ri-r1、...rn-r1D=|b+a1 a2 a3 ....................... an|-b b 0 0-b 0 b 0.............................-b 0 0 .......................... bc1+c2+c3+...+cj+...+cn=|b+a1+a2+...+an a2 ............... an|0 b ................. 0 ......................................0 0 .................... b=(b+Σai)*[b^(n-1)]=b^n+[b^(n-1)]*(a1+a2+...+an)2.3411231100250013A⎡⎤⎢⎥-⎢⎥=⎢⎥⎢⎥⎣⎦, 求1A-(12分)3 41 12 5解:令B= ,C= ,D= ,则原矩阵可以写为分块2 3 -1 1 1 3B C B ^-1 -B ^-1CD^-1 矩阵的形式A= ,它的逆矩阵易得为A^-1=0 D 0 D ^-1而利用伴随矩阵与逆矩阵的关系可以直接得到3 -4 3 -4B^-1=1/ B B *=1×=-2 3 -2 32 -53 -5D^-1=1/ D D *=1×=-1 3 -1 2-15 38计算可得-B^-1CD^-1=11 -283 -4 -22 37-2 3 16 -27所以A^-1= 0 0 3 -50 0 -1 23.求解齐次线性方程组1234123412342202220430x x x xx x x xx x x x+++=⎧⎪+--=⎨⎪---=⎩.(15分)解:基础解系为:1 2 2 1 2 2 1 0 -2 -5/32 1 -2 -2 -3 -6 -4 1 2 4/3 1 -1 -4 -3 0 0 0 0 0 0通解为:X12k1+5/3k2 2 5/3X=k1ξ1+ k2ξ2= X2 = -2k1-4/3k2 =k1 -2 +k2 -4/3X3 k1 1 0X4 k2 0 14.设211210111A-⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦,311342B⎡⎤-=⎢⎥⎣⎦求解矩阵方程XA B=(12分)解:5. 计算矩阵3112322140511135524aA⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦的秩为3,求a (12分)解:r4-r2,r1-r3,r2-2r30 1 1 a-1 -20 2 1 -1 -61 0 1 1 50 1 2 4 0r1-r4,r2-2r40 0 -1 a-5 -20 0 -3 -9 -61 0 1 1 50 1 2 4 0r3*(-1/3), r1+r20 0 0 a-2 00 0 1 3 21 0 1 1 50 1 2 4 0交换行1 0 1 1 50 1 2 4 00 0 1 3 20 0 0 a-2 0因为 r(A)=3, 所以 a = 2.四.证明题(7分)设32=,证明5A E+可逆,并求1A E+(7分)A E-(5)解:(A+5E)【1/127(A^2-5A+25E)】=1/127(A+5E)(A^2-5A+25E)=1/127(A^3+5A^2-5A^2-25A+25A+125E)=1/127(A^3+125E)由于A^3=2E,所以1/127(A^3+125E)=1/127(127E)=E,所以(A+5E)可逆,且(A+5E)^-1=1/127(A^2-5A+25E)。

(完整版)线性代数试题套卷及答案

(完整版)线性代数试题套卷及答案

(线性代数) ( A 卷)专业年级: 学号: 姓名:一、单项选择题(本大题共5小题,每小题5分,共25分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设为实矩阵,则线性方程组只有零解是矩阵为正定矩阵的n m A ⨯0=Ax )(A A T(A) 充分条件; (B) 必要条件; (C) 充要条件;(D) 无关条件。

2.已知为四维列向量组,且行列式 ,32121,,,,αααββ4,,,1321-==βαααA ,则行列式1,,,2321-==βαααB =+B A (A) ;(B) ;(C) ;(D) 。

4016-3-40-3.设向量组线性无关,且可由向量组线s ααα,,, 21)2(≥s s βββ,,, 21性表示,则以下结论中不能成立的是(A) 向量组线性无关;s βββ,,, 21(B) 对任一个,向量组线性相关;j αs j ββα,,, 2(C) 存在一个,向量组线性无关;j αs j ββα,,, 2(D) 向量组与向量组等价。

s ααα,,, 21s βββ,,, 214.对于元齐次线性方程组,以下命题中,正确的是n 0=Ax (A) 若的列向量组线性无关,则有非零解;A 0=Ax (B) 若的行向量组线性无关,则有非零解;A 0=Ax (C) 若的列向量组线性相关,则有非零解;A 0=Ax (D) 若的行向量组线性相关,则有非零解。

A 0=Ax 5.设为阶非奇异矩阵,为的伴随矩阵,则A n )2(>n *A A 题 号一二三总 分总分人复分人得 分得分评卷人√√(A) ;(B) ;A A A 11||)(-*-=A A A ||)(1=*-(C) ;(D) 。

111||)(--*-=A A A 11||)(-*-=A A A 二、填空题(本大题共5小题,每小题5分,共25分)请在每小题的空格中填上正确答案。

(完整版)线性代数试题套卷及答案

(完整版)线性代数试题套卷及答案

(线性代数) ( A 卷)专业年级: 学号: 姓名:一、单项选择题(本大题共5小题,每小题5分,共25分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设n m A ⨯为实矩阵,则线性方程组0=Ax 只有零解是矩阵)(A A T为正定矩阵的(A) 充分条件; (B) 必要条件; (C) 充要条件; (D) 无关条件。

2.已知32121,,,,αααββ为四维列向量组,且行列式 4,,,1321-==βαααA ,1,,,2321-==βαααB ,则行列式 =+B A(A) 40; (B) 16-; (C) 3-; (D) 40-。

3.设向量组s ααα,,,21)2(≥s 线性无关,且可由向量组s βββ,,, 21线 性表示,则以下结论中不能成立的是(A) 向量组s βββ,,,21线性无关; (B) 对任一个j α,向量组s j ββα,,,2线性相关; (C) 存在一个j α,向量组s j ββα,,,2线性无关; (D) 向量组s ααα,,,21与向量组s βββ,,, 21等价。

4.对于n 元齐次线性方程组0=Ax ,以下命题中,正确的是(A) 若A 的列向量组线性无关,则0=Ax 有非零解; (B) 若A 的行向量组线性无关,则0=Ax 有非零解; (C) 若A 的列向量组线性相关,则0=Ax 有非零解; (D) 若A 的行向量组线性相关,则0=Ax 有非零解。

5.设A 为n 阶非奇异矩阵)2(>n ,*A 为A 的伴随矩阵,则√√(A) A A A 11||)(-*-=; (B) A A A ||)(1=*-;(C) 111||)(--*-=A A A ; (D) 11||)(-*-=A A A 。

二、填空题(本大题共5小题,每小题5分,共25分)请在每小题的空格中填上正确答案。

错填、不填均无分。

6. 列向量⎪⎪⎪⎭⎫ ⎝⎛-=111α 是矩阵⎪⎪⎪⎭⎫ ⎝⎛---=2135212b a A 的对应特征值λ的一个特征向量. 则λ= ,a = ,b = 。

线性代数A模拟卷

线性代数A模拟卷

.
1
1

1
1 1 0
x1 2x2 1x3 1 3. 设ξ 1=(2,0,-1)T, ξ 2=(1,0,0)T为线性方程组 2x1 x2 2x3 2
ax1 bx2 cx3 5
的两个解向量,则方程的通解为
.
4. 向量组α 1=(1,2,-3)T, α 2=(-2,1, 0)T, α 3=(0,5,-6)T,线性

(2 )x1 2x2 2x3 1 2x1 (5 )x2 4x3 2
2x1 4x2 (5 )x3 1
六、(18分)设二次型f=2x12+3x22+3x32+4x2x3. 1.写出f的矩阵; 2.求A的特征值与特征向量; 3.用正交变换X=QY将f化为标准形,并写出正交矩阵Q.
(B) α 1一定不可由α 2,α 3,…,α s线性表示;
(C) 其中至少有一个向量可由其余s-1个向量线性表示.
5.n阶方阵A与对角阵相似,则(
).
(A)A有n个不同的特征值;(B) A有n个相同的特征值;(C) A有n
个线性无关的特征向量.
三、(14分)设n维向+2ααT,其中E 为n阶单位矩阵,求AB,A-1,B-1,并写出A-1与B-1的具体形式.
5.设α 1=(1,-2,5)T, α 2=(-2,4,-10)T,则(
).
(A)(α 1,α 2)=-60;(B) α 1 与α 2正交;(C) α 1,α 2线性相关.
三、(10分)求非齐次线性方程组
4
2x1 x1
2
x2 x2

x3 x4 2x3 x
1 4 2

《线性代数》期末试卷A(含答案)

《线性代数》期末试卷A(含答案)

《线性代数》期末试卷 (综合卷)一、填空与选择题(本题满分30分,每空3分)1. 如果矩阵1232636A x x ⎛⎫ ⎪= ⎪ ⎪⎝⎭正定,则x 的取值范围是( 9x > ).2. 设3阶方阵11133112k -⎛⎫ ⎪= ⎪ ⎪-⎝⎭A ,若存在3阶非零方阵B ,使得=0AB ,则k =( 3- ),方阵B 的秩()R =B ( 1 ),=B ( 0 ).3. 行列式10010010a bab a b ab a b aba b++=++( 432234a a b a b ab b ++++ ).4. 已知线性方程组()12312312321232320x x x x x a x x ax x ++=⎧⎪+++=⎨⎪+-=⎩无解,则=a ( -1 ).5. 设3阶方阵A 相似于方阵B ,若A 有特征值1,1,2,-,则+=B E ( -4 ).6. 已知123,,ααα线性相关,而234,,ααα线性无关,则1234,,,αααα中 (4α )不能用另外3个向量线性表示.7. 如果123,,ξξξ是向量组A 的极大无关组,则:( A )也是向量组A 的极大无关组. (A )122331,,ξξξξξξ+++ (B )1223321,,2ξξξξξξξ++++ (C )1213321,,23ξξξξξξξ++++ (D )1323321,,32ξξξξξξξ++++ 8. 123,,,αααβ线性无关,而123,,,αααγ线性相关,则( D ).(A) 123,,,αααβγ+c 线性相关. (B) 123,,,αααβγ+c 线性无关. (C) 123,,,αααβγ+c 线性相关. (D)123,,,αααβγ+c 线性无关.二、 (本题满分10分) 已知矩阵430210001⎛⎫⎪= ⎪ ⎪-⎝⎭A ,3阶方阵B 满足()1*--=-B E A E ,求1-B . 解:()()()()1*---=--B E B E B E A E ,()()**---=B A E E A E E ,()**-=B A E A ,()**-=B A A EA A A ,()-=B A E A A E ,又2=A ,于是()22-=B E A E ,()122-=BE A E ,从而 ()131021112102223002-⎛⎫-- ⎪⎪ ⎪=-=-- ⎪ ⎪ ⎪ ⎪⎝⎭B E A E A =。

线性代数A及答案

线性代数A及答案

2005学年第2学期线性代数期末考试试卷( A 卷 )一. 填空题 (本题共有10个小题, 每小题3分)1. 设305021311121A ⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦,则矩阵A 的秩()r A =__________. 2. 设A 为3阶方阵,行列式2A =,则3A =________.3. 设矩阵20003101A x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦与400020002B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦相似,则x =_________. 4. 设A 是n 阶方阵且240A A E +-=, 则()1A E --=_________.5.()222,,2332f x y z x y z ayz =+++是正定二次型,则a 的取值范围是______.6. 若向量()1,2,0与(),,0x y 线性无关,则x 与y 的关系应为__________.7. 向量[]1,4,0,2T∂=与[]2,2,1,3Tβ=-的距离和内积分别为_________和___________.8. 设10246311A a -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦,B 为3阶非零矩阵,且0AB =,则a =___________.9. 设0是矩阵10102010A a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦的特征值,则a =___________. 10. 在MA TLAB 软件中,det(A ) 表示求__________.二. 选择题(本题共有5个小题, 每个小题都给出代号 (A), (B), (C), (D) 的四个结论, 其中只有一个结论是正确的。

每小题3分。

)1. 设A 是n 阶方阵,则下列4个式子中表明A 是正交矩阵的式子为( )(A) 1AA E -=(B) AA E = (C) 1TA A -=(D) 1A =±2. 已知,A B ,C 为n 阶方阵,则下列性质不正确的是( )(A) AB BA = (B) ()()AB C A BC =(C)()A B C AC BC +=+(D) ()C A B CA CB +=+3. 已知方程组Ax b =对应的齐次方程组为0Ax =,则下列命题正确的是( )(A) 若0Ax =只有零解,则Ax b =一定有唯一解。

《线性代数》样卷A及答案

《线性代数》样卷A及答案

《线性代数》样卷A一、选择题(本题共10小题,每小题2分,共20分)(从下列备选答案中选择一个正确答案) 1、排 列134782695的逆序数为( ) (A )9 (B )10 (C )11 (D )12 2、已知110104a D aa=-则D>0的充要条件是( )(A )a<2 (B)a>-2 (C)2a > (D) 2a <3、设A 、B 为n 阶可逆矩阵,0λ≠,则下列命题不正确的是( ) (A )11()A A --= (B )11()A A λλ--= (C )111()AB B A ---= (D )11()()T T A A --=4、以初等矩阵001010100⎛⎫⎪ ⎪⎪⎝⎭左乘矩阵001100010A ⎛⎫⎪= ⎪ ⎪⎝⎭相当于对A 施行初等变换为( ) (A )23r r ↔ (B )23C C ↔ (C )13r r → (D )13C C ↔ 5、齐次线性方程组0Ax =有非零解的充分必要条件是( )(A )A 的行向量组线性无关; (B )A 的列向量组线性无关; (C )A 的行向量组线性相关; (D )A 的列向量组线性相关; 6、已知方程有,,mxn AX b A m n =<,且A 的行向量线性无关,则( ) (A )A 的列向量组线性无关 (B )增广矩阵的行向量组线性无关(C )方程组有唯一解 (D )无法判断增广矩阵到向量组的线性相关性 7、 如果3阶方阵33)(⨯=ij a A 的特征值为1,3,4- ,那么332211a a a ++及A 分别等于( ) (A )6,12(B )-6,12 (C )6,-12 (D )-6,-128、 关于x 的一次多项式10213111()2543111f x x --=----,则式中一次项的系数为( )(A )2 (B )—2 (C )5 (D )—59、已知x 是3维列向量,且⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=963642321Txx ,则=x x T ( ) (A )1 (B )4 (C )9 (D )14 10、设向量组12,,...,s ααα的秩为r ,则( )(A )必有r<s (B )向量组中任意小于r 个向量的部分组线性无关 (C )向量组中任意r 个向量线性无关 (D )向量组中任意r+1个向量线性相关二、填空题(本题共10空,每空2分,共20分) (请将正确答案填入括号内)1、 四阶行列式展开项中12233441a a a a 的符号是 (填正或负)2、已知6734325352127321D --=--,则21222324522A A A A +-+= .3、设A 为三阶可逆矩阵,3A =,则13A -=4、已知向量(1,1,2)T a =-,(7,6,4)T b =,(0,0,0)T c =,则向量组a ,b ,c 线性 (填相关或无关)5、 125=13-⎛⎫ ⎪⎝⎭6、410253020A ⎛⎫ ⎪= ⎪ ⎪⎝⎭的行最简形为:7、设c b a ,,是互不相同的三个数,则行列式=222111c b a c b a8、 若向量组123(,1,1),(1,,1),(1,1,)a αλαλλ===线性相关,则λ= 9、已知(6,3,2),(1,4,3)TTx y =-=-,则[],x y = .10、已知(1,2,3),(2,1,0)T Tαβ=-=-,且αλβ+与β正交则λ=三、计算题(本题共2小题,每小题6分,共12分) (要求写出主要计算步骤及结果)1、计算7333373333733337n D =2、已知2()21f x x x =-+,120210002A -⎛⎫⎪= ⎪⎪⎝⎭,求()f A .四、综合应用题(本题共4小题,共48分) (要求写出主要计算步骤及结果)1、(8分)已知向量组()()()1231,2,3,2,2,1,3,1,5,7,6,7,TTTααα=--=-=--, (1)求该向量组的秩. (2)求该向量组的一个最大无关组.(3)将不属于最大无关组的向量用最大无关组线性表示. 2、(8分)验证123(2,1,1),(3,2,2),(1,0,2)T T T ααα=-==--为R 3的一个基 并求12(2,1,3),(4,0,2)T T ββ=-=--在这个基下的坐标。

工大线性代数期末试卷及参考答案(A)

工大线性代数期末试卷及参考答案(A)

学院: 专业:班级:姓名: 学号:,,s α线性表示,则下列结论中正确的 2,,s k k 使等式s s k α+成立。

存在一组全为零的数12,,,,s k k k 使等式11s s k α+成立; 2,,,s k k 使等式1s s k k βαα=+成立; 的线性表达式唯一。

的特征值为1,1,2,-则矩阵2A E ++的特征值为1,3,7; C. 1,1,2-; 1,0,3-.二、填空题(每小题3分,共15分)6.设(,1,2)ij A i j = 为行列式2131D =中元素ij a 的代数余子式, 则11122122A A A A =7.设4阶方阵520021000012011A ⎛⎫⎪ ⎪= ⎪- ⎪⎝⎭,则1A -=8.设线性方程组1231231232202020x x x x x x x x x λ-+=⎧⎪-+=⎨⎪+-=⎩有非零解,则λ=9.已知向量组123(3,2,0,1),(3,0,,0),(1,2,4,1)ααλα===--的秩为2,则λ=10.设n 阶方阵A 的特征值为12,,,n λλλ,则kA (k 为常数)的特征值为三、计算n 阶行列式(本题14分)11. 211112111112n D =四、证明题(每小题8分,共16分)12.已知对于n 阶方阵A ,存在自然数k ,使得0k A =,试证明矩阵E A -可逆,并写出其逆矩阵的表达式。

13. 设向量组12:,,,L A ααα和向量组12:,,,,S B βββ的秩分别为p 和q ,试证明:若A 可由B 线性表示,则p q ≤。

五、解矩阵方程(14分)14.设412221311A -⎛⎫ ⎪= ⎪ ⎪-⎝⎭,132231B -⎛⎫ ⎪= ⎪ ⎪-⎝⎭,求X 使AX B =.六、解答题(每小题10分,共20分)15. 设11,11A ⎛⎫= ⎪-⎝⎭121101B ⎛⎫= ⎪--⎝⎭, 求AB .16. 设()12340,4,2,(1,1,0),(2,4,3),(1,1,1)αααα===-=-,求该向量组的秩和一个最大无关组,并将其余向量表示成最大无关组的线性组合。

线性代数课程期末考试试卷(A卷)1

线性代数课程期末考试试卷(A卷)1

信息学院本科生2009-2010学年第一学期线性代数课程期末考试试卷(A 卷)专业: 年级: 学号: 姓名: 成绩:说明:A T 表示矩阵A 的转置,A *表示矩阵A 的伴随矩阵,E 是单位矩阵,O 是零矩阵, A −1表示可逆矩阵A 的逆矩阵, |A |表示方阵A 的行列式, 〈α, β〉表示向量α, β的内积.一、 客观题:1−3小题为判断题,在对的后面括号中填“√”,错的后面括号中填“⨯”,4−8为单选题,将正确选项前的字母填在括号中. (每小题2分,共16分)1. 方阵,A B 满足,则必有)AB BA =22()(A B A B A B -=+-。

( )2. 若方阵A 有0k A =(0k >为整数), 则必有||0A =。

( )3. ,A B 为同型矩阵,且秩(A)=秩(B),则0AX = 与0是同解方程组。

( )BX =4. n 阶实对称矩阵A 正定,则以下结论错误的是( ) (A) 可以找到一个正交矩阵F ,使T F AF 为对角矩阵。

(B) 的所有的特征值均为正值。

A (C) 是不可逆矩阵。

A (D) 对某个12(,,,)0T n X x x x =≠ ,必有。

0T X AX >5. n 维向量,αβ正交,则内积,β=( ) (A) 1 (B) 2 (C) 1- (D) 0 6. 下列说法不正确的是 ( )(A) 存在满足的两个非零阶矩阵和。

0PQ =(1n n >)P Q (B) 维实线性空间V 中任何个线性无关的向量都构成V 的一个基底。

(1)n n >n (C) 设V 是一个任意的维欧式空间,T 是V 中一个任意的线性变换,则V 中的零向量在T 作用下的象一定也是零向量。

n (D) 是线性空间V 中线性变换,向量组T 12,,,m ααα 线性无关,则12,,,T m T T αα α线性无关。

)7. 下列说法不正确的是 ( )(A) 相似矩阵有完全相同的特征多项式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

信阳师范学院普通本科学生专业课期终考试试卷
经济与管理学院 专业2010级本科
2011—2012学年度第一学期《高等数学C(Ⅲ)》试卷(A )
试卷说明:
1、试卷满分100分,共X 页,4个大题, 120分钟完成试卷;
2、钢笔或圆珠笔直接答在试题中(除题目有特殊规定外);
3、答卷前将密封线内的项目填写清楚。

一、选择题(每小题2分,共20分)
1.齐次线性方程组⎪⎩⎪
⎨⎧=X +X +X =X -X +X =X +X -X 0
002321
321321λλ 有非零解,则λ必须满足( )
A. λ≠﹣1 且λ≠4
B. λ=﹣1
C. λ=4
D. λ=﹣1或λ=4
2.已知A 、B 均为n 阶矩阵,且A ≠0,AB=0,下列结论必然正确的是( ) A. B=0 B. (A+B )²=A ²+B ²
C. A-B )²=A ²-BA+B ²
D. (A-B)(A+B )=A ²-B ² 3.已知B 为可逆矩阵,则[
]
{}T
T B 1
1)
(--=( )
A. B
B. T B
C. 1
-B D. T
B )(1-
4.设有两个向量组(Ⅰ):,,,321ααα 和(Ⅱ).,,,4321αααα则下列各结论中正确的是( ) A. 如果(Ⅰ)线性无关,则(Ⅱ)线性无关 B. 如果(Ⅰ)线性关,则(Ⅱ)线性相关 C. 如果(Ⅱ)线性无关,则(Ⅰ)线性相关
第一页(共六页)
D. 如果(Ⅱ)线性相关,则(Ⅰ)线性相关 5. 设方阵A 的行列式|A|=0,则A 中( ) A.必有一列元素为0 B. 必有两列元素对应成比例
C.必有一列向量是其余列向量的线性组合
D.任一列向量是其余列向量的线性组合
6.设向量组A:r ααα,,2,1 可以由向量组B:s βββ,,,21 线性表示,则( ) A. 当r <s 时,向量组B 必线性相关 B. 当r >s 时,向量组B 必线性相关 C. 当r <s 时,向量组A 必线性相关 D. 当r >s 时,向量组A 必线性相关
7.设n 阶方阵A 的伴随矩阵为*A ,且|A|=a ≠0,则||*
A =( ) A. α B.a
1
C. 1
-n a
D. n
a
8.设A ,B 均为n 阶矩阵,并A~B ,则下述结论中不正确的是( ) A. A 与B 有形同的特征值和特征向量 B. |A|=|B| C. r(A)=r(B) D. 1-A =1-B
9.设矩阵A=⎪⎪⎪


⎝⎛--21110
2113 ,则A 的对应于特征值λ=2的一个特征向量α=( ) A. ⎪⎪⎪

⎫ ⎝⎛101 B.
⎪⎪⎪

⎫ ⎝⎛-101 C. ⎪⎪⎪


⎝⎛011 D. ⎪⎪⎪⎭
⎫ ⎝⎛110 10.已知矩阵A 相似于对角阵Λ,其中Λ=⎪⎪⎪

⎫ ⎝⎛300020001,则下列各矩阵中的可逆矩阵是(

A. I+A
B. I-A
C. 2I-A
D. 3I-A
第二页(共六页)
二、填空题(每小题2分,共20分)
1.排列3 4 17 8 2 6 5 9的逆序数为 。

2.已知n 阶行列式D 的每一列元素之和均为零,则D= 。

3.若243241,,,k i αααα是四阶行列式||ij α中前面冠以负号的项,那么i= ,k= 。

4.设A 为四阶矩阵,且|A|=3,则|-A|= ,|-2A|= 。

5.设 A 、B 、C 为同阶可逆矩阵,则矩阵方程AB ×C=D 的解X=
6.矩阵A=⎪⎪⎭⎫
⎝⎛-1513 的特征值为 ,特征向量为 7.将二次型f=x ²+2xy+4y ²-2xz-6yz+5z ²用矩阵表示即为
三、判断题(每小题2分,共16分)
1.n 阶行列式各项均为几个元素连乘积,且这几个元素要取自不同行不同列。

( )
2.反对称行列式的值等于零。

( )
3.设A 、B 为n 阶对称矩阵,则AB 也是对称矩阵。

( )
4.两个矩阵等价的充分必要条件是它们的秩相等。

( )
5.相似矩阵必有相同的特征值和特征向量。

( )
6.若向量组r ααα,,2,1 不线性相关,就一定线性无关。

( )
7.初等变换不改变矩阵的秩。

( )
8.设A 为m ×n 矩阵,B 为n ×m 矩阵,则当m >n 时,必有|AB|≠
0. ( ) 四、计算题(每小题11分,共44分)
1.设A ,C 分别是r 阶,s 阶可逆矩阵,求分块矩阵X=⎪⎪⎭

⎝⎛B C A O 的逆矩阵。

第三页(共六页)
2.求向量组)0,1,2(1=α,)1,1,3(2=α,)2,0,2(3=α,)0,2,4(4=α的一个极大无关组,并把其余向量用此极大线性无关组线性表示。

第四页(共六页)
3.求下面线性方程组的全部解,并用其导出组的基础解系表示。

⎪⎩⎪

⎧=++-=-+=+++33213123421
4324321x x x x x x x x x x
第五页(共六页)
4已知⎪⎪⎪⎭⎫ ⎝⎛-=111ξ是矩阵A=⎪⎪⎪

⎫ ⎝⎛--2135212b a 的一个特征向量:(1)试确定参数a ,b 及特征向量ξ所
对应的特征值;(2)问A 能否相似于对角阵?说明理由。

第六页(共六页)。

相关文档
最新文档