SEW编码器介绍PPT
SEW编码器手册
18/005/98SEW Encoder SystemsManualEdition 07/990919 6412 / 07992SEW encoder systems01861AEN Fig. 1: Unit designation of SEW encoder systems E S 1 T E Incremental encoder (encoder)A Absolute encoder N Proximity sensor X Non-SEW encoder S Spread shaft V Solid shaft H Hollow shaft E n c o d e r t y p e S h a f t d e s i g n S p e c i f i c a t i o n I n t e r f a c e t o e v a l u a t i o n A Design as mounting device C V = 24 V , HTL with zero track and negated signals R V = 24 V , TTL RS-422S V = 24 V , sin/cos 1 V T V = 5 V , TTL RS-422Y SSI interface 6 Number of pulses per revolution (proximity sensor)DC DC DC SS DC 12DesignPage 1System Description (4)1.1System overview (4)2Technical Data (7)2.1Technical description (7)2.1.1Incremental encoders with TTL and HTL signals (7)2.1.2Incremental encoders with high-resolution sin/cos signals (9)2.1.3Absolute encoders with MSSI interface (10)2.1.4Resolver (12)2.1.5Proximity sensors (13)2.2Incremental encoders (14)2.2.1Incremental encoders with spread shaft (14)2.2.2Incremental encoders with solid shaft (15)2.3Absolute encoder (16)2.4Resolver (17)2.5Proximity sensors (18)2.6Mounting devices (19)3Installation (20)3.1General information (20)3.2Incremental encoders (21)3.2.1Encoders for MOVITRAC® 31C frequency inverters (21)3.2.2Encoders for MOVIDRIVE® MDV60A drive inverters (22)3.3AV1Y absolute encoder (24)3.3.1Absolute encoder with MOVIDYN® MAS/MKS51A servo controller (24)3.3.2Connection of absolute encoder to MOVIDRIVE® MDS60A drive inverter (25)3.3.3Absolute encoder with MOVIDRIVE® MDV60A drive inverter (25)3.4Resolver (26)3.4.1Resolver with MOVIDYN® MAS/MKS51A servo controller (26)3.4.2Resolver with MOVIDRIVE® MDS60A drive inverter (27)3.5Proximity sensors (28)3.6Extended motor versions with encoder and mounting devices (29)3.6.1Incremental encoders ES1_/ES2_/EV1_ (29)3.6.2Encoder mounting devices ES1A/ES2A/EV1A (31)3.6.3Absolute encoder AV1Y (34)3.6.4Encoder mounting devices AV1A (36)3.7Pre-fabricated cables (37)SEW encoder systems34SEW encoder systems 11System Description 1.1System overview 01863BEN Fig. 2: System overview, SEW drive electronics and encoder systems Electronically controlled drive systems require actual value sensing and speed feedback; drives with synchronous motors also require the angle of the rotor position. As a systems supplier, SEW offers a comprehensive range of encoder systems.Various mounting devices are available to connect non-SEW encoders to SEW motors.Proximity sensors represent an inexpensive and easy-to-fit solution, if all that is required is theinformation about whether or not the drive is turning and in which direction.Encoders Absolute encoders and resolvers Encoder systems for asynchronous AC motors Encoder systems for synchronous motors1SEW encoder systems for asynchronous AC motors:•Incremental encoders-for5V DC supply voltage and with 5 V TTL signal level according to RS-422recommended for operation with the MOVITRAC® 31C frequency inverter-for24V DC supply voltage and with high-resolution sinusoidal signal levelrecommended for operation with the MOVIDRIVE® drive inverter-for24V DC supply voltage and with 5 V TTL signal level according to RS-422-for24V DC supply voltage and with 24V HTL signal level•Absolute encoder-for15V DC supply voltage and with MSSI interface-for24V DC supply voltage and with MSSI interface and two sinusoidal tracks•Proximity sensors-with six pulses per revolution-with A track or A+B track•Mounting devices for non-SEW encoders-mounting of spread shaft-mounting of full shaft with couplingSEW encoder systems for asynchronous servomotors:•Incremental encoders-for24V DC supply voltage and with high-resolution sinusoidal signal levelstandard feature in CT/CV motors-for24V DC supply voltage and with 5 V TTL signal level according to RS-422•Absolute encoder-for24V DC supply voltage and with MSSI interface and two sinusoidal tracksSEW encoder systems for synchronous servomotors:•Resolverstandard with synchronous servomotors for speed control•Absolute encoder15/24 V DC supply voltage with MSSI interfaceEncoder selection based on setting range:•Setting range up to 1:3000-with asynchronous AC motors → encoder with TTL signals and1024 increments/revolution-with synchronous motors → built-in resolver•Setting range up to 1:5000-with asynchronous AC motors → encoder with high-resolution sinusoidal signal levels-with asynchronous servomotors → encoder with high-resolution sinusoidal signal levelsSEW encoder systems56SEW encoder systems 1All encoder systems at a glance: *recommended encoder for operation with MOVITRAC ® 31C **recommended encoder for operation with MOVIDRIVE ® Mounting devices for non-SEW encoders Name For SEW motor size Type of encoder Shaft Specification Supply Signal ES1T*CT/DT 71...100Encoder Spread shaft - 5 V DC controlled 5 V DC TTL RS-422ES1S**24 V DC 1 V SS sin/cos ES1C 24 V DC HTL ES1R 5 V DC TTL RS-422ES2T*CV/DV 112...132S 5 V DC controlled 5 V DC TTL RS-422ES2S**24 V DC 1 V SS sin/cos ES2C 24 V DC HTL ES2R 5 V DC TTL RS-422EV1T*CT/CV71...180DT/DV71...225Solid shaft 5 V DC controlled 5 V DC TTL RS-422EV1S**24 V DC 1 V SS sin/cos EV1C 24 V DC HTL EV1R 5 V DC TTL RS-422NV16DT/DV 71...132S Proximity sensor Solid shaft A track 24 V DC 6 pulses/revolu-tion, NO contact NV26A+B track AV1Y DS56DY71...112CT/CV71...180DT/DV71...225Absolute encoder Solid shaft -15/24 V DC MSSI interface and 1 V SS sin/cos Name For SEW motor size Type of encoder Shaft Specification Supply Signal ES1A DT71...100Non-SEW encoder Spread shaft -Configured as mounting device ES2A DV112...132S EV1A DT/DV71...225Solid shaft AV1A DS56, DY71...112Solid shaft XV1A DT/DV71...225Solid shaftSEW encoder systems722Technical Data2.1Technical descriptionThis chapter explains the various types of signals, signal tracks and signal levels. The signal tracks are represented in the form of timing diagrams.Encoders have a sturdy light metal housing and generously sized precision ball bearings. Their solid metal housing protects the encoders against interference, which lends them a high degree of electromagnetic compatibility.2.1.1Incremental encoders with TTL and HTL signalsEncoders convert the angle of rotation input parameter into a number of electrical pulses. This is performed by means of an incremental disc incorporating radial slits permitting the passage of light. These slits are scanned by opto-electronic means. The number of slits defines the resolution (pulses/revolution).Signal tracks:SEW encoders are encoders with two tracks and one zero pulse track, which results in six tracks due to negation. Two light barriers are arranged at right angles to one another in the encoder. They supply two pulse sequences on tracks A (K1) and B (K2). Track A (K1) is 90° ahead of B (K2) when the encoder is turning clockwise (to the right as viewed looking onto the motor shaft, the “A” side).This phase relationship is used for determining the direction of rotation of the motor. The zero pulse (one pulse per revolution) is sensed by a third light barrier and made available on track C (K0) as a reference signal. With TTL encoders, tracks A (K1), B (K2) and C (K0) are negated in the encoder and made available on tracks A (K1), B (K2) and C (K0) as negated signals.01877AXXFig. 3: TTL signals with zero track and negated signalsHTL signals with zero track, but without negated signals 90°90°180°360°A (K1)A K1()B (K2)B K2()C (K0)C K0()8SEW encoder systems 2Signal levels:•TTL (T ransistor T ransistor L ogic) version The signal levels are V low ≤ 0.5 V and V high ≥ 2.5 V. The TTL signals are transmitted symmetri-cally and evaluated differentially. This design makes them resistant to asymmetrical interference and ensures good EMC behavior. The signal is transmitted in accordance with the RS-422 inter-face standard.Units with a 5 V DC encoder supply voltage, e.g. MOVITRAC ® 31C, allow the user to measure the actual supply voltage at the encoder via sensor leads. The supply voltage is corrected to 5 V DC and compensates for the voltage drop along the supply cable to the encoder. Encoders with 24 V DC supply voltage do not require any supply voltage compensation and, thus, no sensor leads.The maximum permissible distance between encoder and inverter is limited by the maximum pulse frequency of the encoder signals. SEW permits a maximum distance between encoder and inverter of 330 ft. (100 m).02542AEN Fig. 4: View of TTL signal levels •HTL (H igh-voltage T ransistor L ogic) version The signal levels are V low ≤ 3 V and V high ≥ V B minus 3.5 V. The HTL encoder is evaluated without the negated tracks; the signals cannot be evaluated differentially. The HTL signals are, therefore, suscep-tible to asymmetric interferences affecting the EMC behavior.V B is the encoder supply voltage in the range of 10 to 30 V DC , with 24 V DC +/- 20% being the most common value. HTL encoders do not require any supply voltage compensation and, thus, no sensor leads. The large voltage range between V high -V Low results in a high current consumption. A fact that has to be taken into consideration when planning the encoder supply.The maximum permissible distance between encoder and inverter is limited by the maximum pulse frequency of the encoder signals. SEW permits a maximum distance between encoder and inverter of 330 ft. (100 m).02543AEN Fig. 5: View of HTL signal levels 552.52.50.50.500TTL K K V [V ]DC "1" range "1" range "0" range "0" range V [V ]DC 2420.503HTL K V [V ]DC "1" range "0" rangeSEW encoder systems922.1.2Incremental encoders with high-resolution sin/cos signalsEncoders with high-resolution sin/cos signals are referred to as sine encoders. They provide two sine signals offset by 90°. The zero passages and the amplitudes (arc tan) of the sine/cosine waves are evaluated. This means the speed can be determined with a very high resolution. This encoder is suitable for drives which are operated with a wide setting range in conjunction with the require-ment to move smoothly at low speed.Signal tracks:SEW sinusoidal encoders are also dual-track encoders with a zero pulse and negated signals,resulting in six tracks. The 90° offset sine signals are on track A (K1) and B (K2). One sine half-wave per revolution is provided at track C (K0) as the zero pulse. Tracks A (K1), B (K2) and C (K0)are negated in the encoder and made available on tracks A (K1), B (K2) and C (K0) as negated sig-nals.01917AXXFig. 6: sin/cos signal s with zero track and negated tracksSignal levels:•The sine/cosine signals are superimposed on a DC voltage of 2.5 V. They have a peak-to-peak voltage of V SS = 1 V. This arrangement avoids voltage zero during signal transmission. The sine/cosine signals are transmitted symmetrically and evaluated differentially. This design makes them resistant to asymmetrical interference and ensures good EMC behavior. The signal is transmitted in accordance with the RS-422 interface standard. The supply voltage is 24 V DC .Sine encoders do not require any supply voltage compensation and, thus, no sensor leads.The maximum permissible distance between encoder and inverter is limited by the maximum pulse frequency of the encoder signals. SEW permits a maximum distance between encoder and inverter of 330 ft. (100 m).90°90°180°360°A (K1)A K1()B (K2)B K2()C (K0C C0()1V10SEW encoder systems 22.1.3Absolute encoders with MSSI interface SEW absolute encoders have a code disc with Gray Code instead of the incremental disc. This code disc is scanned by opto-electronic means. Every angle position has a unique code pattern assigned to it. The absolute position of the motor shaft is determined using this code pattern. The special feature of Gray Code is that only one bit changes with the transition from one resolvable angle stepto the next. This means the possible reading error is max. 1 bit.01927AXX Fig. 7: Code disc with Gray Code Multi-turn:In addition to the code disc for sensing the angle position, multi-turn absolute encoders have addi-tional code discs for absolute sensing of the number of revolutions. These code discs are only sep-arated from each other by one gear unit stage with the reduction i = 16. With three additonal code discs (number usually installed), 16 x 16 x 16 = 4096 revolutions can be resolved absolutely.02383AEN Fig. 8: Arrangement of code discs A single-turn absolute encoder with 12 bit resolution requires 12 pulses to display the 4096 mea-suring steps per revolution. A multi-turn absolute encoder with three additional code discs requires 12 additional pulses to display the 4096 distinguishable revolutions.Single-turn evaluation Pulse 123456789101112Data 20 21 22 23 24 25 26 27 28 29 210 211 Measuring steps per revolution in addition with multi-turn evaluation Pulse 131415161718192021222324Data 20 21 22 23 24 25 26 27 28 29 210 211 distinguishable revolutions i = 16i = 16i = 16Code discs for sensing the number of revolutions Code disc for sensing of angle position Decimal Gray Code Decimal Gray Code 00000811001000191101200111011113001011111040110121010501111310116010114100170100151000Signal outputs:Every scanned code pattern is a parallel data package and is read by a parallel/serial converter. The inverter must request the position value with a defined pulse sequence in order to transmit a posi-tion value from the encoder to the inverter. The pulse sequence starts by converting the current parallel data package and transmitting it to the inverter. The input of the parallel/serial converter is inhibited by the monoflop for the duration of the pulse sequence.01923AENFig. 9: Signal conditioning in absolute encoders with SSI interfaceIn addition to the absolute angle position, the SEW absolute encoders generate the incremental encoder signals A (K1), A (K1), B (K2)und B (K2) and make them available as 1 V SS sine signals.Signal transmission:SEW absolute encoders have an SSI interface (SSI = S ynchronous S erial I nterface) to transmit the absolute value signals and a RS-485 interface for transmission of the 1 V SS sine signals.01928AENFig. 10: Pulse diagram of data transmission via SSI interfaceInverterCycleSerialdataParallel dataCode discDriver InputcircuitSchmitt trigger P a r a l le l /S e r ialconverterPhoto transmitter Photo receiver MonoflopShift SI SOCycleSerialdataMonoflop P/SParalleldata2.1.4ResolverThe resolver determines the absolute position of the motor shaft. It consists of a rotor coil and two stator windings offset by 90° in relation to each other. It operates according to the principle of the rotary transformer. Furthermore, the resolver has one auxiliary winding each in the stator and on the rotor in order to transfer the supply voltage to the rotor without brushes. Both rotor windings are electrically connected.01931AEN Fig. 11: Schematic diagram and equivalent circuit diagram of the resolverSignal outputs:Voltages of varying magnitudes are induced in the stator windings depending on the rotor position. Voltages V1 and V2 on the two stator windings are modulated by the supply voltage through induc-tion. They possess sinusoidal envelopes. The two envelopes are electrically offset by 90° from one another and are evaluated in the inverter for zero passage and amplitude. This enables the rotor position, speed and direction of rotation to be established.00058AXX Fig. 12: Output voltages V1 and V2 of the resolverSignal level:The amplitude of the envelope depends on the r.m.s. value and frequency of the supply voltage V e.γS1S3S4S2R1R2V1stator statorrotorV2V RV estatorstationaryrotating stationarystationaryV2VRV1V1V22.1.5Proximity sensorsProximity sensors represent a simple and inexpensive means of monitoring whether the motor is turning. By using a two-track proximity sensor, it is also possible to determine the direction in which the motor is rotating. Proximity sensors are mounted on the side of the fan guard, and thus do not add to the length of the motor.Signal outputs:Proximity sensors react to the attenuation lugs on the fan. The number of attenuation lugs deter-mines the number of pulses per revolution.01929AXXFig. 13: Setup of the proximity sensor systemThe proximity sensors are constructed with HTL technology and have an NO contact output which is actuated every time there is a pulse. This NO contact output switches the connected supply volt-age. Proximity sensors have a mark-to-space ratio of 1:1.01930AENFig. 14: Signal output of the proximity sensorsSignal level:The signal level is determined by the supply voltage, usually 24 V DC. 90°ABPNPPNPV BV Badditional with two-track proximity sensor2.2Incremental encoders 2.2.1Incremental encoders with spread shaft 01934AXX Fig. 15: SEW encoder with spread shaft *recommended encoder for operation with MOVITRAC ® 31C**recommended encoder for operation with MOVIDRIVE ® Encoder type for asynchronous AC motors 71...100ES1T*ES1S**ES1R ES1C Encoder type for asynchronous AC motors 112...132S ES2T*ES2S**ES2R ES2C Supply voltage V B 5 V DC ±5 %24 V DC ±20 %Max. current consumption I in 180 mA RMS 160 mA RMS 180 mA RMS 340 mA RMS Max. pulse frequency f max 120 kHz Pulses (sine periods) per A, B revolution C 10241Output amplitude per track V high V low ≥ 2.5 V DC ≤ 0.5 V DC 1 V SS ≥ 2.5 V DC ≤ 0.5 V DC ≥ V B minus 3.5 V DC ≤ 1.5 V DC Signal output 5 V TTL sin/cos 5 V TTL HTL Output current per track I out 20 mA RMS 40 mA RMS 20 mA RMS 60 mA RMS Mark-to-space ratio 1 : 1 ±20 %Phase angle A : B 90° ±20 %Ambient temperature ϑamb -25 °C...+60 °C (EN 60721-3-3, class 3K3)Enclosure IP56 (EN 60529)Connection Terminal box on encoder2.2.2Incremental encoders with solid shaft01935AXXFig. 16: SEW encoder with solid shaft*recommended encoder for operation with MOVITRAC ® 31C **recommended encoder for operation with MOVIDRIVE ®Encoder type EV1T*EV1S**EV1R EV1C For motors asynchronous AC motors DT/DV/D 71 (225)Supply voltage V B 5 V DC ±5 %24 V DC ±20 %Max. current consumption I in 180 mA RMS 160 mA RMS 180 mA RMS 340 mA RMS Max. pulse frequency f max 120 kHzPulses (sine periods) per A, B revolution C 10241Output amplitude per track V highV low ≥ 2.5 V DC≤ 0.5 V DC 1 V SS ≥ 2.5 V DC ≤ 0.5 V DC ≥ VB minus 3.5 VDC≤ 1.5 V DCSignal output 5 V TTL sin/cos 5 V TTL HTL Output current per track I out 20 mA RMS 40 mA RMS 20 mA RMS 60 mA RMS Mark-to-space ratio 1 : 1 ±20 %Phase angle A : B 90° ±20 %Ambient temperature ϑamb -25 °C...+60 °C (EN 60721-3-3, class 3K3)Enclosure IP56 (EN 60529)Connection Terminal box on encoder2.3Absolute encoder01933BXX Fig. 17: SEW absolute encoderEncoder type AGYFor motors synchronous servomotors DS56, DY71 (112)asynchronous servomotors CT/CV71 (180)asynchronous AC motorsDT/DV71 (225)Supply voltage V B10 – 15 – 24 – 30 V DC protected against polarity reversal Max. current consumption I in250 mAMax. stepping frequency f max≥ 100 kHzPulses (sine periods) per revolutionA,B512Output amplitude per track 1 V SS sin/cosSensing code Gray CodeSingle-turn resolution4096 steps/revolution (12 bits)Multi-turn resolution4096 revolutions (12 bits)Data transfer, absolute values Synchronous, serial (SSI)Serial data output Driver to EIA RS-485Serial pulse input Opto-coupler, recommended driver to EIA RS-485 Switching frequency Permitted range: 90 – 300 – 1100 kHz(max. 330 ft./100 m cable length with 300 kHz) Monoflop time12 – 35 µsVibration (55...2000 Hz)≤ 100 m/s2 (DIN IEC 68-2-6)Maximum speed n max6000 rpmMass m0.30 kgOperating temperatureϑamb-15 °C...+60 °C (EN 60721-3-3, class 3K3) Enclosure IP65 (EN 60529)Connection 3.3 ft/1 m cable with 17-pin round connector plugfor socket plug SPUC 17B FRAN2.4ResolverMD0116AX Fig. 18: SEW resolverEncoder type RH1MFor motorssynchronous servomotorsDS56DY71DY90DY112Supply voltage V127 V AC_eff / 7 kHzMax. current consumption I1270 mA60 mA30 mANumber of poles2Ratio r0.50.450.46Output impedance Z SS200...330 Ω130...270 Ω350...500 ΩOperating temperatureϑB-55 °C...+125 °CConnection Terminal box (10-pin Phoenix terminal strip) or plug connector,depending on motor typePlug connector DS56: Intercontec, type ASTA021NN00 10 000 5 000Plug connector DY71...112: Framatone Souriou, type GN-DMS2-12S2.5Proximity sensors01932AXX Fig. 19: SEW proximity sensorsEncoder type NV16NV26For motors/brake motors asynchronous AC motors 71(BMG)...132S(BMG)Supply voltage V B10 – 24 – 65 V DCMax. operating current I max200 mAMax. pulse frequency f max 1.5 kHzPulses/revolution6A track6A+B trackOutput NO contact (pnp)Mark-to-space ratio 1 : 1 ±20 %Phase angle A : B-90° ±45 % (typical at 20 °C) Ambient temperatureϑamb0 °C...+60 °C (EN 60721-3-3, class 3K3)Enclosure IP67 (EN 60529)Connection M12 × 1 connector, e.g. RKWT4 (Lumberg)2.6Mounting devices01949AXXFig. 20: Mounting device for non-SEW encodersSee section 3.6.2, page 31 (ES1A, ES2A, EV1A) and section 3.6.4, page 36 (AV1A) regarding dimensions and extended motor lengths for encoder mounting devices.Mounting device ES1A ES2AFor motors asynchronous AC motors 71...100 asynchronous AC motors 100...132S For encoder Spread shaft encoder with 8 mm center bore Spread shaft encoder with 10 mm center boreMounting device EV1A AV1AFor motors asynchronous AC motors DT71...DV225synchronous servomotorsDS56, DY71 (112)For encoder Solid shaft encoder (synchro flange)Diameter of flange 58 mmDiameter of center hole 50 mmDiameter of shaft end 6 mmLength of shaft end 10 mmMounting 3 pcs. encoder mounting clamps (bolts with eccentric discs)for 3 mm flange thickness3Installation3.1General informationAlways follow the operating instructions for the relevant inverter when connecting the encoder to the SEW inverters!•Max. line length (inverter – encoder):330 ft (100 m) with a cable capacitance per unit length ≤ 120 nF/km (193 nF/mile)•Core cross section: 0.25 – 0.5 mm2 (AWG24 – AWG20)•Use a shielded cable with twisted pairs of cores (exception: HTL encoder cable) and connect the shield at both ends:- on the encoder in the PG fitting or in the encoder plug- on the inverter to the electronics shield clamp or to the housing of the Sub D connector •Route the encoder cable separately from the power cables.Connect the shield of the encoder cable over a large surface area:•on the inverter01937AXX Fig. 21: Connect the shield to the electronics shield clamp of the inverter01939BXX Fig. 22: Connect the shield in the Sub D connector•on the encoder01948AXX Fig. 23: Connect the shield to the PG fitting of the encoder33.2Incremental encoders01936AXXFig. 24: Connecting terminals of the SEW encoder3.2.1Encoders for MOVITRAC ® 31C frequency invertersSEW recommends the 5 V TTL encoders ES1T, ES2T or EV1T for operation with the MOVITRAC ®31C frequency inverter. The sensor leads have to be connected in order to compensate the encoder supply voltage. Connect the encoder as follows:*Connect the sensor leads on the encoder to UB and ⊥, do not jumper them on the encoder!01585BXXFig. 25: Connection of TTL encoders ES1T, ES2T or EV1T to MOVITRAC ® 31C Channels K0 (C) and K0 (C) are only required for position control (FPI31C option). Channels K0 (C)and K0 (C) are not required for speed control (FRN31C or FEN31C option) and synchronous opera-tion (FRS31C option). A (K1)()B (K2)()C (K0)()UB A K1B K2C K0⊥ES1T / ES2T / EV1T UB K1K2K0⊥K1K2K0UB A B C ⊥A B C max. 100 m (330 ft)8889909192939495*96*97MC31CFEN 31C/FPI 31CਠਠX6:33.2.2Encoders for MOVIDRIVE ® MDV60A drive inverters The core colors indicated in the wiring diagrams according to color code meeting IEC757 corre-spond to the core colors of the pre-fabricated cables by SEW (→ section 3.7).24 V sin/cos encoders ES1S, ES2S or EV1S SEW recommends the high-resolution 24 V sin/cos encoders ES1S, ES2S or EV1S for operation with the MOVIDRIVE ® drive inverter. 24 V encoders do not require sensor leads. Connect the encoder as follows:01381BXX Fig. 26: Connection of sin/cos encoder ES1S, ES2S or EV1S to MOVIDRIVE ® 24 V TTL encoders ES1R, ES2R or EV1R It is also possible to connect TTL encoders with 24 V DC encoder supply ES1R, ES2R, EV1R directly to MOVIDRIVE ® MDV60A. Install the TTL encoders in exactly the same way as the high-resolution sin/cos encoders (→ Fig. 26).HTL encoders ES1C, ES2C or EV1C If you are using an HTL encoder ES1C, ES2C or EV1C, you must not connect the negated channels A (K1), B (K2) and C (K0) to MOVIDRIVE ® !02558AXX Fig. 27: Connection of HTL encoder ES1C, ES2C or EV1C to MOVIDRIVE ® 162738954YE GN RD BU PK GY WH BN VT 1569X15:max. 100 m (330 ft)A (K1)()B (K2)()C (K0)()UB A K1B K2C K0⊥ES1S / ES2S / EV1S ES1R / ES2R / EV1R UB K1K2K0⊥K1K2K0ਠਠUB A B C ⊥A B C ¢1N.C. 62N.C. 73N.C. 895N.C. 4YE RD PK WH BN 1569X15:max. 100 m (330 ft)A (K1)()B (K2)()C (K0)()UB A K1B K2C K0⊥ES1C / ES2C / EV1C UB K1K2K0⊥K1K2K0ਠਠUB A B C ⊥A B C35V TTL encoders ES1T, ES2T or EV1TUse the “5 V encoder supply type DWI11A” MOVIDRIVE ® option (part number 822 759 4) if you have to connect an encoder with a 5 V DC encoder supply ES1T, ES2T or EV1T to MOVIDRIVE ® . The sensor leads have to be connected in order to compensate the supply voltage. Connect the encoder as follows:*Connect the sensor lead on the encoder to UB, do not jumper on the DWI11A!01377BXXFig. 28: Connection of TTL encoder ES1T, ES2T or EV1T to MOVIDRIVE ® 15516996DWI11AX2:Enc o derX1:MOV ID RIVE max. 5 m (16.5 ft)max. 100 m (330 ft)1569X15:ES1T / ES2T / EV1T 162738954*ਠਠYE GN RD BU PK GY WH BNVT*162738954A (K1)()B (K2)()C (K0)()UB A K1B K2C K0⊥ A (K1)()B (K2)()C (K0)()UB N.C.A K1B K2C K0⊥162738954ਠਠYE GN RD BU PK GY WH BN VT UB K1K2K0⊥K1K2K0UB A B C ⊥A B C 814 344 7198 829 8198 828 X33.3AV1Y absolute encoder The AV1Y absolute encoder has a permanently installed connector that is one meter long (3.3 ft.)with a 17-pin round connector plug fitting socket plug SPUC 17B FRAN by Interconnectron. The plug connection has the following pin assignment:AV1Y is connected to:•MOVIDYN ® MAS/MKS51A servo controller with option “APA12 single axis positioning control”•MOVIDRIVE ® MDS60A drive inverter with option “DPA11A single axis positioning control”•MOVIDRIVE ® MDS/MDV60A drive inverter with option “DIP11A absolute encoder card”Synchronous servomotors are speed-controlled with the resolver signals. Therefore, the incremen-tal encoder signals A, A, B and B are not evaluated by MOVIDYN ® MAS/MK51A or MOVIDRIVE ®MDS60A. The AV1Y connectors 12, 13, 15 and 16 will not be assigned in this instance. MOVID-RIVE ® MDV60A uses the incremental encoder signals A, A, B and B for speed control of asynchro-nous motors. The AV1Y connectors 12, 13, 15 and 16 will be directed to X15: “ENCODER IN“ of the MOVIDRIVE ® MDV60A.The core colors in the wiring diagrams according to color code meeting IEC757 correspond to the core colors in the pre-fabricated SEW cables (→ section 3.7).3.3.1Absolute encoder with MOVIDYN ® MAS/MKS51A servo controller The AV1Y absolute encoder is connected to the APA12 option:01940BXX Fig. 29: Connection to MOVIDYN ® MAS/MKS51A servo controller with APA12Pin Description Core color of pre-fabricated cable 6-core cable 10-core cable 7Supply voltage V S +13 – 15 – 24 V DC , protected against polarity reversal white (WH)white (WH)10Supply voltage GND Electrically isolated from the AGY housing brown (BN)brown (BN)14Serial data output D+“1” = High signal yellow (YE)black (BK)17Serial data output D-“0” = High signal green (GN)violet (VT)8Clock line, current loop T+7 mA towards T+ = “1”pink (PK)pink (PK)9Clock line, current loop T-7 mA towards T- = “0”grey (GY)grey (GY)15Incremental encoder - signal A 1 V ss sin/cos -yellow (YE)16Incremental encoder - signal A 1 V ss sin/cos -green (GN)12Incremental encoder - signal B 1 V ss sin/cos -red (RD)13Incremental encoder - signal B 1 V ss sin/cos -blue (BU)3456910111213141516171278891417107PK GY YE GN BN WH T+T-D+D-GND U S max. 100 m (330 ft)323334353839APA12X11:ਠਠAV1Y。
SEW变频器基本操作说明PPT学习教案
第13页/共32页
14
选择数据源和数据目标:
数 据 源 ( 包 括PC文 件和控 制器) 数 据 地 址 ( 包括PC文 件和 控制器 )
第14页/共32页
15
下载参数:
1. 选择数据源---点击Browse按钮,选择PC文件。 2. 选择数据地址---控制器(点对点连接)
MOVIDRIVE---驱 动 变 频 器 2 通过面板实现手动操作
第5页/共32页
6
MOVIDRIVE---驱 动 变 频 器 3 通过面板实现手动操作
第6页/共32页
7
选择手动操作:
选择手动操作按钮
通 过手动 操作, 验证: ❖控 制器和 电机的 连线是 否正确 ; ❖控 制器和 电机性 能是否 完好; ❖机 械是否 过载;
指向上一个菜单条或在编辑状态 下修改参数值(减小)
取消调试/回到初始显示状态
取消手动/从报警状态退出
第4页/共32页
5
1、调出参数880 2、通过左右键将光标移到“NO”下, 通过上 下键将 其改变 为“YES” 3、出现控制界面后,给端子X13-1 “1”信号 4、通过左右键控制正反转,通过上下 键,增 减速度 。
29
参数比较:
选择PC—参数文件
第29页/共32页
30
参数比较:
选择控制器内参数
第30页/共32页
31
参数比较:
❖两参数文件不相同的参数红色显示
第31页/共32页
32
第17页/共32页
18
上载参数及程序:
填写上载文件注释
SEW编码器介绍 PPT
用户培训 MOVIDRIVE –编码器系统
SEW编码器安装和接线
Connection of TTL encoder ES1T, ES2T or EV1T to MOVIDRIVE
Use the 5V encoder supply type DWI11A MOVIDRIVE option (part no. 822 759 4) if you have to connect an encoder with 5V DC encoder supply ES1T, ES2T or EV1T to MOVIDRIVE
SEW编码器安装和接线
Reslover signals and description
Connection of resolver to MOVIDRIVE MDS inverter
电子技术中心
20
用户培训 MOVIDRIVE –编码器系统
SEW编码器安装和接线
Connection of proximity sensor
电子技术中心
18
用户培训 MOVIDRIVE –编码器系统
SEW编码器安装和接线
Connection of absolute encoder AV1Y to MOVIDRIVE inverter with DIP11 option and to X15
电子技术中心
19
用户培训 MOVIDRIVE –编码器系统
6
用户培训 MOVIDRIVE –编码器系统
编码器系统一览表
电子技术中心
7
用户培训 MOVIDRIVE –编码器系统
增量型编码器 TTL /HTL
TTL 信号带有0通道和互补通道 HTL 信号带有0通道但不具备互补通道
SEW变频器MOVIDRIVE_Bppt课件
参数概览
------基本显示 ------显示值 ------设定值和斜率发生器 ------转速调节器和位置调节器 ------电机参数 ------参考信号 ------监控功能 ------二进制端子定义
------控制功能 ------系统功能 ------IPOS参数定义
46
47
00_ 过程值
• 1个主动机最多带10个从动机的相位 同 步控制 • 7种操作模式
单轴位置控制板DPI11B/DPA11B
• 可编程位置控制,带增量型编码器接 口(DPI11A)或带绝对值编码器接口 (DPA11A)
现场总线接口
• DFP21B PROFIBUS DP/FMS •DFI11B INTERBUS-S •DFC11B CAN •DFD11B Device-Net (准备)
29
子菜单
4. Wake-up 参数 显示被存储的 wake-up 值 wake-up 值可以是一个参数,一个IPOS变量或基本显示 Wake-up 可以通过菜单中的第12项设定 5. 手动操作 通过10位数字键或用箭头设定速度 通过 START/STOP 按钮进行起停操作 手动运行只能通过 键或激活出厂设定来退出 (手动运行在移去
9 用户菜单 10 P0000 增加 11 P0000 消除 12 可调整 wake-up 参数 13 供货状态 14 系统设定 15 退出
供货状态 DBG60B (13) 与MOVIDRIVE 供货状态 (P802)不同.
24
连接和初始化
连接到输入口 XTerminal 显示 SEW 标志几秒钟 出现选择语言符合 用Sprachauswahl键选择语言 用OK-按钮确认所选语言
数控机床编码器讲解.ppt
第五章 状态监测与故障诊断
第二节 利用PLC进行数控机床的故障检测
5.2.1 与PLC有关的故障的特点
1. 与PLC有关的故障首先确认PLC的运行状态,判断是自动运行 方式还是停止方式。
4. 硬件故障多于软件故障,例如当程序执行M07(冷却液开),而 机床无此动作,大多是由外部信号不满足,或执行元件故障,而不 是CNC与PLC接口信号的故障。
第五章 状态监测与故障诊断
第二节 利用PLC进行数控机床的故障检测
5.2.2 与PLC有关故障检测的思路和方法
根据故障号诊断故障 根据动作顺序诊断故障 根据控制对象的工作原理诊断故障 根据PLC的I/O状态诊断 通过梯形图诊断故障 动态跟踪梯形图诊断故障
在调查故障现象,掌握第一手材料的基础上分析故障的起因,故障分析可采用归 纳法和演绎法。归纳法是从故障原因出发寻找其功能联系,调查原因对结果的影响, 即根据可能产生该故障的原因分析,看其最后是否与故障现象相符来确定故障点。演 绎法是从所发生的故障现象出发,对故障原因进行分割式的分析方法。即从故障现象 开始,根据故障机理,列出可能产生该故障的原因;然后对这些原因逐点进行分析, 排除不正确的原因,最后确定故障点。
第五章 状态监测与故障诊断
第一节 概述
5.1.1 故障的分类
根据机床部件、故障性质以及故障原因等对常见故障作如下分类: 1 按数控机床发生故障的部件分类 2 按数控机床发生的故障的性质分类 3 按报警发生后有无报警显示分类 4 按故障发生的原因分类
按故障发生时有无破坏性来分,可分为破坏性故障和非破坏性故障; 按故障发生的部位分,可分为数控装置故障,进给伺服系统故障,主轴 系统故障,刀架、刀库、工作台故障等。
伺服电机课件(SEW)
CM系列伺服电机特点
CM系列伺服电机也可以采用标准的接插件式接线方式 (包括:主电源(与DY一样)和RH1M以及TH/TF)
CM系列伺服电机特点
Hiperface(AS1H/ES1H)以及TH/TF)
CM系列伺服电机
11 moulds to cast plastic parts
6 dies to cast aluminium plus additional tools
CM伺服电机和BR制动器
伺服电机的内部构造
1
DY系列伺服电机可以采用普通的端子式接线方式 (包括:主电源和旋转变压器以及TH/TF )
CM 伺服电机结构明细
CM系列伺服电机特点
CM伺服电机有四个速度等级: 2000rpm/3000rpm/4500rpm/6000rpm 对应频率为:100Hz/150Hz/225Hz/300Hz 转矩范围:1NM--68NM 配合专用伺服控制器工作 伺服控制器型号: MDS / MCS /MCH
伺服的特点
同步伺服电机 DY系列 / CM系列 采用先进的 稀土永磁材料(稀土钕铁硼) 作为转子,可以达 到更高的动态特性,定子为 铸铝外壳,电机外形与鼠笼电机相比细长,是六级电机。 CSA 认证, 满足 NEMA 要求 结构坚固, IP65 防护等级 直接与所有SEW齿轮箱 联接使用 SEW公司提供全套伺服控制系统
CM伺服电机的技术指标
CM伺服电机的技术指标
伺服电机及控制器的选型
movipro设置说明演示幻灯片
2、进行电机初始化 选择parameter set 1,点击“Start-up Set 1”。 (如果需要两套参数运行,parameter set-2设置采取同样步骤)
参数均为变频器读取得出,不 能更改(显示为灰色)
16
选择执行完整的电机初始化(Execute complete start-up),选择下一步。
21
选择使用编码器(Yes,I use the encoder) 点击下一步。
22
控制模式 选择IPOS位置控制(Positioning with IPOS) 点击下一步。
速度控制 使用提升功能
IPOS位置控制 转矩控制
23
控制方式 选择电压矢量控制VFC(Voltage mode flux control) 点击下一步。
位置偏差值
平滑过渡位置偏差值
运动位置值
平滑过渡位置值
49
位置开关设置,此功能没有使用,不需要进行设置 点击Next。
用于设置位置开关的最 大值与最小值
50
自动调整功能(Automatic adjust after power up)选择NO; 定位窗口(Positon window)设置50; 位置偏差值(Lag error window)设置5000; 位置偏差故障(Response toLAG ERROR) 设置急停并报错(Immediate stop/fault) 定位中断检测(Positioning interruption detection)设置off; 紧急停止斜率(Emergency stop ramp)设置550ms;点击Next。
18
参照电机铭牌信息,检查参数是否正确。点击下一步。
不使用编码器 数据(不选)
SEW内部培训课件
控制器电器元件受到外部干扰 1。检测屏蔽和地是否连接; 2。联系SEW-售后部门;
SEW内部培训
MOVIDRIVE
驱动变频器
7.变频器功率部分测量
SEW内部培训
变频器功率部分测量方法
使用二极管档 断开输入输出侧 红表笔接负Uz,黑表笔分别接L1,L2,L3;U,V,W;测得值应该如下:
L1,L2,L3应该为410或者420mv左右,三项应该平衡 U,V,W应该为370mv左右,三项应该平衡 黑表笔接正Uz,红表笔分别接L1,L2,L3;U,V,W;测得值应该如下: L1,L2,L3应该为410或者420mv左右,三项应该平衡 U,V,W应该为370mv左右,三项应该平衡 红表笔接正Uz, 黑表笔分别接L1,L2,L3;U,V,W;测得值应该如下 无穷大 黑表笔接负Uz,红表笔分别接L1,L2,L3;U,V,W;测得值应该如下: 无穷大 注:不同功率变频器以上所提电压值会不同.
DIP 开关 S12 / S11:
* 系统总线终端电阻 (左 = on /右 = off)
系统总线 [SC11/SC12/DGND (CAN-based)] 7-segment 显示 6 开关量输入 (~10 mA; Ri = 3 kOhm), 24 V, DGND, DCOM 参考地 RS-485 通讯接口 (as standard) 9-针 D / 编码器输入 X15 9-针 D / 编码器输入/输出 X14
MOVIDRIVE
驱动变频器
1.变频器的硬件介绍
SEW内部培训
控制模式介绍
1、基本变频控制应用
MOVIDRIVE ‘F60’ (MDF) -仅有 VFC
2、异步电机CFC/VFC模式下速度闭环
MOVIDRIVE ‘V60’ (MDV) - VFC
SEW电子产品介绍
TASC /2010.11
Driving the world
7
TASC Training
单轴运动控制的标准解决方案
TASC /2010.11
卷曲缠绕 定位控制, 起升机构,
旋转位置控制 -针对定位控制
-针对卷曲控制
-针对移动锯控制
-或其他应用方案
移动锯 滚刀
输送机, 仓储,起重机
Driving the world
TASC /2010.11
Driving the world
TASC Training
满足不同应用需求的产品系列
软件产品--建立在IPOSplus基础上的应用模块
适用于MOVIDRIVE应用版变频器 简洁直观的用户界面, 用户只需按要求 输入工艺参数, 控制系统自动完成软件组态 方便的实时监视画面 在线帮助功能, 帮助用户迅速完成项目设计 多种应用模块, 适用于不同应用需求
核心 – 产品- 优势: 非常高的功率密度 高动态电机 对于高质量和模块系统的高性价比
伺服驱动器: MOVIDRIVE B and MOVIAXIS
TASC /2010.11
Driving the world
12
TASC Training
异步伺服电机特点
异步伺服电机CT/CV系列
采用CFC矢量控制原理, 达到高动态控制响应 最大动态转矩300%Mn 产品规格从CT71D 到 CV200L 正余弦编码器和电机热保护为标准配置 可以选择Hiperface高性能接口编码器 更高的性能价格比
TASC /2010.11
Driving the world
6
TASC Training
12
丰富的功能 - 基本单元的位置控制
编码器ppt课件
Y3 Y2 Y1 Y0 1001 1000 0111 0110 0101 0100 0011 0010 0001 0000
输出:原码输出 19
逻辑表达式
Y3 I9 I9I8 I9 I8 Y2 I9I8I7 I9I8I7I6 I9I8I7I6I5 I9I8I7I6I5I4
译码器(即 Decoder) 实现译码功能的电路
二进制 代码
译码器
与输入代码对应 的特定信息
.
26
译码器
变量译码器
二进制译码器 非二进制译码器
按显示 材料
荧光显示译码器 发光二极管译码器
显示译码器
按显示 内容
.
液晶显示译码器
文字译码器 数字译码器
符号译码器
27
一、二进制译码器
A0 n线-m线 Y0
A1
Y1
译 码 器
I3I2
I1 I0
.
(b) 由与非门构成 6
2.二进制优先编码器
允许同时输入多数个编码信号,并只对其中 优先权最高的信号进行编码输出的电路。
一般编码器输入信 号之间是互相排斥的, 在任何时刻只允许一个 输入端请求编码,否则 输出发生混乱。
为何要使用 优先编码器?
优先编码器则允许多个输入信号同时要求编码。
注意: 输入:逻辑0(低电平)有效 输出:反码输出
.
13
电路扩展应用:
①输入信号的连接;
②级联问题(芯片工作的优先级);
③输出信号的连接。
例:试用两片74LS148接成16线-4线优先编码器,将A0~ A15 16个输入信号编为二进制编码Z3Z2Z1Z0=0000~1111。 其中A15的优先权最高,A0的优先权最低。
sew电机型号含义 ppt课件
精品资料
• 你怎么称呼老师?
• 如果老师最后没有总结一节课的重点的难点,你 是否会认为老师的教学方法需要改进?
• 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭
• “不怕太阳晒,也不怕那风雨狂,只怕先生骂我 笨,没有学问无颜见爹娘 ……”
• “太阳当空照,花儿对我笑,小鸟说早早早……”
M0≠Mn!
选型时需注意: 1. M0≠Mn! 2. Pn=(Mn*nN)/9550
Driving the world
19
Erstellungsdatum
异步伺服电机特点
异步伺服电机CT/CV系列
采用CFC矢量控制原理, 达到高动态控制响应 最大动态转矩300%Mn 产品规格从CT71D 到 CV180L 正余弦编码器和电机热保护为标准配置
CM伺服电机有四个速度等级: 2000rpm/3000rpm/4500rpm/6000rpm 对应频率为:100Hz/150Hz/225Hz/300Hz
转矩范围:1NM--95NM 配合专用伺服控制器工作
伺服控制器型号: MDS / MCS /MCH/MDX61B
120120/12/12
11
CM 伺服电机 CFM90S /BR /HR /TF /RH1M/KK
120220/12/12
12
CM 伺服电机– 预制电缆
Brake cable
Connecting cable for inverter
120320/12/12
13
Servo motors of SEW-Eurodrive GmbH & Co KG
CMP伺服电机
2020/12/12
【优选文档】sew电机型号含义PPT
CFM 71S CFM 71M CFM 71L CFM 90S CFM 90M CFM 90L
转矩
...........
5 6,5 9.5 11 14.5 21 23.5 31 45
...........
5 6.5 9.5 11 14.5 21
电流
.........
8,8 12 16.8 19.6 28 40 40 54 80
.........
26 34 50 58 79 118
CM112
M0 45Nm
CM90
M0 21Nm
CM71
M0 9.5Nm
型号说明
标准的插头连接 Hiperface编码器 TF-电机热保护传感器 电机包含制动器 电机基座号 CM电机法兰安装
CFM71M/BR/TF/RH1M同步伺服电机
铭牌说明:
Hiperface编码器
对应频率为:100Hz/150Hz/225Hz/300Hz
可以选择Hiperface高性能接口编码器
更高的性能价格比
MDX60B
伺服控制器– Movidrive MDX
《编码器的原理》PPT课件
整理ppt
37
编码器屏蔽线的安装
Connect the shield in the
Sub D on the encoder 用屏蔽的D型接口连接编码器
Connect the shield to the electronics shield
clamp of the inverter 在变换器的电路板上用线卡连接
整理ppt
2
编码器的分类
编码器
模拟量编码器
数字编码器
增量编码器
绝对值编码器
旋转变压器
Sin/Cos 编码器
___ A, A, B, B, C, C
格雷码
二进制码
整理ppt
3
数字型编码器原理
1) 利用光电耦合器扫描安装在机械轴上的分割成断的圆盘。 机械代码被转换为成比例的电气脉冲信号。
整理ppt
4
整理ppt
34
编码器的安装注意事项
机械方面:
▪ 安装时注意允许的轴负载 ▪ 应保证编码器轴与用户输出轴的不同轴度<
0.20mm,与轴线的偏角<1.5° ▪ 安装时严禁敲击和摔打碰撞,以免损坏轴系
和码盘 ▪ 长期使用时,定期检查固定编码器的螺钉是
否松动 (每季度一次)
整理ppt
35
编码器安装方式
编码器在扩展轴上
原理通俗的讲就是将旋转编码器的码 盘拉成一条直线
整理ppt
29
光栅尺编码器
▪ 光栅位移传感器的工作原理,是由一对光栅副中 的主光栅(即标尺光栅)和副光栅(即指示光栅) 进行相对位移时,在光的干涉与衍射共同作用下产 生黑白相间(或明暗相间)的规则条纹图形,称之 为莫尔条纹。经过光电器件转换使黑白(或明暗) 相同的条纹转换成正弦波变化的电信号,再经过放 大器放大,整形电路整形后,得到两路相差为90o 的正弦波或方波,送入光栅数显表计数显示。
SEW编码器介绍PPT课件
3
08-2002
用户培训 MOVIDRIVE –编码器系统
绝对值编码器
特征: 选择:
优点: 缺点:
数字编码器系统, 测量电机轴的角位置,结果可作为位 置和转速信息 .
- 单转/多转 (one or more rotational motions) - 编码 (Gray-code, BCD, Binary) - 信号传递 (并行/串行) - 分辨率 - 最大转速
编码器屏蔽连接
Connect the shield in the Sub D on the encoder
Connect the shield to the electronics shield clamp of the inverter
Connect the shield to the PG fitting of the encoder 15
Sin/Cos 带有0通道和互补信号
9
08-2002
用户培训 MOVIDRIVE –编码器系统
带有 MSSI 接口的绝对值编码器
Code disc with Gray-code
10
08-2002
用户培训 MOVIDRIVE –编码器系统
信号输出
Signal conditioning in absolute encoders with SSI interfaMOVIDRIVE –编码器系统
旋转变压器
旋转变压器的原理图和等效电路
Output voltages V1 and V2 of the resolver
12
08-2002
用户培训 MOVIDRIVE –编码器系统
接 近传感器
Setup of the proximity sensor system
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电子技术中心
18
08-2002
用户培训 MOVIDRIVE –编码器系统
SEW编码器安装和接线
Connection of absolute encoder AV1Y to MOVIDRIVE inverter with DIP11 option and to X15
电子技术中心
19
08-2002
用户培训 MOVIDRIVE –编码器系统
优点:
缺点:
电子技术中心
4
08-2002
用户培训 MOVIDRIVE –编码器系统
SEW encoder systems系统设计
R resolver 旋转变压器
电子技术中心
5
08-2002
用户培训 MOVIDRIVE –编码器系统
系统说明及概览
电子控制驱动系统需要实际 值测量和速度反馈,同步电机的驱 动也需要知道转子的位置. 作为一个系统供应厂商SEW 提供全面的编码器系统.. 不同的安装辅助器件使得其 他公司的编码器可以安装到SEW 电机上. 如果仅仅需要判断机器是否 运行及运行方向,接近传感器是一 种经济的且易于安装的解决方案
电子技术中心 12 08-2002
用户培训 MOVIDRIVE –编码器系统
接
近
传
感
器
Setup of the proximity sensor system
Signal output of the proximity sensors
电子技术中心 13 08-2002
用户培训 MOVIDRIVE –编码器系统
用户培训 MOVIDRIVE –编码器系统
编码器系统
用户培训
SEW 编码器系统
电子技术中心
1
08-2002
用户培训 MOVIDRIVE –编码器系统
编码器系统构成
编码器
模拟量编码器
数字编码器
增量编码器
绝对值编码器
旋转变压器
Sin/Cos 编码器
_ _ _ A, A, B, B, C, C
Gray 码
高分辨率sin/cos 编码器
Sin/Cos 带有0通道和互补信号
电子技术中心
9
08-2002
用户培训 MOVIDRIVE –编码器系统
带有 MSSI 接口的绝对值编码器
Code disc with Gray-code
电子技术中心
10
08-2002
用户培训 MOVIDRIVE –编码器系统
信 号
SEW编码器安装和接线
Reslover signals and description
Connection of resolver to MOVIDRIVE MDS inverter
电子技术中心
20
08-2002
用户培训 MOVIDRIVE –编码器系统
SEW编码器安装和接线
Connection of proximity sensor
电子技术中心
16
08-2002
用户培训 MOVIDRIVE –编码器系统
SEW编码器安装和接线
Connection of TTL encoder ES1T, ES2T or EV1T to MOVIDRIVE
Use the 5V encoder supply type DWI11A MOVIDRIVE option (part no. 822 759 4) if you have to connect an encoder with 5V DC encoder supply ES1T, ES2T or EV1T to MOVIDRIVE
Connection of HTL encoder ES1C, ES2C or EV1C to MOVIDRIVE If you are using an HTL encoder ES1C, ES2C or EV1C, you must not connect the negated channels A(K1), B(K2) and C(K0) to MOVIDRIVE
电子技术中心
17
08-2002
用户培训 MOVIDRIVE –编码器系统
SEW编码器安装和接线
Connection of absolute encoder AV1Y to MOVIDRIVE inverter with DPA11 option
Connection of absolute encoder AV1Y to MOVIDRIVE inverter with DIP11 option
SEW编码器安装和接线
Connection of Sin/Cos encoder ES1S, ES2S or EV1S to MOVIDRIVE 24V TTL encoder ES1R, ES2R or EV1R: Install the TTL encoder in exactly the same way as the high-resolution sin/cos encoders
二进制码
电子技术中心
2
08-2002
用户培训 MOVIDRIVE –编码器系统
增量编码器
特征: 选择:
数字编码器系统, 根据转速提供脉冲.结果可作为位置和转速 信息 . - 每转脉冲数 (256, 512, 1024, 2048) - 输出驱动器 (TTL, HTL, 推挽式) - 电源 (5V, 24V) - 最大转速 - 结构坚固 - 高分辨率 (100-10.000 inc./转) - 多种安装方式 - 位置信息掉电丢失 - 通用性较差
输
出
Signal conditioning in absolute encoders with SSI interface
电子技术中心
11
08-2002
用户培训 MOVIDRIVE –编码器系统
旋 转
变
压
器
旋转变压器的原理图和等效电路
Output voltages V1 and V2 of the resolver
电子技术中心
6
08-2002
用户培训 MOVIDRIVE –编码器系统
编码器系统一览表
电子技术中心
7
08-2002
用户培训 MOVIDRIVE –编码器系统
增量型编码器 TTL /HTL
TTL 信号带有0通道和互补通道 HTL 信号带有0通道但不具备互补通道
电子技术中心 8 08-2002
用户培训 MOVIDRIVE –编码器系统
编 码 器 系 统 概 览
SEW 延伸轴型编码器
SEW 绝对值编码器
用于非SEW编码器的安装附件
SEW 实心轴编码器
电子技术中心
SEW 旋转变压器
14
SEW 接近传感器
08-2002
用户培训 MOVIDRIVE –编码器系统
编 码 器 屏 蔽 连 接
Connect the shield in the Sub D on the encoder
预 制
电
缆
Pre-fabricated cables for absolute encoders 电子技术中心 23 08-2002
用户培训 MOVIDRIVE –编码器系统
预 制
电
缆
Pre-fabricated cables for resolvers 电子技术中心 24 08-2002
NV16/26 encoder
电子技术中心
21
08-2002
用户培训 MOVIDRIVE –编码器系统
预 制
电
缆
Pre-fabricated cables for encoder connection and incremental encoders 电子技术中心 22 08-2002
用户培训 MOVIDRIVE –编码器系统
Connect the shield to the electronics shield clamp of the inverter
Connect the shield to the PG fitting of the encoder
电子技术中心
15
08-2002
用户培训 MOVIDRIVE –编码器系统
优点: 缺点:
电子技术中心
3
08-2002
用户培训 MOVIDRIVE –编码器系统
绝对值编码器
特征: 选择:
数字编码器系统, 测量电机轴的角位置,结果可作为位 置和转速信息 . - 单转/多转 (one or more rotational motions) - 编码 (Gray-code, BCD, Binary) - 信号传递 (并行/串行) - 分辨率 - 最大转速 - 结构坚固 - 角度编码器 (装在轴上) - 线性编码器 (激光测距) - 信息失电保留 - 高达24位分辨率 - 价格高