理论力学习题分析解析
理论力学考试题及答案详解
理论力学考试题及答案详解一、选择题(每题2分,共10分)1. 牛顿第一定律又称为惯性定律,它指出:A. 物体在受力时,会改变运动状态B. 物体在不受力时,会保持静止或匀速直线运动C. 物体在受力时,会做圆周运动D. 物体在受力时,会保持原运动状态答案:B2. 根据胡克定律,弹簧的弹力与弹簧的形变量成正比,比例系数称为:A. 弹性系数B. 刚度系数C. 硬度系数D. 柔度系数答案:A3. 在理论力学中,一个系统动量守恒的条件是:A. 系统外力为零B. 系统外力和内力都为零C. 系统外力和内力之和为零D. 系统外力和内力之差为零答案:C4. 一个物体做自由落体运动,其加速度为:A. 0B. g(重力加速度)C. -gD. 取决于物体的质量答案:B5. 刚体的转动惯量与以下哪个因素无关?A. 质量B. 质量分布C. 旋转轴的位置D. 物体的形状答案:A二、填空题(每空2分,共10分)6. 一个物体受到三个共点力平衡,如果撤去其中两个力,而保持第三个力不变,物体的加速度将________。
答案:等于撤去的两个力的合力除以物体质量7. 根据动能定理,一个物体的动能等于工作力与物体位移的________。
答案:标量乘积8. 在光滑水平面上,两个冰球相互碰撞后,它们的总动能将________。
答案:守恒9. 一个物体在水平面上做匀速圆周运动,其向心力的方向始终________。
答案:指向圆心10. 刚体的角速度与角动量的关系是________。
答案:成正比三、简答题(共20分)11. 什么是达朗贝尔原理?请简述其在解决动力学问题中的应用。
答案:达朗贝尔原理是分析动力学问题的一种方法,它基于牛顿第二定律,用于处理作用在静止或匀速直线运动的物体上的力系。
在应用达朗贝尔原理时,可以将物体视为受力平衡的状态,即使物体实际上是在加速运动。
通过引入惯性力的概念,可以将动力学问题转化为静力学问题来求解。
12. 描述一下什么是科里奥利力,并解释它在地球上的表现。
理论力学课后知识题目解析第6章刚体的平面运动分析
第6章 刚体的平面运动分析6-1 图示半径为r 的齿轮由曲柄OA 带动,沿半径为R 的固定齿轮滚动。
曲柄OA 以等角加速度α绕轴O 转动,当运动开始时,角速度0ω= 0,转角0ϕ= 0。
试求动齿轮以圆心A 为基点的平面运动方程。
解:ϕcos )(r R x A += (1) ϕsin )(r R y A +=(2)α为常数,当t = 0时,0ω=0ϕ= 0 221t αϕ=(3)起始位置,P 与P 0重合,即起始位置AP 水平,记θ=∠OAP ,则AP 从起始水平位置至图示AP 位置转过θϕϕ+=A因动齿轮纯滚,故有⋂⋂=CP CP 0,即 θϕr R = ϕθr R =, ϕϕrr R A += (4)将(3)代入(1)、(2)、(4)得动齿轮以A 为基点的平面运动方程为:⎪⎪⎪⎩⎪⎪⎪⎨⎧+=+=+=222212sin )(2cos )(t r r R t r R y t r R x A A A αϕαα6-2 杆AB 斜靠于高为h 的台阶角C 处,一端A 以匀速v 0沿水平向右运动,如图所示。
试以杆与铅垂线的夹角θ 表示杆的角速度。
解:杆AB 作平面运动,点C 的速度v C 沿杆AB 如图所示。
作速度v C 和v 0的垂线交于点P ,点P 即为杆AB 的速度瞬心。
则角速度杆AB 为6-3 图示拖车的车轮A 与垫滚B 的半径均为r 。
试问当拖车以速度v 前进时,轮A 与垫滚B 的角速度A ω与B ω有什么关系?设轮A 和垫滚B 与地面之间以及垫滚B 与拖车之间无滑动。
解:RvR v A A ==ωhv AC v AP v ABθθω2000cos cos ===习题6-1图ABCv 0hθ习题6-2图PωABv CABCv ohθ习题6-2解图习题6-3解图习题6-3图v A = vv B = v ωAωBR vR v B B 22==ω B A ωω2=6-4 直径为360mm 的滚子在水平面上作纯滚动,杆BC 一端与滚子铰接,另一端与滑块C 铰接。
理论力学重难点及相应题解
运动学部分:一、点的运动学重点难点分析1.重点:点的运动的基本概念(速度与加速度,切向加速度和法向加速度的物理意义等);选择坐标系,建立运动方程,求速度、加速度。
求点的运动轨迹。
2.难点:运动方程的建立。
解题指导:1.第一类问题(求导):建立运动方程然后求导。
若已知点的运动轨迹,且方程易于写出时,一般用自然法,否则用直角坐标法。
根据点的运动性质选取相应的坐标系,对于自然法要确定坐标原点和正向。
不管用哪种方法,注意将点置于一般位置,而不能置于特殊位置。
根据运动条件和几何关系把点的坐标表示为与时间有关的几何参数的函数,即可得点的运动方程。
2.第二类问题(积分):由加速度和初始条件求运动方程,即积分并确定积分常数。
二、刚体的简单运动重点难点分析:1.重点:刚体平移、定轴转动基本概念;刚体运动方程,刚体上任一点的速度和加速度。
2.难点:曲线平移。
解题指导:首先正确判断刚体运动的性质。
其后的分析与点的运动分析一样分两类问题进行。
建立刚体运动方程时,应将刚体置于一般位置。
三、点的合成运动(重要)重点难点分析:1.重点:动点和动系的选择;三种运动的分析。
速度合成与加速度合成定理的运用。
2.难点:动点和动系的选择。
解题指导:1.动点的选择、动系的确定和三种运动的分析常常是同时进行的,不可能按顺序完全分开。
2.常见的运动学问题中动点和动系的选择大致可分以下五类:(1)两个(或多个)不坟大小的物体独立运动,(如飞机、海上的船舶等)对该类问题,可根据情况任选一个物体为动点,而将动系建立在另一个物体上。
由于不考虑物体的大小,因此动系(刚体)与物体(点)只在一个点上连接,可视为铰接,建立的是平移动坐标系。
(2)一个小物体(点)相对一个大物体(刚体)运动,此时选小物体为动点,动系建立在大物体上。
(3)两个物体通过接触而产生运动关系。
其中一个物体的接触只发生在一个点上,而另一个物体的接触只发生在一条线上。
选动点为前一物体的接触点,动系则建立在后一物体上。
《理论力学》第四章 静力学应用专题习题解
第四章 力系的简化习题解[习题4-1] 试用节点法计算图示杵桁架各杆的内力。
解:(1)以整体为研究对象,其受力图如图所示。
由结构的对称性可知, kN R R B A 4==(2)以节点A 为研究对象,其受力图如图所示。
因为节点A 平衡,所以0=∑iyF0460sin 0=+AD N)(62.4866.0/4kN N AD -=-=0=∑ixF060cos 0=+AD AC N N)(31.25.062.460cos 0kN N N AD AC =⨯=-= (3)以节点D 为研究对象,其受力图如图所示。
因为节点D 平衡,所以 0=∑iyF0430cos 30cos 0'0=---AD D C N N 0866.0/4=++AD D C N N 0866.0/4866.0/4=+-D C N0=DC N0=∑ixF030sin 30sin 0'0=-+AD D C D E N N N 05.062.4=⨯+DE NkN4)(akN4AB RkN 2AC23N A )(31.2kN N DE -=(4)根据对称性可写出其它杆件的内力如图所示。
[习题4-2] 用截面法求图示桁架指定杆件 的内力。
解:(a)(1)求支座反力以整体为研究对象,其受力图如图所示。
由对称性可知,kN R R B A 12==(2)截取左半部分为研究对象,其受力图 如图所示。
因为左半部分平衡,所以0)(=∑i CF M0612422843=⨯-⨯+⨯+⨯N 063243=⨯-++N )(123kN N =kN2AC23N A0=∑ixF0cos cos 321=++N N N αθ01252252421=+⋅+⋅N N012515221=+⋅+⋅N N0512221=++N N ……..(1) 0=∑iyF02812sin sin 21=--++αθN N025*******=+⋅+⋅N N02525121=+⋅+⋅N N052221=++N N0544221=++N N ……..(2) 05832=-N)(963.53/582kN N ==)(399.1652963.5252221kN N N -=-⨯-=--=解:(b )截取上半部分为研究对象,其受力图如图所示。
理论力学课后习题解答
理论力学(郝桐生)第一章习题1-1.画出下列指定物体的受力图。
解:习题1-2.画出下列各物系中指定物体的受力图。
解:习题1-3.画出下列各物系中指定物体的受力图。
解:第二章习题2-1.铆接薄钢板在孔心A、B和C处受三力作用如图,已知P1=100N沿铅垂方向,P2=50N沿AB方向,P3=50N沿水平方向;求该力系的合成结果。
解:属平面汇交力系;合力大小和方向:习题2-2.图示简支梁受集中荷载P=20kN,求图示两种情况下支座A、B 的约束反力。
解:(1) 研究AB,受力分析:画力三角形:相似关系:几何关系:约束反力:(2) 研究AB,受力分析:画力三角形:相似关系:几何关系:约束反力:习题2-3.电机重P=5kN放在水平梁AB的中央,梁的A端以铰链固定,B 端以撑杆BC支持。
求撑杆BC所受的力。
解:(1)研究整体,受力分析:(2) 画力三角形:(3) 求BC受力习题2-4.简易起重机用钢丝绳吊起重量G=2kN的重物,不计杆件自重、磨擦及滑轮大小,A、B、C三处简化为铰链连接;求杆AB和AC所受的力。
解:(1) 研究铰A,受力分析(AC、AB是二力杆,不计滑轮大小):建立直角坐标Axy,列平衡方程:解平衡方程:AB杆受拉,BC杆受压。
(2) 研究铰A,受力分析(AC、AB是二力杆,不计滑轮大小):建立直角坐标Axy,列平衡方程:解平衡方程:AB杆实际受力方向及假设相反,为受压;BC杆受压。
习题2-5.三铰门式刚架受集中荷载P作用,不计架重;求图示两种情况下支座A、B的约束反力。
解:(1) 研究整体,受力分析(AC是二力杆);画力三角形:求约束反力:(2) 研究整体,受力分析(BC是二力杆);画力三角形:几何关系:求约束反力:习题2-6.四根绳索AC、CB、CE、ED连接如图,其中B、D两端固定在支架上,A端系在重物上,人在E点向下施力P,若P=400N,α=4o,求所能吊起的重量G。
解:(1) 研究铰E,受力分析,画力三角形:由图知:(2) 研究铰C,受力分析,画力三角形:由图知:习题2-7.夹具中所用的两种连杆增力机构如图所示,书籍推力P作用于A点,夹紧平衡时杆AB及水平线的夹角为;求对于工件的夹紧力Q和当α=10o时的增力倍数Q/P。
理论力学课后习题及答案解析
理论力学课后习题及答案解析文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-MG129]第一章习题4-1.求图示平面力系的合成结果,长度单位为m。
解:(1) 取O点为简化中心,求平面力系的主矢:求平面力系对O点的主矩:(2) 合成结果:平面力系的主矢为零,主矩不为零,力系的合成结果是一个合力偶,大小是260Nm,转向是逆时针。
习题4-3.求下列各图中平行分布力的合力和对于A 点之矩。
解:(1) 平行力系对A点的矩是:取B点为简化中心,平行力系的主矢是:平行力系对B点的主矩是:向B点简化的结果是一个力RB和一个力偶M B,且:如图所示;将RB向下平移一段距离d,使满足:最后简化为一个力R,大小等于RB。
其几何意义是:R 的大小等于载荷分布的矩形面积,作用点通过矩形的形心。
(2) 取A点为简化中心,平行力系的主矢是:平行力系对A点的主矩是:向A点简化的结果是一个力RA和一个力偶M A,且:如图所示;将RA向右平移一段距离d,使满足:最后简化为一个力R,大小等于RA。
其几何意义是:R 的大小等于载荷分布的三角形面积,作用点通过三角形的形心。
习题4-4.求下列各梁和刚架的支座反力,长度单位为m。
解:(1) 研究AB杆,受力分析,画受力图:列平衡方程:解方程组:反力的实际方向如图示。
校核:结果正确。
(2) 研究AB杆,受力分析,将线性分布的载荷简化成一个集中力,画受力图:列平衡方程:解方程组:反力的实际方向如图示。
校核:结果正确。
(3) 研究ABC,受力分析,将均布的载荷简化成一个集中力,画受力图:列平衡方程:解方程组:反力的实际方向如图示。
校核:结果正确。
习题4-5.重物悬挂如图,已知G=1.8kN,其他重量不计;求铰链A的约束反力和杆BC所受的力。
解:(1) 研究整体,受力分析(BC是二力杆),画受力图:列平衡方程:解方程组:反力的实际方向如图示。
习题4-8.图示钻井架,G=177kN,铅垂荷载P=1350kN,风荷载q=1.5kN/m,水平力F=50kN;求支座A的约束反力和撑杆CD所受的力。
理论力学习题及解答1
理论力学习题及解答第一章静力学的基本概念及物体的受力分析1-1 画出指定物体的受力图,各接触面均为光滑面。
1-2 画出下列指定物体的受力图,各接触面均为光滑,未画重力的物体的重量均不计。
1-3 画出下列各物体以及整体受力图,除注明者外,各物体自重不计,所有接触处均为光滑。
(a) (b)(c) (d)(e) (f)第二章平面一般力系2-1 物体重P=20kN,用绳子挂在支架的滑轮B上,绳子的另一端接在铰车D 上,如图所示。
转动铰车,物体便能升起,设滑轮的大小及滑轮转轴处的摩擦忽略不计,A、B、C三处均为铰链连接。
当物体处于平衡状态时,试求拉杆AB和支杆CB所受的力。
2-2 用一组绳悬挂重P=1kN的物体,求各绳的拉力。
2-3 某桥墩顶部受到两边桥梁传来的铅直力P1=1940kN,P2=800kN及制动力T=193kN,桥墩自重W=5280kN,风力Q=140kN。
各力作用线位置如图所示,求将这些力向基底截面中心O简化的结果,如能简化为一合力,试求出合力作用线的位置。
2-4 水平梁的支承和载荷如图所示,试求出图中A、B处的约束反力。
2-5 在图示结构计算简图中,已知q=15kN/m,求A、B、C处的约束力。
2-6 图示平面结构,自重不计,由AB、BD、DFE三杆铰接组成,已知:P=50kN,M=40kN·m,q=20kN/m,L=2m,试求固定端A的反力。
图2-6 图2-72-7 求图示多跨静定梁的支座反力。
2-8 图示结构中各杆自重不计,D、E处为铰链,B、C为链杆约束,A为固定端,已知:q G=1kN/m,q=1kN/m,M=2kN·m,L1=3m,L2=2m,试求A、B、C 处约束反力。
图2-8 图2-92-9 支架由两杆AO、CE和滑轮等组成,O、B处为铰链,A、E是固定铰支座,尺寸如图,已知:r=20cm,在滑轮上吊有重Q=1000N的物体,杆及轮重均不计,试求支座A和E以及AO杆上的O处约束反力。
《理论力学》课后习题解答(赫桐生,高教版)
第一章习题1-1.画出下列指定物体的受力图。
解:习题1-2.画出下列各物系中指定物体的受力图。
解:习题1-3.画出下列各物系中指定物体的受力图。
解:第二章习题2-1.铆接薄钢板在孔心A、B和C处受三力作用如图,已知P1=100N沿铅垂方向,P2=50N沿AB方向,P3=50N沿水平方向;求该力系的合成结果。
解:属平面汇交力系;合力大小和方向:习题2-2.图示简支梁受集中荷载P=20kN,求图示两种情况下支座A、B的约束反力。
解:(1)研究AB,受力分析:画力三角形:相似关系:几何关系:约束反力:(2) 研究AB,受力分析:画力三角形:相似关系:几何关系:约束反力:习题2-3.电机重P=5kN放在水平梁AB的中央,梁的A端以铰链固定,B端以撑杆BC支持。
求撑杆BC所受的力。
解:(1)研究整体,受力分析:(2) 画力三角形:(3) 求BC受力习题2-4.简易起重机用钢丝绳吊起重量G=2kN的重物,不计杆件自重、磨擦及滑轮大小,A、B、C三处简化为铰链连接;求杆AB和AC所受的力。
解:(1) 研究铰A,受力分析(AC、AB是二力杆,不计滑轮大小):建立直角坐标Axy,列平衡方程:解平衡方程:AB杆受拉,BC杆受压。
(2) 研究铰A,受力分析(AC、AB是二力杆,不计滑轮大小):建立直角坐标Axy,列平衡方程:解平衡方程:AB杆实际受力方向与假设相反,为受压;BC杆受压。
习题2-5.三铰门式刚架受集中荷载P作用,不计架重;求图示两种情况下支座A、B的约束反力。
解:(1) 研究整体,受力分析(AC是二力杆);画力三角形:求约束反力:(2) 研究整体,受力分析(BC是二力杆);画力三角形:几何关系:求约束反力:习题2-6.四根绳索AC、CB、CE、ED连接如图,其中B、D两端固定在支架上,A端系在重物上,人在E点向下施力P,若P=400N,α=4o,求所能吊起的重量G。
解:(1) 研究铰E,受力分析,画力三角形:由图知:(2) 研究铰C,受力分析,画力三角形:由图知:习题2-7.夹具中所用的两种连杆增力机构如图所示,书籍推力P作用于A点,夹紧平衡时杆AB与水平线的夹角为;求对于工件的夹紧力Q和当α=10o时的增力倍数Q/P。
理论力学运动学习题及详解
y f 2 (t ) z f 3 (t )
2 2
a x x a y y a z z
2 2 2
v vx v y vz
2
a ax a y az
方向均由相应的方向余弦确定。
第2章 运动学练习
二.基本公式 自然法(轨迹已知时)
运动方程 速度
ae 5 2 0 r 4
5 2a r0 4
B
aC 0
O2
3销钉C固定在AB杆,在滑槽O2D中运动,该瞬时O1A与AB水平,O2D
铅直,且O1A=AC=CB=O2C=r,ω0=常数,求
AB、O2 D、 AB、O2 D .
D
n aCA
(2)加速度分析
AB 0
a 常量, an 0
,点做何种运动( B)。
B.匀变速曲线运动 D.匀变速直线运动
(3)已知点的运动方程为 x 2t 2 4, y 3t 2 3 ,其轨迹方程为(
B)
A.3x 4 y 36 0, C.2 x 2 y 24 0,
第2章 运动学练习
B.3x 2 y 18 0 D.2 x 4 y 36 0
1.选择题:
【练习题】
(4). 如图所示平面机构中,O1A=O2B= r, O1O2 =AB, O1A以匀角速度绕垂直于图 面的O1轴转动,图示瞬时,C点的速度为:( D )
A.
B. C.
Vc 0
Vc r a
2 2
水平向右
O1 A
O2
Vc r0 D. Vc r0
铅直向上 水平向右
2.刚体运动学
基本运动 平面运动
理论力学问题详解(谢传峰版)
静力学1-3 试画出图示各结构中构件AB 的受力图F AxF A yF B(a)(a)F AF BF BF DF D F BxF ByF BxF CF BF CF By1-4 试画出两结构中构件ABCD 的受力图1-5 试画出图a 和b 所示刚体系整体合格构件的受力图1-5a1-5bF AxF A y F DF ByF A F BxF B F AF Ax F A y F DxF Dy WT EF CxF C yWF AxF A yF B y F Cx F Dy F Bx T EN’F BF DF A N F AF BF D1-8在四连杆机构的ABCD 的铰链B 和C 上分别作用有力F 1和F 2,机构在图示位置平衡。
试求二力F 1和F 2之间的关系。
解:杆AB ,BC ,CD 为二力杆,受力方向分别沿着各杆端点连线的方向。
解法1(解析法)假设各杆受压,分别选取销钉B 和C 为研究对象,受力如图所示: 由共点力系平衡方程,对B 点有:∑=0x F 045cos 02=-BC F F 对C 点有:∑=0x F 030cos 01=-F F BC解以上二个方程可得:22163.1362F F F ==解法2(几何法)分别选取销钉B 和C 为研究对象,根据汇交力系平衡条件,作用在B 和C 点上的力构成封闭的力多边形,如图所示。
对B 点由几何关系可知:0245cos BC F F =对C 点由几何关系可知:0130cos F F BC =解以上两式可得:2163.1F F =F ABF BC F CD 60o F 130o F 2 F BC45o F 2F BC F ABB45oy xF CD C60o F 130o F BC x y450302-3 在图示结构中,二曲杆重不计,曲杆AB 上作用有主动力偶M 。
试求A 和C 点处的约束力。
解:BC 为二力杆(受力如图所示),故曲杆AB 在B 点处受到约束力的方向沿BC 两点连线的方向。
《理论力学》第六章 刚体的基本运动习题全解
第六章 刚体的基本运动 习题全解[习题6-1] 物体绕定轴转动的运动方程为334t t -=ϕ(ϕ以rad 计,t 以s 计)。
试求物体内与转动轴相距m r 5.0=的一点,在00=t 与s t 11=时的速度和加速度的大小,并问物体在什么时刻改变它的转向? 解:角速度: 2394)34(t t t dt ddt d -=-==ϕω 角加速度:t t dtddt d 18)94(2-=-==ωα速度: )94(2t r r v -==ω)/(2)094(5.0|20s m r v t =⨯-⨯===ω)/(5.2)194(5.0|21s m v t -=⨯-⨯==切向加速度:rt t r a t 18)18(-=-==ρα法向加速度:22222)94()]94([t r rt r v a n -=-==ρ 加速度: 422222222)94(324])94([)18(t t r t r rt n a a n t -+=-+-=+=)/(8165.0)094(0324|24220s m r a t =⨯=⨯-+⨯== )/(405.1581.305.0)194(1324|24221s m r a t =⨯=⨯-+⨯== 物体改变方向时,速度等于零。
即:0)94(2=-=t r v )(667.0)(32s s t ==[习题6-2] 飞轮边缘上一点M,以匀速v=10m/s运动。
后因刹车,该点以)/(1.02s m t a t =作减速运动。
设轮半径R=0.4m,求M点在减速运动过程中的运动方程及t=2s时的速度、切向加速度与法向加速度。
解:t dtd a t 1.04.022-===ϕρα (作减速运动,角加速度为负)t dt d 25.022-=ϕ12125.0C t dtd +-=ϕ2130417.0C t C t ++-=ϕ12124.005.0)125.0(4.0C t C t dtd R v +-=+-⨯==ϕ104.0005.0|120=+⨯-==C v t图题46-251=C0000417.0|2130=+⨯+⨯-==C C t ϕ 02=C ,故运动方程为: t t 250417.03+=ϕt t t t R s 100167.0)250417.0(4.033+-=+-==ϕ速度方程:1005.02+-=t v)/(8.910205.0|22s m v t =+⨯-== 切向加速度:)/(2.021.01.0|22s m t a t t -=⨯-=-== 法向加速度:222)25125.0(4.0+-⨯==t a n ρω)/(1.240)252125.0(4.0|2222s m a t n =+⨯-⨯==[习题6-3] 当起动陀螺罗盘时,其转子的角加速度从零开始与时间成正比地增大。
理论力学课后习题解答附答案
5.27证取广义坐标
因为
又因为
所以
5.28解 如题5.28.1图
(1)小环的位置可以由角 唯一确定,因此体系的自由度 ,取广义坐标 ,广义速度 。小球的动能:
以 为势能零点,则小环势能
所以拉氏函数
(2)由哈密顿原理
故
所以
又由于
所以
因为 是任意的,所以有被积式为0,即
化简得
5.29解 参考5.23题,设 ,体系的拉氏函数
⑶小球动能
又由
①式得
设小球势能为V,取固定圆球中心O为零势点,则
小球拉氏函数
= ①
根据定义
有
根据正则方程
④
⑤
对式两边求时间得:
故小球球心切向加速度
5.25解根据第二章§2.3的公式有:
①
根据泊松括号的定义:
②
所以
同理可知:
,
由②得:
同理可得:
,
5.26解 由题5.25可知 的表达式
因为
故
同理可求得:
势能:
根据定义式
故
因为
所以 为第一积分.又
故
得 为第二个第一积分.
同理
即
得 为第三个第一积分.
5.23解如题5.23.1图,
由5.6题解得小球的动能
①
根据定义
②
得
③
根据哈密顿函数的定义
代入③式后可求得:
④
由正则方程得:
⑤
⑥
代入⑤得
整理得
5.24如题5.24.1图,
⑴小球的位置可由 确定,故自由度
⑵选广义坐标 ,广义速度 .
①
根据哈密顿原理
故
②
理论力学习题集讲解
-1、画出下列每个标注字符的物体(不包含销钉与支座)的受力图与系统整体受力图。
题图中未画重力的各物体自重不计,所有接触处均为光滑接触。
(整体受力图在原图上画)-1、物体重P=20kN,用绳子挂在支架的滑轮B上,绳子的另一端接在铰车D上,如图所示。
转动铰车,物体便能升起。
设滑轮的大小、AB与CB杆自重及磨擦略去不计,A、B、C三处均为铰链连接。
当物体处于平衡状态时,试求拉杆AB和支杆CB处受的力。
2-2、图示结构中,各构件的自重略去不计。
在构件AB上作用一力偶矩为M的力偶,求支座A和C的约束力。
2-3、直角弯杆ABCD与直杆DE及EC铰接如图,作用在杆DE上力偶的力偶矩M=40kN.m,不计各杆自重,不考虑摩擦,尺寸如图,求支座A,B处的约束力及杆EC的受力。
示。
求:(1)力系向点O简化的结果;(2)力系的合力的大小、方向及合力作用线方程。
3-2、无重水平梁的支承和载荷如图(b)所示。
已知力F、力偶矩为M的力偶和强度为q的均布载荷。
求支座A和B处的约束力。
3-3、图示水平梁AB由铰链A和杆BC所支持。
在梁上D处用销子安装半径为r=0.1m的滑轮。
有一跨过滑轮的绳子,其一端水平地系于墙上,另一端悬挂有重P=1800N的重物,如AD=0.2m,BD=0.4m, =45°,且不计梁、杆、滑轮和绳的重量。
求铰链A和杆BC对梁的约束力。
1心在铅垂线上EC,起重载荷P2=10kN。
如不计梁重,求支座A,B和D三处的约束力。
3-6、由AC和CD构成的组合梁通过铰链C连接。
它的支承和受力如图所示。
已知均布载荷强度q=10kN/m,力偶矩M=40 kN·m,不计梁重。
求支座A,B,D的约束力和铰链C处所受的力。
量。
求支承A和B处的约束力,以及杆BC的内力F BC。
4-2、图示结构由直角弯杆DAB与直杆BC及CD铰接而成,并在A处与B处用固定绞支座和可动绞支座固定。
杆DC受均布载荷q的作用,杆BC受矩为M=qa2的力偶作用。
理论力学课后习题解答
《理论力学》课后习题解答(赫桐生,高教版)(总53页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第一章习题1-1.画出下列指定物体的受力图。
解:习题1-2.画出下列各物系中指定物体的受力图。
解:习题1-3.画出下列各物系中指定物体的受力图。
解:第二章习题2-1.铆接薄钢板在孔心A、B和C处受三力作用如图,已知P1=100N沿铅垂方向,P2=50N沿AB方向,P3=50N沿水平方向;求该力系的合成结果。
解:属平面汇交力系;合力大小和方向:习题2-2.图示简支梁受集中荷载P=20kN,求图示两种情况下支座A、B的约束反力。
解:(1) 研究AB,受力分析:画力三角形:相似关系:几何关系:约束反力:(2) 研究AB,受力分析:画力三角形:相似关系:几何关系:约束反力:习题2-3.电机重P=5kN放在水平梁AB的中央,梁的A端以铰链固定,B端以撑杆BC支持。
求撑杆BC所受的力。
解:(1)研究整体,受力分析:(2) 画力三角形:(3) 求BC受力习题2-4.简易起重机用钢丝绳吊起重量G=2kN的重物,不计杆件自重、磨擦及滑轮大小,A、B、C三处简化为铰链连接;求杆AB和AC所受的力。
解:(1) 研究铰A,受力分析(AC、AB是二力杆,不计滑轮大小):建立直角坐标Axy,列平衡方程:解平衡方程:AB杆受拉,BC杆受压。
(2) 研究铰A,受力分析(AC、AB是二力杆,不计滑轮大小):建立直角坐标Axy,列平衡方程:解平衡方程:AB杆实际受力方向与假设相反,为受压;BC杆受压。
习题2-5.三铰门式刚架受集中荷载P作用,不计架重;求图示两种情况下支座A、B的约束反力。
解:(1) 研究整体,受力分析(AC是二力杆);画力三角形:求约束反力:(2) 研究整体,受力分析(BC是二力杆);画力三角形:几何关系:求约束反力:习题2-6.四根绳索AC、CB、CE、ED连接如图,其中B、D两端固定在支架上,A端系在重物上,人在E点向下施力P,若P=400N,α=4o,求所能吊起的重量G。
《理论力学》章节典型例题(含详解)—精品文档
《理论力学》章节典型例题(含详解)A 卷1-1、自重为P=100kN 的T 字形钢架ABD,置于铅垂面内,载荷如图所示。
其中转矩M=20kN.m ,拉力F=400kN,分布力q=20kN/m,长度l=1m 。
试求固定端A 的约束力。
解:取T 型刚架为受力对象,画受力图.1-2 如图所示,飞机机翼上安装一台发动机,作用在机翼OA 上的气动力按梯形分布:1q =60kN/m ,2q =40kN/m ,机翼重1p =45kN ,发动机重2p =20kN ,发动机螺旋桨的反作用力偶矩M=18kN.m 。
求机翼处于平衡状态时,机翼根部固定端O 所受的力。
解:1-3图示构件由直角弯杆EBD以及直杆AB组成,不计各杆自重,已知q=10kN/m,F=50kN,M=6kN.m,各尺寸如图。
求固定端A处及支座C的约束力。
1-4 已知:如图所示结构,a, M=Fa, 12F F F ==, 求:A ,D 处约束力.解:1-5、平面桁架受力如图所示。
ABC 为等边三角形,且AD=DB 。
求杆CD 的内力。
1-6、如图所示的平面桁架,A 端采用铰链约束,B 端采用滚动支座约束,各杆件长度为1m 。
在节点E 和G 上分别作用载荷E F =10kN ,G F =7 kN 。
试计算杆1、2和3的内力。
解:2-1 图示空间力系由6根桁架构成。
在节点A上作用力F,此力在矩形ABDC平面内,且与铅直线成45º角。
ΔEAK=ΔFBM。
等腰三角形EAK,FBM和NDB在顶点A,B和D处均为直角,又EC=CK=FD=DM。
若F=10kN,求各杆的内力。
2-2 杆系由铰链连接,位于正方形的边和对角线上,如图所示。
在节点D沿对角线LD方向F。
在节点C沿CH边铅直向下作用力F。
如铰链B,L和H是固定的,杆重不计,作用力D求各杆的内力。
2-3 重为1P =980 N ,半径为r =100mm 的滚子A 与重为2P =490 N 的板B 由通过定滑轮C 的柔绳相连。
《理论力学》考试试题解答解析
z
C
E
D
F
O
30°
By
A
x
2012~2013 学年第一学期《理论力学》考试试题及解答
2、圆盘以匀角速度ω 绕定轴 O 转动,如图所示,盘上动点 M 在半 径为 R 的圆槽内以速度 v 相对圆盘作等速圆周运动,以圆盘为动系, 求点 M 的科氏加速度。
M v
ω R
O
2012~2013 学年第一学期《理论力学》考试试题及解答
l2 R2
R l2 R2
轮
aB R
r 2
l2 R2
2011~2012 学年第二学期《理论力学》考试试题及解答
五、如图所示两均质圆轮质量均为 m ,半径为 R ,A 轮绕固定轴 O
转动,B 轮在倾角为θ 的斜面上作纯滚动,B 轮中心的绳绕到 A 轮
上。若 A 轮上作用一力偶矩为 M 的力偶,忽略绳子的质量和轴承
《理论力学》考试试题 及解答
2012~2013 学年第一学期《理论力学》考试试题及解答
一、简单计算题(每题5分,共15分) 1、正三棱柱的底面为等腰三角形,OA=OB=a,在平面ABED内
有一沿对角线AE作用的力F,F与AB边的夹角θ=30º,大小为F。 求该力在x、y、z 轴上的投影及对y、z 轴的矩。
五、图示纯滚动的均质圆轮与物块 A 的质量均为 m ,圆轮半径为 r , 斜面倾角为θ,物块 A 与斜面间的摩擦系数为 f 。 杆 OA 与斜面平 行,不计杆的质量。试求:⑴ 物块 A 的加速度;⑵ 圆轮所受的摩 擦力;⑶ 杆 OA 所受的力。(20分)
A
O
θ
2012~2013 学年第一学期《理论力学》考试试题及解答
A
D
u O
理论力学考研试题分析及答案
理论力学考研试题分析及答案试题:一、选择题(每题3分,共30分)1. 在经典力学中,牛顿第一定律又称为()A. 惯性定律B. 作用力与反作用力定律C. 力与加速度定律D. 能量守恒定律2. 一个物体的质量为2kg,受到的合外力为10N,根据牛顿第二定律,该物体的加速度为()A. 5 m/s²B. 10 m/s²C. 20 m/s²D. 50 m/s²3. 一个质点在水平面上做匀速圆周运动,其向心力的方向是()A. 指向圆心B. 指向圆外C. 沿着切线方向D. 沿着半径方向4. 根据能量守恒定律,一个物体在只有重力做功的情况下,其()A. 动能保持不变B. 机械能保持不变C. 势能保持不变D. 总能量保持不变5. 两个物体组成的系统,如果系统内力远大于外力,则系统的()A. 动量守恒B. 能量守恒C. 角动量守恒D. 质量守恒6. 一个物体从静止开始自由下落,下落时间为t秒,其位移与时间的关系为()A. s = 1/2 gtB. s = gtC. s = 1/2 gt²D. s = 2gt²7. 在光滑水平面上,一个物体受到一个恒定的水平力F作用,该物体将做()A. 匀速直线运动B. 匀加速直线运动C. 匀减速直线运动D. 变加速直线运动8. 一个物体在竖直平面内做圆周运动,到达最高点时,其速度至少为()A. 零B. 根号(gR)C. 根号(2gR)D. 无法确定9. 根据牛顿第三定律,两个相互作用的物体间的力()A. 大小相等,方向相反B. 大小不等,方向相反C. 大小相等,方向相同D. 大小不等,方向相同10. 一个物体在斜面上下滑,斜面的倾角为θ,摩擦系数为μ,若物体下滑的加速度为a,则μ与θ的关系为()A. μ = tanθ - a/gB. μ = a/g - tanθC. μ = a/g + tanθD. μ = tanθ + a/g答案:一、选择题1. A2. A3. A4. B5. A6. C7. B8. B9. A10. A。
《理论力学》课后习题解答(赫桐生_高教版)
第一章之宇文皓月创作习题1-1.画出下列指定物体的受力图。
解:习题1-2.画出下列各物系中指定物体的受力图。
解:习题1-3.画出下列各物系中指定物体的受力图。
解:第二章习题2-1.铆接薄钢板在孔心A、B和C处受三力作用如图,已知P1=100N沿铅垂方向,P2=50N沿AB方向,P3=50N沿水平方向;求该力系的合成结果。
解:属平面汇交力系;合力大小和方向:习题2-2.图示简支梁受集中荷载P=20kN,求图示两种情况下支座A、B的约束反力。
解:(1)研究AB,受力分析:画力三角形:相似关系:几何关系:约束反力:(2) 研究AB,受力分析:画力三角形:相似关系:几何关系:约束反力:习题2-3.电机重P=5kN放在水平梁AB的中央,梁的A端以铰链固定,B端以撑杆BC支持。
求撑杆BC所受的力。
解:(1)研究整体,受力分析:(2) 画力三角形:(3) 求BC受力习题2-4.简易起重机用钢丝绳吊起重量G=2kN的重物,不计杆件自重、磨擦及滑轮大小,A、B、C三处简化为铰链连接;求杆AB和AC所受的力。
解:(1) 研究铰A,受力分析(AC、AB是二力杆,不计滑轮大小):建立直角坐标Axy,列平衡方程:解平衡方程:AB杆受拉,BC杆受压。
(2) 研究铰A,受力分析(AC、AB是二力杆,不计滑轮大小):建立直角坐标Axy,列平衡方程:解平衡方程:AB杆实际受力方向与假设相反,为受压;BC杆受压。
习题2-5.三铰门式刚架受集中荷载P作用,不计架重;求图示两种情况下支座A、B的约束反力。
解:(1) 研究整体,受力分析(AC是二力杆);画力三角形:求约束反力:(2) 研究整体,受力分析(BC是二力杆);画力三角形:几何关系:求约束反力:习题2-6.四根绳索AC、CB、CE、ED连接如图,其中B、D两端固定在支架上,A端系在重物上,人在E点向下施力P,若P=400N,α=4o,求所能吊起的重量G。
解:(1) 研究铰E,受力分析,画力三角形:由图知:(2) 研究铰C,受力分析,画力三角形:由图知:习题2-7.夹具中所用的两种连杆增力机构如图所示,书籍推力P作用于A点,夹紧平衡时杆AB与水平线的夹角为;求对于工件的夹紧力Q和当α=10o时的增力倍数Q/P。
理论力学课后习题及答案解析
第一章习题4-1.求图示平面力系的合成结果,长度单位为m。
解:(1) 取O点为简化中心,求平面力系的主矢:求平面力系对O点的主矩:(2) 合成结果:平面力系的主矢为零,主矩不为零,力系的合成结果是一个合力偶,大小是260Nm,转向是逆时针。
习题4-3.求下列各图中平行分布力的合力和对于A点之矩。
解:(1) 平行力系对A点的矩是:取B点为简化中心,平行力系的主矢是:平行力系对B点的主矩是:向B点简化的结果是一个力R B和一个力偶M B,且:如图所示;将R B向下平移一段距离d,使满足:最后简化为一个力R,大小等于R B。
其几何意义是:R的大小等于载荷分布的矩形面积,作用点通过矩形的形心。
(2) 取A点为简化中心,平行力系的主矢是:平行力系对A点的主矩是:向A点简化的结果是一个力R A和一个力偶M A,且:如图所示;将R A向右平移一段距离d,使满足:最后简化为一个力R,大小等于R A。
其几何意义是:R的大小等于载荷分布的三角形面积,作用点通过三角形的形心。
习题4-4.求下列各梁和刚架的支座反力,长度单位为m。
解:(1) 研究AB杆,受力分析,画受力图:列平衡方程:解方程组:反力的实际方向如图示。
校核:结果正确。
(2) 研究AB杆,受力分析,将线性分布的载荷简化成一个集中力,画受力图:列平衡方程:解方程组:反力的实际方向如图示。
校核:结果正确。
(3) 研究ABC,受力分析,将均布的载荷简化成一个集中力,画受力图:列平衡方程:解方程组:反力的实际方向如图示。
校核:结果正确。
习题4-5.重物悬挂如图,已知G=1.8kN,其他重量不计;求铰链A的约束反力和杆BC所受的力。
解:(1) 研究整体,受力分析(BC是二力杆),画受力图:列平衡方程:解方程组:反力的实际方向如图示。
习题4-8.图示钻井架,G=177kN,铅垂荷载P=1350kN,风荷载q=1.5kN/m,水平力F=50kN;求支座A的约束反力和撑杆CD所受的力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
r1 B
vBA
D
0B
r2 0
1
OB
vB vB 225 3 oB r1 r2 2 30 3
vA
v D vB
又因为
vBA vA sin(90o ) 1 6 75 225cm / s 2
vBe vBa α
ω
O B
AD v A IA 20 3
vDa AD ID 4 30 a 3
选套筒D上销钉为动点,动系 固结在杆BC上,D动点的速 度为
vDe vDr vDa
D C
vDa vDe vDr
I
vA 2a0
AD 20 3
30 0
vDa 4 30 a 3
yA 0
dy A
t 0
2 3 gh 3
xA 0
1 2 y A gt 3
1 2 A gt 3r
习题10.5:图示两齿条以速度v1和v2同方向运动,在两齿条 间夹一齿轮,其半径为r,求齿轮的角速度及其中心O的速度。 解:取A点为基点,则有
B
v1 vO
vB vA vBA vA v2 vB v1
3 4 sin cos 5 5 2 vC aCn 1000cm / s 2 CD 2 aCBn BC BC 1280cm / s 2 aB 2 AB 360cm / s 2 aCB 400cm / s 2
ω
BC
aCB 20rad / s 2 BC
01
(作平面运动)
(2)运动分析: O1A作定轴转动, O1A杆上A点的速度vA 应垂直于连线O1A 。
r1
β B
D
r2
0
速度大小:
v A o1 A o1
90 γ
0
以A点为基点建立平动坐标系:
A
γ
01
B点的速度分析如图:
利用速度投影定理得:
vA
φ
01
vB v A cos(90o ) o1 o1 A cos 30o 3 6 75 225 3cm / s 2 从而OB杆的角速度为:
300 C
例题10.14 平面机构的曲柄OA长2a,以角速度绕O轴转 动,在图示位置时,套筒B距A和O两点等长,且。试求此
时套筒D相对于BC杆的速度。
OAD 90
解:
选套筒B上销钉为动点,动系固结于曲柄OA,
A
vBe 0a
60 0
vBe vBa
O
根据点的速度合成定理, 作速度平行四边形。 由图中几何关系,得:
习题10-21解续
习题10-24
图所示平面机构中,曲柄OA=100 mm,以角速度ω = 2 rad· s-1转动。连杆AB带动摇杆CD,并拖动轮E 沿水平面
滚动。已知CD = 2CB,图示位置时A,B,E 三点恰在一水
平线上,且CD⊥ED,试求此瞬时E点的速度。
D 30º 30 B
60 C 60º
ωAD
vA vBa
α ω
O B A
vDa vDe vDr
向CB轴投影,得:
vDa vDe vDr
其中
1
vDe vDr vDa
D C
vDe vBa 2 30a 3
由式(1)解得
vDr vDa vDe 4 30 a 2 30 a 2 30 a
vD
A v A O
vB CD 2vB 0.462 m s-1 CB
轮E沿水平面滚动,轮心E的速度 水平,由速度投影定理,D,E 两
E
vE
60º 60 C
ω
点的速度关系为
求得
vE 0.533 m s-1
vE cos 30 vD
习题 10.26: 在图示机构中,曲柄OA=r,绕O轴以 等角速度ωo转动,AB=6r,BC= 3 3r ,求此瞬时, 滑块C的切向加速度和法向加速度。
A 600
aA
动点——套筒上的O点, 动系——固结于AB杆. 动点O的绝对运动为静止不动, 相对运动为沿AB杆的直线运动; 牵连运动为随AB杆的平面运动;
8cm
习题10.31: 图示平面机构中,AB杆一端连接磙子A,磙子 中 vA 16cm/s 心A以匀速 沿水平方向运动,AB杆穿在可绕O轴 任意转动的套筒D内,机构尺寸如图,求此瞬时AB杆的角速度 I 和角加速度。 解:AB杆和圆盘均作平面运动. ve B ωI D 圆盘的速度瞬心在C点;为确定 o AB杆的速度瞬心,利用点的复合 vr 12.5cm 运动理论分析套筒上O点的速度. φ 10cm
vA
A 6cm C
由速度合成定理: 因为
vO va ve vr
vO 0
所以有
ve vr
I
可知,AB杆上该瞬时与动点 O相重合的点的速度即O点 的牵连速度ve。 AB杆的速度瞬心如图所示:
ve
8cm
B D o
ωI vr
12.5cm
AB
vA 16 1.28rad / s AI 12.5
v v ω
D A
D A φ O2
v
B
B
O1
O1
AB
vA 0.2 1.07rad / s AC 0.187
C
O1A=0.1m , O1O2=0.05m
AD=0.05m;
则D点的速度为
vD CD AB AC AD AB
1.07 0.237 0.254m / s
习题9.10: 在瓦特行星传动机构中,平衡杆O1A绕O1轴转动, 并借连杆AB带动曲柄,而曲柄OB活动地装置在O轴上,如图
所示,在O轴上装有齿轮Ⅰ,齿轮Ⅱ与连杆AB固连于一体。
已知,r 1 r 2 0.3 3m O1A=0.75m,AB=1.5m; 又平衡杆的角速度
A γ
01
01
O1 6rad / s
习题10.9:AB=6r, OA=4r 0 30 90 求AB
习题10.9解: 杆AB作瞬时平动
vC C
O A
ωO
VA
AB 0
ωC
vB vA 4r0
轮C的速度瞬心为I
B r VCVB C I
φ
vB C 20 2r
vC rC 20r
3 3 3
习题10.21 解:
AB CD 40cm 令 ID IB x
2
BC AD 20cm IA IC 40 x x 15cm IA IC 25cm
40 x 202 x 2 ID IB 15cm
杆BC的速度瞬心为I
解:如图所示AB、 BC作平面运动, Ⅰ1Ⅰ2为速度瞬心
OA 1 0 , 3r 3
I2 ωBC
C
90
B
0
vC
B
0
C 900
A 600 ω00 60
vA
vA OA 0 , I1 A 3r , I1B 3 3r
AB
600
vB ω
A 600
O
ωAB I1
vB I1B AB 3r0
E
A O
ω
习 题10-24
速度投影法
由速度投影定理,杆AB上 A,B点的速度在 AB 线上投
解:
影相等,即
vA OA -1 vB 0 . 231 m s cos 30 cos 30
vB cos 30 v A
vD
D 30º 30 B vB
摇杆 CD绕C点作定轴转动
O
设ω为顺时针方向,将上式投影于x轴
A
v2
v1 v2 2r
再取B点为基点,有
v1 v2 2r
v0 v1 vOB
vOB r
v1 v2 v0 2
题10-8 求:杆AB和O1B杆的角速度 已知:AB 2OA 2O1B 题10-8解: VA A
杆AB的速度瞬心为O
习题 10.26
vA OA 0 , I1 A 3r , I1B 3 3r
AB
OA 1 0 , 3r 3
I2 ωBC
vB I1B AB 3r0
I 2 B 6 3r, I 2C 9r
BC
vC
B
C 900 60
0
vA
vB
vB 1 1 0 , vC 0 I 2C 1.5r0 I2 B 6 6
VA O OAω0O Fra bibliotek1VB B
AB
VA O 3rad / s OA
AB 2OA 2O1B VB OB AB
OB AB2 OA2 3OA
O B
1
VB OB AB 3 AB 3 3 5.2rad / s O1B O1B
α ω
vBr
B
D C
vBa vBe sin 600 2 30a 3
VBa即为BC杆上任一点的速度。
I
杆AD作平面运动,速度瞬心为I
vA 2a0 AD ABcot 300 3a
30 0
ωAD
A
IA=AD cot 300 3a ID AD sin 300 2 3a
vA
ω0 ωAB I1
A 600
以A为基点,B点的加速度为 aB aA aBAn aBA
在x轴上投影
aB cos 600 aBAn a A cos 600 1 1 2 aB 6r 0 2 r0 r0 2 3 3