数学类读书笔记

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《什么是数学》读书笔记

---------从自然数到实数

读完《什么是数学》之后,我深受内容的影响,感触很深,对于数学的演化有种震撼的感受,我想这种感触我一定要用笔记下来,好让我以后忘了再把它想起来。我为什么要把它用笔写下来,不用我多说,我想大家肯定知道其中的秘密。

现在,我们将从一系列公理开始,从自然数的产生一直说到实数理论的完善。或许会对数学的“科学性”有一个新的认识。

自然数是数学界中最自然的数,它用来描述物体的个数,再抽象一些就是集合的元素个数。在人类文明的最早期,人们就已经很自然地用到了自然数。可以说,自然数是天然产生的,其余的一切都是从自然数出发慢慢扩展演变出来的。数学家Kronecker曾说过,上帝创造了自然数,其余的一切皆是人的劳作。(God made the natural numbers; all else is the work of man.)。

随着一些数学理论的发展,我们迫切地希望对自然数本身有一个数学描述。从逻辑上看,到底什么是自然数呢?历史上对自然数的数学描述有过很多的尝试。数学家Giuseppe Peano 提出了一系列用于构造自然数算术体系的公理,称为Peano公理。Peano公理认为,自然数是一堆满足以下五个条件的符号:

1. 0是一个自然数;

2. 每个自然数a都有一个后继自然数,记作S(a);

3. 不存在后继为0的自然数;

4. 不同的自然数有不同的后继。即若a≠b,则S(a)≠S(b);

5. 如果一个自然数集合S包含0,并且集合中每一个数的后继仍在集合S中,则所有自然数都在集合S中。(这保证了数学归纳法的正确性)

形象地说,这五条公理规定了自然数是一个以0开头的单向有序链表。自然数的加法和乘法可以简单地使用递归的方法来定义,即对任意一个自然数a,有:

a + 0 = a

a + S(b) = S(a+b)

a · 0 = 0

a · S(b) = a + (a·b)

其它运算可以借助加法和乘法来定义。例如,减法就是加法的逆运算,除法就是乘法的逆运算,“a≤b”的意思就是存在一个自然数c使得a+c=b。交换律、结合率和分配率这几个

基本性质也可以从上面的定义出发推导出来。

Peano公理提出后,多数人认为这足以定义出自然数的运算,但Poincaré等人却开始质疑Peano算术体系的相容性:是否有可能从这些定义出发,经过一系列严格的数学推导,最后得出0=1之类的荒谬结论?如果一系列公理可以推导出两个互相矛盾的命题,我们就说这个公理体系是不相容的。Hilbert的23个问题中的第二个问题就是问,能否证明Peano算术体系是相容的。这个问题至今仍有争议。

在数学发展史上,引进负数的概念是一个重大的突破。我们希望当a

(a-b) + (c-d) = (a+c) - (b+d)

(a-b) ·(c-d) = (ac + bd) - (ad + bc)

我们可以非常自然地把上面的规则扩展到a=b,符号(a-b)描述的是一个自然数;如果a

生活中遇到的另一个问题就是“不够分”、“不够除”一类的情况。三个人分六个饼,一个人两个饼;但要是三个人分五个饼咋办?此时,一种存在于两个相邻整数之间的数不可避免的产生了。为了更好地表述这种问题,我们用一个符号a/b来表示b个单位的消费者均分a 个单位的物资。真正对数学发展起到决定性作用的一个步骤是把由两个数构成的符号a/b当成一个数来看待,并且定义一套它所服从的运算规则。借助“分饼”这类生活经验,我们可以看出,对于整数a, b, c,有(ac)/(bc)=a/b,并且(a/b)+(c/d) = (ad+bc)/(bd), (a/b)·(c/d)=(ac)/(bd)。为了让新的数能够用于度量长度、体积、质量,这种定义是必要的。但在数学历史上,数学家们经过了很长的时间才意识到:从逻辑上看,新的符号的运算规则只是我们的定义,它是

不能被“证明”的,没有任何理由要求我们必须这么做。正如我们定义0的阶乘是1一样,这么做仅仅是为了让排列数A(n,n)仍然有意义并且符合原有的运算法则,但我们绝对不能“证明”出0!=1来。事实上,我们完全可以定义(a/b) + (c/d) = (a+c)/(b+d),它仍然满足基本的算术规律;虽然在我们看来,这种定义所导出的结果非常之荒谬,但没有任何规定强制我们不能这么定义。只要与原来的公理和定义没有冲突,这种定义也是允许的,它不过是一个不适用于度量这个世界的绝大多数物理量的、不被我们熟知和使用的、另一种新的算术体系罢了。

我们称所有形如a/b的数叫做有理数。有理数的出现让整个数系变得更加完整,四则运算在有理数的范围内是“封闭”的了,也就是说有理数与有理数之间加、减、乘、除的结果还是有理数,可以没有限制地进行下去。从这一角度来看,我们似乎不大可能再得到一个“在有理数之外”的数了。

当我们的数系扩展到有理数时,整个数系还出现了一个本质上的变化,这使我们更加相信数系的扩展已经到头了。我们说,有理数在数轴上是“稠密”的,任何两个有理数之间都有其它的有理数(比如它们俩的算术平均值)。事实上,在数轴上不管多么小的一段区间内,我们总能找到一个有理数(分母m足够大时,总有一个时刻1/m要比区间长度小,此时该区间内至少会出现一个分母为m的有理数)。这就使得人们会理所当然地认为,有理数已经完整地覆盖了整个数轴,所有的数都可以表示成a/b的形式。

难以置信的是,这样的数竟然不能覆盖整个数轴;除了形如a/b的数以外,数轴上竟然还有其它的数!这是早期希腊数学最重要的发现之一。那时,古希腊人证明了,不存在一个数a/b,使得其平方恰好等于2。平方之后等于2的数不是没有(可以用二分法找出这个数),只是它不能表示成两个整数之比罢了。用现在的话说就是,根号2不是有理数。根号2这种数并不是凭空想象出来的没有实际意义的数,从几何上看它等于单位正方形的对角线长。我们现有的数竟然无法表达出单位正方形的对角线长这样一个简单的物理量!因此,我们有必要把我们的数系再次进行扩展,使其能够包含所有可能出现的量。我们把所有能写成整数或整数之比的数叫做“有理数”,而数轴上其它的数就叫做“无理数”。它们合在一起就是“实数”,代表了数轴上的每一个点。

其实,构造一个无理数远没有那么复杂。我们可以非常轻易地构造出一个无理数,从而说明无理数的存在性。把所有自然数串起来写在一起所得到的Champernowne常数0.12345678910111213141516...显然是个无理数。考虑用试除法把有理数展开成小数形式的过程,由于余数的值只有有限多种情况,某个时刻除出来的余数必然会与前面重复,因此其结果必然是一个循环小数;而Champernowne常数显然不是一个循环小数(不管你宣称它的循

相关文档
最新文档