数列求和的方法技巧总结

合集下载

数列求和公式七个方法

数列求和公式七个方法

数列求和公式七个方法数列求和是数学中的一个重要概念,常用于计算数列中各项之和。

数列求和公式有多种方法,下面将介绍七种常见的求和公式方法。

方法一:等差数列求和公式等差数列是指数列中每一项与前一项之差都相等的数列。

等差数列求和公式是通过将数列项数n代入公式中,计算数列中各项之和Sn。

等差数列求和公式为Sn=n(a1+an)/2,其中Sn表示数列的和,a1表示首项,an表示末项,n表示项数。

方法二:等比数列求和公式等比数列是指数列中每一项与前一项之比都相等的数列。

等比数列求和公式是通过将数列项数n代入公式中,计算数列中各项之和Sn。

等比数列求和公式为Sn=a1(1-q^n)/(1-q),其中Sn表示数列的和,a1表示首项,q表示公比,n表示项数。

方法三:斐波那契数列求和公式斐波那契数列是指数列中每一项都是前两项之和的数列。

斐波那契数列求和公式是通过将数列项数n代入公式中,计算数列中各项之和Sn。

斐波那契数列求和公式为Sn=f(n+2)-1,其中Sn表示数列的和,f表示斐波那契数列。

方法四:调和数列求和公式调和数列是指数列中每一项的倒数是一个调和级数的一项。

调和数列求和公式是通过将数列项数n代入公式中,计算数列中各项之和Sn。

调和数列求和公式为Sn=1+1/2+1/3+...+1/n,即Sn=Hn,其中Hn表示调和级数的n项和。

方法五:等差数列求和差分公式通过差分公式,我们可以得到等差数列的求和公式。

差分公式是指数列中相邻两项之差等于同一个常数d。

等差数列求和差分公式为Sn=[(a1+an)/2]n,其中Sn表示数列的和,a1表示首项,an表示末项,n表示项数。

方法六:等比数列求和差分公式通过差分公式,我们可以得到等比数列的求和公式。

差分公式是指数列中相邻两项之比等于同一个常数q。

等比数列求和差分公式为Sn=a1(1-q^n)/(1-q),其中Sn表示数列的和,a1表示首项,q表示公比,n表示项数。

方法七:等差数列求和公式(倍差法)倍差法是一种基于等差数列的求和方法。

数列求和七种方法技巧

数列求和七种方法技巧

数列求和的七种方法技巧包括:
1. 公式法:适用于等差数列、等比数列等基本数列的求和,可以直接使用求和公式进行计算。

2. 倒序相加法:将数列倒序排列,然后与原数列相加,得到一个常数列,再除以2得到原数列的和。

3. 错位相减法:适用于一个等差数列和一个等比数列相乘的形式,通过错位相减的方式将原数列转化为等比数列,再利用等比数列的求和公式进行计算。

4. 裂项相消法:将数列中的每一项都拆分成两个部分,使得中间项相互抵消,从而求得数列的和。

5. 分组法:将数列中的项进行分组,然后分别求和,最后得到整个数列的和。

6. 乘公因式法:适用于具有公因式的数列,将公因式提取出来,然后进行求和。

7. 构造法:通过构造新的数列或方程,将原数列的求和问题转化为其他形式的问题进行求解。

以上是数列求和的七种方法技巧,可以根据具体情况选择适合的方法进行计算。

高中数学数列求和题解题方法技巧

高中数学数列求和题解题方法技巧

高中数学数列求和题解题方法技巧数列求和的七种解法1.公式法:顾名思义就是通过等差、等比数列或者其他常见的数列的求和公式进行求解。

2.倒序相加:如果一个数列{an},与首末两端等“距离”的两项和相等或者等于同一个常数,则求该数列的前n项和即可用倒序相加法。

例如等差数列的求和公式,就可以用该方法进行证明。

3.错位相减:形如An=Bn∙Cn,其中{Bn}为等差数列,首项为b1,公差为d;{Cn}为等比数列,首项为c1,公比为q。

对数列{An}进行求和,首先列出Sn,记为①式;再把①式中所有项同乘等比数列{Cn}的公比q,即得q∙Sn,记为②式;然后①②两式错开一位作差,从而得到{An}的前n项和。

这种数列求和方式叫做错位相减。

4.裂项相消:把数列的每一项都拆成正负两项,使其正负抵消,只剩下首尾几项,再进行求和,这种数列求和方式叫做裂项相消。

5.分组求和:有一类数列,既不是等差,又不是等比,但若把这个数列适当的拆开,就会分成若个等差,等比或者其他常见数列(即可用倒序相加,错位相减或裂项相消求和的数列),然后分别求和,之后再进行合并即可算出原数列的前n项和。

6.周期数列:一般地,若数列{an}满足:存在一个最小的正整数T,使得an+T=an对于一切正整数n都成立,则数列{an}称为周期数列,其中T叫做数列{an}的周期,接下来根据数列的周期性进行求和。

7.数学归纳法:是一种重要的数学方法,其对求数列通项,求和的归纳猜想证明起到了关键作用。

高中数学解题方法实用技巧1解决绝对值问题主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。

具体转化方法有:①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。

②零点分段讨论法:适用于含一个字母的多个绝对值的情况。

③两边平方法:适用于两边非负的方程或不等式。

④几何意义法:适用于有明显几何意义的情况。

2因式分解根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。

数列求和各种方法总结归纳

数列求和各种方法总结归纳

故数列{an}的通项公式为an=2-n.
an (2)设数列{ n-1}的前n项和为Sn, 2 a2 an 即Sn=a1+ 2 +…+ n-1,① 2 Sn a1 a2 an 故S1=1, 2 = 2 + 4 +…+2n,② 所以,当n>1时,①-②得
a2-a1 an-an-1 an Sn 2 =a1+ 2 +…+ 2n-1 -2n
- - -
(2)由题意知bn-an=3n 1,所以bn=3n 1+an=3n 1-2n+21. Tn=Sn+(1+3+…+3
n-1
3n-1 )=-n +20n+ 2 .
2
[冲关锦囊]
分组求和常见类型及方法
(1)an=kn+b,利用等差数列前n项和公式直接求解; (2)an=a·n-1,利用等比数列前n项和公式直接求解; q (3)an=bn±cn,数列{bn},{cn}是等比数列或等差数列, 采用分组求和法求{an}的前n项和.
(1)求数列{an}的通项公式; 第三行
(2)若数列{bn}满足:bn=an+(-1)nln an,求 {bn}的前2n项和S2n
[自主解答]
(1)当a1=3时,不合题意;
当a1=2时,当且仅当a2=6,a3=18时,符合题意; 当a1=10时,不合题意. 因此a1=2,a2=6,a3=18.所以公比q=3,
2 3a2=1,a3=9a2a6.
(1)求数列{an}的通项公式; 1 (2)设bn=log3a1+log3a2+…+log3an,求数列{b }的前n项和. n
[自主解答]
(1)设数列{an}的公比为q.由a2=9a2a6得 3 9 3
1 1 2 2 2 a3=9a4,所以q = .由条件可知q>0,故q= . 1 由2a1+3a2=1,得2a1+3a1q=1,得a1=3. 1 故数列{an}的通项公式为an=3n.

高中数学 数列求和常见的7种方法

高中数学  数列求和常见的7种方法

数列求和的基本方法和技巧一、总论:数列求和7种方法: 利用等差、等比数列求和公式错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和分段求和法(合并法求和) 利用数列通项法求和二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法,三、逆序相加法、错位相减法是数列求和的二个基本方法。

数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧.一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n [例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32 (利用常用公式)=x x x n --1)1(=211)211(21--n =1-n 21 资料来源QQ 群697373867 关注微信公众号:高中“数学教研室”回复任意内容获取资料 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n xn }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位) ①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………① 14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n∴ 1224-+-=n n n S三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:n n n n n n n C n C C C 2)1()12(53210+=++⋅⋅⋅+++证明: 设nn n n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ①把①式右边倒转过来得113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=- (反序)又由mn n m n C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..…….. ②①+②得 nn n n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=- (反序相加) ∴ nn n S 2)1(⋅+=资料来源QQ 群697373867 关注微信公众号:高中“数学教研室”回复任意内容获取资料[例6] 求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..② (反序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.5题1 已知函数(1)证明:;(2)求的值.解:(1)先利用指数的相关性质对函数化简,后证明左边=右边 (2)利用第(1)小题已经证明的结论可知,两式相加得:所以.练习、求值:四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S nn -+--==2)13(11n n a a a n -+--- [例8] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和) =2)2()1(2++n n n五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1))()1(n f n f a n -+= (2)n n n n tan )1tan()1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n (5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6) nnn n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 (7))11(1))((1CAn B An B C C An B An a n +-+-=++=(8)n a ==[例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111(裂项)则 11321211+++⋅⋅⋅++++=n n S n (裂项求和)=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n [例10] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和. 解: ∵ 211211nn n n n a n =++⋅⋅⋅++++=∴ )111(82122+-=+⋅=n n n n b n (裂项)∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n (裂项求和) =)111(8+-n =18+n n[例11] 求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++ 解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S ∵n n n n tan )1tan()1cos(cos 1sin -+=+ (裂项) ∴ 89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项求和) =]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+- =)0tan 89(tan 1sin 1 -=1cot 1sin 1⋅= 1sin 1cos 2 ∴ 原等式成立答案:六、分段求和法(合并法求和)针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .[例12] 求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值.解:设S n = cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°∵ )180cos(cosn n --= (找特殊性质项)∴S n = (cos1°+ cos179°)+( cos2°+ cos178°)+ (cos3°+ cos177°)+···+(cos89°+ cos91°)+ cos90° (合并求和)= 0[例13] 数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002.解:设S 2002=2002321a a a a +⋅⋅⋅+++由n n n a a a a a a -====++12321,2,3,1可得,2,3,1654-=-=-=a a a,2,3,1,2,3,1121110987-=-=-====a a a a a a……2,3,1,2,3,1665646362616-=-=-====++++++k k k k k k a a a a a a∵ 0665646362616=+++++++++++k k k k k k a a a a a a (找特殊性质项) ∴ S 2002=2002321a a a a +⋅⋅⋅+++ (合并求和) =)()()(66261612876321++++⋅⋅⋅+++⋅⋅⋅+⋅⋅⋅+++⋅⋅⋅+++k k k a a a a a a a a a a2002200120001999199819941993)(a a a a a a a +++++⋅⋅⋅+++⋅⋅⋅+=2002200120001999a a a a +++ =46362616+++++++k k k k a a a a =5[例14] 在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值.解:设1032313log log log a a a S n +⋅⋅⋅++=由等比数列的性质 q p n m a a a a q p n m =⇒+=+ (找特殊性质项) 和对数的运算性质 N M N M a a a ⋅=+log log log 得)log (log )log (log )log (log 6353932310313a a a a a a S n ++⋅⋅⋅++++= (合并求和)=)(log )(log )(log 6539231013a a a a a a ⋅+⋅⋅⋅+⋅+⋅=9log 9log 9log 333+⋅⋅⋅++ =10七、利用数列的通项求和先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n 项和,是一个重要的方法.[例15] 求11111111111个n ⋅⋅⋅+⋅⋅⋅+++之和. 解:由于)110(91999991111111-=⋅⋅⋅⨯=⋅⋅⋅k k k个个 (找通项及特征) ∴ 11111111111个n ⋅⋅⋅+⋅⋅⋅+++ =)110(91)110(91)110(91)110(91321-+⋅⋅⋅+-+-+-n (分组求和) =)1111(91)10101010(911321 个n n +⋅⋅⋅+++-+⋅⋅⋅+++ =9110)110(1091nn ---⋅=)91010(8111n n --+资料来源QQ 群697373867 关注微信公众号:高中“数学教研室”回复任意内容获取资料[例16] 已知数列{a n }:∑∞=+-+++=11))(1(,)3)(1(8n n n n a a n n n a 求的值. 解:∵ ])4)(2(1)3)(1(1)[1(8))(1(1++-+++=-++n n n n n a a n n n (找通项及特征)=])4)(3(1)4)(2(1[8+++++⋅n n n n (设制分组)=)4131(8)4121(4+-+++-+⋅n n n n (裂项)∴ ∑∑∑∞=∞=∞=++-+++-+=-+1111)4131(8)4121(4))(1(n n n n n n n n n a a n (分组、裂项求和)=418)4131(4⋅++⋅ =313提高练习:1.已知数列{}n a 中,n S 是其前n 项和,并且1142(1,2,),1n n S a n a +=+==,⑴设数列),2,1(21 =-=+n a a b n n n ,求证:数列{}n b 是等比数列; ⑵设数列),2,1(,2 ==n a c nnn ,求证:数列{}n c 是等差数列;2.设二次方程n a x 2-n a +1x +1=0(n ∈N)有两根α和β,且满足6α-2αβ+6β=3.(1)试用n a 表示a 1n +;3.数列{}n a 中,2,841==a a 且满足n n n a a a -=++122 *N n ∈⑴求数列{}n a 的通项公式;⑵设||||||21n n a a a S +++= ,求n S ;。

数列求和的8种常用方法

数列求和的8种常用方法

数列求和的8种常用方法数列求和是数学中非常常见的问题,它的解法有很多种。

下面我将介绍8种常用的方法来求解数列的和,让我们一起来看看吧。

一、等差数列求和公式对于等差数列$a_n=a_1+(n-1)d$,其中$a_n$表示第n个数,$a_1$表示第一个数,d表示公差,我们可以利用等差数列求和公式求解:$S = \frac{n}{2}(a_1 + a_n) = \frac{n}{2}(2a_1 + (n-1)d)$其中S表示数列的和,n表示数列的项数。

二、等比数列求和公式对于等比数列$a_n = a_1 \cdot q^{(n-1)}$,其中$a_n$表示第n个数,$a_1$表示第一个数,q表示公比,我们可以利用等比数列求和公式求解:$S = \frac{a_1(q^n - 1)}{q - 1}$,其中q≠1或者当q=1时,$S=a_1n$其中S表示数列的和,n表示数列的项数。

三、几何级数求和公式对于几何级数$s_n = a_1 + a_2 + \dots + a_n$,其中$a_1$表示第一个数,q表示公比,我们可以利用几何级数求和公式求解:$S = \frac{a_1(q^n - 1)}{q - 1}$,其中q≠1四、等差数列-等比数列混合求和公式对于等差数列-等比数列混合数列$s_n = a_1 + a_2 + \dots + a_n$,其中$a_n = a_1 + (n-1)d$,$a_1$表示第一个数,d表示公差,我们可以利用等差数列-等比数列混合求和公式求解:$S = \frac{a_1(q^n - 1)}{q - 1} + \frac{n(n-1)d}{2}q^{(n-2)}$,其中q≠1五、反比例数列求和公式对于反比例数列$s_n = \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}$,其中$a_1$表示第一个数,我们可以利用反比例数列求和公式求解:$S = \frac{n}{a_1}$六、算术-几何级数求和公式对于算术-几何级数$s_n = a_1 + a_2 + \dots + a_n$,其中$a_n = a_1 + (n-1)d$,$a_1$表示第一个数,d表示公差$S = \frac{a_1}{1-q} + \frac{d}{(1-q)^2}$,其中q≠1七、差分数列求和公式对于差分数列$s_n = a_1 + a_2 + \dots + a_n$,其中$a_n = a_1+ (n-1)d$,$a_1$表示第一个数,d表示公差,我们可以利用差分数列求和公式求解:$S = \frac{n}{2}(2a_1 + (n-1)d)$其中S表示数列的和,n表示数列的项数。

数列求和的8种常用方法

数列求和的8种常用方法

数列求和的8种常用方法数列求和是数学中常见的问题,解决数列求和问题有很多方法。

下面将介绍数列求和的8种常用方法。

1.直接相加法:这是最基本的方法,实际上就是将数列中的所有项相加。

例如,对于等差数列1,3,5,7,9,可以直接相加得到1+3+5+7+9=252.偶数项和与奇数项和之和法:对于一些数列,可以将其分解为偶数项和与奇数项和,然后再求和。

例如,对于等差数列1,3,5,7,9,可以分解为偶数项和4+8和奇数项和1+3+5+7+9,再相加得到(4+8)+(1+3+5+7+9)=373.首项与末项和的乘法法:对于等差数列,可以利用首项与末项之和的公式来求和。

首项与末项之和等于和的平均数乘以项数。

例如,对于等差数列1,3,5,7,9,首项与末项之和等于(1+9)*(项数/2)=10*5/2=254.首项与公差与项数的乘法法:对于等差数列,可以利用首项、公差和项数的乘积来求和。

等差数列的和等于首项乘以项数,再加上项数与公差之积的和。

例如,对于等差数列1,3,5,7,9,和等于1*5+(5*4)/2=10+10=20。

5.平均数法:对于一些特殊的数列,可以利用平均数的性质来求和。

平均数等于数列中的第一项与最后一项的平均值。

例如,对于等差数列1,3,5,7,9,平均数等于(1+9)/2=5,然后将平均数乘以项数,得到5*5=256.高斯求和法:高斯求和法是一种数学推导方法,用于求等差数列的和。

首先将数列化为由首项和末项构成的和,然后将数列顺序颠倒,再将之前的和与颠倒后的和相加,得到的结果就是等差数列的和。

例如,对于等差数列1,3,5,7,9,将其化为(1+9)+(3+7)+5,然后将数列颠倒得到5+(7+3)+9,再相加得到257. telescopage法(消去法):telescopage法是一种利用抵消的思想来求和的方法。

可以将数列中相邻的两项之差相消为0,最终得到一个简单的表达式,然后再求值。

例如,对于数列1, 2, 3, 4, 5,可以将(2-1) + (3-2) + (4-3) + (5-4)相加,得到1 + 1 + 1 + 1 = 48.更一般的求和方法:对于一些复杂的数列,可能需要应用更一般的数学方法来求解。

数列求和各种方法总结归纳

数列求和各种方法总结归纳

数列求和各种方法总结归纳数列求和是数学中常见的问题之一,涉及到很多的方法和技巧。

下面我将对几种常见的数列求和方法进行总结归纳。

一、等差数列求和等差数列是指数列中相邻两项的差都相等的数列。

我们可以通过以下几种方法来求等差数列的和:1. 公式法:对于等差数列求和的最常用的方法是通过公式来求和。

等差数列的和可以表示为:S = (a1 + an) * n / 2,其中a1为首项,an为末项,n为项数。

2.差分法:我们可以通过差分法来求等差数列的和。

即将数列中相邻两项的差列示出来,并求和,这样就变成了一个等差数列求和的问题。

例如对于数列1,3,5,7,9,差分后得到的数列是2,2,2,2,再求和得到83.数学归纳法:我们可以通过数学归纳法来求等差数列的和。

首先假设等差数列的和为Sn,然后通过归纳可以得到Sn+1和Sn之间的关系,最终求得Sn的表达式。

例如对于数列1,3,5,7,9,我们可以假设Sn=1+3+5+7+9,然后通过归纳可以得到Sn+1=1+3+5+7+9+11=Sn+a(n+1),其中a(n+1)为数列的第n+1项,最终求得Sn=n^2二、等比数列求和等比数列是指数列中相邻两项的比相等的数列。

我们可以通过以下几种方法来求等比数列的和:1.公式法:对于等比数列求和的最常用的方法是通过公式来求和。

等比数列的和可以表示为:S=a*(1-r^n)/(1-r),其中a为首项,r为公比,n为项数。

需要注意的是,当r小于1时,求和公式仍然成立。

当r等于1时,等比数列的和为a*n。

2.求导法:我们可以通过对等比数列求导来求和。

对等比数列进行求导得到的结果是一个等差数列,然后再对等差数列进行求和就可以求得等比数列的和。

3.数学归纳法:和等差数列一样,我们也可以通过数学归纳法来求等比数列的和。

首先假设等比数列的和为Sn,然后通过归纳可以得到Sn+1和Sn之间的关系,最终求得Sn的表达式。

三、递推数列求和递推数列是指数列中每一项都是由前面一项或几项推出来的。

数列求和方法总结

数列求和方法总结

数列求和方法总结数列求和是数学中一个非常常见且重要的问题,它出现在各个领域的数学问题中,并且在高中数学及以上的学习中经常遇到。

在解决数列求和问题时,我们可以通过多种方法,其中包括代入法、消元法、几何法、差分法、数学归纳法等等。

下面我将对这些方法进行详细的总结与说明。

1. 代入法:代入法是一种常见的求和方法。

我们可以通过代入来求和项的个数和具体数值。

首先,我们需要确定数列的通项公式,然后将要求和的项数具体代入到通项公式中,求出每一项的数值,最后再将这些数值相加即可得到所求的数列的和。

例如,要求等差数列1、3、5、7、9的前n项和,我们可以先找到通项公式为an=2n-1,然后代入每一项的数值,得到1、3、5、7、9,最后相加得到的和为(1+9)*5/2=25。

2. 消元法:消元法是一种常用的数学方法,在求和问题中也有广泛应用。

通过对求和式进行变形,我们可以通过消除多项式的常数项、控制变量项或者引入新的变量来简化求和的步骤,从而得到更简单的表达式。

例如,要求等差数列1、2、3、4、5的前n项和,我们可以通过对求和式进行变形,得到Sn=(n+1)*n/2。

3. 几何法:几何法是一种求解数列求和的常见方法,它通常适用于等比数列求和问题。

当数列的各项之间的比值存在规律时,我们可以通过将数列的各项代入到几何模型中来计算求和的方法。

例如,要求等比数列1、2、4、8、16的前n项和,我们可以将这些数列代入等比数列的几何模型中,即1、2、2^2、2^3、2^4,可见,这是一个以2为公比的等比数列。

根据等比数列的求和公式Sn=a1*(r^n-1)/(r-1),代入数值可得到所求的和。

4. 差分法:差分法是一种通过对数列进行差分来求和的方法。

它通常适用于数列之间的差为常数或规律的数列,通过对数列进行差分可以简化求和的过程。

例如,要求等差数列1、3、5、7、9的前n项和,我们可以通过差分法来解决,即将数列进行差分得到2、2、2、2,可以发现这是一个公差为2的等差数列。

数列求和的七种方法

数列求和的七种方法

数列求和的七种方法
1. 求和公式法:利用数列的通项公式和求和公式,将每一项的值代入公式求和。

2. 算术数列求和法:对于等差数列,可以利用求和公式 S =
n/2(2a + (n-1)d),其中a为首项,d为公差,n为项数。

3. 几何数列求和法:对于等比数列,可以利用求和公式 S =
a(1-q^n)/(1-q),其中a为首项,q为公比,n为项数。

4. 分割求和法:将数列分割成多个子序列,分别求和后再将结果相加。

5. 枚举法:遍历数列中的每一项,依次相加求和。

6. 递推关系式法:通过建立递推关系式,根据当前项与前一项的关系来求和。

7. 数学归纳法:对于特定的数列,可以利用数学归纳法证明求和公式的正确性,然后代入数值计算求和结果。

解数列求和的基本技巧

解数列求和的基本技巧

When you can't fight daddy, you can only do it hard!(页眉可删)解数列求和的基本技巧解数列求和的基本技巧,数列求和,各位同学你们准备好解答了吗?请看下面:数列求和的基本方法和技巧【1】一.公式法如果一个数列是等差数列或等比数列,则求和时直接利用等差、等比数列的前n项和公式.注意等比数列公示q的取值要分q=1和q1.二.倒序相加法如果一个数列的首末两端等“距离”的两项的和相等,那么求这个数列的前n项和即可用倒序相加法,如等差数列的前n项和公式即是用此法推导的.三.错位相减法如果一个数列的各项和是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和公式就是用此法推导的.四.裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.用裂项相消法求和时应注意抵消后并不一定只剩下第一项和最后一项,也可能前面剩两项,后面也剩两项,前后剩余项是对称出现的.五.分组求和法若一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和然后相加减.六.并项求和法一个数列的前n项和中,若可两两结合求解,则称之为并项求和法.形如类型,可采用两项合并求解.数列知识整合1、在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题。

2、在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力。

进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。

3、培养学生善于分析题意,富于联想,以适应新的背景,新的`设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法。

数列的求和方法总结

数列的求和方法总结

数列求和的若干常用方法数列求和是数列的重要内容之一,也是高考数学的重点考查对象。

除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧.如某些特殊数列的求和可采用分部求和法转化为等差数列或等比数列的和或用裂项求和法、错位相减法、逆序相加法、组合化归法,递推法等。

本文就此总结如下,供参考。

一、分组求和法所谓分组法求和就是:对一类既不是等差数列,也不是等比数列的数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并。

例1.已知数列{a n }的前n 项和S n =n 2+n 2,n ∈N *. (1)求数列{a n }的通项公式;(2)设2n a n n b a =+求数列{b n }的前2n 项和.二、裂项求和法这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1)111)1(1+-=+=n n n n a n (2))121121(211)12)(12()2(2+--+=+-=n n n n n a n (3)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n 等。

例2. 在数列{a n }中,11211++⋅⋅⋅++++=n n n n a n ,又12+⋅=n n n a a b , 求数列{b n }的前n 项的和.例3.设{a n }是正数组成的数列,其前n 项和为S n ,并且对所有自然数n ,a n 与2的等差中项等于S n 与2的等比中项.(1)写出数列{a n }的前三项;(2)求数列{a n }的通项公式(写出推证过程);(3)令b n =21⎪⎪⎭⎫ ⎝⎛+++1n n n 1n a a a a (n∈N),求:b 1+b 2+…+b n -n.三、 错位相减法设数列{}n a 的等比数列,数列{}n b 是等差数列,则数列{}n n b a 的前项和n S 求解,均可用错位相减法。

数列求和的方法技巧总结

数列求和的方法技巧总结

数列求和的方法技巧总结数列求和的方法技巧总结总结是事后对某一时期、某一项目或某些工作进行回顾和分析,从而做出带有规律性的结论,写总结有利于我们学习和工作能力的提高,我想我们需要写一份总结了吧。

总结怎么写才不会千篇一律呢?下面是小编为大家整理的数列求和的方法技巧总结,仅供参考,欢迎大家阅读。

一、倒序相加法此法来源于等差数列求和公式的推导方法。

例1. 已知求解:。

①把等式①的右边顺序倒过来写,即①可以写成以下式子:②把①②两式相加得二、错位相消法此法来源于等比数列求和公式的推导方法。

例2. 求数列的前n项和。

解:设当时,当时,①①式两边同时乘以公比a,得②①②两式相减得三、拆项分组法把一个数列分拆成若干个简单数列(等差数列、等比数列),然后利用相应公式进行分别求和。

例3. 求数列的前n项和。

解:设数列的前n项和为,则当时,当时,说明:在运用等比数列的前n项和公式时,应对q=1与的'情况进行讨论。

四、裂项相消法用裂项相消法求和,需要掌握一些常见的裂项技巧。

如例4. 求数列的前n项和。

解:五、奇偶数讨论法如果一个数列为正负交错型数列,那么从奇数项和偶数项分别总结出与n的关系进行求解。

例5. 已知数列求该数列的前n项和。

解:对n分奇数、偶数讨论求和。

①当时,②当时,六、通项公式法利用,问题便转化成了求数列的通项问题。

这种方法不仅思路清晰,而且运算简洁。

例6. 已知数列求该数列的前n项和。

解:即∴数列是一个常数列,首项为七、综合法这种方法灵活性比较大,平时注意培养对式子的敏锐观察力,尽量把给定数列转化为等差或等比数列来处理。

例7. 已知求分析:注意观察到:其他可依次类推。

关键是注意讨论最后的n是奇数还是偶数。

解:①当n为奇数时,由以上的分析可知:②当n为偶数时,可知:由①②可得说明:对于以上的各种方法,大家应注意体会其中所蕴含的分类讨论及化归的数学思想方法。

当然,数列求和的方法还有很多,大家平时还应多注意总结。

数列求和的8种常用方法(最全)

数列求和的8种常用方法(最全)

数列求和的8种常用方法(最全)一、前言在高中数学以及各类应用数学问题中,数列求和问题是非常常见的。

解决数列求和问题不仅需要对常用数列的规律进行深刻的理解,还需要掌握多种数列求和的方法。

本文将介绍数列求和的八种常用方法,并且会结合具体的数列实例来进行讲解。

尽力做到对每一种方法的介绍都能够做到极致详细,希望对读者有所帮助。

二、数列求和的8种常用方法1. 等差数列求和公式对于一个首项为$a_1$,公差为$d$,共有$n$ 项的等差数列,其求和公式为:$$S_n = \frac{n}{2}(2a_1 + (n-1)d)$$其中,$S_n$ 代表前$n$ 项的和。

举例:求和数列$1,3,5,7,9$ 的和。

分析:此数列的首项为1,公差为2,总共有5项。

解答:$$S_5 = \frac{5}{2}(2\times 1 + (5-1)\times 2)=25$$因此,数列$1,3,5,7,9$ 的和为25。

2. 等比数列求和公式对于一个首项为$a_1$,公比为$q$,共有$n$ 项的等比数列,其求和公式为:$$S_n = \frac{a_1(1-q^n)}{1-q}$$其中,$S_n$ 代表前$n$ 项的和。

举例:求和数列$2,4,8,16,32$ 的和。

分析:此数列的首项为2,公比为2,总共有5项。

解答:$$S_5=\frac{2\times (1-2^5)}{1-2}=-62$$因此,数列$2,4,8,16,32$ 的和为-62。

3. 几何级数通项公式求和对于一般形式为$a_1r^{n-1}$ 的数列,其求和公式为:$$S_n = \frac{a_1(1-r^n)}{1-r}$$其中,$S_n$ 代表前$n$ 项的和。

举例:求和数列$1,-\frac{1}{2},\frac{1}{4},-\frac{1}{8},\frac{1}{16}$ 的和。

分析:此数列的首项是1,公比是$-\frac{1}{2}$,总共有5项。

数列求和的基本方法和技巧

数列求和的基本方法和技巧

数列求和的基本方法和技巧数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧.一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 即直接用等差、等比数列的求和公式求和。

1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、 )12)(1(6112++==∑=n n n k S nk n222221(1)(21)1236nk n n n k n =++=++++=∑5、 213)]1(21[+==∑=n n k S nk n2333331(1)1232nk n n k n =+⎡⎤=++++=⎢⎥⎣⎦∑ 1、 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得n n x x x x S +⋅⋅⋅+++=32 =xx x n--1)1(=211)211(21--n =1-n 21 2、 已知数列{},n nn a a x =,(x ≠0),n s 数列的前n 项和,求n s 。

解:当x=1时,n s n = 当x ≠1时,{}na 为等比数列,公比为x 由等比数列求和公式得nn x x x x S +⋅⋅⋅+++=32=xx x n --1)1( 3、 (07高考山东文18)设{}n a 是公比大于1的等比数列,n S 为数列{}n a 的前n 项和.已知37S =,且123334a a a ++,,构成等差数列.(1)求数列{}n a 的等差数列.(2)令31ln 12n n b a n +== ,,,,求数列{}n b 的前n 项和T .解:(1)由已知得1231327:(3)(4)3.2a a a a a a ++=⎧⎪⎨+++=⎪⎩,解得22a =.设数列{}n a 的公比为q ,由22a =,可得1322a a q q ==,.又37S =,可知2227q q ++=,即22520q q -+=,解得12122q q ==,.由题意得12q q >∴=,.11a ∴=.故数列{}n a 的通项为12n n a -=.(2)由于31ln 12n n b a n +== ,,,,由(1)得3312n n a += 3ln 23ln 2n n b n ∴==, 又13ln 2n n n b b +-={}n b ∴是等差数列. 12n n T b b b ∴=+++1()2(3ln 23ln 2)23(1)ln 2.2n n b b n n n +=+=+=故3(1)ln 22n n n T +=. 4、 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n nS n S n f =64342++n n n =n n 64341++=50)8(12+-n n 501≤∴ 当88-n ,即n =8时,501)(max =n f二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.5、 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………① 解:由题可知,{1)12(--n xn }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位) ①-②得 n n n x n xx x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n xx x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+6、 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和.解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积 设n n nS 2226242232+⋅⋅⋅+++=…………………………………①(设制错位)14322226242221++⋅⋅⋅+++=n n nS ………………………………② ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS 1122212+---=n n n ∴ 1224-+-=n n n S7、 (07高考全国Ⅱ文21)设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,3521a b +=,5313a b +=(Ⅰ)求{}n a ,{}n b 的通项公式;(Ⅱ)求数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和n S . 解:(Ⅰ)设{}n a 的公差为d ,{}n b 的公比为q ,则依题意有0q >且4212211413d q d q ⎧++=⎪⎨++=⎪⎩,,解得2d =,2q =.所以1(1)21n a n d n =+-=-,112n n n b q --==.(Ⅱ)1212n n n a n b --=.122135232112222n n n n n S ----=+++++ ,①3252321223222n n n n n S ----=+++++ ,②②-①得22122221222222n n n n S ---=+++++- ,221111212212222n n n ---⎛⎫=+⨯++++- ⎪⎝⎭ 1111212221212n n n ----=+⨯--12362n n -+=-.8、 等比数列{n a }的前n 项和为n S ,已知对任意的n N +∈,点(,)n n S 均在函数(0xy b r b =+>且1,,b b r ≠均为常数)的图像上.(1)求r 的值;(11)当b=2时,记 1()4n nn b n N a ++=∈ 求数列{}n b 的前n 项和n T解:因为对任意的n N +∈,点(,)n n S ,均在函数(0x y b r b =+>且1,,b b r ≠均为常数)的图像上.所以得n n S b r =+,当1n =时,11a S b r ==+,当2n ≥时,1111()(1)n n n n n n n n a S S b r b r b b b b ----=-=+-+=-=-,又因为{n a }为等比数列, 所以1r =-, 公比为b , 所以1(1)n n a b b -=- (2)当b=2时,11(1)2n n n a b b --=-=,111114422n n n n n n n b a -++++===⨯则234123412222nn n T ++=++++ 3451212341222222n n n n n T +++=+++++ 相减,得23451212111112222222n n n n T +++=+++++- 31211(1)112212212n n n -+⨯-++--12311422n n n +++=--所以113113322222n n n n n n T ++++=--=-9、 函数2()f x x x =+,当[,1]()x n n n N *∈+∈时,()f x 的所有整数值的个数为()g n(1)求()g n 的表达式(2)设321123423(),(1)()n n n n n n a n N S a a a a a g n *-+=∈=-+-++- ,求n S(3)设12(),2n n n ng n b T b b b ==+++ ,若()n T l l z <∈,求l 的最小值 解:(1)当[,1]()x n n n N *∈+∈时,函数()f x 单调递增,则()f x 的值域为22[,32]()()23n n n n n N g n n *+++∈⇒=+(2)由(1)得2n a n =当n 为偶数时22222212341(12)(34)[(1)]n n n S a a a a a a n n -=-+-++-=-+-++-- =(1)(123)2n n n +-++++=-当n 为奇数时2222222123421()(12)(34)[(2)(1)]n n n n S a a a a a a a n n n --=-+-++-+=-+-++---+ ==2(1)(1231)2n n n n +-++++-+=1(1)(1)2n n n n S ++∴=- (3)由()2n n g n b =得23579232222n n n T +=++++ 234115792322222nn n T ++=++++ 两式相减得 12311523222727()()22222222n n n n n n T ++++=-++++=- 2772n n n T +⇒=-,则由277,2nnn T l l z +=-<∈,可得l 的最小值为7 10、 (2010四川理)(21)(本小题满分12分)已知数列{a n }满足a 1=0,a 2=2,且对任意m 、n ∈N *都有a 2m -1+a 2n -1=2a m +n -1+2(m -n )2(Ⅰ)求a 3,a 5;(Ⅱ)设b n =a 2n +1-a 2n -1(n ∈N *),证明:{b n }是等差数列;(Ⅲ)设c n =(a n+1-a n )q n -1(q ≠0,n ∈N *),求数列{c n }的前n 项和S n .本小题主要考查数列的基础知识和化归、分类整合等数学思想,以及推理论证、分析与解决问题的能力.解:(1)由题意,零m =2,n=1,可得a 3=2a 2-a 1+2=6 再令m =3,n =1,可得a 5=2a 3-a 1+8=20… (2)当n ∈N *时,由已知(以n +2代替m )可得a 2n +3+a 2n -1=2a 2n +1+8于是[a 2(n +1)+1-a 2(n +1)-1]-(a 2n +1-a 2n -1)=8 即 b n +1-b n =8所以{b n }是公差为8的等差数列………………………………………………5分(3)由(1)(2)解答可知{b n }是首项为b 1=a 3-a 1=6,公差为8的等差数列则b n =8n -2,即a 2n +=1-a 2n -1=8n -2 另由已知(令m =1)可得a n =2112n a a ++-(n -1)2.那么a n +1-a n =21212n n a a +-+-2n +1 =822n --2n +1=2n 于是c n =2nq n -1.当q =1时,S n =2+4+6+……+2n =n (n +1) 当q ≠1时,S n =2·q 0+4·q 1+6·q 2+……+2n ·qn -1.两边同乘以q ,可得 qS n =2·q 1+4·q 2+6·q 3+……+2n ·q n.上述两式相减得 (1-q )S n =2(1+q +q 2+……+q n -1)-2nq n=2·11n q q ---2nq n =2·11(1)1n n n q nq q+-++-所以S n =2·12(1)1(1)n nnqn q q +-++-综上所述,S n =12(1)(1)(1)12(1)(1)n n n n q nq n q q q ++=⎧⎪-++⎨≠⎪-⎩…………………………12分 11、(安庆市四校元旦联考)(本题满分16分)各项均为正数的数列{}n a 中,n S a ,11=是数列{}n a 的前n项和,对任意*∈N n ,有 )(222R p p pa pa S n n n ∈-+=;⑴求常数p 的值; ⑵求数列{}n a 的通项公式;⑶记n nn n S b 234⋅+=,求数列{}n b 的前n 项和T 。

数列求和的8种方法

数列求和的8种方法

数列求和的8种方法数列求和是数学中一个很重要的概念,常常在数学课上出现,也被广泛应用于其他学科中。

本文将为您介绍数列求和的8种常用方法。

一、公式法公式法是数列求和中最常用的一种方法。

当数列具有规律性时,可以通过观察数列的特点和规律,得出数列求和的公式。

例如,等差数列的求和公式为Sn = (a1 + an) × n / 2,其中a1为首项,an为尾项,n为项数。

二、差累加法差累加法是一种通过累加差值来求和的方法。

将一个数列中的每一项与其前一项的差相加,即可得到数列的和。

例如,斐波那契数列的差累加法求和公式为Sn=Fn+2-1三、奇偶分拆法奇偶分拆法是一种将数列分为奇数项和偶数项两个数列的方法。

通过将原数列中的项按照奇偶分类,并分别求和,然后将奇数部分和偶数部分的和相加,即可得到原数列的和。

这种方法特别适用于等差数列或等比数列求和。

四、数形结合法数形结合法是通过图形化数列来求和的方法。

将数列用图形的形式展现出来,然后通过计算图形的面积、周长或者中点之间的连线长度等等,来求得数列的和。

这种方法特别适用于几何数列或者满足其中一种几何规律的数列。

五、递推关系法递推关系法是通过递推关系来求和的方法。

数列中的每一项可以通过前面一项或者多项之间的关系得到,因此可以通过递推关系来直接求得数列的和。

例如,斐波那契数列的递推关系是Fn=Fn-1+Fn-2,可以利用这个关系式求得数列的和。

六、数列分解法数列分解法是通过将数列分解成其他数列的和来求和的方法。

通过将数列拆分成两个或多个数列,然后分别求得每个数列的和,并将它们相加,即可得到原数列的和。

这种方法适用于数列可以被分解成多个简单数列的情况。

七、夹逼定理法夹逼定理法是一种通过构造相等的两个或多个数列来求和的方法。

通过找到与原数列相等的其他数列,然后求得这些数列的和,并将它们相加,就可以求得原数列的和。

这种方法特别适用于数列无法通过常规的方法求和的情况。

八、换元法换元法是一种通过将数列中的索引进行变换,来求得数列的和的方法。

数列求和的七种方法总结

数列求和的七种方法总结

数列求和的七种方法总结嘿,朋友们!今天咱就来好好唠唠数列求和的七种超厉害的方法。

先来说说第一个方法,那就是公式法呀!这就好比是一把万能钥匙,专门开那些有固定公式的数列求和大门。

等差数列、等比数列啥的,都有它们自己的公式,直接套用,那答案不就乖乖出来啦!就像你知道了开门的密码,轻轻一转,门就开啦,神奇吧!然后呢,是分组求和法。

这就好像把一堆杂乱的东西分成几类,然后分别去处理。

把数列拆分成几个容易求和的部分,然后各自相加,最后再汇总起来。

就像是把不同颜色的糖果分开,然后数清楚每种有多少颗,加起来就知道总数啦!接着是裂项相消法。

哇哦,这个方法可有意思啦!就像是把一个整体拆成很多小块,然后通过巧妙的计算,让一些项相互抵消掉。

就好比你要把一堵墙拆了,然后有些砖头之间的缝隙刚好可以让它们相互抵消,最后剩下的就是你要的结果啦。

还有错位相减法。

这就像是一场精彩的舞蹈,两个数列在那里跳来跳去,通过错位相乘再相减,得出求和的结果。

是不是很神奇呀?倒序相加法也不能落下呀!想象一下,你从前往后走,再从后往前走,然后把两次走的过程加起来,是不是会有不一样的发现呢?这就是倒序相加法的奇妙之处呀!并项求和法呢,就像是把一些相似的东西合并在一起算。

把相邻的几项合并成一项,然后再去求和,是不是很有创意呀?最后说说归纳猜想法。

有时候啊,我们可以先通过计算前面几项,然后大胆地去猜测后面的结果,再去验证。

这就像是摸着石头过河,虽然有点冒险,但有时候会有意外的惊喜哦!哎呀呀,这七种方法各有各的妙处,就看你怎么去运用啦!在数学的世界里,它们就像是七种不同的武器,帮助我们攻克数列求和这个难关。

大家可得好好掌握呀,说不定哪天就派上大用场啦!总之,数列求和的方法多种多样,只要我们用心去学,就一定能把它们玩转得团团转!加油吧,朋友们!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列求和的方法技巧总结
导读:一、倒序相加法
此法来源于等差数列求和公式的推导方法。

例1. 已知

解:。


把等式①的右边顺序倒过来写,即①可以写成以下式子:②
把①②两式相加得
二、错位相消法
此法来源于等比数列求和公式的推导方法。

例2. 求数列
的前n项和。

解:设

时,

时,

①式两边同时乘以公比a,得

①②两式相减得
三、拆项分组法
把一个数列分拆成若干个简单数列(等差数列、等比数列),然后利用相应公式进行分别求和。

例3. 求数列
的前n项和。

解:设数列的.前n项和为
,则

时,

时,
说明:在运用等比数列的前n项和公式时,应对q=1与
的情况进行讨论。

四、裂项相消法
用裂项相消法求和,需要掌握一些常见的裂项技巧。


例4. 求数列
的前n项和。

解:
五、奇偶数讨论法
如果一个数列为正负交错型数列,那么从奇数项和偶数项分别总结出
与n的关系进行求解。

例5. 已知数列
求该数列的前n项和。

解:
对n分奇数、偶数讨论求和。

①当
时,
②当
时,
六、通项公式法
利用
,问题便转化成了求数列
的通项问题。

这种方法不仅思路清晰,而且运算简洁。

例6. 已知数列
求该数列的前n项和。

解:

∴数列
是一个常数列,首项为
七、综合法
这种方法灵活性比较大,平时注意培养对式子的敏锐观察力,尽量把给定数列转化为等差或等比数列来处理。

例7. 已知

分析:注意观察到:
其他可依次类推。

关键是注意讨论最后的n是奇数还是偶数。

解:①当n为奇数时,由以上的分析可知:
②当n为偶数时,可知:
由①②可得
说明:对于以上的各种方法,大家应注意体会其中所蕴含的分类讨论及化归的数学思想方法。

当然,数列求和的方法还有很多,大家平时还应多注意总结。

【数列求和的方法技巧总结】
1.数列求和教学反思
2.数列求和公式方法总结
3.数列求和的解题方法总结
4.数列求和复习教学反思
5.等差数列求和方法总结
6.数列求和奥数训练题
7.高数之数列极限的方法总结
8.六年级奥数专题之数列求和测试题
上文是关于数列求和的方法技巧总结,感谢您的阅读,希望对您有帮助,谢谢。

相关文档
最新文档