二重积分的概念与性质PPT课件
合集下载
二重积分的概念和性质PPT讲稿
17
例 设D为圆域 x2 y2 R2
z
二重积分 R2 x2 y2 d
D
=
DO
xR
y
解 z R2 x2 y2是上半球面
由二重积分的几何意义可知,上述积分等于
上半球体的体积:
R2 x2 y2d 2 R3 3
D
18
三、二重积分的性质
(二重积分与定积分有类似的性质)
性质1 设、 为常数, 则
看作均匀薄片.
(2) Mi (i ,i ) i
y
n
(3) M (i ,i ) i
(i ,i )
i1 n
•
(4) M lim 0
(i ,i ) i
i 1
O
i
x
10
二、二重积分的概念
1. 二重积分的定义
定义 设f ( x, y)是有界闭区域D上的有界函数,
① 将闭区域D任意分成n个小闭区域
2
double integral
第一节 二重积分的概念 与性质
问题的提出 二重积分的概念 二重积分的性质
3
一、问题的提出
回想 定积分中会求平行截面面积为已知的 立体的体积、旋转体的体积.
一般立体的体积如何求 先从曲顶柱体的体积开始. 一般立体的体积可分成一些比较简单的 曲顶柱体的体积. 而曲顶柱体的体积的计算问题, 可作为 二重积分的一个模型.
即
V f ( x, y)d ,
D
平面薄片D的质量
它的面密度 ( x, y)在薄片D上的二重积分,
即
M ( x, y)d .
D
13
注
1.重积分中 d 0,
2. 在直角坐标系下用 y
平行于坐标轴的直线网来
例 设D为圆域 x2 y2 R2
z
二重积分 R2 x2 y2 d
D
=
DO
xR
y
解 z R2 x2 y2是上半球面
由二重积分的几何意义可知,上述积分等于
上半球体的体积:
R2 x2 y2d 2 R3 3
D
18
三、二重积分的性质
(二重积分与定积分有类似的性质)
性质1 设、 为常数, 则
看作均匀薄片.
(2) Mi (i ,i ) i
y
n
(3) M (i ,i ) i
(i ,i )
i1 n
•
(4) M lim 0
(i ,i ) i
i 1
O
i
x
10
二、二重积分的概念
1. 二重积分的定义
定义 设f ( x, y)是有界闭区域D上的有界函数,
① 将闭区域D任意分成n个小闭区域
2
double integral
第一节 二重积分的概念 与性质
问题的提出 二重积分的概念 二重积分的性质
3
一、问题的提出
回想 定积分中会求平行截面面积为已知的 立体的体积、旋转体的体积.
一般立体的体积如何求 先从曲顶柱体的体积开始. 一般立体的体积可分成一些比较简单的 曲顶柱体的体积. 而曲顶柱体的体积的计算问题, 可作为 二重积分的一个模型.
即
V f ( x, y)d ,
D
平面薄片D的质量
它的面密度 ( x, y)在薄片D上的二重积分,
即
M ( x, y)d .
D
13
注
1.重积分中 d 0,
2. 在直角坐标系下用 y
平行于坐标轴的直线网来
高中数学(人教版)二重积分的概念与性质课件
3) 求和. m
取近似 2) 取近似. m i ( i , i ) i Vi f ( i , i ) i 和 ) f ( , 求
i 1 i i
n
3) 求和. V
n
i
( , )
i 1 i i
n
n
i
, i ) i4) 取极限.m lim ( i , i ) i 4) 取极限.V lim f ( i 取极限
o
x
(一)引例
1.曲顶柱体的体积 1) 分割. 用一组曲线网把D分成n个小区域
2.平面薄片的质量
1) 分割. 用一组曲线网把D分成n个小块
1 , 2 , , i , , n
i
几 何 问 题 2) 取近似. V f ( , )
3) 求和. V
1 , 2 , , i , , n
D
f ( x, y) 0
一般情况
曲顶柱体体积的负值
曲顶柱体体积的代数和
例 1
根据二重积分的几何意义,计算下列积分值:
D : x2 y2 R2.
(1)
y
d
D
o
z
x
( 2)
D
R 2 x 2 y 2 d
o
y
x
二重积分的概念与性质
一、二重积分的概念
二、二重积分的性质
二重积分的概念与性质
0
i 1
i , i ) i . f ( f ( x , y )d lim 0
D i 1
n
积 分 区 域
被 积 函 数
积 分 变 量
被面 积积 积 表元 分 达素 和 式
取近似 2) 取近似. m i ( i , i ) i Vi f ( i , i ) i 和 ) f ( , 求
i 1 i i
n
3) 求和. V
n
i
( , )
i 1 i i
n
n
i
, i ) i4) 取极限.m lim ( i , i ) i 4) 取极限.V lim f ( i 取极限
o
x
(一)引例
1.曲顶柱体的体积 1) 分割. 用一组曲线网把D分成n个小区域
2.平面薄片的质量
1) 分割. 用一组曲线网把D分成n个小块
1 , 2 , , i , , n
i
几 何 问 题 2) 取近似. V f ( , )
3) 求和. V
1 , 2 , , i , , n
D
f ( x, y) 0
一般情况
曲顶柱体体积的负值
曲顶柱体体积的代数和
例 1
根据二重积分的几何意义,计算下列积分值:
D : x2 y2 R2.
(1)
y
d
D
o
z
x
( 2)
D
R 2 x 2 y 2 d
o
y
x
二重积分的概念与性质
一、二重积分的概念
二、二重积分的性质
二重积分的概念与性质
0
i 1
i , i ) i . f ( f ( x , y )d lim 0
D i 1
n
积 分 区 域
被 积 函 数
积 分 变 量
被面 积积 积 表元 分 达素 和 式
高等数学 课件 PPT 第九章 重积分
分析
若函数ρ(x,y)=常数,则薄片的质量可用公式 质量=面密度×面积 来计算.现在面密度ρ(x,y)是变化的,故不能用上述公式来求. 这时仍可采用处理曲顶柱体体积的方法来求薄片的质量.分为下列 几个步骤:
一、二重积分的概念
(1)分割将D分成n个小闭区域Δσ1,Δσ2,…,Δσn(小区域 的面积也用这些符号表示),第i个小块的质量记为 ΔMi(i=1,2,…,n),则平面薄片的质量
于是
一、在直角坐标系下计算二重积分
图 9-11
一、在直角坐标系下计算二重积分
【例3】
计算
,D是由抛物线y2=2x与直线y=x-4所
围成的区域.
解 画出积分区域D的草图如图9-12所示.若先对x积分,
则有
一、在直角坐标系下计算二重积分
图 9-12
一、在直角坐标系下计算二重积分
若先对y积分,则需将D分为两个区域D1和D2, 于是
一、在直角坐标系下计算二重积分
【例1】
试将
化为两种不同次序的累次积分,其中
D是由y=x,y=2-x和x轴所围成的区域.
解 积分区域D如图9-9所示.首先说明如何用“穿线法”
确定累次积分的上、下限.如果先积x后积y,即选择Y型积
分区域,将区域D投影到y轴,得区间[0,1],0与1就是对y
积分的下限与上限,即0≤y≤1,在[0,1]上任意取一点y,
二、二重积分的性质
二重积分与定积分有类似的性质.假设 下面所出现的积分是存在的.
二、二重积分的性质
性质1
设c1,c2为常数,则
性质2
若闭区域D分为两个闭区域D1与D2,则
二、二重积分的性质
性质3
(σ为D的面积).
性质4
若函数ρ(x,y)=常数,则薄片的质量可用公式 质量=面密度×面积 来计算.现在面密度ρ(x,y)是变化的,故不能用上述公式来求. 这时仍可采用处理曲顶柱体体积的方法来求薄片的质量.分为下列 几个步骤:
一、二重积分的概念
(1)分割将D分成n个小闭区域Δσ1,Δσ2,…,Δσn(小区域 的面积也用这些符号表示),第i个小块的质量记为 ΔMi(i=1,2,…,n),则平面薄片的质量
于是
一、在直角坐标系下计算二重积分
图 9-11
一、在直角坐标系下计算二重积分
【例3】
计算
,D是由抛物线y2=2x与直线y=x-4所
围成的区域.
解 画出积分区域D的草图如图9-12所示.若先对x积分,
则有
一、在直角坐标系下计算二重积分
图 9-12
一、在直角坐标系下计算二重积分
若先对y积分,则需将D分为两个区域D1和D2, 于是
一、在直角坐标系下计算二重积分
【例1】
试将
化为两种不同次序的累次积分,其中
D是由y=x,y=2-x和x轴所围成的区域.
解 积分区域D如图9-9所示.首先说明如何用“穿线法”
确定累次积分的上、下限.如果先积x后积y,即选择Y型积
分区域,将区域D投影到y轴,得区间[0,1],0与1就是对y
积分的下限与上限,即0≤y≤1,在[0,1]上任意取一点y,
二、二重积分的性质
二重积分与定积分有类似的性质.假设 下面所出现的积分是存在的.
二、二重积分的性质
性质1
设c1,c2为常数,则
性质2
若闭区域D分为两个闭区域D1与D2,则
二、二重积分的性质
性质3
(σ为D的面积).
性质4
二重积分的概念与性质ppt课件
(1,0),(1,1), (2,0).
课后习题
解 在 D 内有 1 x y 2 e,
y
故 0 ln(x y) 1,
于是 ln(x y) ln(x y)2,
1
x y2
D
o
12x
x y1
因此 ln(x y)d [ln(x y)]2d .
D
D
20/24
练
机动
1. 习比较下列积分值的大小关系:
I2 xy d xd y ; I3 xy dxdy
x y 1
1 x1 1 y1
[提示] 被积函数相同,则比较区域D的大小. y
1
解 I1, I2, I3 被积函数相同, 且非负, 由它们的积分域范围可知
o
1x
由性质 6 知 e d (x2 y2 ) ea2 ,
D
abπ e d (x2 y2 ) abπ ea2 .
D
19/24
例3 比较积分 ln(x y)d 与[ln(x y)]2d
D
D
的大小,其中 D 是三角形闭区域 ,三顶点各为
任取一点
若存在一个常数 I , 使
记作
则称 f (x, y) 可积 , 称 I 为 f (x, y) 在D上的二重积分.
积分和
积分表达式
x, y称为积分变量
积分域
被积函数
面积元素
2.【对二重积分定义的说明】
(1)积分存在时,其值与区域的分法和点
? 不能 用 i 0 代替 0
10/24
D
D
其中 D : (x 2)2 ( y 1)2 2
解Ⅰ 积分域D 的边界为圆周
《高数14二重积分》课件
二重积分的奇偶性
要点一
总结词
二重积分的奇偶性是指对于二重积分,如果被积函数是奇 函数或偶函数,则其积分结果也具有相应的奇偶性。
要点二
详细描述
如果被积函数$f(x,y)$是关于原点对称的奇函数,即$f(-x,y) = -f(x,y)$,则$int_{D} f(x,y) dsigma = 0$(D关于原 点对称)。如果被积函数是关于原点对称的偶函数,即 $f(-x,-y) = f(x,y)$,则$int_{D} f(x,y) dsigma = 2 int_{D/2} f(x,y) dsigma$(D关于x轴对称)。
详细描述
在计算立体的体积时,首先需要将立体离散化成一系列小的 立方体。然后,对每个立方体进行二重积分,积分区域为该 立方体所对应的平面区域。最后,将所有立方体的体积相加 ,即可得到整个立体的体积。
平面薄片的质量分布
总结词
利用二重积分,可以计算平面薄片在某个区域内的质量分布情况。通过将平面薄 片离散化成一系列小的面积元,对每个面积元进行积分,最后求和得到整个薄片 的质量分布情况。
《高数14二重积分》ppt课 件
• 二重积分的定义与性质 • 二重积分的计算方法 • 二重积分的几何应用 • 二重积分的物理应用 • 二重积分的性质与定理 • 二重积分的应用案例分析
01
二重积分的定义与性质
二重积分的定义
二重积分的定义
二重积分是定积分在二维空间上的扩展,表示一个函数在平面区域上的面积。
定义方式
通过将积分区域划分为若干个小区域,并在每个小区域内取一个点,将所有这些点的函数值相加并乘以小区域的面积 ,再求和得到整个区域的面积。
几何意义
二重积分表示的是函数所围成的平面区域的面积。
高等数学 上下册9_1 二重积分的概念和性质-PPT课件
i 1 n
应当指出, (1)的极限存在时,二重积分才存在, 这时也称 f ( x, y ) 在 D 上是可积的.与定积分的存在定理 类似, 可以证明: 当被积函数 f ( x, y ) 在区域 D 上连续时, (1)的极限必存在,即在区域 D 上连续的函数是可积 的.当然,这个极限的存在与区域 D 的分割方法以及点 (i ,i ) 的取法无关.
f ( x, y )dxdy
D
其中 dxdy 称为直角坐标系中的面积元素 .
根据二重积分的定义,曲顶柱体的体积就是曲顶柱 体的变高 f ( x, y ) 在区域 D 上的二重积分
V f ( x, y )ds
D
二重积分的几何意义是明显的,当被积函数
f ( x, y ) 0 时, f ( x, y )ds 表示曲顶柱体 的体积;当
D D D
性质 3
如果将积分区域 D 分为两个区域 D1 和
D2 ,则在 D 上的二重积分等在 D1 和 D2 上二重积分的和,
即
f ( x, y)ds f ( x, y)ds f ( x, y)ds .
D D1 D2
这一性质表示二重积分对于积分区域的可加性.
性质 4 如果在区域D 上 , f ( x, y ) 1 ,则二重积分在 数值上等于区域D 面积的值,即
f ( x, y)ds ,即
D
f ( , )s f ( x, y )ds lim
D 0 i 1 i i
n
i
,
(1)
其中 f ( x, y ) 称为被积函数, f ( x, y )ds 称为被积表达 式, ds 称为面积元素, x 和 y 称为积分变量,D 称为积 分区域, f (i ,i )s i 称为积分和式.
应当指出, (1)的极限存在时,二重积分才存在, 这时也称 f ( x, y ) 在 D 上是可积的.与定积分的存在定理 类似, 可以证明: 当被积函数 f ( x, y ) 在区域 D 上连续时, (1)的极限必存在,即在区域 D 上连续的函数是可积 的.当然,这个极限的存在与区域 D 的分割方法以及点 (i ,i ) 的取法无关.
f ( x, y )dxdy
D
其中 dxdy 称为直角坐标系中的面积元素 .
根据二重积分的定义,曲顶柱体的体积就是曲顶柱 体的变高 f ( x, y ) 在区域 D 上的二重积分
V f ( x, y )ds
D
二重积分的几何意义是明显的,当被积函数
f ( x, y ) 0 时, f ( x, y )ds 表示曲顶柱体 的体积;当
D D D
性质 3
如果将积分区域 D 分为两个区域 D1 和
D2 ,则在 D 上的二重积分等在 D1 和 D2 上二重积分的和,
即
f ( x, y)ds f ( x, y)ds f ( x, y)ds .
D D1 D2
这一性质表示二重积分对于积分区域的可加性.
性质 4 如果在区域D 上 , f ( x, y ) 1 ,则二重积分在 数值上等于区域D 面积的值,即
f ( x, y)ds ,即
D
f ( , )s f ( x, y )ds lim
D 0 i 1 i i
n
i
,
(1)
其中 f ( x, y ) 称为被积函数, f ( x, y )ds 称为被积表达 式, ds 称为面积元素, x 和 y 称为积分变量,D 称为积 分区域, f (i ,i )s i 称为积分和式.
二重积分的概念与性质-PPT精品文档
的体积为
Vlim λ0 i1
f(ξi,ηi)σi.
第一节 二重积分的概念与性质
1. 求曲顶柱体的体积
由于这种特殊和式的极限应用极广,实际工作 中各个领域中的不少问题,通常都要化为这种和式 的极限。因此,有必要对这种和的极限进行一般性 的研究。
为了研究问题方便起见,数学上人们就把这种 特殊结构的和的极限称为二重积分。
者之间的共性与区别.
第一节 二重积分的概念与性质
(一)问题的提出
曲顶柱体 以曲面zf(x,为y)顶,以xy平面上区域D为
底,以通过D的边界且与z轴平行的柱面为侧面的立体。
1.曲顶柱体的体积(volume)
zf(x,y)
(曲顶)柱体体积=?
特点:曲顶 D (平顶)柱体体积 =底面积 × 高
特点:平顶
以常代变Δ Si f(ξi)Δ xi;
n
n oa
积零为整 S Si f(ξi)Δxi.
bx
i1
i1
无限累加
n
b
Slλ i0m i1f(ξi)Δ xi af(x)dx.
第一节 二重积分的概念与性质
1. 求曲顶柱体的体积
曲顶柱体: 以xOy平面上的
有界闭区域D为底, 其侧面为以 D的边界线为准线, 而母线平行于 z轴的柱面, 其顶是连续曲面
(3)若f (x,y)在D的某些子区域上为正的, 在D的另一些
子区域上为负的, 则 f (x, y)dσ表示在这些子区域上
曲顶柱体体积的代数和. D
(4)当 f(x,y时), 1 则 d =区域D的面积.
D
4.二重积分的性质
V bπ[f(x)]2dx. a
已知平行截面面积的几何体的体积
二重积分概念课件-PPT课件
定理20.1
平面有界图形 P 可求面积的充要条件是: 对任给的 0, 总存在直线网 T, 使得 S ( T ) s ( T ) . P P
( 2 )
证 必要性 设有界图形 P 的面积为 I P . 由定义 1, 有 I I I . P 0, 由 I P 及 I P 的定义知道, 分别 P P 存在直线网 T 1 与 T 2 , 使得
P ; (ii) i 上的点都是 P 的外点, 即 i (iii) i 上含有 P 的边界点.
数学分析 第二十一章 重积分
高等教育出版社
§1二重积分概念
平面图形的面积
二重积分的定义及其存在性
二重积分的性质
将所有属于第(i) 类小矩形
(图 21-1 中紫色部分)的面 积加起来, 记这个和数为 (这 ( T ) sP (T ), 则有 s P R
§1二重积分概念
平面图形的面积
二重积分的定义及其存在性
二重积分的性质
于是由(3)可得
P
sT () I, S () T I .
P
从而对直线网 T 有 S () TsT () . P P
S () TsT () . P P
2
P
P
2
充分性 设对任给的 0, 存在某直线网 T, 使得
§1二重积分概念
平面图形的面积
二重积分的定义及其存在性
二重积分的性质
平面图形的面积
我们首先定义平面图形的面积. 我们称平面图形 P 是有界的, 如果存在一矩形 R , 使得 P R.
设 P 是一平面有界图形, 用平行于二坐标轴的某一
组直线网 T 分割这个图形 (图21-1) , 这时直线网 T 的网眼 (小闭矩形) i 可分为三类: (i) i 上的点都是 P 的内点;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
特殊地
则有 f (x, y)d g(x, y)d .
“分割, 取近似, 求和, 取极限”
步骤如下
z
①分割:先分割曲顶柱体 的底,并取典型小区域,
②取近似、 ③求和:用若干
个小平顶柱体体积之和近似 o
表示曲顶柱体的体积,
④取极限:
x
D
得曲顶柱体的体积
n
V
lim 0 i1
f (i ,i ) i .
f (i , i )
6/24
3.【二重积分的几何意义】
11/24
体
1)若 f ( x, y) 0 , f ( x, y)d 表曲顶柱体的体积.
积 的
D
2)若 f ( x, y) 0 , f ( x, y)d 表曲顶柱体体积的负值.
代 数
D
3)若 f ( x, y) 1 , 1 d 表区域D的面积.
1y
D
面密度为f (x, y)占有平面区域D的平面薄片的质量
12/24
[注] 1. 重积分与定积分的区别:
重积分中d 0,定积分中dx 可正可负.
2. 根据分割的任意性,当二重积分存在时,在直角坐标系 下用平行于坐标轴的直线网来划分区域D
即 x 常数 , y 常数
y
则直角坐标系下面积元素为 d dxdy
D
故二重积分可写为 f (x, y)d f (x, y)dxdy o
x
D
D
引例1中曲顶柱体体积:
V D f (x, y) d D f (x, y) d x d y
引例2中平面薄板的质量:
M D ( x, y)d D ( x, y)d x d y
(2) 所求量的结构式相同 曲顶柱体体积:
n
V
lim 0
i 1
f (i , i ) i
平面薄片的质量:
n
M
lim
0
i 1
(i , i ) i
9/24
二、二重积分的定义及可积性
1.定义 设 f (x, y) 是定义在有界闭区域 D上的有界函数 ,
将区域 D 任意分成 n 个小区域
的取法无关
(2)存在条件(充分条件)
当 f ( x, y)在有界闭区域上连续时,定义中和式的极
限必存在,即二重积分必存在. 以后总假定 f ( x, y)在所论有界闭域 D上连续
从而二重积分都是存在 的.
(3) f (x,y)在D上有界是二重积分存在的必要条件. 连续是二重积分存在的充分条件
(证明略)
D
D
D
线性性质可以推广至有限个函数的情形。
14/24
性质3 对区域具有可加性
f (x, y)d f (x, y)d f (x, y)d.
D
D1
D2
性质4 若 为D的面积, 1 d d .
D
D
性质5 若在D上 f (x, y) g(x, y), 比较性质
答: “分割,取近似,求和, 取极限”
b f xdx lim n
a
d 0 k1
f k xk
(3)如何计算定积分?
3/24
问题:
现要求解非均匀分布在平面、空间立体上的量的求和问题
所计算的量与多元函数及平面或空间区域有关
推广
被积函数 二元函数 三元函数
积分范围 平面区域 空间区域 一段曲线 一片曲面
积分类型 二重积分 三重积分 曲线积分 曲面积分
4/24
一、问题的提出——引例
1.曲顶柱体的体积 柱体体积=底面积×高 【特点】平顶.
z f (x, y)
柱体体积=?
【特点】曲顶.
D
D
5/24
给定曲顶柱体: 底:xoy 面上的闭区域D
D
顶: 连续曲面 侧面:以D的边界为准线 , 母线平行于z 轴的柱面 求其体积. 解法 类似定积分解决问题的思想:
1/24
第一节 二重积分的概念与性质
一、问题的提出 二、二重积分的概念 三、二重积分的性质 四、小结 思考题
2/24
复习和总结
定积分
b
a
f
x
dx
(1)定积分是用来解决哪一类问题?
答:求非均匀分布在区间上的量的求和问题 被积函数是一元函数,积分范围是直线上的区间
(2)解决这一类问题采用了什么思想方法?
13/24
三、二重积分的性质
(二重积分与定积分有类似的性质)
性质1
kf (x, y)d k f (x, y)d .
D
D
性质2 线性性质
[ f (x, y) g(x, y)]d
D
f (x, y)d g(x, y)d .
D
D
逐项积分
[kf (x, y) mg(x, y)]d k f (x, y)d m g(x, y)d
z f (x, y)
y
(i ,i )
•
i
(i ,i )
i
7/24
2.求平面薄片的质量 设有一平面薄片,占有 xoy面上的闭区域 D,在点
( x, y)处的面密度为( x, y),假定( x, y)在 D上连续,
平面薄片的质量为多少?
分 =常数时,质量= · ,其中 为面积. 若析为非常数,仍可用“分割, 取近似, 求和, 取极限”解决.
⑴分割:将薄片分割成若干小块, y
⑵近似:取典型小块,将其近似
(i ,i )
•
看作均匀薄片,
⑶求和:所有小块质量之和
i
近似等于薄片总质量
o
x
n
⑷ 取极限:得薄片总质量
M
lim
0
i 1
(i ,i
)
i
.
8/24
两个问题的共性:
(1) 解决问题的步骤相同
“分割, 取近似, 求和, 取极限”
任取一点
若存在一个常数 I , 使
记作
则称 f (x, y) 可积 , 称 I 为 f (x, y) 在D上的二重积分.
积分和
积分表达式
x, y 称为积分变量
积分域
被积函数
面积元素
2.【对二重积分定义的说明】
10/24
(1)积分存在时,其值与区域的分法和点
? 不能 用 i 0 代替 0
z
和
a
D
几个特殊结果 (1) kd k ;
D
(2)
a2 x2 y2d 2 π a3 ;
x2 y2a2
3
y
a
x x2 y2 a2
z
(3)
(1 x y)d 1 .
x y1,x0, y0
6
1 z 1 x y
4.【物理意义】 ( x, y)d 在物理上表示 x 1 D