新北师大版八年级上学期数学期末测试题二
北师大版八年级上册数学期末解答题专项训练及答案二
![北师大版八年级上册数学期末解答题专项训练及答案二](https://img.taocdn.com/s3/m/e3b895ec9fc3d5bbfd0a79563c1ec5da50e2d6b6.png)
北师大版八年级上册数学期末解答题专项训练及答案二、解答题19.(每小题4分,共8分)计算:-20.(每小题4分,共8分)解下列方程组:(1)430210x yx y-=⎧⎨-=-⎩(2)134342x yx y⎧-=⎪⎨⎪-=⎩21.(本题8分)九年级甲、乙两名同学期末考试的成绩(单位:分)如下:根据表格中的数据,回答下列问题:(1)甲的总分为522分,则甲的平均成绩是__________分,乙的总分为520分,________的成绩好一些. (填“甲”或者“乙”)(2)经过计算知22=7.67=5.89S S甲乙,. 你认为__________不偏科;(填“甲”或者“乙”)(3)中招录取时,历史和体育科目的权重是0.3,其它科成绩权重是1,请问谁的成绩更好一些?请说明理由.22.(本题8分)如图,在正方形网格中,每个小正方形的边长为l,格点三角形(顶点是网格线的交点)ABC的顶点A,C的坐标分别为(-4,5),(-1,3).(1)请在网格平面内作出平面直角坐标系;(2)请作出△ABC关于y轴对称的△A'B'C';(3)B'的坐标为__________;(4)△ABC的面积为__________.23.(每小题6分,共12分)(1)如图,已知DE∥BC,∠D:∠DBC=2:1,∠1=∠2.求∠DEB 的度数.(2)“三等分一个任意角”是数学史上一个著名问题,今天人们已经知道,仅用圆规直尺是不可能做出的。
在探索中,有人曾利用过如图所示的图形,其中,ABCD是长方形(AD∥CB,F是DA延长线上一点,G是CF上一点,并且∠ACG=∠AGC,∠GAF=∠F,你能证明∠ECB=1∠ACB吗?324.(本题10分)今年“五一”小长假期间,某市外来与外出旅游的总人数为226万人,分别比去年同期增长30%和20%,去年同期外来旅游比外出旅游的人数多20万人.求该市今年外来和外出旅游的人数.25.(本题12分)上周六上午8点,小颖同爸爸妈妈一起从济南出发回青岛看望姥姥,途中他们在一个服务区休息了0.5小时,然后直达姥姥家,如图,是小颖一家这次行程中距姥姥家的距离y(千米)与他们路途所用的时间x(时)之间的函数图象,请根据以上信息,解答下列问题:(1)求直线AB所对应的函数关系式;(2)已知小颖一家出服务区后,行驶30分钟后,距姥姥家还有80千米,问小颖一家当天几点到达姥姥家?26.(本题12分)如图,一次函数y=-x+m的图象与x轴和y轴分别交于点A和点B,与正比例函数32y x图象交于点P(2,n).(1)求m和n的值;(2)求△POB的面积;(3)在直线OP上是否存在异与点P的另一点C,使得△OBC与△OBP的面积相等?若存在,请求出C点的坐标;若不存在,请说明理由.解答题(21题8分,22,25题每题9分,23,24题每题7分,其余每题10分,共60分)21.(1)计算:24×13-4×18×(1-2)0+32.(2)解方程组:⎩⎨⎧x 2-y +13=1,3x +2y =10.22.如图,在正方形网格中,每个小正方形的边长为1,△ABC 的顶点A ,C 的坐标分别为A (-4,5),C (-1,3).(1)请在网格平面内作出平面直角坐标系(不写作法);(2)请作出△ABC 关于y 轴对称的△A ′B ′C ′(A ,B ,C 的对应点分别为A ′,B ′,C ′); (3)分别写出点A ′,B ′,C ′的坐标.23.如图,CF 是∠ACB 的平分线,CG 是△ABC 的外角∠ACE 的平分线,FG ∥BC ,且FG 交CG 于点G .已知∠A =40°,∠B =60°,求∠FGC 与∠FCG 的度数.24.某电器公司计划装运甲、乙两种家电到农村销售(规定每辆汽车按规定满载,且每辆汽车只能装同一种家电),下表为每辆汽车装运甲、乙两种家电的台数.若用8辆汽车装运甲、乙两种家电190台到A地销售,问装运甲、乙两种家电的汽车各有多少辆?25.如图,一辆小汽车在一条限速70 km/h的街路上沿直道行驶,某一时刻刚好行驶到路面车速检测仪A的正前方60 m处的C点,过了5 s后,测得小汽车所在的B点与车速检测仪A之间的距离为100 m.(1)求B,C间的距离.(2)这辆小汽车超速了吗?请说明理由.26.张明、王成两名同学对自己八年级10次数学测试成绩(成绩均为整数,且个位数为0)进行统计,统计结果如图所示.(1)根据图中提供的数据填写下表:(2)如果将90分以上(含90分)的成绩视为优秀,则优秀率高的同学是__________; (3)结合以上数据,请你分析,张明和王成两名同学谁的成绩更稳定.27.如图,在平面直角坐标系中,直线y =-x +6与x 轴和y 轴分别交于点B 和点C ,与直线OA 相交于点A (4,2),动点M 在线段OA 和射线AC 上运动. (1)求点B 和点C 的坐标. (2)求△OAC 的面积.(3)是否存在点M ,使△OMC 的面积是△OAC 面积的14若存在,求出此时点M的坐标;若不存在,请说明理由.解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分) 19.(1)计算:(5-1)(5+1)-⎝ ⎛⎭⎪⎫-13-2+|1-2|-(π-2)0+8.(2)解方程组:20.如图,在正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(-4,5),(-1,3).(1)请在网格平面内作出平面直角坐标系;(2)请作出△ABC关于y轴对称的△A′B′C′;(3)点B′的坐标为__________;(4)△ABC的面积为________.21.在某体育用品商店,购买30根跳绳和60个毽子共用720元,购买10根跳绳和50个毽子共用360元.(1)跳绳、毽子的单价各是多少元?(2)该店在“五四”青年节期间开展促销活动,所有商品按同样的折数打折销售.节日期间购买100根跳绳和100个毽子只需1 800元,该店的商品按原价的几折销售?22.如图,∠1=∠2,∠BAE=∠BDE,EA平分∠BEF.(1)求证:AB∥DE.(2)BD平分∠EBC吗?为什么?23.甲、乙两名队员参加射击训练,成绩分别被制成如下两个统计图:根据以上信息,整理分析数据如上表:(1)写出表格中a,b,c的值.(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?24.甲、乙两地的路程为290千米,一辆汽车早上8:00从甲地出发,匀速向乙地行驶,途中休息一段时间后,按原速继续前进,当离甲地路程为240千米时接到通知,要求中午12:00准时到达乙地.设汽车出发x小时后离甲地的路程为y千米,图中折线OCDE表示接到通知前y与x之间的函数关系.(1)根据图象可知,休息前汽车行驶的速度为________千米/时.(2)求线段DE所表示的y与x之间的函数表达式.(3)接到通知后,汽车仍按原速行驶能否准时到达?请说明理由.25.如图,在平面直角坐标系中,过点B (6,0)的直线AB 与直线OA 相交于点A (4,2),直线AB 与y 轴的交点为C ,动点M 在线段OA 和射线AC 上运动. (1)求直线AB 对应的函数表达式. (2)求△OAC 的面积.(3)是否存在点M ,使△OMC 的面积是△OAC 面积的14若存在,求出此时 点M 的坐标;若不存在,说明理由.参考答案 解答题19.(每小题4分,共8分)计算:(1)334 (2)26 20.(每小题4分,共8分)解下列方程组:(1)⎩⎨⎧==1010y x (2)⎩⎨⎧==46y x21.(1)87;甲. ……2分(2)乙 ……4分(3)甲:75+93+85+84×0.3+95+90×0.3=400.2(分) ……5分乙:85+85+91+85×0.3+89+85×0.3=401(分) ……6分400.2<401答:乙的成绩更好一些. ……8分 22. 解:(1)如图所示:……2分 (2)如图所示:……4分 (3)B ′(2,1);……6分 (4)4.……8分 23.(1)解:∵ DE ∥BC∴ ∠D +∠DBC =180°∵ ∠D : ∠DBC=2 : 1∴ ∠D =2∠DBC∴ 2∠DBC+∠DBC =180°即 ∠DBC =60°……4分∵ ∠1=∠2∴ ∠1=∠2=30°∵ DE ∥BC∴ ∠DEB =∠1=30°……6分(2)解:∵AD ∥CB∴∠FCB=∠F ……2分∵∠AGC 是△AGF 的外角,∴∠AGC=∠GAF+∠F=2∠F ……4分又∵∠ACG=∠AGC∠ACB=∠ECB+∠ACG=∠F+2∠F=3∠F=3∠ECB ∴∠ECB=31∠ACB ……6分 24.解:设该市去年外来人数为x 万人,外出旅游的人数为y 万人,由题意得,()()20130%120%226x y x y -=⎧⎪⎨+++=⎪⎩……5分 解得:10080x y =⎧⎨=⎩……7分 则今年外来人数为:100×(1+30%)=130(万人),今年外出旅游人数为:80×(1+20%)=96(万人).答:该市今年外来人数为130万人,外出旅游的人数为96万人.……10分25.解:(1)设直线AB 所对应的函数关系式为y=kx+b ,把(0,320)和(2,120)代入y=kx+b 得:3202120b k b =⎧⎨+=⎩,解得:100320kb=-⎧⎨=⎩,∴直线AB所对应的函数关系式为:y=﹣100x+320;……4分(2)设直线CD所对应的函数关系式为y=mx+n,把(2.5,120)和(3,80)代入y=mx+n得:2.5120380m nm n+=⎧⎨+=⎩,解得:80320mn=-⎧⎨=⎩,∴直线CD所对应的函数关系式为y=﹣80x+320,……8分当y=0时,x=4,∴小颖一家当天12点到达姥姥家.……12分28.解:(1)∵点P(2,n)在正比例函数y=32x图象上,∴n=32×2=3,∴点P的坐标为(2,3).∵点P(2,3)在一次函数y=﹣x+m的图象上,∴3=﹣2+m,解得:m=5,∴一次函数解析式为y=﹣x+5.∴m的值为5,n的值为3.……4分(2)当x=0时,y=﹣x+5=5,∴点B的坐标为(0,5),∴S△POB=12OB•x P=12×5×2=5.……8分(3)存在.∵S△OBC=12OB•|x C|=S△POB=5,∴x C=﹣2或x C=2(舍去).当x=﹣2时,y=32×(﹣2)=﹣3.∴点C的坐标为(﹣2,﹣3).……12分三、21.解:(1)原式=24×13-4×24×1+42=22-2+42=5 2.(2)整理得⎩⎨⎧3x -2y =8,①3x +2y =10.②①+②,得6x =18,解得x =3.把x =3代入②,得9+2y =10,解得y =12.所以原方程组的解为⎩⎪⎨⎪⎧x =3,y =12. 22.解:(1)平面直角坐标系如图所示.(2)△A ′B ′C ′如图所示.(3)点A ′,B ′,C ′的坐标分别为(4,5),(2,1),(1,3).23.解:∵CF ,CG 分别是∠ACB ,∠ACE 的平分线,∴∠ACF =∠BCF =12∠ACB ,∠ACG =∠ECG =12∠ACE .∴∠ACF +∠ACG =12(∠ACB +∠ACE )=12×180°=90°,即∠FCG =90°.∵∠ACE =∠A +∠B =40°+60°=100°,∴∠GCE =12∠ACE =50°.∵FG ∥BC ,∴∠FGC =∠GCE =50°.24.解:设装运甲种家电的汽车有x 辆,装运乙种家电的汽车有y 辆.根据题意,得⎩⎨⎧x +y =8,20x +30y =190,解得⎩⎨⎧x =5,y =3.答:装运甲种家电的汽车有5辆,装运乙种家电的汽车有3辆.25.解:(1)在Rt △ABC 中,由AC =60 m ,AB =100 m ,且AB 为斜边,根据勾股定理可得BC =AB 2-AC 2=80 m.即B ,C 间的距离为80 m.(2)这辆小汽车没有超速.理由:因为80÷5=16(m/s),16 m/s =57.6 km/h ,576<70,所以这辆小汽车没有超速.26.解:(1)平均成绩:80;80 中位数:80众数:90 方差:60(2)王成(3)两人平均成绩相同,而张明成绩的方差较小,故张明的成绩更稳定.27.解:(1)在y =-x +6中,令y =0,则x =6;令x =0,则y =6.故点B 的坐标为(6,0),点C 的坐标为(0,6).(2)S △OAC =12OC ×|x A |=12×6×4=12.(3)存在点M 使S △OMC =14S △OAC .设点M 的坐标为(a ,b ),直线OA 的表达式是y =mx .∵A (4,2),∴4m =2,解得m =12.∴直线OA 的表达式是y =12x .∵S △OMC =14S △OAC ,∴12×OC ×|a |=14×12.又∵OC =6,∴a =±1.当点M 在线段OA 上时,如图①,则a =1,此时b =12a =12,∴点M 的坐标是⎝ ⎛⎭⎪⎫1,12.当点M 在射线AC 上时,如图②,a =1时,b =-a +6=5,则点M 1的坐标是(1,5);a =-1时,b =-a +6=7,则点M 2的坐标是(-1,7).综上所述,点M 的坐标是⎝ ⎛⎭⎪⎫1,12或(1,5)或(-1,7). 三、19.解:(1)原式=(5)2-1-1⎝ ⎛⎭⎪⎫-132+2-1-1+22=5-1-9+2-1-1+22=-7+3 2.(2)整理,得⎩⎨⎧3x -2y =8,①3x +2y =10.②①+②,得6x =18,解得x =3.把x =3代入②,得9+2y =10,解得y =12.所以原方程组的解是⎩⎪⎨⎪⎧x =3,y =12. 20.解:(1)如图所示.(2)如图所示.(3)(2,1) (4)421.解:(1)设跳绳的单价为x 元,毽子的单价为y 元.由题意得⎩⎨⎧30x +60y =720,10x +50y =360,解得⎩⎨⎧x =16,y =4.答:跳绳的单价为16元,毽子的单价为4元.(2)设该店的商品按原价的a 折销售,可得(100×16+100×4)×a 10=1 800,解得a =9.答:该店的商品按原价的9折销售.22.(1)证明:∵∠2与∠ABE 是对顶角,∴∠2=∠ABE .∵∠1=∠2,∴∠1=∠ABE .∴AB ∥DE .(2)解:BD 平分∠EBC .理由如下:∵AB ∥DE ,∴∠AED +∠BAE =180°,∠BEF =∠EBC .∵∠BAE =∠BDE ,∴∠AED +∠BDE =180°.∴AE ∥BD .∴∠AEB =∠DBE .∵EA 平分∠BEF ,∴∠AEB =12∠BEF .∴∠DBE =12∠EBC .∴BD 平分∠EBC .23.解:(1)a =7,b =7.5,c =4.2.(2)从平均成绩看,甲、乙两人的平均成绩相等,均为7环;从中位数看,甲成绩的中位数小于乙;从众数看,甲射中7环的次数最多,而乙射中8环的次数最多;从方差看,甲的成绩比乙的成绩稳定.综合以上各因素,若选派一名队员参赛,可选择乙参赛,因为乙获得较好成绩的可能性更大.24.解:(1)80(2)休息后按原速继续前进,行驶的时间为(240-80)÷80=2(小时),∴点E 的坐标为(3.5,240).设线段DE 所表示的y 与x 之间的函数表达式为y =kx +b ,则⎩⎨⎧1.5k +b =80,3.5k +b =240,解得⎩⎨⎧k =80,b =-40, ∴线段DE 所表示的y 与x 之间的函数表达式为y =80x -40.(3)不能.理由如下:接到通知后,若汽车仍按原速行驶,则全程所需时间为290÷80+0.5=4.125(小时),12时-8时=4小时,4.125>4.故接到通知后,汽车仍按原速行驶不能准时到达.25.解:(1)设直线AB 对应的函数表达式是y =kx +b .根据题意,得⎩⎨⎧4k +b =2,6k +b =0,解得⎩⎨⎧k =-1,b =6,则直线AB 对应的函数表达式是y =-x +6.(2)在y =-x +6中,令x =0,解得y =6,∴C 点的坐标为(0,6).∴S △OAC =12×6×4=12.(3)存在.设直线OA 对应的函数表达式是y =mx ,则4m =2,解得m =12.∴直线OA 对应的函数表达式是y =12x .当点M 在第一象限时,∵△OMC 的面积是△OAC 面积的14,∴点M 的横坐标是14×4=1.在y =12x 中,当x =1时,y =12,则点M 的坐标是⎝ ⎛⎭⎪⎫1,12; 在y =-x +6中,当x =1时,y =5,则点M 的坐标是(1,5). 当点M 在第二象限时,易知点M 的横坐标是-1.在y =-x +6中,当x =-1时,y =7,则点M 的坐标是(-1,7).综上所述,点M 的坐标是⎝ ⎛⎭⎪⎫1,12或(1,5)或(-1,7).。
北师大版八年级(上)期末数学试卷(含答案) (共四套)
![北师大版八年级(上)期末数学试卷(含答案) (共四套)](https://img.taocdn.com/s3/m/2ee9cf24524de518964b7dff.png)
北师大版八年级上期末测试卷(1)一、选择题:(每小题3分,共18分。
) 1、下列命题是真命题的是( )A;如果a 2=b 2,则a=b B:两边一角对应相等的两个三角形全等。
C ;81的算术平方根是9 D:x=2 y=1是方程2x-y=3的解。
2、414 ,226 15三个数的大小关系是( ) A: 414<`15<`226 B:226<`15<`414C: 414<`226<15 D:15< 226 <4143、以方程组{12+=+-=x y x y 的解为坐标的点在( )A 第一象限B 第二象限C 第三象限D 第四象限 4、如图,AD ⊥ BC,三角形ABD 和三角形CDE都是等腰三角形 , 且BC=17,DE=5 那么线段AC=( )A:5, B:7, C:12, D:135、在平面直角坐标系中,O 为原点,直线y=kx+b 交 X 轴于A (-2,0),交y 轴于B ,且三角形AOB 的面积为8,则k=( ) A:1 B: 2 C: -2或4, D:-4或46、某班七个合作学习小组人数如下,4, 5, 5, x , 6, 7, 8, 已知这组数据的平均数为6,则这组数据的中位数和众数是( )A :5, 5B :6, 5C :6, 5和6,D :6, 5和7二填空题(每小题3分,共24分。
)7、在△ABC 中,如果BC :AC :AB=1:3:2,则∠A :∠B :∠C=……………… 8、直线y=ax-2与直线y=bx+1的交点在x 轴上,则a:b=……………9、已知实数x y 满足y=xx 221616---+2,则x-y=…………----------10、已知A (m,-2) B (3, m-1)且AB ∥x 轴,则线段AB= ---------11、函数y=-3x+2的图象上有一点P,且P 点到x 轴的距离为3,则P 点坐标为… 12、等边△ABC 的两个顶点为A (2,0) B(-4,0)则顶点C 坐标为………13、已知直线y=mx-1上有一点P (1,n)到原点的距离为10,则直线与两轴所围成的三角形面积为………………14、在y=kx+b 中,当x=5时y=6,当x=-1时y=-2,当x=2时y=……… 三、简答题15(10分)解方程组(1) ⎩⎨⎧=-=+②①7211y x y x (2)⎩⎨⎧=+=.13y 2x 11,3y -4x .16.化简:(10分) (1)31318)62(-⨯-.(2)计算: 34827++)32)(32(-+17(6分)如图,将一副直角三角尺如图放置,已知AE ∥BC ,试求∠AFD 的度数。
最新北师大版数学八年级上册期末试卷(含答案)
![最新北师大版数学八年级上册期末试卷(含答案)](https://img.taocdn.com/s3/m/4184a684a0c7aa00b52acfc789eb172dec639916.png)
最新北师大版数学八年级上册期末试卷(含答案)最新北师大版数学八年级上册期末试卷(含答案)说明:本卷共七大题,全卷共24题,满分120分,考试时间为100分钟。
一、选择题(本大题共6小题;每小题3分;共18分)1.16的平方根是A。
2B。
4C。
±2D。
±42.P1 (x1.y1);P2 (x2.y2)是正比例函数y=-x图象上的两点;下列判断中,正确的是A。
y1.y2B。
y1 < y2C。
当x1 < x2时,y1 < y2D。
当x1.y23.在某次体育测试中,九(1)班6位同学的立定跳远成绩(单位:m)分别为:1.71;1.85;1.85;1.95;2.10;2.31;则这组数据的众数是A。
1.71B。
1.85C。
1.90D。
2.314.下列长度的各组线段能组成一个直角三角形的是A。
4cm;6cm;11cmB。
4cm;5cm;1cmC。
3cm;4cm;5cmD。
2cm;3cm;6cm5.如图AB=AC,则数轴上点C所表示的数为A。
5+1B。
5-1C。
-5+1D。
-5-16.XXX去距县城28千米的旅游点游玩,先乘车,后步行。
全程共用了1小时。
已知汽车速度为每小时36千米,步行的速度每小时4千米,则XXX乘车路程和步行路程分别是A。
26千米,2千米B。
27千米,1千米C。
25千米,3千米D。
24千米,4千米二、填空题(本大题共8小题;每小题3分;共24分)7.计算:8-2=6.8.已知点A(l,-2),若A、B两点关于x轴对称,则B点的坐标为(l,2)。
9.若a<1,则(a-1)-1=1-a。
10.某校八年级(1)班共有男生30名,女生20名,若测得全班平均身高为1.56米,其中男生平均身高为1.6米,则女生平均身高为1.48米。
11.若一次函数y=2x+6与y=kx图象的交点到x轴的距离为2,则k的值为4.12.若关于x,y的方程组2x-y=mx+my=n的解是(x。
北师大版数学八年级上学期《期末测试卷》及答案
![北师大版数学八年级上学期《期末测试卷》及答案](https://img.taocdn.com/s3/m/89e173aebdeb19e8b8f67c1cfad6195f312be80e.png)
(1)求B,C两点坐标;
(2)①求△OPD的面积S关于t的函数关系式;
A 2.5mB.2mC.1.5mD.1m
[答案]C
[解析]
[分析]
根据图形分别求得二人的速度,相减后即可确定正确的选项.
[详解]观察图象知:甲跑64米用时8秒,速度为8m/s,
①把 向上平移5个单位后得到对应的 ,画出 ,并写出 的坐标;
②以原点 为对称中心,再画出与 关于原点 对称的 ,并写出点 的坐标.
五、本大题共2小题,每小题10分,满分20分.
19.某水果种植场今年收获的“妃子笑”和“无核Ⅰ号”两种荔枝共3200千克,全部售出后卖了30400元.已知“妃子笑”荔枝每千克售价8元,“无核Ⅰ号”荔枝每千克售价12元,问该种植场今年这两种荔枝各收获多少千克?
=4,故B符合题意,
故选B.
[点睛]本题考查了算术平方根,利用乘方求一个正数的算术平方根,注意一个正数只有一个算术平方根.
2.下列实数中是无理数的是()
A. B.πC.0.141414D.﹣
[答案]B
[解析]
[分析]
根据无理数是无限不循环小数,可得答案.
[详解]A、 =2是有理数,故A错误;
B、π是无理数,故B正确;
七、本题满分12分.
22.直线AB:y=﹣x+b分别与x,y轴交于A(6,0)、B两点,过点B的直线交x轴负半轴于C,且OB:OC=3:1.
(1)求点B 坐标.
2023-2024学年北师大版数学八年级上册期末测试卷(含答案)
![2023-2024学年北师大版数学八年级上册期末测试卷(含答案)](https://img.taocdn.com/s3/m/5fff2f7ae3bd960590c69ec3d5bbfd0a7956d53b.png)
期末测试卷(满分120分,时间90分钟)题号一二三总分得分一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合要求的)1.4 的算术平方根是( )A.2B.-2C.±2 D .±22.如图,两个较大正方形的面积分别为225、289,则字母A 所代表的正方形的边长为( )A.4 B.8 C.16 D.643.在实数 ―15,3―27,π2,16,8,中,无理数的个数为( )A.1B.2C.3D.44.将直角坐标系中的点(-1,-3)向上平移4个单位,再向右平移2个单位后的点的坐标为( )A.(3,-1) B.(-5,-1) C.(-3,1) D.(1,1)5.某一次函数的图象经过点(1,2),且y 随x 的增大而减小,则这个函数的表达式可能是( ) A. y=2x+4 B. y=3x--1 C. y=-3x+1 D. y=-2x+46.估算 24+3的值是( )A.在5与6之间B.在6与7 之间C.在7 与8之间D.在8 与9之间7.如图,将直尺与含 30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是( )A.30° B.40° C.50° D.60°8.小明家1至 6月份的用水量统计图如图所示,关于这组数据,下列说法错误的是( ) A.众数是6 B.中位数是5 C.平均数是5 D.方差是 439.如果点P(x-4,x+3)在平面直角坐标系的第二象限内,那么x 的取值范围在数轴上可表示为( )10.下列命题中,是真命题的是( )A.算术平方根等于自身的数只有1B.斜边和一条直角边分别相等的两个直角三角形全等C.只有一个角等于60°的三角形是等边三角形 D .12是最简二次根式11.关于x,y 的方程组 {x +my =0,x +y =3的解是 {x =1y =,其中y 的值被盖住了.不过仍能求出m ,则m 的值是( )A .―12 B. 12 C .―14 D .1412.如图,正方形网格中的△ABC,若每个小方格边长都为1,则 △ABC 的形状为( )A.锐角三角形B.直角三角形C.钝角三角形D.以上答案都不对二、填空题(本大题共6小题,每小题4分,共24分.本题要求把正确结果填在规定的横线上,不需要解答过程)13.若点 M(a,-1)与点 N(2,b)关于y 轴对称,则a+b 的值是 .14.若关于x ,y 的二元一次方程组 {x +y =3k ,x ―y =k 的解也是二元一次方程 x +2y =8的解,则 k 的值为15.已知一组数据1,2,3,5,x ,它的平均数是3,则这组数据的方差是 .16.写出“全等三角形的面积相等”的逆命题 .17.如图,Rt△OA ₀A ₁ 在平面直角坐标系内, ∠OA₀A₁=90°,∠A₀OA₁=30°,以 OA₁为直角边向外作Rt△OA ₁A ₂,使 ∠OA₁A₂=90°,∠A₁OA₂=30°,,以OA ₂为直角边向外作 Rt △OA₂A₃,使 ∠OA₂A₃=90°, ∠A₂OA₃=30°,,按此方法进行下去,得到 RtOA 3A 4,RtOA 4A 5,⋯,RtOA 2017A 2018,若点 A₀(1,0),则 点 A ₂₀₁₈的横坐标为 .18.如图,在 △ABC 中, AB =AC ,D 、E 两点分别在AC 、BC 上,BD 是 ∠ABC 的平分线, DE‖AB ,若 BE = 5cm ,CE=3c m,则 △CDE 的周长是 .三、解答题(本大题共8小题,满分60分.解答应写出文字说明、证明过程或演算步骤)19.(6分)计算: (1)48―27+13; (2)8+182―(32―1)220.(6分)若a,b为实数,且b=a2―1+1―a2+aa+1,求―a+b―3的值.21.(8分)阅读理解,补全证明过程及推理依据.已知:如图,点 E 在直线DF 上,点 B 在直线AC 上,∠1=∠2,∠3=∠4.求证:∠A=∠F.证明:∵∠1=∠2(已知),∠2=∠DGF( ),∴∠1=∠DGF(等量代换),∴∥ ( ),∴∠3+∠=180°(),又∵∠3=∠4(已知),∴∠4+∠C=180°(等量代换),∴∥ ( ),∴∠A=∠F( ).22.(8分)解方程组:(1){2x+5y=30,2x―5y=―10;(2){3x―y=5, x+2y=11.23.(8分)如图,一条直线分别与直线 BE、直线CE、直线 CF、直线 BF 相交于点A,G,D,H且∠1=∠2,∠B=∠C.(1)找出图中相互平行的线,说说它们之间为什么是平行的;(2)证明:∠A=∠D.24.(8分)某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核.甲、乙、丙各项得分如下表:笔试面试体能甲837990乙858075丙809073(1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺序.(2)该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分.根据规定,请你说明谁将被录用.25.(8分))某大酒店客房部有三人间、双人间和单人间客房,收费数据如下表(例如三人间普通间客房每人每天收费50元).为吸引客源,在“十一黄金周”期间进行优惠大酬宾,凡团体入住一律五折优惠.一个50人的旅游团在十月二号到该酒店住宿,租住了一些三人间、双人间普通客房,并且每个客房正好住满,一天一共花去住宿费 1 510 元.普通间/(元/人/天)豪华间/(元/人/天)贵宾间/(元/人/天)三人间50100500双人间70150800单人间1002001500(1)三人间、双人间普通客房各租了多少间?(2)设三人间共住了x人,则双人间住了人,一天一共花去住宿费用y元表示,写出y与x的函数关系式;(3)如果你作为旅游团团长,你认为上面这种住宿方式是不是费用最少?为什么?26.(8分)如图,在平面直角坐标系中,过点 B(6,0)的直线AB 与直线OA 相交于点A(4,2),动点 M沿路线O→A→C运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)当△OMC的面积是△OAC的面积的14时,求出这时点 M的坐标.期末测试卷1. A2. B3. B4. D5. D6. C7. C8. B9. C 10. B11. A 12. B 13.-3 14.2 15.2 16.面积相等的三角形全等 17.―220173102918.13 cm 19.解(1)原式 =433;(2).原式 =62―14.20.解因为a,b 为实数,且 a ²―1≥0,1―a ²≥0,所以 a ²―1= 1―a ²=0.所以a=±1.又因为a+1≠0,所以a=1.代入原式,得 b =12,所以 ―a +b ―3=―3.21.解∵∠1=∠2(已知),∠2=∠DGF(对顶角相等),∴∠1=∠DGF(等量代换),∴BD ∥C E(同位角相等,两直线平行),∴∠3+∠C=180°(两直线平行,同旁内角互补).又∵∠3=∠4(已知),∴∠4+∠C =180°(等量代换),∴DF ∥AC(同旁内角互补,两直线平行),∴∠A=∠F(两直线平行,内错角相等).22.解(1){x=5,4,(2,y ₁=3,23.解 (1)CE‖BF ,AB‖CD .理由:∵∠1=∠2, ∴CE‖FB , ∴∠C =∠BFD . ∵∠B =∠C , ∴∠B =∠BFD ,∴AB∥CD;(2)由(1)可得AB∥CD,∴∠A=∠D.24.解 (1)x g =(83+79+90)÷3=84, x 2=(85+80+75)÷3=80,x y 3=(80+90+73)÷3=81.从高到低确定三名应聘者的排名顺序为:甲,丙,乙;(2)由该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,则甲淘汰.乙成绩=85×60%+80×30%+75×10%=82.5,丙成绩=80×60%+90×30%+73×10%=82.3.故乙将被录取.25.解(1)设三人间普通客房租了x 间,双人间普通客房租了y 间.根据题意得{3x +2y =50,50×50%×3x +70×50%×2y =1510,解得 {x =8,y =13.因此,三人间普通客房租了8间,双人间普通客房租了13间.(2)(50-x)根据题意得:y=25x+35(50-x),即y=-10x+1750.(3)不是,由上述一次函数可知,y 随x 的增大而减小,当三人间住的人数大于24人时,所需费用将少于1510元.26.解(1)设直线AB 的解析式是y=kx+b,根据题意得: {4k +b =2,6k +b =0,解得: {k =―1,b =6.则直线的解析式是:y=-x+6.(2)在y=-x+6 中,令x=0,解得:y=6,S AAC =12×6×4=12.(3)设OA 的解析式是y=mx,则4m=2,解得: m =12,则直线的解析式是: y =12x ,∵当△OMC 的面积是△OAC 的面积的 14时,∴M 的横坐标是 14×4=1,在 y =12x 中,当x=1时, y =12,则M 的坐标是 (1,12);在y=-x+6中,x=1则y=5,则M 的坐标是(1,5).则M 的坐标是: M 1(1,12)或M ₂(1,5).。
北师大版数学八年级上学期《期末检测试题》含答案解析
![北师大版数学八年级上学期《期末检测试题》含答案解析](https://img.taocdn.com/s3/m/7b49b8fe185f312b3169a45177232f60ddcce72c.png)
故选D.
[点睛]此题主要考查三角形的角度求解,解题的关键是熟知三角形的外角定理与等腰三角形的性质.
11.我国明代数学家程大位所著的《算法统宗》中记载了一道有趣的题目:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”题目大意是:100个和尚分100个馒头,刚好分完,大和尚1人分3个馒头,小和尚3人分一个馒头,问大、小和尚各有多少人?若大和尚有 人,小和尚有 人,则下列方程或方程组中:① ② ③ ④ 正确的是()
故选:C.
[点睛]本题考查了实数的大小比较法则的应用,主要考查学生的理解能力和比较能力,题目是一道比较好的题目,难度不大.
2.下列实数是无理数的是()
A. B. C. D.0.1010010001
[答案]C
[解析]
[分析]
无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.
9.下列命题是真命题的是()
A.如果 ,那么
B.0的平方根是0
C.如果 与 是内错角,那么
D.三角形 一个外角等于它的两个内角之和
10.如图,在△ 中, 为 边上一点,以点 为圆心, 为半径画弧,交 的延长线于点 ,连接 .若 , ,则 的度数为()
A. B. C. D.
11.我国明代数学家程大位所著的《算法统宗》中记载了一道有趣的题目:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”题目大意是:100个和尚分100个馒头,刚好分完,大和尚1人分3个馒头,小和尚3人分一个馒头,问大、小和尚各有多少人?若大和尚有 人,小和尚有 人,则下列方程或方程组中:① ② ③ ④ 正确的是()
新北师大版八年级数学上册期末试卷及答案【完美版】
![新北师大版八年级数学上册期末试卷及答案【完美版】](https://img.taocdn.com/s3/m/a2a3b40c7dd184254b35eefdc8d376eeaeaa17e6.png)
新北师大版八年级数学上册期末试卷及答案【完美版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.6的相反数为( )A .-6B .6C .16-D .162.若()(1)x m x +-的计算结果中不含x 的一次项,则m 的值是( )A .1B .-1C .2D .-2.3.对于函数y =2x ﹣1,下列说法正确的是( )A .它的图象过点(1,0)B .y 值随着x 值增大而减小C .它的图象经过第二象限D .当x >1时,y >04.把38a 化为最简二次根式,得 ( )A .22a aB .342aC .322aD .24a a5.已知一个多边形的内角和为1080°,则这个多边形是( )A .九边形B .八边形C .七边形D .六边形6.下列对一元二次方程x 2+x ﹣3=0根的情况的判断,正确的是( )A .有两个不相等实数根B .有两个相等实数根C .有且只有一个实数根D .没有实数根7.四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能判定这个四边形是平行四边形的是( )A .AB ∥DC ,AD ∥BCB .AB=DC ,AD=BC C .AO=CO ,BO=DOD .AB ∥DC ,AD=BC8.如图,在△ABC 中,AB=AC ,∠BAC=100°,AB 的垂直平分线DE 分别交AB 、BC 于点D 、E ,则∠BAE=( )A .80°B .60°C .50°D .40°9.如图,能判定EB ∥AC 的条件是( )A .∠C=∠1B .∠A=∠2C .∠C=∠3D .∠A=∠110.如图在△ABC 中,BO ,CO 分别平分∠ABC ,∠ACB ,交于O ,CE 为外角∠ACD 的平分线,BO 的延长线交CE 于点E ,记∠BAC=∠1,∠BEC=∠2,则以下结论①∠1=2∠2,②∠BOC=3∠2,③∠BOC=90°+∠1,④∠BOC=90°+∠2正确的是( )A .①②③B .①③④C .①④D .①②④二、填空题(本大题共6小题,每小题3分,共18分)1.已知a ,b ,c 是△ABC 的三边长,a ,b 满足|a ﹣7|+(b ﹣1)2=0,c 为奇数,则c=________.2.以正方形ABCD 的边AD 作等边△ADE ,则∠BEC 的度数是__________.3.如果不等式组841x x x m +<-⎧⎨>⎩的解集是3x >,那么m 的取值范围是________. 4.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD 与ABC 全等,点D 的坐标是______.5.如图所示,把一张长方形纸片沿EF 折叠后,点D C ,分别落在点D C '',的位置.若65EFB ︒∠=,则AED '∠等于________.6.如图,已知点E 在正方形ABCD 的边AB 上,以BE 为边向正方形ABCD 外部作正方形BEFG ,连接DF ,M 、N 分别是DC 、DF 的中点,连接MN.若AB=7,BE=5,则MN=________.三、解答题(本大题共6小题,共72分)1.解方程:(1)12111x x x -=-- (2)31523162x x -=--2.先化简,再求值:2443(1)11m m m m m -+÷----,其中22m =.3.已知2a ﹣1的平方根为±3,3a +b ﹣1的算术平方根为4,求a +2b 的平方根.4.如图,已知AC 平分∠BAD ,CE ⊥AB 于E ,CF ⊥AD 于F ,且BC=CD .(1)求证:△BCE ≌△DCF ;(2)求证:AB+AD=2AE.5.如图,直线l1:y1=﹣x+2与x轴,y轴分别交于A,B两点,点P(m,3)为直线l1上一点,另一直线l2:y2=12x+b过点P.(1)求点P坐标和b的值;(2)若点C是直线l2与x轴的交点,动点Q从点C开始以每秒1个单位的速度向x轴正方向移动.设点Q的运动时间为t秒.①请写出当点Q在运动过程中,△APQ的面积S与t的函数关系式;②求出t为多少时,△APQ的面积小于3;③是否存在t的值,使△APQ为等腰三角形?若存在,请求出t的值;若不存在,请说明理由.6.某开发公司生产的 960 件新产品需要精加工后,才能投放市场,现甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用 20 天,而甲工厂每天加工的数量是乙工厂每天加工的数量的23,公司需付甲工厂加工费用为每天 80 元,乙工厂加工费用为每天120 元.(1)甲、乙两个工厂每天各能加工多少件新产品?(2)公司制定产品加工方案如下:可以由每个厂家单独完成,也可以由两个厂家合作完成.在加工过程中,公司派一名工程师每天到厂进行技术指导,并负担每天 15 元的午餐补助费,请你帮公司选择一种既省时又省钱的加工方案,并说明理由.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、A3、D4、A5、B6、A7、D8、D9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、72、30°或150°.3、3m≤.4、(-4,2)或(-4,3)5、50°6、13 2三、解答题(本大题共6小题,共72分)1、(1)2x3=;(2)10x9=.2、22mm-+1.3、±34、略5、(1)b=72;(2)①△APQ的面积S与t的函数关系式为S=﹣32t+272或S=32t﹣272;②7<t<9或9<t<11,③存在,当t的值为3或或9﹣或6时,△APQ为等腰三角形.6、(1)甲工厂每天加工 16 件产品,乙工厂每天加工 24 件产品. (2)甲、乙两工厂合作完成此项任务既省时又省钱.见解析.。
北师大版初二级上册期末考试数学试卷含答案(共3套)
![北师大版初二级上册期末考试数学试卷含答案(共3套)](https://img.taocdn.com/s3/m/1fc2b17f76c66137ee0619a4.png)
O DC AB D CBA北师大版八年级上学期期末考试数学试卷含答案一、选择题:1.下列各式中,运算正确的是( ) A .632a a a ÷=B .325()a a =C.= D=2.点(35)p ,-关于y 轴对称的点的坐标为( )A . (3,5)--B . (5,3)C .(3,5)-D . (3,5) 3.若x y >,则下列式子错误的是( ) A .33x y ->- B .33x y ->-C .32x y +>+D .33x y> 4.一个多边形的内角和是720︒,则这个多边形的边数为()A .4B .5C .6D .75.下列图形中,既是轴对称图形,又是中心对称图形的是( ) A .等腰梯形B .矩形C .正三角形D .平行四边形6. 如图,矩形ABCD 的两条对角线相交于点O ,602AOB AB ∠==°,,则矩形的边长BC 的长是( ) A .2B .4C.D. (6题图) 7.如果点P (m ,1+2m )在第二象限,那么m 的取值范围是 ( )A .210<<m B .021<<-m C .0<m D .21>m 8.如图,下列条件不能使四边形ABCD 一定是平行四边形的是( )A .//AB CD AB =CD B .//AD BC //AB CD C .//AD BC B D ∠=∠ D. //AD BC AB =CD(图1)9.如图1,在矩形MNPQ 中,动点R 从点N 出发,沿N →P →Q →M 方向运动至点M 处停止.设点R 运动的路程为x ,MNR △的面积为y ,如果y 关于x 的函数图象如图2所示,则当9x =时,点R 应运动到( )A .N 处B .P 处C .Q 处D .M 处10.如图,正方形ABCD 中,在AD 的延长线上取点E ,F ,使DE=AD ,DF=BD ,连接BF 分别交CD ,CE 于H ,G ,下列结论:①EC=2DG ; ②GDH GHD ∠=∠; ③CDGDHGE SS =四边形; ④图中只有8个等腰三角形。
北师大版数学八年级上册期末考试试卷含答案
![北师大版数学八年级上册期末考试试卷含答案](https://img.taocdn.com/s3/m/1164966f32687e21af45b307e87101f69e31fb05.png)
北师大版数学八年级上册期末考试试题一.选择题(共10小题,满分30分,每小题3分)1.在下列各数:,0.2,,,,中,无理数的个数()A.2个B.3个C.4个D.5个2.如图,AB∥CD,∠A=30°,∠F=40°,则∠C=()A.65°B.70°C.75°D.80°3.下列四组数据不能作为直角三角形的三边长的是()A.9,12,15 B.7,24,25 C.15,36,39 D.12,15,20 4.下列说法错误的有()A.5是25的算术平方根B.负数有一个负的立方根C.(﹣4)2的平方根是﹣4D.0的平方根与算术平方根都是05.下列一次函数中,函数图象不经过第三象限的是()A.y=2x﹣3 B.y=x+3 C.y=﹣5x+1 D.y=﹣2x﹣1 6.某中学八(1)班8个同学在课间进行一分钟跳绳比赛,成绩(单位:个)如下:115,138,126,143,134,126,157,118.这组数据的众数和中位数分别是()A.126,126 B.126,130 C.130,134 D.118,1347.下面命题:①同位角相等;②对顶角相等;③若x2=y2,则x=y;④互补的角是邻补角.其中真命题有()个.A.1 B.2 C.3 D.48.给出一组数据:80,85,90,75,90,小兰在记录这组数据时不小心把最小数据记录成了70,则计算结果不受影响的是()A.中位数B.平均数C.方差D.极差9.在平面直角坐标系中,将直线y=﹣2x+2关于平行于y轴的一条直线对称后得到直线AB,若直线AB恰好过点(6,2),则直线AB的表达式为()A.y=2x﹣10 B.y=﹣2x+14 C.y=2x+2 D.y=﹣x+5 10.关于一次函数有如下说法:①函数y=﹣2x的图象从左到右下降,随着x的增大,y反而减小;②函数y=5x+1的图象与y轴的交点坐标是(0,1);③函数y=3x﹣1的图象经过第一、二、三象限;则说法正确的是()A.①②B.①③C.②③D.①②③二.填空题(共4小题,满分12分,每小题3分)11.若≈1.414,≈4.472,则≈.12.在平面直角坐标系xOy中,直线y=kx(k>0)与直线y=﹣x+3,直线y=﹣x﹣3分别交于A、B两点.若点A,B的纵坐标分别为y1,y2,则y1+y2的值为.13.如图中的平面图形由多条直线组成,计算∠1+∠2+∠3+∠4+∠5=.14.已知AD是△ABC的中线,∠ADC=45°,把△ADC沿AD所在直线对折,点C落在点E的位置(如图),则∠EBC等于度.三.解答题(共11小题,满分78分)15.(5分)计算:(1).(2).16.(5分)解方程组(1)(2)17.(5分)如图,在正方形网格中,点A、B、C、M、N都在格点上.(1)作△ABC关于直线MN对称的图形△A'B'C'.(2)若网格中最小正方形的边长为1,求△ABC的面积.(3)点P在直线MN上,当△PAC周长最小时,P点在什么位置,在图中标出P点.18.(5分)将一副三角板中的两块直角三角尺的直角顶点C按如图方式叠放在一起(其中,∠A=60°,∠D=30°;∠E=∠B=45°).(1)如图1,①若∠DCE=40°,求∠ACB的度数;②若∠ACB=150°,直接写出∠DCE的度数是度.(2)由(1)猜想∠ACB与∠DCE满足的数量关系是.(3)若固定△ACD,将△BCE绕点C旋转,①当旋转至BE∥AC(如图2)时,直接写出∠ACE的度数是度.②继续旋转至BC∥DA(如图3)时,求∠ACE的度数.19.(7分)如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(﹣2,﹣1),B(2,0),C(0,3),AC交x轴于点D,AB交y轴于点E.(1)△ABC的面积为;(2)点E的坐标为;(3)若点P的坐标为(0,m),①线段EP的长为(用含m的式子表示);②当S△PAB=S△ABC时,求m的值.20.(7分)按要求完成下列证明:已知:如图,在△ABC中,CD⊥AB于点D,E是AC上一点,且∠1+∠2=90°.求证:DE∥BC.证明:∵CD⊥AB(已知).∴∠ADC=.(垂直的定义)∴∠1+=90°.∵∠1+∠2=90°(已知).∴=∠2().∴DE∥BC().21.(7分)如图,直线l1的解析式为y=﹣x+2,l1与x轴交于点B,直线l2经过点D(0,5),与直线l1交于点C(﹣1,m),且与x轴交于点A.(1)求点C的坐标及直线l2的解析式;(2)连接BD,求△BCD的面积.22.(7分)元旦期间,小黄自驾游去了离家156千米的黄石矿博园,右图是小黄离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.(1)求小黄出发0.5小时时,离家的距离;(2)求出AB段的图象的函数解析式;(3)小黄出发1.5小时时,离目的地还有多少千米?23.(8分)某公司想招聘一名新职员,对甲、乙、丙三名应试者进行了面试、笔试和才艺三个方面的量化考核,他们的各项得分(百分制,单位:分)如表所示:应试者面试成绩笔试成绩才艺甲86 79 90乙84 81 75丙80 90 73 (1)请通过计算三项得分的平均分,从低到高确定应聘者的排名顺序;(2)公司规定:面试、笔试、才艺得分分别不得低于80分、80分、70分,并按照50%、40%,10%的比例计入个人总分,请你确定谁会被录用?并说明理由.24.(10分)随着5G网络技术的快速发展,市场对5G产品的需求越来越大.某5G产品生产厂家承接了27000个电子元件的生产任务,计划安排甲、乙两个车间共50名工人,合作生产20天完成.已知甲车间每人每天生产25个,乙车间每人每天生产30个.(1)求甲、乙两个车间各有多少名工人将参与生产?(2)为提前完成生产任务,该厂家设计了两种生产方案:方案1:甲车间租用先进生产设备,工人的工作效率可提高20%,乙车间维持不变;方案2:乙车间再临时招聘若干名工人(工作效率与原工人相同),甲车间维持不变.若设计的这两种生产方案,厂家完成生产任务的时间相同,求乙车间需要临时招聘的工人数.25.(12分)快车和慢车分别从A市和B市两地同时出发,匀速行驶,先相向而行,慢车到达A市后停止行驶,快车到达B市后,立即按原路原速度返回A市(调头时间忽略不计),结果与慢车同时到达A市.快、慢两车距B市的路程y1、y2(单位:km)与出发时间x(单位:h)之间的函数图象如图所示.(1)A市和B市之间的路程是km;(2)求a的值,并解释图中点M的横坐标、纵坐标的实际意义;(3)快车与慢车迎面相遇以后,再经过多长时间两车相距20km?参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:,,故无理数有,,共2个.故选:A.2.解:∵∠A=30°,∠F=40°,∴∠FEB=∠A+∠F=30°+40°=70°,∵AB∥CD,∴∠C=∠FEB=70°,故选:B.3.解:92+122=152,故选项A不符合题意;72+242=252,故选项B不符合题意;152+362=392,故选项C不符合题意;122+152≠202,故选项D符合题意;故选:D.4.解:A、5是25的算术平方根,不符合题意;B、负数有一个负的立方根,不符合题意;C、(﹣4)2的平方根是±4,符合题意;D、0的平方根与算术平方根都是0,不符合题意;故选:C.5.解:函数y=2x﹣3的图象经过第一、三、四象限,故选项A不符合题意;函数y=x+3的图象经过第一、二、三象限,故选项B不符合题意;函数y=﹣5x+1的图象经过第一、二、四象限,故选项C符合题意;函数y=﹣2x﹣1的图象经过第二、三、四象限,故选项D不符合题意;故选:C.6.解:将这组数据重新排列为115,118,126,126,134,138,143,157,所以这组数据的众数为126,中位数为=130,故选:B.7.解:①两直线平行,同位角相等,原命题是假命题;②对顶角相等,是真命题;③若x2=y2,则x=y或x=﹣y,原命题是假命题;④互补的角不一定是邻补角,原命题是假命题;故选:A.8.解:原数据75,80,85,90,90的中位数为85、平均数为=84,方差为×[(75﹣84)2+(80﹣84)2+(85﹣84)2+2×(90﹣84)2]=34,极差为90﹣75=15;新数据70,80,85,90,90的中位数为85,平均数为=83,方差为×[(70﹣83)2+(80﹣83)2+(85﹣83)2+2×(90﹣83)2]=56,极差为90﹣70=20;所以计算结果不受影响的是中位数,故选:A.9.解:由题意得,直线AB的解析式为y=2x+b,∵直线AB恰好过点(6,2),∴2=2×6+b,解得b=﹣10,∴直线AB的表达式为y=2x﹣10,故选:A.10.解:①∵k=﹣2<0,∴函数y=﹣2x的图象从左到右下降,随着x的增大,y反而减小,故正确;②令x=0,则y=1,∴函数y=5x+1的图象与y轴的交点坐标是(0,1),故正确;③∵k=3,b=﹣1,∴函数y=3x﹣1的图象经过第一、三、四象限,故错误;故选:A.二.填空题(共4小题,满分12分,每小题3分)11.解:≈44.72.故答案是:44.72.12.解:∵直线y=﹣x+3、直线y=﹣x﹣3关于原点对称,∴点A,点B关于原点对称,∴y1+y2=0,故答案为:0.13.解:由图可知,∠1+∠2+∠3+∠4+∠5=360°.故答案为:360°.14.解:根据翻折不变性,可知△ADC≌△ADE,∴DE=DC,∠ADE=∠ADC=45°,∴∠EDC=90°,又∵AD是△ABC的中线,∴BD=CD,于是,BD=DE,∴∠EBC=45°.故答案为45°.三.解答题(共11小题,满分78分)15.解:(1)原式=3﹣5+=﹣;(2)原式=3﹣5+3﹣﹣2=﹣2.16.解:(1),①×2+②得:﹣9y=﹣9,解得:y=1,把y=1代入②得:x=1,则方程组的解为;(2)方程组整理得:,①×2+②得:11x=22,解得:x=2,把x=2代入①得:y=3,则方程组的解为.17.解:(1)如图,△A'B'C'即为所求;(2)△ABC的面积为:3×2=3;(3)因为点A关于MN的对称点为A′,连接A′C交直线MN于点P,此时△PAC周长最小.所以点P即为所求.18.解:(1)①∵∠DCE=40°,∴∠ACE=∠ACD﹣∠DCE=50°,∴∠ACB=∠ACE+∠ECB=50°+90°=140°;②∵∠ACB=150°,∠ACD=90°,∴∠ACE=150°﹣90°=60°,∴∠DCE=∠ACD﹣∠ACE=90°﹣60°=30°,故答案为:30;(2)∵∠ACB=∠ACD+∠BCE﹣∠DCE=90°+90°﹣∠DCE,∴∠ACB+∠DCE=180°,故答案为:∠ACB+∠DCE=180°;(3)①∵BE∥AC,∴∠ACE=∠E=45°,故答案为:45°;②∵BC∥DA,∴∠A+∠ACB=180°,又∵∠A=60°,∴∠ACB=180°﹣60°=120°,∵∠BCE=90°,∴∠BCD=∠ACB﹣∠ECB=120°﹣90°=30°.19.解:(1)过C作MN⊥y轴,过B作BG⊥MN于G,过A作AH⊥MN于H,如图所示:∵A(﹣2,﹣1),B(2,0),C(0,3),∴GH=2+2=4,BG=3,AH=1+3=4,∴S△ABC=S﹣S△ACH﹣S△BCG=×(3+4)×4+×4×2﹣×2×3=7,梯形ABGH故答案为:7;(2)设E(0,a),∵A(﹣2,﹣1)、B(2,0)、C(0,3),∴S△ABC=S△ACE+S△BCE=×(3﹣a)×2+×(3﹣a)×2=7,解得:a=﹣,∴E(0,﹣),故答案为:(0,﹣);(3)①∵点P的坐标为(0,m),∴线段EP的长|﹣﹣m|=|+m|,故答案为:|+m|;②∵S△PAB=S△ABC,∴×|+m|×(2+2)=×7,∴m=或m=﹣.20.解:证明:∵CD⊥AB(已知),∴∠ADC=90°(垂直的定义),∴∠1+∠CDE=90°,∵∠1+∠2=90°(已知),∴∠CDE=∠2(同角的余角相等),∴DE∥BC(内错角相等,两直线平行),故答案为:90°;∠CDE;∠CDE,同角的余角相等;内错角相等,两直线平行.21.解:(1)∵直线l1的解析式为y=﹣x+2经过点C(﹣1,m),∴m=1+2=3,∴C(﹣1,3),设直线l2的解析式为y=kx+b,∵经过点D(0,5),C(﹣1,3),∴,解得,∴直线l2的解析式为y=2x+5;(2)当x=0时,y=2,∴直线BC与y轴的交点坐标为(0,2),当y=0时,﹣x+2=0,解得x=2,则B(2,0),∴△BCD的面积:×(5﹣2)×(1+2)=.22.解:(1)设OA段图象的函数表达式为y=kx.∵当x=0.8时,y=48,∴0.8k=48,∴k=60.∴y=60x(0≤x≤0.8),∴当x=0.5时,y=60×0.5=30.故小黄出发0.5小时时,离家30千米;(2)设AB段图象的函数表达式为y=k′x+b.∵A(0.8,48),B(2,156)在AB上,,解得,∴y=90x﹣24(0.8≤x≤2);(3)∵当x=1.5时,y=90×1.5﹣24=111,∴156﹣111=45.故小黄出发1.5小时时,离目的地还有45千米.23.解:(1)=×(86+79+90)=85(分),甲=×(84+81+75)=80(分),乙=×(80+90+73)=81(分),丙从低到高确定应聘者的排名顺序为乙、丙、甲;(2)由题意可知,只有甲不符合规定,乙的加权平均数:84×50%+81×40%+75×10%=81.9(分),丙的加权平均数:80×50%+90×40%+73×10%=83.3(分),所以录用丙.24.解:(1)设甲车间有x名工人参与生产,乙车间有y名工人参与生产,依题意得:,解得:.答:甲车间有30名工人参与生产,乙车间有20名工人参与生产.(2)设乙车间需要临时招聘m名工人,依题意得:=,解得:m=5,经检验,m=5是原方程的解,且符合题意.答:乙车间需要临时招聘5名工人.25.解:(1)由图可知,A市和B市之间的路程是360km,故答案为:360;(2)根据题意可知快车速度是慢车速度的2倍,设慢车速度为x km/h,则快车速度为2x km/h,2(x+2x)=360,解得,x=602×60=120,则a=120,点M的横坐标、纵坐标的实际意义是两车出发2小时时,在距B市120km处相遇;(3)快车速度为120 km/h,到达B市的时间为360÷120=3(h),方法一:当0≤x≤3时,y1=﹣120x+360,当3<x≤6时,y1=120x﹣360,y2=60x,当0≤x≤3时,y2﹣y1=20,即60x﹣(﹣120x+360)=20,解得,x=,﹣2=,当3<x≤6时,y2﹣y1=20,即60x﹣(120x﹣360)=20,解得,x=,﹣2=,所以,快车与慢车迎面相遇以后,再经过或h两车相距20km.方法二:设快车与慢车迎面相遇以后,再经过t h两车相距20 km,当0≤t≤3时,60t+120t=20,解得,t=;当3<t≤6时,60(t+2)﹣20=120(t+2)﹣360,解得,t=.所以,快车与慢车迎面相遇以后,再经过或h两车相距20 km.。
北师大版八年级数学上册期末测试题(附参考答案)
![北师大版八年级数学上册期末测试题(附参考答案)](https://img.taocdn.com/s3/m/f0992fabf80f76c66137ee06eff9aef8941e48f5.png)
北师大版八年级数学上册期末测试题(附参考答案)一、选择题:本题共12个小题,每小题3分,共36分。
每小题只有一个选项符合题目要求。
1.下列各数中为无理数的是( )A.√2B.1.5C.0 D.-12.△ABC的三边长a,b,c满足(a-b)2+√2a−b−3+|c-3√2|=0,则△ABC 是( )A.等腰三角形B.直角三角形C.锐角三角形D.等腰直角三角形3.如图,在△ABC中,∠BAC=90°,AD⊥BC,垂足为点D,E是边BC上的中点,AD=ED=3,则BC的长为( )A.3√2B.3√3C.6 D.6√24.下列说法错误的是( )A.1的平方根是1B.4的算术平方根是2C.√2是2的平方根D.-√3是√(−3)2的平方根−√45,则实数m所在的范围是( )5.若实数m=5√15A.m<-5 B.-5<m<-4C.-4<m<-3 D.m>-36.甲、乙两位同学放学后走路回家,他们走过的路程s(km)与所用的时间t(min)之间的函数关系如图所示.根据图中信息,下列说法错误的是( )A.前10 min,甲比乙的速度慢B.经过20 min,甲、乙都走了1.6 kmC.甲的平均速度为0.08 km/minD.经过30 min,甲比乙走过的路程少7.某油箱容量为60升的汽车,加满汽油后行驶了100千米时,油箱中的汽油大约消耗了15.若加满汽油后汽车行驶的路程为x千米,油箱中剩余油量为y升,则y与x之间的函数表达式是( )A.y=0.12xB.y=60+0.12xC.y=-60+0.12xD.y=60-0.12x8.在同一平面直角坐标系中,一次函数y1=ax+b(a≠0)与y2=mx+n(m≠0)的图象如图所示,则下列结论错误的是( )A.y1随x的增大而增大B.b<nC.当x<2时,y1>y2D.关于x,y的方程组{ax−y=−b,mx−y=−n的解为{x=2,y=39.已知方程组{2x+y=1,kx+(k−1)y=19的解满足x+y=3,则( )A.k=-8 B.k=2C.k=8D.k=-210.甲、乙、丙、丁4名同学参加跳远测试各10次,他们的平均成绩及其方差如表:A.甲B.乙C.丙D.丁11.如图,直线AB∥CD,GE⊥EF于点E.若∠BGE=60°,则∠EFD的度数是( )A.60°B.30°C.40°D.70°12.如图,在平面直角坐标系中,每个网格小正方形的边长均为1个单位长度,以点P为位似中心作正方形P A1A2A3,正方形P A4A5A6,…,按此规律作下去,所作正方形的顶点均在格点上,其中正方形P A1A2A3的顶点坐标分别为P(-3,0),A1(-2,1),A2(-1,0),A3(-2,-1),则顶点A100的坐标为( )A.(31,34) B.(31,-34)C.(32,35) D.(32,0)二、填空题:本题共6个小题,每小题3分,共18分。
2022-2023学年北师大数学八年级上册 期末测试卷(解析版)
![2022-2023学年北师大数学八年级上册 期末测试卷(解析版)](https://img.taocdn.com/s3/m/03718795970590c69ec3d5bbfd0a79563c1ed4d5.png)
2022-2023学年北师大数学八年级上册期末测试卷参考答案与试题解析一.选择题(共8小题)1.如图,在△ABC中,AB=AC=10,BC=12,AD是△ABC的中线,则AD长为()A.2B.6C.8D.2【考点】勾股定理;等腰三角形的性质.【分析】根据等腰三角形的性质可求得BD=6,AD⊥BC,再利用勾股定理可求解.【解答】解:∵BC=12,AD是△ABC的中线,∴BD=CD=6,∵AB=AC=10,∴AD⊥BC,∴AD=.故选:C.2.如图,图(1)是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成.若较短的直角边BC=5,将四个直角三角形中较长的直角边分别向外延长一倍,得到图(2)所示的“数学风车”,若△BCD的周长是30,则这个风车的外围周长是()A.76B.57C.38D.19【考点】勾股定理的证明.【分析】由题意∠ACB为直角,利用勾股定理求得外围中一条边,又由AC延伸一倍,从而求得风车的一个轮子,进一步求得四个.【解答】解:设AC=AD=x,则BD=30﹣5﹣2x=25﹣2x,∵BD2=BC2+CD2,∴52+(2x)2=(25﹣2x)2,∴x=6,∴AB=25﹣2x=13,AD=6,∴这个风车的外围周长是:(13+6)×4=76.故选:A.3.下列等式成立的是()A.÷=3B.C.D.2+=2【考点】二次根式的混合运算;平方根.【分析】根据二次根式的乘除运算法则、加减运算法则以及二次根式的性质即可求出答案.【解答】解:A、原式=,故A不符合题意.B、原式=±0.4,故B符合题意.C、原式=6,故C不符合题意.D、2与不是同类项,不能合并,故D不符合题意.故选:B.4.已知两点M(﹣1,﹣2)和N关于x轴对称,则点N的坐标为()A.(﹣1,2)B.(﹣1,﹣2)C.(1,2)D.(1,﹣2)【考点】关于x轴、y轴对称的点的坐标.【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.【解答】解:点M(﹣1,﹣2)关于x轴对称的点的坐标为(﹣1,2).故选:A.5.一次函数y=kx﹣2(k>0)的图象可能是()A.B.C.D.【考点】一次函数的图象.【分析】根据一次函数y=kx﹣2,k>0,b=﹣2<0,可知图象一定经过第一、三,四象限,不经过第二象限.【解答】解:∵一次函数y=kx﹣2(k>0),b=﹣2<0,∴一次函数y=kx﹣2(k>0)的图象一定经过第一、三,四象限,不经过第二象限.故选:B.6.下列图形中,不能表示y是x函数的是()A.B.C.D.【考点】函数的概念.【分析】设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,C选项中一个x值对应多个y值,与函数的概念不一致,由此即可求解.【解答】解:A图形中,一个x值对应唯一的y值,符合函数的定义,故不符合题意;B图形中,一个x值对应唯一的y值,符合函数的定义,故不符合题意;C图形中,一个x值对应多个y值,不符合函数的定义,故符合题意;D图形中,一个x值对应唯一的y值,符合函数的定义,故不符合题意;故选:C.7.用代入消元法解二元一次方程组时,将②代入①,正确的是()A.5x+3(x﹣2)=22B.5x+(x﹣2)=22C.5x+3(x﹣2)=66D.5x+(x﹣2)=66【考点】解二元一次方程组.【分析】利用代入消元法进行分析即可.【解答】解:,把②代入①得:5x+3(x﹣2)=22,故选:A.8.在长方形ABCD中,放入5个形状大小相同的小长方形(空白部分),其中AB=7cm,BC=11cm,则阴影部分图形的总面积为()cm2A.27B.29C.34D.36【考点】二元一次方程组的应用;一元一次方程的应用.【分析】设小长方形的长为xcm,宽为ycm,根据图形中大长方形的长和宽列二元一次方程组,求出x和y的值,即可解决问题.【解答】解:设小长方形的长为xcm,宽为ycm,根据题意,得:,解得:,∴每个小长方形的面积为2×5=10(cm2),∴阴影部分的面积=7×11﹣5×10=27(cm2),故选:A.二.填空题(共8小题)9.如图,在△ABC中,AB=7cm,AC=25cm,BC=24cm,动点P从点A出发沿AB方向以1cm/s的速度运动至点,动点Q从点B出发沿BC方向以6cm/s的速度运动至点C,P、Q两点同时出发,连接PQ.当动点P、Q运动2s时,PQ=13cm.【考点】勾股定理的应用;勾股定理的逆定理.【分析】由勾股定理的逆定理得△ABC是直角三角形且∠B=90°,再由勾股定理求出PQ的长即可.【解答】解:∵AB=7cm,AC=25cm,BC=24cm,∴AB2+BC2=625=AC2,∴△ABC是直角三角形且∠B=90°,当动点P、Q运动2s时,AP=1×2=2(cm),BQ=2×6=12(cm),∴BP=AB﹣AP=7﹣2=5(cm),在Rt△BPQ中,由勾股定理得:PQ===13(cm),故答案为:13cm.10.已知△ABC的三边长分别为5、12、13,则△ABC的面积为30.【考点】勾股定理的逆定理;三角形的面积.【分析】根据三边长度可利用勾股定理的逆定理判断三角形为直角三角形.再求面积.【解答】解:∵△ABC的三边长分别为5,12,13,∴52+122=(13)2,∴△ABC是直角三角形,两直角边是5,12,∴△ABC的面积为:×5×12=30,故答案为:30.11.已知实数x,y满足|x﹣3|+=0,则x y的值是9.【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】根据绝对值以及算术平方根的非负性解决此题.【解答】解:∵|x﹣3|≥0,,∴当|x﹣3|+=0,则x=3,y=2.∴x y=32=9.故答案为:9.12.甲、乙两人在一条长400米的直线跑道上同起点、终点、同方向匀速跑步,先到终点的人原地休息,已知甲先出发3秒,在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,甲、乙两人相距的最大距离68米.【考点】一次函数的应用.【分析】根据甲先出发2秒求出甲的速度,再根据题意,80秒时乙到达终点求出乙的速度,然后根据乙出发80秒时两人的距离等于两人行驶的路程的差列式计算即可得解.【解答】解:根据题意,t=0时,甲出发3秒行驶的路程为12米,所以,甲的速度=12÷3=4(米/秒),∵先到终点的人原地休息,∴80秒时,乙先到达终点,∴乙的速度=400÷80=5(米/秒),∴c=400﹣4×(80+3)=68(米).故答案为:68.13.甲、乙两车都从A地出发匀速行驶到B地,在整个行驶过程中,甲、乙两车离开A城的距离y(km)与甲车行驶的时间t(h)之间的关系如图所示,则下列结论中正确的有①②④(直接填序号).①AB两地相距480km;②乙车比甲车晚出发1小时,却比甲车早到1小时;③乙车出发后4小时追上甲车;④甲、乙两车相距50km时,t的值为、、、.【考点】一次函数的应用.【分析】根据函数图象,可以直接判断①②;根据图象中的数据,可以计算出甲、乙两车的速度,然后即可计算出乙车出发后几小时追上甲车,从而可以判断③;再根据分类讨论的方法,可以判断④.【解答】解:由图象可得,AB两地相距480km,故①正确,符合题意;乙车比甲车晚出发1小时,却比甲车早到1小时,故②正确;甲车的速度为:480÷8=60(km/h),乙车的速度为:480÷(7﹣1)=480÷6=80(km/h),设乙车出发a小时追上甲车,则80a=60(a+1),解得a=3,即车出发后3小时追上甲车,故③错误,不符合题意;当甲、乙两车相距50km时,乙车出发前:60t=50,得t=;乙车出发到两车相遇前:60t﹣80(t﹣1)=50,得t=;两车相遇后,乙车未到达B地,80(t﹣1)﹣60t=50,得t=;乙车到达B地后,480﹣60t=50,得t=;由上可得,甲、乙两车相距50km时,t的值为、、、,故④正确,符合题意;故答案为:①②④.14.青团是清明节的一道极具特色的美食,据调查,广受消费者喜欢的口味分别是:红豆青团、肉松青团、水果青团,故批发商大量采购红豆青团、肉松青团、水果青团,为了获得最大利润,批发商需要统计数据,更好地进货.3月份批发商统计销量后发现,红豆青团、肉松青团、水果青团销量之比为2:3:4,随着市场的扩大,预计4月份青团总销量将在3月份基础上有所增加,其中水果青团增加的销量占总增加的销量的,则水果青团销量将达到4月份总销量的,为使红豆青团、肉松青团4月份的销量相等,则4月份肉松青团还需要增加的销量与4月份总销量之比为.【考点】三元一次方程组的应用.【分析】设3月份红豆青团、肉松青团、水果青团销量分别为:2x,3x,4x,4月份增加的销量为a,4月份红豆青团销量增加y,则肉松青团4月份增加的销量为:y﹣x,根据题意列方程组求解.【解答】解:设3月份红豆青团、肉松青团、水果青团销量分别为:2x,3x,4x,4月份增加的销量为a,4月份红豆青团销量增加y,则肉松青团4月份增加的销量为:y ﹣x,由题意得:,解得:,∴=,故答案为:,15.已知关于x,y的二元一次方程组的解满足x+y=﹣4,则k的值为7.【考点】二元一次方程组的解.【分析】现将二元一次方程组的两个方程直接相加,得到5(x+y)+4k=8,再将x+y=﹣4整体代入,得到关于k的一元一次方程,求出k的值即可.【解答】解:,①+②得,5(x+y)+4k=8,∵x+y=﹣4,∴﹣20+4k=8,解得k=7,故答案为:7.16.如图,若AB∥CD,CD∥EF,∠2﹣∠1=30°,那么∠BCE=150°.【考点】平行线的性质;平行公理及推论.【分析】延长EC交AB于点G,利用平行线的性质可得∠2=∠GCD,∠1=∠BCD,然后根据已知∠2﹣∠1=30°,从而可得∠GCB=30°,最后利用平角定义进行计算即可解答.【解答】解:延长EC交AB于点G,∵CD∥EF,∴∠2=∠GCD,∵AB∥CD,∴∠1=∠BCD,∵∠2﹣∠1=30°,∴∠GCB=∠GCD﹣∠BCD=30°,∴∠BCE=180°﹣∠GCB=150°,故答案为:150°.三.解答题(共8小题)17.如图,在Rt△AOB和Rt△COD中,AB=CD=25,OB=7,AC=4.求BD的长.【考点】勾股定理.【分析】(1)在Rt△AOB中,利用勾股定理求出OA=24,在Rt△COD中,利用勾股定理求出OD=15,可得答案.【解答】解:(1)在Rt△AOB中,由勾股定理得,OA===24,∵AC=4.∴OC=OA﹣AC=24﹣4=20;在Rt△COD中,由勾股定理得,OD===15,∴BD=OD﹣OB=15﹣7=8.18.如图所示,一个梯子AB长2.5米,顶端A靠在墙AB上,这时梯子下端B与墙角C距离为0.7米.如果梯子的顶端A下滑0.4米到了点E的位置,那么梯子的底端B在水平方向滑动了0.4米吗?为什么?【考点】勾股定理的应用.【分析】在直角三角形ABC中,根据勾股定理得:AC=2.4米,由于梯子的长度不变,在直角三角形CDE中,根据勾股定理得CD=1.5米,进而得出答案.【解答】解:不是.理由如下:在Rt△ABC中,AB=2.5米,BC=0.7米,故AC===2.4(米),∵AE=0.4米,∴CE=AC﹣AE=2.4﹣0.4=2(米),在Rt△ECD中,AB=DE=2.5米,∴CD===1.5(米),故BD=CD﹣CB=1.5﹣0.7=0.8(米).答:梯子的底端B在水平方向滑动了0.8米.19.计算:(1);(2)﹣+;(3);(4)++|﹣2|.【考点】实数的运算;平方根.【分析】(1)根据算术平方根,零指数幂的运算法则进行计算即可得出答案;(2)应用算术平方根,立方根的运算法则进行计算即可得出答案;(3)应用平方根的定义进行计算即可得出答案;(4)应用算术平方根,立方根及绝对值的性质进行计算即可得出答案.【解答】解:(1)原式=12﹣1+3=14;(2)原式=30﹣3+9=36;(3)x=,x1=,x2=﹣;(4)原式=﹣+(2﹣)=2﹣.20.如图所示,直线分别与x轴、y轴分别交于点A和点B,C是OB上一点,若将△ABC沿AC折叠,点B恰好落在x轴上的点B′处.(1)求:点A,点B的坐标;(2)点B′,点C的坐标.(3)若P在x轴上运动且△PB'C是等腰三角形,直接写出所有符合条件的点P的坐标.【考点】一次函数综合题.【分析】(1)分别令x=0,y=0,求点A、B的坐标即可;(2)设C(0,t),由折叠的性质可知AB=AB'=5,可求B'的坐标,再由BC=B'C,列出方程3﹣t=,求出t的值即可.(3)设P(x,0),分别求出PC=,B'P=|x+1|,B'C=,再根据等腰三角形的边的关系分类讨论即可求解.【解答】解:(1)令x=0,则y=3,∴B(0,3),令y=0,则x=4,∴A(4,0);(2)由折叠可知,BC=B'C,AB=AB',∵AB=5,∴AB'=5,∴B'(﹣1,0),设C(0,t),∴BC=3﹣t,∴3﹣t=,解得t=,∴C(0,);(3)设P(x,0),∴PC=,B'P=|x+1|,B'C=,当PC=B'P时,=|x+1|,解得x=,∴P(,0);当PC=B'C时,=,解得x=±1,∴P(1,0);当B'P=B'C时,|x+1|=,解得x=或x=﹣,∴P(,0)或(﹣,0);综上所述:P点坐标为(,0)或(1,0)或(,0)或(﹣,0).21.已知如图,直线y1=x+3与两坐标轴分别交于点A、B,点B关于x轴的对称点是点D,直线y2=﹣x+b经过点B,且与x轴相交于点C,点P是直线y2上一动点,过点P 作y轴的平行线交直线y1于点E,再以PE为边向右边作正方形PEFG.(1)①求b的值;②判断△ABD的形状,并说明理由;(2)连接OP、DP,当△POD的周长最短时,求点F的坐标;(3)在(2)的条件下,在x轴上是否存在一点Q,使得△AEQ是等腰三角形,若存在,请直接写出点Q的坐标,若不存在,请说明理由.【考点】一次函数综合题.【分析】(1)①求出B点坐标,再将B点坐标代入y2=﹣x+b,即可求b的值;②求出点A、D、B的坐标,再求出△ABD的三边长即可判断;(2)设O点关于直线y=﹣x+3的对称点为O',由对称性得∠O'CO=90°,则O'(3,3),连接DO',则DO'与直线y=﹣x+3的交点为P点,当O'、D、P三点共线时,△OPD 的周长最小,求出直线DO'与直线BC的交点,可知P点坐标,再由正方形的性质求出点F(4+,3+);(3)设Q(x,0),分别AQ=|x+3|,AE==6+,EQ=,再由等腰三角形的性质,根据边的情况,分三种情况讨论即可.【解答】解:(1)①令x=0,则y=3,∴B(0,3),∵直线y2=﹣x+b经过点B,∴b=3;②△ABD是等边三角形,理由如下:令y=0,则x+3=0,解得x=﹣3,∴A(﹣3,0),∵点B关于x轴的对称点是点D,∴D(0,﹣3),∴AB=6,AD=6,BD=6,∴△ABD是等边三角形;(2)∵b=3,∴直线y2=﹣x+3,令y=0,则x=3,∴C(3,0),设O点关于直线y=﹣x+3的对称点为O',∵OB=OC=3,∴∠BCO=45°,∴∠OO'C=45°,∴∠O'CO=90°,∴O'(3,3),连接DO',则DO'与直线y=﹣x+3的交点为P点,∵OP=O'P,∴△OPD的周长=OD+OP+PD=OD+O'P+PD≥OD+O'D,∴当O'、D、P三点共线时,△OPD的周长最小,设直线DO'的解析式为y=mx+n,∴,解得,∴y=2x﹣3,联立方程组,解得,∴P(2,1),∵PE∥y轴,∴E(2,3+),∴PE=2+,∵四边形PEFG是正方形,∴F(4+,3+);(3)在x轴上存在一点Q,使得△AEQ是等腰三角形,理由如下:设Q(x,0),∴AQ=|x+3|,AE==6+,EQ=,当AQ=AE时,|x+3|=6+,解得x=6﹣或x=﹣6﹣,∴Q(6﹣,0)或(﹣6﹣,0);当AQ=EQ时,|x+3|=,解得x=﹣,∴Q(﹣,0);当AE=EQ时,6+=,解得x=4+3或x=﹣3(舍),∴Q(4+3,0);综上所述:Q点坐标为(6﹣,0)或(﹣6﹣,0)或(4+3,0)或(﹣,0).22.若正比例函数y1=﹣x的图象与一次函数y2=2x+m的图象交于点A,且点A的横坐标为﹣2.(1)求该一次函数的表达式;(2)直接写出方程组的解;(3)在一次函数y2=2x+m的图象上是否存在点B,使得△AOB的面积为9,若存在,求出点B坐标;若不存在,请说明理由.【考点】一次函数与二元一次方程(组);一次函数的性质;待定系数法求一次函数解析式.【分析】(1)先求出A点的纵坐标,把A点的坐标代入y=2x+m,求出m即可;(2)根据方程组的特点和A点的坐标得出答案即可;(3)设直线y=2x+6与y轴的交点为C,与x轴的交点为D,则C(0,6),D(﹣3,0),求出△AOC和△AOD的面积,分为两种情况当B点在第三或第一象限时,根据三角形的面积求出B点的纵坐标或横坐标,即可求出答案.【解答】解:(1)将x=﹣2代入y=﹣x,得y=2,则点A坐标为(﹣2,2),将A(﹣2,2)代入y=2x+m,得m=6,所以一次函数的解析式为y=2x+6;(2)∵正比例函数y1=﹣x的图象与一次函数y2=2x+m的图象交于点A(﹣2,2)∴方程组的解是;(3)设直线y=2x+6与y轴的交点为C,与x轴的交点为D,则C(0,6),D(﹣3,0),∵A(﹣2,2),∴S△AOC=6×2=6,S△AOD=3×2=3;∴B点不可能在第一象限;当B点在第三象限时,∵S△AOB==9,则S△BOD=6,设B的纵坐标为n,∴S△BOD=3×(﹣n)=6,解得:n=﹣4,即点B的纵坐标是﹣4,把y=﹣4代入y=2x+6得:x=﹣5,∴B(﹣5,﹣4);当B点在第一象限时,S△AOB=S△AOC+S△BOC=9,则S△BOC=3,设B的横坐标为m,∴S△BOC=6×m=3,∴m=1,即B点的横坐标是1,把,x=1,代入y=2x+6得,y=8,∴B(1,8);综上,点B的坐标为(1,8)或(﹣5,﹣4).23.随着科技的进步和网络资源的丰富,在线学习已成为更多人的自主学习选择.某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.根据图中信息,解答下列问题:(1)求本次调查的学生总人数;(2)并补全条形统计图;(3)求扇形统计图中“在线讨论”对应的扇形圆心角的度数.【考点】条形统计图;扇形统计图.【分析】(1)根据在线听课的人数和所占的百分比即可求得本次调查的人数;(2)根据总人数求出在线答题的人数,即可将条形统计图补充完整;(2)用“在线讨论”的人数除以总人数,再城60°即可求得扇形统计图中“在线讨论”对应的扇形圆心角的度数.【解答】解:(1)本次调查的学生总人数为:36÷40%=90(人).(2)在线答题的人数为:90﹣24﹣36﹣12=18(人),补全的条形统计图如图所示;(2)扇形统计图中“在线讨论”对应的扇形圆心角的度数是:360°×=48°,即扇形统计图中“在线讨论”对应的扇形圆心角的度数是48°.24.如图,在△ABC中,BE平分∠ABC,∠2=∠1+∠C.(1)求证:AD⊥BE;(2)若∠ABC=2∠1,证明:∠BAC=90°.【考点】三角形内角和定理;三角形的外角性质;角平分线的定义.【分析】(1)利用角平分线的定义,可得出∠ABE=∠CBE=∠ABC,由三角形的外角性质,可得出∠ADB=∠1+∠C+∠ABE,结合∠2=∠1+∠C,可得出∠ADB=∠2+∠ABD,在△ABD中,利用三角形内角和定理,可求出∠ADB=90°,进而可证出AD⊥BE;(2)利用角平分线的定义,可得出∠ABE=∠CBE=∠ABC,结合∠ABC=2∠1,可得出∠ABE=∠1,由(1)可得出∠2+∠ABD=90°,即∠2+∠1=90°,进而可证出∠BAC=90°.【解答】(1)证明:∵BE平分∠ABC,∴∠ABE=∠CBE=∠ABC.∵∠AED是△BCE的外角,∠ADB是△ADE的外角,∴∠AED=∠CBE+∠C,∠ADB=∠1+∠AED,∴∠ADB=∠1+∠C+∠ABE.又∵∠2=∠1+∠C,∴∠ADB=∠2+∠ABD.在△ABD中,∠ABD+∠2+∠ADB=180°,∴∠ADB=×180°=90°,∴AD⊥BE.(2)证明:∵BE平分∠ABC,∴∠ABE=∠CBE=∠ABC.∵∠ABC=2∠1,∴∠ABE=∠1.由(1)可知:∠2+∠ABD=90°,即∠2+∠1=90°,∴∠BAC=90°.。
北师大版八年级(上)期末数学试卷(含答案)
![北师大版八年级(上)期末数学试卷(含答案)](https://img.taocdn.com/s3/m/d6bb950d4a35eefdc8d376eeaeaad1f3469311c3.png)
北师大版八年级(上)期末数学试卷及答案一、选择题(每小题3分,共18分)1.(3分)﹣的倒数是()A.B.3C.﹣3D.﹣2.(3分)在直角三角形中,斜边与较小直角边的和、差分别为8、2,则较长直角边长为()A.5B.4C.3D.23.(3分)已知点P(m,n)在第四象限,则直线y=nx+m图象大致是下列的()A.B.C.D.4.(3分)若方程(a+3)x+3y|a|﹣2=1是关于x,y的二元一次方程,则a的值为()A.﹣3B.±2C.±3D.35.(3分)如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE的度数为()A.31°B.28°C.62°D.56°6.(3分)已知关于x、y的方程组,则下列结论中正确的是()①当a=1时,方程组的解也是方程x+y=2的解;②当x=y时,a=﹣;③不论a取什么实数,2x+y的值始终不变.A.①②B.①②③C.②③D.②二、填空题。
(每小题3分,共18分)7.(3分)函数中,自变量x的取值范围是.8.(3分)的平方根是.9.(3分)若a,b,c分别是△ABC的三条边长,且a2﹣6a+b2﹣10c+c2=8b﹣50,则这个三角形的形状是.10.(3分)的整数部分是,小数部分是.11.(3分)如果二元一次方程组的解适合方程3x+y=﹣8,则k=.12.(3分)甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间(t)分之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了30分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有360米.其中正确的结论有.(填序号)三、解答题。
(5×6分+3×8分+2×9分+12分=84分)13.(6分)计算:(1);(2).14.(6分)(1)已知点P(2m﹣6,m+2),若点P在y轴上,求点P的坐标.(2)已知点Q,若点Q在过点A(2,3)且与x轴平行的直线上,AQ=3,求点Q的坐标.15.(6分)解方程组.16.(6分)如图,在平面直角坐标系xOy中,一次函数y=﹣x+5的图象l1分别与x轴、y轴交于A、B两点,若正比例函数的图象l2与l1交于点C(m,4).(1)求m的值;(2)求△AOC的面积;(3)一次函数y=kx+1的图象为l3,且l1、l2、l3不能围成三角形,请写出k的值.17.(6分)如图在平面直角坐标系中,△ABC各顶点的坐标分别为:A(4,0),B(﹣1,4),C(﹣3,1)(1)在图中作△A′B′C′使△A′B′C′和△ABC关于x轴对称;(2)写出点A′,B′,C′的坐标.18.(8分)如图,在平面直角坐标系中,一次函数y=2x﹣3的图象分别交x轴,y轴于点A、B,将直线AB绕点B 顺时针方向旋转45°,交x轴于点C,求直线BC的函数表达式.19.(8分)如图,圆柱形容器的高为120cm,底面周长为100cm,在容器内壁离容器底部40cm的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿40cm与蚊子相对的点A处,求壁虎捕捉蚊子的最短距离.20.(8分)某学校在体育周活动中组织了一次体育知识竞赛,每班选25名同学参加比赛,成绩分别为A、B、C、D四个等级,其中相应等级的得分依次记为100分、90分、80分、70分,学校将八年级一班和二班的成绩整理并绘制成统计图,如图所示:(1)把八年级一班竞赛成绩统计图补充完整;(2)求出下表中a、b、c的值:平均数/分中位数/分众数/分方差一班a b90106.24二班87.680c138.24(3)根据上面图表数据,请你对这次竞赛成绩的结果进行分析.(至少写两条)21.(9分)材料阅读:如图(1)所示的图形,像我们常见的学习用品—圆规,我们常把这样的图形叫做“规形图”.(1)观察“规形图”,试探究∠BDC与∠A、∠B、∠C之间的数量关系,并说明理由;(2)请你利用此结论,解决以下两个问题:Ⅰ.如图(2),把一个三角尺DEF放置在△ABC上,使三角尺的两条直角边DE,DF恰好经过点B,C,若∠A =30°,则∠ABD+∠ACD=.Ⅱ.如图(3),BD平分∠ABP,CD平分∠ACP,若∠A=50°,∠BPC=130°,求∠BDC的度数.22.(9分)在《二元一次方程组》这一章的复习课上,王老师让同学们根据下列条件探索还能求出哪些量:在我市“精准扶贫”工作中,甲、乙两个工程队先后接力为扶贫村庄修建条335米长的公路,甲队每天修建20米,乙队每天修建25米,一共用15天完成.(1)小红同学根据题意,列出了一个尚不完整的方程组请写出小红所列方程组中未知数x,y表示的意义:x表示,y表示;并写出该方程组中?处的数应是,*处的数应是;(2)小芳同学的思路是想设甲工程队一共修建了x米公路,乙工程队一共修建了y米公路.下面请你按照小芳的设想列出方程组,并求出乙队修建了多少天?23.(12分)6月份以来,猪肉价格一路上涨,为平抑猪肉价格,某省积极组织货源,计划由A、B、C三市分别组织10辆,10辆和8辆运输车向D、E两市运送猪肉,现决定派往D、E两地的运输分别是18辆、10辆.已知一辆运输车从A市到D、E两市的运费分别为200元和800元,从B市到D、E两市的运费分别为300元和700元,从C市到D、E两市的运费分别为400元和500元.若从A、B两市都派x辆车到D市,当这28辆运输车全部派出时,①求总运费W(元)与x(辆)之间的关系式,并写出x的取值范围;②求总运费W最低时的车辆派出方案.参考答案与试题解析一、选择题。
北师大版八年级(上)数学期末测试试题及答案二
![北师大版八年级(上)数学期末测试试题及答案二](https://img.taocdn.com/s3/m/950f4369842458fb770bf78a6529647d26283452.png)
北师大版八年级(上)数学期末测试试题及答案一、选择题(每小题3分,共30分)1.(3分)下列实数中,是无理数的是()A.0B.3.14C.﹣D.2.(3分)点A(﹣1,3)和点B(﹣1,﹣3)在坐标平面内的关系是()A.关于x轴对称B.关于y轴对称C.关于原点对称D.没有对称关系3.(3分)下列说法错误的是()A.是一个二元一次方程组B.是一个二元一次方程组C.是方程组的解D.二元一次方程x﹣7y=11有无数个解4.(3分)若在一组数据4,3,2,4,2中再添加一个数后,它们的平均数不变,则添加数据后这组数据的中位数是()A.3B.4C.3.5D.4.55.(3分)已知一次函数y=kx+b的图象经过点A(3,y1)和点B(4,y2),且y1﹣y2=5,则k的值是()A.﹣1B.5C.﹣5D.﹣6.(3分)如图,AB∥CD,点E在AB上,∠AEC=60°,∠EFD=130°.则∠CEF的度数是()A.60°B.70°C.75°D.80°7.(3分)已知,△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列条件不能判断△ABC是直角三角形的是()A.a2﹣b2=c2B.a=1,b=1,c=C.∠A+∠B=∠C D.a=8,b=40,c=418.(3分)早餐店里,小明妈妈买了5个馒头,3个包子,老板少要1元,只要10元;小红爸爸买了8个馒头,6个包子,老板九折优惠,只要18元.若馒头每个x元,包子每个y元,则所列二元一次方程组正确的是()A.B.C.D.9.(3分)如图,已知AP平分∠BAC,CP平分∠ACD,∠1+∠2=90°,下列结论不一定成立的是()A.AB∥CD B.∠ABE+∠CDF=180°C.AC∥BD D.若∠ACD=2∠E,则∠CAB=2∠F10.(3分)甲、乙两人分别从笔直道路上的A、B两地出发相向匀速而行,已知甲比乙先出发6分钟,两人在C地相遇,相遇后甲立即按原速原路返回A地,乙继续向A地前行,约定先到A地者停止运动就地休息.若甲、乙两人相距的路程y(米)与甲行走的时间x(分钟)之间的关系如图所示,有下列说法:①甲的速度是60米/分钟,乙的速度是80米/分钟;②甲出发30分钟时,两人在C地相遇;③乙到达A地时,甲与A地相距450米,其中正确的说法有()A.0个B.1个C.2个D.3个二、填空题(每小题3分,共15分)11.(3分)如图,△ABC中,∠A=35°,∠C=45°,则这个三角形的外角∠ABD的度数为:.12.(3分)一组数据:1,3,a,5,7的平均数是a,则它们的方差是.13.(3分)计算|1﹣|﹣+2=.14.(3分)直线y=x+1与y=mx+n相交于点P(1,a),则关于x,y的二元一次方程组的解为.15.(3分)如图,直线l1:y=x+5交x轴于点A,交y轴于点B,直线l2:y=﹣5x+5交x轴于点C,交y轴于点B,点P在线段BC上,且点P到l1的距离是2,则点P的坐标是.三、解答题(共8题,75分)16.(10分)(1)计算;(2)解方程.17.(9分)为了让同学们了解自己的体育水平,初三1班的体育刘老师对全班45名学生进行了一次体育模拟测试(得分均为整数),成绩满分为10分,班的体育委员根据这次测试成绩,制作了统计图.根据以上信息,解答下列问题:(1)整理班级成绩得如下表格:平均分中位数众数男生a8c女生7.92b8则a=,b=,c=,(2)请你从平均数、中位数、众数的角度进行分析,1班的男生队、女生队哪个表现更突出一些.18.(9分)如图,四边形BCED中,点A在CB的延长线上,点F在DE的延长线上,连接AF交BD于G,交CE 于H,且∠1=45°,∠2=135°.(1)求证:BD∥CE;(2)若∠C=∠D,求证:∠A=∠F.19.(9分)植树造林不仅可以美化家园,同时也可以调节气候、促进经济发展.在植树节前夕,某单位计划购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.(1)若购进的A、B两种树苗刚好1220元,求A、B两种树苗分别购买了多少棵?(2)若购买A种树苗a棵,所需总费用为w元.求w与a的函数关系式.(3)若购买时A种树苗不能少于5棵,w的最小值是多少?请说明理由.20.(9分)如图,四边形ABCD中,∠B=90°,AC为对角线,DE⊥AC于点E,已知AB=8,BC=6,CD=2,AD=2.(1)请判断△ACD的形状并说明理由.(2)求线段DE的长.21.(9分)如图,在以点O为原点的平面直角坐标系中,点A、B的坐标分别为(a,0)、(a,b),点C在y轴上,且BC∥x轴,a、b满足|a﹣3|+=0.点P从原点出发,以每秒2个单位长度的速度沿着O﹣A﹣B﹣C﹣O 的路线运动(回到点O为止).(1)求出a、b的值并直接写出点A、B、C的坐标;(2)当点P运动3秒时,连接PC、PO,求出点P的坐标,并直接写出∠CPO、∠BCP、∠AOP之间满足的数量关系.22.(10分)如图,在同一坐标系中,直线l1:y=﹣x+1交x轴于点P,直线l2:y=ax﹣3过点P.(1)求a的值;(2)点M、N分别在直线l1、l2上,且关于原点对称(说明:点A(x,y)关于原点对称的点A'的坐标为(﹣x,﹣y),求点M、N的坐标和△PMN的面积.23.(10分)(1)如图1,已知∠A=55°,∠B=30°,∠C=25°.直接写出∠BOC的度数及∠BOC与∠A、∠B、∠C之间的数量关系(2)对于图2,已知AB∥CD,直接写出∠E与∠B和∠D之间的数量关系.(3)如图3,BE平分∠ABD,DE平分∠BDC,且∠E=90°.求证:AB∥CD.(4)拓展与应用:在(3)的条件下,作射线BF和DF交于点F.已知∠ABE=3∠ABF,∠F=30°.请直接判断∠CDF与∠CDE之间的数量关系.参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下列实数中,是无理数的是()A.0B.3.14C.﹣D.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A.0是整数,属于有理数,故本选项不合题意;B.3.14是有限小数,属于有理数,故本选项不合题意;C.是分数,属于有理数,故本选项不合题意;D.是无理数,故本选项符合题意.故选:D.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.(3分)点A(﹣1,3)和点B(﹣1,﹣3)在坐标平面内的关系是()A.关于x轴对称B.关于y轴对称C.关于原点对称D.没有对称关系【分析】根据关于原点对称,关于x轴、y轴对称的点的坐标特征判断即可.【解答】解:点A(﹣1,3)和点B(﹣1,﹣3)在坐标平面内的关系是关于x轴对称,故选:A.【点评】本题考查了关于原点对称,关于x轴、y轴对称的点的坐标,熟练掌握关于原点对称,关于x轴、y轴对称的点的坐标特征是解题的关键.3.(3分)下列说法错误的是()A.是一个二元一次方程组B.是一个二元一次方程组C.是方程组的解D.二元一次方程x﹣7y=11有无数个解【分析】根据二元一次方程组的定义即可判断选项A和选项B,根据方程组的解的定义即可判断选项C;根据二元一次方程的解的定义即可判断选项D,【解答】解:A.是二元一次方程组,故本选项不符合题意;B.是三元一次方程组,故本选项符合题意;C.经检验是方程2x+y=﹣1的解,也是方程x﹣y=4的解,即是方程组的解,故本选项不符合题意;D.二元一次方程x﹣7y=11有无数个解,故本选项不符合题意;故选:B.【点评】本题考查了二元一次方程组的定义,二元一次方程的解的定义,二次一元方程组的解的定义等知识点,能熟记二次一次方程的定义和方程(或组)的解的定义是解此题的关键.4.(3分)若在一组数据4,3,2,4,2中再添加一个数后,它们的平均数不变,则添加数据后这组数据的中位数是()A.3B.4C.3.5D.4.5【分析】根据平均数的公式求出数据4,3,2,4,2的平均数,根据题意可知添加的一个数据是平均数,再根据中位数的定义求解.【解答】解:(4+3+2+4+2)÷5=15÷5=3.∵它们的平均数不变,∴添加的数据为3.∴这组新数据为:2,2,3,3,4,4,这组新数据的中位数为:×(3+3)=3,故选:A.【点评】考查了平均数,中位数,熟练掌握相关概念和公式是解题的关键.5.(3分)已知一次函数y=kx+b的图象经过点A(3,y1)和点B(4,y2),且y1﹣y2=5,则k的值是()A.﹣1B.5C.﹣5D.﹣【分析】根据一次函数y=kx+b的图象上点的坐标特征,求得y1=3k+b,y2=4k+b,根据y1﹣y2=5,得到关于k 的方程,解方程即可求得k的值.【解答】解:由题意得,①﹣②得y1﹣y2=﹣k,∵y1﹣y2=5,∴﹣k=5,解得k=﹣5,故选:C.【点评】本题考查了一次函数图象上点的坐标特征,根据坐标特征列出方程是解题的关键.6.(3分)如图,AB∥CD,点E在AB上,∠AEC=60°,∠EFD=130°.则∠CEF的度数是()A.60°B.70°C.75°D.80°【分析】先利用角平分线的性质求出∠C,再利用三角形外角和内角的关系求出∠CEF.【解答】解:∵AB∥CD,∴∠C=∠AEC=60°.∵∠EFD=∠CEF+∠C,∴∠CEF=∠EFD﹣∠C=130°﹣60°=70°.故选:B.【点评】本题主要考查了平行线的性质,掌握“两直线平行,内错角相等”是解决本题的关键.7.(3分)已知,△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列条件不能判断△ABC是直角三角形的是()A.a2﹣b2=c2B.a=1,b=1,c=C.∠A+∠B=∠C D.a=8,b=40,c=41【分析】利用直角三角形的定义和勾股定理的逆定理逐项判断即可.【解答】解:A、∵a2﹣b2=c2,∴a2=b2+c2,故△ABC是直角三角形;B、∵a2+b2=12+12=2=c2,∴a2+b2=c2,故△ABC是直角三角形;C、∵∠A+∠B=∠C,∴∠C=90°,故△ABC是直角三角形;D、∵82+402≠412,∴a2+b2≠c2,故△ABC不是直角三角形;故选:D.【点评】本题考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.也考查了三角形内角和定理.8.(3分)早餐店里,小明妈妈买了5个馒头,3个包子,老板少要1元,只要10元;小红爸爸买了8个馒头,6个包子,老板九折优惠,只要18元.若馒头每个x元,包子每个y元,则所列二元一次方程组正确的是()A.B.C.D.【分析】根据题意可得等量关系:①5个馒头的钱+3个包子的钱=10+1元;②(8个馒头的钱+6个包子的钱)×9折=18元,根据等量关系列出方程组即可.【解答】解:若馒头每个x元,包子每个y元,由题意得:,故选:B.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.9.(3分)如图,已知AP平分∠BAC,CP平分∠ACD,∠1+∠2=90°,下列结论不一定成立的是()A.AB∥CDB.∠ABE+∠CDF=180°C.AC∥BDD.若∠ACD=2∠E,则∠CAB=2∠F【分析】利用角平分线的性质和三角形的内角和得到AB∥CD,再根据平行线的性质和外角定理可得答案.【解答】解:∵AP平分∠BAC,∴∠1=∠P AC=∠BAC,∵CP平分∠ACD,∴∠2=∠PCA=∠DCA,又∵∠1+∠2=90°,∴∠BAC+∠DCA=180°,∴AB∥CD,故A一定成立;∵AB∥CD,∴∠ABD+∠CDB=180°,∴∠ABE+∠CDF=180°,故B一定成立;若∠ACD=2∠E,∵∠ACD=2∠PCA,∴∠PCA=∠E,∴AC∥BD,∴∠F=∠CAP,∵∠CAB=2∠F,故D一定成立;题中的条件不能说明AC∥BD,故C不一定成立.故选:C.【点评】此题主要考查了平行线的性质以及平行公理等知识,三角形的内角和定理,正确利用平行线的性质分析是解题关键.10.(3分)甲、乙两人分别从笔直道路上的A、B两地出发相向匀速而行,已知甲比乙先出发6分钟,两人在C地相遇,相遇后甲立即按原速原路返回A地,乙继续向A地前行,约定先到A地者停止运动就地休息.若甲、乙两人相距的路程y(米)与甲行走的时间x(分钟)之间的关系如图所示,有下列说法:①甲的速度是60米/分钟,乙的速度是80米/分钟;②甲出发30分钟时,两人在C地相遇;③乙到达A地时,甲与A地相距450米,其中正确的说法有()A.0个B.1个C.2个D.3个【分析】根据图象可知A、B两地相距3720米;利用速度=路程÷时间可求出甲、乙的速度,由二者相遇的时间=6+A、B两地之间的路程÷二者速度和,可求出二者相遇的时间,再由A、C两地之间的距离=甲的速度×二者相遇的时间可求出A、C两地之间的距离,由A、C两地之间的距离结合甲、乙的速度,可求出乙到达A地时甲与A地相距的路程.【解答】解:由图象可知,A、B两地相距3720米,甲的速度为(3720﹣3360)÷6=60(米/分钟),乙的速度为(3360﹣1260)÷(21﹣6)﹣60=80(米/分钟),故①说法正确;甲、乙相遇的时间为6+3360÷(60+80)=30(分钟),故②说法正确;A、C两地之间的距离为60×30=1800(米),乙到达A地时,甲与A地相距的路程为1800﹣1800÷80×60=450(米).故③说法正确.即正确的说法有3个.故选:D.【点评】本题考查了一次函数的应用,利用数量关系,求出甲、乙的速度及A、C两地之间的距离是解题的关键.二、填空题(每小题3分,共15分)11.(3分)如图,△ABC中,∠A=35°,∠C=45°,则这个三角形的外角∠ABD的度数为:80°.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:∵∠A=35°,∠C=45°,∴∠ABD=∠A+∠C=35°+45°=80°.故答案为:80°.【点评】本题考查了三角形的外角性质,是基础题,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.12.(3分)一组数据:1,3,a,5,7的平均数是a,则它们的方差是4.【分析】先由平均数的公式计算出a的值,再根据方差的公式计算即可.【解答】解:∵数据:1,3,a,5,7的平均数是a,∴5a=1+3+a+5+7,∴a=4,∴这组数据的方差是s2=[(1﹣4)2+(3﹣4)2+(4﹣4)2+(5﹣4)2+(7﹣4)2]=4.故答案为:4.【点评】本题考查方差的定义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.也考查了平均数.13.(3分)计算|1﹣|﹣+2=﹣1﹣.【分析】直接利用绝对值的性质以及二次根式的性质分别化简,进而合并得出答案.【解答】解:原式=﹣1﹣3+2×=﹣1﹣3+=﹣1﹣.故答案为:﹣1﹣.【点评】此题主要考查了二次根式的加减,正确化简二次根式是解题关键.14.(3分)直线y=x+1与y=mx+n相交于点P(1,a),则关于x,y的二元一次方程组的解为.【分析】根据函数图象可以得到两个函数交点坐标,从而可以得到两个函数联立的二元一次方程组的解.【解答】解:根据函数图可知,函数y=x+1与y=mx+n的图象交于点P的坐标是(1,a),把x=1,y=a代入y=x+1,可得:a=1+1=2,解得:a=2,故关于x,y的二元一次方程组的解为,故答案为:.【点评】本题考查一次函数与二元一次方程组,解题的关键是明确题意,利用数形结合的思想解答问题.15.(3分)如图,直线l1:y=x+5交x轴于点A,交y轴于点B,直线l2:y=﹣5x+5交x轴于点C,交y轴于点B,点P在线段BC上,且点P到l1的距离是2,则点P的坐标是(,3).【分析】由两条直线的解析式求得A、B、C的坐标,进一步求得AB和AC,利用三角形面积公式求得S△ABC=,S△APB=13,即可求得S△APC=AC•y P=﹣13=,解得y P=3,代入y=﹣5x+5即可求得P的坐标.【解答】解:∵直线l1:y=x+5交x轴于点A,交y轴于点B,直线l2:y=﹣5x+5交x轴于点C,交y轴于点B,∴A(﹣12,0),B(0,5),C(1,0),∴OA=12,OC=1,OB=5,∴AB==13,AC=12+1=13,∴S△ABC==,∵点P到l1的距离是2,∴S△APB==13,∴S△APC=AC•y P=﹣13=,∴×y p=,∴y P=3,代入y=﹣5x+5得,3=﹣5x+5,解得x=,∴点P的坐标是(,3),故答案为:(,3).【点评】本题考查了一次函数图象上点的坐标特征,三角形的面积,借助三角形的面积求得P的纵坐标是解题的关键.三、解答题(共8题,75分)16.(10分)(1)计算;(2)解方程.【分析】(1)先化简、然后合并同类二次根式即可;(2)先化简方程组,然后根据加减消元法可以解答此方程组.【解答】解:(1)=﹣4=﹣4=﹣=﹣;(2),化简,得:,①﹣②,得:3y=15,解得y=5,将y=5代入①,得:x=8,∴原方程组的解是.【点评】本题考查二次根式的混合运算、解二元一次方程组,解答本题的关键是明确二次根式混合运算的运算法则,会用加减消元法解方程组.17.(9分)为了让同学们了解自己的体育水平,初三1班的体育刘老师对全班45名学生进行了一次体育模拟测试(得分均为整数),成绩满分为10分,班的体育委员根据这次测试成绩,制作了统计图.根据以上信息,解答下列问题:(1)整理班级成绩得如下表格:平均分中位数众数男生a8c女生7.92b8则a=7.9,b=8,c=7,(2)请你从平均数、中位数、众数的角度进行分析,1班的男生队、女生队哪个表现更突出一些.【分析】(1)根据平均数、中位数和众数定义可得答案;(2)根据平均数的大小即可得出答案.【解答】解:(1)这个班共有男生1+2+6+3+5+3=20(人),共有女生45﹣20=25(人),男生的平均分a=×(5+6×2+7×6+8×3+9×5+10×3)=7.9(分),男生的众数为7分,即c=7;把女生的成绩从小到大排列,中位数是第13个数,则b=8.故答案为:7.9,8,7;(2)从平均数看,女生队的平均数高于男生队的平均数,所以女生队表现更突出.【点评】本题主要考查平均数、中位数、众数及条形图、扇形图,根据统计图得出解题所需数据,并熟练掌握平均数、中位数和众数的定义是解题的关键.18.(9分)如图,四边形BCED中,点A在CB的延长线上,点F在DE的延长线上,连接AF交BD于G,交CE 于H,且∠1=45°,∠2=135°.(1)求证:BD∥CE;(2)若∠C=∠D,求证:∠A=∠F.【分析】(1)由∠CHG+∠2=180°,∠2=135°可得出∠CHG=45°=∠1,利用“同位角相等,两直线平行”可证出BD∥CE;(2)由BD∥CE得出∠C=∠ABD,由∠C=∠D得出∠ABD=∠D,利用“内错角相等,两直线平行”得出AC ∥DF,利用“两直线平行,内错角相等”得出∠A=∠F.【解答】证明:(1)∵∠CHG+∠2=180°,∠2=135°,∴∠CHG=45°,∵∠1=45°,∴∠CHG=∠1,∴BD∥CE.(2)∵BD∥CE,∴∠C=∠ABD,∵∠C=∠D,∴∠ABD=∠D.∴AC∥DF,∴∠A=∠F.【点评】本题主要考查了平行线的判定与性质,解题的关键是:(1)通过角的计算,找出∠CHG=∠1;(2)利用平行线的判定得出AC∥DF.19.(9分)植树造林不仅可以美化家园,同时也可以调节气候、促进经济发展.在植树节前夕,某单位计划购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.(1)若购进的A、B两种树苗刚好1220元,求A、B两种树苗分别购买了多少棵?(2)若购买A种树苗a棵,所需总费用为w元.求w与a的函数关系式.(3)若购买时A种树苗不能少于5棵,w的最小值是多少?请说明理由.【分析】(1)设购进A种树苗x棵,购进B种树苗y棵,根据“购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元,购进的A、B两种树苗刚好1220元”列方程组解答即可;(2)根据所需费用为w=A种树苗的费用+B种树苗的费用,即可解答;(3)结合(1)的解和购买B种树苗的数量少于A种树苗的数量,可找出方案.【解答】解:设购进A种树苗x棵,购进B种树苗y棵,根据题意得:,解得:,答:购进A种树苗10棵,B种树苗7棵;(2)购进a种树苗A棵,则购进B种树苗(17﹣a)棵根据题意得:w=80a+60(17﹣a)=20a+1020;(3)由题意得a≥5,由w=20a+1020,∵20>0,∴w随a的增大而增大,∴当a=5时,w有最小值,w最小=1120,答:费用最省方案为:购进A种树苗5棵,B种树苗12棵.这时所需费用为1120元.【点评】此题主要考查了二元一次方程组的应用以及一次函数的应用,根据一次函数的增减性得出费用最省方案是解决(3)的关键.20.(9分)如图,四边形ABCD中,∠B=90°,AC为对角线,DE⊥AC于点E,已知AB=8,BC=6,CD=2,AD=2.(1)请判断△ACD的形状并说明理由.(2)求线段DE的长.【分析】(1)先根据勾股定理求出AC=10,再根据勾股定理的逆定理即可判定△ACD的形状;(2)根据△ACD的面积不变即可求出线段DE的长.【解答】解:(1)△ACD是直角三角形,理由如下:在直角△ABC中,∠B=90°,AB=8,BC=6,∴AC===10,∵CD=2,AD=2,∴CD2+AD2=(2)2+(2)2=60+40=100=AC2,∴△ACD是直角三角形;(2)由(1)知,△ACD是直角三角形,且∠ADC=90°.∵S△ACD=AC•DE=AD•DC,∴DE===2.【点评】本题考查了勾股定理及其逆定理,三角形的面积,求出AC的长并判定△ACD是直角三角形是解题的关键.21.(9分)如图,在以点O为原点的平面直角坐标系中,点A、B的坐标分别为(a,0)、(a,b),点C在y轴上,且BC∥x轴,a、b满足|a﹣3|+=0.点P从原点出发,以每秒2个单位长度的速度沿着O﹣A﹣B﹣C﹣O 的路线运动(回到点O为止).(1)求出a、b的值并直接写出点A、B、C的坐标;(2)当点P运动3秒时,连接PC、PO,求出点P的坐标,并直接写出∠CPO、∠BCP、∠AOP之间满足的数量关系.【分析】(1)利用绝对值和二次根式的非负性即可求得;(2)当P运动3秒时,点P运动了6个单位长度,根据AO=3,即可得点P在线段AB上且AP=3,写出P 的坐标即可;作PE∥AO.利用平行线的性质证明即可.【解答】解:(1)∵|a﹣3|+=0,∴|a﹣3|=0,=0,∴a=3,b=4,∴A(3,0),B(3,4),C(0,4);(2)如图,当P运动3秒时,点P运动了6个单位长度,∵AO=3,∴点P运动3秒时,点P在线段AB上,且AP=3,∴点P的坐标是(3,3);如图,过点P作PE∥AO,∵CB∥AO,PE∥AO,∴CB∥PE,∴∠BCP=∠EPC,∠AOP=∠EPO,∴∠CPO=∠BCP+∠AOP.【点评】本题是平面直角坐标系中的动点问题,主要考查了绝对值和二次根式的非负性、平行线的性质、动点路程问题,解决此题的关键是作PE∥AO.22.(10分)如图,在同一坐标系中,直线l1:y=﹣x+1交x轴于点P,直线l2:y=ax﹣3过点P.(1)求a的值;(2)点M、N分别在直线l1、l2上,且关于原点对称(说明:点A(x,y)关于原点对称的点A'的坐标为(﹣x,﹣y),求点M、N的坐标和△PMN的面积.【分析】(1)根据一次函数图象上点的坐标特征求得P的坐标,代入直线l2:y=ax﹣3即可求得a的值;(2)设M的横坐标为x,由题得M(x,﹣x+1),N(﹣x,x﹣1),由N在直线l2上可得x﹣1=﹣3x﹣3,解方程求得x的值,可得出点M、N的坐标,即可求得.【解答】解:(1)∵直线l1:y=﹣x+1交x轴于点P,∴P(1,0),又∵直线l2:y=ax﹣3过点P,∴0=a﹣3,解得a=3;(2)由a=3得l2:y=3x﹣3,设M的横坐标为x,由题得M(x,﹣x+1),N(﹣x,x﹣1),又N(﹣x,x﹣1)在l2:y=3x﹣3上,∴x﹣1=﹣3x﹣3,解得x=﹣,则M(﹣,),N(,﹣),∴S△PMN=OP•+OP•=×1××2=.【点评】本题考查了待定系数法求一次函数的解析式,一次函数图象上点的坐标特征,关于原点对称的点的坐标特征,熟练掌握一次函数图象上点的坐标特征是解题的关键.23.(10分)(1)如图1,已知∠A=55°,∠B=30°,∠C=25°.直接写出∠BOC的度数及∠BOC与∠A、∠B、∠C之间的数量关系(2)对于图2,已知AB∥CD,直接写出∠E与∠B和∠D之间的数量关系.(3)如图3,BE平分∠ABD,DE平分∠BDC,且∠E=90°.求证:AB∥CD.(4)拓展与应用:在(3)的条件下,作射线BF和DF交于点F.已知∠ABE=3∠ABF,∠F=30°.请直接判断∠CDF与∠CDE之间的数量关系.【分析】(1)结论:∠BOC=∠B+∠A+∠C,如图1,连接OA并延长至点D.利用三角形的外角的性质解决问题即可;(2)结论:∠BED=∠B+∠D.过点E作ET∥AB.利用平行线的性质解决问题即可;(3)欲证明AB∥CD,只要证明∠ABD+∠CDB=180°;(4)作EP∥AB,FQ∥AB,根据平行线的判定和性质解答即可.【解答】(1)解:结论:∠BOC=∠B+∠A+∠C,理由如下:如图1,连接OA并延长至点D.∵∠BOD=∠B+∠BAO,∠COD=∠C+∠CAO,∴∠BOD+∠COD=∠B+∠BAO+∠C+∠CAO.∴∠BOC=∠B+∠BAC+∠C,∴∠BOC=55°+25°+30°=110°;(2)解:结论:∠BED=∠B+∠D,理由:过点E作ET∥AB.∵AB∥CD,AB∥ET,∴ET∥CD,∴∠B=∠1,∠2=∠D,∴∠BED=∠1+∠2=∠B+∠D.(3)证明:如图3中,∵∠E=90°,∴∠EBD+∠EDB=90°,∵BE平分∠ABD,DE平分∠BDC,∴∠ABD=2∠EBD,∠CDB=2∠EDB,∴∠ABD+∠CDB=2(∠EBD+∠EDB)=180°,∴AB∥CD;(4)结论:=,理由如下:作EP∥AB,FQ∥AB,如图2,又∵AB∥CD,∴AB∥CD∥EP,AB∥CD∥FQ,∴∠ABE=∠BEP,∠DEP=∠CDE,∴∠BED=∠BEP+∠DEP=∠ABE+∠CDE=90°,同理,∠BFD=∠ABF+∠CDF,∵∠ABE=3∠ABF,∠BFD=30°,∴∠BFD=∠ABE+∠CDF=30°=∠BED,∴=.【点评】本题考查三角形内角和定理,平行线的性质等知识,解题的关键是掌握平行线的性质,属于中考常考题型.。
最新北师大版八年级上册数学期末测试试题以及答案(2套题)
![最新北师大版八年级上册数学期末测试试题以及答案(2套题)](https://img.taocdn.com/s3/m/9ffabef2b90d6c85ed3ac6aa.png)
八年级上册数学期末测试试卷一、选择题。
(共12道选择题,每道选择题只有一个正确答案)1、下列实数中,是无理数是()A、16B、πC、01D、72、在平面直角坐标系中,点P(﹣2,3)关于x轴对称的点的坐标是()A、(﹣2,﹣3)B、(2,﹣3)C、(﹣3,﹣2)D、(3,﹣2)6、如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为()A、0.7mB、1.5mC、2.2mD、2.4m12、A、1个B、2个C、3个D、4个二、填空题。
(共6道填空题)13、若x+3是4的算术平方根,则x= ;若﹣27的立方根是y -1,则y= 。
三、解答题。
19、计算题。
(1)31227- (2)221332 -20、解方程组:26、八年级上册数学期末测试试卷一、选择题。
(共12道选择题,每道选择题只有一个正确答案)1、4的平方根是()A、2B、±2C、﹣21D、±27、某小组有20人,教练根据他们某次射击绘制成如图所示的统计图,则这组小组的众数和中位数分别是()A、7环、7.5环B、8环、7.5环C、7环、7环D、8环、6.5环二、填空题。
(共6道填空题)13、=18。
÷214、已知直线y=2x与直线y=﹣x+b的交点(1,a),则b的值为。
三、解答题。
19、计算题:(1)82132+- (2))-)(-(-3232311824+⨯20、解方程组:21、如图,已知BE ⊥FD ,∠C=∠1,∠2+∠D=90°,证AB ∥CD 。
北师大版2022-2023学年八年级数学上册期末测试卷(附答案)
![北师大版2022-2023学年八年级数学上册期末测试卷(附答案)](https://img.taocdn.com/s3/m/ee6338652f3f5727a5e9856a561252d380eb202f.png)
2022-2023学年八年级数学上册期末测试卷(附答案)一、选择题:(共24分)1.的平方根是()A.2B.﹣2C.±2D.±42.下列实数﹣,,|﹣3|,,,,0.4040404…(每相邻两个4之间一个0)中,无理数有()A.1个B.2个C.3个D.4个3.已知△ABC中,∠A=50°,则图中∠1+∠2的度数为()A.180°B.220°C.230°D.240°4.下列说法中正确的有()A.(﹣1,﹣x2)位于第三象限B.点A(2,a)和点B(b,﹣3)关于x轴对称,则a+b的值为5C.点N(1,n)到x轴的距离为nD.平面内,过一点有且只有一条直线与已知直线平行5.在解关于x,y的方程组时,小明由于将方程①的“﹣”,看成了“+”,因而得到的解为,则原方程组的解为()A.B.C.D.6.将一副三角板按如图所示的位置摆放,∠C=∠EDF=90°,∠E=45°,∠B=60°,点D在边BC上,边DE,AB交于点G.若EF∥AB,则∠CDE的度数为()A.105°B.100°C.95°D.75°7.如图,在Rt△ABC中,∠ACB=90°,AB=6,若以AC边和BC边向外作等腰直角三角形AFC和等腰直角三角形BEC.若△BEC的面积为S1,△AFC的面积为S2,则S1+S2=()A.36B.18C.9D.48.如图,同一直角坐标系中,能表示一次函数y=x+kb和y=kx+b(k、b为常数,且k≠0)的图象是()A.B.C.D.二、填空题:(共18分)9.将一根长9m的铁丝截成2m和1m两种长度的铁丝(两种都有)如果没有剩余,那么截法有种.10.一次函数y1=k1x+b和y2=k2x的图象上一部分点的坐标见表:则方程组的解为x=,y=.x……210﹣1……y1……0369……y2……630﹣3……11.小明在超市帮妈妈买回一袋纸杯,他把纸杯整齐地叠放在一起,如图请你根据图中的信息,若小明把n个纸杯整齐叠放在一起时,当n为11时h的值是.12.如图,已知圆柱底面的周长为8dm,圆柱高为4dm,在圆柱的侧面上,过点A和点C 嵌有一圈金属丝,则这圈金属丝的周长的最小值的平方为dm.13.如图,把△ABC纸片沿DE折叠,使点A落在图中的A'处,若∠A=29°,∠BDA'=90°,则∠A'EC的大小为.14.如图,∠ABC=∠ACB,△ABC的内角∠ABC的角平分线BD与∠ACB的外角平分线交于点D,△ABC的外角∠MBC的角平分线与CD的反向延长线交于点E,以下结论:①AD∥BC;②DB⊥BE;③∠BDC+∠ABC=90°;④BD平分∠ADC;⑤∠BAC+2∠BEC=180°.其中正确的结论有.(填序号)三、作图题:(本题6分)15.如图,在8×8网格纸中,每个小正方形的边长都为1.(1)请在网格纸中建立平面直角坐标系,使点A、C的坐标分别为(﹣4,4),(﹣1,3),并写出点B的坐标为;(2)画出△ABC关于y轴的对称图形△A1B1C1,并写出B1点的坐标;(3)在y轴上求作一点P,使△P AB的周长最小,并直接写出点P的坐标.四、解答题:(共72分)16.计算(1);(2).17.解方程组.(1).(2).18.为了解八年级学生的体质健康状况,某校对八年级(10)班43名同学进行了体质检测(满分10分,最低5分),并按照男女把成绩整理如图:八年级(10)班体质检测成绩分析表平均数中位数众数方差男生7.488c 1.99女生a b7 1.74(1)求八年级(10)班的女生人数;(2)根据统计图可知,a=,b=,c=;(3)若该校八年级一共有430人,则估计得分在8分及8分以上的人数共有多少人?19.如图,点E、F分别在AB、CD上,AF⊥CE于点O,∠1=∠B,∠A+∠2=90°,求证:AB∥CD.请填空.证明:∵AF⊥CE(已知)∴∠AOE=90°()又,∵∠1=∠B(已知)∴(同位角相等,两直线平行)∴∠AFB=∠AOE()∴∠AFB=90°()又,∵∠AFC+∠AFB+∠2=180°(平角的定义)∴∠AFC+∠2=()°又∵∠A+∠2=90°(已知)∴∠A=∠AFC()∴AB∥CD.(内错角相等,两直线平行)20.如图,已知:点A、B、C在一条直线上.(1)请从三个论断①AD∥BE;②∠1=∠2;③∠A=∠E中,选两个作为条件,另一个作为结论构成一个真命题:条件:.结论:.(2)证明你所构建的是真命题.21.一辆快车从甲地开往乙地,一辆慢车从乙地开往甲地,两车同时出发,设快车离乙地的距离为y 2(km ),慢车离乙地的距离为y 1(km ),慢车行驶时间为x (h ),两车之间的距离为S (km ),y 1,y 2与x 的函数关系图象如图1所示,S 与x 的函数关系图象如图2所示.请根据条件解答以下问题:(1)图中的a = ,C 点坐标为 ; (2)当x 何值时两车相遇? (3)当x 何值时两车相距200千米?22.已知:现有A 型车和B 型车载满货物一次可运货情况如表:A 型车(辆)B 型车(辆) 共运货(吨) 3 2 17 2318某物流公司现有35吨货物,计划同时租用A 型车a 辆,B 型车b 辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A 型车和1辆B 型车都载满货物一次可分别运货多少吨? (2)请你帮该物流公司设计租车方案;(3)若A 型车每辆需租金300元/次,B 型车每辆需租金320元/次,请选出最省钱的租车方案,并求出最少租车费.23.如图,在平面直角坐标系xOy中,直线y=﹣x+8与x轴,y轴分别交于点A,点B,点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处.(1)直接写出点A,B,C的坐标;(2)设OD的长度为m,求m的值和直线CD的解析式;(3)直线AB与直线CD相交于点E,求△ADE的面积.24.【数学模型】如图(1),AD,BC交于O点,根据“三角形内角和是180°”,不难得出两个三角形中的角存在以下关系:①∠DOC=∠AOB;②∠D+∠C=∠A+∠B.【提出问题】分别作出∠BAD和∠BCD的平分线,两条角平分线交于点E,如图(2),∠E与∠D、∠B之间是否存在某种数量关系呢?【解决问题】为了解决上面的问题,我们先从几个特殊情况开始探究.已知∠BAD的平分线与∠BCD 的平分线交于点E.(1)如图(3),若AB∥CD,∠D=30°,∠B=40°,则∠E=.(2)如图(4),若AB不平行CD,∠D=30°,∠B=50°,则∠E的度数是多少呢?易证∠D+∠1=∠E+∠3,∠B+∠4=∠E+∠2,请你完成接下来的推理过程:∴∠D+∠1+∠B+∠4=,∵CE、AE分别是∠BCD、∠BAD的平分线,∴∠1=∠2,∠3=∠4.∴2∠E=,又∵∠D=30°,∠B=50°,∴∠E=度.(3)在总结前两问的基础上,借助图(2),直接写出∠E与∠D、∠B之间的数量关系是:.【类比应用】如图(5),∠BAD的平分线AE与∠BCD的平分线CE交于点E.已知:∠D=α、∠B=β,(α<β)则∠E=(用α、β表示).参考答案一、选择题:(共24分)1.解:∵=4,∴的平方根是±=±2.故选:C.2.解:是分数,属于有理数;|﹣3|=3,=2,=﹣2,是整数,属于有理数;0.4040404…(每相邻两个4之间一个0)是循环小数,属于有理数;故在实数﹣,,|﹣3|,,,,0.4040404…(每相邻两个4之间一个0)中,无理数有﹣,,共2个.故选:B.3.解:∵∠A=50°,∴∠B+∠C=130°.∵∠B+∠C+∠1+∠2=360°,∴∠1+∠2=360°﹣130°=230°.故选:C.4.解:A、(﹣1,﹣x2)当x≠0时位于第三象限,原说法错误,不符合题意;B、点A(2,a)和点B(b,﹣3)关于x轴对称,则b=2,a=3,,则a+b的值为5,符合题意;C、点N(1,n)到x轴的距离为|n|,原说法错误,不符合题意;D、平面内,过直线外一点有且只有一条直线与已知直线平行,原说法错误,不符合题意.故选:B.5.解:把代入中可得:,解得:,把代入中可得,,解得:,故选:C.6.解:∵EF∥AB,∠E=45°,∴∠BGD=∠E=45°,∵∠CDE是△BDG的外角,∠B=60°,∴∠CDE=∠B+∠BGD=105°.故选:A.7.解:在Rt△ABC中,由勾股定理得:AC2+BC2=AB2=36,∵△AFC和△CBE是等腰直角三角形,∴S1+S2=AC2+BC2=(AC2+BC2)=×36=18,故选:B.8.解:A、一次函数y=kx+b的图象经过第二、三、四象限,则k>0,b<0,则kb<0;而一次函数y=x+kb的图象与y轴交于正半轴,则kb>0,kb>0与kb<0相矛盾,不符合题意;B、一次函数y=kx+b的图象经过第一、三、四象限,则k>0,b<0,则kb<0;而一次函数y=x+kb的一次项系数为正,与题干图形相矛盾,不符合题意;C、一次函数y=kx+b的图象经过第一、二、四象限,则k<0,b>0,则kb<0;而一次函数y=x+kb的图象与y轴交于负半轴,则kb<0.kb<0与kb<0相一致,符合题意;D、一次函数y=kx+b的图象经过第二、三、四象限,则k<0,b<0,则kb>0;而一次函数y=x+kb的图象与y轴交于负半轴,则kb<0.kb>0与kb<0相矛盾,不符合题意;故选:C.二、填空题:(共18分)9.解:设截成2m的有x段,1m的有y段,且x≠0,y≠0,根据题意可列方程得:2x+y=9,则y=9﹣2x,∵x、y均为正整数,∴当x=1时,y=7;当x=2时,y=5;当x=3时,y=3;当x=4时,y=1;∴方程的正整数解有4组,即截法有4种,故答案为:4.10.解:由表中数据得到x=1时,y1=y2=3,所以一次函数y1=k1x+b的图象和y2=k2x的图象的交点坐标为(1,3),所以方程组的解为x=1,y=3.故答案为:1,3.11.解:设每两个纸杯叠放在一起比单独的一个纸杯增高xcm,单独一个纸杯的高度为ycm,则,解得,则n个纸杯叠放在一起时的高度为:(n﹣1)x+y=n﹣1+7=(n+6)cm,当n=11时,其高度为:11+6=17(cm).故答案为:17cm.12.解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度.∵圆柱底面的周长为8dm,圆柱高为4dm,∴AB=4dm,BC=BC′=4dm,∴AC2=42+42=32,∴AC=4.∴这圈金属丝的周长最小为2AC=8(dm),则这圈金属丝的周长的最小值的平方为128dm.故答案为:128.13.解:如图,∵∠BDA'=90°,∴∠ADA'=90°,∵△ABC纸片沿DE折叠,使点A落在图中的A'处,∴∠ADE=∠A′DE=45°,∠AED=∠A′ED,∵∠CED=∠A+∠ADE=29°+45°=74°,∴∠AED=106°,∴∠A′ED=106°,∴∠A′EC=∠A′ED﹣∠CED=106°﹣74°=32°.故答案为32°.14.解:如图,过点D作DG⊥BF于G,DH⊥AB交BA的延长线于点H,DP⊥AC于P,过点A作AQ⊥BC于Q,∵BD是∠ABC的平分线,∴DH=DG,∵CD是∠ACF的平分线,∴DG=DP,∴DH=DP,∴AD是∠CAH的平分线,即∠CAD=∠HAD=∠CAH,∵AB=AC,∴∠ABC=∠ACB,∵∠ABC+∠ACB+∠BAC=180°,∠CAD+∠HAD+∠BAC=180°,∴∠CAD=∠ACB,∴AD∥BC,因此①正确;∵BE平分∠CBM,BD平分∠ABC,∠CBM+∠ABC=180°,∴∠DBE=∠ABC+∠CBM=×180°=90°,即BD⊥BE,因此②正确;∵BD是∠ABC的平分线,∴∠ABD=∠DBC,∵CD是∠ACF的平分线,∴∠ACD=∠FCD,∵∠ACF=∠BAC+∠ABC,∠DCF=∠BDC+∠DBC,∴∠BDC=∠BAC,∵AQ⊥BC,AB=AC,∴∠BAQ=∠CAQ=∠BAC,∵∠BAQ+∠ABC=90°,∴∠BDC+∠ABC=90°,因此③正确;∵∠ADB=∠ABC=×()=45,而∠BAC ∴∠ADB与∠BDC不一定相等,因此④不正确;∵BE⊥BD,∴∠E+∠BDC=90°,∵∠BDC=∠BAC,∴∠E+∠BAC=90°,∴2∠E+∠ABC=180°,因此⑤正确;综上所述,正确的结论有:①②③⑤,故答案为:①②③⑤.三、作图题:(本题6分)15.解:(1)所作图形如图所示:B(﹣2,1);(2)所作图形如图所示:B1(2,1);(3)所作的点如图所示,P(0,2).故答案为:(﹣2,1).四、解答题:(共72分)16.解:(1)原式=﹣3+4+12=﹣3+16;(2)原式=﹣=3﹣=3﹣=.17.解:(1),①×2,得2x﹣2y=8③,③+②,得6x=7,解得x=,将x=代入①,得y=﹣,∴方程组的解为;(2),①﹣②得,y=3,解得,y=9,将y=9代入①,得x=6,∴方程组的解为.18.解:(1)∵八年级(10)班男生人数为2+4+6+5+4+2=23(人),∴女生人数为43﹣23=20(人);(2)由条形统计图知,男生体质监测成绩的众数c=7,女生体质监测成绩的平均数a=5×5%+6×15%+7×30%+8×25%+9×15%+10×10%=7.6,中位数b==7.5,故答案为:7.6、7.5、7;(3)430×=210(人),答:得分在8分及8分以上的人数共有210人.19.证明:∵AF⊥CE(已知),∴∠AOE=90°(垂直的定义).又∵∠1=∠B(已知),∴CE∥BF(同位角相等,两直线平行),∴∠AFB=∠AOE(两直线平行,同位角相等),∴∠AFB=90°(等量代换).又∵∠AFC+∠AFB+∠2=180°(平角的定义),∴∠AFC+∠2=90°.又∵∠A+∠2=90°(已知),∴∠A=∠AFC(同角的余角相等),∴AB∥CD(内错角相等,两直线平行).故答案为:垂直的定义;CE∥BF;已知;两直线平行,同位角相等;等量代换;90;同角的余角相等.20.解:(1)条件:①AD∥BE;②∠1=∠2;结论:③∠A=∠E,故答案为:①AD∥BE,②∠1=∠2;③∠A=∠E;(2)证明:∵AD∥BE,∴∠A=∠EBC,∵∠1=∠2,∴DE∥BC,∴∠E=∠EBC,∴∠A=∠E.21.解:(1)由S与x之间的函数的图象可知:当位于C点时,两车之间的距离增加变缓,∴由此可以得到a=3,∴快车的速度为300÷3=100(km/h),由图可得,慢车5h行驶300km,∴慢车的速度为300÷5=60(km/h),∵3×60=180(km),∴快车到达乙地时,慢车行驶了180km,即两车相距180km,∴C(3,180),故答案为:3,(3,180);(2)由(1)可知,快车的速度为100km/h,慢车的速度为60km/h,∴两车相遇所需时间为300÷(100+60)=(h),∴当x为时两车相遇;(3)①当两车行驶的路程之和为300﹣200=100(km)时,两车相距200km,此时x=100÷(100+60)=;②当两车行驶的路程和为300+200=500(km)时,两车相距200km,∵x=3时,快车到达乙地,即快车行驶了300km,∴当慢车行驶200km时,两车相距200km,此时x=200÷60=,综上所述,x为或时,两车相距200km.22.解:(1)设l辆A型车载满货物一次可运货x吨,l辆B型车载满货物一次可运货y吨,依题意得:,解得:.答:l辆A型车载满货物一次可运货3吨,l辆B型车载满货物一次可运货4吨.(2)依题意得:3a+4b=35,∴b=,又∵a,b均为自然数,∴或或,∴共有3种租车方案,方案1:租用A型车1辆,B型车8辆;方案2:租用A型车5辆,B型车5辆;方案3:租用A型车9辆,B型车2辆.(3)选择方案1所需租车费为1×300+8×320=2860(元);选择方案2所需租车费为5×300+5×320=3100(元);选择方案3所需租车费为9×300+2×320=3340(元).∵2860<3100<3340,∴最省钱的租车方案是方案1:租用A型车1辆,B型车8辆,最少租车费为2860元.23.解:(1)在直线y=﹣x+8中,令x=0,则y=8;令y=0,则x=6,∴A(6,0),B(0,8),∴AO=6,BO=8,∴AB=10=AC,∴OC=6+10=16,即C(16,0);(2)∵A(6,0),B(0,8),C(16,0),∴OB=8,OC=16,∵OD=m,∴BD=8+m,∵将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处,∴DC=BD=8+m,在Rt△ODC中,m2+162=(m+8)2,解得m=12,∴D(0,﹣12),设CD的解析式为y=kx+b,则,解得,∴CD的解析式为y=x﹣12;(3)由方程组,解得,∴点E坐标为(,﹣),∴S△ADE=×10×12﹣×10×=36.24.解:【解决问题】(1)如图3,∵∠D+∠DCE=∠E+∠DAE,∠E+∠ECB=∠B+∠EAB,∴∠D+∠DCE+∠B+∠EAB=2∠E+∠DAE+∠ECB,∵EC平分∠ECB,AE平分∠BAD,∴∠DCE=∠ECB,∠DAE=∠BAE,∴2∠E=∠B+∠D,∴∠E=∴∠E=(30°+40°)=×70°=35°;故答案为:35°;(2)如图(4),∠D+∠1=∠E+∠3,∠B+∠4=∠E+∠2,∴∠D+∠1+∠B+∠4=2∠E+∠3+∠2,∵CE、AE分别是∠BCD、∠BAD的平分线,∴∠1=∠2,∠3=∠4.∴2∠E=∠D+∠B,∴∠E=,又∵∠D=30°,∠B=50°,∴∠E=40度.故答案为:2∠E+∠3+∠2,∠D+∠B,40°;(3)由(1)和(2)得:∠E=,故答案为:∠E=;【类比应用】如图(5),延长BC交AD于F,∵∠BFD=∠B+∠BAD,∴∠BCD=∠BFD+∠D=∠B+∠BAD+∠D,∵CE平分∠BCD,AE平分∠BAD∴∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,∵∠E+∠ECB=∠B+∠EAB,∴∠E=∠B+∠EAB﹣∠ECB=∠B+∠BAE﹣∠BCD=∠B+∠BAE﹣(∠B+∠BAD+∠D)=(∠B﹣∠D),∵∠D=α°、∠B=β°,即∠E=(β﹣α)°.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学期末测试题(一)
一、选择题
1.以下列各组线段为边作三角形,不能构成直角三角形的是( ) A.2,3,4 B.1,2, 3 C.5,12,13 D.9,40,41 2.在(
)
2
-
,38, 0, 9, π,-0.333…,5, 3.1415,
0.010010001……(相邻两个1之间逐渐增加1个0)中,无理数有( ) A.1个 B.2个 C .3个 D.4个
3.在平面直角坐标系中,点P (-1,l )关于x 轴的对称点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 4.已知函数23
(1)m y m x
-=+是正比例函数,且图像在第二、四象限内,则m 的值是( )
A .2
B .2-
C .2±
D .1
2
-
5.下列各组数值是二元一次方程43=-y x 的解的是( )
(A )⎩⎨
⎧-==11y x (B )⎩⎨⎧==12y x (C )⎩⎨⎧-=-=2
1y x (D )⎩⎨⎧-==14
y x
6.某班50名同学的数学成绩为:5人100分,30人90分,10人75分,5人60分,则这组数据的众数和平均数分别是( )
A.90,85
B.30,85
C.30,90
D.40,82
7.在平面直角坐标系中,已知一次函数b kx y +=的图象大
致如图所示,则下列结论正的是( ) (A )k >0,b >0 (B )k >0, b <0 (C )k <0, b >0 (D )k <0, b <0. 二、填空题:(每小题3分,共24分)
1、点P 关于x 轴的对称点1P 的坐标是(4,-8),则P 点关 于原点的对称点2P 的坐标是
2、如果某公司一销售人员的个人月收入与其每月的销
售量成一次函数(如图所示),那么此销售人员的销售量在4千件时的月收
入是 元。
3、已知一个样本:1,3,5,x ,2,它的平均数为3,则这个样本的方差是 .
4、如果03)4(2=-+-+y x y x ,那么y x -2的值为
5.汽车开始行驶时,油箱中有油30升,如果每小时耗油4升,那么油箱中的剩余油量y(升)
和工作时间x (时)之间的函数关系式是
6. 如图,△ABC 中,BP 平分∠ABC ,CP 平分∠ACB ,若∠A=60°,则∠BPC=
7、如图,在平面直角坐标系中,把直线x y 3=沿y 轴向下平移后得到直线AB ,如果点N (m ,n )是直线AB 上的一点,且3m -n =2,那么直线AB 的函数表达式为
8、如图,点B 、C 分别在两条直线2y x =和y kx =上,点A 、D 是x 轴上两点,已知四边形ABCD 是正方形,则k 值为 . 三、(共52分)
1、(6分)解方程组⎪⎩
⎪
⎨⎧-==-+136
)1(2y x y x 2、 化简:311548412712-++
x
3.(本题8分) 某厂的甲、乙两个小组共同生产某种产品,若甲组先生产1天,然后两组
又各生产5天,则两组产量一样多;若甲组先生产了300个产品,然后两组又各生产了4天,则乙组比甲组多生产100个产品;甲、乙两组每天各生产多少个产品?
4.(本题6分) 已知:如图5,在△ABC 中,AD 平分外角∠EAC ,∠B=∠C .
求证:AD ∥BC 。
5.(10分)如图,在平面直角坐标系中,一次函数5+=kx y 的图象经过点 A (1,4),点B 是一次函数5+=kx y 的图象与正比例函数x y 3
2
=的图象的交点。
(1)求点B 的坐标。
(2)求△AOB 的面积。
6、(10分)某商场代销甲、乙两种商品,其中甲种商品的进价为120元/件,售件为130元/件,乙种商品的进价为100元/件,售件为150元/件。
(1)若商场用36000元购进这两种商品,销售完后可获得利润6000元,则该商场购进甲、乙两种商品各多少件?
(2)若商场要购进这两种商品共200件,设购进甲种商品x件,销售后获得的利润为y元,试写出利润y(元)与x(件)函数关系式(不要求写出自变量x 的取值范围);并指出购进甲种商品件数x逐渐增加时,利润y是增加还是减少?。