材料力学习题第六章应力状态分析答案详解
长沙理工大学材料力学练习册答案详解
第6章 应力状态分析一、选择题1、对于图示各点应力状态,属于单向应力状态的是(A )。
20(MPa )20d(A )a 点;(B )b 点;(C )c 点;(D )d 点 。
2、在平面应力状态下,对于任意两斜截面上的正应力αβσσ=成立的充分必要条件,有下列四种答案,正确答案是( B )。
(A ),0x y xy σστ=≠;(B ),0x y xy σστ==;(C ),0x y xy σστ≠=;(D )x y xy σστ==。
3、已知单元体AB 、BC 面上只作用有切应力τ,现关于AC 面上应力有下列四种答案,正确答案是( C )。
(A )AC AC /2,0ττσ==; (B )AC AC /2,/2ττσ==;(C )AC AC /2,/2ττσ==;(D )AC AC /2,/2ττσ=-=。
4、矩形截面简支梁受力如图(a )所示,横截面上各点的应力状态如图(b )所示。
关于它们的正确性,现有四种答案,正确答案是( D )。
(b)(a)(A )点1、2的应力状态是正确的;(B )点2、3的应力状态是正确的;(C )点3、4的应力状态是正确的;(D )点1、5的应力状态是正确的。
5、对于图示三种应力状态(a )、(b )、(c)之间的关系,有下列四种答案,正确答案是( D )。
τ(a)(b)(c)(A )三种应力状态均相同;(B )三种应力状态均不同;(C )(b )和(c )相同; (D )(a )和(c )相同;6、关于图示主应力单元体的最大切应力作用面有下列四种答案,正确答案是( B )。
(A)(B)(D)(C)解答:max τ发生在1σ成45的斜截面上7、广义胡克定律适用范围,有下列四种答案,正确答案是( C )。
(A )脆性材料;(B )塑性材料;(C )材料为各向同性,且处于线弹性范围内;(D )任何材料;8、三个弹性常数之间的关系:/[2(1)]G E v =+ 适用于( C )。
第二版《材料力学》第六章至第九章习题解答-(华中科大版-倪樵主编)
2 z
W
M
2 x
W2
[ ]
7-17 图示直角曲拐,C端受铅垂集中力F作用。已知a=160mm,AB杆直径D=40mm,
l=200mm ,E=200GPa, μ=0.3,实验测得D点沿45º方向的线应变 ε45º=0.265 × 10-3。试求:
(1)力F的大小;(2)若AB杆的[σ]=140MPa,试按最大切应力理论校核其强度。
T Wp
16 M 0
D3
16 125 .6
0.023
79.96MPa
单元体可画成平面单元体如图(从上往下观察)
A
6-5 试用求下列各单元体中ab面上的应力(单位MPa) 。
解:(a)
x 70
y 70
xy 0
30
x
y
2
x
y
2
cos(2 30 )
70 1 2
35
(MPa)
x y sin(2 30 ) 70
2
3 60.62 (MPa) 2
(b)
x 70
y 70
xy 0
30
x
y
2
x
y
2
cos(2 30 )
70
(MPa)
x
y
2
sin(2 30 )
0
6-6 各单元体的受力如图所示,试求:(1)主应力大小及方向并在原单元体图上绘出主 单元体;(2)最大切应力(单位MPa) 。
解: (3) My 、Mz、Mx 和F 同时作用,拉弯扭组合,任一截 面D1点是危险点
应力状态:
D1
FN M F
M
2 y
M
2 z
y
AW A
昆明理工大学工程力学应力状态答案
第一章 绪论一、是非判断题1.1 材料力学的研究方法与理论力学的研究方法完全相同。
( ) 1.2 内力只作用在杆件截面的形心处。
( ) 1.3 杆件某截面上的内力是该截面上应力的代数和。
( ) 1.4 确定截面内力的截面法,适用于不论等截面或变截面、直杆或曲杆、基本变形或组合变形、横截面或任意截面的普遍情况。
( ) 1.5 根据各向同性假设,可认为材料的弹性常数在各方向都相同。
( ) 1.6 根据均匀性假设,可认为构件的弹性常数在各点处都相同。
( ) 1.7 同一截面上正应力σ与切应力τ必相互垂直。
( ) 1.8 同一截面上各点的正应力σ必定大小相等,方向相同。
( ) 1.9 同一截面上各点的切应力τ必相互平行。
( ) 1.10 应变分为正应变ε和切应变γ。
( ) 1.11 应变为无量纲量。
( ) 1.12 若物体各部分均无变形,则物体内各点的应变均为零。
( ) 1.13 若物体内各点的应变均为零,则物体无位移。
( ) 1.14 平衡状态弹性体的任意部分的内力都与外力保持平衡。
( )1.15 题1.15图所示结构中,AD 杆发生的变形为弯曲与压缩的组合变形。
( ) 1.16 题1.16图所示结构中,AB 杆将发生弯曲与压缩的组合变形。
( )二、填空题1.1 材料力学主要研究 受力后发生的 ,以及由此产生的 。
1.2 拉伸或压缩的受力特征是 ,变形特征是 。
1.3 剪切的受力特征是 ,变形特征是 。
1.4 扭转的受力特征是 ,变形特征是 。
B题1.15图题1.16图1.5 弯曲的受力特征是 ,变形特征是 。
1.6 组合受力与变形是指 。
1.7 构件的承载能力包括 , 和 三个方面。
1.8 所谓 ,是指材料或构件抵抗破坏的能力。
所谓 ,是指构件抵抗变形的能力。
所谓 ,是指材料或构件保持其原有平衡形式的能力。
1.9 根据固体材料的性能作如下三个基本假设 , , 。
六、 材料力学应力状态分析(2)
(MPa)
τ σ
(0,-100)
tmax
(300,100)
τmax = 180MPa;
Hale Waihona Puke σOσσ三向应力状态 特例分析
作为三向应力状态的特例,平面应力状态特点:
σ =0 σ、σ 、σ σ1 、σ 2、σ3
广义胡克定律
1、胡克定律、横向变形与泊松比
y
sx x = ; E sx y = x = ; E — 泊松比
tmax
(-300,50)
300
(MPa)
τ
σ
σ
(-200,-50)
σ
O
σ
三向应力状态 特例分析
例3、如图平面应力状态,求: 主应力s1、s2 、 s3和最大切 应力tmax。
300 100
解:如图作应力圆 R=180MPa; s1 = 330MPa; s2 = 0; s3 = -30MPa;
A
2、平衡方法是分析一点处应 力状态最重要、最基本的方法
A
论证A-A截面上 必然存在切应力,而 且是非均匀分布的; 怎样证明A-A截 面上各点的应力状态 不会完全相同。
结论与讨论
A
ζ
ζ η
A
关于A点的应力状态有多种答 案、请用平衡的概念分析哪 一种是正确的。
η
η
ζ
结论与讨论
3、怎样将应力圆作为一 种分析问题的重要 手段,求解较为复杂的 应力状态问题
P
x =
由变形方程: x =
1 [s x (s y s z )] = 0; E s x = s z = 0.3( 60) = 18 MPa
P σx σy
所以铅块主应力为: ζ1 = 0;ζ2 = -18MPa; ζ3 = -60MPa;
材料力学课后标准答案
解:取轴向长为 的管分析:微元 上,作用力为
向分量 ,积分得
则: ,而
则:
题6-12图题6-13图
6-13长输水管受内压 ,管的内径为 , , ,用第四强度理论计算壁厚。(提示:可设管的轴向应变为零。)
解: ,数据代入,得:
,
所以
现已知
,
得
题6-5图
题6-6图题6-7图
6-6图示简支梁为 工字梁, , 。 点所在截面在集中力 的左侧,且无限接近 力作用的截面。试求: 点在指定斜截面上的应力; 点的主应力及主平面位置(用单元体表示)。
解: 所处截面上弯矩、剪力:
,
查型钢表后, 点以下表面对中性轴静矩:
,
同理,积分得
所以, 处转角为 ,为顺时针方向; 处挠度为 ,为竖直向下。
8-6试求图示各刚架 点的竖直位移,已知刚架各杆的 相等。
解: 段: ; 段上
由卡氏定理, 处的竖直位移
分段带入后面积分:
为正值,则与 同向,竖直向下
分析可知, 处已经作用有竖直方向的力,为了能利用卡氏定理解题, 处和竖杆中间处的 分别为
(压), (拉)
进而求得 (拉),由
求得:
8-3计算图示各杆件结构的变形能。
题8-3图
解: 首先求解 处的约束反力为
弯矩方程为:
则
分段积分:
解: 以逆时针方向为正,
,积分得
8-4试求图示各梁的 点的挠度的转角。
题8-4图
解: 以 点为 轴起点,结构的弯矩方程为:
则:
得
撤去 和 ,在 处作用逆时针向
材料力学——第6章(应力状态分析及强度理论)
t min
2t x tan 2 0 = s x s y
t max s max s min = R半 径 = 2 t min
s x s y 2 2 ( ) t x 2
25
[例6-4]求 ⑴图示单元体α =300 斜截面上的应力 ⑵主应力、主平面(单位:MPa)。
40
§6–1 应力状态概述
§6-2 平面应力状态分析
§6-3 三向应力状态分析 §6-4 广义胡克定律 §6-5 工程中常用的四种强度理论
1
拉压
扭转
弯曲
y
y
y
C
s max 压 s max 拉 s max
截面 应力 危险点
应力状态
C
o
FN
s=smax smax
MT
t max
M
t max
2
S平面
n
F
1
sx 面上的应力(s ,t )
tx
y x t n D( s , t C O B(sy ,ty) 2 O
面的法线
两面夹角 两半径夹角2 ; 且转向一致。 x
A(sx ,tx)
s
23
ty
sy s t
n
t D = DC sin[ 180 ( 2 0 2 )]
O
sx sy
图2
ty
px t
同理: t = p x sin p y cos
= s x cos t y sin sin t y cos s y sin cos
经简化 得
s x s y t = sin 2 t x cos 2 2
s
sx sy
完整版材料力学性能课后习题答案整理
材料力学性能课后习题答案第一章单向静拉伸力学性能1、解释下列名词。
1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。
2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。
3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。
4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。
6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。
脆性:指金属材料受力时没有发生塑性变形而直接断裂的能力韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。
7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。
8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。
是解理台阶的一种标志。
9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。
10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。
沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。
11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变2、说明下列力学性能指标的意义。
答:E 弹性模量 G 切变模量 r σ规定残余伸长应力 2.0σ屈服强度 gt δ金属材料拉伸时最大应力下的总伸长率 n 应变硬化指数 P15 3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标?答:主要决定于原子本性和晶格类型。
合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。
2015秋材料力学-答案第6次作业(应力状态+总复习补充)?
1. 有一拉伸试样,横截面为40mm 5mm ⨯的矩形。
在与轴线成45α︒=角的面上切应力150MPa τ=时,试样上将出现滑移线。
求试样所受的轴向拉力F 的数值。
(C) 解:1). 轴向拉伸杆任意斜截面上切应力公式0sin 2sin 222F Aασταα==2). 求轴向拉力F()6220.040.00515010sin 2sin 24(N)5 60000N=60kNA F ατα︒⨯⨯⨯⨯==⨯=yτA 2解:1).根据单元体上已知应力作应力圆,可得122x yx yOC CE CA σσσσ+=--==2). 求E 点坐标所对应的截面上的正应力和切应力()()cos2 cos222sin2sin22x yx yx yOF OC CF OC CE EF CE αασασσσσασσταα=-=--=--+-=+-===3. 试用应力圆的几何关系求图示悬臂梁距离自由端为0.72m 的截面上,在顶面以下40mm 的一点处的最大及最小主应力,并求最大主应力与x 轴之间的夹角。
解:1). 求目标A 点处的正应力A 点处的弯矩:100.727.2kN m M =⨯=3367.2100.04120.080.16 10.5510Pa=10.55MP P a(a)x z M y I σ⨯⨯⨯⨯==⨯=⨯ A 点处的正应力为拉应力,方向见单元体图=10.55MPax2). 求目标A 点处的切应力A 点处的剪力:10kN S F =(方向向上)23222361010120.160.0424420.080.16 0.8810Pa=0.88MPa(Pa)S xy z F h y I τ⎛⎫⎛⎫⨯⨯=-=⨯- ⎪ ⎪⨯⨯⎝⎭⎝⎭=⨯ (根据单元体上切应力的符号规定,该切应力是逆时针,为负) 3). 根据A 点处的单元体绘制应力圆,并求最大、最小主应力作应力圆(注:单元体上右侧面上的切应力为0.88MPa xy τ=-)。
材料力学习题第六章应力状态分析答案详解
材料⼒学习题第六章应⼒状态分析答案详解第6章应⼒状态分析⼀、选择题1、对于图⽰各点应⼒状态,属于单向应⼒状态的是(A )。
20(MPa )20d20(A )a 点;(B )b 点;(C )c 点;(D )d 点。
2、在平⾯应⼒状态下,对于任意两斜截⾯上的正应⼒αβσσ=成⽴的充分必要条件,有下列四种答案,正确答案是( B )。
(A ),0x y xy σστ=≠;(B ),0x y xy σστ==;(C ),0x y xy σστ≠=;(D )x y xy σστ==。
3、已知单元体AB 、BC ⾯上只作⽤有切应⼒τ,现关于AC ⾯上应⼒有下列四种答案,正确答案是( C )。
(A )AC AC /2,0ττσ==;(B )AC AC /2,/2ττσ==;(C )AC AC /2,/2ττσ==;(D )AC AC /2,/2ττσ=-=。
4、矩形截⾯简⽀梁受⼒如图(a )所⽰,横截⾯上各点的应⼒状态如图(b )所⽰。
关于它们的正确性,现有四种答案,正确答案是( D )。
(b)(a)(A)点1、2的应⼒状态是正确的;(B)点2、3的应⼒状态是正确的;(C)点3、4的应⼒状态是正确的;(D)点1、5的应⼒状态是正确的。
5、对于图⽰三种应⼒状态(a)、(b)、(c)之间的关系,有下列四种答案,正确答案是( D )。
τ(a) (b)(c)(A)三种应⼒状态均相同;(B)三种应⼒状态均不同;(C)(b)和(c)相同;(D)(a)和(c)相同;6、关于图⽰主应⼒单元体的最⼤切应⼒作⽤⾯有下列四种答案,正确答案是( B )。
(A) (B) (D)(C)解答:maxτ发⽣在1σ成45o的斜截⾯上7、⼴义胡克定律适⽤范围,有下列四种答案,正确答案是( C )。
(A)脆性材料;(B)塑性材料;(C)材料为各向同性,且处于线弹性范围内;(D)任何材料;8、三个弹性常数之间的关系:/[2(1)]G E v =+ 适⽤于( C )。
工程力学-材料力学之应力应变状态分析
求:(1)A点处的主应变 1, 2 , 3
(2)A点处的线应变 x , y , z
F1 b A F2 z b=50mm h=100mm
Hale Waihona Puke 19F2al
解:梁为拉伸与弯曲的组合变形. A点有拉伸引起的正应力
和弯曲引起的切应力.
铜块横截面上的压应力mpa3010300analysiessst155mpa铜块的主应力为mpampa30最大切应力mpa2510951010034analysiessst例题11一直径d20mm的实心圆轴在轴的的两端加力矩m126n45方向的应变analysiessstanalysiessst外径d60mm的薄壁圆筒在表面上k点与其轴线成45y两方向分别贴上应变片然后在圆筒两端作用矩为的扭转力偶如图所示已知圆筒材料的弹性常数为若该圆筒的变形在弹性范围内且analysiessst从圆筒表面k点处取出单元体其各面上的应力分量如图所示可求得mpa80maxmpa80maxanalysiessstmaxmaxmax10拉应变圆筒表面上k点处沿径向z轴的应变和圆筒中任一点该点到圆筒横截面中心的距离为maxmax因此该圆筒变形后的厚度并无变化仍然为t10mmanalysiessstb50mmh100mm例题13已知矩形外伸梁受力f作用
在任意形式的应力状态下, 各向同性材料内一点处的体
积应变与通过该点的任意三个相互垂直的平面上的正应力之
和成正比, 而与切应力无关.
11
例题10 边长 a = 0.1m 的铜立方块,无间隙地放入体积较大, 变形可略去
不计的钢凹槽中, 如图所示. 已知铜的弹性模量 E=100GPa,泊松比 =0.34, 当受到F=300kN 的均布压力作用时,求该铜块的主应力、体积应变以及最
材料力学第六版答案第06章
材料力学(金忠谋)第六版答案第06章(总27页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2弯曲应力6-1 求图示各梁在m -m 截面上A 点的正应力和危险截面上最大正应力。
题 6-1图解:(a )m KN M m m ⋅=-5.2 m KN M ⋅=75.3max 48844108.49064101064m d J x --⨯=⨯⨯==ππMPa A 37.20108.490104105.2823=⨯⨯⨯⨯=--σ (压)3 MPa 2.38108.4901051075.3823max =⨯⨯⨯⨯=--σ (b )m KN M m m ⋅=-60 m KN M ⋅=5.67max488331058321210181212m bh J x --⨯=⨯⨯== MPa A 73.611058321061060823=⨯⨯⨯⨯=--σ (压) MPa 2.104105832109105.67823max =⨯⨯⨯⨯=--σ (c )m KN M m m ⋅=-1 m KN M ⋅=1max48106.25m J x -⨯=36108.7m W x -⨯=cm y A 99.053.052.1=-=MPa A 67.38106.251099.0101823=⨯⨯⨯⨯=--σ (压) MPa 2.128106.2510183max =⨯⨯=-σ 6-2 图示为直径D =6 cm 的圆轴,其外伸段为空心,内径d =4cm ,求轴内最大正应力。
4解:)1(32431απ-=D W x⎪⎭⎫ ⎝⎛-⨯⨯⨯=-463)64(110326π 361002.17m -⨯=3463321021.213210632m D W x --⨯=⨯⨯==ππMPa 88.521002.17109.0631=⨯⨯=-σ MPa 26.551021.2110172.1631=⨯⨯=-σ MPa 26.55max =σ6-3 T 字形截面铸铁梁的尺寸与所受载荷如图示。
材料力学第6章弯曲应力习题答案
材料力学习题 应力状态分析答案详解
13、在图示梁的A点测得梁在弹性范围内的纵横方向的线应变 、 后,所能算出的材料常数有( D )。
(A)只有E;(B)只有v;(C)只有G;(D)E、v和G均可算出。
解析:中间段为纯弯曲,A点为单向拉伸,
则
14、纯剪应力状态下,各向同性材料单元体的体积改变有四种答案,正确答案是( C )。
解答:
确定 , 确定
6、 物体内某一点,载荷系统Ⅰ和载荷系统Ⅱ单独作用时产生的应力状态分别如图(a)和(b)所示。试求两载荷系统同时作用时(仍处于弹性小变形)的主单元体和主应力。
解答:
7、构件上某点处的应力状态如图所示。试求该点处的主应力及最大切应力之值,并画出三向应力状态的应力圆。
解答:
8、图示单元体,已知 、 及该点的最大主应力 。求该点的另外两个主应力 、 及最大切应力 。
解答:
确定
确定
2、已知应力状态如图。试求主应力及其方向角,并确定最大切应力值。
解答:
确定
所以 确定
3、图示单元体,求:(1)指定斜截面上的应力:(2)主应力大小,并将主平面标在单元体图上。
解答:
确定
所以 确定
4、用解析法求图示单元体ab面上的应力( ),并求 及主应力。
解答:
5、试求图示单元体主应力及最大切应力,并将主平面在单元体上标出。
由第三强度理论 安全
10、直径为20mm的圆截面折杆受力情况如图所示,已知:F=0.2kN,材料的许用应力为 。试用第三强度理论确定折杆的长度a的许用值。
解答:
在危险截面A上危险点在七上下边缘
由第三强度理论
取
11、AB、CD两杆互相垂直,在水平面内,C点的集中力2F及D点的集中力F与刚架平面垂直。已知F=20kN,l=1m,各杆直径相同d=10cm, 。试按最大切应力强度理论校核强度。
材料力学习题册答案第六章
材料力学习题册答案第六章材料力学习题册答案第六章材料力学作为工程力学的一个重要分支,研究材料在受力作用下的力学性能和变形行为。
在学习过程中,习题册是一个很好的辅助工具,能够帮助我们巩固所学的知识。
本文将为大家提供材料力学习题册第六章的答案,希望能够对大家的学习有所帮助。
第六章主要涉及材料的应变和应力分析,包括平面应变和平面应力的分析方法。
在这一章中,我们将学习如何计算材料在受力作用下的应变和应力分布,以及如何通过应变和应力分布来判断材料的强度和稳定性。
在第六章的习题中,我们会遇到一些典型的问题,例如平面应变和平面应力的计算,应变和应力的变换关系,以及应力的主方向和主应力的计算等。
以下是一些典型问题的答案,供大家参考:1. 一个长方形钢板的尺寸为20cm×30cm,厚度为5mm。
当该钢板受到拉伸力为5000N时,求钢板上的应力分布。
答案:首先计算钢板的截面积,即20cm×30cm=600cm²=0.06m²。
然后应力等于受力除以截面积,即5000N/0.06m²=83333.33Pa。
因此钢板上的应力分布为83333.33Pa。
2. 一个正方形钢材的尺寸为10cm×10cm,厚度为2mm。
当该钢材受到压力为2000N/m²时,求钢材上的应变分布。
答案:首先计算钢材的截面积,即10cm×10cm=100cm²=0.01m²。
然后应变等于受力除以截面积,即2000N/m²/0.01m²=200000。
因此钢材上的应变分布为200000。
3. 一个矩形钢板的尺寸为30cm×40cm,厚度为5mm。
当该钢板受到拉伸力为10000N时,求钢板上的最大应力和最小应力。
答案:首先计算钢板的截面积,即30cm×40cm=1200cm²=0.12m²。
然后最大应力等于受力除以截面积,即10000N/0.12m²=83333.33Pa。
长沙理工大学材料力学练习册答案1-5章
材料力学 分析与思考题集第一章 绪论和基本概念一、选择题1.关于确定截面内力的截面法的适用范围,有下列四种说法:【D.适用于不论等截面或变截面、直杆或曲杆、基本变形或组合变形、横截面或任意截面的普通情况。
2.关于下列结论的正确性:【C 1.同一截面上正应力τσ与剪应力必须相互垂直3.同一截面上各点的剪应力必相互平行。
】3.下列结论中那个是正确的:【B.若物体各点均无位移,则该物体必定无变形】4.根据各向同性假设,可认为构件的下列量中的某一种量在各方向都相同:【B 材料的弹性常数】5.根据均匀性假设,可认为构件的下列量中的某个量在各点处都相同:【C 材料的弹性常数】6.关于下列结论:【C 1.应变分为线应变ε和切应变γ 2.应变为无量纲量 3.若物体的各部分均无变形,则物体内各点的应变均为零】7.单元体受力后,变形如图虚线所示,则切应变γ为【B 2α】二、填空题1.根据材料的主要性能作如下三个基本假设 连续性假设 , 均匀性假设 和 各向同性假设 。
2.构件的承载能力包括强度、刚度和稳定性三个方面。
3.图示结构中,杆1发生轴向拉伸变形,杆2发生轴向压缩变形,杆3发生弯曲变形。
4.图示为构件内A 点处取出的单元体,构件受力后单元体的位置为虚线表示,则称dx du /为A 点沿x 方向的线应变,dy dv /为【A 点沿y 方向的线应变】,)(21a a +为【A 在xy 平面内的角应变】。
5.认为固体在其整个几何空间内无间隙地充满了物质,这样的假设称为连续性假设。
根据这一假设,构件的应力、应变和位移就可以用坐标的连续性函数来表示。
6.在拉(压)杆斜截面上某点处分布内力集度称为应力(或全应力),它沿着截面法线方向的分量称为正应力,而沿截面切线方向的分量称为切应力。
第二章 杆件的内力分析一、选择题1.单位宽度的薄壁圆环受力如图所示,p 为径向压强,其n-n 截面上的内力N F 有四个答案:【B 2/pD 】2.梁的内力符号与坐标系的关系是:【B 剪力、弯矩符号与坐标系无关】3.梁的受载情况对于中央截面为反对称(如图)。
材料力学习题应力状态分析答案详解
1、图示应力状态,按第三强度理论的强度条件为 。
(注: )
解答:
2、第三强度理论和第四强度理论的相当应力分别为 及 ,对于纯剪切应力状态,恒有 / = 。
解答:纯剪应力状态
3、一般情况下,材料的塑性破坏可选用最大剪应力或形状改变能密度强度理论;而材料的脆性破坏则选用最大拉应力或最大伸长线应变强度理论(要求写出强度理论的具体名称)。
解答:
17、一体积为10×10×10mm3的立方铝块,将其放入宽为10mm的刚性槽中,已知v(铝)=0.33,求铝块的三个主应力。
解答:
18、外径为D、内径为d的空心圆轴受扭转时,若利用一电阻应变片作为测力片,用补偿块作为温度补偿,采用半桥接线。问:(1)此测力电阻片如何粘贴可测出扭矩;(2)圆轴材料的E、v均为已知, 为测得的应变值,写出扭矩计算式。
解答:
7、构件上某点处的应力状态如图所示。试求该点处的主应力及最大切应力之值,并画出三向应力状态的应力圆。
解答:
8、图示单元体,已知 、 及该点的最大主应力 。求该点的另外两个主应力 、 及最大切应力 。
解答:
9、试确定图示单元体的最大切应力,以及图示斜截面上的正应力和切应力。
解答:
10、已知受力构件某处的 , , ,材料的E=200GPa,v=0.3。试求该点处的 、 。
解答:在危险截面A上危险点在七上下边缘
由第三强度理论
不安全
12、图示齿轮传动轴内电机带动,作用在齿轮上的力如图示,已知轴的直径d=30mm,P=0.8kN,Q=2kN,l=50mm,齿轮节圆直径D=200mm。试用第三强度理论校核轴的强度。已知轴的 。
13、图示传动轴,皮带轮Ⅰ直径D1=80cm,皮带轮Ⅱ直径D2=40cm,已知轴的许用应力 。试以第四强度理论设计轴的直径d,并指出危险截面位置,画出危险点的应力状态。
材料力学第六章应力状态与强度理论
e
xy
x
b
a
a
f
y
yx
第6章
应力状态与强度理论
斜截面应力
由图 d 所示体元上各面上的力的平衡,参考法 线n和切线t方向可得:
(d)
e
xy dA cosa xdA cosa
b yx dA sina
adA
n
adA
f t
n 0
y dA sina
⇒
a dA x dA cos a cosa xy dA cos a sin a
x y
2
x y
2
因此,C点坐标为应力圆圆心坐标,并且
B1B2 2 x y 2 CD1 B1D1 xy 2 2
该线段长度等于应力圆半径。从而证明上述 圆确为应力圆。
2
2
第6章
应力状态与强度理论
由图b可见,A1、A2两点的横坐标为:
OA1 OC CA1
OA2 OC CA2
第6章
应力状态与强度理论
主应力
由此可得两个主应力值为:
应力圆
2
1
x y
2
x y 2 2 xy
x y 2 2 xy
⇒
其中dA为斜截面ef的面积。 由此可得,任一斜截面上的应力分量为:
a
x y
2
x y
2
cos 2a xy sin 2a
a
x y
2
sin 2a xy cos 2a
第6章
应力状态与强度理论
材料力学答案第六章
第六弯曲应力第六章答案6.1钢丝直径d=0.4mm, 弹性模量E=200GPa, 若将钢丝弯成直径D=400mm 的圆弧时,试求钢丝横截面上的最大弯曲正应力。
(200MPa ) 解:钢丝的弯矩和中性层曲率半径之间的关系为:EIM =ρ1则: ρEIM =,由弯曲正应力公式得ρσmaxmax My ==ρmaxEy ,钢丝弯成圆弧后,产生的弯曲变形,其中性层的曲率半径22Dd D ≈+=ρ 2)2(maxD dE =σ==D Ed MPa 2004004.0102003=⨯⨯6.2 矩形截面梁如图所示。
b = 8cm, h =12cm, 试求危险截面上a 、c 、d 三点的弯曲正应力。
(20.8MPa, 10.4MPa, 0) 解:由平衡方程0)(=∑F M A得到: KN F F B A 44221=⨯⨯== 危险截面在梁的中点处:KNm ql M 442818122max =⨯⨯==I z =1212h b ⨯⨯=44310115212080121mm ⨯=⨯⨯MP a I My MPa I MyI My z d d z c c za a 83.201011526010442.101011523010404646=⨯⨯⨯===⨯⨯⨯====σσσA F BF s F MM机械土木6.3 从直径为d 的圆木中截取一矩形截面梁,试根据强度观点求出所截取的矩形截面的最合理的高h 和宽b 。
(h=d 36, b=d 33) 解:最大弯曲正应力:zz W My I M m a x m a x m a x m a x ==σ h/b 的最佳值应应使梁的抗弯截面系数为最大。
抗弯截面系数: )(61)(616132222b b d b d b bh W -=-==为b 为自变量的函数。
由 06322=-=b d dt dW 36 333222db d h d d b =-===6.4 图示两根简支梁,其跨度、荷载及截面面积都相同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7、构件上某点处的应力状态如图所示。试求该点处的主应力及最大切应力之值,并画出三向应力状态的应力圆。
解答:
8、图示单元体,已知 、 及该点的最大主应力 。求该点的另外两个主应力 、 及最大切应力 。
解答:
9、试确定图示单元体的最大切应力,以及图示斜截面上的正应力和切应力。
解答:
10、已知受力构件某处的 , , ,材料的E=200GPa,v=0.3。试求该点处的 、 。
13、空心圆轴外径D=8cm,内径d=6cm,两端受外力偶矩m作用。测得表面上一点沿 方向的线应变 。材料弹性模量E=2×105MPa,泊松比v=0.3,求外力偶矩m。
解答:
纯剪应力状态,则:
14、一个处于二向应力状态下的单元体,材料E=200GPa,v=0.3, , 。求最大切应变 。
解答:
15、圆轴直径为d,材料的弹性模量为E,泊松比为v,为了测得轴端的力偶m之值,但只有一枚电阻片。试设计电阻片粘贴的位置和方向;若按照你所定的位置和方向,已测得线应变为 ,则m=?
解答:
(1)电阻片贴在与轴线成沿 方向,设
(2)取单元体如图,
19、一平均半径为R,壁厚为t(t≤R/10)的薄壁圆球受内压力p作用。已知球体材料的E、v,求圆球半径的改变量。
解析:因纯剪应力状态:
体积改变比能
二、填空题
1、图示单元体属于单向(拉伸)应力状态。
2、图示梁的A、B、C、D四点中,单向应力状态的点是A、B,纯剪应力状态的点是D,在任何截面上应力均为零的点是C。
三、计算题
1、求图示单元体的主应力,并在单元体上标出其作用面的位置。
解答:
确定
确定
2、已知应力状态如图。试求主应力及其方向角,并确定最大切应力值。
(A)等于零;(B)大于零;(C)小于零;(D)不能确定。
解析:
11、图示应力状态,现有四种答案,正确答案是(B)。
(A) ;(B) ;(C) ;(D)不能确定。
解析:
12、某点的应力状态如图所示,当 、 、 , 增大时,关于 值有以下四种答案,正确答案是(A)。
(A)不变;(B)增大;(C)减小;(D)无法判断。
解析:在推导公式过程中用到了虎克定律,且G、E、v为材料在比例极限内的材料常数,故适应于各向同性材料,应力在比例极限范围内
9、点在三向应力状态中,若 ,则关于 的表达式有以下四种答案,正确答案是(C)。
(A) ;(B) ;(C)0;(D) 。
解析:
10、图示单元体处于纯剪切应力状态,关于 方向上和线应变,现有四种答案,正确答案是(C)。
解答:
确定
所以 确定
3、图示单元体,求:(1)指定斜截面上的应力:(2)主应力大小,并将主平面标在单元体图上。
解答:
确定
所以确定
4、用解析法求图示单元体ab面上的应力( ),并求 及主应力。
解答:
5、试求图示单元体主应力及最大切应力,并将主平面在单元体上标出。
解答:
确定 , 确定
6、物体内某一点,载荷系统Ⅰ和载荷系统Ⅱ单独作用时产生的应力状态分别如图(a)和(b)所示。试求两载荷系统同时作用时(仍处于弹性小变形)的主单元体和主应力。
7、广义胡克定律适用范围,有下列四种答案,正确答案是(C)。
(A)脆性材料;(B)塑性材料;
(C)材料为各向同性,且处于线弹性范围内;(D)任何材料;
8、三个弹性常数之间的关系: 适用于(C)。
(A)任何材料在任何变形阶级;(B)各向同性材料在任何变形阶级;
(C)各向同性材料应力在比例极限范围内;(D)任何材料在弹性变形范围内。
解析:与 无关
13、在图示梁的A点测得梁在弹性范围内的纵横方向的线应变 、 后,所能算出的材料常数有(D)。
(A)只有E;(B)只有v;(C)只有G;(D)E、v和G均可算出。
解析:中间段为纯弯曲,A点为单向拉伸,
则
14、纯剪应力状态下,各向同性材料单元体的体积改变有四种答案,正确答案是(C)。
(A)变大;(B)变小;(C)不变;(D)不一定。
解答:
11、图示拉杆,F、b、h以及材料的弹性常数E、v均为已知。试求线段AB的正应变和转角。
解答:
12、求图示梁1—1截面B点与水平方向成 角方向的线应变 。已知F=10kN,l=4m,h=2b=200mm,E=1×104MPa,v=0.25。
解答:
从 、 图知,由于B点在中性轴上,故为纯剪应力状态,对于纯剪应力状态,有:
第6章 应力状态分析
一、选择题
1、对于图示各点应力状态,属于单向应力状态的是(A)。
(A)a点;(B)b点;(C)c点;(D)d点。
2、在平面应力状态下,对于任意两斜截面上的正应力 成立的充分必要条件,有下列四种答案,正确答案是(B)。
(A) ;(B) ;(C) ;(D) 。
3、已知单元体AB、BC面上只作用有切应力 ,现关于AC面上应力有下列四种答案,正确答案是(C)。
5、对于图示三种应力状态(a)、(b)、(c)之间的关系,有下列四种答案,正确答案是(D)。
(A)三种应力状态均相同;(B)三种应力状态均不同;
(C)(b)和(c)相同;(D)(a)和(c)相同;
6、关于图示主应力单元体的最大切应力作用面有下列四种答案,正确答案是(B)。
解答: 发生在 成 的斜截面上
(A) ;(B) ;
(C) ;(D) 。
4、矩形截面简支梁受力如图(a)所示,横截面上各点的应力状态如图(b)所示。关于它们的正确性,现有四种答案,正确答案是(D)。
(A)点1、2的应力状态是正确的;(B)点2、3的应力状态是正确的;
(C)点3、4的应力状态是正确的;(D)点1、5的应力状态是正确的。
解答:
(1)电阻片沿图示 方向粘贴于轴的表面,设
(2)取单元体如图,
16、如图所示,薄壁圆筒受扭矩和轴向力作用。已知圆筒外径D=52mm,壁厚t=2mm,外力偶矩m=600 ,拉力F=20kN。试用单元体表示出D点的应力状态;求出与母线AB成 角的斜截面上的应力;求出该点的主应力与主平面位置(并在单元体上画出)。
解答:
17、一体积为10×10×10mm3的立方铝块,将其放入宽为10mm的刚性槽中,已知v(铝)=0.33,求铝块的三个主应力。
解答:
18、外径为D、内径为d的空心圆轴受扭转时,若利用一电阻应变片作为测力片,用补偿块作为温度补偿,采用半桥接线。问:(1)此测力电阻片如何粘贴可测出扭矩;(2)圆轴材料的E、v均为已知, 为测得的应变值,写出扭矩计算式。