第12讲较难的比例解行程
较难的比例解行程解析
【例1】一列火车出发 1 小时后因故停车 0.5 小时,然后以原速的34前进,最终到达目的地晚1.5 小时.若出发 1 小时后又前进 90 公里再因故停车 0.5 小时,然后同样以原速的34前进,则到达目的地仅晚1 小时,那么整个路程为多少公里?【巩固】 王叔叔开车从北京到上海,从开始出发,车速即比原计划的速度提高了1/9,结果提前一个半小时到达;返回时,按原计划的速度行驶 280 千米后,将车速提高1/6,于是提前1 小时 40 分到达北京.北京、上海两市间的路程是多少千米?例题精讲较难的比例解行程问题【巩固】一辆货车从甲地开往乙地,如果按原速行驶,将不能准时到达,如果速度提高1/5,可以比原定时间早1小时到达;如果以原速度行驶120km以后,再将速度提高1/4,则可以提前40分钟到达。
那么甲,乙两地间的距离是多少千米?【例2】甲、乙两人分别从A B、两地同时出发,相向而行。
出发时他们的速度之比是3:2,相遇后,甲的速度提高20%,乙的速度提高1,这样当甲到达B地时,乙离A地还有41千3米,那么A B、两地相遇__________千米。
【巩固】甲、乙两车分别从A、B两地同时出发,相向而行.出发时,甲、乙的速度之比是5 : 4,相遇后甲的速度减少20%,乙的速度增加20%.这样当甲到达B地时,乙离A 地还有10 千米.那么A、B两地相距多少千米?【巩固】甲乙两人分别从A,B两地相向出发,其速度比为3:2,他们第一次相遇后,甲的速度提高了20%,乙的速度提高了30%,这样当甲到达B地时,乙离A地还有42km,那么A,B两地的距离是()km.【巩固】甲乙两人同时从两地相向而行,乙的速度是甲的1.5倍,相遇后甲的速度提高了2倍。
若两人同时到达目的地,那么相遇后,乙的速度为其原来的速度的多少倍?【例3】甲、乙两人同时从A、B两点出发,甲每分钟行80米,乙每分钟行60米,出发一段时间后,两人在距中点的C处相遇;如果甲出发后在途中某地停留了7分钟,两人将在距中点的D处相遇,且中点距C、D距离相等,问A、B两点相距多少米?【巩固】如图3,甲、乙二人分别在A、B两地同时相向而行,于E处相遇后,甲继续向B 地行走,乙则休息了14分钟,再继续向A地行走。
(小学奥数)比例解行程问题
1. 理解行程問題中的各種比例關係.2. 掌握尋找比例關係的方法來解行程問題.比例的知識是小學數學最後一個重要內容,從某種意義上講仿佛扮演著一個小學“壓軸知識點”的角色。
從一個工具性的知識點而言,比例在解很多應用題時有著“得天獨厚”的優勢,往往體現在方法的靈活性和思維的巧妙性上,使得一道看似很難的題目變得簡單明瞭。
比例的技巧不僅可用於解行程問題,對於工程問題、分數百分數應用題也有廣泛的應用。
我們常常會應用比例的工具分析2個物體在某一段相同路線上的運動情況,我們將甲、乙的速度、時間、路程分別用,,v v t t s s 乙乙乙甲甲甲,;;來表示,大體可分為以下兩種情況:1. 當2個物體運行速度在所討論的路線上保持不變時,經過同一段時間後,他們走過的路程之比就等於他們的速度之比。
s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙,這裏因為時間相同,即t t t ==乙甲,所以由ss t t v v ==甲乙乙甲乙甲, 得到s s t v v ==甲乙乙甲,s vs v =甲甲乙乙,甲乙在同一段時間t 內的路程之比等於速度比2. 當2個物體運行速度在所討論的路線上保持不變時,走過相同的路程時,2個物體所用的時間之比等於他們速度的反比。
s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙,這裏因為路程相同,即s s s ==乙甲,由s v t s v t =⨯=⨯乙乙乙甲甲甲, 得s v t v t =⨯=⨯乙乙甲甲,vt v t =甲乙乙甲,甲乙在同一段路程s 上的時間之比等於速度知識精講教學目標比例解行程問題比的反比。
模組一:比例初步——利用簡單倍比關係進行解題【例 1】甲、乙兩車從相距330千米的A、B兩城相向而行,甲車先從A城出發,過一段時間後,乙車才從B城出發,並且甲車的速度是乙車速度的5。
當兩車相遇時,甲車比乙車多行駛了30千米,則甲車開出6千米,乙車才出發。
【例 2】甲乙兩地相距12千米,上午10:45一位乘客乘計程車從甲地出發前往乙地,途中,乘客問司機距乙地還有多遠,司機看了計程表後告訴乘加上未走路程的2倍,恰好等於已走的路程,又知計客:已走路程的13程車的速度是30千米/小時,那麼現在的時間是。
比和比例解行程问题
比和比例知识在行程问题中的运用知识导航行程问题是根据速度、时间、路程三要素之间的关系,研究物体相向、相背、和同向运动的问题。
按运动方向可以分为相遇问题、追及问题等,也可以按运动路线分为直线上的行程问题和封闭曲线上的行程问题等。
解决相遇问题和追及问题常用到:相遇时间=路程和÷速度和,追及时间=路程差÷速度差在分析中要注意出发的时间、地点、行驶的方向、速度的变化、相遇的地点等基本要素。
有的行程问题结合了周期问题或将行程问题中的几种基本形式综合在同一个题中,使得数量关系变得复杂,我们可先画出线段图帮助分析,再结合所学知识综合分析进行解答。
行程问题常常要用到分数、比和比例的知识。
我们知道:时间一定,路程与速度成正比;速度一定,路程与时间成正比;路程一定,速度与时间成反比。
有时我们还可以根据题目中的条件和比例关系列方程解答。
例题例1:小明每天早晨6∶50从家出发,7∶20到校。
老师要求他明天提早6分钟到校。
如果小明明天早晨还是6∶50从家出发,那么,每分钟必须比往常多走25米,才能按老师的要求准时到校。
问小明家距学校多远?(1995年“《小学数学报》杯”初赛试题)变式训练张、李、赵三人都从甲地到乙地,上午六时,张、李二人一起从甲地出发,张每小时走5千米,李每小时走4千米,赵上午八时才从甲地出发,傍晚六时,赵、张同时到达乙地,那么赵追上李的时间是什么时候?(1994年小学数学奥林匹克初赛民族卷)例2:小东和小西骑摩托车分别从甲、乙两城同时相对出发,经过4小时相遇,相遇后各自继续前进,又经过3小时,小东到达乙地,小西离甲地还有25千米。
甲、乙两地相距多少千米?变式训练甲、乙两车分别同时从A、B两地相对开出,速度比是7∶11。
两车第一次相遇后继续按原方向前进,各自到达终点后立即返回,第二次相遇时甲车离B 地40千米。
A、B两地相距多少千米?例3:甲、乙二人分别从A、B两地同时出发相向而行,出发时他们的速度比是4∶3,他们相遇后,甲的速度增加了10%,乙的速度增加了20%。
比例法解行程问题
比例法解行程问题
比例法解行程问题是一种常见的数学方法,可以用来解决有关行程问题的问题。
比例法的基本思想是将复杂的行程问题转化为简单的比例关系。
具体来说,如果一个行程问题中涉及到两个量,比如路程和时间,我们可以将它们的比例关系表示出来,然后通过比例关系来推导出问题的答案。
下面是比例法解行程问题的三个步骤:
1. 找到两个量的比例关系。
通常可以通过比较它们的长度、时间、体积等来找到它们的比例关系。
2. 根据比例关系列出比例式。
例如,如果两个量的比例关系是3:4,那么可以列出比例式 3/4。
3. 利用比例式推导出问题的答案。
例如,如果问题要求总共需要多少时间,可以利用比例式推导出答案:4 小时 = 总共需要时间
× 3,因此总共需要时间 = 4 ÷ 3 = 1.33 小时 (保留两位小数)。
比例法不仅可以解决常见的行程问题,还可以解决其他相似的问题,比如机械效率、生产率等问题。
高斯小学奥数六年级上册含答案第12讲复杂行程问题
第十二讲复杂行程问题认的没 箱动;•扶,快数 高太沬 阿呆阳瓜到欣欣胡场,有到曲部电梯,一 部向丄行驶.一鄙向下 行驶"觉得很冇意思这一讲,是我们最后一次系统地学习行程问题,我们将针对扶梯问题、优化配置问题、往返接送问题等几类特殊的行程问题进行详细讲解.它们都是整个行程问题中复杂度较高,难度较大的问题,需要大家对以前学过的各种分析方法有比较好的掌握,并能够将它们综合运用.本讲知识点汇总:一.扶梯问题1. 扶梯问题类似于流水行船问题,解题时要注意人速和电梯速度的合成.2. 和流水行船的不同,扶梯问题通常会考虑“人走的路程”和“电梯带人走的路程”,所以在解题时通常需要把路程分拆.3. 解题时注意比例法的应用.二.优化配置问题注意“极值”发生时的状况;三.往返接送一般的往返接送问题的过程如下:1. 车载甲出发,乙步行前进;2. 在某地甲下车,甲、乙步行,车返回接乙;3. 车接上乙后继续向目的地前进,甲、乙同时到达终点.A------------------------------------------ B甲 ------------- ②“丄^②①「② ③___________________________<乙往返接送的不同类型:1. 车速不变,人速相同;此时图是对称的,即甲、乙会走同样多路程,此时只要把①和②两个过程合并起来考虑即可.2. 车速不变,人速不同;此时两人走的路程不同(走的快的人会多走一些),所以需要先把①、②过程合并,再把②、③过程合并,用这两次过程分别计算比例.3. 车速不同,人速相同;4. 车速不同,人速不同;5. 多组往返接送.例1.自动扶梯由下向上匀速运动,每两秒向上移动了1级台阶.卡莉娅在扶梯向上行走,每秒走两级台阶.已知自动扶梯的可见部分共120级,卡莉娅沿扶梯向上走,从底部走到顶部的过程中,她共走了多少级台阶?「分析」当卡莉娅顺着扶梯向前进时,她所走过的路程应该小于扶梯可见部分长度,因为除了她自身向前走了一段距离外,扶梯还把她往前带了一段,这两段路程加起来才是扶梯可见部分的总长.卡莉娅 4 扶梯»扶梯可见部分练习1、自动扶梯由下向上匀速运动,每两秒向上移动了1级台阶.卡莉娅在扶梯向下行走,每秒走两级台阶.已知自动扶梯的可见部分共120级,卡莉娅沿扶梯向下走,从底部走到顶部的过程中,她共走了多少级台阶?例2.自动扶梯由下向上匀速运动,甲从顶部向下走到底部,共走了150级;乙从底部向上走到顶部,共走了75级.如果甲的速度是乙的速度的3倍,那么扶梯可见部分共有多少级?「分析」甲逆着扶梯走,他走过的台阶数比扶梯可见部分台阶数多还是少?乙顺着扶梯走,他走过的台阶数比扶梯可见部分台阶数多还是少?练习2、自动扶梯由上向下匀速运动,甲从顶部向下走到底部,共走了90级;乙从底部向上走到顶部,共走了120级.如果乙的速度是甲的速度的2倍,那么扶梯可见部分共有多少级?例3.四辆汽车分别停在一个十字路口的四条岔路上,它们与路口的距离都是18千米,四辆车的最大时速分别为40千米、50千米、60千米和70千米.现在四辆汽车同时出发沿着公路行驶,那么最少要经过多少分钟,它们才能设法相聚在同一地点?「分析」 4 辆车要能够相聚在同一地点,一个前提要求是在相应的时间内,任意两辆车必须能够相聚到同一地点.练习3、一个边长为4 千米的正方形环路,它的四个顶点处各有一辆汽车,最大时速分别为10千米、10 千米、40千米、40千米.允许调整四辆车的初始位置,但必须保证每个环路四个顶点处各有一辆车.如果 4 辆车同时出发,开到环路上的某个地方集合,最少需要多少分钟?例4.某种小型飞机满油最多能飞行1500千米,但不够从A地飞到B地.如果从A地派3架这样的飞机,通过实现空中供给油料,可以使其中一架飞机飞到 B 地,另两架安全返回 A 地,那么A、B 两地最远相距多少千米?「分析」只需让一架飞机飞到 B 地即可,其余两架安全返回.返回的两架飞机其实就是给飞往 B 地的飞机供油的.练习4、一支轻骑摩托小分队奉命把一份重要文件送到距驻地很远的指挥部.每辆摩托车装满油最多能行120千米,且途中没有加油站.由于一辆摩托车无法完成任务,队长决定派四辆摩托车执行任务,其中一辆摩托车负责把文件送到指挥部,另三辆则在中途供给油料后安全返回驻地.请问:指挥部距小分队驻地最远可能是多少千米?例5.高思学校的80 名同学去距学校36 千米的铁路博物馆参观.但学校只有一辆接送车,车上最多只能载40 人(除了司机).已知车速每小时45 千米,同学们步行速度是每小时5 千米.那么他们最少需要多少分钟才能到达博物馆?「分析」首先要把全部同学等分成两队,然后保证两队同时达目的地,为了保证尽可能快的到达目的地,汽车送一个队走的时候,另外一个队也要步行往前走,这样显然会更快一点.另外,汽车把第一拨人到底送到哪里放下呢?如果送到终点,那么汽车回去接另一拨人时,第一拨人就在目的地干等着,这显然不合理;若是放下的较早,则汽车回头把第二拨人接到终点时第一拨人还没到,还得再回去接第一拨人,这显然也不合理.因此,放下第一拨人的时间应该恰到好处:汽车把第一拨人送到某个地方放下,回去接第二拨人,将第二拨人送到目的地时第一拨人恰好也到目的地.例6.超人队和蝙蝠侠队从同一地点同时出发,到29千米远的体育馆参加比赛,但只有一辆接送车,一次只能乘坐一个队的队员.超人队的步行速度是6千米/时,蝙蝠侠队的步行速度是3千米/时,汽车速度是42千米/时.为了尽快到达体育馆,那么超人队步行的距离是多少千米?「分析」同上一题目,注意这一次两队步行路程是不一样的.同时性的妙用——苏步青的狗/ 苏步青是我国著名的数学家.他小时候,有人曾给他出了这样一道数学题:甲、乙两人: 同时从两地出发,相向而行,距离是50公里,甲小时走6公里,乙每小时走4公里.甲有:一条狗,每小时跑8公里.这只狗和甲一起出发朝乙跑去,碰到乙的时候它又掉转头跑回甲, : :碰到甲又掉头跑向乙……就这样来回跑,直到两人碰头为止. 那么这条狗一共跑了多少公里 :; -路?:达目的地,汽车送一个队走的时候,另外一个队也要步行往前走,这样显然会更快一点.另外,汽车把第一拨人到底送到哪里放下呢?如果送到终点,那么汽车回去接另一拨人时,第一拨人就在目的地干等着,这显然不合理;若是放下的较早,则汽车回头把第二拨人接到终点时第一拨人还没到,还得再回去接第一拨人,这显然也不合理.因此,放下第一拨人的时间应该恰到好处:汽车把第一拨人送到某个地方放下,回去接第二拨人,将第二拨人送到目的地时第一拨人恰好也到目的地.例6.超人队和蝙蝠侠队从同一地点同时出发,到29 千米远的体育馆参加比赛,但只有一辆接送车,一次只能乘坐一个队的队员.超人队的步行速度是 6 千米/时,蝙蝠侠队的步行速度是3 千米/时,汽车速度是42 千米/时.为了尽快到达体育馆,那么超人队步行的距离是多少千米?「分析」同上一题目,注意这一次两队步行路程是不一样的.同时性的妙用——苏步青的狗苏步青是我国著名的数学家.他小时候,有人曾给他出了这样一道数学题:甲、乙两人同时从两地出发,相向而行,距离是50公里,甲小时走6公里,乙每小时走 4 公里.甲有一条狗,每小时跑8公里.这只狗和甲一起出发朝乙跑去,碰到乙的时候它又掉转头跑回甲,碰到甲又掉头跑向乙……就这样来回跑,直到两人碰头为止.那么这条狗一共跑了多少公里路?达目的地,汽车送一个队走的时候,另外一个队也要步行往前走,这样显然会更快一点.另外,汽车把第一拨人到底送到哪里放下呢?如果送到终点,那么汽车回去接另一拨人时,第一拨人就在目的地干等着,这显然不合理;若是放下的较早,则汽车回头把第二拨人接到终点时第一拨人还没到,还得再回去接第一拨人,这显然也不合理.因此,放下第一拨人的时间应该恰到好处:汽车把第一拨人送到某个地方放下,回去接第二拨人,将第二拨人送到目的地时第一拨人恰好也到目的地.例6.超人队和蝙蝠侠队从同一地点同时出发,到29 千米远的体育馆参加比赛,但只有一辆接送车,一次只能乘坐一个队的队员.超人队的步行速度是 6 千米/时,蝙蝠侠队的步行速度是3 千米/时,汽车速度是42 千米/时.为了尽快到达体育馆,那么超人队步行的距离是多少千米?「分析」同上一题目,注意这一次两队步行路程是不一样的.同时性的妙用——苏步青的狗苏步青是我国著名的数学家.他小时候,有人曾给他出了这样一道数学题:甲、乙两人同时从两地出发,相向而行,距离是50公里,甲小时走6公里,乙每小时走 4 公里.甲有一条狗,每小时跑8公里.这只狗和甲一起出发朝乙跑去,碰到乙的时候它又掉转头跑回甲,碰到甲又掉头跑向乙……就这样来回跑,直到两人碰头为止.那么这条狗一共跑了多少公里路?到达目的地,汽车送一个队走的时候,另外一个队也要步行往前走,这样显然会更快一点. 另外,汽车把第一拨人到底送到哪里放下呢?如果送到终点,那么汽车回去接另一拨人时,第一拨人就在目的地干等着,这显然不合理;若是放下的较早,则汽车回头把第二拨人接到终点时第一拨人还没到,还得再回去接第一拨人,这显然也不合理. 因此,放下第一拨人的时间应该恰到好处:汽车把第一拨人送到某个地方放下,回去接第二拨人,将第二拨人送到目的地时第一拨人恰好也到目的地.例6. 超人队和蝙蝠侠队从同一地点同时出发,到29 千米远的体育馆参加比赛,但只有一辆接送车,一次只能乘坐一个队的队员.超人队的步行速度是 6 千米/时,蝙蝠侠队的步行速度是3 千米/时,汽车速度是42 千米/时.为了尽快到达体育馆,那么超人队步行的距离是多少千米?「分析」同上一题目,注意这一次两队步行路程是不一样的.同时性的妙用——苏步青的狗苏步青是我国著名的数学家.他小时候,有人曾给他出了这样一道数学题:甲、乙两人同时从两地出发,相向而行,距离是50公里,甲小时走6公里,乙每小时走 4 公里.甲有一条狗,每小时跑8公里.这只狗和甲一起出发朝乙跑去,碰到乙的时候它又掉转头跑回甲,碰到甲又掉头跑向乙……就这样来回跑,直到两人碰头为止. 那么这条狗一共跑了多少公里路?达目的地,汽车送一个队走的时候,另外一个队也要步行往前走,这样显然会更快一点.另外,汽车把第一拨人到底送到哪里放下呢?如果送到终点,那么汽车回去接另一拨人时,第一拨人就在目的地干等着,这显然不合理;若是放下的较早,则汽车回头把第二拨人接到终点时第一拨人还没到,还得再回去接第一拨人,这显然也不合理.因此,放下第一拨人的时间应该恰到好处:汽车把第一拨人送到某个地方放下,回去接第二拨人,将第二拨人送到目的地时第一拨人恰好也到目的地.例6.超人队和蝙蝠侠队从同一地点同时出发,到29 千米远的体育馆参加比赛,但只有一辆接送车,一次只能乘坐一个队的队员.超人队的步行速度是 6 千米/时,蝙蝠侠队的步行速度是 3 千米/时,汽车速度是42 千米/时.为了尽快到达体育馆,那么超人队步行的距离是多少千米?「分析」同上一题目,注意这一次两队步行路程是不一样的.同时性的妙用——苏步青的狗苏步青是我国著名的数学家.他小时候,有人曾给他出了这样一道数学题:甲、乙两人同时从两地出发,相向而行,距离是50公里,甲小时走6公里,乙每小时走 4 公里.甲有一条狗,每小时跑8公里.这只狗和甲一起出发朝乙跑去,碰到乙的时候它又掉转头跑回甲,碰到甲又掉头跑向乙……就这样来回跑,直到两人碰头为止.那么这条狗一共跑了多少公里路?达目的地,汽车送一个队走的时候,另外一个队也要步行往前走,这样显然会更快一点.另外,汽车把第一拨人到底送到哪里放下呢?如果送到终点,那么汽车回去接另一拨人时,第一拨人就在目的地干等着,这显然不合理;若是放下的较早,则汽车回头把第二拨人接到终点时第一拨人还没到,还得再回去接第一拨人,这显然也不合理.因此,放下第一拨人的时间应该恰到好处:汽车把第一拨人送到某个地方放下,回去接第二拨人,将第二拨人送到目的地时第一拨人恰好也到目的地.例6.超人队和蝙蝠侠队从同一地点同时出发,到29 千米远的体育馆参加比赛,但只有一辆接送车,一次只能乘坐一个队的队员.超人队的步行速度是 6 千米/时,蝙蝠侠队的步行速度是 3 千米/时,汽车速度是42 千米/时.为了尽快到达体育馆,那么超人队步行的距离是多少千米?「分析」同上一题目,注意这一次两队步行路程是不一样的.同时性的妙用——苏步青的狗苏步青是我国著名的数学家.他小时候,有人曾给他出了这样一道数学题:甲、乙两人同时从两地出发,相向而行,距离是50公里,甲小时走6公里,乙每小时走 4 公里.甲有一条狗,每小时跑8公里.这只狗和甲一起出发朝乙跑去,碰到乙的时候它又掉转头跑回甲,碰到甲又掉头跑向乙……就这样来回跑,直到两人碰头为止.那么这条狗一共跑了多少公里路?「分析」首先要把全部同学等分成两队,然后保证两队同时达目的地,为了保证尽可能快的到达目的地,汽车送一个队走的时候,另外一个队也要步行往前走,这样显然会更快一点. 另外,汽车把第一拨人到底送到哪里放下呢?如果送到终点,那么汽车回去接另一拨人时,第一拨人就在目的地干等着,这显然不合理;若是放下的较早,则汽车回头把第二拨人接到终点时第一拨人还没到,还得再回去接第一拨人,这显然也不合理. 因此,放下第一拨人的时间应该恰到好处:汽车把第一拨人送到某个地方放下,回去接第二拨人,将第二拨人送到目的地时第一拨人恰好也到目的地.例6. 超人队和蝙蝠侠队从同一地点同时出发,到29 千米远的体育馆参加比赛,但只有一辆接送车,一次只能乘坐一个队的队员.超人队的步行速度是 6 千米/时,蝙蝠侠队的步行速度是3 千米/时,汽车速度是42 千米/时.为了尽快到达体育馆,那么超人队步行的距离是多少千米?「分析」同上一题目,注意这一次两队步行路程是不一样的.同时性的妙用——苏步青的狗苏步青是我国著名的数学家.他小时候,有人曾给他出了这样一道数学题:甲、乙两人同时从两地出发,相向而行,距离是50公里,甲小时走6公里,乙每小时走 4 公里.甲有一条狗,每小时跑8公里.这只狗和甲一起出发朝乙跑去,碰到乙的时候它又掉转头跑回甲,碰到甲又掉头跑向乙……就这样来回跑,直到两人碰头为止. 那么这条狗一共跑了多少公里路?。
(小学奥数)比例解行程问题
1. 理解行程問題中的各種比例關係.2. 掌握尋找比例關係的方法來解行程問題.比例的知識是小學數學最後一個重要內容,從某種意義上講仿佛扮演著一個小學“壓軸知識點”的角色。
從一個工具性的知識點而言,比例在解很多應用題時有著“得天獨厚”的優勢,往往體現在方法的靈活性和思維的巧妙性上,使得一道看似很難的題目變得簡單明瞭。
比例的技巧不僅可用於解行程問題,對於工程問題、分數百分數應用題也有廣泛的應用。
我們常常會應用比例的工具分析2個物體在某一段相同路線上的運動情況,我們將甲、乙的速度、時間、路程分別用,,v v t t s s 乙乙乙甲甲甲,;;來表示,大體可分為以下兩種情況:1. 當2個物體運行速度在所討論的路線上保持不變時,經過同一段時間後,他們走過的路程之比就等於他們的速度之比。
s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙,這裏因為時間相同,即t t t ==乙甲,所以由s s t t v v ==甲乙乙甲乙甲, 得到s s t v v ==甲乙乙甲,s v s v =甲甲乙乙,甲乙在同一段時間t 內的路程之比等於速度比2. 當2個物體運行速度在所討論的路線上保持不變時,走過相同的路程時,2個物體所用的時間之比等於他們速度的反比。
s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙,這裏因為路程相同,即s s s ==乙甲,由s v t s v t =⨯=⨯乙乙乙甲甲甲, 得s v t v t =⨯=⨯乙乙甲甲,v t v t =甲乙乙甲,甲乙在同一段路程s 上的時間之比等於速度知識精講教學目標比例解行程問題比的反比。
模組一:比例初步——利用簡單倍比關係進行解題【例 1】甲、乙兩車從相距330千米的A、B兩城相向而行,甲車先從A城出發,過一段時間後,乙車才從B城出發,並且甲車的速度是乙車速度的5。
當兩車相遇時,甲車比乙車多行駛了30千米,則甲車開出6千米,乙車才出發。
【考點】行程問題之比例解行程【難度】2星【題型】解答【關鍵字】希望杯,5年級,1試【解析】兩車相遇時共行駛330千米,但是甲多行30千米,可以求出兩車分別行駛的路程,可得甲車行駛180千米,乙車行駛150千米,由甲車速度可以知道,當乙車行駛150千米的時候,甲車實際只行是乙車速度的56駛了5⨯=千米,那麼可以知道在乙車出發之前,甲車已經行駛了1501256180-125=55千米。
高斯小学奥数六年级上册含答案第12讲 复杂行程问题
第十二讲复杂行程问题这一讲,是我们最后一次系统地学习行程问题,我们将针对扶梯问题、优化配置问题、往返接送问题等几类特殊的行程问题进行详细讲解.它们都是整个行程问题中复杂度较高,难度较大的问题,需要大家对以前学过的各种分析方法有比较好的掌握,并能够将它们综合运用.本讲知识点汇总:一. 扶梯问题1. 扶梯问题类似于流水行船问题,解题时要注意人速和电梯速度的合成. 2. 和流水行船的不同,扶梯问题通常会考虑“人走的路程”和“电梯带人走的路程”,所以在解题时通常需要把路程分拆.3. 解题时注意比例法的应用.二. 优化配置问题注意“极值”发生时的状况; 三. 往返接送一般的往返接送问题的过程如下:1. 车载甲出发,乙步行前进;2. 在某地甲下车,甲、乙步行,车返回接乙;3. 车接上乙后继续向目的地前进,甲、乙同时到达终点.往返接送的不同类型:1. 车速不变,人速相同;此时图是对称的,即甲、乙会走同样多路程,此时只要把①和②两个过程合并起来考虑即可.2. 车速不变,人速不同;此时两人走的路程不同(走的快的人会多走一些),所以需要先把①、②过程合并,再把②、③过程合并,用这两次过程分别计算比例.3. 车速不同,人速相同; 4. 车速不同,人速不同; 5. 多组往返接送.A B甲 乙① ①②②②③③例1.自动扶梯由下向上匀速运动,每两秒向上移动了1级台阶.卡莉娅在扶梯向上行走,每秒走两级台阶.已知自动扶梯的可见部分共120级,卡莉娅沿扶梯向上走,从底部走到顶部的过程中,她共走了多少级台阶?「分析」当卡莉娅顺着扶梯向前进时,她所走过的路程应该小于扶梯可见部分长度,因为除了她自身向前走了一段距离外,扶梯还把她往前带了一段,这两段路程加起来才是扶梯可见部分的总长.扶梯可见部分练习1、自动扶梯由下向上匀速运动,每两秒向上移动了1级台阶.卡莉娅在扶梯向下行走,每秒走两级台阶.已知自动扶梯的可见部分共120级,卡莉娅沿扶梯向下走,从底部走到顶部的过程中,她共走了多少级台阶?例2.自动扶梯由下向上匀速运动,甲从顶部向下走到底部,共走了150级;乙从底部向上走到顶部,共走了75级.如果甲的速度是乙的速度的3倍,那么扶梯可见部分共有多少级?「分析」甲逆着扶梯走,他走过的台阶数比扶梯可见部分台阶数多还是少?乙顺着扶梯走,他走过的台阶数比扶梯可见部分台阶数多还是少?练习2、自动扶梯由上向下匀速运动,甲从顶部向下走到底部,共走了90级;乙从底部向上走到顶部,共走了120级.如果乙的速度是甲的速度的2倍,那么扶梯可见部分共有多少级?例3.四辆汽车分别停在一个十字路口的四条岔路上,它们与路口的距离都是18千米,四辆车的最大时速分别为40千米、50千米、60千米和70千米.现在四辆汽车同时出发沿着公路行驶,那么最少要经过多少分钟,它们才能设法相聚在同一地点?「分析」4辆车要能够相聚在同一地点,一个前提要求是在相应的时间内,任意两辆车必须能够相聚到同一地点.练习3、一个边长为4千米的正方形环路,它的四个顶点处各有一辆汽车,最大时速分别为10千米、10千米、40千米、40千米.允许调整四辆车的初始位置,但必须保证每个环路四个顶点处各有一辆车.如果4辆车同时出发,开到环路上的某个地方集合,最少需要多少分钟?例4.某种小型飞机满油最多能飞行1500千米,但不够从A地飞到B地.如果从A地派3架这样的飞机,通过实现空中供给油料,可以使其中一架飞机飞到B地,另两架安全返回A地,那么A、B两地最远相距多少千米?「分析」只需让一架飞机飞到B地即可,其余两架安全返回.返回的两架飞机其实就是给飞往B地的飞机供油的.练习4、一支轻骑摩托小分队奉命把一份重要文件送到距驻地很远的指挥部.每辆摩托车装满油最多能行120千米,且途中没有加油站.由于一辆摩托车无法完成任务,队长决定派四辆摩托车执行任务,其中一辆摩托车负责把文件送到指挥部,另三辆则在中途供给油料后安全返回驻地.请问:指挥部距小分队驻地最远可能是多少千米?例5.高思学校的80名同学去距学校36千米的铁路博物馆参观.但学校只有一辆接送车,车上最多只能载40人(除了司机).已知车速每小时45千米,同学们步行速度是每小时5千米.那么他们最少需要多少分钟才能到达博物馆?「分析」首先要把全部同学等分成两队,然后保证两队同时达目的地,为了保证尽可能快的到达目的地,汽车送一个队走的时候,另外一个队也要步行往前走,这样显然会更快一点.另外,汽车把第一拨人到底送到哪里放下呢?如果送到终点,那么汽车回去接另一拨人时,第一拨人就在目的地干等着,这显然不合理;若是放下的较早,则汽车回头把第二拨人接到终点时第一拨人还没到,还得再回去接第一拨人,这显然也不合理.因此,放下第一拨人的时间应该恰到好处:汽车把第一拨人送到某个地方放下,回去接第二拨人,将第二拨人送到目的地时第一拨人恰好也到目的地.例6.超人队和蝙蝠侠队从同一地点同时出发,到29千米远的体育馆参加比赛,但只有一辆接送车,一次只能乘坐一个队的队员.超人队的步行速度是6千米/时,蝙蝠侠队的步行速度是3千米/时,汽车速度是42千米/时.为了尽快到达体育馆,那么超人队步行的距离是多少千米?「分析」同上一题目,注意这一次两队步行路程是不一样的.同时性的妙用——苏步青的狗苏步青是我国著名的数学家.他小时候,有人曾给他出了这样一道数学题:甲、乙两人同时从两地出发,相向而行,距离是50公里,甲小时走6公里,乙每小时走4公里.甲有一条狗,每小时跑8公里.这只狗和甲一起出发朝乙跑去,碰到乙的时候它又掉转头跑回甲,碰到甲又掉头跑向乙……就这样来回跑,直到两人碰头为止.那么这条狗一共跑了多少公里路?课堂内外空中霸主---战斗机歼击机又称战斗机,二战时期称驱逐机.相对于战略空军的轰炸机,战斗机是指战术空军的机种,战斗机包括歼击机,截击机,强击机.歼击机是夺取制空权的主力机型,通常中低空机动性好,装备中近程空对空导弹,通过中距空中格斗,近距离缠斗击落敌机以获得空中优势,或为己方军用飞机护航.截击机是高空高速的本土防空型机种,机动性通常不如歼击机,装备远程空对空导弹或反辐射导弹,主要任务是拦截高空高速入侵的敌方侦察机,超音速战.战略轰炸机,洲际导弹,还可以用远程反辐射导弹攻击远处的敌方预警指挥机.早期的歼击机是在飞机上安装机枪来进行空中战斗的;每架歼击机都装有20毫米以上的航空机关炮,还可携带多枚雷达制导的中距拦射导弹和红外线制导的近距格斗导弹和炸弹或命中率很高的激光制导炸弹,以及其他对地面目标攻击武器.歼击机最大飞行时速达3000千米,最大飞行高度20千米,最大航程不带副油箱2000千米,带油箱时可达5000千米.机上还带有先进的电子对抗设备.主要用来歼灭空中敌机和其他空袭兵,其特点是速度大,上升快,升限高,机动性好.作业1.自动扶梯由下向上匀速运动,每秒向上移动了1级台阶.阿呆在扶梯顶部开始往下行走,每秒走3级台阶.已知自动扶梯的可见部分共100级,那么阿呆从顶部走到底部的过程中,自动扶梯移动了多少级台阶?2.自动扶梯匀速向上行驶,男孩与女孩同时从自动扶梯底部向上走,男孩速度是女孩的两倍,男孩走了27级到达顶部,女孩走了18级到达顶部,扶梯露在外面的有多少级?3.一个边长为36千米的正方形环路,它的四个顶点处各有一辆汽车,最大时速分别为32千米、36千米、40千米、50千米.允许调整四辆车的初始位置,但必须保证每个环路四个顶点处各有一辆车.如果4辆车同时出发,开到环路上的某个地方集合,最少需要多少分钟?4.在一个沙漠地带,汽车每天行驶250千米,每辆汽车最多可载行驶24天的汽油.现有甲、乙两辆汽车同时从某地出发,并在完成探测任务后,沿原路返回.那么通过合理安排,其中一辆车能探测的最远距离为多少千米?(两车均要回到出发点,汽车不可在沙漠中停留)5.甲班与乙班学生同时从学校出发去公园,甲班步行速度是每小时4千米,乙班步行速度是每小时3千米,学校有一辆汽车,速度是每小时36千米.这辆汽车恰好能坐一个班的学生,为了使两班学生能在最短时间内到达公园,那么甲、乙两班学生需要步行的路程之比是多少?第十二讲 复杂行程问题例题:例题1. 答案:96详解:卡莉娅每秒走2级,自动扶梯每秒走0.5级,速度比为2:0.54:1=.卡莉娅沿扶梯向上从底部走到顶部的过程中,卡莉娅和扶梯走的时间相同,所以二者的路程比也为4:1.而路程和就是楼梯可见部分的长120级,所以卡莉娅共走了()12014496÷+⨯=级台阶.例题2. 答案:120详解:如图,甲逆着扶梯向下走,行走的距离比扶梯可见部分要长,同时扶梯又把他向上带了一段,这段距离就是图中甲所走路程比扶梯可见部分长出来的那段.乙顺着扶梯向上走,同时扶梯把它向上带了一段,两者相加恰好等于扶梯可见部分的总长.由于甲、乙两人的路程比为150:752:1=,速度比为3:1,故所花的时间比为21:2:331=.因此图中左侧扶梯与右侧扶梯运行的时间比也为2:3,相应的路程比也是2:3.而这两段扶梯运行的路程总和等于1507575-=级,所以两段扶梯分别为30级和45级,扶梯可见部分的总长等于15030120-=级.例题3. 答案:24详解:速度最慢的两辆车的速度和为每小时405090+=千米,它们要相聚到一起,走过的总路程最少为18236⨯=千米,需要的时间最少为36900.4÷=小时,即24分钟.于是24分钟即为所求的最少时间,此时速度最慢的两辆车都沿最短路径超对方所在的岔路开,直到相遇于某个点C .其余两辆车只要以适当的速度往相遇地点C 行驶就可以了.例题4. 答案:2250千米详解:不妨设甲飞机从A 地飞往B 地,乙、丙两架飞机给甲飞机供油.乙、丙有两种不同的方式供油给甲,分情况讨论:(1)甲、乙、丙同时起飞,中途C 点乙、丙同时将自己的油给甲,然后返回,此时甲满油前进到B 点,如图所示.设能够支持飞机飞过1500千米的油量为“1”份,可知AC 一段,是乙、丙共“2”份油,使甲、乙、丙共走过5个AC 的距离,而“1”份油可走过1500米,那么AC 一段的长度就是215005600⨯÷=千米.接下来的CB 段,甲满油飞过1500米.这种情况下,AB 两地相距150********+=千米.甲 乙 丙(2)甲、乙、丙同时起飞,中途C 点的时候,丙将油分给甲和乙,使甲、乙满油前进,到达D 点的时候,乙将自己的油分给甲,然后返回,使甲满油前进到B ,如图所示.同样设能支持飞机飞行1500千米的油为“1”份,可知丙的“1”份油支持甲、乙、丙走过4个AC ,那么AC 的长度为15004375÷=千米.然后考虑,乙的“1”份油支持甲、乙走过3个CD 段和乙单独走过1个AC段(返回时).可知,CD 段的长度是()150********-÷=千米,然后甲满油走过DB 为1500千米,此时AB 的路程是37537515002250++=千米,大于2100千米,为AB 的最远距离.例题5. 答案:112分钟详解:如图所示.同学步行速度均为5/千米时,汽车的速度为45/千米时,所以汽车满载时和队员速度比为9:1,路程比也为9:1.设汽车把第一部分同学(40名)放下时已经走了9份,那么这时另外40名同学走了1份.然后汽车回来接乙队,做相遇运动,这时汽车和乙队的距离为918-=份,同学步行速度均为5/千米时,汽车的速度为45/千米时,汽车和同学速度比为9:1,所以汽车走了的7.2份,第二拨同学走了的0.8份.这段时间第一拨也走了0.8份.汽车此时离第一拨的距离为8份.此后汽车和甲队同时到达终点.速度比为9:1,所以路程为9:1,相差8份.所以这段时间汽车走了9份路程,第一拨走了1份路程.经分析可知,全程为10.8份,36千米,可知1份为103610.83÷=千米.那么整个过程所用的时间就是,汽车满载开过109303⨯=千米,队员步行101.863⨯=千米所用的时间,即为()30456560112÷+÷⨯=分钟.甲 乙 丙例题6. 答案:6.5千米详解:如图所示.汽车先送蝙蝠侠队,然后回来接超人队,最终蝙蝠侠队和汽车同时到达.练习:1.答案:160简答:()120414160÷-⨯=. 2.答案:108 简答:由90120:3:212=,1209030-=,得:扶梯可见部分共有()9030233108+÷+⨯=级.3.答案:12简答:相遇时,两辆时速10千米的车的路程和最少是4千米,所以相遇最少需()410100.2÷+=小时,即12分钟. 4.答案:192千米简答:不妨设甲送文件到指挥部,乙、丙、丁三车给甲供油.按照例题4中方法2供油,第一段由丁供油,然后丁返回;第二段由丙供油,然后丙返回;第三段有乙供油,然后乙返回.最后甲满油前进到指挥部.与例题同样的方法计算,可知最远的路程是192千米.作业:1. 答案:50.简答:整个过程经历了秒,自动扶梯移动了级. 50150⨯= 100(31)50÷-=起点体育馆“3”份 “45”份2. 答案:54级.简答:男女生的路程比是3:2,速度比是2:1,那么他们上扶梯的时间比是3:4,所以男生上扶梯时,扶梯走了3份;女生上扶梯时,扶梯走了4份,因为男生比女生多走9级,所以扶梯走的1份就是9级,所以男生走扶梯时,扶梯共走27份,加上男生自己走的,共54份.3. 答案:72.简答:必有两辆车合走了三条正方形的边才能到达相遇点,所以需要最少时间为小时,即72分钟. 4. 答案:4500千米.简答:甲、乙同时出发,中途乙将自己的油给甲,将甲的油装满,注意此处留下一份能够返回出发点的油,等甲回来的时候,用这份留下的油回到出发点.5. 答案:11:8.简答:先让甲送乙班前进,到达一点后返回接甲班,然后与乙班一起到达公园,具体做法见例题.363(4050) 1.2⨯÷+=。
比例法解行程
比例法解行程
比例法是一种解决行程问题的数学方法。
它基于比例的概念,将已知条件与未知条件之间的比例关系应用于问题中,从而求解未知行程。
使用比例法解决行程问题的步骤如下:
1. 理清问题的已知条件和未知条件。
已知条件是已知行程的比例关系,而未知条件是需要求解的行程。
2. 设置比例。
根据已知条件和未知条件,设置一个比例,其中包含已知行程和未知行程。
3. 设置方程。
将比例中的已知行程和未知行程表示为代数式,并建立一个方程。
4. 解方程。
根据方程求解未知行程。
5. 检验答案。
将求解得到的未知行程代入原问题中,检验是否符合已知的比例关系。
需要注意的是,比例法只适用于已知行程之间存在比例关系的问题。
如果问题中没有给出比例关系,就不能使用比例法来解决。
此外,比例法也只能求解未知行程,不能求解其他未知量。
举例来说,如果问题中已知两个车辆的速度比为2:5,并已知其中
一个车辆的行程为100公里,需要求解另一个车辆的行程。
可以按照以下步骤使用比例法解决:
1. 已知条件:速度比为2:5,其中一个车辆的行程为100公里。
2. 设置比例:假设另一个车辆的行程为x公里,则速度比为2:5可以表示为2/5 = 100/x。
3. 设置方程:根据比例关系,可以建立方程2/5 = 100/x。
4. 解方程:通过求解方程,可以得到x = 250。
5. 检验答案:将x = 250代入原问题中,计算速度比为2:5时,另一个车辆的行程是否为250公里。
通过比例法,可以求解出另一个车辆的行程为250公里。
如何用比例解行程问题
如何用比例解“行程问题”行程问题是小学应用题中的难点,是升学试卷中常见的压轴题。
要想在小升初考试中取得好的成绩,熟练掌握行程问题的几种数学模型是必不可少的。
可是大多数同学反映一遇到行程问题就不知道从何下手,心里想画图又不知道该怎么画,尤其遇到多人多次相遇问题时,看到那么长的题就不想读了,不知道哪句话是重要的,心里总是想要是出一道字数少的题就好了,字少的题就一定好做吗?显然不是的。
不管题目的字数有多少,只要你耐心读题,读出题中的关键字,知道这道题属于什么模型,相应的方法就出来了。
而这个能力需要系统地练习。
行程问题常和比例结合起来,虽然题目简洁,但是综合性强,而且形式多变,运用比例知识解决复杂的行程问题经常考,而且要考都不简单。
下面我向大家介绍如何利用比例解答行程问题。
我们知道行程问题里有三个量:速度、时间、距离,知道其中两个量就可以求出第三个量。
速度×时间=距离;距离÷速度=时间;距离÷时间=速度。
如果要用比例做行程问题,这三个量又有什么关系呢?(1)时间相同,速度比=距离比(2)速度相同,时间比=距离比(3)距离相同,速度比=时间的反比。
例如:当甲乙行驶时间相同时,如果V甲:V乙=3:4那么S甲:S乙=3:4;当甲乙速度相同时,如果T甲:T乙=3:4那么S甲:S乙=3:4当甲乙行驶距离相同时,如果T甲:T乙=3:4那么V甲:V乙=4:3。
下面我们看一道例题来体会比例在行程问题中的应用。
例一、(八中培训试题)甲乙二车同时从AB两地同时出发,相向而行,甲车每小时行56千米,乙车每小时行48千米。
两车在距离中点32千米处相遇。
求AB两地相距多少千米?分析:这道题给了两车的速度,我们很容易得到两车的速度比。
这时我们可以用比例来做这道题。
大家要抓住三个要点:一、时间相同,速度比=距离比。
二、两车第一次迎面相遇时合走一个全程。
三、两车在距离中点32千米处相遇,即:两车相遇时,甲比乙多走32×2 =64千米。
高斯小学奥数六年级上册含答案第12讲 复杂行程问题
第十二讲复杂行程问题这一讲,是我们最后一次系统地学习行程问题,我们将针对扶梯问题、优化配置问题、往返接送问题等几类特殊的行程问题进行详细讲解.它们都是整个行程问题中复杂度较高,难度较大的问题,需要大家对以前学过的各种分析方法有比较好的掌握,并能够将它们综合运用.本讲知识点汇总:一. 扶梯问题1. 扶梯问题类似于流水行船问题,解题时要注意人速和电梯速度的合成. 2. 和流水行船的不同,扶梯问题通常会考虑“人走的路程”和“电梯带人走的路程”,所以在解题时通常需要把路程分拆.3. 解题时注意比例法的应用.二. 优化配置问题注意“极值”发生时的状况; 三. 往返接送一般的往返接送问题的过程如下:1. 车载甲出发,乙步行前进;2. 在某地甲下车,甲、乙步行,车返回接乙;3. 车接上乙后继续向目的地前进,甲、乙同时到达终点.往返接送的不同类型:1. 车速不变,人速相同;此时图是对称的,即甲、乙会走同样多路程,此时只要把①和②两个过程合并起来考虑即可.2. 车速不变,人速不同;此时两人走的路程不同(走的快的人会多走一些),所以需要先把①、②过程合并,再把②、③过程合并,用这两次过程分别计算比例.3. 车速不同,人速相同; 4. 车速不同,人速不同; 5. 多组往返接送.A B甲 乙① ①②②②③③例1.自动扶梯由下向上匀速运动,每两秒向上移动了1级台阶.卡莉娅在扶梯向上行走,每秒走两级台阶.已知自动扶梯的可见部分共120级,卡莉娅沿扶梯向上走,从底部走到顶部的过程中,她共走了多少级台阶?「分析」当卡莉娅顺着扶梯向前进时,她所走过的路程应该小于扶梯可见部分长度,因为除了她自身向前走了一段距离外,扶梯还把她往前带了一段,这两段路程加起来才是扶梯可见部分的总长.扶梯可见部分练习1、自动扶梯由下向上匀速运动,每两秒向上移动了1级台阶.卡莉娅在扶梯向下行走,每秒走两级台阶.已知自动扶梯的可见部分共120级,卡莉娅沿扶梯向下走,从底部走到顶部的过程中,她共走了多少级台阶?例2.自动扶梯由下向上匀速运动,甲从顶部向下走到底部,共走了150级;乙从底部向上走到顶部,共走了75级.如果甲的速度是乙的速度的3倍,那么扶梯可见部分共有多少级?「分析」甲逆着扶梯走,他走过的台阶数比扶梯可见部分台阶数多还是少?乙顺着扶梯走,他走过的台阶数比扶梯可见部分台阶数多还是少?练习2、自动扶梯由上向下匀速运动,甲从顶部向下走到底部,共走了90级;乙从底部向上走到顶部,共走了120级.如果乙的速度是甲的速度的2倍,那么扶梯可见部分共有多少级?例3.四辆汽车分别停在一个十字路口的四条岔路上,它们与路口的距离都是18千米,四辆车的最大时速分别为40千米、50千米、60千米和70千米.现在四辆汽车同时出发沿着公路行驶,那么最少要经过多少分钟,它们才能设法相聚在同一地点?「分析」4辆车要能够相聚在同一地点,一个前提要求是在相应的时间内,任意两辆车必须能够相聚到同一地点.练习3、一个边长为4千米的正方形环路,它的四个顶点处各有一辆汽车,最大时速分别为10千米、10千米、40千米、40千米.允许调整四辆车的初始位置,但必须保证每个环路四个顶点处各有一辆车.如果4辆车同时出发,开到环路上的某个地方集合,最少需要多少分钟?例4.某种小型飞机满油最多能飞行1500千米,但不够从A地飞到B地.如果从A地派3架这样的飞机,通过实现空中供给油料,可以使其中一架飞机飞到B地,另两架安全返回A地,那么A、B两地最远相距多少千米?「分析」只需让一架飞机飞到B地即可,其余两架安全返回.返回的两架飞机其实就是给飞往B地的飞机供油的.练习4、一支轻骑摩托小分队奉命把一份重要文件送到距驻地很远的指挥部.每辆摩托车装满油最多能行120千米,且途中没有加油站.由于一辆摩托车无法完成任务,队长决定派四辆摩托车执行任务,其中一辆摩托车负责把文件送到指挥部,另三辆则在中途供给油料后安全返回驻地.请问:指挥部距小分队驻地最远可能是多少千米?例5.高思学校的80名同学去距学校36千米的铁路博物馆参观.但学校只有一辆接送车,车上最多只能载40人(除了司机).已知车速每小时45千米,同学们步行速度是每小时5千米.那么他们最少需要多少分钟才能到达博物馆?「分析」首先要把全部同学等分成两队,然后保证两队同时达目的地,为了保证尽可能快的到达目的地,汽车送一个队走的时候,另外一个队也要步行往前走,这样显然会更快一点.另外,汽车把第一拨人到底送到哪里放下呢?如果送到终点,那么汽车回去接另一拨人时,第一拨人就在目的地干等着,这显然不合理;若是放下的较早,则汽车回头把第二拨人接到终点时第一拨人还没到,还得再回去接第一拨人,这显然也不合理.因此,放下第一拨人的时间应该恰到好处:汽车把第一拨人送到某个地方放下,回去接第二拨人,将第二拨人送到目的地时第一拨人恰好也到目的地.例6.超人队和蝙蝠侠队从同一地点同时出发,到29千米远的体育馆参加比赛,但只有一辆接送车,一次只能乘坐一个队的队员.超人队的步行速度是6千米/时,蝙蝠侠队的步行速度是3千米/时,汽车速度是42千米/时.为了尽快到达体育馆,那么超人队步行的距离是多少千米?「分析」同上一题目,注意这一次两队步行路程是不一样的.同时性的妙用——苏步青的狗苏步青是我国著名的数学家.他小时候,有人曾给他出了这样一道数学题:甲、乙两人同时从两地出发,相向而行,距离是50公里,甲小时走6公里,乙每小时走4公里.甲有一条狗,每小时跑8公里.这只狗和甲一起出发朝乙跑去,碰到乙的时候它又掉转头跑回甲,碰到甲又掉头跑向乙……就这样来回跑,直到两人碰头为止.那么这条狗一共跑了多少公里路?课堂内外空中霸主---战斗机歼击机又称战斗机,二战时期称驱逐机.相对于战略空军的轰炸机,战斗机是指战术空军的机种,战斗机包括歼击机,截击机,强击机.歼击机是夺取制空权的主力机型,通常中低空机动性好,装备中近程空对空导弹,通过中距空中格斗,近距离缠斗击落敌机以获得空中优势,或为己方军用飞机护航.截击机是高空高速的本土防空型机种,机动性通常不如歼击机,装备远程空对空导弹或反辐射导弹,主要任务是拦截高空高速入侵的敌方侦察机,超音速战.战略轰炸机,洲际导弹,还可以用远程反辐射导弹攻击远处的敌方预警指挥机.早期的歼击机是在飞机上安装机枪来进行空中战斗的;每架歼击机都装有20毫米以上的航空机关炮,还可携带多枚雷达制导的中距拦射导弹和红外线制导的近距格斗导弹和炸弹或命中率很高的激光制导炸弹,以及其他对地面目标攻击武器.歼击机最大飞行时速达3000千米,最大飞行高度20千米,最大航程不带副油箱2000千米,带油箱时可达5000千米.机上还带有先进的电子对抗设备.主要用来歼灭空中敌机和其他空袭兵,其特点是速度大,上升快,升限高,机动性好.作业1.自动扶梯由下向上匀速运动,每秒向上移动了1级台阶.阿呆在扶梯顶部开始往下行走,每秒走3级台阶.已知自动扶梯的可见部分共100级,那么阿呆从顶部走到底部的过程中,自动扶梯移动了多少级台阶?2.自动扶梯匀速向上行驶,男孩与女孩同时从自动扶梯底部向上走,男孩速度是女孩的两倍,男孩走了27级到达顶部,女孩走了18级到达顶部,扶梯露在外面的有多少级?3.一个边长为36千米的正方形环路,它的四个顶点处各有一辆汽车,最大时速分别为32千米、36千米、40千米、50千米.允许调整四辆车的初始位置,但必须保证每个环路四个顶点处各有一辆车.如果4辆车同时出发,开到环路上的某个地方集合,最少需要多少分钟?4.在一个沙漠地带,汽车每天行驶250千米,每辆汽车最多可载行驶24天的汽油.现有甲、乙两辆汽车同时从某地出发,并在完成探测任务后,沿原路返回.那么通过合理安排,其中一辆车能探测的最远距离为多少千米?(两车均要回到出发点,汽车不可在沙漠中停留)5.甲班与乙班学生同时从学校出发去公园,甲班步行速度是每小时4千米,乙班步行速度是每小时3千米,学校有一辆汽车,速度是每小时36千米.这辆汽车恰好能坐一个班的学生,为了使两班学生能在最短时间内到达公园,那么甲、乙两班学生需要步行的路程之比是多少?第十二讲 复杂行程问题例题:例题1. 答案:96详解:卡莉娅每秒走2级,自动扶梯每秒走0.5级,速度比为2:0.54:1=.卡莉娅沿扶梯向上从底部走到顶部的过程中,卡莉娅和扶梯走的时间相同,所以二者的路程比也为4:1.而路程和就是楼梯可见部分的长120级,所以卡莉娅共走了()12014496÷+⨯=级台阶.例题2. 答案:120详解:如图,甲逆着扶梯向下走,行走的距离比扶梯可见部分要长,同时扶梯又把他向上带了一段,这段距离就是图中甲所走路程比扶梯可见部分长出来的那段.乙顺着扶梯向上走,同时扶梯把它向上带了一段,两者相加恰好等于扶梯可见部分的总长.由于甲、乙两人的路程比为150:752:1=,速度比为3:1,故所花的时间比为21:2:331=.因此图中左侧扶梯与右侧扶梯运行的时间比也为2:3,相应的路程比也是2:3.而这两段扶梯运行的路程总和等于1507575-=级,所以两段扶梯分别为30级和45级,扶梯可见部分的总长等于15030120-=级.例题3. 答案:24详解:速度最慢的两辆车的速度和为每小时405090+=千米,它们要相聚到一起,走过的总路程最少为18236⨯=千米,需要的时间最少为36900.4÷=小时,即24分钟.于是24分钟即为所求的最少时间,此时速度最慢的两辆车都沿最短路径超对方所在的岔路开,直到相遇于某个点C .其余两辆车只要以适当的速度往相遇地点C 行驶就可以了.例题4. 答案:2250千米详解:不妨设甲飞机从A 地飞往B 地,乙、丙两架飞机给甲飞机供油.乙、丙有两种不同的方式供油给甲,分情况讨论:(1)甲、乙、丙同时起飞,中途C 点乙、丙同时将自己的油给甲,然后返回,此时甲满油前进到B 点,如图所示.设能够支持飞机飞过1500千米的油量为“1”份,可知AC 一段,是乙、丙共“2”份油,使甲、乙、丙共走过5个AC 的距离,而“1”份油可走过1500米,那么AC 一段的长度就是215005600⨯÷=千米.接下来的CB 段,甲满油飞过1500米.这种情况下,AB 两地相距150********+=千米.甲 乙 丙(2)甲、乙、丙同时起飞,中途C 点的时候,丙将油分给甲和乙,使甲、乙满油前进,到达D 点的时候,乙将自己的油分给甲,然后返回,使甲满油前进到B ,如图所示.同样设能支持飞机飞行1500千米的油为“1”份,可知丙的“1”份油支持甲、乙、丙走过4个AC ,那么AC 的长度为15004375÷=千米.然后考虑,乙的“1”份油支持甲、乙走过3个CD 段和乙单独走过1个AC段(返回时).可知,CD 段的长度是()150********-÷=千米,然后甲满油走过DB 为1500千米,此时AB 的路程是37537515002250++=千米,大于2100千米,为AB 的最远距离.例题5. 答案:112分钟详解:如图所示.同学步行速度均为5/千米时,汽车的速度为45/千米时,所以汽车满载时和队员速度比为9:1,路程比也为9:1.设汽车把第一部分同学(40名)放下时已经走了9份,那么这时另外40名同学走了1份.然后汽车回来接乙队,做相遇运动,这时汽车和乙队的距离为918-=份,同学步行速度均为5/千米时,汽车的速度为45/千米时,汽车和同学速度比为9:1,所以汽车走了的7.2份,第二拨同学走了的0.8份.这段时间第一拨也走了0.8份.汽车此时离第一拨的距离为8份.此后汽车和甲队同时到达终点.速度比为9:1,所以路程为9:1,相差8份.所以这段时间汽车走了9份路程,第一拨走了1份路程.经分析可知,全程为10.8份,36千米,可知1份为103610.83÷=千米.那么整个过程所用的时间就是,汽车满载开过109303⨯=千米,队员步行101.863⨯=千米所用的时间,即为()30456560112÷+÷⨯=分钟.甲 乙 丙例题6. 答案:6.5千米详解:如图所示.汽车先送蝙蝠侠队,然后回来接超人队,最终蝙蝠侠队和汽车同时到达.练习:1.答案:160简答:()120414160÷-⨯=. 2.答案:108 简答:由90120:3:212=,1209030-=,得:扶梯可见部分共有()9030233108+÷+⨯=级.3.答案:12简答:相遇时,两辆时速10千米的车的路程和最少是4千米,所以相遇最少需()410100.2÷+=小时,即12分钟. 4.答案:192千米简答:不妨设甲送文件到指挥部,乙、丙、丁三车给甲供油.按照例题4中方法2供油,第一段由丁供油,然后丁返回;第二段由丙供油,然后丙返回;第三段有乙供油,然后乙返回.最后甲满油前进到指挥部.与例题同样的方法计算,可知最远的路程是192千米.作业:1. 答案:50.简答:整个过程经历了秒,自动扶梯移动了级. 50150⨯= 100(31)50÷-=起点体育馆“3”份 “45”份2. 答案:54级.简答:男女生的路程比是3:2,速度比是2:1,那么他们上扶梯的时间比是3:4,所以男生上扶梯时,扶梯走了3份;女生上扶梯时,扶梯走了4份,因为男生比女生多走9级,所以扶梯走的1份就是9级,所以男生走扶梯时,扶梯共走27份,加上男生自己走的,共54份.3. 答案:72.简答:必有两辆车合走了三条正方形的边才能到达相遇点,所以需要最少时间为小时,即72分钟. 4. 答案:4500千米.简答:甲、乙同时出发,中途乙将自己的油给甲,将甲的油装满,注意此处留下一份能够返回出发点的油,等甲回来的时候,用这份留下的油回到出发点.5. 答案:11:8.简答:先让甲送乙班前进,到达一点后返回接甲班,然后与乙班一起到达公园,具体做法见例题.363(4050) 1.2⨯÷+=。
(完整版)比例解行程问题
巧用比例解行程问题精品教案〖学情分析〗〖教学重点〗掌握比例法解行程问题的思路方法〖教学难点〗正确判断和转化题中成比例的量〖考点分析〗属课外拓展内容,用来对付较棘手的行程问题〖教学过程〗巧用比例解行程问题一、教学链接1、了解家长的反馈意见;2、检查学生的作业,及时指点3、捕捉学生的思想动态4、课前小测10分背∏值.二、教学内容方法指导:复杂行程问题经常运用到比例知识:速度一定,时间和路程成正比;时间一定,速度和路程成正比;路程一定,速度和时间成反比。
分析时可以抓住题中含有比的句子进行分析,以此作为突破口,一步一步求得结果。
也可以从题意的叙述中找出等量关系,从而得出所需的数量之比,再根据比与分数的关系求解。
例1:甲、乙两车的速度比是4:7,两车同时从两地相对出发,在距中点15千米处相遇,两地相距多少千米?甲乙两车的速度比是4:7,同一时间内两个物体经过的路程的比等于它们的速度的比,所以相遇时,甲乙两车所行的路程比也是4:7。
相遇时乙比甲多行了15*2=30千米两地相距(15+15)÷(7-4)=10 (4+7)×10=110千米边讲边练:1、甲、乙两车同时从AB两地相对而行,甲、乙两车速度比7:5,相遇时距中点12千米,AB两地相距多少千米?例2:两列火车同时从两个城市相对开出,6。
5小时相遇.相遇时甲车比乙车多行52千米,乙车的速度是甲车的错误!。
求两城之间的距离.6。
5×(52×2+52×3)=1690边讲边练:1、甲、乙两车分别从AB两地同时相向而行,3小时相遇。
已知甲车行1小时距B地340千米,乙车行1小时距A地360千米。
AB两地相距多少千米?(420)2、客车由甲城到乙城需行10小时,货车从乙城到甲城需行15小时,两车同时相向开出,相遇时客车距离乙城还有192千米,求两城间的距离。
例3:甲、乙两车同时从AB 两地相对而行,5小时相遇,已知甲、乙两车速度的比是2:3,甲车行完全程需多少小时?已知甲、乙两车速度的比是2:3,则甲乙两车的时间比是3:2边讲边练:甲、乙两车同时从AB 两地相对而行,4小时相遇,已知甲、乙两车速度的比是3:5,乙车行完全程需多少小时?例4:客车和货车同时从AB 两地相对开出,客车每小时行60千米,货车每小时行全程的错误!,相遇时客车和货车所行路程的比是5:4。
用比例解行程问题
比例解行程问题比例的知识是小学数学最后一个重要内容,从某种意义上讲仿佛扮演着一个小学“压轴知识点”的角从一个工具性的知识点而言,比例在解很多应用题时有着“得天独厚”的优势,往往体现在方法的灵活性和思维的巧妙性上,使得一逍看似很难的题目变得简单明了。
比例的技巧不仅可用于解行程问题•对 于工程问题、分数百分数应用题也有广泛的应用0我们常常会应用比例的工具分析2个物体在某一段相同路线上的运动情况,我们将甲、乙的速度、时 间、路程分别用切*乙;如』乙:呦•牝来表示,大体可分为以下两种情况: 1.当2个物体运行速度在所讨论的路线上保持不变时,经过同一段时间后,他们走过的路程之比就等于他们的速度之比。
呦“甲X 如,这里因为时间相同.即如R 乙",所以由f = 土,/乙=么得到f = = 土,匹=主,甲乙在同一段时间上内的路程之比等于速度比2.当2个物体运行速度在所讨论的路线上保持不变时.走过相同的路程时,2个物体所用的时间之比等于他们速度的反比。
呦“甲"屮,这里因为路程相同,即叶=$乙",由如二卩甲乂加s^ =、,乙Xf 乙得£ =卩甲x^=呢X0,¥ =乞,甲乙在同一段路程S 上的时间之比等于速度比的反比。
I 乙例【例1】甲.乙两车往返于儿S 两地之间。
甲车去时的速度为60千米/时,返回时的速度为40千米/时:乙车往返的速度都是50千米/时。
求甲、乙两车往返一次所用时间的比。
色。
一段路程分为上坡、平路、下坡三段,各段路程的长度之比是1 : 2 : 3,某人走这三段路所用的 时间之比是4 : 5 : 6。
已知他上坡时毎小时行2. 5千米,路程全长为20千米。
此人泄:完全程需多 长时间?甲.乙两车从相距330千米的乩B 两城相向而行,甲车先从虫城出发,过一段时间后,乙车才从万城岀发,并且甲车的速度是乙车速度的右当两车相遇时,甲车比乙车多行驶了 3。
千米,【巩因】 【例2] 【巩固】【例31 【巩因】则甲车开出 千米,乙车才出发。
比例解行程问题(基本公式)
比例解行程问题(基本公式)基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间 关键问题:确定行程过程中的位置相遇问题:速度和×相遇时间=相遇路程(请写出其他公式) 追击问题:追击时间=路程差÷速度差(写出其他公式)流水问题:顺水行程=(船速+水速)×顺水时间 逆水行程=(船速-水速)×逆水时间 顺水速度=船速+水速 逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2 水 速=(顺水速度-逆水速度)÷2 流水问题:关键是确定物体所运动的速度,参照以上公式。
过桥问题:关键是确定物体所运动的路程,参照以上公式。
我们常常会应用比例的工具分析2个物体在某一段相同路线上的运动情况,我们将甲、乙的速度、时间、路程分别用,,v v t t s s 乙乙乙甲甲甲,;;来表示,大体可分为以下两种情况: 1. 当2个物体运行速度在所讨论的路线上保持不变时,经过同一段时间后,他们走过的路程之比就等于他们的速度之比。
s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙,这里因为时间相同,即t t t ==乙甲,所以由s st t v v ==甲乙乙甲乙甲, 得到s s t v v ==甲乙乙甲,s v s v =甲甲乙乙,甲乙在同一段时间t 内的路程之比等于速度比2. 当2个物体运行速度在所讨论的路线上保持不变时,走过相同的路程时,2个物体所用的时间之比等于他们速度的反比。
s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙,这里因为路程相同,即s s s ==乙甲,由s v t s vt =⨯=⨯乙乙乙甲甲甲,得s v t v t =⨯=⨯乙乙甲甲, v t v t =甲乙乙甲,甲乙在同一段路程s 上的时间之比等于速度比的反比。
小学数学比例解行程课件六年级小升初讲课上课PPT教学课件
比例解行程(笔记)
☆行程的正比模型
②当......时,时间相同,考虑路程与速度的正比例关系!
比例解行程(笔记)
☆行程的正比模型
②当......时,时间相同,考虑路程与速度的正比例关系!
例:②当甲行全程的一半时,乙还剩30%。
比例解行程(笔记)
☆行程的正比模型
①相遇、追及,考虑路程与速度的正比例关系! (并画线段图找全程的份数关系) ②当......时,时间相同,考虑路程与速度的正比例关系!
探索新知
练:甲从A地到B地要行10小时,乙从B地到A地要6小时。 现在两人同时从AB两地出发,相向而行,结果在离中点24 千米的地方相遇。求AB两地之间共多少千米?
探索新知
例8:甲、乙两人同时从A地去B地,他们各自的速度不变。 当甲行全程的一半时,乙还剩30%,当乙行完全程时,甲离B 地还有200千米。求A、B两地相距多少千米?
比例解行程(笔记)
☆行程的正比模型
比例解行程(笔记)
☆行程的正比模型
①相遇、追及,考虑路程与速度的正比例关系! (并画线段图找全程的份数关系)
比例解行程(笔记)
☆行程的正比模型
①相遇、追及,考虑路程与速度的正比例关系! (并画线段图找全程的份数关系)
例:①小明和小军同时从甲乙两地相向而行,他们的速度比是6:5
探索新知
练:哥哥和弟弟同时从家出发到学校,哥哥与弟弟的速度比 是5:4,弟弟到学校要要20分钟,哥哥到学校需要多少分钟?
探索新知
例4:小军上山每分钟行40米,沿原路下山每分钟行60米,比 上山少用8分钟,求上山走了多少米?
探索新知
练:小军上山每分钟行60米,沿原路下山每分钟行100米,比 上山少用10分钟,求下山走了多少米?
小升初六年级数学名校冲刺精编讲义第12讲行程问题(学生版)
第12讲行程问题一、基本公式: 1.路程=速度×时间 2.速度=路程÷时间 3.时间=路程÷速度二、形成问题的类型及基本关系1.相遇问题:①相遇时间=总路程÷速度和②速度和=总路程÷相遇时间③总路程=速度和×相遇时间2.追及问题:①追及时间=路程差÷速度差②速度差=路程差÷追及时间③路程差=速度差×追及时间3.环形跑道问题:从同一地点出发,如果是相向而行,则每相遇一次合走一圈(每隔第一次相遇时间就相遇一次);第几次相遇就合走几圈;如果是同向而行,则每多跑一圈就追上一次(每隔第一次追及时间就追上一次).第几次追上就多跑几圈.环形跑道:同向而行的等量关系:乙走的路程-甲走的路程=跑道长背向而行的等量关系:乙走的路程+甲走的路程=跑道长4.流水行船问题:①顺水速度=船速+水速②逆水速度=船速-水速③船速=(顺水速度+逆水速度)÷ 2 ④水速=(顺水速度-逆水速度)÷ 25.列车过桥问题:(1) 火车过桥(隧道):火车过桥(隧道)时间=(桥长+车长)÷火车速度(2) 火车过树(电线杆、路标):火车过树(电线杆、路标)时间=车长÷火车速度(3) 火车过人:①火车经过迎面行走的人:迎面错过的时间=车长÷(火车速度+人的速度)②火车经过同向行走的人:追及的时间=车长÷(火车速度-人的速度)(4) 火车过火车:①错车问题:错车时间=(快车车长+慢车车长)÷(快车速度+慢车速度)②超出问题:错车时间=(快车车长+慢车车长)÷(快车速度-慢车速度)考点一:一般相遇问题【例1】(2019?长沙模拟)甲乙两人从南北城同时出发相向而行,甲行了全程的3,正好与乙相遇.已15知甲每小时行 4.5千米,乙走完全程需要 6.5小时,求南北两地距离.【例2】(2019?北京模拟)甲、乙两列火车的速度比是5:4.乙车先发,从B站开往A站,当走到离B站72千米的地方时,甲车从A站发车往B站,两列火车相遇的地方离A,B两站距离的比是3:4,那么A,B两站之间的距离为多少千米?1.(2019秋?高碑店市期末)在比例尺是1:6000000的地图上,量得A、B两地的距离是5厘米,甲、乙两车同时从两地相向而行,3小时后相遇,已知甲、乙两车的速度之比是3:2,则甲、乙两车的速度各是多少?2.(2019?鄞州区)鄞州院士公园里的一条健身步道全长1500米,张明走完全程要用20分钟,李林走完全程要用30分钟.他们分别从这条健身步道的两端同时出发,相向而行,多长时间能够相遇?3.(2019?郑州)公园的湖边小道近似于长方形(如图).一天,唐老鸭和米老鼠同时从A点出发沿湖边小道跑步,10分钟后在E点相遇.已知40CE米,米老鼠的速度是唐老鸭的34,这条湖边小道全长多少米?4.(2019?湘潭)两辆汽车从A、B两地同时相对开出,甲车每小时行70千米,乙车每小时行80千米两车在离中点15千米处相遇,则A、B两地的距离是多少千米?若甲车因事在中途耽误了58小时,则两车相遇地点距离中点多少千米?5.(2019?句容市)A、B两地相距630米,客车和货车分别从A、B两地同时出发相向而行,3小时相遇.已知客车的速度是货车速度的34,客车每小时行多少千米?7.(2019?杭州模拟)甲、乙两城相距210千米,一辆客车和一辆货车同时从两城相对开出,3小时相遇.已知货车每小时的速度比客车慢6千米,两车每小时各行多少千米?8.(2019?郑州模拟)甲车的速度是100千米,是乙车速度的54,两车同时分别从两地相向而行,在距中点180千米处相遇,问两车开出后多少小时相遇?考点二:一般追击问题【例3】(2019?广州模拟)在AB两城有甲乙两人,分别从AB两城同时相向而行,2小时相遇,相遇时甲所走的路程与乙所走的路程比是7:9;如果甲乙两人同时同向而行,乙需要多少小时才能追上甲?【例4】一辆快车和一辆慢车同时从甲地开往乙地,当快车行了全程的12时,慢车离乙地还有54千米;当快车到达终点时,慢车行了全程的45,甲乙两地相距多少千米?1.(2019?常州)小明跑步去追一个和他同向而行的100米外的那个人,那个人的速度为4米每秒,小明追那个人追了1分40秒,问:小明的速度是多少?2.(2019秋?高碑店市期末)已知一个运动场的跑道的形状与大小如图,两边是半圆形,中间是长方形,小亮站在A点,小明站在B点,两人同时按逆时针方向跑,小亮每分钟跑315米,小明每分钟跑275米,小亮几分钟追上小明?(得数保留一位小数)3.(2019春?营山县期末)甲乙两地相距20千米,客货两车同时从甲乙两地出发,同向而行开往成都.2小时后,客车追上货车.已知货车的速度是30千米/时,求客车每小时行多少千米?4.(2019春?普陀区期中)小巧以65米/分的步行速度从家里出发去少年宫.出发16分钟后,妈妈发现小巧把学习资料袋忘在家里了,于是骑车以185米/分的速度去追.已知小巧家与少年宫之间的路程是1800米,妈妈能在小巧到达少年宫之前追上她吗?考点三:特殊相遇问题【例5】(2019?宁德)A车和B车同时从甲、乙两地相向开出,经过5小时相遇.然后,它们又各自按原速原方向继续行驶3小时,这时A车离乙地还有135千米,B车离甲地还有165千米.甲、乙两地相距多少千米?【例6】(2019?毕节地区模拟)一列快车和一列慢车同时从甲、乙两地相对开出,8小时相遇,相遇后两车继续以原速前进,快车又经过6小时到达乙地,这时慢车离甲地还有175千米,求甲、乙两地相距多少千米?1.(2019?长沙)甲、乙两地是电车发车站,每隔一定时间两地同时发出一辆车,每辆电车都是每隔4分钟遇到迎面开来的一辆电车,小张和小王分别骑车从甲、乙两地同时出发,相向而行,小张每隔5分钟遇到迎面开来的一辆电车,小王每隔6分钟遇到一辆迎面开来的电车,如果电车行驶全程需要56分钟,那么小王与小张在途中相遇时,他们已经出发了多少分?2.(2019?徐州)甲村、乙村相距6千米,小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回).在出发后40分钟两人第一次相遇,小王到达甲村后返回,在离甲村2千米的地方两人第二次相遇.问小张和小王的速度各是多少?3.(2019?武汉)甲、乙、丙三人,甲每分钟走20米,乙每分钟走22米,丙每分钟走25米,甲、乙从东镇,丙从西镇,同时相对出发,丙遇到乙后,十分钟再遇到甲,求两镇的距离是多少米?4.甲乙两车同时从A、B两地相对开出,第一次在离A地80千米处相遇.相遇后两车继续前进,到达目的地后又立即返回,第二次相遇在离B地60千米处.求A、B两地间的距离.考点四:环形跑道问题【例7】(2019?湘潭模拟)假期里,依依和妈妈每天早晨在环湖路上跑步锻炼身体.环湖路长840米,依依每分跑108米,妈妈每分跑92米.(1)如果两人同时同地出发,相背而跑,多少分后相遇?(2)如果两人同时同地出发,同向而跑,多少分后依依超出妈妈一整圈?1.(2019?如东县)李军和王亮沿着水库四周的道路跑步,他们从同一地点同时出发,反向而行,李军的速度是225米/分,王亮的速度是215米/分,经过18分钟两人还相距40米.水库四周的道路长多少米?2.(2019秋?南康区期末)如图,甲、乙两人分别在圆形跑道的直径两端上.甲跑完一圈要4分钟,乙跑完一圈要6分钟.(1)两人如果同时出发,相向而行,多少分钟后能相遇?(2)两人如果同时出发,同向而行,多少分钟后甲能够追上乙?3.(2019春?溧阳市期末)学校环形跑道长400米,笑笑和淘气从跑道的同一地点同时出发,都按顺时针方向跑,经过20分钟,笑笑第一次追上淘气.淘气的速度是240米/分,笑笑每分跑多少米?(列方程解答)4.(2019春?蓝山县期中)父子俩在长400米的环形跑道上散步,他俩同时从同一地点出发,如果相背而行,4分钟相遇:如果同向而行,8分钟父亲可以追上儿子.在跑道上走一圈,父亲和儿子各需要多少分钟?5.(2019?湖南模拟)甲乙二人沿400米环形跑道同时从某点开始反方向跑步,已知甲的速度比乙的速度,当两人第一次相遇时甲跑了多少米?快110考点五:流水行船问题【例8】(2019?铜仁市)甲乙两港相距140千米,一艘轮船从甲港驶向乙港用了 4.5小时,返回时因为逆水比去时多用1小时.求这艘轮船往返的平均速度.1.(2019?长沙)一位少年短跑选手,顺风跑90米用了10秒钟,在同样的风速下,逆风跑70米,也用了10秒钟.问:在无风的时候,他跑100米要用多少秒?2.(2019秋?德江县期末)一只船顺水行320千米需用8小时,水流速度为每小时15千米,这只船逆水行这段路程需用几小时?3.(2019春?泗洪县校级期末)两个城市间有一条河,一艘轮船在两个城市间航行,顺流需要6小时,逆流要8小时,水流速度为每小时 2.5千米,求船在静水中的速度.4.(2019?郴州模拟)一艘轮船往返于甲、乙两个码头,去时顺水,每小时行20千米;返回时逆水,每小时行15千米,去时比返回时少用了2小时.甲、乙两个码头相距多少千米?5.(2019?成都)一条船往返于甲、乙两港之间,由甲至乙是顺水行驶;由乙至甲是逆水行驶,已知船在静水中的速度为每小时8公里,平时逆行与顺行所用时间的比为2:1.某天恰逢暴雨.水流速度变为原来的2倍,这条船往返共用9小时,那么甲乙两港相距多少公里?[来源XK]考点六:火车过桥问题【例9】(2019春?聊城期末)一列火车长400米,铁路沿线的电线杆间隔都是40米,这列火车从车头开到第一根电线杆到车尾离开第51根电线杆共用了2分钟.这列火车每分钟行多少米?1.(2019秋?汉川市期末)一列火车长是200米,每秒行驶32米.如果这列火车经过一座大桥时,从车头上桥到车尾离开桥共用104秒.这座大桥长是多少米?2.(2019春?英山县期末)某铁路桥长2000米,一列火车从桥上通过,测得火车从开始上桥到完全下桥共用120秒,整列火车完全在桥上的时间为80秒.求火车的速度?3.(2019?徐州)一个铁路巡道工正在隧道中工作,突然听到一列火车向隧道驶来.他马上看了一下隧道里的路标,知道他与隧道入口间的距离为隧道全长的25.凭着工作经验知道,如果用最快的速度奔跑,不论向哪一头跑,当火车到达他跟前时,他都刚好离开隧道.火车的速度为每小时60千米.巡道工奔跑的速度是多少?考点七:图形类问题【例10】(2019?成都自主招生)两只小爬虫甲和乙,从A点同时出发,沿着长方形ABCD的边按照箭头方向爬行(如图所示).在距离C点32厘米的E点它们第一次相遇;在离D点16厘米的F点第二次相遇;在离A点18厘米的G点第三次相遇.长方形的边AB长多少厘米?1.(2019春?大田县期末)如图,小红和小丽两个小朋友在一块正方形地上玩游戏.小红在A点,小丽在C点,她们同时出发,在距离D点3.5米处的E点相遇.已知小红和小丽的速度比是7:5,这个正方形的周长是米.AB BC,位于A点的第一只蚂蚁按2.(2019?郑州校级自主招生)如图长方形ABCD中,:5:4A B C D A方向爬行,位于C点的第二只蚂蚁按C B A D C的方向同时出发,分别沿长方形的边爬行,如果两只蚂蚁第一次在B点相遇,则两只蚂蚁第二次相遇在()边上.A.DA B.BC C.CD D.AB3.如图,两只小爬虫从A点出发,沿长方形ABCD的边按箭头方向爬行,在距C点16厘米的E点它们第一次相遇,在距D点8厘米的F点第二次相遇,在距A点8厘米的G点第三次相遇,求长方形的边AB 的长.小升初专项培优测评卷(十二)行程问题1.甲、乙两车分别从A、B两地同时相向开出,甲车的速度是50千米/时,乙车的速度是40千米/时,当甲车驶过A、B距离的13多50千米时与乙车相遇,A、B两地相距千米.2.A、B两地之间有一条笔直的公路,甲、乙两车分别从A、B两地同时出发,相向而行.30分钟后,甲车行了50千米,乙车行了40千米,此时两车的距离恰好是全程的20%.A、B之间的距离可能是多少千米?(有几种可能都要求出?可用画图表示)3.(2019?宿迁)两车分别从南京、宿迁两地同时相对开出,行驶4小时后,两车已相遇后又相距75千米,已知南京、宿迁两车每小时共行驶全程的724,请你通过列式,计算出南京、宿迁两地相距多少千米?4.(2019?亳州模拟)小巧以65米/分的速度,步行从家里出发去少年宫.出发16分钟后,妈妈发现小巧把垃圾分类资料忘了,于是骑车以195米/分的速度去追.已知小巧家与少年宫之间的路程是2100米.妈妈能在小巧到达少年宫之前追上她吗?5.(2019?南京模拟)A、B两地相距480km,甲走完全程需要8小时,乙走完全程需要12小时,现在甲从A地出发,乙从B地出发,相向而行,相遇之后甲即返回乙继续向A地前进,当甲回到A地时,乙距离A地多少千米?6.(2019?长沙)乙两辆汽车分别从A、B两地同时相对开出,甲、乙两车速度的比是9:7.第一次相遇后车继续向前行驶,甲车到达B地、乙车到达A地后立即掉头向回行驶,两车第二次相遇点和第一次相遇点之间相距32千米,求A、B两地之间的距离.7.(2019?湖南模拟)在环形跑道上,两人都按顺时针方向跑时,每12分钟相遇一次,如果两人速度不变,其中一人改成按逆时针方向跑,每隔4分钟相遇一次,问两人各跑一圈需要几分钟?8.(2019春?沈阳期末)星期日,小明和小强在5600m的环湖公路上晨跑.小强每分钟跑150米,小明每分钟跑130m,两人同时同地出发反向跑步.(1)估计两人在何处第一次相遇?在图中标出.(2)多长时间后两人第一次相遇?(列方程解)。
比例解行程
1.基本公式:路程=速度×时间2.解题方法:解行程问题时,要注意充分利用图示把题中的情节形象地表示出来,有助于分析数量关系,有助于迅速地找到解题思路。
3.比例解行程:行程问题中有很多比例关系,在只知道和差、比例时,用比例法可求得具体数值.更重要的是,在一些较复杂的题目中,有些条件(如路程、速度、时间等)往往是不确定的,在没有具体数值的情况下,只能用比例解题,我们常常会应用比例的工具分析2个物体在某一段相同路线上的运动情况,我们将甲、乙的速度、时间、路程分别用,,v v t t s s 乙乙乙甲甲甲,;;来表示,大体可分为以下两种情况:(1)当2个物体运行速度在所讨论的路线上保持不变时,经过同一段时间后,他们走过的路程之比就等于他们的速度之比。
s v s v =甲甲乙乙,甲乙在同一段时间t 内的路程之比等于速度比 (2)当2个物体运行速度在所讨论的路线上保持不变时,走过相同的路程时,2个物体所用的时间之比等于他们速度的反比。
v t v t =甲乙乙甲,甲乙在同一段路程s 上的时间之比等于速度比的反比。
二.例题精讲 例1: 小张从甲地到乙地步行需要36分钟,小王骑自行车从乙地到甲地需要12分钟.他们同时出发,多少分钟后两人相遇?点睛:相同的路程时,速度与时间成反比.两人的时间比为:36:12=3:1即速度比为:1:336÷(3+1)=9(分)例2:甲、乙二人同时从学校出发到少年宫去,已知学校到少年宫的距离是2400米,甲到少年宫后立即返回学校,在距离少年宫300米处遇到乙,此时他们离开学校已30分钟.甲每分钟走多少米,乙每分钟走多少米.点睛:已知两速度之差与两速度之和,求单独的速度,可用和差公式.速度差=300×2÷30=20(米/分)速度和=2400×2÷30=160(米/分)甲:(160+20)÷2=90(米/分)乙:(160-20)÷2=70(米/分)例3:小李从A 城到B 城,速度是5千米/小时.小兰从B 城到A 城,速度是4千米/小时.两人同时出发,结果在离A 、B 两城的中点1千米的地方相遇,求A 、B 两城间的距离?点睛:小李和小兰的速度比是:5:4则路程比是:5:4在距离中点1千米处相遇,那么速度快的比速度慢的多走了2×1=2千米小李比小兰多走了1个单位=2千米所以两地距离=2×(4+5)=18千米答:两地距离为18千米.例4:一辆汽车从甲地开往乙地,每小时行50千米,返回时每小时行60千米,已知去时用了6小时,那么返回时用了多少小时?点睛:因为去时和返回时所行的路程一定,那么去时与返回时的速度和所用时间成反比.去时和返回时的速度比是:50:60=5:6所用的时间比与速度比是:6:5返回时用的时间为:6÷6×5=5(小时)答:返回时用了5小时.例5:甲乙两车分别从AB两地同时出发相向而行,甲车每小时行50千米,乙车的速度是甲车的4/5,当甲车行至全程的2/5时,乙车距中点还有36千米.AB两地相距多少千米?点睛:由题中条件可求出速度比,因为时间一定,所以两车所行的路程和它们的速度成正比.甲乙两车的速度比是:5:4两车在相同时间里所行的路程比是:5:4当甲车行至全程的2/5时,乙车响起了全程的2/5×4/5=8/25乙车距中点还有全程的:1/2-8/25=9/25AB两地相距:36÷9/25=200(千米)答:两地相距200千米.例6:甲乙两车同时分别从AB两地出发相向而行,当甲车行了全程的1/4时,乙车行了全程的1/3,当乙车行完全程时,甲车距终点还有20千米,AB两地相距多少千米?点睛:由条件”当甲车行了全程的1/4时,乙车行了全程的1/3”可求出两车在相同时间里所行的路程比.甲乙两车在相同时间里所行的路程比是:1/4:1/3=3:4就是说当乙车行完全程时,甲车距终点还有4-3=1(份)路程,这一份的路程就是20千米.因此,AB两地相距:20÷(4-3)×4=80(千米)答:AB两地相距80千米、例7:甲乙两车的速度分别是50千米每小时,40千米每小时,乙车先从B站开入A站,当到离B站72千米的D地时,甲车从A站开入B站,在C地与乙车相遇,如果甲乙两车相遇地C地离AB两站的路程比是3:4,那么AB两站之间的路程是多少千米?点睛:由题意知甲乙两车的速度比是:50:40=5:4甲乙两车在相同时间里所行路程比是:5:4所以AC:CD=5:4,又因为AC:CB=3:4,而5:4=15:12,3:4=15:20所以,AB两站之间的路程为:72÷(20-12)×(15+20)=315(千米)答:AB两站之间的路程是315千米。
六年级数学 用比例解行程问题 PPT带答案
练习6
一辆汽车从甲地开往乙地,如果车速提高 20%可以提前1小时到 达.如果按原速行驶一段距离后,再将速度提高 30% ,也可以提前 1小时到达,那么按原速行驶了全部路程的几分之几?
例题7
甲、乙两人同时从 A地出发到 B 地,经过 3 小时,甲先到 B 地,乙 还需要 1 小时到达 B 地,此时甲、乙共行了 35 千米.求 A, B 两 地间的距离.
甲、乙速度之比是 3:7,所以我们可以设整个路程为 3+7=10 份,这样一个全程中 甲走 3 份,第 2007 次相遇时甲总共走了 3×(2007×2-1)=12039 份,第 2008 次相 遇时甲总共走了 3×(2008×2-1)=12045 份,所以总长为 120÷[12045-12040(12040-12039)]×10=300 米.
例题4
甲、乙二人分别从 A、 B 两地同时出发,相向而行,甲、乙的速度 之比是 4 : 3,二人相遇后继续行进,甲到达 B 地和乙到达 A地后都 立即沿原路返回,已知二人第二次相遇的地点距第一次相遇的地点 30千米,则 A、 B 两地相距多少千米?
练习4
甲、乙两车分别从 A、B 两地出发,在 A、B 之间不断往返行驶, 已知甲车的速度是乙车的速度的3/7,并且甲、乙两车第 2007 次相 遇(这里特指面对面的相遇)的地点与第 2008 次相遇的地点恰好 相距 120 千米,那么,A、B 两地之间的距离等于多少 千米?
练习8
在一圆形跑道上,甲从 A 点、乙从 B 点同时出发反向而行,6 分后 两人相遇,再过4 分甲到达 B 点,又过 8 分两人再次相遇.甲、乙环 行一周各需要多少分?
由题意知,甲行 4 分相当于乙行 6 分.(抓住走同一段路程时间或速度的比例关系 ) 从第一次相遇到再次相遇,两人共走一周,各行 12 分,而乙行 12 分相当于甲行 8 分,所以甲环行一周需 12+8=20(分),乙需 20÷4×6=30(分).
【竞赛题】人教版小学五年级下册数学第12讲《行程问题中的比例关系》竞赛试题(含详解)
第十二讲行程问题中的比例关系- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - -本讲我们主要学习比例关系在行程问题中的应用.首先学习的是匀速过程中的比例关系,只要弄明白题中有哪些相同的量,就能找到相应的比例关系,比如:当两个过程的路程相同,速度就与时间成反比;当两个过程的时间相同,路程就与速度成正比;当两个过程的速度相同,路程就与时间成正比.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题1.甲、乙两车的速度比是4:7,两车同时从两地相对出发,在距中点15千米处相遇,两地相距多少千米?分析:两车同时出发,到相遇的时候所用的时间是相同的.时间相同,速度和路程有什么样的关系?练习1.甲、乙两人的速度比是3:2.两人同时从A地出发前往B地,当甲到达时,乙还差200米.那么AB两地之间的距离是多少?例题2.姐妹两人骑车从相距10千米的甲地去乙地,妹妹比姐姐早出发10分钟,结果两人同时到达,姐妹两人骑车速度比是5:4,那么姐姐骑车的速度是多少?分析:姐妹两人都从甲地去乙地,所走的路程是一样的.路程相同,时间和速度有什么样的关系?练习2.小高和墨莫早上8:00同时从甲地出发去乙地,小高的速度是墨莫的两倍.小高比墨莫早到40分钟,那么小高几点到达乙地?在行程问题中,我们经常由“时间比结合时间差”求时间,由“速度比结合速度差”求速度,由“路程比结合路程差”求路程.但是往往,题目中除了告诉了一种量的差,还告诉了另外一种量的比.这时我们就要利用行程问题中的正反比关系,求出差所对应量的比,就可以解决问题了.例题3.大、小客车从甲、乙两地同时相向开出,大、小客车的速度比为4:5,两车开出后60分相遇,并继续前进.问:大客车比小客车晚多少分到达目的地?分析:相遇点与甲乙两地的距离之比是多少?练习3.甲、乙两人同时从A、B两地出发相向而行,甲的速度是乙的两倍.两人出发10分钟后相遇,并继续前进.那么甲比乙早多少分钟到达目的地?如果两个行程过程的路程、速度和时间都不相同,这时就没有正比和反比的关系了.这时我们还有一个很好的工具——复合比.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题4.萱萱去姥姥家,途中要经过上坡、平路和下坡各一段,路程比为1:2:1.已知萱萱在三种路段上行走的速度比为6:4:3,且在平路上行走的时间是25分钟.那么萱萱去姥姥家路上一共花了多长时间?分析:题目告诉了我们路程比与速度比,那么时间比是多少?各段分别用了多长时间?练习4.小红帽去外婆家要翻过一座高山,上山与下山的路程比是2:3.小红帽上山的速度是1米/秒,下山的速度是2米/秒,且路上一共用了70分钟.那么小红帽从外婆家回来需要多少分钟?- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题5.甲、乙两车分别从A、B两地同时出发匀速行驶,相向而行.当甲车到达B地时,乙车距A地30千米;当乙车到达A地时,甲车超过B地40千米,AB两地相距多少千米?分析:行程问题中一定要注意“同时性”.在甲车超过B地40千米的同时,乙车走了多少千米?例题6.一辆轿车和一辆巴士都从A地到B地,巴士速度是轿车速度的45.巴士要在两地的中点停10分钟,轿车中途不停车.轿车比巴士在A地晚出发11分钟,早7分钟到达B地.如果巴士是10点出发的,那么轿车超过巴士时是10点多少分?分析:如果巴士不在中点停留,那么从A地到B地,轿车将比巴士少花多少分钟?两车所花的时间比是多少?马拉松马拉松赛是一项长跑比赛项目,其距离为42.195公里(也有说法为42.193公里).这个比赛项目要从公元前490年9月12日发生的一场战役讲起.这场战役是波斯人和雅典人在离雅典不远的马拉松海边发生的,史称希波战争,雅典人最终获得了反侵略的胜利.为了让故乡人民尽快知道胜利的喜讯,统帅米勒狄派一个叫裴里庇第斯的士兵回去报信.裴里庇第斯是个有名的“飞毛腿”,为了让故乡人早知道好消息,他一个劲地快跑,当他跑到雅典时,已上气不接下气,激动的喊道“欢乐吧,雅典人,我们胜利了!”说完,就倒在地上死了.为了纪念这一事件,在1896年举行的现代第一届奥林匹克运动会上,设立了马拉松赛跑这个项目,把当年菲迪皮茨送信跑的里程——42.193公里作为赛跑的距离.马拉松原为希腊的一个地名.在雅典东北30公里.其名源出腓尼基语marathus,意即“多茴香的”,因古代此地生长众多茴香树而得名.体育运动中的马拉松赛跑就得名于此.1896年举行首届奥运会时,顾拜旦采纳了历史学家布莱尔(Michel Breal)以这一史事设立一个比赛项目的建议,并定名为“马拉松”.比赛沿用当年菲迪皮得斯所跑的路线,距离约为40公里200米.此后十几年,马拉松跑的距离一直保持在40公里左右.1908年第4届奥运会在伦敦举行时,为方便英国王室人员观看马拉松赛,特意将起点设在温莎宫的阳台下,终点设在奥林匹克运动场内,起点到终点的距离经丈量为26英里385码,折合成42.195公里.国际田联后来将该距离确定为马拉松跑的标准距离.女子马拉松开展较晚,1984年第23届奥运会才被正式列入比赛项目.由于马拉松比赛一般在室外进行,不确定因素较多,所以在2004年1月1日前马拉松一直使用世界最好成绩,没有世界记录.在2004年雅典奥运会上,首次将奥运会的最后一个比赛项目男子马拉松的颁奖典礼安排在闭幕式上举行.在东道主希腊人看来,马拉松比赛是奥运会的“灵魂”之一,在闭幕式上为马拉松运动员颁奖,是奥林匹克回家的一种象征.2008年北京奥运会,继承了这一做法.作业1.小东每天步行上下学,去的时候每秒走1.8米,回来的时候每秒走1.2米,上下学共用时25分钟,那么小东家与学校相距多少千米?作业2.小灰灰和喜羊羊同时从狼村和羊村相对出发,在距中点1千米处相遇,已知小灰灰和喜洋洋的速度比为3:2,那么狼村和羊村相距多少千米?作业3.话说段誉的“凌波微步”独步一方,乔峰的武功天下闻名,两人相遇,一见如故,决定在杏子林外比试下脚程,来个万米跑.只见尘土飞扬,两人同时出发,一路上不分先后,最后还是段誉略胜一筹.当段誉达到终点时,乔峰还差2米.已知段誉的速度为10米/秒,那么乔峰的速度是多少?作业4.阿呆和阿瓜去公园玩.阿呆因故先走了7分钟,阿瓜出发后21分钟追上了阿呆.如果阿瓜比阿呆每分钟多走20米,那么阿呆每分钟走多少米?2:5作业5.甲、乙两人从A、B两地同时出发相向而行,两人的速度比为,经过18分钟相遇.如果甲的速度变为原来的2倍,那么经过多少分钟两人相遇?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【例1】一列火车出发 1 小时后因故停车 0.5 小时,然后以原速的34
前进,最终到达目的地晚1.5 小时.若出发 1 小时后又前进 90 公里再因故停车 0.5 小时,然后同样以原速的
3
4
前进,则到达目的地仅晚1 小时,那么整个路程为多少公里?
【巩固】 王叔叔开车从北京到上海,从开始出发,车速即比原计划的速度提高了1/9,结
果提前一个半小时到达;返回时,按原计划的速度行驶 280 千米后,将车速提高1/6,于是提前1 小时 40 分到达北京.北京、上海两市间的路程是多少千米?
例题精讲
较难的比例解行程问题
【巩固】一辆货车从甲地开往乙地,如果按原速行驶,将不能准时到达,如果速度提高1/5,可以比原定时间早1小时到达;如果以原速度行驶120km以后,再将速度提高1/4,则可以提前40分钟到达。
那么甲,乙两地间的距离是多少千米?
【例2】甲、乙两人分别从A B
、两地同时出发,相向而行。
出发时他们的速度之比是3:2,
,这样当甲到达B地时,乙离A地还有41千米,相遇后,甲的速度提高20%,乙的速度提高1
3
那么A B
、两地相遇__________千米。
【巩固】甲、乙两车分别从A、B两地同时出发,相向而行.出发时,甲、乙的速度之比是5 : 4,相遇后甲的速度减少 20%,乙的速度增加 20%.这样当甲到达B地时,乙离A地还有 10 千米.那么A、B两地相距多少千米?
【巩固】甲乙两人分别从A,B两地相向出发,其速度比为3:2,他们第一次相遇后,甲的速度提高了20%,乙的速度提高了30%,这样当甲到达B地时,乙离A地还有42km,那么A,B 两地的距离是()km.
【巩固】甲乙两人同时从两地相向而行,乙的速度是甲的1.5倍,相遇后甲的速度提高了2倍。
若两人同时到达目的地,那么相遇后,乙的速度为其原来的速度的多少倍?
【例3】甲、乙两人同时从A、B两点出发,甲每分钟行 80米,乙每分钟行 60米,出发一段时间后,两人在距中点的C处相遇;如果甲出发后在途中某地停留了 7分钟,两人将在距中点的D处相遇,且中点距C、D距离相等,问A、B两点相距多少米?
【巩固】如图3,甲、乙二人分别在A、B两地同时相向而行,于E处相遇后,甲继续向B地行走,乙则休息了14分钟,再继续向A地行走。
甲和乙到达B和A后立即折返,仍在E处相遇,已知甲分钟行走60米,乙每分钟行走80米,则A和B两地相()米。
【例4】A、B两个连队同时分别从两个营地出发前往一个目的地进行演习,A连有卡车可以装载正好一个连的人员,为了让两个连队的士兵同时尽快到达目的地,A连士兵坐车出发一定时间后下车让卡车回去接B连的士兵,两营的士兵恰好同时到达目的地,已知营地与目的地之间的距离为32千米,士兵行军速度为8千米/小时,卡车行驶速度为40千米每小时,求两营士兵到达目的地一共要多少时间?
【巩固】甲班与乙班学生同时从学校出发去公园,两班的步行速度相等都是4千米/小时,学校有一辆汽车,它的速度是每小时48千米,这辆汽车恰好能坐一个班的学生.为了使两班学生在最短时间内到达公园,设两地相距150千米,那么各个班的步行距离是多少?
【巩固】甲班与乙班学生同时从学校出发去公园,甲班步行的速度是每小时4千米,乙班步行的速度是每小时3千米。
学校有一辆汽车,它的速度是每小时48千米,这辆汽车恰好能坐一个班的学生。
为了使两班学生在最短时间内到达公园,那么甲班学生与乙班学生需要步行的距离之比是多少千米?
【例5】有两个班的小学生要到少年宫参加活动,但只有一辆车接送,第一班的学生坐车从学校出发的同时,第二班学生开始步行;车到途中某处,让第一班学生下车步行,车立刻返回接第二班学生上车并直接开往少年宫,学生步行速度为每小时4公里,载学生时车速每小时40公里,空车时车速为每小时50公里.问:要使两班学生同时到达少年宫,第一班学生要步行全程的几分之几?
【巩固】甲、乙两班同学到42千米外的少年宫参加活动,但只有一辆汽车,且一次只能坐一个班的同学,已知学生步行速度相同为5千米/小时,汽车载人速度是45千米/小时,空车速度是75千米/小时.如果要使两班同学同时到达,且到达时间最短,那么这个最短时间是多少?
家庭作业
【作业1】(台湾小学数学竞赛选拔赛决赛)甲、乙二人由A地同时出发朝向B地前进,A、B 两地之距离为36千米.甲步行之速度为每小时4千米,乙步行之速度为每小时5千米.现有一辆自行车,甲骑车速度为每小时10千米,乙骑车的速度为每小时8千米.出发时由甲先骑车,乙步行,为了要使两人都尽快抵达目的地,骑自行车在前面的人可以将自行车留置在途中供后面的人继续骑.请问他们从出发到最后一人抵达目的地最少需要多少小时?
【作业2】李经理的司机每天早上7点30分到达李经理家接他去公司。
有一天李经理7点从家里出发去公司,路上遇到从公司按时来接他的车,再乘车去公司,结果比平常早到5分钟。
则李经理乘车的速度是步行速度的倍。
(假设车速、步行速度保持不变,汽车掉头与上下车时间忽略不计)
【作业3】甲、乙两班学生到离校24千米的飞机场参观,但只有一辆汽车,一次只能乘坐一个班的学生.为了尽快到达飞机场,两个班商定,由甲班先坐车,乙班先步行,同时出发,甲班学生在途中某地下车后步行去飞机场,汽车则从某地立即返回接在途中步行的乙班学生.如果甲、乙两班学生步行速度相同,汽车速度是他们步行速度的7倍,那么汽车应在距飞机场多少千米处返回接乙班学生,才能使两班同时到达飞机场?
【作业4】甲、乙两班学生到离校39千米的博物馆参观,但只有一辆汽车,一次只能乘坐一个班的学生.为了尽快到达博物馆,两个班商定,由甲班先坐车,乙班先步行,同时出发,甲班学生在途中某地下车后步行去博物馆,汽车则从某地立即返回去接在途中步行的乙班学生.如果甲、乙两班学生步行速度相同,汽车速度是他们步行速度的10倍,那么汽车应在距博物馆多少千米处返回接乙班学生,才能使两班同时到达博物馆?
【作业5】甲火车4分行进的路程等于乙火车 5分行进的路程。
乙火车上午8:00从B站开往A站,开出若干分后,甲火车从A站出发开往B站。
上午9:00两列火车相遇,相遇的地点离A,B两站的距离的比是15∶16。
甲火车从A站发车的时间是几点几分?
【作业6】甲、乙两列火车的速度比是5∶4。
乙车先从B站开往A站,当走到离B站72千米的地方时,甲车从A站发车开往B站。
如果两列火车相遇的地方离A,B两站距离的比是3∶4,那么A,B两站之间的距离为多少千米?
【作业7】大、小客车从甲、乙两地同时相向开出,大、小客车的速度比为4∶5,两车开出后60分相遇,并继续前进。
问:大客车比小客车晚多少分到达目的地?
【作业8】一辆汽车从甲地开往乙地。
如果把车速提高1/9,那么要比原定时间提前1小时到达;如果以原速行驶162km,再把速度提高1/6,也比原来提前1小时到达。
甲乙两地相距多少千米?。