第03章 热力学第二定律
物理化学03章_热力学第二定律
为什么要定义新函数?
热力学第一定律导出了热力学能这个状态函数, 为了处理热化学中的问题,又定义了焓。
热力学第二定律导出了熵这个状态函数,但用熵 作为判据时,系统必须是隔离系统,也就是说必须同 时考虑系统和环境的熵变,这很不方便。
通常反应总是在等温、等压或等温、等容条件下 进行,有必要引入新的热力学函数,利用系统自身状 态函数的变化,来判断自发变化的方向和限度。
§3.8 熵和能量退降
热力学第一定律表明:一个实际过程发生 后,能量总值保持不变。
热力学第二定律表明:在一个不可逆过程 中,系统的熵值增加。
能量总值不变,但由于系统的熵值增加, 说明系统中一部分能量丧失了作功的能力,这 就是能量“退降”。
能量 “退降”的程度,与熵的增加成正比
有三个热源 TA > TB > TC
从高“质量”的能贬值为低“质量”的能 是自发过程。
§3.9 热力学第二定律的本质和熵的统计意义
热力学第二定律的本质
热与功转换的不可逆性 热是分子混乱运动的一种表现,而功是分子 有序运动的结果。 功转变成热是从规则运动转化为不规则运动, 混乱度增加,是自发的过程; 而要将无序运动的热转化为有序运动的功就 不可能自动发生。
热力学第二定律的本质 气体混合过程的不可逆性 将N2和O2放在一盒内隔板的两边,抽去隔板, N2和O2自动混合,直至平衡。 这是混乱度增加的过程,也是熵增加的过程, 是自发的过程,其逆过程决不会自动发生。
热力学第二定律的本质
热传导过程的不可逆性
处于高温时的系统,分布在高能级上的分子 数较集中;
而处于低温时的系统,分子较多地集中在低 能级上。
这与熵的变化方向相同。
03章 热力学第二定律
Chapter Chapter3 3 The TheSecond SecondLaw Lawof ofThermodynamics Thermodynamics ¾ 不违背第一定律的事情是否一定能成功呢? 例1. H2(g) + 1/2O2(g) H2O(l) ∆rHθm(298K) = -286 kJ.mol-1 加热,不能使之反向进行。 例2. 25 °C及pθ下,H+ + OHH2O(l)极易进行, 但最终[H+][OH-] = 10-14 mol2.dm-6,即 反应不进行到底。 ¾ 第二定律的任务:方向,限度
方法2
1mol H2O(l) 298.2K,pθ Ⅰ
等T, r 等T, p, ir ∆S, ∆H
H2O(g) 298.2K,pθ Ⅲ 等 T, r
H2O(l) 298.2K,3160Pa
Ⅱ
等T, p, r
H2O(g) 298.2K,3160Pa
¾ 具有普遍意义的过程:热功转换的不等价性
功不可能无代价,全部 热
① W Q 不等价,是长期实践的结果。
无代价,全部
② 不是 Q W 不可能,而是热全部变 功必须 付出代价(系统和环境),若不付 代价只能部分变功
二、自发过程的共同特征 (General character of spontaneous process) (1) 自发过程单向地朝着平衡。 (2) 自发过程都有作功本领。 (3) 自发过程都是不可逆的。
= r Clausius Inequality (1) 意义:在不可逆过程中系统的熵变大于过程 的热温商,在可逆过程中系统的熵变等于过 程的热温商。即系统中不可能发生熵变小于 热温商的过程。 是一切非敞开系统的普遍规律。 (2) T是环境温度:当使用其中的“=”时,可认为T 是系统温度。 (3) 与“第二类永动机不可能”等价。
03热力学第二定律
二、热力学第二定律的表述
克劳修斯的说法
不可能把热量从低温物体传向高温物体 而不引起其他变化。
开尔文的说法
不可能从单一热源取热使之完全变为功 而不引起其他变化。
这两种说法的关键是“不引起其他变化”。 制冷中,引起变化——外界消耗功;定温膨胀 引起系统状态变化——气体压力降低。 第二类永动机是造不成的。不违背热力学 第一定律却违背热力学第二定律的“第二类永 动机”:以环境为单一热源,使机器从中吸热 对外作功;由于环境中能量是无穷无尽的,因 而这样的机器就可以永远工作下去。
结论:
(1)两恒温热源间一切可逆循环的热效率都相 等,都等于相同温限间卡诺循环的热效率。它们的 热效率仅取决于热源和冷源的温度。而与工质无关。 提高热源温度和降低冷源温度是提高可逆循环热效 率的根本途径和方法。 (2)相同高、低温热源间的不可逆循环的热效 率恒小于相应可逆循环的热效率。尽量减少循环中 的不可逆因素是提高循环热效率的重要方法。
下面采用反证法证明定理一:
QHA 设有可逆热机和,分别从高温热源吸取热量 和 HB ,对外作功WA 和WB ,向低温热源放出热量 Q Q QLB 和 LA ,则它们的热效率分别为
WA QLA A 1 QHA QHA
WB QLB B 1 QHB QHB
若 A B,假定 A B。由于A和B均为 可逆热机,现使B机逆转。由可逆过程的性质知 , B机逆转的结果是工质从低温热源吸收热量 QHB , 外界输入功 WB ,向高温热源放出热量 QLB 成为一 QLB 台制冷机。为证明方便起见,假定 QLA 且制冷机所需功由热机A提供,从而构成一台联合 运转的机器,如图所示。
平均吸热(放热)温度:工质在变温吸热(放 热)过程中温度变化的积分平均值。 g QH e TdS TH S S
第03章 热力学第二定律
第3章 热力学第二定律练 习1、发过程一定是不可逆的。
而不可逆过程一定是自发的。
上述说法都对吗为什么 答案:(第一句对,第二句错,因为不可逆过程可以是非自发的,如自发过程的逆过程。
)2、什么是可逆过程自然界是否存在真正意义上的可逆过程有人说,在昼夜温差较大的我国北方冬季,白天缸里的冰融化成水,而夜里同样缸里的水又凝固成冰。
因此,这是一个可逆过程。
你认为这种说法对吗为什么 答案:(条件不同了)3、若有人想制造一种使用于轮船上的机器,它只是从海水中吸热而全部转变为功。
你认为这种机器能造成吗为什么这种设想违反热力学第一定律吗答案:(这相当于第二类永动机器,所以不能造成,但它不违反热力学第一定律)4、一工作于两个固定温度热源间的可逆热机,当其用理想气体作工作介质时热机效率为 η1,而用实际气体作工作介质时热机效率为 η2,则A .η1>η2B .η1<η2 C.η1=η2 D.η1≥η2 答案:(C )5、同样始终态的可逆和不可逆过程,热温商值是否相等体系熵变 ΔS 体 又如何 答案:(不同,但 ΔS 体 相同,因为 S 是状态函数,其改变量只与始、终态有关)6、下列说法对吗为什么(1)为了计算不可逆过程的熵变,可以在始末态之间设计一条可逆途径来计算。
但绝热过程例外。
(2)绝热可逆过程 ΔS =0,因此,熵达最大值。
(3)体系经历一循环过程后,ΔS =0 ,因此,该循环一定是可逆循环。
(4)过冷水凝结成冰是一自发过程,因此,ΔS >0 。
(5)孤立系统达平衡态的标态是熵不再增加。
答案:〔(1) 对,(2) 不对,只有孤立体系达平衡时,熵最大,(3)不对,对任何循环过程,ΔS=0 不是是否可逆,(4) 应是ΔS总>0,水→冰是放热,ΔS<0,ΔS>0,(5) 对〕7、1mol H2O(l)在、下向真空蒸发变成、的 H2O(g),试计算此过程的ΔS总,并判断过程的方向。
答案:(ΔS总=·K-1·mol-1>0)8、试证明两块重量相同、温度不同的同种铁片相接触时,热的传递是不可逆过程。
物理化学03热力学第二定律
2. 卡诺定理
工作在相同高温热源与低温热源之间的任意热机, 其效率不可能高于相同热源间的可逆卡诺热机的效 率。即 R
T1热源
Q‘1 W W可 Q2 Q1
卡诺定理的证明: 根据热力学第二定律,用反证法可证明。
调整两个热机使所做的功相等 可逆机的效率:
某
Q’2
可
可
W R Q1
• 例:木炭在氧气中燃烧,热力学能转变为热,生成CO2, 其逆过程是CO2吸收相同的热量,转变为C和O2,是不违 反热力学第一定律的,但能否自动的进行呢?
99-11-24 2
同在能量守恒的前提下, 热的自发传递是单方向的; 功可全部转化为热, 而热转化为功却是有限制的.
• 热 从 高 温 传 向 低 温 • 功 转 化 为 热
99-11-24 13
Q1 Q2 0 T1 T2
把卡诺循环的结果推广到任意的可逆循环
§3.3 熵
1. 熵的导出
p a 2
1
b
上下对应的各对红线的热温熵之和显 然等于零, 所有红线的热温熵之和, 即整个 折线循环的总热温熵也就为零. 当折线取得 无限短和无限多时, 就无限趋近于曲线循环. 故 任意可逆循环的热温熵之和也为零.
•要解决过程的方向性的问题,必须依赖于热力 学第二定律。
99-11-24
3
§3-1 热力学第二定律
1. 自发过程与非自发过程
• 在一定的条件下,不需要消耗环境的作用就能 自动进行的过程,称为自发过程。 • 如水往低处流,冰熔化,墨水在清水中扩散, 常温下能自动进行的化学反应等等。 • 自发过程的逆过程是不能自动进行的,称为非 自发过程。 • 自发过程的共同特征是不可逆的。 [课堂讨论]:以气体真空膨胀为例,说明自发过 程是不可逆过程。
热力学第二定律
内容:所有工作于同温热源与同温冷源之间的热机, 可逆机效率最大。
数学式:
W Q1 Q2 T2 T1
Q2
Q2
T2
< 任意机 = 可逆机
或 Q1 Q2 0 可逆循环热温熵之和等于零
T1 T2
不可逆循环热温熵之和小于零
或
QB 0
TB
定理证明:
用反证法,假设
I R
由图可知:
WW Q1' Q1
循环净结果: 热从低温热源自动传到高温热源而无其它变化,
违背了克劳修斯说法。
∴ 假设不成立,即 I R
卡诺定理推论:
所有工作于同温热源与同温冷源间的可逆机,热 机效率都相同而与工作介质无关。
定理的意义:
1) 指出了热机的效率,说明热不能100%转化为功; 2) 为热力学第二定律熵函数S的提出奠定了基础。
第三章 热力学第二定律
热力学第二定律解决的问题: 预测一定条件下一个过程进行的自发方向和限度。
自发过程: 无外力作用条件下(即不消耗外功)能够进行的过程。
限度: 一定条件下,过程能够进行到的最大程度。
§3-1 自发过程的共同特征
一、几个自发过程实例 1. 热传递
高温物体(T2) 热自动传递 低温物体(T1)
熵判据关键点: ①隔离体系中可能发生的过程,总是向熵增大方向进行
——过程进行的方向 ②一定条件下熵增至其最大值
——过程的限度
五、熵和“无用能”
高温热源 T2
Q
Q
R1 W1
T1
Q
Q-W1
R2 W2 Q -W2
低温热源 T0
图2-7 能量的退化
卡诺热机R1:
R1
W1 Q
第三章热力学第二定律
★
自发过程的共同特征
a.自发过程单向的朝着平衡 b.自发过程都有做功本领 c.自发过程都是不可逆的
2.热、功转换
具有普遍意义的过程:热功转化的不等价性。
无代价,全部
功
热
不可能无代价,全部
热机效率
3.热力学第二定律的两种经典表述
不可能把热量从低温 热源传到高温热源, 而不引起其他变化。
克劳修斯
不可能从单一热源吸热 使之完全变为功,而不 留下其它变化。
12.2
V2 22.4 J K 1 S (O 2 ) nR ln 0.5 8.315ln 12.2 V1
★
相变化过程
(1)可逆相变
在相平衡压力p和温度T下
B()
T, p 可逆相变
B()
Qr H S T T
(2)不可逆相变
不在相平衡压力p和温度T下的相变 B( , T, p) S 1 T, p S 不可逆相变 B(, T, p) S3 2
S
T2
T1
(4)绝热可逆过程
(5)绝热不可逆过程
S ( p1,V1, T1 ) ( p2 ,V2 , T2 )
恒容 S1
( p ',V1 , T2 )
恒温 S2
S S1 S2 nCV ,m ln
T2 V nR ln 2 T1 V1
S ( p1,V1, T1 ) ( p2 ,V2 , T2 )
求各步骤及途径的Q,△S。 (1)恒温可逆膨胀: (2)先恒容泠却至使压力降至100kPa,再恒压加热至T2; (3)先绝热可逆膨胀到使压力降至100kPa,再恒压加热 至T2;
例:1 mol 理想气体T=300K下,从始态100 kPa 经下列各过程, 求Q,△S及△S i so。 (1)可逆膨胀到末态压力为50 kPa; (2)反抗恒定外压50 kPa 不可逆膨胀至平衡态; (3)向真空自由膨胀至原体积的两倍。
物理化学 第三章 热力学第二定律
“>” 号为不可逆过程 “=” 号为可逆过程
克劳修斯不等式引进的不等号,在热力学上可以作 为变化方向与限度的判据。
dS Q T
dSiso 0
“>” 号为不可逆过程 “=” 号为可逆过程
“>” 号为自发过程 “=” 号为处于平衡状态
因为隔离体系中一旦发生一个不可逆过程,则一定 是自发过程,不可逆过程的方向就是自发过程的方 向。可逆过程则是处于平衡态的过程。
二、规定熵和标准熵
1. 规定熵 : 在第三定律基础上相对于SB* (0K,完美晶体)= 0 , 求得纯物质B要某一状态的熵.
S(T ) S(0K ) T,Qr
0K T
Sm (B,T )
T Qr
0K T
2. 标准熵: 在标准状态下温度T 的规定熵又叫 标准熵Sm ⊖(B,相态,T) 。
则:
i
Q1 Q2 Q1
1
Q2 Q1
r
T1 T2 T1
1 T2 T1
根据卡诺定理:
i
r
不可逆 可逆
则
Q1 Q2 0 不可逆
T1 T2
可逆
对于微小循环,有 Q1 Q2 0 不可逆
T1 T2
可逆
推广为与多个热源接触的任意循环过程得:
Q 0
T
不可逆 可逆
自发过程的逆过程都不能自动进行。当借助 外力,体系恢复原状后,会给环境留下不可磨灭 的影响。自发过程是不可逆过程。
自发过程逆过程进行必须环境对系统作功。
例:
1. 传热过程:低温 传冷热冻方机向高温 2. 气体扩散过程: 低压 传压质缩方机向高压 3. 溶质传质过程: 低浓度 浓差传电质池方通向电高浓度 4. 化学反应: Cu ZnSO4 原反电应池方电向解 Zn CuSO4
03 热力学第二定律
第三章热力学第二定律一.基本要求1.了解自发过程的共同特征及热力学第二定律的表述方式。
2.掌握Carnot循环中各步的功和热的计算,了解如何从Carnot循环中引出熵这个状态函数。
3.掌握Clausius不等式的应用及熵增加原理,会熟练计算一些常见过程如:等温、等压和等容过程的熵变,学会设计简单的可逆过程。
4.了解熵的本质和规定熵的由来,会使用规定熵值来计算化学变化的熵变。
5.理解为什么要定义Helmholtz自由能和Gibbs自由能,它他们有什么用处?如何计算不同过程中它们的变化值?6.了解有几个热力学判据,掌握如何利用Gibbs自由能判据来判断变化的方向和限度。
7.了解热力学的四个基本共识的由来,记住每个热力学函数的特征变量,会利用d G的表示式计算温度和压力对Gibbs自由能的影响。
二.把握讲课要点的建议自发过程的共同特征是不可逆性,热力学第二定律即是概括了所有不可逆过程的经验定律。
通过学习本章,原则上解决了判断变化的方向和限度的问题,完成了化学热力学的最基本的任务。
所以学好本章十分重要。
通过学习Carnot循环,一方面熟练不同过程中功和热的计算,另一方面理解所导出的熵函数的状态函数的性质及热机效率总是小于1的原因。
Clausius不等式就是热力学第二定律的数学表达式,从这个不等式就可以引出以后的几个判据,解决判断变化方向与限度的问题,必须要让学生掌握。
熵增加原理引出了熵判踞,但要讲清楚绝热过程的熵变只能判断过程的可逆与否,而只有隔离系统的熵变才能判断过程的可逆与否及自发与否。
要计算隔离系统的熵变,必须介绍如何计算环境的熵变。
计算熵变一定要用可逆过程的热效应,如果实际是个不可逆过程,则要介绍几个如何设计可逆过程的方法,例如,如何可逆地绕到相变点:熔点、沸点或饱和蒸汽压时的可逆气-液平衡点。
不必完整地介绍熵的本质和热力学第三定律,只需要让学生了解熵是系统混乱度的一种量度,凡是混乱度增加的过程都是自发过程。
第三章热力学第二定律
第三章 热力学第二定律〔一〕主要公式及其适用条件1、热机效率1211211/)(/)(/T T T Q Q Q Q W -=+=-=η式中:Q 1及Q 2分别为工质在循环过程中从高温热源T 1所吸收的热量和向低温热源T 2所放出的热量,W 为在循环过程中热机对环境所作的功。
此式适用于在两个不同温度的热源之间所进行的一切可逆循环。
2、卡诺定理的重要结论⎩⎨⎧<=+不可逆循环可逆循环,0,0//2211T Q T Q 不管是何种工作物质以及在循环过程中发生何种变化,在指定的高、低温热源之间,一切要逆循环的热温商之和必等于零,一切不可逆循环的热温商之和必小于零。
3、熵的定义式T Q dS /d r def= 式中:r d Q 为可逆热,T 为可逆传热r d Q 时系统的温度。
此式适用于一切可逆过程熵变的计算。
4、克劳修斯不等式⎰⎩⎨⎧≥∆21)/d (可逆过程不可逆过程T Q S 上式说明,可逆过程热温商的总和等于熵变,而不可逆过程热温商的总和必小于过程的熵变。
5、熵判据∆S (隔) = ∆S (系统) + ∆S (环境)⎩⎨⎧=>系统处于平衡态可逆过程能自动进行不可逆,,0,,0 此式适用于隔离系统。
只有隔离系统的总熵变才可人微言轻过程自动进行与平衡的判据。
在隔离系统一切可能自动进行的过程必然是向着熵增大的方向进行,绝不可能发生∆S 〔隔〕<0的过程,这又被称为熵增原理。
6、熵变计算的主要公式⎰⎰⎰-=+==∆212121r d d d d d Tp V H T V p U T Q S 对于封闭系统,一切可逆过程的熵变计算式,皆可由上式导出。
〔1〕∆S = nC V ,m ln(T 2/T 1) + nR ln(V 2/V 1)= nC p,m ln(T 2/T 1) + nR ln(p 2/p 1)= nC V ,m ln(p 2/p 1) + nC p,m ln(V 2/V 1)上式适用于封闭系统、理想气体、C V ,m =常数、只有pVT 变化的一切过程。
物理化学 第三章 热力学第二定律课件
第三章 热力学第二定律§3.1 热力学第二定律1.自发过程自发过程:在自然条件下,能够发生的过程,称为自发过程。
自发过程的逆过程称为非自发过程。
所谓自然条件,是指不需要人为加入功的过程。
例如:(1) 热量从高温物体传入低温物体; (2)气体向真空膨胀;(3)锌片与硫酸铜的置换反应等,。
说明:自发过程是热力学中的不可逆过程,这是自发过程长的共同特征。
自发过程的逆过程都不能自动进行,自发过程的逆向必须消耗功。
2.热、功转换任何热机从高温1T 热源吸热1Q ,一部分转化为功W ,另一部分2Q 传给低温2T 热源。
将热机所作的功与所吸的热之比值称为热机效率,或称为热机转换系数,用η表示。
恒小于1。
即1W Q η-=若热机不向低温热源散热,20Q =,此时热机效率可达到100%,将所吸收的热全部变为功,实践证明这样的机器永远造不成。
人们将这种从单一热源吸热全部用来对外作功的机器,称为第二永动机。
2.热力学第二定律克劳修斯(Clausius )的说法:“不可能把热从低温物体传到高温物体,而不引起其它变化。
”开尔文(Kelvin )的说法:“不可能从单一热源取出热使之完全变为功,而不发生其他的变化。
”克劳修斯和开尔文的说法都是指某一件事情是“不可能”的,即指出某种自发过程的逆过程是不能自动进行的。
克劳修斯的说法是指明热传导的不可逆性,开尔文的说法是指明功转变为热的过程的不可逆性,这两种说法实际上是等效的。
热力学第二定律和热力第一定律一样,是建立在无数事实的基础上,是人类经验的总结。
它不能从其它更普遍的定律推导出来。
§3.2 卡诺循环与卡诺定理1.卡诺循环(Carnot cycle )卡诺循环:由恒温可逆膨胀、绝热可逆膨胀、恒温可逆压缩、绝热可逆压缩四个可逆步骤组成的循环过程。
以理想气体为工作物质,从高温T 1热源吸收Q 1的热量,一部分通过理想热机用来对外做功W ,另一部分的热量Q 2放给低温T 2热源。
热力学第二定律ppt课件
不可能从单一热源吸收热量,使之全部变成 功 ,而不产生其他影响。 1.热机效率无法达到100%,总会有热损 2.任何热机都不可能把内能全部转化机械能
第二类永机不可制成,不可以制成的原因:违背热力学第二定律 热力学第二定律的各种表述都是的 等价 ,并可从一种表述导出另一种表述
C.电冰箱的工作原理不违反热力学第一定律
D.电冰箱的工作原理违反热力学第二定律
三、 热力学第二定律的开尔文表述
②不可能从单一热源吸收热量,使之全部变成 功,而不产生其他影响
机械能
全部转化(自发)
转化中有其他影响 (要向低温热库放热)
内能(热)
不产生其他影响:对周围环境不产生热力学方面的影响,如吸热、放 热、做功等
不会 因为分子的扩散运动是从密度较大的区域向密度较小的区域进行 并且这个过程是不可逆
一、自然界中宏观过程的方向性
情景二:将一块烧红的铁块投入冷水中,会发生什 么现象?
铁块放热,温度降低,水吸热,温度升高;最终两 者温度相同。
问题:一段时间后会不会出现铁块温度升高,水的温度 降低的情况?
不会出现;说明热量可以自发地从高温物体传到低温物体 而不可以自发地从低温物体传到高温物体
生其它影响。此时热机的效率η=1(100%), η=1的热机称为第二类永动机。
下列说法正确的有( D )
A.第二类永动机和第一类永动机一样,都违背了能量守恒定律,因此 不可能制成
B.根据能量守恒定律,经过不断地技术改进,热机的效率可以达到 100%
C.因为能量守恒,所以“能源危机”是不可能真正出现的
(多选)下图为电冰箱的工作原理示意图.压缩机工作时,强迫制冷剂在 冰箱内外的管道中不断循环.在蒸发器中制冷剂汽化吸收箱体内的热 量,经过冷凝器时制冷剂液化,放出热量到箱体外。下列说法正确的 是( BC )
第三章 热力学第二定律
IR
WIR QIR
(Q1)IR (Q2 )IR (Q1 ) IR
T1 T2 T1
1 (Q2 )IR 1 T2
(Q1 ) IR
T1
(Q1)IR (Q2 )IR 0 用(b)中相同(T的1)环方法(,T2 )对环 任意的变温不可逆循环,也可
以用无限个微小过程代替,得到
任意不可逆循环热温商之和小于零。
BQI
A
T环
不可逆 可逆
,或
dS QI TSU
不可逆 可逆
• 若系统经绝热过程 QI 0
有
S绝 0
不可逆 ,或
可逆
dS绝 0
不可逆 可逆
• 若在隔离系统中发生的过程 QI 0
不可逆
S隔 0 可逆 ,或
不可逆
dS隔 0 可逆
此二式就是熵增加原理的数学表达式。它表示:在绝
热或隔离系统中进行不可逆过程(实际可发生的过
低温物体(T(不2)可逆)
由上分析看见:无论是功→热的转化,还是 传热过程都 有明确的方向。这些实际发生的过 程都不能简单逆转,其共性——都是不可逆的
9
3.2 熵,熵增原理···················
1. 卡诺定理
(i)工作于两个一定温度间的所有卡诺循环都有相同 的
效率
R
T1 T2 T1
若V1 V2
S
CV
为常数
,m
nCV ,m
ln
T2
T1
由此二式可知,当T2>T1,ΔS>0,即定压(或定容) 下,S高温>S低温。
21
(3)系统经绝热可逆过程 (QR )S 0 , (QR )S 0
S
QR
T
0
03章_热力学第二定律
§3.1 §3.2 §3.3 §3.4 §3.5 §3.6
§3.7
§3.8 §3.9
自发变化的共同特征 热力学第二定律 Carnot定理 熵的概念 Clausius不等式与熵增加原理 热力学基本方程与T-S图
熵变的计算
熵和能量退降 热力学第二定律的本质和熵的统计意义
§3.10 Helmholtz和Gibbs自由能
▲ kelvin 说法:不可能从单一热源取出热使之全 部转化为功,而不留下其它变化。
“It is impossible to devise an engine which,working in a cycle, shall produce no effect other than the extraction of heat from a reservoir and the performance of an equal amount of work”。
在极限情况下,上式可写成
(Q
T
)
R
0
即任意可逆循环可逆热温商沿封闭曲线的环积 分为零。
现在再讨论可逆过程的热温熵。
在曲线上任意取A,B两点,把循环分成AB和 BA两个可逆过程。
根据任意可逆循环热温商的公式:
Q
( T )R 0
b
可分成两项的加和
A a
B
B Q
A Q
(
AT
)R1
( BT
) R2
不需要外功,就能自动进行的变化过程。
要使自发过程的逆过程能够进行,必须环境对系统作功。 ◆ 借助抽水机,使水从低处流向高处;
◆ 利用抽气机(压缩机),使气体从低压流向高压; ◆ 借助冷冻机,使热量从低温传向高温; ◆ 借助于电解,可以使水恢复为 H2 和 O2 。
第03章 热力学第二定律
第三章热力学第二定律热力学第一定律指出了能量的守恒和转化以及在转化过程中各种能量具有相应的当量关系,但它不能指出变化的方向和变化进行的程度。
自然界的变化无一例外地不违反热力学第一定律,但是不违反热力学第一定律的变化却不一定能发生。
自发变化:某种变化有自动发生的趋势,一旦发生就无需借助外力,可以自动进行,这种变化称为自发变化。
§3.1 自发变化的共同特征——不可逆性下列过程是自发的:(1)焦耳热功当量中功自动转变成热;(2)气体向真空膨胀,吸收热量,降低其内能;(3)热量从高温物体传入低温物体,降低高温物体的内能,使其以热的形式传给低温热源;(4)浓度不等的溶液混合均匀,可降低其内能(5)锌片与硫酸铜的置换反应,将化学能转变成体积功,降低其内能;它们的逆过程都不能自动进行。
要使它们反方向进行,则必须借助外力。
当借助外力,体系恢复原状后,会给环境留下不可磨灭的影响。
如:(1)要将热转变成功,根据卡诺可逆循环,热的一部分可转变为功,而另一部分则必须释放给低温热源,即环境做了功而得到了部分的热。
环境中留下了功变成热的痕迹;(2)要使气体压缩,则环境必须对其做压缩功,而得到等量的热。
环境中留下了功变成热的痕迹;(3)要使热量从低温物体传入高温物体,必须对其做功而得到相应的热。
环境中留下了功变成热的痕迹;(4)将均匀的混合溶液分离,必须通过萃取、结晶、蒸发等对其做功,而得到相应的热。
环境中留下了功变成热的痕迹;(5)要用铜来置换硫酸锌里的锌,则必须对其做电功。
这些例子说明,一个自发变化发生后,不可能使体系和环境都恢复到原来的状态而不留下任何影响,就是说自发过程是不可逆的。
§3.2 热力学第二定律在生活和生成实践中遇到的自动进行的过程,其共同特征就是不可逆性。
也就是说,一切实际过程都是热力学不可逆过程。
而这些不可逆过程都是相互联系的。
人们逐渐总结出反映这一普遍联系的简便说法,即热力学第二定律(The Second Law of Thermodynamics )。
第三章 热力学第二定律
滨州学院化工与安全学院
2.吉布斯自由能判据
如果系统在恒温、恒压、且不作非膨胀功的条件下,
dGT , p,W / =0 0 GT , p,W / =0 0
=
可逆
平衡
不可逆 自发
不能自发
即恒温、恒压不做非体积功的系统中,自发变化总是 朝着吉布斯自由能减少的方向进行,直到达到平衡为 止。
=
可逆
平衡
不可逆 自发
不能自发
在恒温、恒容、不做非体积功的条件下,自发变化 总是朝着亥姆霍兹自由能减少的方向进行,直到达到平 衡为止。
物理化学
滨州学院化工与安全学院
(三)吉布斯自由能 1.吉布斯自由能函数
G def H −TS
G称为吉布斯自由能(Gibbs free energy),是 状态函数,具有容量性质。
S = QR T
S = nR ln(V2 ) = nR ln( p1 )
V1
p2
(2)理想气体(或理想溶液)的等温混合过程,并
符合分体积定律,即
mixS = −R nB
xB =
ln xB
VB V总
B
(3)等温等压可逆相变(若是不可逆相变,应设计
可逆过程)
S
(相变)=
H (相变) T (相变)
物理化学
ln
T2 T1
物理化学
滨州学院化工与安全学院
(3)一定量理想气体从 p1,V1,T1 到 p2 ,V2 ,T2 的过程。
a. 先等温后等容 S = nR ln(V2 ) + T2 nCV ,mdT
⎯若⎯CV⎯,m =常 ⎯⎯数→
S
=
nR
ln
V2 V1
热力学第二定律
于对过程的具体安排。 不论自发还是非自发过程,一切实际过程都是不可逆的。若
施以适当的控制,在理论上都能成为可逆过程。
.
2.热力学第二定律
克劳修斯:热从低温物体传 给高温物体而不产生其它变 化是不可能的。
开尔文:从一个热源吸热,使之完全转化为功,而不产生其 它变化是不可能的。即热功转变的不可逆性。
热:能量传递的低 级形式:无序能
高级能可以无条件地 转变为低级能;低级 能全部转变为高级能 是有条件的——给环
境留下影响。
.
功是能量传递的高 级形式:有序能
第二类永动机是不可能造成的
.
对热力学第二定律的说明: (1)热力学第二定律是实验现象的总结。它不能被任 何方式加以证明,其正确性只能由实验事实来检验。 (2)热力学第二定律的各种表述在本质上是等价的, 由一种表述的正确性可推出另外一种表述的正确性。
CV,m为常数时:S
nCV,m
lnT2 T1
.
④任意绝热过程熵变的计算
根据热力学第二定律,任意绝热可逆过程熵变为0! 任意绝热过程先求出末状态来,再据前面的三个公式求算。
⑤凝聚态物质
在变温过程中,只要压力改变不大,凝聚态物质的熵变为:
S Q pdH T 2np C ,m dT T T T 1 T 恒T 时,液、固体的熵变很小,S ≈0。
做功,只有以从高温热源吸收一部分热量,再放掉其中一部
分热量给低温热源为代价,否则不能做功.
• 卡诺循环的热温商之和等于零,不可逆循环的热温商之和小
于零。
.
§3.3 熵
1.熵的导出
卡诺循环结论
第三章热力学第二定律
第三章 热力学第二定律一、本章小结热力学第二定律揭示了在不违背热力学第一定律的前提下实际过程进行的方向和限度。
第二定律抓住了事物的共性,推导、定义了状态函数—熵,根据熵导出并定义了亥姆霍兹函数和吉布斯函数,根据三个状态函数的变化可以判断任意或特定条件下实际过程进行的方向和限度。
通过本章的学习,应该着重掌握熵、亥姆霍兹函数和吉布斯函数的概念、计算及其在判断过程方向和限度上的应用。
同时,进一步加深对可逆和不可逆概念的认识。
自然界一切自发发生的实际宏观过程均为热力学不可逆过程。
而在没有外界影响的条件下,不可逆变化总是单向地趋于平衡态。
主要定律、定义及公式:1. 热力学第二定律克劳修斯说法:“不可能把热从低温物体传到高温物体而不产生其它影响。
” 开尔文说法:“不可能从单一热源吸取热量使之完全转化为功而不产生其它影响。
” 2. 热力学第三定律: 0 K 时纯物质完美晶体的熵等于零。
()*m 0lim ,0T S T →=完美晶体 或 ()*m0K 0S =完美晶体,。
3. 三个新函数的定义式r δd Q S T =或 2r1δΔQ S T=⎰A U TSG H TS=-=-物理意义:恒温过程 r dA W δ=恒温恒压过程 'r dG W δ=4. 定理卡诺定理:在T 1与T 2两热源之间工作的所有热机中,卡诺热机的效率最高。
12121T T Q Q T Q ⎧-+≥⎨⎩>不可逆循环=可逆循环 12120,0,Q Q T T <⎧+⎨=⎩不可逆循环可逆循环克劳修斯不等式:2121δ,Δδ,Q T S Q T⎧>⎪⎪⎨⎪=⎪⎩⎰⎰不可逆过程可逆过程熵增原理:0,Δ0,S >⎧⎨=⎩绝热不可逆过程绝热可逆过程5. 过程判据熵判据:适用于任何过程;iso sysamb ΔΔΔS S S =+ 000>⎧⎪=⎨⎪<⎩,不可逆,可逆,不可能发生的过程亥姆霍兹(函数)判据:适用于恒温恒容,W '=0的过程;,0,d 00T VA <⎧⎪⎨⎪>⎩自发=,平衡,反向自发 吉布斯(函数)判据:适用于恒温恒压,W '=0;,0,d 00T p G <⎧⎪⎨⎪>⎩自发=,平衡,反向自发 6. 熵变计算公式最基本计算公式:2r1δΔQ S T=⎰次基本计算公式:21d d ΔU p VS T+=⎰(δW '= 0 ) 理想气体pVT 变化熵变计算公式:22,m 11Δln ln V T V S nC nR T V =+ 21,m 12Δlnln p T p S nC nR T p =+ 22,m ,m 11Δlnln V p p V S nC nC p V =+ 请读者自己从次基本计算公式推出以上三式,再由以上三式分别推导出理想气体恒温、恒压、恒容熵变计算公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
思考题
1.自发过程一定是不可逆的,所以不可逆过程一定是自发的。
这说法对吗?
2.空调、冰箱不是可以把热从低温热源吸出,放给高温热源吗?这是否与第二定律矛盾呢?
3.能否说系统达平衡时熵值最大,Gibbs 自由能最小?
4.某系统从始态出发,经一个绝热不可逆过程到达终态。
为了计算熵值,能否设计一个绝热可逆过程来计算?
*5.C p,m 是否恒大于C V ,m ?
6.将压力为101.3kPa ,温度为268.2K 的过冷液体苯,凝固成同温、同压的固体苯。
已知苯的凝固点T f 为278.7K ,如何设计可逆过程?
7.下列过程中,Q 、W 、△U 、△H 、△S 、△G 和△A 的数值哪些为零?哪些的绝对值相等?
(1)理想气体真空膨胀;(2)*实际气体绝热可逆膨胀;(3)水在冰点结成冰;(4)理想气体等温可逆膨胀;(5)H 2(g)和O 2(g)在绝热钢瓶中生成水。
*8.箱子一边是1molN 2(100kPa),另一边是2molN 2(200kPa),298K 时抽去隔板后的熵变值如何计算?
9.指出下列理想气体等温混合的熵变值。
(1)1molN 2(g,1V) + 1molN 2(g,1V) = 2molN 2(g,1V)
(2)1molN 2(g,1V) + 1molAr(g,1V) = (1molN 2 + 1molAr)(g,1V)
(3)1molN 2(g,1V) + 1molN 2(g,1V) = 2molN 2(g,2V)
10.四个热力学基本公式适用的条件是什么?是否一定要可逆过程?
概念题
1 理想气体在等温条件下反抗恒定外压膨胀,该变化过程中系统的熵变△S sys 及环境的熵变△S sur 因为:
(A )△S sys >0,△S sur =0 (B )△S sys <0,△S sur =0
(C )△S sys >0,△S sur <0 (D )△S sys <0,△S sur >0
2 在绝热条件下,用大于气缸内的压力迅速推动活塞压缩气体,此过程度熵变:
(A )大于零 (B )小于零 (C )等于零 (D )不能确定
3 H 2(g)和O 2(g)在绝热钢瓶中化合,生成水的过程:
(A )△H =0 (B )△U =0
(C )△S =0 (D )△G =0
4 在大气压力和273.15K 下水凝结为冰,判断下列热力学量中哪一个一定为零:
(A )△U (B )△H (C )△S (D )△G
5 在N 2和O 2混合气体的绝热可逆压缩过程中,系统的热力学函数变化值在下列结论中正确的是:
(A )△U =0 (B )△A =0 (C )△S =0 (D )△G =0 6 单原子分子理想气体的 ,温度由T 1变到T 2 时,等压过程系统的熵变△S p 和等容过程系统的熵变△S V 之比是:
(A )1:1 (B )2:1 (C )3:5 (D )5:3
7 水在373K ,101325 Pa 的条件下气化为同温同压的水蒸气,热力学函数变量为△U 1,△H 1,△G 1;现把 的水(温度、压力同上)放在恒温373K 的真空箱中,控制体积,使系统终态蒸气压也为101325 Pa ,这时热力学函数变量为△U 2,△H 2,△G 2。
这两组热力学函数的关系为:
(A ) (B )
(C ) (D ) R C m V 23,=kg 3101-⨯kg 310
1-⨯212121,,G G H H U U ∆>∆∆>∆∆>∆212121,,G G H H U U ∆<∆∆<∆∆<∆212121,,G G H H U U ∆=∆∆=∆∆=∆2
12121,,G G H H U U ∆=∆∆>∆∆=∆
8 298K 时,1mol 理想气体等温膨胀,压力从1000kPa 变到100kPa ,系统Gibbs 自由能变化值为:
(A )0.04 kJ (B )-12.4 kJ (C )1.24 kJ (D )-5.70 kJ
9 对于不做非体积功的隔离系统,熵判据为:
(A ) (B ) (C ) (D ) *10 某气体的状态方程 ,其中a 为大于零的常数,该气体经恒温膨胀,其热力学能:
(A )不变 (B )增大 (C )减小 (D )不能确定
11 封闭系统中,某过程的 ,应满足的条件是:
(A )等温、可逆过程 (B )等容、可逆过程
(C )等温等压、可逆过程 (D )等温等容、可逆过程
12 热力学第三定律可以表示为:
(A )在0K 时,任何晶体的熵等于零 (B )在0K 时,任何完整晶体的熵等于零
(C )在0℃时,任何晶体的熵等于零 (D )在0℃时,任何完整晶体的熵等于零 概念题答案
1 C
2 A 3B 4 D 5 C 6 D 7 C 8 D 9 D 10 A 11 A 12 B 0)(,≥U T dS 0)(,≥U p dS 0)(,≥p
U dS 0)(,≥V U dS ap RT pV m +=R W A =∆。