第八章第一节分子蒸馏技术详解
分子蒸馏技术
分子蒸馏技术X Y Zhou 化学工程110427001摘要分子蒸馏是一种新型的液-液分离技术,与传统的蒸馏技术相比:操作温度远低于液体沸点,蒸馏压力在极高真空度下,受热时间短,能最大限度地保证物系中的有效成分。
本文分析了分子蒸馏技术的原理、过程,介绍了目前分子蒸馏技术的特点、分子蒸馏设备及其特点,以及分子蒸馏技术在食品、医药、化工等行业的应用。
关键词分子蒸馏;分离技术;分子蒸馏器分子蒸馏技术[1]是一种特殊的液-液分离技术,是新型分离技术中的一个重要分支。
液体混合物的分离,一般是通过蒸馏或精馏来实现的。
在蒸馏或精馏过程中,存在着两股分子流向:一股是被蒸液体的气化,由液相流向气相的蒸气分子流;另一股是由蒸气返回至液相的分子流。
当气液两相达到平衡时,表观上蒸气分子不再从液面逸出。
若果利用某种措施,使蒸气分子不再返回(或减少返回)液相,就会大大提高分离效率。
分子蒸馏技术正是在蒸馏技术的不断改进发展中而产生的一种特殊的蒸馏分离技术。
1 分子蒸馏的原理、过程及其特点1.1 分子蒸馏的基本原理根据分子运动理论,液体混合物的分子受热后运动会加剧,当接受到足够能量时,就会成为气体分子而从液面逸出。
而随着液面上方气体分子的增加,有一部分气体分子就会返回液体,在外界温度保持恒定的情况下,最终达到分子运动的动态平衡,此外,不同种类的分子,由于其分子有效直径不同,故其平均自由度也不同,从统计学观点看,不同种类的分子逸出液面后不与其他分子碰撞的飞行距离是不同的[2]。
传统的液体混合物的分离,一般都是利用溶液组分间沸点的差异,通过蒸馏或精馏来实现的,其气液处于平衡状态。
而分子蒸馏技术却不同于常规蒸馏,它是利用不同物质分子运动平均自由程的差异,实现液体混合物的分离。
具体的分离过程是:经过预热处理的待分离料液从进料口沿加热板自上而下流入,受热的液体分子从加热板逸出,并向冷凝板运动。
轻分子由于平均自由程较大,能够到达冷凝板并不断在冷凝板凝集,最后进入轻组分接收罐;重分子因平均自由程较小,不能到达冷凝板,从而顺加热板流入重组分接收罐中,这样就实现了轻重组分的分离[3]。
分子蒸馏技术
分子蒸馏技术一、分子蒸馏技术简介分子蒸馏是一项较新的尚未广泛应用于工业化生产的分离技术,能解决大量常规蒸馏技术所不能解决的问题。
分子蒸馏是一种特殊的液-液分离技术,能在极高真空下操作,它依据分子运动平均自由程的差别,能使液体在远低于其沸点的温度下将其分离,特别适用于高沸点、热敏性及易氧化物系的分离。
由于其具有蒸馏温度低于物料的沸点、蒸馏压强低、受热时间短、分离程度高等特点,因而能大大降低高沸点物料的分离成本,极好地保护了热敏性物质的特点品质,该项技术用于纯天然保健品的提取,可摆脱化学处理方法的束缚,真正保持了纯天然的特性,使保健产品的质量迈上一个新台阶。
二、分子蒸馏技术的基本原理(一)分子运动平均自由程:任一分子在运动过程中都在不断变化自由程。
在某时间间隔内自由程的平均值为平均自由程。
设Vm =某一分子的平均速度f =碰撞频率λm =平均自由程则λm =Vm/f ∴ f =Vm/λmπd²P由热力学原理可知,f =(2)½Vm·────KT其中: d -分子有效直径P -分子所处空间的压强T -分子所处环境的温度K -波尔兹曼常数K T则:λm =────·────(2)½πd²P(二)分子运动平均自由程的分布规律:分子运动自由程的分布规律为正态分布,其概率公式为:F = 1 - e-λ/λm其中: F -自由程度≤λm 的概率λm -分子运动的平均自由程λ-分子运动自由程由公式可以得出,对于一群相同状态下的运动分子,其自由程等于或大于平均自由程λm的概率为:1 - F = e-λ/λm = e-1 = 36.8%(三)分子蒸馏的基本原理:由分子平均自由程的公式可以看出,不同种类的分子,由于其分子有效直径不同,其平均自由程也不同,换句话说,不同种类的分子溢出液面后不与其它分子碰撞的飞行距离是不同的。
分子蒸馏技术正是利用不同种类分子溢出液面后平均自由程不同的性质实现的。
分子蒸馏技术原理
1、分子蒸馏技术的基本原理分子蒸馏不同于一般的蒸馏技术。
它是运用不同物质分子运动平均自由程的差别而实现物质的分离,因而能够实现在远离沸点下操作。
根据分子运动理论,液体混合物的分子受热后运动会加剧,当接受到足够能量时,就会从液面逸出而成为气相分子,随着液面上方气相分子的增加,有一部分气体就会返回液体,在外界条件保持恒定情况下,就会达到分子运动的动态平衡。
从宏观上看达到了平衡。
液体混合物为达到分离的目的,首先进行加热,能量足够的分子逸出液面,轻分子的平均自由程大,重分子平均自由程小,若在离液面小于轻分子的平均自由程而大于重分子平均自由程处设置一冷凝面,使得轻分子不断被冷凝,从而破坏了轻分子的动平衡而使混合液中的轻分子不断逸出,而重分子因达不到冷凝面很快趋于动态平衡,不再从混合液中逸出,这样,液体混合物便达到了分离的目的。
2、分子蒸馏技术的特点由分子蒸馏的原理可以看出,分子蒸馏有许多常规蒸馏所不具备的特点。
2.1分子蒸馏的操作真空度高。
由于分子蒸馏的冷热面间的间距小于轻分子的平均自由程,轻分子几乎没有压力降就达到冷凝面,使蒸发面的实际操作真空度比传统真空蒸馏的操作真空度高出几个数量级。
分子蒸馏的操作残压一般约为0.1~1Pa数量级。
2.2分子蒸馏的操作温度低。
分子蒸馏依靠分子运动平均自由程的差别实现分离,并不需要到达物料的沸点,加之分子蒸馏的操作真空度更高,这又进一步降低了操作温度。
分子蒸馏在蒸发过程中,物料被强制形成很薄的液膜,并被定向推动,使得液体在分离器中停留时间很短。
特别是轻分子,一经逸出就马上冷凝,受热时间更短,一般为几秒或十几秒。
这样,使物料的热损伤很小,特别对热敏性物质的分离过程提供了传统蒸馏无法比拟的操作条件。
3.4分子蒸馏的分离程度更高。
,由分子蒸馏的相对挥发度可以看出:x式中:M1————轻分子分子量;M2————重分子分子量而常规蒸馏相对挥发度α=P1/P2 ,由于M2 >M1 ,所以ατ>α。
分子蒸馏简介及应用
分子蒸馏技术1、分子蒸馏技术的原理分子蒸馏技术(Molecular distillation technology)是一种新型的液-液分离或精制技术,是利用混合物组分中不同分子运动的平均自由程的差异不同而进行分离的。
其特征是蒸发面与冷凝面之间的距离小于被分离物料分子的平均自由程,根据被分离物系各组分的分子量不同,分子平均自由程的差别进行分离。
分子蒸馏又叫短程蒸馏(Short-pathdistillation)。
根据分子平均自由程公式知,不同种类的分子,由于其分子有效直径不同,故其平均自由程也不同,即不同种类分子,从统计学观点看,其逸出液面后不与其它分子碰撞的飞行距离是不相同的。
分子蒸馏的分离作用就是利用液体分子受热会从液面逸出,而不同种类分子逸出后其平均自由程不同这一性质来实现的。
液体受热后,轻分子的平均自由程大,重分子的平均自由程小,在离液面小于轻分子的平均自由程而大于重分子平均自由程处设置一捕集器,使得轻分子不断被捕集,从而破坏了轻分子的动态平衡而使混合液中的轻分子不断逸出,而重分子因达不到捕集器很快趋于动态平衡,不再从混合液中逸出,这样,液体混合物便达到了分离的目的。
2、分子蒸馏技术的特点与常规的普通蒸馏技术相比,短程分子蒸馏技术具有明显特点[1-8]。
2.1操作温度低普通蒸馏是在沸点温度进行,而分子蒸馏是根据不同种类的分子逸出液面后的平均自由程不同的性质来实现的,因而分子蒸馏是在低于蒸馏物质沸点的温度下进行,被分离物质只要存在着温度差,就能达到分离目的。
2.2蒸馏真空度高分子蒸馏由于其特殊的结构,系统内真空度较高,压强只有0.5-1Pa,因而分子蒸馏分离可有效避免易氧化物质的氧化分解。
另外,对于混合液中的低分子物质(如有机溶剂、臭味物质等)的脱除,分子蒸馏较常规蒸馏有效得多。
2.3受热时间短分子蒸馏装置加热面与冷凝面的距离小于轻分子的平均自由程,液面逸出的轻分子几乎未经碰撞就达到冷凝面,所以受热时间很短。
分子蒸馏技术
稳定性指 数Z1=lgz
9.48
7.78
6.78
6.30
5×104
4.70
20
1.30
10
1.00
物料在分子蒸馏中的分解几率和停留时间比
其它类型的蒸发器低了数量级。
因此,用分子蒸馏总是可以保证:
物料少受破坏 重复性 效率
分子蒸馏与其它蒸馏方法相比其突出优点 在于:
a. 操作温度低 b. 物料受热时间短
3、为防止已冷凝分子重新蒸发,冷凝面的温度 应低于蒸发面50~100℃;
4、被蒸发物料在蒸发面应能形成连续更新、覆 盖完全、厚度均匀的薄膜,并控制物料停留时 间,以提高蒸发效率,防止成分受到破坏。
三、分子蒸馏 设备
完整的分子 蒸馏系统主 要包括:脱 气系统、进 料系统、分 子蒸馏器、 加热系统、 真空冷气系 统、接受系 统和控制系 统。
2、原理 分子蒸馏是在极高的真空度下,依据混合物分
子运动平均自由程的差别,使液体在远低于其 沸点的温度下迅速得到分离。
轻分子的 平均自由 程大,重 分子的平 均自由程 小。
1、 分子从液相主体向蒸发表面扩散
2、 分子在液层表面上的自由蒸发
3、 分子从蒸发表面向冷凝面飞射 蒸气分子从蒸发面向冷凝面飞射的过程
中,可能彼此相互碰撞,也可能和残存于两 面之间的空气分子发生碰撞。由于蒸发分子 远重于空气分子,且大都具有相同的运动方 向,所以它们自身碰撞对飞射方向和蒸发速 度影响不大。而残气分子在两面间呈杂乱无 章的热运动状态,故残气分子数目的多少是 影响飞射方向和蒸发速度的主要因素。 4、 分子在冷凝面上冷凝
• 石油化工方面
应
• 塑料工业方面
用
情
• 食品工业方面
分子蒸馏
分子蒸馏分子蒸馏是一种特殊的液--液分离技术,它不同于传统蒸馏依靠沸点差分离原理,而是靠不同物质分子运动平均自由程的差别实现分离。
这里,分子运动自由程(用λ表示)是指一个分子相邻两次碰撞之间所走的路程。
当液体混合物沿加热板流动并被加热,轻、重分子会逸出液面而进入气相,由于轻、重分子的自由程不同,因此,不同物质的分子从液面逸出后移动距离不同,若能恰当地设置一块冷凝板,则轻分子达到冷凝板被冷凝排出,而重分子达不到冷凝板沿混合液排出。
这样,达到物质分离的目的。
>>> 分子蒸馏技术的特点分子蒸馏技术作为一种与国际同步的高新分离技术,具有其它分离技术无法比拟的优点:1、操作温度低(远低于沸点)、真空度高(空载≤1Pa)、受热时间短(以秒计)、分离效率高等,特别适宜于高沸点、热敏性、易氧化物质的分离;2、可有效地脱除低分子物质(脱臭)、重分子物质(脱色)及脱除混合物中杂质;3、其分离过程为物理分离过程,可很好地保护被分离物质不被污染,特别是可保持天然提取物的原来品质;4 、分离程度高,高于传统蒸馏及普通的薄膜蒸发器。
蒸馏是最重要的一种用加热对不同物质进行分离的方式之一。
常规的蒸馏方式:原料在蒸发器内被加热至蒸发温度, 低沸点组分蒸发后进入冷凝器冷却, 得到所需的产品。
但是,常规的蒸馏方式 - 需要较高的蒸馏温度 - 物料加热时间较长 局限性- 无法对热敏物质进行分离真空蒸馏通过将系统抽真空可降低蒸发温度压力与沸点的关系压力每降低一个数量级,沸点降低约20-30度但对于热敏物质来说, 在蒸馏釡内进行的真空蒸馏有很多缺陷- 很长的蒸馏时间- 由于压力降的缘故,以及真空泵很难克服蒸馏釜内液面的静压高度,所以在蒸发处的真空是非常有限的。
最终的真空度并不由真空泵的大小而决定, 而是受管路的传导性和蒸发器内静液面高度的限制.薄膜蒸发器中的真空蒸馏从一个薄膜上蒸发能消除静液面高的影响, 在刮膜蒸发器中,物料沿着加热的圆柱筒体表面向下流动, 形成薄膜, 在流动过程中成薄膜状的物料被蒸发.带外冷凝器的薄膜蒸发器液膜被一个刮膜系统不断地进行混合, 冷凝在一个外置的冷凝器中进行, 冷凝器连接有真空系统.刮环靠自身的离心力在蒸发器内壁上刮出约1mm厚薄膜- 传热效率高- 质量交换快- 物料受热时间短,只有15秒到30秒- 物料以膜的形式出现,几乎没有液面压差,减少了真空度的损失但是带外冷凝器的薄膜蒸发器也有局限性:由于蒸发器与冷凝器之间的管路连接导致的压力降, 蒸发器内获得的真空度仅局限于毫巴级,最低大约可降至1毫巴(100Pa)带有内置冷凝器的短程蒸发器使用短程/分子蒸馏能够消除真空度不足的不利因素. 冷凝器置于圆筒型蒸发器的内部, 蒸发器与冷凝器之间的距离非常地短. 事实上, 不存在压力降的问题.如果内置冷凝器与蒸发器表面之间的距离正好为轻分子自由程的平均距离, 则轻分子达到冷凝器被冷凝排出,这种工艺又称为”分子蒸馏”。
分子蒸馏 原理
分子蒸馏原理分子蒸馏是一种先进的分离技术,它基于不同物质分子运动平均自由程的差别实现分离。
以下将详细解释这一过程:1. 分子蒸馏原理分子蒸馏利用了不同物质分子运动平均自由程的差异。
在常压下,轻分子的平均自由程比重分子要大得多,这就意味着在相同的距离上,重分子需要的时间比轻分子长。
因此,通过控制合适的操作条件,我们可以让轻分子在液面上方逸出进入气相,而重分子则留在液相中。
2. 不同物质分子运动平均自由程的差别实现分离不同物质分子运动平均自由程的差别是实现分离的关键。
轻、重分子由于其不同的分子量和分子特性,会有不同的平均自由程。
在分子蒸馏过程中,轻、重分子会根据其平均自由程的不同,移动不同的距离。
3. 轻、重分子逸出液面进入气相在分子蒸馏过程中,轻、重分子会根据其特性从液面逸出进入气相。
由于轻分子的平均自由程较大,它们更容易从液面逸出进入气相。
相反,重分子的平均自由程较小,它们更难从液面逸出进入气相。
4. 轻、重分子自由程不同,移动距离不同由于轻、重分子的平均自由程不同,它们在液面上的移动距离也不同。
轻分子的平均自由程较大,它们可以在液面上方移动较远的距离。
而重分子的平均自由程较小,它们在液面上方移动的距离较短。
5. 设置冷凝板,轻分子被冷凝排出,重分子沿混合液排出在分子蒸馏设备中,通常会设置冷凝板以收集轻分子。
当轻分子从液面逸出进入气相后,它们会碰到冷凝板并被冷凝排出。
而重分子则沿混合液排出。
6. 沸腾的薄膜和冷凝面之间的压差是蒸汽流向的驱动力在分子蒸馏过程中,沸腾的薄膜和冷凝面之间的压差是蒸汽流向的驱动力。
由于轻、重分子的特性不同,它们在沸腾的薄膜和冷凝面之间的移动距离也不同。
轻分子可以移动较远的距离,而重分子则移动较短的距离。
这种移动距离的差异使得轻、重分子得以分离。
7. 微小的压力降引起蒸汽的流动在分子蒸馏过程中,微小的压力降会引起蒸汽的流动。
当轻、重分子从液面逸出进入气相后,它们会随着蒸汽流动。
第八章分子蒸馏
概念
分子蒸馏也称短程蒸馏,是一种在高真空 度条件下进行非平衡分离操作的连续蒸馏过 程。 由于分子蒸馏过程中操作系统的压力很 低(102-10-1Pa),混合物易挥发组分的分 子可以在温度远低于沸腾时挥发,而且在受 热情况下停留时间很短(10-1-101s),故 该过程已成为分离目的产物最温和的蒸馏方 法,特别适于分离低挥发度、高沸点、热敏 性和具有生物活性的物料。
溶剂萃取:萃取原理,三角形相图,萃取计算to
萃取
分类
反胶团萃取:本质和特点,推动力,影响因素to 超临界萃取:特征,影响因素to
双水相萃取:概念,系统的类型,影响因素to
浸取:浸出过程计算to
萃取定义: 在任何一种溶剂中,不同的物质具 有不同的溶解度,利用物质溶解度的不 同,使混合物中的组分得到完全或部分 的分离过程,称为萃取。
FxF Sy S Rx R Ey E Mx M
D R
E ' R ' F
FD F DS R’
F
●
S min
●
M
E G
GF S max F GS
MF S F MS
萃取剂与稀释剂不互溶的体系
萃取相中溶质A的浓度 (比质量浓度) 萃余相中溶质A 的浓度 (比质量浓度)
萃取液 F
●
E RF ③ R E F E R F
Emax
E
M’ R M
②
S MF ① F MS
萃余液
E MR R ME
R
萃余相
最小溶剂比
M'F S = F min M ' S
R ME E MR
E ' FR' E’ R ' FE '
分子蒸馏
四、分子蒸馏技术应用
2.医药工业 2.医药工业 ①提取天然维生素:用分子蒸馏法可以从大 豆油、小麦胚芽油等油脂及其脱臭物中提取 高纯度维生素A、维生素E 高纯度维生素A、维生素E。宋志华等人利用 分子蒸馏技术对大豆脱臭馏出物进行分离, 得到纯度为74.55%的维生素E 得到纯度为74.55%的维生素E。②分离中药 提取液:杨靖等人采用分子蒸馏装置提高了 经过超临界萃取的当归根油品质。
三、分子蒸馏技术特点
1.分子蒸馏的操作真空度高、操作温度低。 1.分子蒸馏的操作真空度高、操作温度低。 由于分子蒸馏是依据分子运动平均自由程的 差别将物质分开,因而可在低于混合物的沸 点下将物质分离。加之其独特的结构形式决 定了其操作压强很低,这又进一步降低了物 质的沸点,因此分子蒸馏可在远低于混合物 沸点的温度下实现物质的分离。
三、分子蒸馏技术特点
2.受热时间短。在分子蒸馏器中, 2.受热时间短。在分子蒸馏器中, 受热液体被强制分布成薄膜状,膜 厚一般为0.5mm 厚一般为0.5mm 左右,设备的持液 量很小,因此,物料在分子蒸馏器 内的停留时间很短,一般几秒至十 几秒,使物料所受的热损伤极小。
三、分子蒸馏技术特点
3.分离程度高。分子蒸馏比常规蒸馏有 3.分离程度高。分子蒸馏比常规蒸馏有 更高的相对挥发度,分离效率高。这使 得聚合物可与单体及杂质进行更有效的 分离。 4.工艺清洁环保。分子蒸馏技术不使用 4.工艺清洁环保。分子蒸馏技术不使用 任何有机溶剂,不产生任何污染,被认 为是一种温和的绿色操作工艺 。
五、分子蒸馏技术前景
分子蒸馏是高真空下的短程蒸馏,特别适用于高沸 点、热敏、高黏度物质的提取、分离和精制,其最 大特点是能尽量保持食品的天然性。尽管分子蒸馏 较常规蒸馏具有许多优点,但也有使用局限性,当 混合物内各组分的分子平均自由程相近时,例如同 分异构体,则可能分离不开,因此主要用于不同组 分、分子平均自由程相差较大的混合物的分离。分 子蒸馏作为一种高效、温和的分离技术,有利于清 洁生产和环境保护,能够满足人们对高品质、绿色 产品的追求,在各行业中具有广泛的应用前景。
8分子蒸馏
分子蒸馏技术的主要应用领域
脱除热敏性物质中的轻分子(气味不纯物、残留溶剂或小分子杂 质)。如:香精香料、大蒜油、姜油的脱臭,天然产物脱溶剂。 产品脱色和除杂质。色泽多为重分子所致,也共存重分子杂质。 避免和减少热敏物质的损伤与破坏。 需要避免环境污染的分离问题。如:传统脱除甘油三酸酯中游离脂 肪酸的方法是先用NaOH使游离酸皂化,然后水洗得到纯的甘油三酸 酯。该方法不仅使甘油三酸酯也大量被皂化,而且所用试剂污染产 品和环境。分子蒸馏技术可在不污染环境的前提下,既得到高品质 甘油三酸酯,同时还可得到游离脂肪酸副产品。 产品与催化剂的分离。传统分离方法会使催化剂破坏或失活。
离心式蒸发器的构造示意图
真空室与水平面成 4560度角倾斜放置。 这种蒸发器的最大特点 是蒸发面和冷凝面的间 距可调,实际工作中可 以根据分离物分子的分 子运动平均自由程随意 调节。 特点:液膜薄,蒸发效率高,生产能力大。但机 械构造复杂,工业推广上受到一定限制。
旋转刮膜式蒸发器的构造示意图
8 分子蒸馏
8.1 分子蒸馏技术原理
8.2 分子蒸馏装置
8.3 分子蒸馏技术的应用
分子运动平均自由程
分子碰撞:分子由吸引而接近至排斥而分离的过程。 分子运动自由程:一个分子在相邻两次分子碰撞之间 所经历的路程。任何一个分子的自由程都在不断变化, 在一定条件下,不同物质的分子运动自由程不同。 分子平均自由程:在某时间间隔内,大量分子自由程 的平均值。它受温度、压力及分子有效直径影响。
在自由降膜式的基础上增加了刮 膜装置。混合液从上部进料口输 入后,经导向盘将液体分布在塔 壁上。由于设置了刮膜装置,因 而在塔壁上形成了薄而均匀的液 膜,使蒸发速率及分离效率提高。 不过,由于增加了刮膜装置,仪 器结构变得复杂,特别是刮膜装 置为旋转式,高真空下的动密封 问题值得注意。
分子蒸馏技术
技术特点
11
常规蒸馏相对挥发度
分子蒸馏相对挥发度
式中: 轻、重组分物质的饱和 蒸气压轻、重组分分子的质量
分子的质量差异越大,分离度越大
实际应用
12
适用于分离的物质
分子量差别较大的液体混合物高沸点、热敏性、易氧化、易聚合的物质分子量相近,但沸点等性质或分子结构差别较大的物质
技术简介
它是运用不ቤተ መጻሕፍቲ ባይዱ物质分子运动平均自由程的差别而实现液--液分离的新技术。
技术简介
4
分子的碰撞过程
分子由接近至排斥而分离的过程
分子运动自由程
一个分子在相邻两次碰撞之间所经历的路程
分子的有效直径
两个分子碰撞时质心的最短距离
分离原理
5
分子运动平均自由程
式中: k——玻尔兹曼常数 T——环境温度 d——分子有效直径 p——空间压力
离心式 离心力成膜,膜薄,蒸发效高,但结构复杂,真空密封较难,设备的制造成本高。
分子蒸馏装置的核心部分是分子蒸发器,其种类主要有3种
9
第一步
第二步
第三步
第四步
分离过程
技术特点
10
为了获得足够大的分子自由程,必须降低压力。真空度低于常规真空蒸馏
加热面与冷凝面间的距离很小液面呈薄膜状,传热效率高
分子蒸馏技术
Molecular Distillation
目录
CONTENTS
Technical Introduction
Separation Principle
3
20世纪20年代出现分子蒸馏技术,并在60年代开始工业化应用。目前分子蒸馏已在油脂化学工业如甘油酯、双甘酯、长链脂肪酸、维生素E等浓缩和制取中得到了广泛的应用。
分子蒸馏的原理及设备
分子蒸馏的原理及设备分子蒸馏是一种高级的蒸馏技术,用于分离高沸点混合物中的组分。
其原理是利用不同高沸点组分的分子间相互作用力的差异,在高真空条件下,通过逐步蒸发和冷凝来实现分离。
以下将对分子蒸馏的原理和设备进行详细介绍。
一、分子蒸馏的原理:分子蒸馏的原理基于分子间力的差异。
在高沸点混合物中,各组分之间通过分子间相互作用力相互吸附在一起,使得分子间距较近,难以单独蒸发。
通过加热和减压,可以将高沸点组分蒸发出来。
在高真空条件下,组分之间的分子间相互作用力变得微弱,能够单独蒸发。
通过冷凝,可以将蒸发出来的高沸点组分重新液化,分离出组分。
二、分子蒸馏的设备:1.分馏塔:分馏塔是实现分子蒸馏的核心设备,分为有配管的和无配管的两种。
有配管的分馏塔具有更好的热平衡性和简化操作的优势,适用于较大规模的生产。
无配管的分馏塔则更加灵活,适用于实验室和小规模生产。
2.加热系统:加热系统的作用是提供蒸发所需的热量。
通常采用电炉、传导热油或蒸汽加热。
3.冷凝系统:冷凝系统用于将蒸发出来的高沸点组分重新液化。
常见的冷凝方式有冷凝管、冷凝器和冷却剂等。
4.真空系统:真空系统用于提供高真空条件,减少分子间相互作用力,使得高沸点组分能够单独蒸发。
常见的真空系统设备有真空泵和真空计等。
5.收集和分离系统:蒸发出来的高沸点组分通过冷凝系统重新液化后,需要进行收集和分离。
常见的收集和分离设备有采样瓶、吸收塔和分离器等。
三、分子蒸馏的操作过程:1.设定操作参数:根据混合物的组成和性质,设定适当的温度和压力,以控制分子蒸馏的过程。
2.加热:通过加热系统提供所需的热量,使得混合物开始蒸发。
3.分离:蒸发出来的高沸点组分在分馏塔中逐步上升,与下降的冷凝器中的冷却剂接触,冷凝成液体重新收集。
4.收集:通过收集和分离系统,将高沸点组分单独收集。
5.控制操作参数:根据需要,随时调整温度和压力,以优化分离效果。
分子蒸馏技术广泛应用于石油、化工、精细化工、医药等领域。
第八章分子蒸馏技术分解
将物料加入设备中,启动加热系统和真空系统,使物料在真 空状态下加热蒸发。轻组分被分离出来并冷凝成液体,通过 收集系统收集。设备运行过程中需监控真空度、温度等参数 ,确保设备正常运行和产品质量。
关键部件选材及制造工艺
加热系统选材
选用耐高温、耐腐蚀的材料,如不锈钢、陶瓷等。
蒸发系统选材
选用高纯度、耐高温、耐腐蚀的材料,如石英玻璃、高纯 铝等。
原理
当液体混合物沿加热板加热时,轻、重分子会逸出液面而进入气相,由于轻、重分子的自由程不同,因此,不同 物质的分子从液面逸出后移动距离不同,若能恰当地设置一块冷凝板,则轻分子达到冷凝板被冷凝排出,而重分 子达不到冷凝板沿混合液排出。这样,达到物质分离的目的。
分子蒸馏技术发展历程
初级阶段
20世纪初,分子蒸馏技术开始萌芽,主要应用于石油工业中的润滑 油分离。
真空系统
维持设备内的真空 度,降低物料沸点 ,提高分离效率。
加热系统
提供分子蒸馏所需 的热量,使物料达 到蒸发温度。
冷凝系统
将蒸发出来的轻组 分冷凝成液体,便 于收集。
收集系统
收集冷凝后的液体 产品,确保产品质 量。
工作原理与操作流程
工作原理
利用物料中各组分分子运动平均自由程的差异实现分离。在 真空状态下,加热物料使其轻组分蒸发,通过冷凝系统冷凝 成液体后收集。
润滑油生产
分子蒸馏技术可用于润滑油的生 产过程中,去除杂质、提高油品 纯度和粘度指数。
精细化工行业应用案例
香料提纯
01
利用分子蒸馏技术可提纯香料中的关键成分,去除异味和杂质
,提高香料品质。
化妆品原料制备
02
通过分子蒸馏技术,可提取化妆品原料中的有效成分,保证产
分子蒸馏技术
操作压力低:压力越低,分子平均自由程越大,越有利于分 子蒸馏分离。一般分子蒸馏的真空度达到0.1~100Pa,而 一般真空蒸馏的真空度是5kPa
受热时间短:假定真空蒸馏的受热时间为数十分钟,而分子 蒸馏的受热时间仅为几秒或几十秒
分离程度及产品收率高
15
分子蒸馏技术
原理及特点
• 分子蒸馏技术特点
*
16
工艺及设备—离心式流程
*
35
分子蒸馏技术
工艺*
12
分子蒸馏技术
原理及特点
• 例:空气
有效直径:3.11*10-10m,压力与平均自由程的关系见 下表:
压力/mmHg
1.0
10-1 10-2 10-3 10-4
平均自由程/cm 0.0056 0.056 0.56 5.6 56
注:1mmHg=133.322Pa
*
13
分子蒸馏技术
原理及特点
• 分子蒸馏技术原理
分子蒸馏技术
原理及特点
• 分子蒸馏技术特点
分子蒸馏较常规蒸馏存在的优势 (1)产品质量高 (2)产品能耗低 (3)产品成本低 (4)易于放大
分子蒸馏的缺点:一次性投入较大
17
分子蒸馏技术
原理及特点
• 分子蒸馏技术的参数
液膜厚度:一般分子蒸馏液膜厚度为:降膜式0.05~0.3 cm, 刮膜式0.01~0.05 cm,离心式0.005~0.025 cm
27
分子蒸馏技术
工艺及设备—刮膜式内部结构
*
28
分子蒸馏技术
工艺及设备—刮膜式流程
*
29
分子蒸馏技术
工艺及设备—刮膜式多级流程
*
30
分子蒸馏技术
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分子蒸馏原理★
1.液体混合物沿加热板流动并被加热 2.轻、重分子会逸出液面而进入气相 3.由于轻、重分子的自由程不同 4.轻分子达到冷凝板被冷凝排出; 重分子达不到冷凝板沿混合液排出
分子蒸馏分离应满足的两个条件 ①轻、重分子的平均自由程必须要有差异,且差异越大越好; ②蒸发面与冷凝面间距必须小于轻分子的平均自由程。
2. 分子蒸馏的概念和原理
分子蒸馏的定义
分子蒸馏(molecular distillation)也称短程 蒸馏(short–path distillation),是一种在高真空 下进行的连续蒸馏过程。
分子蒸馏过程与传统的蒸馏过程不同。 传统蒸馏是在沸点温度下进行分离的,蒸发与冷凝过程是
可逆的,液相与汽相间会形成平衡状态。 分子蒸馏过程是一个不可逆的,并且在远离物质常压沸点
7. 互叶白千层油
药
8. 辣椒碱
9. 大蒜素的精制
10. 川芎
11. 当归
12. 姜油
13. 中草药有效成分的提纯
1.羊毛酯酸
日
2. 羊毛酯醇
化
3. 烷基多酣
4. 海藻、金雀花、褐苔、鲜花、 根菜作物、辣椒的提取物
3. 鱼油
食
4. 小麦胚芽油
品 工
5.种子油
业
6. 单甘油酯
7. 双甘油酯
8. 生育酚
9. 黄油
1.广藿香油
2. 玫瑰油
香 料
3. 山仓子油
香
4. 桉叶油(茶树油)
精
5. 香茅油
6. 橙油
7. 紫罗兰酮
1. 酸性氯化物
2. 氨基酸酯
3. 葡萄糖衍生物
4. 吲哚
制
5. 萜酯 6. 天然和合成维生素
分子蒸馏基本原理
根据分子运动理论,液体混合物受热后分子 运动会加剧,当接受到足够能量时,就会从液面 逸出成为气相分子。随着液面上方气相分子的增 加,有一部分气相分子就会返回液相。在外界条 件保持恒定的情况下。最终会达到分子运动的动 态平衡,从宏观上看即达到了平衡。
分子蒸馏的分离作用就是依据液体分子受热会从 液面逸出,而不同种类分子逸出后,在气相中其 运动平均自由程不同这一性质来实现的 。
• 我国上世纪60年代才有研究者开始研究。 • 1986年,蔡沂春申请了关于M型分子蒸馏器的专利。 • 至上世纪80年代,国内引进了几套分子蒸馏生产线,用
于硬脂酸单甘油酯的生产。 • 国内许多单位进行了实验室技术研究。 • 目前分子蒸馏已在油脂化学工业如甘油酯、双甘酯、长
链脂肪酸、维生素E、高碳醇、甾醇等浓缩和制取中得 到广泛的应用。
3. 分子蒸馏的优缺点
对比其它传统蒸馏方式
真空间歇蒸馏
物料在蒸馏釜内停留时间较长,且处于沸点状态, 所以残留物甚至馏出物经常发生热破坏。
降膜式蒸发器
成膜质量主要取决于:重 力、物料的粘度和给料流 率; 降膜成层流状态,导致膜 上出现“死点”,使物料 过热而热分解; 膜层中存在较大的温度梯 度,妨碍了最佳蒸馏效果
4. 分子蒸馏的应用
几
种
分
子
广受科 研人员
蒸
欢迎的
实验型
馏
设备:
MDS150
MD-S300
MD-S500
MDL-150(离心式)
分子蒸馏的适用范围
1.分子蒸馏适用于不同物质分子量差别较大的液体 混合物系的分离,特别是同系物的分离,分子量 必须要有一定差别。
分子运动自由程
一个分子在相邻两次分子碰撞之间所经过的路 程
分子运动平均自由程
任一分子在运动过程中都在不断变化自由程, 而在一定的外界条件下,不同物质的分子其自由 程各不相同。在某时间间隔内自由程的平均值称 为平均自由程
m
•T
2 d2P
温度、压力及分子有效直径是影响分子运动平均自 由程的主要因素。当压力一定时,一定物质的分子运动 平均自由程随温度增加而增加。当温度一定时,平均自 由程λm与压力p成反比,压力越小(真空度越高),λm 越大,即分子间碰撞机会越少、不同物质因其有效直径 不同,因而分子平均自由程不同。
2.分子蒸馏也可用于分子量接近但性质差别较大的 物质的分离,如沸点差较大、分子量接近的物系 的分离。
3.分子蒸馏特别适用于高沸点、热敏性、易氧化 (或易聚合)物质的分离。
4.分子蒸馏适宜于附加值较高或社会效益较大的物 质的分离。
5.分子蒸馏不适宜于同分异构体的分离。
1.脂肪酸及衍生物
2. 二聚酯肪酸
温度下进行的蒸馏过程,更确切地说,它是分子蒸发的 过程。
几个基本概念
分子碰撞
分子与分子之间存在着相互作用力,当两分子离得较 远时,分子之间的作用力表现为吸引力,但当两分子接 近到一定程度后,分子之间的作用力会改变为排斥力, 并随其接近距离的减小,排斥力迅速增加。 当两分子接近到一定程度时,排斥力的作用使两分子分开。 这种由接近而至排斥分离的过程.就是分子的碰撞过程。
刮
膜
机械 “刮膜”,温度梯度
式
和死点被大大减小
蒸
极限真空有限,有较高的
发
流阻
器
分子蒸馏装置
内部冷凝器,流阻小,极限真空高
★
分子蒸馏与传统蒸馏方法相比的优点:
分子蒸馏技术的局限性
1、由于分子蒸馏要求在高真空下进行分离,所需要的设备 成本过高,结构复杂,设计技术要求高,相应的配套设备也多, 投资过大; 2、分子蒸馏受设备结构和加热面积的限制,设备体积比常 规蒸馏设备体积大,在大规模生产应用中有不少困难。
分子蒸馏技术
Molecular Distillation Technology
Contents
1 分子蒸馏技术发展背景 2 分子蒸馏的概念和原理 3 分子蒸馏的优缺点
4
分子蒸馏的应用
1. 分子蒸馏技术发展背景
• 国外在20世纪20年代出现分子蒸馏技术,并在60年代开 始工业化应用。日本、美国、德国都设计制造了各种式 样的分子蒸馏装置。