相变压器的参数测定实验报告

合集下载

三相变压器的参数测定(精)

三相变压器的参数测定(精)

实验内容
记录实验参数
记录变压器的铭牌数据,明确初、次级额定线电压、相电 压和额定线电流、相电流的数值 测电压比 空载实验 短路实验
实验内容2:测电压比
实验方法
将变压器接成Y,y(相当于过去Y/Y表示法)联接,合上电源开关Q, 自藕变压器输出电压升至 U1N(或100V),测定初、次级电压。
接法
UAB(V) UBC(V) UCA(V) Uab(V) Ubc(V) Uca(V) K Kφ
三相变压器的参数测定
三相变压器的参数测定
实验目的
用实验方法测取变压器的电压比和6个参数 熟练掌握低功率因数功率表的使用及“两表法”测三相功率
了解仪表的选用及不同接法对实验准确度的影响
实验内容
测定变压器线电压比和相电压比(匝数比)
空载实验:测取空载时特性曲线U0 = f(I0)和p0、cosφ 0 = f(U0) 负载损耗实验(短路实验):测取短路时特性曲线Pk、Uk、cosφ k = f(Ik)
为什么三相芯式变压器的空载电流出现一相较低?影响 三相负载电流的平衡么?
谢 谢!
Y,y
接线原理图
实验内容2:测电压比
实物接线图
实验内容2:空载试验
实验方法
电压从1.1~0.5V范围内测取数据4~5组,其中UN=220V 点必测,并记下实验 时周围环境温度(0C)。
注意事项
通电前,先将调压器调压旋钮调到输出电压为零的位置。
实验内容3:短路实验
实验方法
电流1.0~0.5IN范围内测取数据4~5组,其中IK=IN=4.55A点必测,并记 下实验时周围环境温度(0C)
实验仪器介绍
配电柜
注意事项
* 配电柜有交流380V、220V两种, 使用前必须了解自己实验台使用的 电源电压 * 配电柜面板上的数字与实验台号 码一致,按相应数字给实验台上电, 上电后时数字灯变亮;断电时,按 相应数字下的红色按钮使实验台断 电。如图中14号台已上电,可以使 用。

4.变压器的参数测定与标幺值

4.变压器的参数测定与标幺值

1、空载实验1)实验目的:求出变比k 、空载损耗p 0和激磁阻抗Z m 。

变压器的参数测定1U三相调压器2)实验原理图:3)实验步骤:高压边开路,低压边加额定电压U 1N ,测量副边开路电压U 20、空载电流I 10及空载输入功率p 0(铜耗很小,大部分为铁损)。

单相变压器2022111NU N E k N E U ==≈4)参数计算:1010N m U Z Z I ≈=低低00210m p r r I ≈=低低m x =①单相变压器(认为降压变压器)U 2m =m Z k Z 低2m =m r k r 低(归算到高压侧)②副边Y 连接三相变压器(归算到高压侧)③副边△连接三相变压器(归算到高压侧)21010/N m U Z Z kI ≈=202103m p r r k I ≈=m x =20m U Z Z k≈=()202103/m p r r k I ≈=m x =对于三相变压器,计算变比时要把测量出的线电压换算成相电压来进行计算,计算时一定要注意变压器原副边的接线方法。

5)绘制空载特性曲线0(U V U 问:比较空载特性曲线和磁化特性曲线的区别与联系?6)实验注意事项(1) 变压器空载运行的功率因数甚低,一般在0.2以下,应选用低功率因数瓦特表测量功率,以减小测量误差。

(2) 变压器接通电源前必须将调压器输出电压调至最小位置,以避免合闸时电流表及功率表电流线圈被冲击电流损坏。

空载特性曲线注意:(1)计算三相变压器激磁阻抗时,要用一相的功率、电压和电流值计算。

(2)激磁阻抗Z m 随外加电压大小而变化,为使测出的参数符合变压器的实际运行情况,空载试验应在额定电压下进行。

问题:1)实验目的:求出负载损耗p、短路阻抗Z k2、稳态短路实验axab c三相调压器2)实验原理图:3)实验步骤:副边短路,原边加电压使原边电流达到或接近额定值,测量电压U k ,原边电流I k 和输入功率p k (短路电压较小,铁损很小,大部分为铜损)单相变压器kk kU z I =4)参数计算:2kk kp r I =k x =①单相变压器'U U LZ '②原边Y 连接三相变压器③原边△连接三相变压器k U z =23kk kp r I=k x =k U z=k p r=k x =4)参数计算:5) 短路特性曲线1I kkI 问题:为何短路特性曲线是直线?=0m m Z I 认为支路开路:'2<<mZ Z ''1212()()k Z r r j x x =+++为常数k kI U ∝'U阻抗电压(短路电压):短路阻抗与原边额定电流的乘积用原边额定电压的百分数表示。

研究报告单相变压器的参数测定实验

研究报告单相变压器的参数测定实验

研究报告单相变压器的参数测定实验单相变压器实验设计方案系别:工学院专业:智能检测姓名:关济凯学号:2010016011单相变压器实验一、实验目的1、通过空载试验确定单相变压器的励磁阻抗、励磁电阻和励磁电抗参数。

2、通过短路试验确定单相变压器的短路阻抗、短路电阻和短路电抗参数。

二、实验线路单相变压器的空载试验和短路试验的接线图分别为图一、图二,功率表的内部等效结构如图三。

图一单相变压器空载试验图二单相变压器短路试验图三功率表内部等效结构图三、实验内容1、测定变比接线如图一所示,电源经调压器Ty接至低压绕组,高压绕组开路,合上电源闸刀K,将低压绕组外加电压,并逐渐调节Ty,当调至额定电压U的50%附近N 时,测量低压绕组电压Uax及高压绕组电压U。

调节调压器,增大U记录三,AXN 组数据填入表一中。

表一测变比数据UAX 变比K=序号 U ( V ) Uax ( V ) AXUax2、空载实验接线如图一所示,电源频率为工频,波形为正弦波,空载实验一般在低压侧进行,即:低压绕组(ax)上施加电压,高压绕组(AX)开路,变压器空载电流Io = ( 2.5,10%)IN,据此选择电流表及功率表电流线圈的量程。

变压器空载运行的功率因素甚低,一般在0.2以下,应选用低功率因素瓦特表测量功率,以减小测量误差。

变压器接通电源前必须将调压器输出电压调至最小位置,以避免合闸时,电流表功率电流线圈被冲击电流所损坏,合上电源开关K后,调节变压器从0.5UN到1.2UN,测量空载电压Uo,空载电流Io,空载功率Po,读取数据6,7组,记录到表二中。

表二空载试验数据Uo(伏) Io(安) Po(瓦)3、短路实验变压器短路实验线路如图二所示,短路实验一般在高压侧进行,即:高压绕组(AX)上施加电压,低压绕组(ax)短路,若试验变压器容量较小,在测量功率(功率表为高功率因素表)时电流表可不接入,以减少测量功率的误差。

使用横截面较大的导线,把低压绕组短接。

三相变压器的参数测定实验报告

三相变压器的参数测定实验报告

三相变压器的参数测定实验报告一、实验目的本实验目的旨在通过测量三相变压器参数,研究变压器绕组抽头结构及相关参数,熟悉各参数与特性之间的关系,对变压器工作原理有更深入的了解。

二、实验理论依据三相变压器是常见的电力变压器,它适用于改变交流电频率不变的情况下,把一个特定电压的基本电压转变成另一个较高或较低的电压,用以进行输送和分配。

变压器的三个绕组分别为高压绕组(主绕组)、中压绕组(抽头绕组)和低压绕组(负载绕组),这三个绕组之间的连接可以是Y型结构或△型结构,其中可以计算出变压器九个常用参数:最高变压倍数I;功率因数k;额定输入电压V1;归一电阻R;归一电抗X;归一匝数S1;额定输出电压V2;归一漏抗Z;归一额定电流I2。

三、实验仪器实验中使用的仪器设备有三相电能表、衰减表、绝缘电阻表、交直流频谱仪、绝缘电压表、三相变压器等。

四、实验步骤(1)准备变压器并安装工作参数:将三相变压器装入实验台上,安装好三相表及各种电流表,确定抽头结构及电压、电流、功率和频率参数等;(2)测量电频率:使用交直流频谱仪测量变压器的工作频率;(3)测量最高变压倍数:使用衰减表测量变压器的最高变压倍数;(4)测量功率因数:应用电能表测量变压器的功率因数;(5)测量额定电压、归一电阻、归一电抗、归一匝数:利用电能表和绝缘电阻表测量变压器的各项参数;(7)交流损耗测量:根据变压器实测参数,计算其交流损耗。

五、实验结果根据实验所得参数,我们计算得到三相变压器的参数表:项目参数值最高变压倍数I 120.3功率因数k 0.91额定输入电压V1 380V归一电阻R 0.1416ohm归一电抗X 0.2994ohm归一匝数S1 437.7额定输出电压V2 220V归一漏抗Z 0.03335ohm归一额定电流I2 7.18A由此可知,三相变压器在实验参数中各参数测量结果满足要求,可正常完成变压器电能转换功能。

本实验不仅可以熟悉变压器介绍,还有助于对变压器工作原理有更深入的了解,使学生掌握变压器的结构和参数选择的技巧,从而为今后在相关领域中有更好的应用。

变压器测量实验报告

变压器测量实验报告

变压器测量实验报告变压器测量实验报告引言变压器是电力系统中常用的电气设备,用于改变交流电压的大小。

为了了解变压器的性能和工作状态,我们进行了一系列的测量实验。

本实验报告将详细介绍实验的目的、实验装置、实验步骤、实验结果以及实验分析。

一、实验目的本次实验的主要目的是测量变压器的参数,包括变比、空载电流、短路阻抗和负载损耗。

通过这些参数的测量,我们可以了解变压器的效率、电压调节能力以及负载能力。

二、实验装置本次实验使用的实验装置包括一个变压器、电源、电流表、电压表、电阻箱和示波器。

变压器是我们要测量的对象,电源提供实验所需的电能,电流表和电压表用于测量变压器的电流和电压,电阻箱用于调节变压器的负载,示波器用于观察电压波形。

三、实验步骤1. 连接电路:首先,将电源与变压器的输入端相连,然后将变压器的输出端与电阻箱相连。

接下来,将电流表和电压表分别连接到变压器的输入端和输出端。

2. 测量空载电流:打开电源,调节电压,使得变压器的输入端电压为额定值。

记录此时的输入端电流,即为变压器的空载电流。

3. 测量变比:保持电源输出电压不变,调节电阻箱的阻值,使得变压器的输出端电压为额定值。

记录此时的输入端电压和输出端电压,通过计算两者的比值,即可得到变压器的变比。

4. 测量短路阻抗:将输出端短路,即将电阻箱的阻值调节为零。

记录此时的输入端电流,即为变压器的短路电流。

通过计算输入端电压与短路电流的比值,即可得到变压器的短路阻抗。

5. 测量负载损耗:将电阻箱的阻值调节为一定值,使得变压器的输出端电压为额定值。

记录此时的输入端电流和输出端电流,通过计算两者之差,即可得到变压器的负载损耗。

四、实验结果经过一系列的测量和计算,我们得到了以下实验结果:1. 变比:变压器的变比为2:1,即输入端电压是输出端电压的两倍。

2. 空载电流:变压器的空载电流为0.5A。

3. 短路阻抗:变压器的短路阻抗为0.2Ω。

4. 负载损耗:变压器的负载损耗为50W。

三相变压器的参数测定

三相变压器的参数测定

三相变压器的参数测定实验目的:测定三相变压器的各种参数,包括自耦变比、相间电压和相间反电势等。

实验原理及理论依据:1.自耦变比(K)的测定:自耦变压器是一种特殊的变压器,它的原边绕组和副边绕组共用部分线圈,其自耦变比可通过以下公式计算:K=U1/U2其中U1为原边(主绕组)电压,U2为副边(副绕组)电压。

2.相间电压(U12、U23、U31)的测定:U12=U2-U1U23=U3-U2U31=U1-U3其中U1、U2和U3分别为三相电压的幅值。

3.相间反电势(E12、E23、E31)的测定:E12=K*U12E23=K*U23E31=K*U31其中E12、E23和E31分别为相间反电势的幅值。

实验步骤:1.连接实验电路,将三相变压器的原边绕组接入三相交流电源,副边绕组接入负载电阻。

2.测量原边和副边的电压,记录U1和U2的数值。

3.计算自耦变比K,使用公式K=U1/U24.根据测量的U1和U2计算相间电压U12、U23和U31,使用上述公式计算。

5.根据自耦变比K和相间电压U12、U23和U31计算相间反电势E12、E23和E31,使用上述公式计算。

6.记录实验数据,并使用所得参数进行计算和分析。

实验注意事项:1.在进行电压测量时,要保证电源和测量仪器的接线正确,并注意安全操作。

2.实验中的负载电阻要根据实际需要选取合适的数值,以保证实验的准确性。

3.实验中的电压应该为有效值。

实验结果与讨论:通过上述步骤,我们可以得到三相变压器的自耦变比K、相间电压U12、U23和U31,以及相间反电势E12、E23和E31的数值。

根据实验数据,我们可以计算并验证变压器的性能是否符合设计要求。

结论:通过本次实验,我们成功地测定了三相变压器的自耦变比、相间电压和相间反电势等参数,并使用这些参数进行了分析和计算。

实验结果对于电力系统中三相变压器的运行和维护具有重要参考意义。

单相变压器参数测定实验结论

单相变压器参数测定实验结论

单相变压器参数测定实验结论
本实验旨在测定单相变压器的主要参数,通过实验数据的分析和处理,得出以下结论:
1. 变比:通过多次测量,得到变压器的变比为1:2,即输入电压为220V时,输出电压为110V。

2. 铜损耗和铁损耗:变压器的总损耗为铜损耗和铁损耗的总和。

通过测量输入功率和输出功率的差值,可以计算出变压器的总损耗,再通过减去铜损耗,得到铁损耗。

本次实验测得的铜损耗为100W,铁损耗为50W。

3. 空载电流和短路阻抗:通过测量变压器的空载电流和短路阻抗,可以计算出变压器的额定电流和额定阻抗。

本次实验测得的空载电流为0.5A,短路阻抗为2Ω,因此变压器的额定电流为2.5A,额定阻抗为4Ω。

4. 效率:变压器的效率是输出功率与输入功率的比值,也可以通过铁损耗和铜损耗的比值计算得出。

本次实验测得的变压器效率为90%。

综上所述,本次实验测得的单相变压器参数为变比1:2,铜损耗100W,铁损耗50W,额定电流2.5A,额定阻抗4Ω,效率90%。

- 1 -。

变压器的实验报告

变压器的实验报告

一、实验目的1. 理解变压器的基本工作原理和结构。

2. 掌握变压器参数的测量方法,包括变比、损耗、效率等。

3. 分析变压器的空载和负载特性,了解其工作性能。

二、实验设备1. 变压器一台(单相或三相)2. 交流电源3. 电压表、电流表、功率表4. 调压器5. 接线盒、导线等实验器材三、实验原理变压器是一种利用电磁感应原理实现电压变换的设备。

当交流电流通过变压器的一次绕组时,会在铁芯中产生交变磁通,从而在二次绕组中产生感应电动势。

根据法拉第电磁感应定律,变压器的一次绕组与二次绕组之间的电压比等于其匝数比。

四、实验步骤1. 空载实验(1)将变压器的一次绕组接入交流电源,二次绕组开路。

(2)调节调压器,使一次绕组电压达到额定值。

(3)读取电压表、电流表和功率表的示数,记录数据。

(4)改变一次绕组电压,重复步骤(3),记录多组数据。

2. 负载实验(1)将变压器的一次绕组接入交流电源,二次绕组接入负载。

(2)调节调压器,使一次绕组电压达到额定值。

(3)读取电压表、电流表和功率表的示数,记录数据。

(4)改变一次绕组电压,重复步骤(3),记录多组数据。

3. 变比测量(1)根据空载实验数据,计算变压器的变比。

(2)根据负载实验数据,验证变压器的变比。

4. 损耗测量(1)根据空载实验数据,计算变压器的空载损耗。

(2)根据负载实验数据,计算变压器的负载损耗。

(3)计算变压器的效率。

五、实验结果与分析1. 空载实验结果(1)电压与电流的关系:在空载实验中,电压与电流基本呈线性关系。

(2)电压与功率的关系:在空载实验中,电压与功率成正比。

2. 负载实验结果(1)电压与电流的关系:在负载实验中,电压与电流基本呈线性关系。

(2)电压与功率的关系:在负载实验中,电压与功率成正比。

3. 变比测量结果根据空载实验和负载实验数据,计算变压器的变比,验证变压器的变比基本符合设计要求。

4. 损耗测量结果根据空载实验和负载实验数据,计算变压器的空载损耗和负载损耗,验证变压器的损耗符合设计要求。

单相变压器实验报告

单相变压器实验报告

单相变压器实验报告实验室中,我们进行了一次单相变压器实验。

变压器是一种把电压从一个电路传到另一个电路的电子设备。

变压器有两个或以上的线圈,它们都被放在一个镶嵌于铁芯中的磁场中。

在实验中,我们用线圈的比值来改变电压。

以下是我们收集到的实验数据和结论。

实验目的本次实验的目的是学习单相变压器的工作原理,并掌握变压器的基本特性和参数,如变比、电压、电流等。

实验步骤和材料所需材料:单相变压器、两个万用表、电源、调压器、变压器接线板1. 将电源的输出电压设为15伏特。

2. 将变压器的两个线圈进行接线,将输入端的线圈接在电源上,输出端的线圈保持开放状态。

3. 测量输入电阻,并测量输入端电流和输出端电流。

4. 测量输入端和输出端的电压,并计算输出电压与输入电压的比值。

实验结果实验中,我们测量了变压器的变比、电流和电压等参数。

以下是我们所收集到的实验数据:- 变比:20:1- 输入电阻:100欧姆- 输入电流:0.15安培- 输出端电流:7.5毫安- 输入端电压:3伏特- 输出端电压:60伏特根据这些数据,我们可以计算出以下结论:- 变压器的变比为20:1,即输出电压是输入电压的20倍。

- 输入电阻为100欧姆,表明输入电路具有较低的阻抗。

- 输入电流为0.15安培,表明输入电路的电流较小。

- 输出端电流为7.5毫安,表明输出电路的电流较小。

- 由于变压器没有能量损失,输出电压是输入电压的20倍,因此输出端电压为60伏特。

结论通过本次实验,我们可以得出以下结论:- 单相变压器可以将输入电压变换为另一级输出电压。

- 变压器的变比决定了输出电压与输入电压之间的比值。

- 输入电路的电阻和电流决定了变压器的效率。

- 利用变压器可以实现电能的输送和转换。

总结本次实验展示了单项变压器的基本特性和参数。

变压器在现代电力系统中起着重要的作用,可用于调节电压和电流,以满足各种不同的电力需求。

通过本次实验,我们深入了解了变压器的工作原理和性能,并将这些知识应用于实际的电路中。

单相变压器_实验报告

单相变压器_实验报告

一、实验目的1. 通过空载实验测定变压器的变比和参数。

2. 通过短路实验测定变压器的短路阻抗和损耗。

3. 通过负载实验测定变压器的运行特性,包括电压比、电流比和效率。

二、实验原理单相变压器是一种利用电磁感应原理实现电压变换的设备。

当交流电流通过变压器的一次绕组时,会在铁芯中产生交变磁通,从而在二次绕组中感应出电动势。

变压器的变比(K)定义为一次绕组匝数与二次绕组匝数之比,即 K = N1/N2。

变压器的参数包括变比、短路阻抗、电压比、电流比和效率等。

三、实验设备1. 单相变压器2. 交流电源3. 电压表4. 电流表5. 功率表6. 电阻箱7. 示波器8. 发光二极管四、实验步骤1. 空载实验- 将变压器的一次绕组接入交流电源,二次绕组开路。

- 使用电压表测量一次侧和二次侧的电压,记录数据。

- 使用电流表测量一次侧的电流,记录数据。

- 计算变比 K = U2/U1。

- 使用功率表测量一次侧的功率,记录数据。

- 计算空载损耗 P0 = P1 - P2,其中 P1 为一次侧功率,P2 为二次侧功率。

2. 短路实验- 将变压器的一次绕组接入交流电源,二次绕组短路。

- 使用电压表测量一次侧的电压,记录数据。

- 使用电流表测量一次侧的电流,记录数据。

- 计算短路阻抗 Zs = U1/I1。

- 使用功率表测量一次侧的功率,记录数据。

- 计算短路损耗 Pk = P1 - P2,其中 P1 为一次侧功率,P2 为二次侧功率。

3. 负载实验- 将变压器的一次绕组接入交流电源,二次绕组接入负载。

- 使用电压表测量一次侧和二次侧的电压,记录数据。

- 使用电流表测量一次侧和二次侧的电流,记录数据。

- 计算电压比 K = U2/U1 和电流比 I2/I1。

- 使用功率表测量一次侧和二次侧的功率,记录数据。

- 计算效率η = P2/P1。

五、实验结果与分析1. 空载实验- 变比 K = 1.2- 空载损耗 P0 = 5W- 空载电流 I0 = 0.5A2. 短路实验- 短路阻抗Zs = 50Ω- 短路损耗 Pk = 10W- 短路电流 Ik = 2A3. 负载实验- 电压比 K = 1.2- 电流比 I2/I1 = 0.5- 效率η = 80%六、实验结论1. 通过空载实验,我们成功测定了变压器的变比和空载损耗。

变压器参数测定

变压器参数测定

变压器参数测定变压器等效电路中的各参数,可别离经过空载实验和短路实验求得。

一、空载实验经过测定变压器凹凸压侧绕组的电压、空载电流和空载损耗,求得变压器变比和激磁阻抗参数。

图1.5.2-1单相变压器空载实验的原理接线图为安全起见和外表挑选便当,一般在低压侧加电源,高压侧开路。

激磁阻抗参数与铁心饱满程度有关,即与电源电压巨细有关,实验电压有必要取额定电压。

空载电流数值较小,为减小丈量过错,须将电流表挨近变压器接,然后顺次接功率表和电压表,如图1.5.2-1所示。

依据丈量数据:U2N(低压侧额定电压)、U10(高压侧开路电压)、I0(低压侧空载电流)和P0(空载损耗),按空载作业时的等效电路图1.3.5-1,疏忽低压绕组漏阻抗(zmz2),变比k和激磁阻抗参数核算公式如下:空载实验在低压侧加电源,所测数据为低压侧值,求得磁阻抗参数也为低压侧值,如需高压侧的激磁阻抗数值,还须进行折算,即乘(k*k)。

分外留神:对三相变压器进行参数核算,应首要将丈量数据换算为相值(相电压、相电流和一相的损耗),然后才调代入公式,即公式中悉数数据有必要是相值。

二、短路实验经过测定变压器的短路电压、短路电流和短路损耗求得短路阻抗参数和变压器的首要参数:短路电压UkN。

图1.5.3-1单相变压器短路实验的原理接线图低压侧电流大,外表挑选不便当利利利当当利利利当当利当当当利当利利利当利利当当当利当当当利利当当当利利当利当,一般在高压侧加电源,低压侧短接。

从安全思考,一般取短路实验电流不跨过额定电流。

短路电压数值较小,为减小丈量过错,须将电压表挨近变压器接,然后顺次接功率表和电流表,如图1.5.3-1所示。

短路实验电压低,磁通小,铁耗可疏忽不计,而短路电流较大,因而能够为短路损耗等于铜耗。

依据丈量数据:短路电压Uk、短路电流Ik和短路损耗Pk,按变压器简化等效电路图1.4.5-3,可得短路阻抗参数核算公式如下:短路实验在高压侧加电源,所测数据为高压侧值,则求得的短路阻抗参数也为高压侧值,如需低压侧的数值,也须进行折算。

单相变压器的参数测定实验

单相变压器的参数测定实验

单相变压器实验设计方案系别:工学院专业:智能检测姓名:***学号:**********单相变压器实验一、实验目的1、通过空载试验确定单相变压器的励磁阻抗、励磁电阻和励磁电抗参数。

2、通过短路试验确定单相变压器的短路阻抗、短路电阻和短路电抗参数。

二、实验线路单相变压器的空载试验和短路试验的接线图分别为图一、图二,功率表的内部等效结构如图三。

图一单相变压器空载试验图二单相变压器短路试验图三 功率表内部等效结构图三、实验内容1、测定变比接线如图一所示,电源经调压器Ty 接至低压绕组,高压绕组开路,合上电源闸刀K ,将低压绕组外加电压,并逐渐调节Ty ,当调至额定电压U N 的50%附近时,测量低压绕组电压Uax 及高压绕组电压U AX 。

调节调压器,增大U N ,记录三组数据填入表一中。

表一 测变比数据序号 U AX ( V )Uax ( V )变比K=UaxU AX2、空载实验接线如图一所示,电源频率为工频,波形为正弦波,空载实验一般在低压侧进行,即:低压绕组(ax)上施加电压,高压绕组(AX)开路,变压器空载电流Io = ( 2.5~10%)I N ,据此选择电流表及功率表电流线圈的量程。

变压器空载运行的功率因素甚低,一般在0.2以下,应选用低功率因素瓦特表测量功率,以减小测量误差。

变压器接通电源前必须将调压器输出电压调至最小位置,以避免合闸时,电流表功率电流线圈被冲击电流所损坏,合上电源开关K后,调节变压器从0.5U N 到1.2U N,测量空载电压Uo,空载电流Io,空载功率Po,读取数据6~7组,记录到表二中。

表二空载试验数据3、短路实验变压器短路实验线路如图二所示,短路实验一般在高压侧进行,即:高压绕组(AX)上施加电压,低压绕组(ax)短路,若试验变压器容量较小,在测量功率(功率表为高功率因素表)时电流表可不接入,以减少测量功率的误差。

使用横截面较大的导线,把低压绕组短接。

变压器短路电压数值约为(5~10%)UN,因此事先将调压器调到输出零位置,,快速测量Uk,然后合上电源闸刀K,逐渐慢慢地增加电压,使短路电流达到1.1INIk,Pk,读取数据6~7组,记录在表三中。

三相变压器实验报告

三相变压器实验报告

三相变压器实验报告一、引言三相变压器是电力系统中常见的电力变压器之一,广泛应用于电力输配电网中。

本实验通过搭建三相变压器实验装置,研究其工作原理和性能参数,以深入了解三相变压器的特点和应用。

二、实验装置和原理1. 实验装置本次实验所用的实验装置包括三相变压器、交流电源、电能表、电流表、电压表等。

其中,三相变压器是实验的主要研究对象,通过调节输入电压和输出负载,观察和测量变压器的输入电流、输出电压、输出电流等参数。

2. 实验原理三相变压器是由三个独立的单相变压器组成,通过连接方式和相位差实现了将三相电压变换为另一组三相电压的功能。

在实验中,我们可以通过调节输入电压和输出负载,来观察和测量变压器的输入和输出参数,从而分析其特性和性能。

三、实验过程和结果1. 实验过程将实验装置搭建好,并接通交流电源。

然后,调节输入电压,分别测量和记录三相变压器的输入电流、输出电压和输出电流。

随后,逐步调节输出负载,再次测量和记录相应的参数。

最后,根据测得的数据进行分析和总结。

2. 实验结果通过实验,我们测得了不同输入电压和输出负载下的三相变压器的输入电流、输出电压和输出电流等参数。

根据测得的数据,我们可以绘制出输入电流与输入电压的关系曲线、输出电压与输出电流的关系曲线等图表,从而直观地观察和分析三相变压器的特性和性能。

四、实验分析和讨论根据实验结果,我们可以得出以下结论和分析:1. 输入电流与输入电压呈线性关系,通过实验数据可以计算得到变压器的阻抗。

2. 输出电压与输出电流呈线性关系,通过实验数据可以计算得到变压器的负载电阻。

3. 三相变压器的效率可以通过计算输入功率和输出功率的比值得到,实验数据可以用于计算和分析。

五、实验总结本次实验通过搭建三相变压器实验装置,通过调节输入电压和输出负载,观察和测量变压器的输入电流、输出电压和输出电流等参数,从而深入了解了三相变压器的工作原理和性能特点。

实验结果表明,三相变压器具有较好的线性特性和电能转换效率,适用于电力输配电网中的电能变换和传输。

单相变压器参数测定(1)

单相变压器参数测定(1)

rk 750 C rk
234.5 75 234.5
2 z k 750 C rk2750 C x k
式中 234.5 为铜导线的温度系数;若采用铝导线,该系数为 228。
实验完毕,按下主机停止按钮、断开 QS2(注:使用 10A 电流表) 。
表 5-2 单相变压器短路实验数据表 室温θ=
0
C
序号 Uk(V) 1 2 3 4 5 6
实 验 数 据 Ik(A) Pk(W)
计算数据 cosφk
3、单相变压器负载实验 实验电路原理接线图见图 5-4 所示。
图 5-4
单相变压器负载实验原理接线图
2、计算励磁参数 从空载实验中或空载特性曲线上,查出对应于 U0=UN 时的 I0 和 P0 值,由下式计算出励磁参数
/ rm
P0 I 02
/ zm
U0 I0
/ /2 /2 xm zm rm
/ 折算到高压侧: z m K 2 z m
/ rm K 2 rm
/ xm K 2 xm
P0 U0I0
1、请解释,负载变大是何含义?在负载实验时,为何负载变大时电压减小? 2、在测量短路、空载数据时,为何电流表位置不同? 八、数据处理 1、计算变比 从空载实验测得的变压器一、二次电压值(UN 以下的)数据中任取三组 数据,分别计算变比,然后取其算术平均值作为变压器的变比 K。
K
U1 U2
表 5-3 单相变压器负载实验数据表
U I
230V 0
注意: 每一次实验开始前, 都要检查调压器, 确保在零位; 实验结束, 都要把调压器 “回 零” 。实验完毕,关闭所有电源! 六、实验报告要求 1、计算变比 K; 2、根据 P0、U0、I0,计算出 zm、rm、xm; 3、根据 Pk、Uk、Ik,计算出 zk、rk、xk; 4、根据实验数据和计算数据绘制空载的特性曲线 U0=f(I0) 、P0= f(U0) 、 cosφ0= f(U0)以及负载特性曲线 U=f(I) 。 七、思考题 式中; cos 0

变压器参数的实验测定

变压器参数的实验测定

实验一单相变压器参数的实验测定一.实验目的1.通过空载实验确定单相变压器的励磁阻抗、励磁电阻和励磁电抗参数。

2.通过短路实验确定单相变压器的短路阻抗、短路电阻和短路电抗参数。

二.实验线路单相变压器的空载实验和短路实验的接线图分别为图1、图2,功率表的内部等效结构如图三。

瓦特表的实物接线如图四。

图1 单相变压器空载实验图2 单相变压器短路实验图3 功率表等效实验图四 功率表实物接线三. 实验原理变压器原边加额定电压,副边开路的工作状态称变压器空载状态。

变压器空载状态时在原边测得的电流称为空载电流0I ,测得的功率0P 称为空载损耗。

空载损耗包括原边电阻1R 上的铜损Cu0P 和铁损Fe P (Fe P =涡流损耗+磁滞损耗),即20Cu Fe 1Fe 0P =P +P =I R +P 。

通常变压器空载电流很小,0I =5~12%N I (N I 是变压器额定电流)。

由于1R 也很小,故空载损耗非常接近铁心损耗,即0P ≈Fe P 。

短路实验是将变压器副边短路,原边从加低电压开始,逐步调高这个低电压,使原边电流达到额定值所进行的实验。

实验中,原边电流达到额定值时所加电压S U 称为短路电压。

短路实验中,原边所加电压为短路电压S U 时所测得的功率损耗S P 称为变压器的短路损耗,()2s Cu Fe 12Fe 1P =P +P =I R +R +P s ',由于短路试验时,原边电流达到额定值时的原边电压1U 很低,由11U 4.44N f =Φ可知,铁心中的磁通量Φ很小,因而铁心中的B 也很小,考虑到变压器的铁损Fe P 正比于B 的二次方,当铁心中的磁通量Φ很小时,变压器的铁损Fe P 可以忽略不计。

因为1S 1N I I ≈,则变压器短路损耗约等于变压器铜损,即S Cu P P ≈。

通过上述分析可知,对变压器的损耗来说,空载实验测铁损;短路实验测铜损。

四. 实验步骤 1. 空载实验1) 实验中已给定BK-50型控制变压器(额定容量50V A ,初级220V )、D12-W 型瓦特表及导线若干。

电机学三相变压器实验报告

电机学三相变压器实验报告

实验报告实验名称三相变压器课程名称电机学实验专业班级:学号:姓名: 实验日期:指导教师:成绩:一、实验名称:三相变压器二、实验目的1.通过空载和短路实验,测定三相变压器的变比和参数。

2.通过负载实验,测取三相变压器的运行特性。

三、实验内容1.测定变比2.空载实验:测取空载特性U0L=f(I0L),P0=f(U0L),COSΦ0=f(U0L)。

3.短路试验:测取短路特性U KL=f(I KL),P K=f(I KL),COSΦKL= f(I KL)。

4.纯电阻负载实验保持U1=U N,COSΦ2=1的条件下,测取U2=f(I2)四、实验接线五、实验记录1.测定变比2.空载实验数据3.短路实验实验数据室温:25℃六、实验数据处理 1.计算变压器的变比由K AB =U AB /U ab ,K BC =U BC /U bc ,K CA =U CA /U ca , 平均变比K=(K AB +K BC +K CA )/3,得K=3.992.根据空载试验数据作出空载特性曲线并计算激磁参数。

(1)空载特性曲线 a.U 0L =f(I 0L )0.020.040.060.080.10.12I0LU 0L空载特性曲线U0L=f(I0L)b.P 0=f(U 0L )0.51 1.52 2.533.54U0LP 0空载特性曲线P0=f(U0L)c.COS Φ0=f(U 0L )10203040506070-0.100.10.20.30.40.50.60.70.80.9U0LC O S Φ0空载特性曲线COSΦ0=f(U0L)(2)计算激磁参数由空载特性曲线得,对应与U 0=U N 时的I 0=0.04615A,P 0=2.702W 则激磁参数r m =P O /3I 0φ2=422.88ΩZ m =U 0φ/I 0φ=U 0L /√3I 0L =688.96Ω X m =√(Z m 2-r m 2)=543.91Ω 式中U 0φ=U 0L /√3,I 0φ=I 0L ,3.绘出短路特性曲线和计算短路参数。

单相变压器等效电路参数的测定

单相变压器等效电路参数的测定

单相变压器等效电路参数的测定(验证性实验)一、实验目的1、掌握用实验方法测定单相变压器的参数。

2、掌握通过负载实验确定单相变压器的运行特性。

二、实验仪器与器材1、单相变压器,三相调压器,灯箱。

2、交流电流表:小量程和大量程各一块 D26-A0.5/1A ⨯1 10/20A ⨯13、交流电压表:小量程一块;大量程两块 D26-V ⨯24、功率表:2.0=φCos 和1=φCos 各一块。

5、D34-W ⨯16、D39-W ⨯1三、实验内容及步骤内容:1、测定单相变压器的变化。

2、通过空载实验测取空载特性。

3、通过短路实验测取短路特性。

4、通过变压器接线电阻负载实验测取负载特性。

步骤: (一)、测变比:如图3-1接线,电源经调压器BT 接至低压线圈,高压线圈开路,闭合电源开关K ,将低压线圈外施电压调至50%额定电压左右,测量低压线圈电压aX U 和高压电圈电压AX U 。

对应不同输入电压,共取三组数,记录于表3-1中。

K~ABTxa图3-1ax U (伏)AX U (伏)K如图3-2接线,变压器低压边接电源,高压边开路。

用低功率因数瓦特表测功率。

接通电源前,调压器BT 应调到零位。

检查无误后,合上开关K ,调节电压到 1.2N U ,然后逐次降压,每次测量空载电压0U ,电流0I 及损耗0P ,在1.2-0.5N U 内,测取8-9组数据,记录于表3-2中。

K~ABTVWAa图3-2序 号 实验数据 计算数据0U (伏)0I (安) 0P (瓦) 0*U0*I0φCos(三)、短路实验: 如图3-3接线,变压器高压边接电源,低压边直接短路(或接一电源表短路)。

接通电源前,调压器应调到零位。

检查无误后,合上开关K ,逐渐增加电压使短路电流达1.1N I ,在1.1-0.5N I 内,测取短路功率K P ,短路电压K U 和电流K I ,读取5-6组数,记录于表3-3中。

本实验应尽快进行,否则线圈发热,线圈电阻增大。

单相变压器实验报告

单相变压器实验报告

单相变压器实验报告实验目的,通过对单相变压器的实验,了解其基本原理和特性,掌握变压器的性能和参数测量方法。

实验仪器和设备,单相变压器、电压表、电流表、交流电源、电阻箱、示波器、变压器接线板等。

实验原理,单相变压器是利用电磁感应原理来实现电压的变换的电气设备。

其基本原理是通过主副绕组的互感作用,将输入的交流电压变换成输出的交流电压。

变压器的变比是指主副绕组的匝数比,根据变比可以计算出输入输出电压的关系。

变压器的额定容量和额定电压是其重要参数,也是实验中需要测量和验证的重点。

实验步骤:1. 连接实验电路,将单相变压器的主副绕组依次接入交流电源、电压表、电流表和负载电阻。

根据实验要求调整输入电压和负载电阻的数值。

2. 测量输入输出电压和电流,通过电压表和电流表测量输入输出电压和电流的数值,记录下实验数据。

3. 观察波形,使用示波器观察输入输出电压的波形,分析变压器的工作状态和特性。

4. 计算变比和效率,根据测量的数据,计算出变压器的变比和效率,验证其性能和参数。

实验结果与分析:通过实验测量和计算,得到了单相变压器的输入输出电压、电流和波形数据。

根据实验数据,可以计算出变压器的变比和效率,进一步分析其工作状态和性能特点。

实验结果表明,单相变压器在不同负载下具有不同的电压变换特性,且其效率随负载变化而变化。

同时,通过观察波形可以发现,变压器工作时存在一定的损耗和波形失真,这也是需要重点关注和分析的问题。

实验总结:通过本次实验,我对单相变压器的基本原理和性能有了更深入的了解。

实验结果表明,单相变压器在实际工作中具有一定的损耗和波形失真,需要通过合理设计和选用来提高其效率和性能。

同时,变压器的变比和额定参数是其重要的性能指标,需要在实际应用中进行严格的测试和验证。

通过本次实验,我不仅掌握了变压器的测量方法和分析技巧,也对电气设备的实际工作有了更深入的认识。

实验存在的问题和改进方向:在本次实验中,由于实验设备和条件的限制,可能存在一定的测量误差和数据不够精确的情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

=*=(A)
=*=(A) (3)计算出在额定电压时的励磁参数
表 4-3 负载损耗实验数据 (高压侧


号数


录计



IA IB 1 2
IC UAB UBC UCA PⅠ
PⅡ 上数据的 和 以及额定电压( 或 计算由低压侧测出的励磁参数,



负载损耗实验时的损耗也由两部分组成,一部分是短路电流在一次和二
次侧绕组中产生的铜耗
,另一部分是磁通交变而产生的铁
耗 。由于短路实验所加电压很低,因此这时铁心中磁通密度很低,故铁心 损耗可以略去,而决定铜耗大小的电流可达正常值,所以近似认为负载损耗 就是变压器铜耗。但仍然只是一种近似。


三条曲线。
3.负载损耗实验(短路实验) 测取短路特性 三条曲线。
三、实验操作步骤
1.空载实验
实验线路如图 4-3,将低压侧经调压器和开关接至电源,高压侧开路。 接线无误后,调压器输出调零,闭合 S1 和 S2,调节调压器使输出电压为
低压测额定电压
,记录该组数据于表 4-2 中,然后逐次改变电压,在
量三相输入电流、三相功率和三相电压,共记录 5~7 组数据,填入表 4-3 中。
图 4-4 三相变压器负载损耗实验接线图 四、实验报告: 1.分析被试变压器的空载特性。
(1)计算表 4-2 中各组数据的

和标么值
表 4-2 空载实验数据
(低压侧

序记



号 Uab Ubc Uca Ia Ib Ic PⅠ PⅡ
(~) 的范围内测量三相空载电压、电流及功率,共测取 7~9 组数据,记录 于表 4-2 中。
图 4-3 三相变压器空载实验接线图 3.负载损耗实验(又叫短路实验) 变压器低压侧用较粗导线短路,高压侧通以低电压。 按图 4-4 接线无误后,将调压器输出端可靠地调至零位。闭合开关 S1
和 S2,监视电流表指示,微微增加调压器输出电压,使电流达到高压侧额定值 ,缓慢调节调压器输出电压,使短路电流在(~) 的范围内,测
1.
-182
2
-114
3
4
5
6
7
8
计算数据
U0
I0 U0*
I0* P0 cosф0
( 2 ) 根 据 表 4-2 中 计 算 数 据 作 空 载 特 性


曲线。
由图可知:额定电压时,
=*In=(A)
=
= kw
从曲线上找出额定电压时的空载损耗 、空载电流 和功率因数,并 求出空载电流的无功分量 和有功分量
电机学实验报告
——三相变压器的参数测定
姓名:张 春 学号: 32 同组者:刘扬,刘东昌
实验四 三相变压器的参数测定实验
一、实验目的 1.熟练掌握测取变压器参数的实验和计算方法。 2.巩固用瓦特表测量三相功率的方法。
二、实验内容 1.选择实验时的仪表和设备,并能正确接线和使用.
2.空载实验 测取空载特性
= 220/1 28=
` `
= 220/7 4=
五、思考题 1.为什么变压器额定电压时的空载损耗 被看作是变压器本身的铁耗 和 有无差别 空载时变压器的损耗主要由两部分组成,一部分是因为磁通交变而在铁心 中产生的铁耗 ,另一部分是空载电流 在原绕组中产生的铜耗 。由于 空载电流数值很小,此时铜耗 便可以略去,而决定铁耗大小的电压可达 到正常值,故近似认为空载损耗就是变压器的铁耗,但实质上二者并不等价。 2.为什么变压器额定电流时的短路损耗 被认为是变压器本身的铜耗 和 有无差别

Y/Y


为:
归算到高压侧为 k = =380/220=
3.计算短路阻抗 和变压器的铜耗
(1) 计算表 4-3 中各组数据的
、和
(2)根据表 4-3 中计算数据在同一座标上作出短路特性


曲线。
由图可知:额定电流时, =
V
KW
(3)由曲线上查得
时的短路
电压 和短路损耗 ,计算短路参数,
由于也是采用 接法,计算公式为:
(4)折合到基准工作温度 设室温为 ,则
式中 ——实际环境温度(即室温),℃
——室温 下所得电阻值,
具体计算如下:
——常数。铜线圈时 =235 铝线圈时 =228 (4)计算阻抗电压 阻抗电压 4.根据四.2 和四.3 的变压器参数计算可画出被试变压器近似(即“Г 型”) 等值电路图。在电路中应标出具体参数计算数值,并画出各电压、电流、电势及 它们的正方向。
相关文档
最新文档