研究生矩阵论试题及答案

合集下载

研究生矩阵论试题及答案与复习资料大全

研究生矩阵论试题及答案与复习资料大全

1 4
1 3
0 0


Jordan
标准形。
1 0 2
解:求 E A 的初等因子组,由于
1 1 E A 4 3
0 0

1
3
0
1 3 4
0 0
1 0 2
0
1
2
0 0 0
五、(15 分)求矩阵
的满秩分解:
1 0 1 2 A 1 2 1 1
2 2 2 1
解:
A
E


1 1
0 2
1 1
2 1

1 0
0 1
0 0
2 2 2 1 0 0 1
1 0 1 2 1 0 0
0 2
1 0
23
于是有
1 A 1
2
110
1 0
0 2
1 0
23 BC
A C H CC H 1 BH B 1 BH

A C H B H AC H 1 B H
六、(10
分)求矩阵
A



行 0
2 0 31
1
0
0 0 0 0 1 1 1
可求得:
1 0 0 P 1 1 0
1 1 1
1 0 0
P 1


1
1
0
2 1 1
1 B 1
2
0 1 1

C


1 0
对任意 k F ,有 k V1 ,且 k V2 ,因此知 k V1 V2 ,故知V1,V2 为 V 的子空 间。

研究生《矩阵论》 期末考试题

研究生《矩阵论》 期末考试题

武汉大学2018-2019第一学期研究生《矩阵论》期末考试题
一、(15分)设W={(x 1,x 2,x 3,x 4)|x 1-x 2+x 3-x 4=0},其中(x 1,x 2,x 3,x 4)∈R 4
(1)证明W 是线性空间;
(2)求W 的一组基和维数;
(3)将W 的基扩充为R 4的基。

二、(15分)设V 是欧氏空间,W 是V 的任意一个子空间,令W ⊥={α∈V|α⊥W}
证明:(1)W ⊥也是V 的子空间;
(2)V=W ⊕W ⊥。

三、(15分)在R 3中定义变换σ(x 1,x 2,x 3)丅=(x 1+x 2,x 1-x 2,x 3)
丅(1)证明σ是线性变换;
(2)求σ的像lmσ和σ的核kerσ;
(3)求σ在基β1=(1.0.0)丅,β2=(1.1.0)丅,β3=(1.1.1)丅下的矩阵表示。

四、(15分)设σ是n 维线性空间,
V (F )上的一个线性变换,关于基α1,α2,...,αn 和基β1,β2,...,βn 的矩阵分别为A 和B 。

证明:存在可逆矩阵P 使得B=P -1AP 。

五、(15分)已知A=⎪⎪⎪⎭
⎫ ⎝⎛0 2 21- 2 21- 1 3(1)求A 的最小多项式;
(2)求A 所有的行列式因子、不变因子和初等因子;(3)求可逆矩阵P 使得P -1AP 为对角矩阵或Jordan 矩阵。

六、(25分)设A ∈R m ×n ,B ∈R n ×p
(1)证明:秩(AB )≤秩(A ),秩(AB )≤秩(B )(2)证明:秩(AB )≥秩(A )+秩(B )-n。

14-15(1)-14级-矩阵论试题与答案

14-15(1)-14级-矩阵论试题与答案

中国矿业大学2014~2015学年第1学期研究生《矩阵论》试卷答题时间:120分钟 考试方式:闭卷姓名_ _____学号____________院系__________任课老师____________得分______ 【一】(10分)已知矩阵a b A c d ⎛⎫=⎪⎝⎭,定义22R ⨯上的线性变换 (),T X AX X =∈22R ⨯求T 在基11122122,,,E E E E 下的矩阵。

【二】(15分) 已知矩阵313729214A -⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭(1)求A 的不变因子、初等因子; (2)求A 的Jordan 标准形J ; (3)求可逆矩阵P 使1P AP J -=。

【三】(15分)已知矩阵010865A ⎪=- ⎪ ⎪-⎝⎭(1)求A 的特征多项式; (2)求A 的最小多项式;(3)把矩阵Ate 表示成关于A 的多项式。

【四】(10分)已知矩阵111032A ⎪= ⎪ ⎪⎝⎭,求A 的QR 分解。

【五】(10分) 已知矩阵0.20.70.30.6A ⎛⎫= ⎪⎝⎭(1)求1,A A ∞; (2)讨论矩阵幂级数0kk A∞=∑的敛散性;若收敛,求其和。

【六】(15分)已知下面矛盾方程组123131311221x x x x x x x ++=⎧⎪+=⎨⎪+=⎩ (1)求系数矩阵A 的满秩分解; (2)求A 的广义逆矩阵A +;(3)求该方程组的极小范数最小二乘解。

【七】(15分)()n n ij A a R ⨯=∈,证明:2,,max max ij ij i ji ja An a ≤≤⋅【八】(10分)假设A 是n 阶方阵,若A 不与任何对角阵相似,证明:存在多项式()f λ及正整数k ,使得()f A O ≠但[()]k f A O =。

参 考 答 案【一】(10分)已知矩阵a b A c d ⎛⎫=⎪⎝⎭,定义22R ⨯上的线性变换 (),T X AX X =∈22R ⨯求T 在基11122122,,,E E E E 下的矩阵。

南京航空航天大学矩阵论07-08A试卷及答案.doc

南京航空航天大学矩阵论07-08A试卷及答案.doc

南京航空航天大学研究生考试试卷r 1 1 -2'一、(20 分)设矩阵4= —2 —2 3 ,<-1 -1 1 >(1)求A的特征多项式和A的全部特征值;(2)求A的行列式因子、不变因子和初等因子;(3)求A的最小多项式,并计算A6+3A —2/;(4)写出A的Jordan标准型二、(20分)设Z?2"2是实数域上的全体2x2实矩阵构成的线性空间(按通常矩阵的加法和数与矩阵的乘法)。

(1)求尺2"2的维数,并写山其一组基;(2)设W是全体2x2实对称矩阵的集合,证明:W是/?2x2的子空间,并写出W的维数和一组基;(3)在W中定义闪积G4,B) = Zr(&4),其中人BeW,求出W的一组标准正交基;(4)给出尺〜2上的线性变换7\ T(A) = A+A r, VA G R^2写出线性变换T在(1)中所取基下的矩阵,并求7的核/^r(r)和值域/?(r)。

三、(20分)证明: 是C'w 上的矩阵范数并说明具有相容性(1)求矩阵A 的07?分解;(3)用广义逆判断方程组Av = 6是否相界?若相界,求其通解;若不相容,求其极小最小二乘解 五、(20分)证明:A,, >0, Ar-AgAjAuSO 。

(I-1 1、’2' 1 11,向量/?=11 、0 0b<2>四、(20分)已知矩阵4 =,5 3 2>12、 1)设矩阵汲二3 2 t ,B = 1 1 0.5/t 2; /<2 0.5/ 1 ,,其中f 为实数问当Z 满足什么条件时,A 〉B 成立?Ai A 2 A2 ^22>0,其巾 A u eCkxkau(1)设乂 =2 13 -1 21 ,喇"K, ML, h(2)设4 =(〜)e C ,IX \ 令p=n • max 騸⑶证明:-||<<||<<(2)设 n 阶 Hermite 矩阵 A =(3)己知Hermite 矩陈A =(七)€ (?■ , a ij〉工a ij (= l,2,".,n ),证明:A 正定一、(20 分)(2) VA ,fielV ,V 々e/?,贝ij v (A +B)7= A 7+ B 7= A+B , /. A + B G W ;v (M)7 =kA T = kA ; /.MeW 。

研究生期末试题矩阵论a及答案

研究生期末试题矩阵论a及答案
计算 ,
,
可得谱分解式 (10分)
六、当 时, ;当 时,存在 与 使得 ,从而有
,(4分)
对于 ,有
,(7分)
对于 ,有
所以 是 中的矩阵范数.(10分)
七、解

, ,
.(10分)
八、容易求出矩阵A的最小多项式为 ,所以 ,于是
由此知 的内插多项式表示为
.(6分)
将矩阵A代入上式得
.
当 时, ,故
一、(10分) 为数域,对于线性空间 中任意矩阵 ,规则 , 分别为
,问 , 是否为 上的变换,如果是,证明该变换为线性变换,并求该变换在基 , , , 下的矩阵,判断该变换是否为可逆变换.
解:因 , ,故 为 上的变换, 不是 上的变换。(4分)
又对于线性空间 中任意矩阵 , , ,故为线性变换。(6分)
七、(10分)已知函数矩阵

其中 ,试求 , , , .
八、(10分)已知矩阵 ,写出矩阵函数 的Lagrange-Sylvester内插多项式表示,并计算 .
.
长 春 理 工 大 学
研 究 生 期 末 考 试标准答案及评分标准
科目名称:矩阵论命题人:姜志侠
适用专业:审核人:
开课学期:2012——2013学年第 一 学期□开卷√闭卷
长 春 理 工 大 学
研 究 生 期 末 考 试试 题
科目名称:矩 阵 论命题人:姜志侠
适用专业:理 工 科审核人:
开课学期:2013 ——2014 学年第 一 学期□开卷 √闭卷
一、(10分) 为数域,对于线性空间 中任意矩阵 ,规则 , 分别为 ,问 , 是否为 上的变换,如果是,证明该变换为线性变换,并求该变换在基 , , , 下的矩阵.

矩阵论试题及答案

矩阵论试题及答案

一.(10分)已知n n C ⨯中的两种范数a ⋅和b ⋅,对于n n C A ⨯∈,证明b a A A A +=是n n C ⨯中的范数. 解:⑴非负性:由于b a ⋅⋅,是两种范数,故当A=0时,0,0==b a A A ,所以000=+=+=b a A A A ; 当A ≠0时,0,0>>b a A A ,所以0>+=b a A A A⑵齐性:()A A A A A A A A b a b a b a ααααααα=+=+=+= ⑶三角不等式:B A B A B A B A B A B A b b a a b a +=+++≤+++=+二.(每小题10分,共20分)已知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=101121103A ,()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=002t e t b , 1. 求At e2. 用矩阵函数方法求微分方程()()()()()⎪⎩⎪⎨⎧-=+=T x t b t Ax t x dt d1,0,10的解.解:1. ()1112113det ----=-λλλλA I ()()3211132-=----=λλλλ显然, )det(A I -λ的一阶子式的公因子为1, 容易知道)det(A I -λ 的二阶子式的公因子为2-λ,所以A的最小多项式为()()()23222-=--=λλλλm ,即()()022=-=I A A m ,设()()()b a g m e f t ++==λλλλλ,则()a te f t =='λλ 对于特征值2=λ有()()⎩⎨⎧=='+==a te f b a e f t t 22222,()⎩⎨⎧+-==ttet b te a 2212 所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----+=+=t t t t t t e bI aA e t At1010122. ()()()⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡+=⎰⎰--ds e s s s ss s e e ds s b e x e t x s t s At t As At 001010110102020 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=t t e t e t At 1001012三.(15分)用Givens 变换求⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=2100421132403100A 的QR 分解. 解:()T01001=β,构造()s c T ,13=,1101sin ,0100cos 22232132223211=+=+===+=+==xx x s x x x c θθ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=210031002340421121421132403100100000010010010013A T⎥⎦⎤⎢⎣⎡--=21312A , 构造),(12s c T , ()21sin ,21111cos 222122222211=+==-=+--=+==x x x s x x x c θθ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡---=1052212131111121212A T⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=2/1002/12/1002/10010010013122T T I T ,⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-==2/12/100000100102/12/100TT Q ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=2/12/522344211R四.(10分)用Gerschgorin 定理证明⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=8110260110410100A 至少有两个实特征值. 解:A 的4个盖尔圆为:{}1|1≤=z z G ,{}2114|2=+≤-=z z G , {}3216|3=+≤-=z z G , {}2118|4=+≤-=z z G ,它们构成的两个连通部分为11G S =,4322G G G S =.易见,1S ,2S 都关于实轴对称且各含有1个和3个特征值,因为实矩阵的复特征值必成对出现, 故1S ,2S 必各含有一个实特征值,从而A 至少含有2个实特征值.五.(20分)已知⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------=221221*********A ,⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---=44111b 1. 求A 的满秩分解.2. 求+A3. 用广义逆矩阵的方法判别方程组b Ax =是否相容.4. 求方程组b Ax =的极小范数解或极小范数最小二乘解并指出所求解的类型.解 1。

最新南航矩阵论研究生试卷及答案

最新南航矩阵论研究生试卷及答案
(1)求系数矩阵 的满秩分解;
(2)求广义逆矩阵 ;
(3)求该线性方程组的极小最小二乘解.
在上海,随着轨道交通的发展,地铁商铺应运而生,并且在重要的商业圈已经形成一定的气候,投资经营地铁商铺逐渐成为一大热门。在人民广场地下“的美”购物中心,有一家DIY自制饰品店---“碧芝自制饰品店”。解答:(1)矩阵 , 的满秩分解为
(1)若对任意 ,有 则 可逆;
我们大学生没有固定的经济来源,但我们也不乏缺少潮流时尚的理念,没有哪个女生是不喜欢琳琅满目的小饰品,珠光宝气、穿金戴银便是时尚的时代早已被推出轨道,简洁、个性化的饰品成为现代时尚女性的钟爱。因此饰品这一行总是吸引很多投资者的目光。然而我们女生更注重的是感性消费,我们的消费欲望往往建立在潮流、时尚和产品的新颖性上,所以要想在饰品行业有立足之地,又尚未具备雄厚的资金条件的话,就有必要与传统首饰区别开来,自制饰品就是近一两年来沿海城市最新流行的一种。(2)若 都是Hermite正定矩阵,则 的特征值均为正数;
南京航空航天大学2012级硕士研究生
共6页第1页
2012 ~ 2013学年第1学期《矩阵论》课程考试A卷
考试日期:2013年1月15日课程编号:A080001命题教师:阅卷教师:
学院专业学号姓名成绩
一、(20分)设 是 的一个线性子空间,对任意 ,定义: ,其中 .
(1)求 的一组基和维数;
(2)对任意 ,定义:
(2)因为 是相容范数,且 ,则 在收敛半径内,因此级数收敛.……………(5分)
(3) .……………(5分)
开了连锁店,最大的好处是让别人记住你。“漂亮女生”一律采用湖蓝底色的装修风格,简洁、时尚、醒目。“品牌效应”是商家梦寐以求的制胜法宝。
共6页第6页

矩阵论习题答案

矩阵论习题答案

自测题一一、解:因为齐次方程0211211=++x x x 的基础解系为T T T )1,0,0,0(,)0,1,0,1(,)0,0,1,1(321=-=-=ααα,所以V 的一组基为⎥⎦⎤⎢⎣⎡-=00111A ,⎥⎦⎤⎢⎣⎡-=01012A ,⎥⎦⎤⎢⎣⎡=10003A ,显然A 1,A 2,A 3线性无关.V a a a a A ∈⎥⎦⎤⎢⎣⎡=∀22211211,有211211a a a --=,于是有 322221112A a A a A a A ++=,即A 可由A 1,A 2,A 3线性表示,故A 1,A 2,A 3为V 的一组基;且dimV=3.二、解:(1)R V X X ∈∈∀λ,.21,有21212122112211(2211)(X X X X X X ⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=+⎥⎦⎤⎢⎣⎡=+)=+)(1X )(2X,λλλλ=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=11122112211)(X XX )(1X .又因任意两个二阶方阵的乘积、和仍为二阶方阵,故V V '=,即为从V 到V (自身)的线性算子,所以为线性变换.(2)先求的自然基22211211,,,E E E E 下的矩阵A :2221121111020020100012211)(E E E E E +++=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=2221121112200)(E E E E E +++=2221121121020)(E E E E E +++=2221121122200)(E E E E E +++=故⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=2020020210100101A . 显然, 从自然基到所给基4321,,,E E E E 的过渡过阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1000110011101111C ;⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=-10001100011000111C , 所以在4321,,,E E E E 下的矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----==-40200202231201011AC C B .三、解:(1)不是内积. 因为)(,A A tr A A +=)(2)(22211a a A tr +==并不一定大于零.(2)因为1),(10==⎰dt te g f t ,⎰===1021231)(),(dt t f f f ,⎰-===1212212)21()(),(e dt e g g g t,g f g f ⋅≤),( ,即212)21(311-⋅≤e .四、解:(1)2)2)(1(--=-λλλA I ,2,1321===λλλ.行列式因子:1,1,)2)(1(1223==--=D D D λλ ; 不变因子:2321)2)(1()(,1)()(--===λλλλλd d d ; 初等因子:2)2(),1(--λλ .(2)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡=2121~21J JJ A ; (3)对T X A I )1,1,0(0)(,1111==-=ξλ得;T X A I )1,0,1(0)2(,2222==-=ξλ得.再求22=λ的一个广义特征向量: 由23)2(X X A I -=-得T )1,1,1(3=ξ .取⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-111110111,1111011101P P , :,)(则令SinA A f =[][]⎥⎦⎤⎢⎣⎡===2sin 02cos 2sin )(,1sin )()(22111λλλJ f f J f , 故12211)])([)],([(sin -⋅=P J f J f Pdiag A λλ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1111101112sin 2cos 2sin 1sin 111101110⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+----+=2cos 1sin 1sin 2cos 1sin 2cos 2sin 2sin 1sin 1sin 2sin 1sin 2sin 2cos 2cos 2sin 2cos .五、解:(1)130143014,83,3014max max 31<=⎭⎬⎫⎩⎨⎧==∑=∞j ij ia A , 故0lim =∞→k k A ;(2)∑∞=0k k x 的收敛半径为1,而1<∞A 若在其收敛域内,故∑∞=0k kA绝对收敛,且∑∞=--=01)(k k A I A .六、解:(1)6,5,15,511====∞∞m m A A A A ;又因为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-322232223511A ,571=∞-A . 所以7557)(1=⨯==∞∞-∞A A A cond ;1,5,)1)(5(3212-===+-=-λλλλλλA I .故5lim )(==i iA λρ. (2)因为031221,0121≠-==∆≠=∆,故可分解. (3)-+-r B B B ,,均可取1-B .七、证:设T n T n y y y Y x x x X ),,,(,),,,(2121 ==分别为在两组基下的坐标,则CY X =,当Y X =时有:θ=-X C I )(,则0=-C I ,故C 有特征值1.反之,由于1是过渡过阵C 的一个特征值,设其对应的特征向量为X ,即X CX ⋅=1,由坐标变换公式知,在基1β,2β,n β, 下的坐标CX Y =,故有X Y =.八、证: A 对称正定,∴存在正交矩阵C ,使D diag AC C n T ==),,,(21λλλ其中特征值)n i i ,,2,1(0 =>λ.对θ≠∀X ,有CX Y =,使DY Y y y y AX X T n n T =+++=2222211λλλ ,其中θ≠y .令n nn z y z y z y λλλ1,,1,1222111===.于是θλλλ≠=⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡=Z BZ Z Y n ,11121故Z Z Z DB B Z DY Y T T T T ==)(. 而)(P B C PZ BZ C Y C X T T T ====令,所以Z Z Z AP P Z AX X DY Y T T T T T ===)(.因Z 的任意性,知I AP P T =,即A 与I 相合.自测题二一、解:I a A a I A I A k k k k k k λλλ===,,,I a a a A a A a A a I a n n k n )(102210λλ+++=++++∀ ,其中R a a a n n ∈+++λλ 10,故取V 的基为I ,1dim =V .二、解:(1)从基2,,1x x 到基22,,1x x x x ++的过渡矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=110011001C ,所以在新基下的坐标为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--0111011C .(2)不是线性变换.因为≠++++++=+),,2()(33221121111b a b a b a b b a a βα+)(α)(β.(3)不是内积. 如0341212121<-=-==),),(,(),,(α,不具有非负性.三、解:(1)利用Schmidt 正交化方法,得T e )1,1,1(1=,T e )1,0,1(2-=,T e )61,31,61(3-=.(2)从321,,ααα到321,,e e e 的过渡阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---=610021103421C , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-6003102211C ,故所求⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡--==-00000034211AC C B .四、解:(1)由于A 实对称,所以存在正交阵Q ,使⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=∧=n AQ Q T21. 故2)1+=∧==n n AQ Q A F F T F (;n A =)('ρ;n A =2;n A cond =2)(;1)(21=-mA .(2)取⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=000000111A ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=111 α,得n aA n A ===212,1,α,即有212ααA A >.五、解:(1)3)1(201335212+=+-+---=-λλλλλA I ;1321-===λλλ. 33)1()(+=λλD ,所以,不变因子为3321)1()(,1)()(+===λλλλd d d ;初等因子为3)1(+λ. 故A 的Jordan标准形⎪⎪⎪⎭⎫ ⎝⎛=100110011J .(2)cos A 的Jordan标准形为:J =⎪⎪⎪⎪⎪⎭⎫⎝⎛------)1cos(00)1sin()1cos(0)1cos(21)1sin()1cos(.六、证:(1)因173.01<=A ;故;0lim =∞→kk A(2)因A 有范数小于1,故∑∞=0k k A 绝对收敛;且其和的形式为1)(--A I .七、解:⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--=00032103101~230121121A ;取⎪⎪⎪⎭⎫ ⎝⎛--=302121B ,⎪⎪⎪⎪⎭⎫ ⎝⎛=32103101C ; 则有BC A =(最大秩分解);1)()(12==λλD DT T B B B B 1)(-+=, 1)(-+=T T CC C C ,则 +++=B C A ,所以,方程b AX =的极小范数最小二乘解为b A X +=.八、证:(1)因为A C A AC C A n T 2)1(,=-=-所以,则有,0)1(2>-=n C n 必为偶数.(2)设T n x x x X X AX ],,,[,21 ==λ的分量中绝对值最大者为kx ,则X AX λ=的第k 个方程∑==nj jkj k x a x 1λ;∑∑==≤=nj jkjnj j kj k x a x a x 11λ;∑∑==<≤≤nj nj kj kj kja x x a 111λ,故有1<λ.自测题三一、 解:(1)不是. 设B B A A T T -==,,则)(T T B A B A -=+=T T B A B A )()(+≠-(一般情况下), 又)()(B A B A B A T +-≠-=+(一般情况下),即V B A ∈+.(2)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++=+++∀001)(111010 n n n n d a d a a D a D a I a⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++++100)(10 n n n n d a d a a , 故得一组基为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡100,,001 ,且n V =dim .二、解:(1)123)(22++=x x x,12)(+=x x, 43)1(+=x,在基1,,2x x 下的矩阵为:⎪⎪⎪⎭⎫⎝⎛=411322003A .(2))5)(1)(3(411322003---=-------=-λλλλλλλA I ,可见矩阵A 有三个不同的单根1,3,5,故 A 可以对角化,即可以对角化.(3)设度量矩阵33)(⨯=ij C C ,则⎰⎰====1010213124114151C dx x C dx x C , ⎰⎰=====1102223121331,31dx x C C dx x C ,⎰⎰=====10331032231,21dx C xdx C C . 故⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=12131213141314151C .三、解:设3322113)(ααααx x x ++=,使得)(1α,)(2α,)(3α是标准正交的.∵)(1α,)(2α已标准正交化,∴()(1α,)(2α)=()(2α,)(3α)=0,)(3α=1,即得⎪⎩⎪⎨⎧=++=+-=-+1022022232221321321x x x x x x x x x ;解得:32,32,31321==-=x x x ; 即()().22313213αααα++-=.因为)(1α,)(2α,)(3α为标准正交基,且把标准正交基变为标准正交基,故为正交变换, 它在基321,,ααα下的矩阵表示为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---=32321323132313232A .四、解:由自测题一中第四题(2)知A 的Jordan 标准形为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2121J ,相似变换矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111101110T . 由T )321321,,(),,(αααβββ=,求得3V 的一组基为3213312321,,αααβααβααβ++=+=+=,则在该基下的矩阵为J .五、证:当0=X 时,000===F F X α;当θ≠X 时,0≠T X α ;从而0>=FTX X α. ,C k ∈∀FT FTX k kx kX αα()(===X k X k FT=α,FTFTFT T FTY X Y X Y X Y X ααααα+≤+=+=+)(=Y X +,因此 , X 是向量范数. 又因为FT T FTA X AX AX )()(αα==X AA X FFTFT=≤α,因此 , F A 与X 相容.六、解:)6(2-=-λλλA I ,特征根为0,6321===λλλ;则6)(=A ρ.由于A A 62=,故A 可以对角化, 即存在可逆矩阵C ,使1006-⎪⎪⎪⎭⎫⎝⎛=C C A ;1001)(-⎪⎪⎪⎭⎫ ⎝⎛=C C A Aρ. 故得.61001001lim )(lim 11A C C C C A A kk kk =⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛--∞→∞→ρ七、证:⇒设1)(<A ρ,取0)](1[21>-=A ρε,对于矩阵A ,存在矩阵范数⋅,使121)()(<+=+≤A e A A ερ. 1)(<≤⇐A A ρ便得证.八、证:(1)1-====AB B A B A B A T T , 同理,有1-==T T T B A AB .(2)B A B A B A B A B A T T +=+=+--)(11=AB ()AB B A T -=+, 得2即有,0=+B A 0=+B A .自测题四一、 解:(1)21111011201010011)(E E E E E T +=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-=+=,21222011200110101)(E E E E E T+=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-=+=,33332200010001000)(E E E E T=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=+=, 所以在E 1,E 2,E 3下的矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=200011011A . (2) 设有一组基321,,e e e ,从E 1 ,E 2 ,E 3到e 1 ,e 2 ,e 3的过渡矩阵设为C ,即C E E E e e e ),,(),,(321321=再设A 在e 1 ,e 2 ,e 3下的矩阵为B ,则AC C B 1-=.要使B 为对角阵,即找一个可逆矩阵C ,使AC C 1-为对角阵. 因为2)2(211011-=-----=-λλλλλλA I ,对0=λ,求得特征向量()T 0,1,1-,对λ=2,求得两个线性无关的特征向量()T 0,1,1,T )1,0,0(.令⎪⎪⎪⎭⎫ ⎝⎛-=100011011C ,得⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=-10002121021211C ,则AC C B 1-=为对角阵. 由()()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=100011011,,,,321321E E E e e e ,可得⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-=+-=011001010011211E E e⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-=+=011201010011212E E e ⎥⎦⎤⎢⎣⎡==100033E e .二、证:易得()()()122111,,,1,αααααα==0=,()()()()()(),1,,0,,,1,,0,,332332221331======αααααααααααα即11)(α=e ,22)(α=e ,33)(α=e 也是标准正交基,故是正交变换.三、解:(1)令T Y )0,,0,,(21 ηξ=,由Y HX =,知X HX Y ==; 取 Y X YX Y X X Y X X --=--=0η ; Y YY 10=,构造初等反射矩阵 T I H ηη2-=,则有Y Y X HX ==0.(2))3)(5(16)1(12812--=--=--=-λλλλλλA I . 因此3,521==λλ,所以5m ax)(==i iA λρ;因为65)(<=A ρ,故矩阵幂级数收敛.四、解:由正交矩阵行(列)向量组标准正交,得12122=+⎪⎭⎫⎝⎛a12122=+⎪⎭⎫ ⎝⎛b 02=+bc a四组解是:⎪⎪⎪⎩⎪⎪⎪⎨⎧-===212121c b a ,⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==212121c b a ,⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=212121c b a ,⎪⎪⎪⎩⎪⎪⎪⎨⎧-=-=-=212121c b a .五、解: (1){}∑====31162,4,6m ax m axi ijja A ;{}∑=∞===3153,4,5m ax m ax j ij ia A;{}9max =⋅=∞ij m a n A.因为()()221--=-λλλA I ,2,1321===λλλ , 故2m ax )(==i iA λρ.(2) 031≠=∆,0521132≠==∆,故可以进行LU 分解 .(3)易得2)(,3)(==B R A R ,所以6)(=⊗B A R ,B 的特征根为2,121==μμ,故B A ⊗的特征根为4,2,4,2,2,1231322122111======μλμλμλμλμλμλ.2)(B A ⊗的特征根为:1,4,4,16,4,16.(4)∵02≠=B ∴B 可逆,且⎥⎦⎤⎢⎣⎡-=-1032211B ,所以-+-r B B B ,,均可取为:⎥⎦⎤⎢⎣⎡-=-1032211B . (5)A 的Jordan标准形为:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2121J . (6)对应于11=λ的特征向量T )11,0(,,对应于22=λ的线性无关的特征向量只有一个T )1,0,1(,再求一个广义特征向量T )1,1,1(. 令TT ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111101110,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-1111101111T . 令 AA f 1)(=, 则1))((11=λJ f ;⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=214121)((22λJ f . 12211))(),(()(-⋅⋅=T J J diay T A f λλ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111110111210041210001111101110⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=53322211141.六、解:(1)由X AX λ=,即0)(=-X I A λ,若λ不是A 的特征根,则0≠-I A λ,所以0)(=-X I A λ只有零解,故0dim =λV .若λ是A 的特征根,则0=-IA λ,所以0)(=-X I A λ有非零解.设r I A R =-)(λ,则r n V -=λdim .(2) 设T I A ωω2-= 其中ω为单位向量1=ωωT .则)2)(2(2T T I I A ωωωω--=T T T T w I ωωωωωωωω422+--=I I T T =+-=ωωωω44.七、证:(1)设()由于二,0≠∈m R X 次型()()0≥==AX AX AX A X BX X TT T T ,所以B 为半正定矩阵.(2)当A 的列向量组线性无关时,若X ≠0,则AX ≠0, 故())(AX AX BX X T T =>0 ,即A 为正定矩阵.八、证:(1)λ为非奇异,λ为A 的特征值,故λ≠0 , 而λ1为1-A 的特征值,据特征值上界原理, 有11-≤A λ,即11-≥Aλ. (2) 对0≠∀X ,由已知有BXA X XB A A 11)(--+=+BXA X 1--≥XB A X 1--≥XB A )1(1--=由已知11-<AB , 即11<-A B ,故知0≠∀X , 0)1()(11>-≥+--X B A X B A A ;即对0≠∀X , 有0)(1≠+-X B A A ,即0)(1=+-X B A A 无非零解.故0)(11≠+=+--B A A B A A , 从而0≠+B A ,即A +B 可逆.自测题五一、 解:(1) 在V 1中,⎪⎪⎭⎫⎝⎛+-=⎪⎪⎭⎫ ⎝⎛=4324324321x x x x x x x xx x A ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛=100101010011432x x x . 令⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=1001,0101,0011321E E E , 因321,,E E E 线性无关,由定义知,它们是1V 的基,且3dim 1=V .(2)[]212,BB L V = 因为21,B B 线性无关; 2dim 2=V .),,,,(2132121B B E E E L V V =+在22⨯R 的标准基下,将21321,,,,B B E E E 对应的坐标向量21321,,,,ββααα排成矩阵, 并做初等变换⎪⎪⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎪⎪⎭⎫⎝⎛--=10000031000111001111~13100020102000101111),,,,(21321ββααα, 可见4)dim(21=+V V .由维数定理145)dim (dim dim )dim (212121=-=+-+=V V V V V V .二、解:(1) 因为,过渡阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111111C ,且⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-111111C ,所以α在α1,α2,α3下的坐标为=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-3211a a a C ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--23121a a a a a .(2)设,21λλV V X ∈则有()X X A 1λ=与()X X A 2λ=,两式相减得()021=-X λλ,由于21λλ≠,所在地只有X=0,故[]0dim 21=λλV V .三、解:取[]3X P 中的简单基,,,,132x x x 由于)1(=,12x-,)(3x x x -=221)(x x +=, 33)(x x x +-= ,则在1,x ,32,x x 下的矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=1010010110100101A . A 的特征值为:2,04321====λλλλ , 相应的特征向量为:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1010,0101,1010,0101. 令⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=Λ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=2200,1010010110100101C , 则Λ=-AC C 1. 再由()()C x x x f f f f 324321,,,1,,,= , 求得[]3x P 中另一组基:()34233221)(,1)()(,1x x x f x x f x x x f x x f -=-=+=+=,.四、解: (1) ⎰⎰⎪⎪⎭⎫⎝⎛=-1101dt dt de Adt e AtAt)(1I e A A -=-.(2)当j i ≠时0)(=j i εε;故度量矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=n A 21.五、解:(1),9,1,3,3121====∞m T XX XXX3,4,3===∞∞X X XX XX T m T FT .(2))1()(23+=λλλD ,易得1)()(12==λλD D . ∴ 不变因子)1()(,1)()(2321+===λλλλλd d d ;初等因子)1(,2+λλ.A 的Jordan标准形为:⎪⎪⎪⎭⎫⎝⎛-=100000010J .六、解:(1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=000001101101112101101011行变换A ,令⎥⎦⎤⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=01101101,211011C B , 则 A=BC . 其中B 为列最大秩矩阵, C 为行最大秩矩阵 .(2)⎥⎦⎤⎢⎣⎡--=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛==--+121033312111016332)(11TT B B B B ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎪⎪⎭⎫⎝⎛-==--+1221311251211301111001)(11T T CC C C , 所以⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=⎥⎦⎤⎢⎣⎡--⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-==+++14527533014515112103312213112151B C A .(3)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----==+10111501515151413145275330145151b A X .七、证明提示:类似习题4.1第16题(1)的证明.八、证明:AC A B A ++=⇒因为两边左乘矩阵A ,有C A AA B A AA )()(++=,故 AB=AC .AC AB =⇐因为,设+A 为A 的加号定则,两边左乘+A ,有AC A AB A ++=.自测题六一、解:(1)当V x x x x X ∈⎪⎭⎫⎝⎛=22211211时,由02112=+x x 得⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=011010000001212211X X X X .取 ⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=0110,1000,0001321E E E , 因线性无关,则它们是V的一个基.(2)⎪⎪⎭⎫⎝⎛-=-=0110)(111B E E B E T T ;⎪⎪⎭⎫ ⎝⎛=-=0000)(222B E E B E TT ;⎪⎪⎭⎫ ⎝⎛-=-=0220)(333B E E B E TT ;故在基321,,E E E 下的矩阵为:⎪⎪⎪⎭⎫⎝⎛-=201000000A .(3)将A对角化,取⎪⎪⎪⎭⎫ ⎝⎛=110001020C 使⎪⎪⎪⎭⎫⎝⎛=-2001AC C ;设所求基为321,,Y Y Y ,有:()()C E E E Y Y Y 321321,,,,=.得⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛=0110,0112,1000321Y Y Y ,则在基321,,Y Y Y 下的矩阵为对角形.二、解: (1))1(4963752542-=---+---=-λλλλλλA I,A 的特征根1,0321===λλλ;行列式因子)1()(23-=λλλD ,易得1)()(12==λλD D ; 不变因子)1()(1)()(2321-===λλλλλd d d ;初等因子1,2-λλ.(2) A 的Jordan 标准形为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100000010J ;(3) ∵01621511,0121≠-=--=∆≠-=∆;∴ A 能进行LU 分解.三、解:(1).13214,1010,00022322122⎥⎦⎤⎢⎣⎡+=⎥⎥⎦⎤⎢⎢⎣⎡--=⎥⎦⎤⎢⎣⎡=-t t t dt dA t dt dA dt A d .(2)⎥⎦⎤⎢⎣⎡=00032121312x x dX df .四、解:(1) 由)(21I B A +=,得I A A I A B I A B +-=-=-=44)2(,2222,显然, 当且仅当I B =2时,有A A =2.(2) 因B A B BA AB A B BA AB A B A +=+++=+++=+222)(,得,0=+BA AB 即,BA AB -=两端右乘B 得BAB AB -=2, 从而AB B AB )(-=,由于幂等阵B 的任意性,故0=AB .五、解: (1)∵ m x x x 21两两正交的单位向量.∴)(21m x x x A =为列满秩矩阵,故T T T A A A A A ==-+1)(. (2)∵⎪⎭⎫ ⎝⎛=101k A k ,且∑∞=-12)1(k k k与∑∞=-1)1(k kk 都收敛;∴ ∑∞=-12)1(k kk A k 收敛.(3)∵ 762+-=-λλλA I ,而)2()52)(76(37291912222234++++-=+-+-λλλλλλλλ;由于0762=+-I A A ;∴原式⎪⎭⎫⎝⎛-=+=-3217231)2(1I A . (4)∵ A 的特征根为n)2,1(,,i i =;B 的特征根为m )21(,,,j j =λ;∴B A ⊗的特征根为j i λn;2,1(,,i =m)21,,,j =.六、证: (1) 当0=A 时,设A 的最大秩分解为A=BC.则 C B C B B C B C B A A D ~=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛= . 而[]()H HHH B BB B B B B 1~-+⎭⎬⎫⎩⎨⎧⎪⎪⎭⎫ ⎝⎛=()[][]++-==B B B BB B H HH21211.[]++++++⋅==B B C B C D 21~[]++=A A 21.当A =0时上式也成立.(2) 经计算A a a a A )(2321213++-= . 于是A A a a a AXA =++-=-31232221)(,A a a a X 1232221)(-++-=是A 的一个减号逆.(3)()I e e e e e e A A A A AT A TA A T ===-=-,..,所以因为.故A e 为正交矩阵.七、证:(1) 设R V n ∈∀∈μλβα,,,,,则00),()(ααμβλαμβλαμβλα+++=+k)),(()),((0000ααββμααααλk k +++==λ)(α+μ)(β.所以是线性变换.(2)是正交变换),(),(αααα=⇔T T ,即 ),(),(),(),(2),(0020220αααααααααα=++k k ,得[]0),(2),(0020=+ααααk k .由n V ∈α的任意性,上式等价于0),(20=+ααk ,所以22200212),(2n k +++=-= αα .八、证:由舒尔定理知,存在西矩阵U 及上三角矩阵()ij r R =,使得R AU U H =,因此有H H H R U A U =,从而得H H H RR U AA U =.又因为()()()H H H H RR tr U AA U tr AA tr ==, ①由于R 主对角线上的元素都是A 的特征值,故由①式得2112121ij nj ni ij ni i ni r r ∑∑∑∑====≤=λ, ②而②式端是R 的Frobenius 范数的平方,又因在酉相似(即R AU U H =)下矩阵的F 范数不变,所以211211ij ni ni ijni n i a r ∑∑∑∑=====③综合②、③两式便得到所需证的不等式.又不等式②取等号当用仅当i≠j 时都有0=ij r ,即A 酉相似于能角形矩阵,也就是A 为正规矩阵.自测题七一、 解:(1)由02421=-+a a a ,得基础解系)0,0,1,2(1-=α,)0,1,0,0(2=α,)1,0,0,1(3=α;所以V 1的一组基为321,,ααα,且3dim 1=V .因为),(),,(2132121ββαααL L V V +=+),,,,(21321ββαααL =,易知1321,,,βααα是21321,,,,ββααα的一个极大无关组,故4)dim (21=+V V ,21V V +的一组基为1321,,,βααα.(2)251433221121,ββξαααξξk k k k k V V +=++=⇔∈∀ .所以025********=--++ββαααk k k k k . 解此方程组得),,133,2,2(),,,,(54321---=k k k k k . 所以21V V 的一组基为)3,2,21---=,(ξ,且1)dim (21=V V .二、解:(1)211111)(cE aE E +=221212)(cE aE E +=211121)(dE bE E +=221222)(dE bE E +=即⎪⎪⎪⎪⎪⎭⎫⎝⎛=d cd c b a b aE E E E E E E E 00000000),,,(),,,(2221121122211211, 故A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡d cd c b a b a000000; (2) 由,B A AB +=得到I I B A AB B A AB =+--=--,0 ,即I I B I A =--))((,显然I A -与I B -均为阶可逆方阵,于是有I I A I B =--))((,即I I B A BA =+--,亦即0=--B A BA , 故B A BA +=,从而AB BA =.三、解:(1))2()1(2320110012λλλλλλ--=---=-E A ,)2()1()(23λλλ--=D ,1)(2=λD ,1)(1=λD .)2()1()()()(,1)()()(,1)(22331221λλλλλλλλλ--=====D D d D D d d , 所以初等因子为:λλ--2,)1(2.A 的Jordan标准形为⎪⎪⎪⎭⎫ ⎝⎛200010011.(2)()n I A tr dAd=. (3)两边求导数,利用,At AtAe e dtd =且,0Ie = 得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=133131113A .四、解:(1)∑==iij ja A 5m ax 1;∑==∞jij ia A 5m ax .(2)122212221---------=-λλλλA I )5()1(2-+=λλ ,5,1321=-==λλλ;故5m ax )(==i iA λρ;⎪⎪⎭⎫ ⎝⎛--=-3122411B ,故∞-∞∞⋅=1)(B B B cond 54145=⨯⨯=. (3)2,3==rankB rankA ;623)(=⨯=⊗B A rank .)4)(1(26521232--=-+-=----=-λλλλλλλB I ,所以4,121==λλ,故B A ⊗的特征值为:20,4,4,5,1,1'6'5'4'3'2'1=-=-==-=-=λλλλλλ(4) ∵0≠A ,1-A 存在,∴ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡===--+-3222322235112221222111A A A .五、解:(1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=000032102101~321043211111A , BC A =⎥⎦⎤⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=32102101102111. (2)∵ 2=rankA ;2):(=b A rank ;∴ b AX =相容.(3)∵⎪⎪⎪⎭⎫ ⎝⎛=142062*********T AA ;⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---==--21103001052152011070)(T T m AA A A , ∴ 极小范数解⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==-1234101b A X m.六、解: (1)0max≠=x P A 2121022maxmax--≠≠===PAP yy PAP PXPAX XAX x x PP .(2)A 的4个盖尔圆为它们构成的两个连通部分为11G S =, G G G S 322=4.易见,1S 与S 2都关于实轴对称.由于实矩阵的复特征值必成共轭出现,所以S 1中含A 的一个实特征值,而S 2中至少含A 的一个实特征值.因此A 至少有两个实特征值.七.证:(1)设为正交变换,λ为的特征值 , 则有()0()≠=αλαα,),(αα=()(α,)(α)),(),(2ααλλαλα==.∵),(>αα, ∴12=λ,故1±=λ;(2)设λ为的任一特征根,α为的属于λ的一个特征向量,即0,)(≠=αλαα,则1,11)(2,1222-=⇒=⇒==λλααλα.记11=λ的特征子空间为,1V 12-=λ的特征子空间为1-V .对V ∈∀α有=α(+α)(α) 2 + (-α)(α) 2 ,而 (+α)(α) 2∈,1V (-α)(α) 2 ∈1-V ,所以11-+=V V V . 又 ⇒∈∀-11V V α,)(αα=且,)(αα-=;得αα-=,即0=α,故11-⊕=V V V .自测题八{}{}{}{},28,36,24,14321≤-=≤-=≤-=≤=g g G g g G g g G g g G一、解:(1)在已知基)(),(),(321t f t f t f 下的矩阵为:⎪⎪⎪⎭⎫ ⎝⎛------=111323221A ;(2) (⎪⎪⎪⎭⎫ ⎝⎛=321),,1())(2t t t f ;基2,,1t t 且到基)(),(),(321t f t f t f 的过渡矩阵为:⎪⎪⎪⎭⎫ ⎝⎛=101110102C ;则21321234321))(),(,)(())((t t C t f t f t f t f -+-=⎪⎪⎪⎭⎫ ⎝⎛=-.(3) 设度量矩阵33)(⨯=ij d D , 则⎰⎰=====10121121121,11tdt d d dt d ; ⎰⎰=====1012222311331,31dt t d dt t d d ; ⎰⎰=====1014333322351,41dt t d dt t d d ; 故⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=51413141312131211D .二、解:(1) 令矩阵,3)(I A A f -=若A 的特征值为λ,则)(A f 的特征值是3)(-=λλf ,故)(A f n 的个特征值为32)2(,,3)6(,1)4(,1)2(-===-=n n f f f f .从而))32(531(3)(-⋅⋅-=-=n I A A f .(2) 2)1)(2(224023638--=+-+---=-λλλλλλA I ;特征根为1,2321===λλλ.行列式因子:23)1)(2()(--=λλλD ,1)()(12==λλD D ; 不变因子:2321)1)(2()(;1)()(--===λλλλλd d d ;初等因子: 2)1(),2(--λλ; 故A 的Jordan标准形为⎪⎪⎪⎭⎫⎝⎛=100110002J .三、解:(1)由于A 实对称,所以易求得非奇异矩阵P ,使Λ=-AP P 1, 其中⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=Λ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=2200,1001011001101001P ,于是12211-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=P e e P e t t At=12111000011--⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡P P e P P t =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+-+--+-+t t ttttt te ee e e e e e 2222222210101100110100121. (2) X ()()Tt t At e e X e t ⎪⎪⎭⎫ ⎝⎛-==22,0,0,0.四、解:(1)6=∞A ;2)4)(2(224)4(31213232-+=--=--=-λλλλλλλλλA I ; 特征根为4,2321==-=λλλ;则 4)(=A ρ.(2)2)3(,3)(==R A R∴ 6)(=⊗B A R ;B 的特征根3,421==μμ,∴ B A ⊗的全部特征根为:-8,-6,16,16,12,12. (3)∵⎪⎪⎪⎪⎭⎫ ⎝⎛-=-310125411B ,∴ +-B B l ,可取1-B .五、解:α1()T 4,0,3=,构造⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=3040504035113R ,113140430735A A R =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=. 同理,构造R A R R =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=5135165735,3404300055112323.令()==T R R Q 2313⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---012202015012161551, 则A=QR.六、证:(1)∵ A 为对称正定矩阵, ∴≠∀α有:>Aα,当且仅当0≠α时,有0=Aα;对R R ∈∀有:A T AkAk k αααα==;βββαααβαβαβαA A A T T T A++=++=+),(2)()(AAAAβαβα+=+≤2)(, (2)∵ IAA AA AA A A T T T T ==--11))(())((;∴1)(-T T AA A 是A 的右逆.(3)因为1-=A ,且A 为正交矩阵,所以有T T T A I A A I A A AA A I )()(+=+=+=+,则 AI A I A A I T +-=+=+)(,即 0=+A I .故A 一定有特征根-1.七、证:()(),1111A a a A I f n n n n -++++=-=--λλλλλ 因为 由()0=A f 得()01111=-++++--I A A a A a A nn n n ,即A ()()I A I a A a A n n n n 112111+----=+++ ,故()()I a A a AAA n n n 12111111--++-+++-=.自测题九一、解:不是. 如取α=(1,2),β=(3,4),()().,4,3,2,1αββααββα⊕≠⊕=⊕=⊕则有.二、解:(1)令⎥⎦⎤⎢⎣⎡--=1111A ,则V X AX X ∈=,)(.V Y X ∈∀,,P k ∈∀,则=+=+)()(Y X A YX )(X +)(Y ,kkX =)()(X ,所以是线性变换. (2)⎥⎦⎤⎢⎣⎡-==0101)(1111AE E ,⎥⎦⎤⎢⎣⎡-==1010)(1212AE E ,⎥⎦⎤⎢⎣⎡-==0101)(2121AE E,⎥⎦⎤⎢⎣⎡-==1010)(2222AE E ,设在基22211211,,,E E E E 下的矩阵为B ,则⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=1010010110100101B . (3)令),,,(4321ββββ=B 其中i β为B 的列向量,由于2)(=B rank ,且21,ββ是4321,,,ββββ的一个极大线性无关组, 所以dim2)(=V ,且),()(21B B L V =,其中⎥⎦⎤⎢⎣⎡-==0101),,,(1222112111βE E E E B ,⎥⎦⎤⎢⎣⎡-==1010),,,(2222112112βE E E E B , 且21,B B 为)(V 的一组基,得dimKer =4-dim (V)=2.令⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡00004321x x x x B ,得基础解系⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1010,010121ξξ. 记 ⎥⎦⎤⎢⎣⎡==⎥⎦⎤⎢⎣⎡==1010),,,(,0101),,,(22221121141222112113ξξE E E E B E E E E B , 则ker),(43B B L =,且43,B B 为Ker的一组基.三、解:非负性.A=0时,A 0,0,0,0;0,0,0〉=〉≠===A A A A A A bHa bHa 从而时从而.相容性. 设A ,B ∈C n n ⨯,则有()()().B A BBAA AB BAAB AB AB bHabHa bHbHaa bHa ⋅=++≤+≤+=同样可验证齐次性与三角不等式.在此A 是矩阵范数.四、解:(1)FG A ,A =⎥⎦⎤⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-−→−11101101412101000011101101行. (2)⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--==--+303241012120663)(11TT T F F F F F . ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡==--+11111001313003)(11TT T G GG G G .⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--==+++54131473032410361F G A . (3)b b AA b A T =-=++,)1,1,0,1(,故b AX =有解,极小范数解为T b A X )1,1,0,1(0-==+.五、解:(1)因2,3==rankB rankA ,得623)()()(=⨯=⋅=⊗B rank A rank B A rank .令0)2)(7(=+-=-λλλB I ,特征值2,721-==μμ.所以B A ⊗的所有特征值为:4,14,14,2,7,7161514321=-=-=-='='='λλλλλλ;10976)14()2(3232-=-⋅-==⊗B A B A .(2)∵ B 的特征值2,721-==λλ,∴I B B B f 3)(2+-=的特征值453772'1=+-=λ;113)2()2(2'2=+---=λ.六、解:,11120013221111⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-e ββ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=122212221312,111311111T I H ωωω 令,1102003131⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡= A H ⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⋅-⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡=-⎥⎦⎤⎢⎣⎡=1101110210,11201221e A ββ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=-=⎥⎦⎤⎢⎣⎡-=2011,01102,1121122222A H I H Tωωω 所以取QR A R H H Q =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎦⎤⎢⎣⎡=得211313,21212222131121.七、证:(1)令),,(11-=n L W αα ,其中11,,-n αα 线性无关.通过标准正交化,将11,,-n αα 变为W 的一个标准正交基11,,-n ηη .由已知可得1,,2,10,-=>=<n i i ηα;因而11,,-n ηη ,α线性无关.把α单位化,令ααη||1=n ,于是{}n n ηηη--,,,11 与{}n n ηηη,,,11- 均为V 的标准正交基.同时,由题设,1,,2,1,)(-==n i i i ηη,而n n ηη-=)(,则把标准正交基{}n n ηηη,,,11- 变为标准正交基,故为正交变换. (2)因为为正交变换,(n ααα,,,21 )=(n ααα,,,21 )A ,所以A 为正交矩阵.又 A 的所有特征值n λλλ,,,21 都为实数,故有,T T AA I A A ==即A 为实的正规矩阵,从而存在正交矩阵Q ,使得Λ=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=321λλλAQ Q T , 则A =()A Q Q Q Q A Q Q Y TT T T =Λ=Λ=Λ,,即A 为实对称矩阵,故A是对称变换.八、证:(1)设A 的特征根是n λλ,,1 ,令λλ-=1)(f ,则AI A f -=)(的特征根是,1,,11n λλ-- 由题设i λ-1〈1,n i ,,1 =,故,111 --i λ即20 i λ,因此,,,,1,20n i i =λ进而n n 2||||01<<λλ ,然而n d A λλ 1||==,故n n d 2|,|||01<=<λλ .(2)设A 的三个特征根为321,,λλλ,则32132312123213)()(||)(λλλλλλλλλλλλλλλλλ-+++++-=-=A I f ,由于A 是奇数阶正交方阵,且1||=A ,易证奇数维欧氏空间中的旋转变换一定有特征值1,因此不妨设11=λ,则1||32321===A λλλλλ,于是323231213211λλλλλλλλλλλ++=++=++,从而1||)(23-+-=-=λλλλλt t A I f .其中321λλ++=t 为实数(因32,λλ或均为实数或为一对共轭复数).又由于正交方阵的特征根的模为1.故有22,)(32323232≤+≤-+≤+≤+-λλλλλλλλ,所以31132≤++≤-λλ,即31≤≤-t .由哈密顿-凯莱定理知:023=-+-I tA tA A .自测题十一、解:(1)因为,2=rankA 求得θ=AX 的基础解系()(),9,0,21,2,0,9,24,121T T -=-=ξξ即为V 的一组基,且dimV =2.(2) 设A 为P 上任一n 阶方阵,则)(21T A A +为对称阵,)(21T A A -为反对称阵,且A=)(21T A A ++)(21T A A -,得21V V P n n +=⨯. 又若21V V B ∈∀ , 则有T B B =, 且T B B -=, 从而θ=B , 则{}θ=21V V , 故21V V P n n ⊕=⨯.二、解:(1)∈∀ξ⇒-)(1θθξ=)(.设ξ在基4321,,,εεεε下的坐标为),,,(4321x x x x,则(ξ)在基4321,,,εεεε下的坐标为⎪⎪⎪⎪⎭⎫⎝⎛4321x x x x A .且(ξ)θ=及⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0004321x x x x A , 其中 ⎪⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎪⎭⎫⎝⎛--------=00000000101001011111111111111111A . 得基础解系⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛1010,0101;取)(1θ-中两个线性无关的解向量⎩⎨⎧+=+=422311εεξεεξ, 所以),()(211ξξθL =-,dim2)(1=-θ.(2)由于)(1θ-中有一组基1ξ,2ξ,所以取432121,,,,,εεεεξξ,易知4321,,,εεξξ线性无关,则4321,,,εεξξ构成V 的一组基.设由基4321,,,εεεε到基4321,,,εεξξ的过渡矩阵为C ,则⎪⎪⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎪⎪⎭⎫⎝⎛=-101001010010001,10100101001000011=C C , 所以在4321,,,εεξξ下的矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛----=-22002200110011001AC C .三、解:(1)先由rankA=n ,即A 的列向量组线性无关,证A T A 是正定矩阵(见自测题四中第七题),再由习题2-1第7题知,R n 构成一个欧氏空间.(2)令C=A T A =(c ij ),()ij j i j i c C ==εεεε,所以自然基在该内积定义下的度量矩阵为C=A T A.四、(1)证:∵A 是幂收敛的,∴()()B A A A B n n n ===22lim lim lim .(2)解:令⎪⎪⎭⎫ ⎝⎛-==014112B A ,1212<⇒-=-λλλB I , ∴B 是幂收敛.∴原级数和为()⎪⎪⎭⎫⎝⎛-=--04141B I . (3)解:设A的最大秩分解式为:⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛===10010110012AI FG A ,则⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛==1002011001010101A A F F H H .显然()⎪⎪⎭⎫⎝⎛==⎪⎪⎭⎫⎝⎛=--1001)(,10021211I GG F F HH,.0102102101010110021)()(1111⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛==----+F F F F GG G A H H H五、解:令⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛----=7610,122121211142b A , ⎪⎪⎪⎪⎭⎫⎝⎛----=+561651224112331A ,。

研究生期末试题矩阵论a及答案

研究生期末试题矩阵论a及答案

验证 是 中的向量范数.
八、(10分)已知矩阵 ,写出矩阵函数 的Lagrange-Sylvester内插多项式表示,并计算 。
长 春 理Leabharlann 工 大 学研 究 生 期 末 考 试标准答案及评分标准
科目名称:矩阵论命题人:姜志侠
适用专业:审核人:
开课学期:2012——2013学年第 一 学期□开卷√闭卷
计算

则得谱分解式
+2 (10分)
六、

由于 ,
于是有 ,故
(10分)
七、当 时, ;当 不恒等于零时,由其连续性知 必在 的某个子区间 上不等于零,从而有

对于 ,有

对于 ,有

故 是 中的向量范数.(10分)
八、容易求出矩阵A的最小多项式为 ,所以 , ,于是
由此知 的内插多项式表示为
将矩阵A代入上式得
长 春 理 工 大 学
研 究 生 期 末 考 试试 题
科目名称:矩 阵 论命题人:姜志侠
适用专业:理 工 科审核人:
开课学期:2012——2013学年第 一 学期□开卷 √闭卷
一、(10分)设 是 的一个基,试求由 ,
, 生成的子空间 的基.
二、(10分)在 中,设 ,定义实数 为 ,判断是否为 中 与 的内积。

(2) 在基(Ⅱ)的坐标为 ,由坐标变换公式计算 在基(Ⅰ)下的坐标为
.(10分)
四、首先求出A的Jordan标准形

所以行列式因子 ;
不变因子 ;(6分)
那么A的初等因子为 ,故A的Jordan标准形为
.(10分)
五、解:求出 的特征根 (二重),计算对角化相似因子 及其逆 为

2013年(春)重庆大学研究生矩阵理论试题及答案

2013年(春)重庆大学研究生矩阵理论试题及答案

重庆大学硕士研究生《矩阵论》课程试卷2012 ~2013 学年 第 二 学期(春)开课学院: 数学与统计 课程编号: 考试日期:考试方式: 考试时间: 120 分钟一、判断题。

(每题3分,共30分)(1) 平面上全体向量构成的集合,按通常的向量加法及如下定义的数乘运算0k α⋅=,在实数域上构成线性空间。

(×) (2) 全体正实数构成的集合,其加法和数乘定义为αβαβ⊕=,0kα=,则该集合在实数域上构成的线性空间是1维的。

(v ) (3)若12x u x ⎛⎫= ⎪⎝⎭,12y v y ⎛⎫= ⎪⎝⎭,则1112(,)1u v x y x y =++是2R 中的内积。

( ×) (4) 在矩阵空间n nR ⨯中,定义 X BXC =其中B,C 为给定的矩阵,则 是线性变换。

(v )(5) 平面上逆时针旋转θ角的线性变换在基(1,0),(0,1)之下的矩阵表示为cos sin sin cos θθθθ-⎛⎫⎪⎝⎭。

(v ) (6) 任何一种矩阵范数必有与之相容的向量范数。

( v )(7) A 为方阵,则21112!!A n e A A A n =+++++。

(×)(8)设矩阵()12,,,n A ααα=,A 经过有限次行初等变换变为()12,,,n B βββ=, 则123,,k k k ααα与123,,k k k βββ有相同的线性相关性,其中{1,2,,}i k n ∈。

( v )(9) 当A 为列满秩实矩阵时,则1()T T A A AA +-=。

(× ) (10) 若n 阶矩阵A 有n 个两两不相交的圆盘,则A 可相似对角化。

( v) 二、计算题(共45分)1. (10分)设3[]K x 的两基为:(I)2231234()1,()1,()1,()1f x f x x f x x x f x x x x ==+=++=+++(II) 2323231234()1,(),()1,()1g x x x g x x x x g x x x g x x x =++=++=++=++ 求(1) 由基(I)到基(II)的过渡矩阵;(2) 求基(I)和基(II)下有相同坐标的全体多项式。

研究生矩阵理论课后答案矩阵分析所有习题

研究生矩阵理论课后答案矩阵分析所有习题
证:存在UUnn使得 A=Udiag(1,…,n)U*, (*)
其中1,…,n是A的特征值的任意排列. ∵ A2=E=Udiag(1,…,1)U* 和
A2=Udiag(1,…,n)U*Udiag(1,…,n)U* =Udiag(12,…,n2)U*
∴ i2=1,即i=1,i=1,…,n,. 取1,…,n的排列使特征值1(设共有r个)全排在
2 5
5 0 1 5
0 1 0
1
5
0
2 5
习题3-9
#3-9:若S,T分别为实对称,反实对称矩阵,则 A=(E+T+iS)(E-T-iS)-1为酉矩阵.
证: A*A=((E-T-iS)*)-1(E+T+iS)*(E+T+iS)(E-T-iS)-1
=((E+T+iS)-1(E-(T+iS))(E+(T+iS))(E-T-iS)-1 =(E+T+iS)-1(E+T+iS)(E-T-iS)(E-T-iS)-1 =E
∴ A+B是正定Hermite矩阵.
习题3-22设A,B均是正规矩阵,试证:A 与B相似的充要条件是A与B酉相似
证:因为A,B是正规矩阵,所以存在U,VUnn 使得 A=Udiag(1,…,n)U*, B=Vdiag(1,…,n)V*,
其中1,…, n,,1,…,n分别是A,B的特征值集 合的任意排列.
证:因为A是正规矩阵,所以存在UUnn 使得 其中1,…, ArA=n是=UUdAdi的iaag特g((征1r1,,值…….,,于nn是r))U,U**,=0 蕴∴涵Air==U0d,iia=g1(,0…,…,n,.0后)U者*=又0.蕴涵 1=…=n=0.

研究生课程-《矩阵分析》试题及答案

研究生课程-《矩阵分析》试题及答案

第一套试题答案一(10分)、证明:(1)设11k x +22k x +33k x =0, ①用σ作用式①两端,有111k x λ+222k x λ+333k x λ=0 ②1λ⨯①-②,有21223133()()0k x k x λλλλ-+-= ③再用σ作用式③两端,有2122231333()()0k x k x λλλλλλ-+-= ④ ③⨯2λ-④,有313233()()0k x λλλλ--=。

由于123,,λλλ互不相等,30x ≠,因此30k =,将其代入④,有20k =,利用①,有10k =。

故1x ,2x ,3x 是线性无关的。

(2)用反证法。

假设1x +2x +3x 是σ的属于特征值λ的特征向量,于是有123123()()x x x x x x σλ++=++即112223123()x x x x x x λλλλ++=++112223()()()0x x x λλλλλλ-+-+-=由于1x ,2x ,3x 线性无关,因此123λλλλ===,这与123,,λλλ互不相等矛盾。

所以,1x +2x +3x 不是σ的特征向量。

二(10分)、解:2312321232()()1;()(2);()(2)()1;()(2);()(2)1()(2)(2)A D D D d d d A λλλλλλλλλλλλλλλλλλλλ==-=-==-=-⎛⎫⎪- ⎪ ⎪-⎝⎭的行列式因子分别为,不变因子分别为,于是的Smith 标准形为.三(10分)、解:11121634E A λλλλ+⎛⎫ ⎪-= ⎪ ⎪---⎝⎭210001000(1)λλ⎛⎫ ⎪≅- ⎪ ⎪-⎝⎭A λλ2矩阵的初等因子为: -1, (-1),100:011001J ⎛⎫⎪= ⎪ ⎪⎝⎭故约当标准形为。

四(12分)、解:令()()()1120,E A λλλλ-=-++=得特征值123112λλλ==-=-,,,解齐次方程组()0,E A x -=()2;Tii α=1得基础解系解齐次方程组()0,E A x --=()101;Tα=-2得基础解系解齐次方程组()20,E A x --=()1;T ii α=-3得基础解系αααααα123123由于,,已两两正交,将,,单位化得()()()11121011623T T Tp i i p p i i --123=,=,= ()1,(2)1.3H U p p p U AU ⎛⎫⎪==- ⎪ ⎪⎝⎭123令分,则五(10分)、解:(){}11(1),01,()TAx o i N A span ξξ===解齐次方程组得基础解系,,;又(){}{}()232323010,,,,100,,00H H R A span o span A o i ξξξξξξ⎛⎫⎪===-= ⎪ ⎪-⎝⎭这里,; 显然(),0,iji j ξξ=≠当时;()().HN A R A ⊥故有()()()()()()()()()333(2)dim dim dim 3dim ,Q H H H H N A R A C N A R A N A R A C N A R A C ++=+==+=是的子空间且故。

研究生矩阵论课后习题答案(全)习题一

研究生矩阵论课后习题答案(全)习题一
习题一 1.检验以下集合对于所指的线性运算是否构成实数域的线性空间: (1)设 A 是 n 阶实数矩阵. A 的实系数多项式 f ( A) 的全体,对于矩阵的加法 和数乘; (2)平面上不平行于某一向量所组成的集合,对于向量的加法和数与向量的 乘法; (3)全体实数的二元数列,对于如下定义的加法 ⊕ 和数乘 o 运算:

(1)设 Eij 是第 i 行第 j 列的元素为 1 而其余元素全为 0 的 n 阶方阵.
①令 Fij = ⎨
⎧ Eii , i = j , 则 Fij 是对称矩阵, 易证 F11 ,L , F1n , F22 , L , F2 n , ⎩ Eij + E ji , i ≠ j
L , Fnn 线 性 无 关 , 且 对 任 意 n 阶 对 称 矩 阵 A = (aij ) n×n , 其 中 aij = a ji , 有
1 −1 −1
= aa −1 = 1
⑥ k o (l o a ) = k o a = (a ) = a
l l k
lk
= (lk ) o a
⑦ (k +;l
= a k a l = a k ⊕ a l = (k o a) ⊕ (l o a )
k k k
⑧ k o ( a ⊕ b) = k o ( ab) = ( ab) = a b = ( k o a ) ⊕ (k o b) 所以 R+对这两种运算构成实数域 R 上的线性空间. (5)否.设 V2 = y ( x ) y ′′ + a1 y ′ + a 0 y = f ( x ), f ( x ) ≠ 0 ,则该集合对函数的 加法和数乘均不封闭.例如对任意的 y1 , y 2 ∈ V2 , y1 + y 2 ∉ V2 .故不构成线性空间. (6)是.集合 V 对函数的加法和数乘显然封闭.零函数是 V 的零元素;对任意

研究生矩阵论试题及答案与复习资料大全

研究生矩阵论试题及答案与复习资料大全

矩阵论试题(2011级硕士试题)一、(10分)设函数矩阵 ()⎪⎪⎭⎫⎝⎛-=t t t t t A sin cos cos sin 求:()⎰tdt t A 0和(()⎰20t dt t A )'。

解:()⎰t dt t A 0=()⎪⎪⎪⎭⎫ ⎝⎛-⎰⎰⎰⎰tttt tdt tdt dt t dtt 00sin cos cos sin =⎪⎪⎭⎫⎝⎛---t t t t cos 1sin sin cos 1 (()⎰2t dt t A )'=()⎪⎪⎭⎫⎝⎛-=⋅22222sin cos cos sin 22t t t t t t t A 二、(15分)在3R 中线性变换σ将基⎪⎪⎪⎭⎫ ⎝⎛-=1111α,⎪⎪⎪⎭⎫ ⎝⎛-=1202α,⎪⎪⎪⎭⎫⎝⎛-=1013α变为基 ⎪⎪⎪⎭⎫⎝⎛-=0111β,⎪⎪⎪⎭⎫ ⎝⎛-=1102β,⎪⎪⎪⎭⎫ ⎝⎛-=2303β(1)求σ在基321,,ααα下的矩阵表示A ;(2)求向量()T 3,2,1=ξ及()ξσ在基321,,ααα下的坐标; (3)求向量()()ξσξ及T 3,2,1=在基321,,βββ下的坐标。

解:(1)不难求得:()2111ααβασ-==()32122αααβασ++-== ()321332αααβασ++-== 因此σ在321,,ααα下矩阵表示为⎪⎪⎪⎭⎫ ⎝⎛---=110211111A(2)设()⎪⎪⎪⎭⎫ ⎝⎛=321321,,k k k αααξ,即⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛321111021101321k k k解之得:9,4,10321-=-==k k k 所以ξ在321,,ααα下坐标为()T 9,4,10--。

()ξσ在321,,ααα下坐标可得⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛133223*********1111321y y y (3)ξ在基321,,βββ下坐标为⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛---6151941001111110194101A()ξσ在基321,,βββ下坐标为⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛---94101332230111111011332231A三、(20分)设⎪⎪⎪⎭⎫ ⎝⎛-=301010200A ,求At e 。

中南大学矩阵论考试试题及参考答案

中南大学矩阵论考试试题及参考答案

中南大学2010年秋季硕士研究生《矩阵论》考试试题考试形式:开卷 时间:120分钟 总分100分姓名 学号一、 (16分) 已知3阶Hermite 矩阵A 的特征值为1,2,2,且()(),0,1, 1,0,TTi i ξη==是A 的属于特征值2的两个相互正交的特征向量. 1.(10分) 求A ;2.(6分) 求A 的不变因子与最小多项式.二、(20分) 对任何()C ij n nA a ⨯=∈,定义111n nij m i j Aa ===∑∑.1.(8分) 证明1m ⋅是Cn n⨯上一种矩阵范数;2.(6分) 证明1m ⋅与向量∞-范数相容; 3.(6分) 证明1m ⋅与矩阵范数m ∞⋅等价,其中1,max ij m i j nAn a ∞≤≤=⋅.三、(20分) 设020i A i ⎛⎫⎪= ⎪⎝⎭. 1.(6分) 验证A 是否为收敛矩阵; 2.(6分) 判断矩阵幂级数()1012kk kk ∞+=-∑的敛散性;3.(8分) 求Ate .四、(14分) 设113242212A -⎛⎫ ⎪=- ⎪ ⎪⎝⎭.求A 的QR 分解.五、(15分) 设1211141111A -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭.利用特征值隔离法和盖尔圆定理证明:A 的三个特征值全为实数,且分别位于实数区间()()0.5, 2.5, 2.5, 5.5 -和[]10, 14内.六、(15分)设1121, 1101A b -⎛⎫⎛⎫==⎪ ⎪-⎝⎭⎝⎭.1. (8分)求A 的全部{}1逆;2. (7分)利用{}1逆判断Ax b =是否有解,并在有解时求其通解.2010年矩阵论试题参考答案一、解. 1.因为A 为3阶Hermite 矩阵,所以有3个相互正交的特征向量,且酉相似于对角形122⎛⎫⎪⎪ ⎪⎝⎭ . 设A 的属于特征值1的特征向量为()123,,T x x x x =,则, ,x x ξη⊥⊥ 即 131300ix x x ix -+=⎧⎨-=⎩,解得 ()0,1,0, 0Tx k k =≠任意. 将, , x ξη单位化得12301,0, 00p p p ⎛⎫⎪=== ⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭.令()12301000,,U p p p ⎛⎪ ⎪ ⎝==,则U 是酉矩阵且122H U AU ⎛⎫ ⎪= ⎪ ⎪⎝⎭从而0010112100202200212HU UA ⎛⎫⎛ ⎪ ⎪⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎝⎛⎫ ⎪=⎪⎪⎝⎭. 2.由A 相似于对角形122⎛⎫⎪⎪ ⎪⎝⎭知,A 的初等因子为 1, 2,2λλλ---,从而得A 的不变因子为 ()() 123()1,()2, ()12d d d λλλλλλ==-=--, 最小多项式为 ()()3()()12A m d λλλλ==--.二、1.证明. 1)()ij n nA a ⨯∀=∈C,显然有0A =时,10m A=,0A ≠时10m A>.2)(), n nij A a λ⨯∀∈∀=∈C C,111111nnnnij ji j m j m i i Aa aAλλλλ====⋅===∑∑∑∑.3)()(), ij ij n nA aB b ⨯∀==∈C,()11111111111nnnnn n n nij ij ij ij ij ij i j i j i j i m j m m a b a b a A BAb B=========++=≤+++=∑∑∑∑∑∑∑∑.4)()(), ij ij n nA aB b ⨯∀==∈C,1111111nnnnnnik kj ik kji j k i j m k a b a b AB=======≤⋅∑∑∑∑∑∑1111111111nnn n n nn nik kj ikkj i j k k i k j k m m a b a b AB========⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪⎪ ⎪⎝⎭⎝⋅⎝⎭⎝≤⎭⎭∑∑∑∑∑∑∑∑.由定义知1m A是n n⨯C上的矩阵范数.2.证明.()()12, ,,,Tn nn n ij A a x ξξξ⨯∀=∀=∈∈CC ,()11111111111111maxmax max m ma ax max m x x a n nnijnnnij ij jij ij i ni ni n j j j j j j m ni nj i j jj j nj na a AxAa xa a ξξξξξ≤≤≤≤≤≤===≤≤≤∞≤≤≤≤∞=≤===≤⋅≤⋅=⋅≤⋅⋅=∑∑∑∑∑∑所以矩阵范数1m ⋅与向量∞-范数相容.3.对任何()n nij A a ⨯=∈C,121,1,11ax x 1m ma m m nnij ij ij i j ni j nm i j n a A n a AAna ∞∞≤≤≤≤===≤=≤=∑∑所以矩阵范数1m ⋅与m ∞⋅等价.三、解. 1.2222122ii I A iλλλλλ--===+--,故A()A ρ=1()A ρ<,所以A 为收敛矩阵. 2.矩阵幂级数对应的复变量幂级数的收敛半径为()()1112lim212kk k kk r ++→+∞-⋅-==,而()A r ρ=<,故题中的矩阵幂级数绝对收敛.3.设()()()2101,2tet q t t b b λλλλ⎛⎫=++ ⎪⎝+⎭(()(()1010sin sin i b t b t e i b t b t ⎧==+⎪⎪⎨⎪=-=-⎪⎩解得()()01 b t b t ==. ()()10c 100.2010Ate b t A b i i t I ⎛⎫⎛=+⎫⎪=+=⎪⎪⎭⎪⎪⎭⎭四、解.记1231132, 4, 2,212a a a -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪===- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 先将A 的第一列1a 用Householder 变换化为与1100e ⎛⎫⎪= ⎪ ⎪⎝⎭共线.易得123a =, 11111211232-30=2202a a e a e -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-=-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.令1111213131a e u a e -⎛⎫-⎪==⎪-⎪⎭,31122121232212HI u H u ⎛⎫ ⎪- ⎪ ⎪-⎝⎭=-=,则 ()()11311111132221111222103212210H H a I uu a --⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=-=--=-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,()1211132411114031113H a ---⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪=--= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭,()1333221121112210314H a -⎛⎫⎛⎫⎪ ⎪=--= ⎪⎛⎫⎛⎫ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝ ⎪ ⎪⎝⎭⎝⎭⎭,从而()()112311112133********H a a a H a H a H a H A ⎛⎫⎪=== ⎪ ⎝⎭-⎪.再记103b ⎛⎫= ⎪-⎝⎭.则123b =, 113303b -⎛⎫⎛⎫-= ⎪ ⎪-⎝⎭⎝⎭.令11213101130b v b ⎛⎫- ⎪-⎫⎝⎭==⎪-⎛⎫⎭- ⎪⎝⎭, 221011012011110H H I vv -⎛⎫⎛⎫⎛⎫=-=-= ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭, 22101011H H ⎛⎫⎪-⎛⎫== ⎪⎝ ⎝⎭⎪⎪-⎭, 有2133103433100001010003140H H A R ⎛⎫⎛⎛⎫ ⎪-⎫ ⎪⎪=-= ⎪⎪ ⎪⎪-⎝ ⎪ ⎪⎝⎭⎭⎝-⎭ .令()1122121221121201322110HH HQ H H H H H H ⎛⎫⎛⎫⎪⎪====-- ⎪⎪ ⎪⎪--⎝⎭⎝⎭12233312221321221332123233123--⎛⎫ ⎪---⎛⎫⎪⎪-== ⎪ ⎪- ⎪⎝⎭⎭⎪⎝-⎪, 则Q 为酉矩阵,且A 的QR 分解为122333221331034333212030303QR A --⎛⎫⎪ ==⎪- ⎪⎛⎫⎪-⎪ ⎪⎝ ⎪⎪⎭⎭- ⎝.五、证明.A 的三个行盖尔圆和列盖尔圆都为:{}{}{}123 122, 42 1 ,2 n n n z G z G z z z G z =∈=∈=-≤-≤≤∈-C C C . 1G 为孤立的盖尔圆,而2G 与3G 相交.由盖尔圆定理知1G 中有A 的一个特征值,2G 与3G 的并中有A 的两个特征值.对任何0ε>,取 1232, 1d d d ε=+==.令2113,12221412112 1 B DAD d D d d εεεε-⎛⎫ ⎪+-- ⎪⎪==- ⎪+ ⎪⎪-+⎝⎛⎫ ⎪=⎭⎪ ⎪⎝⎭,则B 与A 相似,从而与A 有相同的特征值.B 的三个盖尔圆为:{}12 1242 41, 1, 2n n G z G z z z εε⎧⎫=∈=∈⎨⎬+-≤+-≤+⎩⎭C C 3 1121n z z G ε-≤⎧⎫=∈⎨+⎬+⎩⎭C .它们是三个孤立的盖尔圆,故由盖尔圆定理知,B 的三个特征值中分别位于这三个盖尔圆中.由于B 为实矩阵,其特征多项式为实系数多项式,从而其特征值如为复数,则必共轭成对出现.注意到 123, , G G G 的圆心都在实轴上, 123, , G G G都关于实轴对称,如果含有复特征值,则其共轭的特征值也在同一个盖尔圆中,与每个孤立盖尔圆中只有一个特征值矛盾.因此,B 的特征值,从而A 的特征值都为实数.综上,A 的特征值分别位于孤立的盖尔圆1G , 2G和 3G 的实轴上,即位于实数区间 []10, 14,113,522εε⎡⎤-+⎢⎥++⎣⎦ 和11, 2 22εε⎡⎤-+⎢⎥++⎣⎦中.注意到0ε>知,A 的特征值分别位于[]10, 14,()2.5, 5.5 和 ()0.5, 2.5 -中.六、解.1.11221122232100100000000000000110101111110112010000000001010S T I I AI --⎛⎫⎛⎫⎪⎪ ⎪ ⎪⎛⎫⎛⎫ ⎪ ⎪=→⎪ ⎪⎪⎪⎝⎭⎝⎭ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭- ,11112222111122221011001101001a ab T S ab ab b a b --++⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪⎪⎪=-=-- ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 故A 的全部{}1逆为{}11221122 1 , ab A ab aa b b -++⎛⎫⎪-- ⎧⎫⎪⎪=⎨⎬⎪⎪⎪⎝⎭⎪⎩⎭任意. 2.取A 的一个{}1逆()11221112200A -⎛⎫⎪= ⎪ ⎪⎝⎭.由 ()112211221111211121011011101000AA b b --⎛⎫⎛⎫--⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭⎪ ⎪⎝⎭⎝⎭知Ax b =有解,其通解为()()()111122221111222121100111201011100000100A b I A A y x y -⎡-⎤⎛⎫⎛⎫⎛⎫-⎛⎫⎛⎫⎢⎥⎪ ⎪ ⎪==+- ⎪ ⎪⎢⎥ ⎪ ⎪ ⎪-⎝⎭⎝⎭ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦+- 110010100100110001000y -⎡-⎤⎛⎫⎛⎫⎛⎫⎢⎥⎪ ⎪ ⎪=+-⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦1233100100011010110001y y y y -⎛⎫⎛⎫⎛-⎛⎫⎛⎫⎪ ⎪+- ⎪ ⎪ ⎪ ⎪⎝⎫ ⎪ ⎪⎪=+-= ⎪ ⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎝⎝⎭⎭⎭⎭,3y 任意,或写成110101x k -⎛⎫⎛⎫⎪ ⎪=+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, k 任意.中南大学2011年秋季硕士研究生《矩阵论》考试试题考试形式:开卷 时间:120分钟 总分:100分姓名 学号一、 (18分) 已知3阶方阵A 的不变因子为()()()()1231, ,6.d d d λλλλλλ===- 1.(6分) 求A 的谱半径()A ρ;2.(6分) 求()lim kk A A →+∞⎛⎫⎪ ⎪⎝⎭ρ;3.(6分) 判断矩阵幂级数()()012kkkk A A ρ∞=⎛⎫- ⎪ ⎪⎝⎭∑的收敛性.二、(20分) 设a ⋅和b ⋅是n n ⨯C 上的任意两种矩阵范数. 对任何()n n ij A a ⨯=∈C ,定义A =.1.(8分) 证明⋅也是n n ⨯C 上一种矩阵范数;2.(6分) 若v ⋅是n C 上一种向量范数,且a ⋅和b ⋅都与v ⋅相容,证明⋅也与v ⋅相容;3.(6分) 若n n A ⨯∈C 且20A A =≠,证明1a A ≥.三、(20分) 设4332A ⎛⎫=⎪--⎝⎭.1.(6分) 求()TdF x dx ,其中12x x x ⎛⎫= ⎪⎝⎭,()T F x x A =; 2.(8分) 求sin At ; 3.(6分) 求1cos Atdt ⎰.四、(16分) 设222112222243333644A ⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪ ⎪⎝⎭. 利用Gerschgorin 定理,1.(8分) 证明A 可逆且有3个线性无关的特征向量;2.(8分) 证明A 的特征值全为实数,并求它们所在的实数区间.五、(26分)设101, 1001i A i b ⎛⎫⎛⎫ ⎪ ⎪=-= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭.1.(10分)求A 的奇异值分解;2.(8分)求A 的加号逆A +;3.(8分)利用A +判断Ax b =是否有解,并在有解时求其极小范数解,无解时求其极小范数最小二乘解.2011年矩阵论试题参考答案一、 (18分) 已知3阶方阵A 的不变因子为()()()()1231, , 6.d d d λλλλλλ===- 1.(6分) 求A 的谱半径()A ρ;2.(6分) 求()lim ;kk A A →+∞⎛⎫ ⎪ ⎪⎝⎭ρ3.(6分) 判断矩阵幂级数()()012kkkk A A ρ∞=⎛⎫- ⎪ ⎪⎝⎭∑的收敛性. 解. 1.A 的特征多项式为:()()()()12326I A d d d λλλλλλ==--,故A 的特征值为0, 0, 6, 从而()6A ρ=.2.因为A 的最小多项式()()()36A m d ==-λλλλ无重根(或者A 的初等因子均为一次的,它们是:, , 6-λλλ),从而A 可对角化, 故存在可逆矩阵P 使1006A P P -⎛⎫ ⎪= ⎪ ⎪⎝⎭,()10061A A P P A -⎛⎫ ⎪== ⎪ ⎪⎝⎭ρ, 从而()1100lim lim 00.611kkk k A A P P P P A --→+∞→+∞⎛⎫⎛⎫⎛⎫⎪ ⎪=== ⎪ ⎪ ⎪ ⎪⎝⎭⎪ ⎪⎝⎭⎝⎭ρ 3.解法1. 记()AB A =ρ. 则 ()()()01122kkkk k k k k A B A ρ∞∞==⎛⎫--= ⎪ ⎪⎝⎭∑∑. ()() 166A A B ⎛⎫=== ⎪⎝⎭ρρρ,复变量幂级数()12kk kk ∞=-∑的收敛半径 ()()1112lim212kkk k k r +→+∞+-==-, ()B r <ρ, 故矩阵幂级数 ()()012kkkk A A ρ∞=⎛⎫- ⎪ ⎪⎝⎭∑绝对收敛. 解法2. 记()2AB A =ρ. 则 ()()()0112kkk kk k k A B A ρ∞∞==⎛⎫-=- ⎪ ⎪⎝⎭∑∑. ()()112122A A B ρρρ⎛⎫=== ⎪⎝⎭,复变量幂级数 ()01k kk z ∞=-∑的收敛半径 ()()11lim 11kk k r +→+∞-==-, ()B r <ρ, 故矩阵幂级数()()012kkkk A A ρ∞=⎛⎫- ⎪ ⎪⎝⎭∑绝对收敛. 解法3. ()()()0011 212kkkk k k k k A A A ρ∞∞==⎛⎫--= ⎪ ⎪⎝⎭∑∑ ,复变量幂级数()112kk k k ∞=-∑的收敛半径 ()()11112lim 12112kkk k k r +→+∞+-==-, ()A r <ρ, 故矩阵幂级数 ()()012kkk k A A ρ∞=⎛⎫- ⎪ ⎪⎝⎭∑ 绝对收敛.二、(20分) 设a ⋅和b ⋅是n n ⨯C 上的任意两种矩阵范数. 对任何()n n ij A a ⨯=∈C ,定义A =.1.(8分) 证明⋅也是n n ⨯C 上一种矩阵范数;2.(6分) 若v ⋅是n C 上一种向量范数,且a ⋅和b ⋅都与v ⋅相容,证明⋅也与v ⋅相容;3.(6分) 若n n A ⨯∈C 且20A A =≠,证明1a A ≥.1.证明. 1)当0A =时,0a b A A ==,故0A =;当 0A ≠时,0, 0,a b A A >>故0A >. 2), n nA ⨯∀∈∀∈C C λ,A A λλ===⋅.3), n nA B ⨯∀∈C,记 , ,a a b b x y A B A B ⎛⎫⎛⎫== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭则 22, ,x A B y ==222 .A B x y x y A B +=≤=++≤=+4), n nA B ⨯∀∈C,.AB A B =≤≤=⋅由定义知A 是n n⨯C上的矩阵范数.2.证明., ,n nn A x ⨯∀∈∀∈C C 由已知条件有, ,v a v v b v Ax A x Ax A x ≤⋅≤⋅故,v v Ax A x ≤≤=⋅ 即⋅与v ⋅相容.3.证法1. 2aa a aAA A A =≤⋅,而0A ≠,故 0a A >,从而 1a A ≥.证法2. 2, A A A =∴ 的特征值只能为0或1,而0A ≠,故A 的特征值不全为0,从而 ()()1, 1a A A A ρρ=≥=.证法3.由 2A A = 可得:1k ∀≥ 有 k A A =,故 lim 0kk A A →+∞=≠,因而A 不是收敛矩阵,从而()()1, 1a A A A ρρ≥≥≥. 三、(20分) 设4332A ⎛⎫=⎪--⎝⎭.1.(6分) 求()TdF x dx ,其中12x x x ⎛⎫= ⎪⎝⎭,()TF x x A =; 2.(8分) 求sin At ; 3.(6分) 求1cos Atdt ⎰.解. 1.()()121243,32F x x x x x =--,()()()()124, 3, 3, 2,F x F x x x ∂∂==--∂∂ 故()()()()12, 4, 3, 3, 2TdF x F x F x dx x x ∂∂⎛⎫==-- ⎪∂∂⎝⎭. 2.()243312I A λλλλ--=+--=,A 的特征值为121==λλ. 设 ()()()()210sin 1t g b t b t λλλλ=-++,则()()()101111 sin sint b t b t d tb t d λλλλλλλ===⎧=+⎡⎤⎣⎦⎪⎨=⎪⎩, 即()()()101 sin cost b t b t t t b t =+⎧⎪⎨=⎪⎩, 解得()()01 sincos cosb t t t t b t t t =-⎧⎪⎨=⎪⎩. 故()()()104310sin cos sin cos 3201sin 3cos 3cos .3cos sin 3cos At b t A b t I t t t t t t t tt t t tt t t ⎛⎫⎛⎫=+=+- ⎪ ⎪--⎝⎭⎝⎭+⎛⎫= ⎪--⎝⎭3.解法1. 43132A ==--,A 可逆且12334A ---⎛⎫= ⎪⎝⎭. 由2知sin13cos13cos1sin 3cos1sin13cos1A +⎛⎫= ⎪--⎝⎭.又 1sin cos d AtAt Adt-=,故 111111000sin cos sin sin 23sin13cos13cos12sin13cos13sin13cos1.343cos1sin13cos13sin13cos14sin13cos1d At Atdt A dt A At A A dt---===--+-+-+⎛⎫⎛⎫⎛⎫== ⎪⎪ ⎪----⎝⎭⎝⎭⎝⎭⎰⎰解法2. 用2中同样的方法可算得()43103sin cos 3sin cos sin sin cos ,32013sin 3sin cos t t tt t At t t t t t t t t t t -+-⎛⎫⎛⎫⎛⎫=-++= ⎪ ⎪ ⎪--+⎝⎭⎝⎭⎝⎭从而11003sin cos 3sin 2sin13cos13sin13cos1cos .3sin 3sin cos 3sin13cos14sin13cos1t t t t t Atdt dt t t t t t -+--+-+⎛⎫⎛⎫== ⎪ ⎪+--⎝⎭⎝⎭⎰⎰四、(16分) 设222112222243333644A ⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪ ⎪⎝⎭. 利用Gerschgorin 定理,1.(8分) 证明A 可逆且有3个线性无关的特征向量;2.(8分) 证明A 的特征值全为实数,并求它们所在的实数区间.解.1.A 的3个盖尔圆{}()123 2, , , 1, 2, 3C i i G G z i R G G z i =∈-≤=的半径依次为1232221132283315, , 2243394416R R R =+==+==+=. 显然 310kk G=∉,由Gerschgorin 定理1知,A 的3个特征值都不等于0, A A =的3个特征值的乘积0≠,从而A 可逆.因为A 的任意两个相邻盖尔圆圆心的距离为2,而每个盖尔圆的半径都小于1,故A 的3个盖尔圆互不相交,由Gerschgorin 定理2知,A 有3个互异的特征值,从而有3个线性无关的特征向量.2.因为A 为实矩阵,其盖尔圆圆心都在实轴上,故A 的所有盖尔圆都关于实轴对称. 又实矩阵A 的复特征值必共轭成对出现,它们同时位于或同时不位于A 的某一个盖尔圆. 而由1知A 的每个盖尔圆中只有A 的一个特征值,从而A 只有实特征值,它们分别位于A 的3个盖尔圆的实轴上,由此得到A 的3个特征值所在的3个实数区间分别为338815152, 2, 4, 4, 6, 6, 44991616⎡⎤⎡⎤⎡⎤-+-+-+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦即 511284481111, , , , , . 44991616⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦同理,A 的3个实特征值也分别位于A 的3个列盖尔圆{}()123 2,, ''''i 'i z G G i G G z R -=∈≤C的实轴上,123, , '''G G G 的半径依次为123222231713111217, , 341224162336'''R R R =+==+==+=. 综合前面的结论可知A 的3个特征值所在的3个实数区间分别为33111117172, 2, 4, 4, 6, 6, 4416163636⎡⎤⎡⎤⎡⎤-+-+-+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 即 5115375199233, , , , , . 441683636⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦五、(26分)设101, 1001i A i b ⎛⎫⎛⎫⎪ ⎪=-= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭.1.(12分)求A 的奇异值分解;2.(6分)求A 的加号逆A +;3.(8分)利用A +判断Ax b =是否有解,并在有解时求其极小范数解,无解时求其极小范数最小二乘解.解.1.110221102200Hi i i A A i i i ⎛⎫-⎛⎫⎛⎫ ⎪=-= ⎪ ⎪ ⎪---⎝⎭⎝⎭ ⎪⎝⎭, ()22422H iI A A i ---==--λλλλλ, H A A 的特征值为:4, 0, A 的奇异值为:2,()2∑=.由 ()40HI A A x -= 求得HA A 的属于特征值4的特征向量为:1i ⎛⎫ ⎪⎝⎭,由 ()00HI A A x -= 求得HA A 的属于特征值0的特征向量为:1i -⎛⎫⎪⎝⎭,将这两个特征向量单位化后组成矩阵V得:11i i V -⎫==⎪⎪⎭⎪⎭.取11i V ⎫=⎪⎭,令11111112000i i U AV i -⎛⎫ ⎪ ⎪⎛⎫⎫⎛⎫ =∑=-=⎪⎪ ⎝⎭⎭ ⎝ ⎪ ⎪⎝⎭,00001U ⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭. 由奇异值分解定理知,A 的奇异值分解为02000000000001HA U V⎛⎫ ⎪⎪⎛⎫∑⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪⎝⎭⎪ ⎪⎝⎭ ⎪ ⎪⎝⎭. 2.解法1. 由1得A 的加号逆为1010*******000001H i i A V U -+⎫⎪⎪⎛⎫-⎛⎫∑⎫⎪ ⎪==⎪⎪⎪ ⎪⎭⎝⎭⎪⎝⎭ ⎪ ⎪⎝⎭101.104i i -⎛⎫= ⎪--⎝⎭解法2. 用初等行变换将A 化成行最简形111000000i i A i ⎛⎫⎛⎫ ⎪ ⎪=-→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,取 ()1, 10F i G i ⎛⎫ ⎪== ⎪ ⎪⎝⎭得A 的满秩分解为 A FG =.A 的加号逆为()()()()()1111111110100H H H H A G GG F F F i i i i i i ----+⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪⎪==-- ⎪ ⎪ ⎪ ⎪⎪--⎝⎭⎝⎭⎝⎭ ⎪ ⎪⎝⎭⎝⎭()()()1111012210104i i i i ---⎛⎫⎛⎫=-= ⎪ ⎪---⎝⎭⎝⎭. 3.由10101111110420010i i i AA b i b i +-⎛⎫⎛⎫⎛⎫-⎛⎫ ⎪ ⎪ ⎪=-=≠ ⎪ ⎪ ⎪ ⎪--⎝⎭ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭知Ax b =无解,其极小范数最小二乘解为0010111101441i i x A b i +⎛⎫--⎛⎫⎛⎫ ⎪=== ⎪ ⎪ ⎪---⎝⎭⎝⎭⎪-⎝⎭.中南大学2012年秋季硕士研究生《矩阵论》考试试题考试形式:开卷 时间:120分钟 总分:100分姓名 学号一、 (16分) 已知4阶方阵A 的特征值为1, 2, 2, 2,且其一阶和二阶行列式因子分别为()()121, 2.D D λλλ==-1.(6分) 求A 的不变因子和最小多项式;2.(4分) 求A 的Jordan 标准形;3.(6分) 求实数t 的取值范围,使cos At 为收敛矩阵.二、(16分) 设a⋅和b ⋅分别是m C 和n C 上的向量范数. 对任何()11, , , , , Tm n m m m n x +++=∈C ξξξξ,定义 a b x u v =+,其中()1, , Tm u = ξξ,()1, , Tm m n v ++= ξξ.1.(10分) 证明⋅是m n +C 上的一种向量范数;2.(6分) 若11122122, , , ,m m m n n m n n A A A A ⨯⨯⨯⨯∀∈∈∈∈C C C C 及, m n u v ∀∈∈C C 有11111111121221212222, , , ,a m a a mb b m a b m b A u A u A v A v A u A u A v A v ≤⋅≤⋅≤⋅≤⋅其中1m ⋅是矩阵1m 范数.证明()()m n m n +⨯+C 上的矩阵1m 范数与上面定义的向量范数⋅相容.三、(18分) 1.(8分)设()ijn nX x ⨯=是矩阵变量,且det 0X ≠.求()1det TdX dX-; 2.(10分)设1011A ⎛⎫= ⎪⎝⎭.求矩阵幂级数()()12211121!k k k k A t k --+∞=--∑的和.四、(14分) 设112010232A ⎛⎫ ⎪=- ⎪ ⎪⎝⎭.1.(8分)求矩阵A 的Crout 分解;2. (6分)利用Crout 分解求方程Ax b =的解,其中()1, 1, 1Tb =-.五、(14分) 利用Gerschgorin 定理及特征值的隔离方法判断矩阵1211621111A -⎛⎫⎪= ⎪ ⎪⎝⎭是否有小于零的特征值,并估计A 的每个特征值的分布范围.六、(22分)设101101, 102112A D ⎛⎫⎛⎫ ⎪ ⎪=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭.1.(8分)求A 的全部{}1逆;2.(8分)求A 的加号逆A +;3.(6分)判断矩阵方程AX D =是否有解.2012年矩阵论试题参考答案一、(16分) 已知4阶方阵A 的特征值为1, 2, 2, 2,且其一阶和二阶行列式因子分别为()()121, 2.D D λλλ==-1.(6分) 求A 的不变因子和最小多项式;2.(4分) 求A 的Jordan 标准形;3.(6分) 求实数t 的取值范围,使cos At 为收敛矩阵.解. 1.因为()4D λ即为A 的特征多项式,且A 的特征值为1, 2, 2, 2,故()()()3412D λλλ=--. 再由行列式因子与不变因子的性质与相互关系知()()232D λλ=-,从而A 的不变因子为()()()()()()123412, , 2,12 d d d d λλλλλλλλ====----,A 的最小多项式为 ()()()()412A m d λλλλ==--.2.由A 的不变因子知,A 的初等因子为, , 12 2,2λλλλ----,故A 的Jordan 标准形为 1222J ⎛⎫⎪⎪= ⎪ ⎪⎝⎭. 3. cos At 的特征值为 cos , cos 2, cos 2, cos 2t t t t ,谱半径为(){cos max cos ,At t ρ= }cos 2t . cos At 为收敛矩阵当且仅当其谱半径小于1,即cos 1, cos 21t t ≠≠,故实数t 的取值范围是:,2k k t ππ≠.二、(16分) 设a⋅和b ⋅分别是m C 和n C 上的向量范数. 对任何()11, , , , , Tm n m m m n x +++=∈C ξξξξ,定义 a b x u v =+,其中()1, , Tm u = ξξ,()1, , Tm m n v ++= ξξ.1.(10分) 证明⋅是m n +C 上的一种向量范数;2.(6分) 若11122122, , , ,m m m n n m n n A A A A ⨯⨯⨯⨯∀∈∈∈∈C C C C 及, m n u v ∀∈∈C C 有11111111121221212222, , , ,a m a a mb b m a b m b A u A u A v A v A u A u A v A v ≤⋅≤⋅≤⋅≤⋅其中1m ⋅是矩阵1m 范数.证明()()m n m n +⨯+C 上的矩阵1m 范数与上面定义的向量范数⋅相容.证明.1. 1)非负性. 当()11,, , , , 0Tm m m n x ++== ξξξξ时,()1, , 0Tm u == ξξ,()1, , 0T m m n v ++== ξξ,故0a b x u v =+=. 当()11, , , , , 0Tm m m n x ++≠= ξξξξ时,0u ≠或0v ≠,故0au>或0b v >,从而0a b x u v =+>.2)齐次性. ()11, , , ,, , Tm m m n m nx λξξξξ+++∀∈∀=∈ C C,()a b a b a bx u v u v u vx λλλλλλλ=+=+=+⋅=⋅⋅⋅.3)三角不等式.()()1111, , , , , , , , , , , TTm m m n m m m n m n x y ξξξξηηηη+++++∀==∈ C ,记()()()()11112121, , , , , , , , , , , TTTTm m m n m m m n u v u v ξξξξηηηη++++==== ,则12121212aba ab bu u v v u v x y u y v x =+++++++=≤+.由定义知⋅是m n +C 上的一种向量范数. 2.()()()11, , , , , , m n Tm m n m n m m n A x ξξξξ+⨯++++∀∀∈=∈ CC ,将A 和x 分块为11122122A A A A A ⎛⎫=⎪⎝⎭及u x v ⎛⎫= ⎪⎝⎭,其中11122122, , , ,m m m n n m n n A A A A ⨯⨯⨯⨯∈∈∈∈C C C C mu ∈C ,n v ∈C ,则1112111221222122A A A u A v u Ax A A A u A v v +⎛⎫⎛⎫⎛⎫==⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭, 1112212211122122a b a a b b A u A v A u A v A u A v A u v A A x =+++≤+++111111122122m m m m a b ba u u A v vA A A ⋅+⋅+⋅+⋅≤()()11111111211222aa m m m m bbm m AA u u vA vA AA⋅+⋅⋅+=+⋅+≤()11,bm m a v u x AA=+=⋅⋅所以()()m n m n +⨯+C 上的矩阵范数1m ⋅与上面定义的向量范数⋅相容.三、(18分) 1.(8分)设()ijn nX x ⨯=是矩阵变量,且det 0X ≠.求()1det TdX dX-; 2.(10分)设1011A ⎛⎫= ⎪⎝⎭.求矩阵幂级数()()12211121!k k k k A t k --+∞=--∑的和. 解. 1.()111det , det det n nik ik ij ij ik ik k k jX X x X x X x X X -=≠===+∑∑,其中ik X 是ik x 的代数余子式,()det ij ijX X x ∂=∂,从而()()()()122det 11det det det det ij ijij ijX X X x x Xx X X -∂∂∂⎛⎫==-⋅=-⎪∂∂∂⎝⎭, ()()()()111*22de 1det de t 1de det t t TTij i Tj d X X dX X X X X x X X ---⎛⎫⎛⎫∂ ⎪==-=-= ⎪ ⎪- ⎪∂⎝⎭⎝⎭. 2.()()()()11221221111si 1121!!n 21k k k k k k k k A t A t A A At k k ----+∞+∞==---==--∑∑.()210111I A λλλλ--==---. 设()()()()120sin ,1b t b q t t t λλλλ=-++.在该式及对其两边关于λ求导后的式子中,将1λ=代入得()()()101sin ,cos ,t b t b t t t b t =+⎧⎪⎨=⎪⎩ 解得()()01sin cos co s , b t t t t b t t t =-=. 从而()()()101010cos sin cos .110sin 0sin cos sin 1t t t t tAt b t A b t I t t t t ⎛⎫=+⎛⎫⎛⎫=+-= ⎪ ⎝⎭⎝⎪⎭⎪⎭⎝()()()()112212211111011sin 1121!21!sin 0cos sin k k k k k k k k A t A t A A At k k t t t t ----+∞+∞=-=--⎛⎫===⎪-⎛-⎝⎭⎫⎪⎝⎭∑∑ sin 0sin cos sin t t t t t +=⎛⎫ ⎪⎝⎭.四、(14分) 设112010232A ⎛⎫ ⎪=- ⎪ ⎪⎝⎭.1.(8分)求矩阵A 的Crout 分解;2. (6分)利用Crout 分解求方程Ax b =的解,其中()1, 1, 1Tb =-.解.1.设111213212223313233001001001l r r A l l r ll l ⎛⎫⎛⎫⎪⎪= ⎪⎪ ⎪⎪⎝⎭⎝⎭. 由Crout 分解的紧凑计算格式得 11111l a ==, 212131310, 2l a l a ====, 1312121311111, 2,a a r r l l ==== 222221121,l a l r =-=- 323231121,l a l r =-= ()232321132210,r a l r l =-= 3333311332232,l a l r l r =--=-故A 的Crout 分解为111201102120010000A ⎛⎫⎛⎫ ⎪⎪= ⎪⎪ ⎪⎝⎝-⎭-⎪⎭.2. 由 123101212001011y y y ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎭--⎝ 解得123111y y y ⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎝-⎪⎝⎭⎭, 再由 123101*********x x x ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪=- ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭解得123011x x x ⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎝-⎪⎝⎭⎭, 即方程Ax b =的解的解为 011x ⎛⎫ =-⎪⎪ ⎪⎝⎭.五、(14分) 利用Gerschgorin 定理及特征值的隔离方法判断矩阵1211621111A -⎛⎫ ⎪= ⎪ ⎪⎝⎭是否有小于零的特征值,并估计A 的每个特征值的分布范围.证明.1. A 有小于零的特征值.A 的三个行盖尔圆为{}{}{}123 , 136,311 2 n n n G z G z z z z G z +-=∈=∈-≤=∈≤≤C C C ,三个列盖尔圆为{} {} {}123 , 126,311 3 n n n Gz G z z z z G z +-=∈=∈-≤=∈≤≤C C C . 1G 与 1G 均为孤立的盖尔圆,且 11G G ⊂,而2G 与3G 相交, 2G 与 3G 也相交.由盖尔圆定理知 1G 中有A 的一个特征值,() ()2323G G G G 中有A 的两个特征值. 令111115522251611521, 1215B D D AD -⎛⎫ ⎪ ⎪===⎛⎫ ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎪, 则1B 与A 相似,从而与A 有相同的特征值.1B 的三个列盖尔圆为{}1112, ,41665 n B n B z z G z G z ⎧⎫=∈=∈⎨⎬⎩⎭-≤+≤C C139 2 11n B z z G -⎧⎫=∈⎨⎩⎭≤⎬C . 11B G仍为孤立的盖尔圆.由盖尔圆定理知 11B G 中仍有且仅有1B 的一个特征值. 由于1B 为实矩阵,其特征多项式为实系数多项式,从而其特征值如为复数,则必共轭成对出现.注意到 11B G的圆心为()1, 0-,在实轴上, 11B G 关于实轴对称,如果含有复特征值,则其共轭的特征值也在 11B G 中,与每个孤立盖尔圆中只有一个特征值矛盾.因此,含于 11B G中的该特征值必为实数,即位于实轴上.再注意到 11B G 的半径为45知,该特征值位于闭区间91, 55⎡⎤--⎢⎥⎣⎦中,故1B ,从而A ,有一个小于零的特征值.2. 令122228433324351, 31161114B D D AD -⎛⎫ ⎪ ⎪===⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪-⎝⎭⎝⎭⎪,则2B 与A 相似,从而与A 有相同的特征值.2B 的三个行盖尔圆为{}123117146114, , 4 n n n G z G z G z z z z ⎧⎫⎧⎫=∈=∈=∈⎨⎬⎨⎬⎩⎭≤≤+-⎭-≤⎩C C C , 它们是3个孤立的盖尔圆,从而每个盖尔圆中各有2B ,即A 的一个特征值.由与上面相同的推理知,每个特征值均为实数,都位于实轴上,故A 的特征值分别位于[]5, 3-,1335, 44⎡⎤⎢⎥⎣⎦和 3751, 44⎡⎤⎢⎥⎣⎦中.综合1.的结果知,A 的3个特征值分别位于91, 55⎡⎤--⎢⎥⎣⎦,1335, 44⎡⎤⎢⎥⎣⎦ 和 3751, 44⎡⎤⎢⎥⎣⎦中.六、(22分)设101101, 102102A D ⎛⎫⎛⎫⎪ ⎪=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭.1.(8分)求A 的全部{}1逆;2.(8分)求A 的加号逆A +;3.(6分)判断矩阵方程AX D =是否有解.解.1.3221010101210111111111100002000001000000000000000000000AI TI I S ⎛⎫⎛⎫⎪⎪⎛⎫ ⎪ ⎪⎛⎫⎪ ⎪ ⎪=→⎪ ⎪⎪⎪⎝⎭ ⎪⎝⎭⎪ ⎪ ⎪ ⎪⎝⎭⎝--⎭- , 1001010101201001010121211a a a a a T S b b b b b ⎛⎫-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪=-= ⎪ ⎪⎪ ⎪ ⎪--+⎝⎭⎝⎭⎝⎭⎝⎭ ⎪-⎝⎭,故A 的全部{}1逆为{}12 , 112a a a b a A b b b ⎧⎫-⎛⎫⎪⎪=⎨⎬ ⎪--+⎝⎭⎪⎪⎩⎭任意. 2.A 为列满秩矩阵,故A 的加号逆为111010210252102010110112201121A --+⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎢⎥ ⎪=-= ⎪ ⎪ ⎪ ⎪⎢⎥ ⎪---⎝⎭⎝⎭⎝⎭⎝⎭ ⎪⎢⎥⎝⎭⎣⎦ 22212221021250116516-⎛⎫⎛⎛⎫⎪-⎫== ⎪⎪--⎝⎝-⎝⎭⎭⎭. 3. 在A 的{}1逆的集合{}1A 中取A 的一个{}1逆()1A =100010⎛⎫⎪-⎝⎭.由教材定理 6.5知AX D =有解的充要条件是()1AA D D =.计算得()1101110011110110010101021022100212100010AA D D ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪ ⎪=-== ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎛⎫⎭⎝⎭⎝⎭⎪⎝⎭≠-, 故矩阵方程AX D =无解.中南大学2013年秋季硕士研究生《矩阵论》考试试题考试形式:开卷 时间:120分钟 总分:100分姓名 学号一、 (16分) 设A 为3阶Hermite 矩阵,||12A =−, ()1tr A =,且()1, 0, 2T i 为()40A I x ∗−=的一个解,其中I 为单位矩阵, A ∗为A 的伴随矩阵.1. (8分) 确定t 的取值范围,使ln()I At +有定义;2. (8分) 求A .二、(16分) 记所有形如00A M B =的矩阵(其中,A B 分别为m 和n 阶方阵)的集合为Ω.对每个00A MB Ω=∈(其中()ij m m A a ×=,()pq n n B b ×=),定义 1,11||||||max ||m mijpq p q ni j M an b ≤≤===+⋅∑∑.1.(10分) 证明M 是Ω上的一种矩阵范数;2.(6分) 证明M 与C m n +上的向量1范数相容.三、(18分) 1.(8分) 设()ijm nA a ×=是给定的矩阵,()ijn mX x ×=是矩阵变量,且()()f X tr XA =.求()Tdf X dX; 2.(10分)设2102A − =.求||A e 及AtAe .四、(14分) 设313010431A=−−.求矩阵A 的QR 分解.五、(16分) 利用Gerschgorin 定理及特征值的隔离方法判断矩阵1.511121219A −=是否可逆,并估计A 的每个特征值的分布范围.六、(20分)设1001010, 02100A b=−=.1.(12分)求A 的加号逆A +;2.(8分)利用加号逆判断方程Ax b =是否有解,并在有解时求其极小范数解,无解时求其极小范数最小二乘解.2013年矩阵论试题参考答案一、 (16分) 设A 为3阶Hermite 矩阵,||12A =−, ()1tr A =,且()1, 0, 2Ti为()40AI x ∗−=的一个解,其中I 为单位矩阵, A ∗为A 的伴随矩阵. 1. (8分) 确定t 的取值范围,使ln()I At +有定义; 2. (8分) 求A . 解 1. 设A 的三个特征值为123,,λλλ.依题意有12312312,,1λλλλλλ=−++=.记()11, 0, 2,T iξ= 则()140A E ξ∗−=,()11240E A ξ−−=,即()130E A ξ−−=,从而3−是A 的一个特征值,1ξ是对应的特征向量.代入前面的式子可算得A 的另两个特征值为2, 2. 所以()3,()3||A At t ρρ==. 故使ln()I At +有定义的t 须满足()3||1At t ρ=<, 即1||3t <. 2. 由Hermite 矩阵的不同特征值所对应的特征向量正交知,特征值2所对应的特征向量与1ξ正交,从而满足方程1320z iz −=,由此解得特征向量()()230, 1, 0, 2, 0, 1T Ti ξξ==. 将三个特征向量正交化单位化得酉矩阵00100U =, 满足322H U AU − =,从而0033102201020100202220200H i A U U i −−===−−.二、(16分) 记所有形如00A M B= 的矩阵(其中,A B 分别为m 和n 阶方阵)的集合为Ω.对每个00A M B Ω=∈(其中()ijm mA a ×=,()pqn nB b ×=),定义1,11||||||max ||m mijpq p q ni j M an b ≤≤===+⋅∑∑.1.(10分) 证明M 是Ω上的一种矩阵范数;2.(6分) 证明M 与C m n +上的向量1范数相容.证明 1.易知1||||||||||||m m M A B ∞=+,1||||,||||m m A B ∞都是矩阵范数.1)非负性. 当0M =时,必有0,0A B ==,从而1||||||0||||0||0m m M ∞=+=. 当0M ≠时,必有0A ≠或0B ≠,从而1||||0m A >或||||0m A ∞>, 1||||||||m M A =||||0m B ∞+>.2)齐次性. 0 0,C A M B λ∀∈∀=∈Ω,有00A M B λλλ = ,()111m m m m m m M A BA BA BMλλλλλλλ∞∞∞=+=⋅+⋅=⋅+=⋅.3)三角不等式. 12121200,00A A M M B B ∀==∈,12121200A A M M B B ++= +,111121212121212m m m m m m M M A A B B A A B B M M ∞∞∞+=+++≤+++=+.4)乘积不等式. 12121200,00A A M M B B ∀==∈,12121200A A M M B B=, 1111212121212m m m m m m M M A A B B A A B B ∞∞∞=+≤+()()11112212m m m m A B AB MM ∞∞≤++=⋅.由定义知M 是Ω上的一种矩阵范数.2.00A M B ∀=∈ Ω,12C m n x x x + = ∈ ,其中12,C C m nx x ∈∈, 12Ax Mx Bx =.由1||||,||||m m A B ∞都与向量1范数相容得1112121111111m m m m Mx Ax Bx A x Bx A x Bx ∞∞=+≤+≤+()111m m A BxM x ∞=+=⋅,所以Ω上的矩阵范数M 与C m n +上的向量1范数相容.三、(18分) 1.(8分) 设()ijm nA a ×=是给定的矩阵,()ijn mX x ×=是矩阵变量,且()()f X tr XA =.求()Tdf X dX; 2.(10分)设2102A − =.求||A e 及AtAe . 解 1.()1111()n mn m kl lk ij ji kl lkij ji k l k l f X tr XA x a x a x a x a =======+− ∑∑∑∑,()ji ij f X a x ∂=∂,故 ()()()()TT ji ijTij df X f X a a A dX x∂====∂.2. ()221202I A λλλλ−−==−−,故A 的特征值为2,2,A e 的特征值为22,e e ,故224||.A e e e e ==再设()()()()210,2te q t b t b t λλλλ=−++.在该式及对其两边关于λ求导后的式子中,将2λ=代入得()()()210212,,tteb t b t te b t =+ = 解得 ()()222012, tttb t e te b t te =−=.从而()()()2222210221102.02010t t Att t t t e te e b t A b t I te e te e −− =+=+−=2222222212202002t t tt t At t t e te e te e Ae e e −−−− ==.四、(14分) 设313010431A=−−.求矩阵A 的QR 分解.解 用Givens 变换求A 的QR 分解.A 的第一列为304,取 133405501043055T = −得 133403135315501001001043431013055T A=−=− −− −. 13T A 的右下角的2阶矩阵第一列为11− ,再取2310000T=得23131005315310010*******T T A R=−= −3. 令132333410005550100043040555H HQ T T−===, 则Q 为酉矩阵,且A 的QR 分解为35315004005A QR== .五、(16分)利用Gerschgorin定理及特征值的隔离方法判断矩阵1.511121219A−=是否可逆,并估计A的每个特征值的分布范围.解A的三个行盖尔圆为:{}{}{} 1231.52,,2293 n n nzG z G z zz G z=∈=∈=+≤−≤≤∈−C C C.三个列盖尔圆为:{}{}{} 1231.5,,32292 n n nG z Gz z z G z z′′′=∈=∈+≤−≤−≤=∈C C C.3G与3G′都为孤立的盖尔圆,且33G G′⊂,而1G与2G相交,1G′与2G′也相交.由盖尔圆定理知3G′中有A的一个特征值,1G与2G的并中有A的两个特征值.取12391,,4d d d===.令112341.5194,12999924dD d B DADd−−===,则B与A相似,从而与A有相同的特征值.B的三个行盖尔圆为:1231313271.52, 99,94 n n nG z G zz z G z z+≤−=∈=∈=∈≤−≤C C C1G是一个孤立的盖尔圆, 2G与 3G相交,由盖尔圆定理知, 1G中有A的一个特征值,2G与 3G的并中有B的两个特征值.而 1G及 2G与 3G的并都不包含原点,故B的三个特征值中都不等于零,B可逆,从而A也可逆.由于A,B都为实矩阵,其特征多项式都为实系数多项式,从而其特征值如为复数,则必共轭成对出现.注意到123,,G G G 及 123, , G G G 的圆心都在实轴上,123,,G G G 及 123, , G G G都关于实轴对称,如果含有复特征值,则其共轭的特征值也在同一个盖尔圆中,与每个孤立盖尔圆中只有一个特征值矛盾.因此,B 的特征值,从而A 的特征值都为实数.综上,A 有两个特征值分别位于孤立的盖尔圆 1G 和3G ′的实轴上,即位于实数区间 531, 1818 −− 和[]7, 11中.而另一个特征值位于 () ()123123\\G GG G G G G G 的实轴上,即位于155, 2, 6, 21899 −=中.所以,A 的特征值分别位于区间531, 1818 −− ,5, 29 和 []7, 11中.六、(20分)设1001010, 02100A b=−=.1.(12分)求A 的加号逆A +;2.(8分)利用加号逆判断方程Ax b =是否有解,并在有解时求其极小范数解,无解时求其极小范数最小二乘解.解 1. 100100010010, 210000A=−→A 的满秩分解为101000101021A=−,1101010100100100010101010010010212121HH HH HA −+ −−−  1110101052102221021010101220112501160000−−−  =  −−−。

南京航空航天大学07-08矩阵论答案(B)

南京航空航天大学07-08矩阵论答案(B)
T

= 5; A
= 23 ;
T 1 2
∵ λ ( A A) = {3, 5,15} , ∴ A 2 = [λmax ( A A)] = 15 。
的特征向量, (2)设 x ∈ C 是 A 相应于特征值 λ 的特征向量,∴ Ax = λ x , x ≠ 0 , )
n
两 边 取 矩 阵 范 数 导 出 的 C 上 向 量 范 数 可 得 : λ x = λ x = Ax ≤ A x ,

Ik
0 , In−k
使得 PAP
H
A11 = 0
=B, A22 − A A A12 0
H 12 −1 11
H − ∵ A11 > 0, A22 − A12 A111 A12 > 0,∴ B > 0, 从而有 A > 0 。
5 ∆ 1 = 5 > 0, ∆ 2 = 1 > 0 , ∆ 3 = A − B = 1 − t 2 > 0 4
即−
2 2 成立。 <t< 时 A > B 成立。 5 5
H
矩阵, (2)∵ A 是 Hermite 矩阵,∴ 存在酉矩阵 U ,使得 U AU = diag{λ1 , λ2 ,⋯ , λn } , ) 由此可知: 由此可知: λmin ( A) I ≤ A ≤ λmax ( A) I ,
共 3 页 ∴ ∀x ∈ C n , x ≠ 0 ,有 λmin ( A) ≤ R( x ) =
−1
第 3 页
x H Ax ≤ λmax ( A) 。 xH x
− 存在,构造可逆矩阵 (3)∵ A11 > 0,∴ A11 存在,构造可逆矩阵 P = ) − A H A− 1 12 11

研究生矩阵论试题与答案

研究生矩阵论试题与答案

中国矿业大学级硕士研究生课程考试试卷考试科目矩阵论考试时间年月研究生姓名所在院系学号任课教师一(15分)计算 (1) 已知A 可逆,求10d Ate t ⎰(用矩阵A 或其逆矩阵表示); (2)设1234(,,,)Ta a a a =α是给定的常向量,42)(⨯=ij x X 是矩阵变量,求Td()d X αX;(3)设3阶方阵A 的特征多项式为2(6)I A λλλ-=-,且A 可对角化,求kk A A ⎪⎪⎭⎫⎝⎛∞→)(lim ρ。

二(15分)设微分方程组d d (0)xAx t x x ⎧=⎪⎪⎨⎪⎪=⎩,508316203A ⎛⎫ ⎪= ⎪ ⎪--⎝⎭,0111x ⎛⎫ ⎪= ⎪⎪⎝⎭ (1)求A 的最小多项式)(λA m ; (3)求Ate ; (3)求该方程组的解。

三(15分)对下面矛盾方程组b Ax =312312111x x x x x x =⎧⎪++=⎨⎪+=⎩ (1)求A 的满秩分解FG A =; (2)由满秩分解计算+A ;(3)求该方程组的最小2-范数最小二乘解LS x 。

四(10分)设1113A ⎫=⎪⎭求矩阵A 的QR 分解(要求R 的对角元全为正数,方法不限)。

五(10分) 设(0,,2)TnA R n αβαβ=≠∈≥ (1)证明A 的最小多项式是2()tr()m A λλλ=-; (2)求A 的Jordan 形(需要讨论)。

六(10分)设m nrA R ⨯∈,(1)证明rank()n I A A n r +-=-;(2)0Ax =的通解是(),nn x I A A y y R +=-∀∈。

七(10分)证明矩阵2121212311122222224333333644421(1)(1)n n n nn n n n n n ---⎛⎫ ⎪⎪ ⎪ ⎪⎪= ⎪ ⎪⎪⎪ ⎪ ⎪+++⎝⎭A (1)能与对角矩阵相似;(2)特征值全为实数。

八(15分) 设A 是可逆矩阵,11,B A Aαβ-=-=(这里矩阵范数都是算子范数), 如果βα<,证明(1)B 是可逆矩阵;(2)11B αβ-≤-;(3)11()B A βααβ---≤-。

矩阵论考试题和答案(详细)

矩阵论考试题和答案(详细)
1 1 1 1
因此 B = Udiag (λ ,L , λ )U = Vdiag (λ ,L , λ )V H = E 。
H
1 3 1
1 3 n
1 3 1
1 3 n
-------------4
(2)因为 A ≥ 0 ,所以 A 的特征值均非负。设 A 的特征值为 λ1 ,L , λn ,且 λ1 ≥ L ≥ λn ≥ 0 , 则 A2 的特征值为 λ12 ,L , λn2 ,于是
AT Ax = AT b
的解, 所以不相容线性方程组 Ax = b 的最小二乘解唯一当且仅当 AT A 非奇异, 即 rank ( AT A) = n 。因为 rank ( AT A) = rank ( A) ,所以不相容线性方程组 Ax = b 的最 小二乘解唯一当且仅当 A 列满秩。 -----------4
记 P = U H V = ( pij ) ,则 diag (λ1 ,L , λn ) P = Pdiag (λ1 ,L , λn ) ,从而
λi pij = λ j pij (i, j = 1,L , n) ,
于是
1 1
λi3 pij = λ j3 pij (i, j = 1,L , n) ,

diag (λ13 ,L , λn3 ) P = Pdiag (λ13 ,L , λn3 ) ,
A + = C T ( CC
T
-----------------5
1 4 0 1 − 4
)−1 ( B T B )−1 B T
1 − 4 = 0 1 4
0 1 0
---------5
1 (2)因为 AA + b = 2 ≠ b ; 所以不相容的。 -----------3 2 1 4 -----------3 其极小最小二乘通解为 x = A + b = 2 1 − 4 (3)因为 x 是不相容线性方程组 Ax = b 的最小二乘解当且仅 x 是如下相容线性方程组
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

09级-研-矩阵论试题及参考答案
一(15分)设实数域上的多项式
321()223p x x x x =+++,322()23p x x x x =+++ 323()45p x x x x =-+--,324()367p x x x x =-++
(1)求线性空间()1234span ,,,W p p p p =的一组基和维数; (2)求多项式32()41p x x x =++在你所求基下的坐标。

解:(1)11111
0021130
1012246001233570
00r A -⎛⎫⎛⎫

⎪-- ⎪ ⎪
=−−→
⎪ ⎪
-- ⎪
⎪-⎝⎭⎝⎭
123,,p p p 是W 的一组基,dim 3W =;
(2)123()()()()p x p x p x p x =++,p 的坐标为(1,1,1)T x =。

或:x^3+1 , x^2 , x+1.这三个基形式是最简单的。

坐标为(1,4,0)。

二(15分)(1)设2
T ()tr()F
f X X
X X ==,其中()m n ij m n X x R ⨯⨯=∈是矩阵变量,求
df
dX ; (2)设()m n
ij m n A a R ⨯⨯=∈,12(,,,)T n n x x x x R =∈ 是向量变量,()F x Ax =,求T dF dx
.
解 (1)211
()m n
ij i j f X x ===
∑∑,
2ij ij
f
x x ∂=∂, ()22ij m n ij
m n
df f x X dX x ⨯⨯⎛⎫
∂=== ⎪ ⎪∂⎝⎭;
(2) 11
1()n k k k n mk k k a x F x Ax a x ==⎛⎫
⎪ ⎪==
⎪ ⎪ ⎪
⎪⎝⎭
∑∑ ,1,1,2,,i i mi a F i n x a ⎛⎫∂ ⎪
== ⎪∂ ⎪
⎝⎭ , 11111(,,)n T n
m mn a a dF F F A dx x x a a ⎛⎫
∂∂ ⎪
=== ⎪∂∂ ⎪⎝⎭。

三(15分)已知微分方程组
0d d (0)x
Ax t x x ⎧=⎪⎪⎨⎪⎪=⎩
,200031011A ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦,0111x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦, (1)求矩阵A 的Jordan 标准形J 和可逆矩阵P 使1
P AP J -= (2)求矩阵A 的的最小多项式)(λA m (3)计算矩阵函数At
e ; (4)求该微分方程组的解。

解:(1)
3(2)I A λλ-=-,rank(2)1I A -=,2λ=对应两个线性无关的特征向量
A 的Jordan 标准形J 2212⎡⎤
⎢⎥=⎢⎥
⎢⎥⎣⎦
12212P AP J -⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦,其中101111110P -⎡⎤
⎢⎥=⎢⎥
⎢⎥⎣⎦
(不唯一)
(2)由A 的Jordan 标准形知
2()(2)A m λλ=-
(3)210
00101At t e e t t t t ⎡⎤⎢⎥=+-⎢⎥⎢⎥-⎣⎦
(方法不限)
如用代定系数法:(),()t f e r a b λλλλ==+
由(2)(2),(2)(2)r f r f ''==可求得22(12),t t a t e b te =-=
210
00101At t e aI bA e t t t t ⎡⎤⎢⎥=+=+-⎢⎥
⎢⎥-⎣⎦
(4)2202()t At
t t e x t e x e e ⎡⎤
⎢⎥==⎢⎥⎢⎥⎣⎦
四(15分)已知矛盾方程组b Ax =
12121
2121231
x x x x x x +=⎧⎪
+=⎨⎪+=⎩ (1)求A 的满秩分解FG A = (2)求A 的广义逆+
A ;
(3)求该方程组的最小二乘解LS x 。

解 (1)A 是列秩的,故
111223F ⎡⎤
⎢⎥=⎢⎥
⎢⎥⎣⎦

1001G ⎡⎤=⎢⎥⎣⎦(不唯一) (2)69914T
A A ⎛⎫= ⎪⎝⎭,()11491963T
A A --⎡⎤=⎢⎥-⎣⎦
15411()3303T T A A A A +--⎛⎫
== ⎪-⎝⎭

(3)2103LS x A b +
⎛⎫
== ⎪⎝⎭
五(10分)设91210
81110401
00
1A -⎛⎫ ⎪
⎪= ⎪- ⎪⎝⎭
, (1)写出A 的4个盖尔圆;
(2)应用盖尔圆定理证明矩阵A 至少有两个实特征值。

解(1)1234:94;:82;:41;:11;G z G z G z G z -≤-≤-≤-≤ (2)它们构成两个连通部分112324,
S G G G S G == ,且12,S S 均关于实轴对称,故2S 中
只有一个特征值且必为实数,1S 中有三个特征值,故至少有一个实特征值。

六(10分)设122102011A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦
,用Schmidt 正交方法求A 的QR 分解。

解:见教材P118例题
七(10分)设矩阵m n
r
A R
⨯∈的奇异值分解为000r
T A U V ∑⎛⎫=
⎪⎝⎭
, 证明:(1)写出A +
的表达式;
(2)证明{}
12()|0span(,,,)n
r r n N A x R Ax v v v ++=∈==
解 (1) 1000T
r A V U ∑-+
⎛⎫= ⎪⎝⎭
(2)设V ()n r r v v v v v ,,|,,,121 +=()21|V V ≡,由000r
T U AV ∑⎛⎫=
⎪⎝⎭
()12220|000
0r
T
T T
U AV U AV U AV AV ∑⎛⎫=⇒=⇒= ⎪⎝

即),,1(0n r i Av i +==,这说明n r r v v v ,,,21 ++为0=Ax 的基础解系,得证。

八(10分)设n 阶矩阵,A B 满足AB BA =,证明:
(1)列空间()()()R A B R A R B +⊂+,()()()R AB R A R B ⊂ ; (2)矩阵秩不等式()()()()r A B r A r B r AB +≤+-。

(提示:用维数定理) 证:(1)设12(,,,)n A ααα= ,12(,,,)n B βββ= ,则有
11222(,,,)n A B αβαβαβ+=+++
(),x R A B ∀∈+ 111222()()()n n n x k k k αβαβαβ=++++++
11221122()()n n n n k k k k k k αααβββ=++++++ ()()R A R B ∈+ 所以,()()()R A B R A R B +⊂+;因AB 的列都是由A 的列的线性组合,又AB BA =, 所以AB 的列也都是由B 的列的线性组合。

因此,()()()R AB R A R B ⊂ 。

(2)由()()()R A B R A R B +⊂+知
[]()dim ()dim ()()r A B R A B R A R B +=+≤+
由()()()R AB R A R B ⊂ 知
[]dim ()dim ()()R AB R A R B ≤
由维数定理
[][]()dim ()()dim ()dim ()dim ()()r A B R A R B R A R B R A R B +≤+=+-
dim ()dim ()dim ()()()()R A R B R AB r A r B r AB ≤+-=+-。

证毕。

※11 ※。

相关文档
最新文档