椭圆的标准方程及性质
椭圆标准方程及几何性质
解:设动圆 M 的半径为 r,圆心 M(x,y),两定圆 -3),半径 r1=8,r2=2. 圆心 C1(0,3),C2(0, 则|MC1|=8-r,|MC2|=r+2. ∴|MC1|+|MC2|=(8-r)+(r+2)=10. 又|C1C2|=6,∴动圆圆心 M 的轨迹是椭圆,且焦 点为 C1(0,3),C2(0, -3),且 2a=10, ∴ a=5,c=3, 2 2 2 ∴b =a -c =25-9=16. y2 x2 ∴动圆圆心 M 的轨迹方程是25+16=1.
2.写出适合下列条件的椭圆的标准方程
已知两个焦点的坐标分别是(-4,0)、(4,0),椭圆上一点P到
2 2 x y 两焦点距离的和等于10; + =1 25 9 变式一:将上题焦点改为(0,-4)、(0,4), 结果如何?
y2 x2 + =1 25 9 变式二:将上题改为两个焦点的距离为8,椭圆上一点P到两
知识总结
探究定义 P={ M| |MF1 |+|MF2|=2a(2a>2c)}.
y M
y F2
M x
不 同 点
图
形
F1
O
F2
x
O
F1
标准方程 焦点坐标 相 a、b、c 的关系 同 点 焦点位置的判断
x2 y2 + 2 = 1 a > b > 0 2 a b
F1 -c , 0,F2 c , 0
y
M F 1
o
y
F2
F2 x
F1(-c,0)、F2(c,0)
焦点在y轴:
y 2 x2 + 2 = 1(a b 0) 2 a b
M
o
F1
x
F1(0,-c )、F2(0,c)
初中椭圆方程知识点总结
初中椭圆方程知识点总结椭圆是平面上一个固定点F到平面上任意一点P的距离之和等于常数2a的轨迹。
椭圆的方程可以用于描述椭圆的形状和位置。
在初中数学课程中,学生通常会学习如何识别和使用椭圆方程。
本文将总结初中阶段涉及的椭圆方程的知识点。
一、椭圆的定义在讨论椭圆的方程之前,我们首先来了解一下椭圆的定义。
椭圆是平面上一个固定点F到平面上任意一点P的距离之和等于常数2a的轨迹。
这个固定点F叫做焦点,称为F1和F2。
椭圆上任意一点P到两个焦点的距离之和是常数2a。
二、椭圆的标准方程椭圆的标准方程可以写成(x-h)²/a² + (y-k)²/b² = 1,其中(h, k)是椭圆的中心坐标,a和b分别是x轴和y轴上的半径。
当椭圆的中心在原点时,标准方程变为x²/a² + y²/b² = 1。
三、椭圆的参数方程椭圆还可以用参数方程表示:x = h + a*cos(θ),y = k + b*sin(θ)。
这里θ是参数,通常取值在[0,2π]之间。
使用参数方程可以方便地描述椭圆上的点,但在初中阶段,学生一般不需要深入研究参数方程。
四、椭圆的一般方程椭圆的一般方程可以写成Ax² + By² + Cx + Dy + E = 0,其中A、B、C、D、E都是常数。
一般方程描述了椭圆的所有可能形状和方位,但通常需要将一般方程转化为标准方程才能进行具体的计算和分析。
五、椭圆的性质对于初中生而言,了解椭圆的一些基本性质是很重要的。
例如,椭圆的离心率e满足0 <e < 1,椭圆的长轴长度是2a,短轴长度是2b,焦点到中心的距离是c,有关椭圆的这些性质可以帮助学生理解椭圆方程的意义和应用。
六、椭圆的图像学生需要掌握如何根据椭圆的方程画出椭圆的图像。
对于标准方程x²/a²+ y²/b²= 1而言,椭圆的图像在x轴和y轴上分别展开a个单位和b个单位。
椭圆及标准方程
椭圆及标准方程椭圆是平面上到两个定点F1和F2的距离之和等于常数2a的点P的轨迹。
F1和F2称为椭圆的焦点,2a称为椭圆的长轴。
椭圆的标准方程为:\(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\)。
其中a为长轴的一半,b为短轴的一半。
在椭圆的标准方程中,a和b的大小决定了椭圆的形状,当a>b时,椭圆的长轴水平;当a<b时,椭圆的长轴垂直。
椭圆的离心率e定义为焦距与长轴的比值,即e=\(\frac{c}{a}\),其中c为焦距之一。
离心率决定了椭圆的形状,当e=0时,椭圆退化为圆;当0<e<1时,椭圆是一个扁平的椭圆;当e=1时,椭圆是一个狭长的椭圆;当e>1时,椭圆不存在,退化为双曲线。
根据椭圆的标准方程,我们可以得到椭圆的一些重要性质。
首先,椭圆的中心在原点O(0,0),长轴与x轴平行,短轴与y轴平行。
其次,椭圆的焦点坐标为F1(-c,0)和F2(c,0),其中c=\(\sqrt{a^2-b^2}\)。
最后,椭圆的顶点坐标为A(a,0)和B(-a,0),其中a为长轴的一半。
除了标准方程外,椭圆还可以有其他形式的方程。
例如,椭圆的参数方程为:\(\begin{cases} x = a \cos t \\ y = b \sin t \end{cases}\)。
其中t为参数,a和b同样为长轴和短轴的一半。
利用参数方程,我们可以更加灵活地描述椭圆上的点的运动规律。
另外,椭圆还可以通过矩形方程来表示,即:\( \frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1 \)。
其中(h,k)为椭圆的中心坐标。
通过矩形方程,我们可以方便地得到椭圆的中心和长短轴的信息。
总之,椭圆是一种重要的几何图形,具有许多独特的性质和形式。
通过标准方程、参数方程和矩形方程,我们可以更加深入地理解和描述椭圆的形状和特点。
对于数学和物理学的学习和应用都有着重要的意义。
第1节 椭圆标准方程和几何性质ppt课件
2.椭圆的标准方程和几何性质
标准方程 焦点位置
x2 a2
y2 b2
1(a
b
0)
焦点在x轴上
y2 a2
x2 b2
1(a
b
0)
焦点在y轴上
图形
标准方程
范围 对称性
顶点 性质 轴长
焦距 离心率 a,b,c的
关系
x2 a2
y2 b2
1(a
b
0)
y2 a2
x2 b2
1(a
b
0)
-a≤x≤a -b≤y≤b
a5 两个焦点分别为F1(3, 0)和F2 (3, 0), 四个顶点的坐标分别为A1(5, 0), A2 (5, 0), B1(0, 4)和B2 (0, 4).
【变式1-1】(2019新课标II卷,文)若抛物线y2=2px(p>0)的焦点是
椭圆 x2 y2 1的一个焦点,则p=( ) 3p p
A.2
B.3
C.4
D.8
【答案】 D 【解析】 由题意可得:3 p p ( p )2,解得p 8.故选D.
2
【变式1-2】 (2018新课标Ⅰ卷,文)已知椭圆C:
x2 a2
y2 4
1的一
个焦点为(2,0),则C的离心率为 ( )
A. 1
B. 1
C. 2
D. 2 2
3
2
2
3
【答案】 C 【解析】 根据题意,可知c 2,因为b2 4, 所以a2 b2 c2 8, 即a 2 2,所以椭圆C的离心率为e 2 2 ,故选C.
-b≤x≤b -a≤y≤a
对称轴:x轴、y轴; 对称中心:(0,0)
A1(-a,0),A2(a,0) B1(0,-b),B2(0,b)
椭圆的标准方程及性质
一.椭圆曲线的介绍1.域k(特征0)上的椭圆曲线可看成由下面方程的解全体再加上一个无穷远点:y2=x3+ax+b,(x,y)∈k2,a,b为k中常数,并且右边判别式Δ=−16(4a3+27b2)不等于0(即为了光滑性要求无重根)。
其上的点可以自然地有一个群结构(实数域为例,图自wiki):具体说来,取曲线上两个点P,Q,连接P,Q的直线与曲线第三个交点(其存在是因为一元三次方程有两个解在k中,那么由韦达定理第三个也在k中)记为R。
不难看出曲线y2=x3+ax+b,(x,y)∈k2关于x轴对称,R 的对称点就记为P+Q。
这样粗糙的讨论可能会有问题,因为可能会出现图中2,3,4的情况,2的情况把Q看成2重点即可,而3的情况迫使我们引入无穷远点0,规定此时和为0,而如果P,Q重合,那么我们就取切线。
定义保证如下性质:随便取一条直线,其与曲线交于三个点P,Q,R(可能有无穷远点,也可能两个点重合),那么P+Q+R=0.这个定义是“对称”的,可具体写出P+Q的表达式(利用韦达定理):P,Q不重合时:P,Q重合时:总之在椭圆曲线上有一个交换群结构,因此我们可以从y2=x3+ax+b,(x,y)∈k2的一个有理解生成新的有理解,从而得到许多有理解。
椭圆曲线在复数域的图像可以看成复平面模掉一格C/Λ,也就是一个环面:Q上图像可直观想象是实数域的椭圆曲线上的有理点:(图自《数论1 FERMAT的梦想和类域-加藤和也》)而Qp等非阿局部域及Z/pZ等有限域的情况没有很好的几何图像(当然有限域的平面是有限个点,此时椭圆曲线就是一堆点)。
此时不妨就把它看成代数几何意义上的一条曲线。
为了理解为什么椭圆曲线定义成y^2=三次多项式,我们简单讨论一番。
上面已经说过,我们希望找一些好的f,使得f=0即解全体带群结构。
而这个群结构的产生巧就巧在定义一个乘法,是把两个东西运算得到一个新东西,总共涉及3个object,而三次方程恰好有三个根,并且两个根加上方程系数完全可以求出第三个根。
椭圆标准方程及几何性质
椭圆的离心率
离心率是描述椭圆扁平程度的量,用 $e$表示。
VS
离心率定义为$e = frac{c}{a}$,其中 $c$是焦距,$a$是长轴半径。
03
椭圆的参数方程
参数方程的定义
参数方程
通过引入参数,将椭圆上的点与一组有序数对(参数)关联起来,表示椭圆上 的点的一种方法。
参数方程的一般形式
x=a*cos(t)x = a cos(t)x=a∗cos(t) 和 y=b*sin(t)y = b sin(t)y=b∗sin(t),其中 (a,b) 是椭圆的长短轴长度,t是参数。
通过极坐标方程,可以方便地解决与椭圆相关的几何问题,例如求 交点、判断点是否在椭圆上等。
05
椭圆的焦点三角形
焦点三角形的性质
焦点三角形是等腰三角形
01
由于椭圆上任意一点到两焦点的距离之和为常数,因此焦点三
角形是等腰三角形。
顶角为直角
02
由于椭圆上任意一点到两焦点的距离之差与到另一焦点的距离
之比为常数,因此顶角为直角。
当长短轴长度一定时,顶角越大,焦 点三角形面积越大。
焦点三角形的周长
01
02
03
周长公式
焦点三角形的周长公式为 (P = 2a + 2c),其中 (a) 为长轴长度,(c) 为焦距。
周长与长短轴关系
当长短轴长度一定时,离 心率越大,焦点三角形周 长越大。
周长与离心率关系
当长短轴长度一定时,长 短轴长度越接近,焦点三 角形周长越小。
THANKS
感谢观看
参数方程的应用
简化计算
在解决与椭圆相关的数学问题时,使用参数方程可以简化计算过程,特别是涉及到三角函数的问题。
椭圆的性质及应用
第5讲 椭圆的性质及应用一、知识梳理1x 2y 2y 2x 22(1)一类是与坐标系无关的椭圆本身故有的性质:长轴长、短轴长、焦距、离心率等. (2)一类是与坐标系有关的性质:顶点坐标、焦点坐标等.在解题时要特别注意第二类性质,应根据椭圆方程的形式,首先判断椭圆的焦点在哪条坐标轴上,然后再进行求解.问题 为什么椭圆的离心率决定椭圆的扁平程度?提示:椭圆的离心率反映了焦点远离中心的程度,e 的大小决定了椭圆的形状,反映了椭圆的圆扁程度.因为a 2=b 2+c 2,所以b a =1-e 2,因此,当e 越趋近于1时,ba越接近于0,椭圆越扁;当e 越趋近于0时,ba越接近于1,椭圆越接近于圆. 题型(一) 求椭圆的离心率例1 (1)下列椭圆中最扁的一个是( ) A .B .C .D .【解答】解:椭圆的离心率越小,椭圆越圆,越大,离心率越大,椭圆越扁,越小, A 中=,B 中=,C 中=,D 中=,故选:B .(2)若椭圆的两个焦点与短轴的一个端点构成一个正三角形,则该椭圆的离心率为________. 解析: 依题意,△BF 1F 2是正三角形,∵在Rt △OBF 2中,|OF 2|=c ,|BF 2|=a ,∠OF 2B =60°,∴a cos 60°=c ,∴c a =12,即椭圆的离心率e =12.,答案: 12(3)如图,设椭圆的右顶点为A ,右焦点为F ,B 为椭圆在第二象限上的点,直线BO 交椭圆于C 点,若直线BF 平分线段AC 于M ,则椭圆的离心率是( )A .B .C .D .【解答】解:如图,设AC 中点为M ,连接OM ,则OM 为△ABC 的中位线, ∴OM ∥AB ,于是△OF A ∽△AFB ,且==,即=,可得e ==.故选:C .(4)《九章算术)是我国古代内容极为丰富的数学名著第九章“勾股”,讲述了“勾股定理及一些应用.直角三角形的两直角边与斜边的长分别称“勾”“股”“弦”,且“勾2+股2=弦2”.设F 是椭圆=1(a >b >0)的左焦点,直线y =x 交椭圆于A 、B 两点,若|AF |,|BF |恰好是Rt △ABF 的”勾”“股”,则此椭圆的离心率为( ) A .B .C .D .【解答】解:∵|AF |,|BF |恰好是Rt △ABF 的”勾”“股”,∴AF 1⊥BF 1,∴OA =OB =OF 1=c . ∴A (,),∴⇒,,⇒,e 2=1﹣=4﹣2,∴﹣1.故选:A .变式训练:1、美学四大构件是:史诗、音乐、造型(绘画、建筑等)和数学.素描是学习绘画的必要一步,它包括了明暗素描和结构素描,而学习几何体结构素描是学习素描最重要的一步.某同学在画“切面圆柱体”(用与圆柱底面不平行的平面去截圆柱,底面与截面之间的部分叫做切面圆柱体)的过程中,发现“切面”是一个椭圆,若“切面”所在平面与底面成60°角,则该椭圆的离心率为()A.B.C.D.【解答】解:椭圆的长轴为2a,短轴的长为2b,“切面”是一个椭圆,若“切面”所在平面与底面成60°角,可得,即a=2b,所以e===.故选:C.2、己知椭圆C:(a>b>0)的右焦点为F,过点F作圆x2+y2=b2的切线,若两条切线互相垂直,则椭圆C的离心率为()A.B.C.D.【解答】解:如图,由题意可得,,则2b2=c2,即2(a2﹣c2)=c2,则2a2=3c2,∴,即e=.故选:D.[题后感悟] (1)求离心率e 时,除用关系式a 2=b 2+c 2外,还要注意e =的代换,通过方程思想求离心率. (2) 在椭圆中涉及三角形问题时,要充分利用椭圆的定义、正弦定理及余弦定理、全等三角形、相似三角形等知识. 例21、设F 1(-c ,0),F 2(c ,0)分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若在直线x =a 2c上存在点P ,使线段PF 1的中垂线过点F 2,则椭圆离心率的取值范围是( )A.⎝⎛⎦⎤0,22 B.⎝⎛⎦⎤0,33C.⎣⎡⎭⎫22,1D.⎣⎡⎭⎫33,1解法一:由题意知F 1(-c ,0),F 2(c ,0),P ⎝⎛⎭⎫a2c ,y ,∵PF 1的中垂线过点F 2,∴|F 1F 2|=|F 2P|,即2c =⎝⎛⎭⎫a 2c -c 2+y 2,整理得y 2=3c 2+2a 2-a 4c 2.∵y 2≥0,∴3c 2+2a 2-a 4c 2≥0,即3e 2-1e 2+2≥0,解得e ≥33.∴e 的取值范围是⎣⎡⎭⎫33,1.解法二:设直线x =a 2c 与x 轴交于M 点,则|F 1F 2|=|F 2P |≥|MF 2|,即2c ≥a 2c -c ,整理得13≤e 2<1,33≤e <1.∴椭圆离心率的取值范围是⎣⎡⎭⎫33,1.故选D.2、已知椭圆的标准方程为,F 1,F 2为椭圆的左右焦点,椭圆上存在一点P ,使得21PF F ∠为直角,求椭圆的离心率的取值范围 3、椭圆C 的两个焦点分别是F 1,F 2若C 上的点P 满足21123F F PF =,则椭圆C 的离心率e 的取值范围是A.21≤eB.41≥eC.2141≤≤eD.410≤<e 或121<≤e【答案】C 解析:∵12233,2PF F F c ==∴,由三角形中,两边之和大于第三边得,故选C.点拨:(1)对于参数的取值范围问题,要能从几何特征的角度去分析参数变化引起的图形的变化.在学习中,要能主动的研究几何特征变化的根本性原因.(2)对几何对象的本质属性的把握越准确,代数化就越容易.(3)整个图形都随着P 点的变化而变化,P 点的变化使得线段||PF 2的长度也在变化,进而||PF 2与||MF 2的长度关系也在变化.正确的描述这一变化中量与量之间的数量关系是解题的关键所在.(4)求椭圆的离心率通常要构造关于a ,c 的齐次式,再转化为关于e 的方程或不等式.题型二 直线与椭圆位置关系1、直线和椭圆位置关系判定方法概述①直线斜率存在时221y kx b mx ny =+⎧⎨+=⎩⇒222()210m k n x kbnx b +++-= 当0∆>时 直线和椭圆相交 当0∆=时 直线和椭圆相切当0∆<时 直线和椭圆相离②直线斜率不存在时22221x x y a bλ=⎧⎪⎨+=⎪⎩判断y 有几个解注:1︒无论直线斜率存在与否,关键是看联立后的方程组有几组解,而不是看""∆。
椭圆标准方程及其性质知识点大全精编版
【专题七】椭圆标准方程及其性质知识点大全(一)椭圆的定义及椭圆的标准方程:●椭圆定义:平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ , 这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:①若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ; ②若)(2121F F PF PF <+,则动点P 的轨迹无图形(二)椭圆的简单几何性:●标准方程是指中心在原点,坐标轴为对称轴的标准位置的椭圆方程。
标准方程12222=+b y a x )0(>>b a 12222=+b x a y )0(>>b a 图形性质焦点 )0,(1c F -,)0,(2c F ),0(1c F -,),0(2c F焦距 c F F 221= c F F 221= 范围a x ≤,b y ≤b x ≤,a y ≤对称性 关于x 轴、y 轴和原点对称顶点 )0,(a ±,),0(b ± ),0(a ±,)0,(b ±轴长长轴长12A A ,12A A =a 2,短轴长12B B ,12B B =b 2离心率①(01)c e e a =<< ,②21()b e a=-③222b a c -=(离心率越大,椭圆越扁)【说明】:1.方程中的两个参数a 与b ,确定椭圆的形状和大小,是椭圆的定型条件,焦点F 1,F 2的位置,是椭圆的定位条件,它决定椭圆标准方程的类型,常数a ,b ,c 都大于零,其中a 最大且a 2=b 2+c 2.2. 方程22Ax By C +=表示椭圆的充要条件是:ABC ≠0,且A ,B ,C 同号,A≠B 。
A >B 时,焦点在y 轴上,A <B 时,焦点在x 轴上。
(三)焦点三角形的面积公式:122tan2PF F S b θ∆=如图:●椭圆标准方程为:12222=+by a x )0(>>b a ,椭圆焦点三角形:设P 为椭圆上任意一点,12,F F 为焦点且∠12F PF θ=,则△12F PF 为焦点三角形,其面积为122tan2PF F S b θ∆=。
高三数学第一轮复习椭圆的定义、性质及标准方程知识精讲
高三数学第一轮复习:椭圆的定义、性质及标准方程【本讲主要内容】椭圆的定义、性质及标准方程椭圆的定义及相关概念、椭圆的标准方程、椭圆的几何性质【知识掌握】 【知识点精析】1. 椭圆的定义:⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。
⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<<e e ,则动点M 的轨迹叫做椭圆。
定点F 是椭圆的焦点,定直线l 叫做椭圆的准线,常数e 叫做椭圆的离心率。
说明:①若常数2a 等于2c ,则动点轨迹是线段12F F 。
②若常数2a 小于2c ,则动点轨迹不存在。
2. 椭圆的标准方程、图形及几何性质:标准方程)0(12222>>=+b a by a x 中心在原点,焦点在x 轴上)0(12222>>=+b a bx a y 中心在原点,焦点在y 轴上图形范围x a y b ≤≤,x b y a ≤≤,顶点()()()()12120000A a A a B b B b --,、,,、,()()()()12120000A a A a B b B b --,、,,、,对称轴x 轴、y 轴;长轴长2a ,短轴长2b ;焦点在长轴上x 轴、y 轴;长轴长2a ,短轴长2b ;焦点在长轴上焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距)0(221>=c c F F)0(221>=c c F F3. 焦半径公式:椭圆上的任一点和焦点连结的线段长称为焦半径。
焦半径公式:椭圆焦点在x 轴上时,设12F F、分别是椭圆的左、右焦点,()00P x y ,是椭圆上任一点,则10PF a ex =+,20PF a ex =-。
推导过程:由第二定义得11PFe d =(1d 为点P 到左准线的距离), 则211000a PF ed e x ex a a ex c ⎛⎫==+=+=+ ⎪⎝⎭;同理得20PF a ex =-。
椭圆和双曲线标准方程
椭圆和双曲线标准方程椭圆和双曲线是解析几何中重要的曲线,它们在数学和物理学中都有着广泛的应用。
本文将介绍椭圆和双曲线的标准方程及其性质,希望能够帮助读者更好地理解和掌握这两种曲线。
一、椭圆的标准方程。
椭圆是平面上一点到两个给定点的距离之和等于常数的动点轨迹,这两个给定点称为椭圆的焦点。
椭圆的标准方程为:\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\]其中,\(a\)和\(b\)分别为椭圆在\(x\)轴和\(y\)轴上的半轴长,且\(a > b\)。
椭圆的中心在原点\((0,0)\)处,长轴与\(x\)轴重合,短轴与\(y\)轴重合。
椭圆的性质,椭圆是对称图形,关于\(x\)轴和\(y\)轴对称;焦点到椭圆上任意一点的距离之和等于常数;长轴和短轴的长度决定了椭圆的形状。
二、双曲线的标准方程。
双曲线是平面上一点到两个给定点的距离之差等于常数的动点轨迹,这两个给定点称为双曲线的焦点。
双曲线的标准方程为:\[\frac{x^2}{a^2} \frac{y^2}{b^2} = 1\]其中,\(a\)和\(b\)分别为双曲线在\(x\)轴和\(y\)轴上的半轴长,且\(a > 0, b > 0\)。
双曲线的中心在原点\((0,0)\)处,两支曲线分别与\(x\)轴和\(y\)轴相交。
双曲线的性质,双曲线有两支,每支都是无限延伸的曲线;焦点到双曲线上任意一点的距离之差等于常数;两支曲线之间的距离决定了双曲线的形状。
三、椭圆和双曲线的图形。
椭圆和双曲线都是常见的曲线,它们在几何学和物理学中有着重要的应用。
椭圆常用于描述行星、原子轨道等规律运动的轨迹;双曲线常用于描述双曲线函数、电磁场等现象。
椭圆和双曲线的图形可以通过数学软件进行绘制,也可以通过手工绘图的方式来展现。
通过观察椭圆和双曲线的图形,我们可以更直观地理解它们的性质和特点。
四、椭圆和双曲线的应用。
椭圆和双曲线在数学和物理学中有着广泛的应用。
椭圆标准方程及其性质知识点大全
椭圆标准方程及其性质(一)椭圆的定义及椭圆的标准方程:椭圆定义:平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ , 这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距.注意:①若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ; ②若)(2121F F PF PF <+,则动点P 的轨迹无图形(二)椭圆的简单几何性:●标准方程是指中心在原点,坐标轴为对称轴的标准位置的椭圆方程。
标准方程12222=+b y a x )0(>>b a 12222=+bx a y )0(>>b a 图形性质焦点 )0,(1c F -,)0,(2c F ),0(1c F -,),0(2c F焦距 c F F 221= c F F 221= 范围 a x ≤,b y ≤b x ≤,a y ≤对称性 关于x 轴、y 轴和原点对称顶点 )0,(a ±,),0(b ± ),0(a ±,)0,(b ±轴长长轴长12A A ,12A A =a 2,短轴长12B B ,12B B =b 2 离心率①(01)ce e a =<< ,②21()b e a=-③222b a c -=(离心率越大,椭圆越扁)【说明】:1.方程中的两个参数a 与b ,确定椭圆的形状和大小,是椭圆的定型条件,焦点F 1,F 2的位置,是椭圆的定位条件,它决定椭圆标准方程的类型,常数a ,b ,c 都大于零,其中a 最大且a 2=b 2+c 2.2. 方程22Ax By C +=表示椭圆的充要条件是:ABC ≠0,且A ,B ,C 同号,A≠B 。
A >B 时,焦点在y 轴上,A <B 时,焦点在x 轴上。
(三)焦点三角形的面积公式:122tan2PF F S b θ∆=如图:●椭圆标准方程为:12222=+by a x )0(>>b a ,椭圆焦点三角形:设P 为椭圆上任意一点,12,F F 为焦点且∠12F PF θ=,则△12F PF 为焦点三角形,其面积为122tan2PF F S b θ∆=。
椭圆的标准方程及几何性质
椭圆的标准⽅程及⼏何性质椭圆的标准⽅程与⼏何性质⼀、知识梳理1、椭圆定义:平⾯内与两个定点21,F F 的距离之和等于常数(⼤于||21F F )的点的轨迹叫作椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。
思考:若与两个定点21,F F 的距离之和等于常数(⼩于或等于||21F F )的点的轨迹⼜是如何?2.标准⽅程:(1)焦点在x 轴上,中⼼在坐标原点的椭圆的标准⽅程为12222=+b y a x ;(2)焦点在y 轴上,中⼼在坐标原点的椭圆的标准⽅程为12222=+bx a y .3、重要关系: 222a b c =+。
(注意⼤⼩关系) 4、椭圆的⼏何性质由椭圆⽅程12222=+by a x (0>>b a ) 研究椭圆的性质。
(1)范围:a x a ≤≤-,b y b ≤≤-(椭圆落在b y a x ±=±=,组成的矩形中)(2)对称性:图形关于原点对称.原点叫椭圆的对称中⼼,简称中⼼.x 轴、y 轴叫椭圆的对称轴.长轴与短轴长分别为b a 2,2。
b a ,分别为椭圆的长半轴长和短半轴长。
(3)顶点:椭圆和对称轴的交点叫做椭圆的顶点。
椭圆共有四个顶点: )0,(),0,(21a A a A -,),0(),,0(21b B b B -。
【⼩秘书】(1)求椭圆⽅程的⽅法:除了定义外,常⽤待定系数法;(2)当椭圆的焦点位置不确定时,可设⽅程为221x y m n+=(,0m n >),避免讨论和繁杂的计算。
(3)要重视椭圆定义解题的重要作⽤,要注意归纳提炼,优化解题过程。
【例1】求满⾜下列各条件的椭圆的标准⽅程.:(1)焦点在坐标轴上,且经过两点)31(3)以短轴的⼀个端点和两焦点为顶点的三⾓形为正三⾓形,且焦点到椭圆的最短练兵场:1. 椭圆5x 2+ky 2=5的⼀个焦点是(0,2),那么k 等于() (A)-1 (B)1 (C)5(D) -52、(08上海⽂)设P 椭圆2212516x y +=上的点.若1F 、2F 是椭圆的两个焦点,则12||||PF PF +等于()(A)4 (B)5 (C)8 (D) 103.已知12F F ,为椭圆221259x y +=的两个焦点,过1F 的直线交椭圆于A B ,两点,若2212F A F B +=,则AB = .4.椭圆的中⼼在原点,对称轴为坐标轴,椭圆的⼀个顶点B 与两焦点F 1F 组成三⾓形的周长为4+23,且∠F 1BF 2= 23π,求该椭圆⽅程。
椭圆的标准方程及性质
椭圆的标准方程一、高考考点分析与讲解: 1.椭圆定义:平面内与两个定点21,F F 的距离之和等于常数(大于||21F F ) 的点的轨迹叫作椭圆,这两个定点叫做椭圆的焦点,两焦点间 的距离叫做椭圆的焦距.说明:当与两个定点21,F F 的距离之和等于||21F F 的点的轨迹是线 段12F F ;与两个定点21,F F 的距离之和小于||21F F 的点的轨迹不存在. 2.根据定义推导椭圆标准方程:取过焦点21,F F 的直线为x 轴,线段21F F 的垂直平分线为y 轴设),(y x P 为椭圆上的任意一点,椭圆的焦距是c 2(0>c ).则)0,(),0,(21c F c F -,又设M 与21,F F 距离之和等于a 2(c a 22>)(常数) {}a PF PF P P 221=+=∴ 221)(y c x PF ++=又,a yc x yc x 2)()(2222=+-+++∴,化简,得 )()(22222222c a a y a x c a -=+-, 由定义c a 22>,022>-∴c a 令222b c a =-∴代入,得 222222b a y a x b =+, 两边同除22b a 得12222=+bya x此即为椭圆的标准方程它所表示的椭圆的焦点在x 轴上,焦点是)0,()0,(21c F c F -其中222b c a+=注意若坐标系的选取不同,可得到椭圆的不同的方程如果椭圆的焦点在y 轴上(选取方式不同,调换y x ,轴)焦点则变成),0(),,0(21c F c F -,只要将方程12222=+by ax 中的y x ,调换,即可得12222=+bxa y,也是椭圆的标准方程说明:所谓椭圆标准方程,一定指的是焦点在坐标轴上,且两焦点的中点为坐标原点;在12222=+by ax 与12222=+bx ay 这两个标准方程中,都有0>>b a 的要求,如方程),0,0(122n m n m nymx≠>>=+就不能肯定焦点在哪个轴上;分清两种形式的标准方程,可与直线截距式1=+by ax 类比,如12222=+bya x中,由于b a >,所以在x 轴上的“截距”更大,因而焦点在x 轴上(即看22,y x 分母的大小).3注:①是0a b >>;②是222a b c =+(要区别与习惯思维下的勾股定理222c a b =+); ③是定方程“型”与曲线“形”.例1 写出适合下列条件的椭圆的标准方程: 两个焦点坐标分别是(-4,0)、(4,0),椭圆上一点P 到两焦点的距离之和等于10; 解:(1)因为椭圆的焦点在x 轴上,所以设它的标准方程为12222=+bya x)0(>>b a 9454,582,10222222=-=-=∴==∴==c a b c a c a所以所求椭圆标准方程为192522=+yx.例2 求适合下列条件的椭圆的标准方程:(1)两个焦点的坐标分别是(4,0)-、(4,0),椭圆上一点P 到两焦点距离的和等于10;(2)两个焦点的坐标分别是(0,2)-、(0,2),并且椭圆经过点35(,)22-;(3)焦点在x 轴上,:2:1a b =,c =(4)焦点在y 轴上,225a b +=,且过点(0); (5)焦距为b ,1a b -=; (6)椭圆经过两点35(,)22-,. 解析:(1)∵椭圆的焦点在x 轴上,故设椭圆的标准方程为22221x y ab+=(0a b >>), ∵210a =,4c =,∴2229b a c =-=,所以,椭圆的标准方程为221259xy+=.(2)∵椭圆焦点在y 轴上,故设椭圆的标准方程为22221y x ab+=(0a b >>), 由椭圆的定义知,2a ===∴10a =,又∵2c =,∴2221046b a c =-=-=, 所以,椭圆的标准方程为221106yx+=.(3)∵c =2226a b c -==,①又由:2:1a b =代入①得2246b b -=, ∴22b =,∴28a =,又∵焦点在x 轴上, 所以,椭圆的标准方程为22182xy+=. (4)设椭圆方程为22221y x ab+=,∴221b=,∴22b =,又∵225a b +=,∴23a =, 所以,椭圆的标准方程为22132yx+=.(5)∵焦距为6,∴3c =,∴2229a b c -==,又∵1a b -=,∴5a =,4b =,所以,椭圆的标准方程为2212516xy+=或2212516yx+=.(6)设椭圆方程为221xymn+=(,0m n >), 由2235()()221351m nm n⎧-⎪+=⎪⎨⎪+=⎪⎩得6,10m n ==, 所以,椭圆方程为221106yx++=.点评:求椭圆的方程首先清楚椭圆的定义,还要知道椭圆中一些几何要素与椭圆方程间的关系.例3 已知1F 、2F 为椭圆()012222>>=+b a by ax 的左、右焦点,过2F 做椭圆的弦AB .(1) 求证AB F 1∆的周长是常数;(2) 若AB F 1∆的周长为16,1AF 、21F F 、2AF 成等差数列,求椭圆的方程. 解:(1)AB F 1∆的周长a BF BF AF AF l 42111=+++= 所以AB F 1∆的周长为常数. (2) 164==a l , 得4=a .1AF 、21F F 、2AF 成等差数列,所以1AF +2AF =221F F ,得 2=c ,122=b ,所以所求椭圆方程是1121622=+yx.例4 已知椭圆C 经过原点,且一个焦点为()0,2F ,其长轴长为4,求椭圆C 的中心的轨迹方程.解:设椭圆C 的中心()y x M ,,已知焦点()0,2F ,则另一焦点()y x F2,22/-.因为原点O 在椭圆上,其长轴长为4,所以4/=+OF OF .()()4222222=+-+y x ,得中心轨迹方程为()1122=+-y x .(另解)2=OF ,所以 2/=OF .设OF 的中点()0,1/O由三角形的中位线得 1/=MO,所以中心M 的轨迹是圆.例5 已知椭圆两个焦点的坐标分别是()2,0-,()2,0,并且经过点53,22⎛⎫-⎪⎝⎭,求它的标准方程.分析:由椭圆的标准方程的定义及给出的条件,容易求出,,a b c .引导学生用其他方法来解.解:设椭圆的标准方程为()222210x y a b ab+=>>,因点53,22⎛⎫- ⎪⎝⎭在椭圆上,则22222591444a a b b a b ⎧⎧+==⎪⎪⇒⎨⎨=⎪⎪⎩-=⎩二、配套练习巩固与提高: 1.椭圆2211625xy+=的焦点坐标为 (A )(0, ±3) (B )(±3, 0) (C )(0, ±5) (D )(±4, 0) 解:选A . 2.在方程22110064xy+=中,下列a , b , c 全部正确的一项是 (A )a=100, b=64, c=36 (B )a=10, b=6, c=8 (C )a=10, b=8, c=6 (D )a=100, c=64, b=36 解:选C .3.已知a =4, b =1,焦点在x 轴上的椭圆方程是 (A )2214xy += (B )2214yx += (C )22116xy += (D )22116yx +=解:选C .4.已知焦点坐标为(0, -4), (0, 4),且a =6的椭圆方程是 (A )2213620xy+= (B )2212036xy+= (C )2213616xy+= (D )2211636xy+=解:选B .5.若椭圆22110036xy+=上一点P 到焦点F 1的距离等于6,则点P 到另一个焦点F 2的距离是(A )4 (B )194 (C )94 (D )14 解:选D .6.已知F 1, F 2是定点,| F 1 F 2|=8, 动点M 满足|M F 1|+|M F 2|=8,则点M 的轨迹是 (A )椭圆 (B )直线 (C )圆 (D )线段 解:选D .7.过点(3, -2)且与椭圆4x 2+9y 2=36有相同焦点的椭圆的方程是 (A )2211510xy+= (B )221510xy+= (C )2211015xy+= (D )2212510xy+=解:选A . 8.若椭圆a 2x 2-22a y =1的一个焦点是(-2, 0),则a =(A 4(B )4(C 4(D 4解:选C . 9.点P 为椭圆22154xy+=上一点,以点P 以及焦点F 1, F 2为顶点的三角形的面积为1,则点P 的坐标是 (A)(±2, 1)(B )(2, ±1)(C )(2, 1) (D)(2, ±1)解:选D .10=10为不含根式的形式是(A )2212516xy+= (B )221259xy+= (C )2211625xy+= (D )221925xy+=解:选C . 11.椭圆22125xym m +=-+的焦点坐标是 (A )(±7, 0) (B )(0, ±7) (C )(±7,0) (D )(0, ±7) 解:选D . 12.若方程1162522=++-mym x表示焦点在y 轴上的椭圆,则m 的取值范围是 (A ) ()25,16- (B ) ⎪⎭⎫ ⎝⎛25,29(C ) ⎪⎭⎫ ⎝⎛-29,16 (D ) ⎪⎭⎫⎝⎛∞+,29解:选B . 13.过椭圆()012222>>=+b a by ax 的焦点F ,与长轴垂直的弦的长度是(A )cb2(B )cb 22 (C )ab2(D ) ab 2214.两焦点坐标分别为(0, 2), (0, -2),且经过点(-23,25)的椭圆的标准方程是解:221610xy+=.15.当a +b =10, c =25时的椭圆的标准方程是解:2213616xy+=或2213616yx+=.16.已知一个圆的圆心为坐标原点,半径为2,从这个圆上任意一点P 向x 轴作垂线段PP ’,则线段PP ’的中点M 的轨迹方程为 . 解:2214xy +=.17.经过点M (3, -2), N (-23, 1)的椭圆的标准方程是 解:221155xy+=.18.过椭圆4x 2+2y 2=1的一个焦点F 1的弦AB 与另一个焦点F 2围成的三角形△ABF 2的周长是解:.19.点P 为椭圆22110064xy+=上的一点,F 1和F 2是其焦点,若∠F 1PF 2=60°,则△F 1PF 2的面积为20.若y 2-lga ·x 2=31-a 表示焦点在x 轴上的椭圆,则a 的取值范围是解:11(,)103. 21.已知A B C ∆中,()0,3A ,()0,3B -,三边长AC 、AB 、BC 的长成等差数列,求顶点C 的轨迹方程.解:221(0)3627xyy +=≠.22.点P 是椭圆22154xy+=上一点,以点P 以及焦点F 1,F 2为顶点的三角形的面积等于1,求点P的坐标.解:(,1)2±±.23.椭圆的两焦点为F 1(-4, 0), F 2(4, 0),点P 在椭圆上,已知△PF 1F 2的面积的最大值为12,求这椭圆的方程. 解:221259xy+=.26.如图,线段AB 的两个端点A 、B 分别在x 轴、y 轴上滑动,|AB|=5.点M 是AB 上一点,且|AM|=2,点M 随线段AB 的运动而变化,求点M 的轨迹方程.解:22194xy+=.27. 28. 29. 30.椭圆的简单几何性质一、高考考点分析与讲解:1.范围:由标准方程知,椭圆上点的坐标(,)x y 满足不等式22221,1x y ab≤≤,∴22x a ≤,22y b ≤,∴||x a ≤,||y b ≤, 说明椭圆位于直线x a =±,y b =±所围成的矩形里.2.对称性:在曲线方程里,若以y -代替y 方程不变,所以若点(,)x y 在曲线上时,点(,)x y -也在曲线上,所以曲线关于x 轴对称,同理,以x -代替x 方程不变,则曲线关于y 轴对称.若同时以x -代替x ,y -代替y 方程也不变,则曲线关于原点对称.所以,椭圆关于x 轴、y 轴和原点对称.这时,坐标轴是椭圆的对称轴,原点是对称中心,椭圆的对称中心叫椭圆的中心.3.顶点:确定曲线在坐标系中的位置,常需要求出曲线与x 轴、y 轴的交点坐标.在椭圆的标准方程中,令0x =,得y b =±,则1(0,)B b-,2(0,)B b 是椭圆与y 轴的两个交点.同理令0y =得x a =±,即1(,0)A a -,2(,0)A a 是椭圆与x 轴的两个交点.所以,椭圆与坐标轴的交点有四个,这四个交点叫做椭圆的顶点.同时,线段21A A 、21B B 分别叫做椭圆的长轴和短轴,它们的长分别为2a 和2b ,a 和b 分别叫做椭圆的长半轴长和短半轴长.由椭圆的对称性知:椭圆的短轴端点到焦点的距离为a ;在22Rt OB F ∆中,2||OB b =,2||OF c =,22||B F a =,且2222222||||||O F B F O B =-,即222c a c =-.4.离心率:椭圆的焦距与长轴的比c e a=叫椭圆的离心率.∵0a c >>,∴01e <<,且e 越接近1,c 就越接近a ,从而b 就越小,对应的椭圆越扁;反之,e 越接近于0,c 就越接近于0,从而b 越接近于a ,这时椭圆越接近于圆. 当且仅当a b =时,0c =,两焦点重合,图形变为圆,方程为222x y a +=. 5.椭圆的第二定义、准线:当点M 与一个定点的距离和它到一条定直线的距离的比是常数)10(<<=e ac e 时,这个点的轨迹是椭圆.定点是椭圆的焦点,定直线叫做椭圆的准线,常数e 是椭圆的离心率.对于椭圆12222=+by ax ,相应于焦点)0,(c F 的准线方程是cax 2=.根据对称性,相应于焦点)0,(c F -'的准线方程是cax 2-=.对于椭圆12222=+bx ay 的准线方程是cay 2±=.可见椭圆的离心率就是椭圆上一点到焦点的距离与到相应准线距离的比,这就是离心率的几何意义.由椭圆的第二定义e dMF =∴||可得:右焦半径公式为ex a cax e ed MF -=-==||||2右;左焦半径公式为ex a cax e ed MF +=--==|)(|||2左.例1 求椭圆221625400x y +=的长轴和短轴的长、离心率、焦点和顶点的坐标,并用描点法画出图形.解:把已知方程化为标准方程22221x y ab+=,5a =,4b =,∴3c ==,∴椭圆长轴和短轴长分别为210a =和28b =,离心率35c e a ==,焦点坐标1(3,0)F -,2(3,0)F ,顶点1(5,0)A -,2(5,0)A ,1(0,4)B -,2(0,4)B .1A2A2B2AO x y2F例2 过适合下列条件的椭圆的标准方程: (1)经过点(3,0)P -、(0,2)Q -; (2)长轴长等于20,离心率等于35.解:(1)由题意,3a =,2b =,又∵长轴在x 轴上,所以,椭圆的标准方程为22194xy+=.(2)由已知220a =,35c e a==,∴10a =,6c =,∴22210664b =-=, 所以,椭圆的标准方程为22110064xy+=或22110064yx+=.例3 如图,我国发射的第一颗人造地球卫星的运行轨道,是以地心(地球的中心)2F 为一个焦点的椭圆.已知它的近地点A (离地面最近的点)距地面439km ,远地点B (离地面最远的点)距地面2384km ,并且2F 、A 、B 在同一直线上,地球半径约为6371km ,求卫星运行的轨道方程(精确到1km ).解:如图,建立直角坐标系,使点2,,A B F 在x 轴上,2F 为椭圆右焦点(记1F 为左焦点),设椭圆标准方程为22221xya b+=(1a b >>), 则22||||||63714396810a c OA OF F A -=-==+=,22||||||637123848755a c OB OF F B +=+==+=,解得:7782.5a = 972.5c =∴7722b ===≈, 所以,卫星的轨道方程是2222177837722xy+=.例4 已知椭圆()22550mx y m m +=>的离心率为5e =m 的值.解:依题意,0,5m m >≠,但椭圆的焦点位置没有确定,应分类讨论:①当焦点在x 轴上,即05m <<时,有a b c ===,∴=,得3m =;②当焦点在y 轴上,即5m >时,有a b c ===,2553m =⇒=.例5 (1)求椭圆1162522=+yx的右焦点和右准线;左焦点和左准线.(2)求椭圆81922=+y x 方程的准线方程.解:(1)由题意可知右焦点)0,(c F 右准线cax 2=;左焦点)0,(c F -和左准线cax 2-=(2)椭圆可化为标准方程为:198122=+xy,故其准线方程为42272±=±=cay小结:求椭圆的准线方程一定要化成标准形式,然后利用准线公式即可求出.例6 椭圆1162522=+yx上的点M 到左准线的距离是5.2,M 到左焦点的距离为 ,M到右焦点的距离为 .解:记椭圆的左右焦点分别为21,F F 到左右准线的距离分别为21,d d 由椭圆的第二定义可知:edMF =||53||11===ac ed MF 5.15.253||11=⨯==∴ed MF 5.1||1=∴MF又由椭的第一定义可知:5.8||102||||221=∴==+MF a MF MF另解:点M 到左准线的距离是2.5,所以点M 到右准线的距离为685253505.222=-=-ca5.868553||||2222=⨯==∴=edMF e d MF小结:椭圆第二定义的应用和第一定义的应用x y O ∙∙ 1F 2F A x yO A2B 1B F 图①例7 点P 与定点A (2,0)的距离和它到定直线8=x 的距离的比是1:2,求点P 的轨迹. 解法一:设),(y x P 为所求轨迹上的任一点,则21|8|)2(22=-+-x y x 由化简得1121622=+yx,故所的轨迹是椭圆.解法二:因为定点A (2,0)所以2=c ,定直线8=x 所以82==cax 解得4=a ,又因为21==a c e 故所求的轨迹方程为1121622=+yx例8 点P 与定点A (2,0)的距离和它到定直线5=x 的距离的比是1:2,求点P 的轨迹; 解法一:设),(y x P 为所求轨迹上的任一点,则21|5|)2(22=-+-x y x 由化简得0946322=-+-y x x 配方得134)1(22=+-yx ,故所的轨迹是椭圆,其中心在(1,0). 解法二:因为定点A (2,0)所以2=c ,定直线8=x 所以52==cax 解得102=a ,故所求的轨迹方程为161022=+yx.例9 (1)求出椭圆方程13422=+yx和134)1(22=+-yx 的长半轴长、短半轴长、半焦距、离心率;(2)求出椭圆方程13422=+yx和134)1(22=+-yx 长轴顶点、焦点、准线方程.解:因为把椭圆13422=+yx向右平移一个单位即可以得到椭圆134)1(22=+-yx 所以问题1中的所有问题均不变,均为21,1,3,3=====ac e c b a .13422=+yx长轴顶点、焦点、准线方程分别为:)0,2(±,)0,1(±4±=x .134)1(22=+-yx 长轴顶点、焦点、准线方程分别为:)0,12(+±,)0,11(+±14+±=x .例10 椭圆13422=+yx上位于y 轴左侧的部分是否存在一点P ,使点P 到左准线的距离是点P 到两焦点1F 、2F 的距离的比例中项. 若存在,求出点P 的坐标;若不存在,说明理由.解:假设存在,设点()00,y x P ,左准线l :4-=x , 所以点P 到左准线的距离40+=x d ,又212PF PF d=,01212x PF +=、02212x PF -=,得()20204144x x -=+得 451200-=-=x x 或,与20-≥x 矛盾,所以点P 不存在.二、配套练习巩固与提高: 1.椭圆192522=+yx上一点P 到左焦点的距离为8,那么点P 到右准线的距离是(A )25 (B ) 45 (C ) 35 (D ) 425解:选A .2.椭圆()012222>>=+b a by ax 上任意一点()00,y x P 到左焦点1F 、右焦点2F 的距离分别为1r 、2r ,椭圆的离心率为e ,则1r 、2r 分别等于(A ) a ex +0、a ex -0 (B ) a ex -0、a ex +0 (C ) 0ex a +、0ex a - (D ) 0ex a -、0ex a + 解:选C . 3.椭圆()012222>>=+b a by ax 的两个焦点 1F 、2F ,若椭圆上存在点P ,使得02190=∠PF F ,则椭圆的离心率的取值范围是(A ) ⎥⎦⎤⎝⎛22,0 (B ) ⎪⎪⎭⎫⎢⎣⎡1,22 (C ) ⎥⎦⎤⎝⎛23,0 (D ) ⎪⎪⎭⎫⎢⎣⎡1,23 解:选B .4.设AB 是过椭圆右焦点的弦,那么以AB 为直径的圆必与椭圆的右准线 (A )相切 (B )相离 (C )相交 (D )相交或相切解:选B .设AB 的中点为M ,则M 即为圆心,直径是|AB|;记椭圆的右焦点为F ,右准线为l ; 过点A 、B 、M 分别作出准线l 的垂线,分别记为d d d ,,21由梯形的中位线可知221d d d +=又由椭圆的第二定义可知ed AF =1||e d BF =2||即)(||||21d d e BF AF +=+又22||||2||21d d e BF AF AB +⋅=+=且10<<e 2||AB d >∴故直线与圆相离.5.方程Ax 2+By 2=C 表示椭圆的条件是(A )A , B 同号且A ≠B (B )A , B 同号且C 与异号(C )A , B , C 同号且A ≠B (D )不可能表示椭圆 解:选C . 6.已知椭圆方程为221499xy+=中,F 1, F 2分别为它的两个焦点,则下列说法正确的有①焦点在x 轴上,其坐标为(±7, 0);② 若椭圆上有一点P 到F 1的距离为10,则P 到F 2的距离为4;③焦点在y 轴上,其坐标为(0, ±210);④ a =49, b =9, c =40, (A )0个 (B )1个 (C )2个 (D )3个 解:选B .7.如果椭圆的焦距、短轴长、长轴长成等差数列,则其离心率为 (A )53 (B )312 (C )43 (D )910解:选A .8.若点P 到两定点F 1(-2, 0), F 2(2, 0)的距离之和为4,则点P 的轨迹是(A )椭圆 (B )直线 (C )线段 (D )两点 解:选C .9.设椭圆的标准方程为22135xyk k+=--,若其焦点在x 轴上,则k 的取值范围是(A )k >3 (B )3<k <5 (C )4<k <5 (D )3<k <4解:选C . 10.若AB 为过椭圆12222=+by ax 中心的弦,F (c , 0)为椭圆的右焦点,则△AFB 面积的最大值是(A )b 2(B )bc (C )ab (D )ac 解:选B . 11.已知椭圆11622=+myx,直线x y 22=,如果直线与椭圆的交点在x 轴上的射影恰为椭圆的焦点,则m 的值是( )(A ) 2 (B ) 22 (C ) 8 (D ) 32 解:选C .12.直线l 经过点()2,0M 与椭圆2222=+y x 有两个不同的公共点,那么直线l 的倾斜角的范围是(A ) ⎪⎪⎭⎫⎝⎛-26arctan,26arctanπ (B ) ⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛ππ,26a r c t a n 26a r c t a n ,0(C ) ⎪⎪⎭⎫⎝⎛26arctan,0 (D ) ⎪⎪⎭⎫ ⎝⎛-ππ,26arctan 解:选A.13.以椭圆的右焦点2F 为圆心做圆使这圆过椭圆的中心,且交椭圆于点M ,若直线1MF (1F 为椭圆的左焦点)是圆2F 的切线,则椭圆的离心率是(A ) 22 (B )23 (C ) 13- (D ) 32-解:选C .14.一条直线l :022=+-y x 过椭圆12222=+by ax 的左焦点1F 和一个顶点B ,该椭圆的离心率为(A )51 (B )52 (C )55 (D )552解:选D . 15.已知椭圆13422=+yx内一点()1,1-P ,2F 为椭圆的右焦点,M 为椭圆上的一个动点,则2MF MP +的最大值为(A ) 54- (B ) 54+ (C ) 53- (D ) 53+解:选B . 16.椭圆14922=+yx的两个焦点 1F 、2F ,点P 是椭圆上的动点,当21PF F ∠为钝角时,则点P的横坐标的范围是 解:填⎪⎪⎭⎫⎝⎛-553,553. 17.椭圆的两个焦点为()0,41-F 、 ()0,42F ,椭圆上一点P ,若21F PF ∆的最大面积是12,则椭圆的方程是 解:192522=+yx.18.已知椭圆822=+y mx 与椭圆10025922=+y x 的焦距相等,则m 的值等于 解:179.19.椭圆81922=+y x 的长轴长为 ,短轴长为 ,半焦距为 ,离心率为 ,焦点坐标为 ,顶点坐标为 ,准线方程为 解:18,6,26,322,)26,0(±,)9,0(±)0,3(±,4227±=y .20.短轴长为8,离心率为53的椭圆两焦点分别为1F 、2F ,过点1F 作直线l 交椭圆于A 、B 两点,则2ABF ∆的周长为 解:20. 21.椭圆12222=+by ax (a >b >0)的半焦距为c ,若直线y =2x 与椭圆的一个交点的横坐标为c ,则椭圆的离心率为1-.22.把椭圆的长轴AB 分成8等分,过每个等分点作x 轴的垂线交椭圆的上半部分于721,P P P 七个点,F 是椭圆的一个焦点,则||||||721F P F P F P +++ =解法一:53==ac e ,设i P 的横坐标为i x ,则i x i 455+-=不妨设其焦点为左焦点由53||===ac e dF P i 得i i ex a cax e F P i i i 432)455(535)(||2+=+-⋅+=+=+=35)721(4372||||||721=++++⨯=+++ F P F P F P .解法二:由题意可知1P 和7P 关于y 轴对称,又由椭圆的对称性及其第一定义可知a F P F P 2||||71=+,同理可知a F P F P 2||||62=+,a F P F P 2||||53=+,a F P =||4故357||||||721==+++a F P F P F P .23.直线062=+-y x 过椭圆12522=+myx的左焦点,则椭圆的右准线方程是 .解:填325=x . 24.过椭圆192522=+yx的右焦点F ,做倾斜角为4π的直线,交椭圆于A 、B 两点,则弦AB 的长是 .解:填1790.25.已知椭圆193622=+yx,过点()2,4P 做直线交椭圆于A 、B 两点,若P 为线段AB 的中点,则直线AB 的方程是 . 填:082=-+y x .26.若方程x 2cosα-y 2sinα+2=0表示一个椭圆,则圆(x +cosα)2+(y +sinα)2=1的圆心在第 象限.解:四. 27.椭圆221123xy+=的两个焦点为F 1,F 2, 点P 在椭圆上,若线段PF 1的中点在y 轴上,则|PF 1|是|PF 2|的 倍.解:7.28.线段|AB |=4,|PA |+|PB |=6, M 是AB 的中点,当点P 在同一平面内运动时,PM 长度的最大值、最小值分别为 解:3,29.方程|2|)1()1(222++=-+-y x y x 表示什么曲线?解:222|2|)1()1(22=++-+-y x y x 122<;即方程表示到定点的距离与到定直线的距离的比常数(且该常数小于1).所以,方程表示椭圆.30.求过点P (3, 0)且与圆x 2+6x +y 2-91=0相内切的动圆圆心的轨迹方程. 解:2212516xy+=.31.椭圆()012222>>=+b a by ax 的左右焦点分别为1F 、2F ,短轴的下端点A 长轴的右端点B ,点M 在椭圆上,且x MF ⊥2轴,原点为O ,若AB OM // (1) 求椭圆的离心率;(2) 若点N 为椭圆上不同于长轴端点的任意一点,求21NF F ∠的范围;(3) 过2F 与OM 垂直的弦CD ,若CD F 1∆的面积为320,求椭圆方程.解:(1)⎪⎪⎭⎫ ⎝⎛a b c M 2,,a b k ac b k AB OM ===2,得22=⇒=e c b ; (2)因为221π=∠AF F ,所以21NF F ∠的范围是⎥⎦⎤⎝⎛2,0π;(3)22c b =,222c a =,则椭圆22222c y x =+…①、直线CD :()c x y --=2…②,②代入① 得0222522=--ccy y得 c y y 53421=-,3205342212121211=⨯⨯=-=∆c c y y F F S CD F ,得 2522==b c 、502=a ,所求椭圆方程是1255022=+yx.32.已知点M 为椭圆1162522=+yx的上任意一点,1F 、2F 分别为左右焦点;且)2,1(A 求||35||1MF MA +的最小值.分析:应如何把||351MF 表示出来解:左准线1l :3252-=-=cax ,作1l MD ⊥于点D ,记||MD d = 由第二定义可知:53||1===ac e dMF ⇒ d MF 53||1=⇒ ||351MF d =故有||||||||35||1MD MA d MA MF MA +=+=+所以有当A 、M 、D 三点共线时,|MA|+|MD|有最小值:3251+即||35||1MF MA +的最小值是328变式1:||5||31MF MA +的最小值;解:283283)||35||(3||5||311=⨯=+=+MF MA MF MA变式2:||||531MF MA +的最小值;解:52832853|)|35|(|53||||5311=⨯=+=+MF MA MF MA33.已知 ,A B 为椭圆2222519x y a+=上的两点,2F 是椭圆的右焦点.若228||||,5a A F B F A B +=的中点到椭圆左准线的距离是32,试确定椭圆的方程.解:由椭圆方程可知、两准线间距离为.设,到右准线距离分别为,,由椭圆定义有,所以,则,中点到右准线距离为 ,于是到左准线距离为,,所求椭圆方程为.34.已知椭圆的中心在原点,长轴在x 轴上,,直线1=+y x 被椭圆截得的弦AB 的长为22,且弦AB 的中点M 与椭圆的中心O 的连线的斜率为22,求这个椭圆的方程.解:设椭圆方程)0(222222>>=+b a b a y a x b ,()11,y x A 、()22,y x B ,弦AB 的中点()00,y x M ,则22212212b a y a x b =+,22222222b a y a x b =+,得 ()()()()021********=-++-+y y y y a x x x x b . ()2121x x y y --=-、0212x x x =+、0212y y y =+、2200=x y ,得222b a =.()()0122212.1,22222222=-+-+⇒⎩⎨⎧+-==+bx x x y b a y a x b ,由弦长公式得 232=b ,则32=a ,所以椭圆方程为132322=+y x.35.椭圆)0(222222>>=+b a b a y a x b 的离心率32=e ,1F 、2F 分别是椭圆的左、右焦点,A 、B 是椭圆上不同的两个点,线段AB 的垂直平分线与x 轴交于点()0,1Q .(1) 求线段AB 的中点()00,y x M 的横坐标0x ;(2) 若322=+BF AF ,且椭圆上一点P 满足02160=∠PF F ,求椭圆的方程及21PF F ∆的面积解:(1)设()11,y x A 、()22,y x B 弦AB 的中点()00,y x M ,则22212212b a y a x b =+,22222222b a y a x b =+,得 ()()()()02121221212=-++-+y y y y a x x x x b.0212x x x =+、0212y y y =+、11002121-=-∙--x y x x y y ,得2259b a=,得 490=x .(2)1232x a AF -=、2232x a BF -=、292021==+x x x , 322=+BF AF ,得 53=⇒=b a ,所以椭圆方程是15922=+yx.设 11r PF =、22r PF =,则()⎩⎨⎧==-+=+16260cos 2,62021222121c r r r r r r . 得 32021=r r ,所以 33560sin 2102121==∆r r S F PF .36.过椭圆()012222>>=+b a by ax 的一个焦点F 做弦AB ,若1d AF =、2d BF =,求证:2111d d +=22ba .解:证明:设F 为右焦点,直线AB 的倾斜角θ为锐角,点A 在x 轴的上方A 、B 到右准线的距离分别为1m 、2m ,F到右准线的距离为p ,离心率为e ,则θθc o s c o s 2211d m p d m -==+ ①.又 ed m 11=、ed m 22=代入①得2111d d +=ep2.又 ac e =、cbp 2=所以2111d d +=22ba .37.已知椭圆C 的两个焦点()0,221-F 、()0,222F ,(1) 当直线l 过1F 与椭圆交于M 、N 两点,且MN F 2∆的周长为12时,求椭圆C 的方程;(2)是否存在直线m 过点()2,0P 与椭圆C 交于A 、B 两点,且以A B 为直径的圆过原点,若存在求直线m 的方程;若不存在,说明理由.解:解:(1)1922=+yx(过程略)(2) 设直线m :()存在且k k kx y ,02≠+=代人椭圆方程得 ()027369122=+++kx x k ,0>∆得 3333>-<k k 或.以A B 为直径的圆过原点,则 OB OA ⊥,设()11,y x A 、()22,y x B得()()()()04212201121221212121=++++⇒+++⇒=+x x k x x k kx kx x x y y x x 由韦达定理得()049172911272222=++-++kkkk ,解得 331±=k 使得 0>∆所以满足条件的直线m 的方程是06331=+-y x 或06331=-+y x .椭圆中焦点三角形的性质及应用定义:椭圆上任意一点与两焦点所构成的三角形称为焦点三角形. 性质一:已知椭圆方程为),0(12222>>=+b a by ax 两焦点分别为,,21F F 设焦点三角形21F PF 中,21θ=∠PF F 则2tan221θb S PF F =∆.θcos 2)2(2122212212PF PF PF PF F F c -+== )cos 1(2)(21221θ+-+=PF PF PF PFθθθcos 12)cos 1(244)cos 1(24)(222222121+=+-=+-+=∴bca cPF PF PF PF1222121sin sin tan21cos 2F PF bS PF PF b θθθθ∆∴===+性质二:已知椭圆方程为),0(12222>>=+b a by ax 左右两焦点分别为,,21F F 设焦点三角形21F PF ,若21PF F ∠最大,则点P 为椭圆短轴的端点.证明:设),(o o y x P ,由焦半径公式可知:o ex a PF +=1,o ex a PF -=1在21PF F ∆中,2122121212cos PF PF F F PF PF -+=θ21221221242)(PF PF cPF PF PF PF --+=1))((24124422122--+=--=o o ex a ex a bPF PF ca =122222--ox e a ba x a ≤≤-0 22a x o ≤∴性质三:已知椭圆方程为),0(12222>>=+b a by ax 两焦点分别为,,21F F 设焦点三角形21F PF 中,21θ=∠PF F 则.21cos 2e -≥θ证明:设,,2211r PF r PF ==则在21PF F ∆中,由余弦定理得: 1222242)(2c o s 212221221221212212221--=--+=-+=r r c a r r cr r r r r r F F r r θ .2112221)2(222222222122e ac a r r c a -=--=-+-≥ 命题得证.练习:(2000年高考题)已知椭圆)0(12222>>=+b a by ax 的两焦点分别为,,21F F 若椭圆上存在一点,P 使得,120021=∠PF F 求椭圆的离心率e 的取值范围. 简解:由椭圆焦点三角形性质可知.21120cos 2e -≥即22121e -≥-,于是得到e 的取值范围是.1,23⎪⎪⎭⎫⎢⎣⎡性质四:已知椭圆方程为),0(12222>>=+b a by ax 两焦点分别为,,21F F 设焦点三角形21F PF ,,,1221βα=∠=∠F PF F PF 则椭圆的离心率βαβαsin sin )sin(++=e .,,1221βα=∠=∠F PF F PF由正弦定理得:βαβαsin sin )180sin(1221PFPF F F o==--由等比定理得:βαβαsin sin )sin(2121++=+PF PFF F而)sin(2)sin(21βαβα+=+c F F ,βαβαsin sin 2sin sin 21+=++a PF PF∴βαβαsin sin )sin(++==ac e .练习:已知椭圆的焦点是F 1(-1,0)、F 2(1,0),P 为椭圆上一点,且|F 1F 2|是|PF 1|和|PF 2|的等差中项.(1)求椭圆的方程;(2)若点P 在第三象限,且∠PF 1F 2=120°,求tan F 1PF 2. 解:(1)由题设2|F 1F 2|=|PF 1|+|PF 2|∴2a =4,又2c =2,∴b =3 ∴椭圆的方程为3422yx+=1.(2)设∠F 1PF 2=θ,则∠PF 2F 1=60°-θ椭圆的离心率21=e 则)60sin(23sin )60sin(120sin )180sin(21θθθθ-+=-+-=oooo,整理得:5sin θ=3(1+cos θ)∴53cos 1sin =+θθ故532tan=θ,tan F 1PF 2=tan θ=11352531532=-⋅.。
椭圆的标准方程及其几何性质
椭圆的标准方程及其几何性质1. 椭圆定义:(1)第一定义:平面内与两个定点21F F 、的距离之和为常数|)|2(222F F a a >的动点P 的轨迹叫椭圆,其中两个定点21F F 、叫椭圆的焦点.当21212F F a PF PF >=+时, P 的轨迹为椭圆 ; ; 当21212F F a PF PF <=+时, P 的轨迹不存在;当21212F F a PF PF ==+时, P 的轨迹为 以21F F 、为端点的线段(2)椭圆的第二定义:平面内到定点F 与定直线l (定点F 不在定直线l 上)的距离之比是常数e (10<<e )的点的轨迹为椭圆(利用第二定义,可以实现椭圆上的动点到焦点的距离与到相应准线的距离相互转化). 2.椭圆的方程与几何性质:3.点),(00y x P 与椭圆)0(12222>>=+b a b y a x 的位置关系:当12222>+b y a x 时,点P 在椭圆外; 当12222>+b y a x 时,点P 在椭圆内; 当12222=+b y a x 时,点P 在椭圆上; 4.直线与椭圆的位置关系直线与椭圆相交0>∆⇔;直线与椭圆相切0=∆⇔;直线与椭圆相离0<∆⇔ 例题分析:题1写出适合下列条件的椭圆的标准方程:⑴两个焦点坐标分别是(-4,0)、(4,0),椭圆上一点P 到两焦点的距离 之和等于10;⑵两个焦点坐标分别是(0,-2)和(0,2)且过(23-,25) (3)两个焦点坐标分别是(-3,0),(3,0),椭圆经过点(5,0).(4)两个焦点坐标分别是(0,5),(0,-5),椭圆上一点P 到两焦点的距离和为26. (5)焦点在y 轴上,与y 轴的一个交点为P (0,-10),P 到它较近的一个焦点的距离等于2.解:(1)因为椭圆的焦点在x 轴上,所以设它的标准方程为所以所求椭圆标准方程为92522=+y x ⑵ 因为椭圆的焦点在y 轴上,所以设它的标准方程为由椭圆的定义知,22)225()23(2++-=a +22)225()23(-+-10=∴a 又2=c所以所求标准方程为61022=+x y 另法:∵ 42222-=-=a c a b∴可设所求方程142222=-+a x a y ,后将点(23-,25)的坐标代入可求出a ,从而求出椭圆方程(3)∵椭圆的焦点在x 轴上,所以设它的标准方程为: ∵100)35(0)35(222=+-+++=a ,2c =6. ∴3,5==c a∴163522222=-=-=c a b∴所求椭圆的方程为:1162522=+y x . (4)∵椭圆的焦点在y 轴上,所以设它的标准方程为)0(12222>>=+b a bx a y . ∴.144222=-=c a b∴所求椭圆方程为:114416922=+x y (5)∵椭圆的焦点在y 轴上,所以可设它的标准方程为: ∵P(0,-10)在椭圆上,∴a =10.又∵P 到它较近的一焦点的距离等于2, ∴-c -(-10)=2,故c =8. ∴36222=-=c a b .∴所求椭圆的标准方程是13610022=+x y . 题2。
椭圆的定义及性质
(B)(-2,+∞)
(C)(-1,2)
(D)(-2,-1)∪(2,+∞)
解析:由题意得
m2
2
m,
2 m 0,
解得 m>2 或-2<m<-1.
5.已知椭圆中心在原点,焦点在 x 轴上,离心率为 5 ,且过点 P(-5,4),
x2 y2 =1
椭圆关于x轴、y轴、原点对称.
yy B2
AA11
AA2 2
O O
x
在
x2 a2
y2 b2
BB11
1中令y=0, 可得x= a
从而:A1(-a,0),A2(a,0)
同理:B1(0, -b),B2(0, b)
y
B2
A1
A2
O
x
B1ቤተ መጻሕፍቲ ባይዱ
线段A1A2叫椭圆的长轴: 长为2a 线段B1B2叫椭圆的短轴: 长为2b
5
则椭圆的方程为 45 36 .
解析:由题意可设椭圆方程为 x2 y2 =1, a2 b2
则
1
b2 a2
5, 5
25 a2
16 b2
1,
解方程组得
a2
b
2
45, 即椭圆方程为
36.
x2 45
y2 36
=1.
=1. 6.已知椭圆的焦点在 x 轴上,离心率为 3 ,直线 x+y-4=0 与 y 轴的交点为 5
2.当2a=2c时,轨迹是一条线段, 是以 F1、F2为端点的线段. 3.当2a<2c时,无轨迹,图形不存在. 4.当c=0时,轨迹为圆.
椭圆的标准方程
椭圆的标准方程椭圆是一条平面曲线,定义为到两个定点F1和F2的距离之和等于常数2a的点的轨迹。
这两个定点被称为焦点,2a被称为长轴的长度。
离心率e定义为焦距与长轴的比值e=c/a(其中c是焦点到椭圆中心的距离)。
椭圆的标准方程是x²/a² + y²/b² = 1,其中a和b分别为椭圆的长轴和短轴的长度。
椭圆的中心是坐标原点(0, 0)。
对于此标准方程,我们可以观察到以下特点:1. 横轴和纵轴:椭圆的两个坐标轴分别是横轴和纵轴。
横轴的长度是2a,纵轴的长度是2b。
2. 长轴和短轴:横轴被称为长轴,纵轴被称为短轴。
长轴的长度是2a,短轴的长度是2b。
3. 焦点:焦点F1的坐标为(-c, 0),焦点F2的坐标为(c, 0)。
4. 弦:弦是椭圆上连接两点的线段,它通过椭圆的中心,并且与椭圆的两个轴相交。
5. 半焦距:半焦距是焦点到椭圆中心的距离,它等于c。
6. 离心率:离心率是焦距与长轴的比值,即e = c/a。
7. 原点对称性:椭圆关于坐标原点(0, 0)对称。
椭圆的标准方程可以用来进行椭圆的参数化描述。
将x = a·cosθ和y = b·sinθ带入标准方程后,可以得到椭圆的参数方程:x = a·cosθy = b·sinθ椭圆的面积可以通过积分得到。
由于椭圆是一个闭合曲线,它的面积是可求的。
椭圆的面积计算公式为:S = π·a·b椭圆的标准方程还可以与其他几何图形相联系。
当短轴等于长轴时,椭圆会变成一个圆。
当离心率接近于1时,椭圆会变成一个非常扁平的形状,接近于一个线段。
当离心率等于1时,椭圆将变成一个抛物线。
椭圆的标准方程是描述椭圆几何性质的重要工具。
通过这个方程,我们可以了解椭圆的形状、焦点、轴长以及其他相关参数。
它在数学、物理学和工程学中都有广泛的应用,例如天体运动的描述、电子轨道的模拟以及机械和电子设备的设计等领域。
椭圆标准方程
椭圆标准方程椭圆是平面上到两个定点F1和F2的距离之和等于常数2a的点P的轨迹。
F1和F2称为椭圆的焦点,2a称为椭圆的长轴长。
椭圆的标准方程是椭圆的一般方程在适当的坐标变换下化为特殊形式的方程。
一、椭圆的标准方程。
设椭圆的长轴长为2a,短轴长为2b(a>b>0),椭圆的中心为(h,k),则椭圆的标准方程为:(x-h)^2/a^2 + (y-k)^2/b^2 = 1。
其中,(h,k)为椭圆的中心坐标。
二、椭圆标准方程的推导。
1. 设椭圆的焦点分别为F1(-c,0)和F2(c,0),椭圆的中心为(h,k),则有h=(F1+F2)/2=0,k=0,即椭圆的中心为原点O (0,0)。
2. 设椭圆的长轴长为2a,短轴长为2b(a>b>0),则有a=c+e,b=sqrt(a^2-c^2),其中e为椭圆的离心率。
3. 根据椭圆的定义可得椭圆上任意一点P(x,y)到焦点F1的距离加上到焦点F2的距离等于常数2a,即有√((x+c)^2+y^2)+√((x-c)^2+y^2)=2a。
4. 将上式两边平方得到(x+c)^2+y^2+a^2+2√((x+c)^2+y^2)√((x-c)^2+y^2)+(x-c)^2+y^2+a^2=4a^2。
5. 化简上式得到2x^2/a^2+2y^2/b^2=1。
6. 综上所述,椭圆的标准方程为(x-h)^2/a^2 + (y-k)^2/b^2 = 1。
三、椭圆标准方程的性质。
1. 椭圆的长轴长为2a,短轴长为2b,焦距为2c(c^2=a^2-b^2)。
2. 椭圆的离心率e满足0<e<1。
3. 椭圆的焦点到椭圆上任意一点的距离之和等于椭圆的长轴长2a。
4. 椭圆的离心率e与椭圆的长轴长、短轴长的关系为e=sqrt(1-b^2/a^2)。
5. 椭圆的标准方程中,a和b分别表示椭圆的长轴长和短轴长,h和k分别表示椭圆的中心坐标。
四、椭圆标准方程的应用。
椭圆的标准方程与性质
椭圆的标准方程与性质椭圆的标准方程与性质教学目标:1 了解椭圆的实际背景,了解椭圆在刻画现实世界和解决实际问题中的作用;2 掌握椭圆的定义、几何图形、标准方程及简单几何性质.高考相关点:在高考中所占分数:13分考查出题方式:解答题的形式,而且考查方式很固定,涉及到的知识点有:求曲线方程,弦长,面积,对称关系,范围问题,存在性问题。
涉及到的基础知识1.引入椭圆的定义在平面内与两定点F1,F2的距离的和等于常数(大于|F1F2|=2c)的点的轨迹叫做椭圆.这两定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数:有以下3种情况(1)若a>c,则集合P为椭圆;(2)若a=c,则集合P为线段;(3)若a<c,则集合P为空集.2.椭圆的标准方程和几何性质题型总结类型一椭圆的定义及其应用例1:如图所示,一圆形纸片的圆心为O,F是圆内一定点,M是圆周上一动点,把纸片折叠使M与F重合,然后抹平纸片,折痕为CD,设CD与OM交于点P,则点P的轨迹是( )A.椭圆B.双曲线C.抛物线D.圆【解析】根据CD是线段MF的垂直平分线.可推断出,进而可以知道结果为定值,进而根据椭圆的定义推断出点P的轨迹【答案】根据题意知,CD是线段MF的垂直平分线.,(定值),又显然,根据椭圆的定义可推断出点P轨迹是以F、O两点为焦点的椭圆.所以A选项是正确的练习1:已知F1,F2是椭圆C:22221x ya b+=(a>b>0)的两个焦点,P为椭圆C 上的一点,且PF →1⊥2PF ,若△PF 1F 2的面积为9,则b =________. 【解析】由题意的面积∴故答案为:【答案】3练习2:已知F 1,F 2是椭圆x 216+y 29=1的两焦点,过点F2的直线交椭圆于A ,B 两点,在△AF 1B 中,若有两边之和是10,则第三边的长度为( )A .6B .5C .4D .3【解析】由椭圆方程知,椭圆的长轴,则周长为16,故第三边长为6.所以正确答案为A.【答案】A类型二 求椭圆的标准方程例2:在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点F 1,F 2在x 轴上,离心率为22.过F 1的直线l 交C 于A ,B 两点,且△ABF 2的周长为16,那么椭圆C 的方程为________.【解析】设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),由e =22,知c a =22,故b 2a 2=12.由于△ABF 2的周长为|AB |+|BF 2|+|AF 2|=|AF 1|+|AF 2|+|BF 1|+|BF 2|=4a =16,故a =4.∴b 2=8,∴椭圆C 的方程为x 216+y 28=1. 【答案】x 216+y 28=1 练习1:设F 1,F 2分别是椭圆E :x 2+y 2b2=1(0<b <1)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点.若|AF 1|=3|F 1B |,AF 2⊥x 轴,则椭圆E 的方程为________.【答案】x 2+3y 2/2=1类型三 椭圆的几何性质例3:如图,在平面直角坐标系xOy 中,A 1,A 2,B 1,B 2为椭圆()222210x y a b a b +=>>的四个顶点,F 为其右焦点,直线A 1B 2与直线B1F 相交于点T ,线段OT 与椭圆的交点M 恰为线段OT 的中点,则该椭圆的离心率为________.【解析】直线A 1B 2的方程为x -a +y b =1,直线B1F 的方程为x c +y-b =1,二者联立,得T(2aca-c,b(a+c)a-c),则M(aca-c,b(a+c)2(a-c))在椭圆x2a2+y2b2=1(a>b>0)上,∴2222()1 ()4()c a ca c a c++=--,c2+10ac-3a2=0,e2+10e-3=0,解得e=27-5. 【答案】27-5练习1:已知A、B是椭圆x2a2+y2b2=1(a>b>0)和双曲线x2a2-y2b2=1(a>0,b>0)的公共顶点.P是双曲线上的动点,M是椭圆上的动点(P、M都异于A、B),且满足AP→+BP→=λ(AM→+BM→),其中λ∈R,设直线AP、BP、AM、BM的斜率分别记为k1、k2、k3、k4,k1+k2=5,则k3+k4=________.【解析】设出点P、M的坐标,代入双曲线和椭圆的方程,再利用已知满足及其斜率的计算公式即可求出.【答案】∵A,B是椭圆和双曲线的公共顶点,∴(不妨设)A(-a,0),B(a,0).设P(x1,y1),M(x2,y2),∵,其中λ∈R,∴(x1+a,y1)+(x1-a,y1)=λ[(x2+a,y2)+(x2-a,y2)],化为x1y2=x2y1.∵P、M都异于A、B,∴y1≠0,y2≠0.∴.由k1+k2==5,化为,(*)又∵,∴,代入(*)化为.k3+k4==,又,∴,∴k3+k4===-5.故答案为-5.类型四直线与椭圆的位置关系例4:(2014·四川卷)已知椭圆C:x2a2+y2b2=1(a>b>0)的左焦点为F(-2,0),离心率为63.(1)求椭圆C的标准方程;(2)设O为坐标原点,T为直线x=-3上一点,过F作TF的垂线交椭圆于P,Q.当四边形OPTQ是平行四边形时,求四边形OPTQ的面积.【解析】(1)根据已知条件求得和的值,于是可得的值,即得到椭圆的标准方程;(2)设出点坐标和直线和的方程,将其与椭圆方程联立,根据韦达定理得到根与系数的关系,根据边角关系得到平行四边形底边的长和对应的高,代入面积的表达式即可得到结论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
椭圆的标准方程及性质(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--椭圆的标准方程及性质1. 椭圆的两种定义:(1)平面内与两定点F 1,F 2的距离的和等于定长()212F F a >的点的轨迹,即点集M ={P | |PF 1|+|PF 2|=2a ,2a >|F 1F 2|};(212F F a =时为线段21F F ,212F F a <无轨迹).其中两定点F 1,F 2叫焦点,定点间的距离叫焦距.(2)平面内一动点到一个定点和一定直线的距离的比是小于1的正常数的点的轨迹,即点集M ={P | e dPF =,0<e <1的常数}.2. 标准方程:(1)焦点在x 轴上,中心在原点:12222=+by a x (a >b >0);焦点F 1(-c ,0), F 2(c ,0).其中22b a c -=(2)焦点在y 轴上,中心在原点:12222=+bx a y (a >b >0);焦点F 1(0,-c ),F 2(0,c ).其中22b a c -= 3.椭圆一般方程两种标准方程可用统一形式表示:Ax 2+By 2=1 (A >0,B >0,A ≠B 当A <B 时,椭圆的焦点在x 轴上,A >B 时焦点在y 轴上),已知椭圆上的两个点这种形式用起来更方便. 4.共焦点的椭圆标准方程形式上的差异共焦点,则c 相同。
与椭圆12222=+by a x )0(>>b a 共焦点的椭圆方程可设为12222=+++mb y m a x )(2b m ->,此类问题常用待定系数法求解。
5.共离心率椭圆方程的椭圆标准方程共离心率,则e 相同。
与椭圆12222=+by a x )0(>>b a 共焦点的椭圆方程可设为 ,6:椭圆12222=+b y a x 与 12222=+bx a y )0(>>b a 的区别和联系标准方程12222=+b y a x )0(>>b a 12222=+bx a y )0(>>b a 图形性质焦点 )0,(1c F -,)0,(2c F),0(1c F -,),0(2c F焦距c F F 221= c F F 221= 范围 a x ≤,b y ≤ b x ≤,a y ≤对称性 关于x 轴、y 轴和原点对称顶点 )0,(a ±,),0(b ±),0(a ±,)0,(b ±轴长长轴长=a 2,短轴长=b 2x y O F F PA AB 11121222M M K K离心率)10(<<=e ace 准线方程 c a x 2±=ca y 2±=焦半径01ex a PF +=,02ex a PF -= 01ey a PF +=,02ey a PF -=7.性质:对于椭圆12222=+by a x (a >b >0)如下性质必须熟练掌握:1.范围;②对称轴、对称中心;③顶点;④焦点、焦距;⑤准线方程;⑥离心率. 焦半径c a PF c a PF -=+=min max,. 2.焦准距c b p 2=;两准线间的距离c a 22=;通径长22b a⨯.半通径.3.最大角()12122max FPF FB F ∠=∠4.8.点),(00y x P 与椭圆)0(12222>>=+b a by ax 的位置关系:当12222>+by a x 时,点P在椭圆外; 当12222>+by a x 时,点P 在椭圆内; 当12222=+by a x 时,点P 在椭圆上;9.直线与椭圆的位置关系直线与椭圆相交0>∆⇔;直线与椭圆相切0=∆⇔;直线与椭圆相离0<∆⇔10.弦长公式11.对椭圆方程22221x ya b +=作三角换元可得椭圆的参数方程:⎩⎨⎧θ=θ=sin cos b y a x ,θ为参数. 12.有关圆锥曲线弦的中点和斜率问题可利用“点差法”及结论:13对椭圆:12222=+b x a y ,则k AB =2020a xb y -.第三章:直线与方程的知识点倾斜角与斜率1. 当直线l 与x 轴相交时,我们把x 轴正方向与直线l 向上方向之间所成的角叫做直线l 的倾斜角.当直线l 与x 轴平行或重合时, 我们规定它的倾斜角为0°. 则直线l 的倾斜角α的范围是0απ≤<.2. 倾斜角不是90°的直线的斜率,等于直线的倾斜角的正切值,即tan k θ=. 如果知道直线上两点1122(,),(,)P x y P x y ,则有斜率公式2121y y k x x -=-. 特别地是,当12x x =,12y y ≠时,直线与x 轴垂直,斜率k 不存在;当12x x ≠,12y y =时,直线与y 轴垂直,斜率k =0.注意:直线的倾斜角α=90°时,斜率不存在,即直线与y 轴平行或者重合. 当α=90°时,斜率k =0;当090α︒<<︒时,斜率0k >,随着α的增大,斜率k 也增大;当90180α︒<<︒时,斜率0k <,随着α的增大,斜率k 也增大. 这样,可以求解倾斜角α的范围与斜率k 取值范围的一些对应问题. 两条直线平行与垂直的判定1. 对于两条不重合的直线1l 、2l ,其斜率分别为1k 、2k ,有:(1)12//l l 12k k =;(2)12l l ⊥121k k ⋅=-.2. 特例:两条直线中一条斜率不存在时,另一条斜率也不存在时,则它们平行,都垂直于x 轴;…. 直线的点斜式方程1. 点斜式:直线l 过点000(,)P x y ,且斜率为k ,其方程为00()y y k x x -=-.2. 斜截式:直线l 的斜率为k ,在y 轴上截距为b ,其方程为y kx b =+.3. 点斜式和斜截式不能表示垂直x 轴直线. 若直线l 过点000(,)P x y 且与x 轴垂直,此时它的倾斜角为90°,斜率不存在,它的方程不能用点斜式表示,这时的直线方程为00x x -=,或0x x =.4. 注意:y y k x x -=-与00()y y k x x -=-是不同的方程,前者表示的直线上缺少一点000(,)P x y ,后者才是整条直线.直线的两点式方程1. 两点式:直线l 经过两点111222(,),(,)P x y P x y ,其方程为112121y y x x y y x x --=--, 2. 截距式:直线l 在x 、y 轴上的截距分别为a 、b ,其方程为1x ya b+=. 3. 两点式不能表示垂直x 、y 轴直线;截距式不能表示垂直x 、y 轴及过原点的直线.4. 线段12P P 中点坐标公式1212(,)22x x y y ++. 直线的一般式方程1. 一般式:0Ax By C ++=,注意A 、B 不同时为0. 直线一般式方程0(0)Ax By C B ++=≠化为斜截式方程A Cy x BB=--,表示斜率为A B -,y 轴上截距为C B -的直线.2. 与直线:0l Ax By C ++=平行的直线,可设所求方程为10Ax By C ++=;与直线0Ax By C ++=垂直的直线,可设所求方程为10Bx Ay C -+=.3. 已知直线12,l l 的方程分别是:1111:0l A x B y C ++=(11,A B 不同时为0),2222:0l A x B y C ++=(22,A B 不同时为0),则两条直线的位置关系可以如下判别:(1)1212120l l A A B B ⊥⇔+=; (2)1212211221//0,0l l A B A B AC A B ⇔-=-≠; (3)1l 与2l 重合122112210,0A B A B AC A B ⇔-=-=; (4)1l 与2l 相交12210A B A B ⇔-≠.如果2220A B C ≠时,则11112222//A B C l l A B C ⇔=≠;1l 与2l 重合111222A B C A B C ⇔==;1l 与2l 相交1122A BA B ⇔≠.两条直线的交点坐标1. 一般地,将两条直线的方程联立,得到二元一次方程组1112220A x B y C A x B y C ++=⎧⎨++=⎩. 若方程组有惟一解,则两条直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;若方程组有无数解,则两条直线有无数个公共点,此时两条直线重合.2. 方程111222()()0A x B y C A x B y C λ+++++=为直线系,所有的直线恒过一个定点,其定点就是1110A x B y C ++=与2220A x B y C ++=的交点. 两点间的距离1. 平面内两点111(,)P x y ,222(,)P x y,则两点间的距离为:12||PP . 特别地,当12,P P 所在直线与x 轴平行时,1212||||PP x x =-;当12,P P 所在直线与y 轴平行时,1212||||PP y y =-;点到直线的距离及两平行线距离 1. 点00(,)P x y 到直线:0l Ax By C ++=的距离公式为d =2. 利用点到直线的距离公式,可以推导出两条平行直线11:0l Ax By C ++=,22:0l Ax By C ++=之间的距离公式d =,推导过程为:在直线2l 上任取一点00(,)P x y ,则0020Ax By C ++=,即002Ax By C +=-. 这时点00(,)P x y 到直线11:0l Ax By C ++=的距离为d ==。