四川省自贡市2021年中考数学真题(解析版)
2023年四川省自贡市中考数学真题(解析版)
四川省自贡市初2023届毕业生学业考试数学本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分,共6页,满分150分. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,答卷时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效,考试结束后,将试题卷和答题卡一并交回.第I 卷 选择题(共48分)注意事项:必须使用2B 铅笔将答案标号填涂在答题卡上对应题目标号的位置上,如需改动,用橡皮擦干净后,再选涂其他答案标号.一、选择题(共12个小题,每小题4分,共48分,在每题给出的四个选项中,只有一项是符合题目要求的)1. 如图,数轴上点A 表示的数是2023,OA OB =,则点B 表示的数是( )A 2023B. 2023−C. 12023D. 12023− 【答案】B【解析】【分析】根据数轴的定义求解即可.【详解】解;∵数轴上点A 表示的数是2023,OA OB =,∴=2023OB ,∴点B 表示的数是2023−,故选:B .【点睛】本题考查数轴上点表示有理数,熟练掌握数轴上点的特征是解题的关键.2. 自贡恐龙博物馆今年“五一”期间接待游客约110000人.人数110000用科学记数法表示为( )A. 41.110×B. 41110×C. 51.110×D. 61.110× 【答案】C【解析】【分析】用科学记数法表示较大的数时,一般形式为10n a ×,其中1||10a ≤<,n 为整数..【详解】解:5110000 1.110=×.故选:C .【点睛】本题考查了科学记数法,科学记数法的表示形式为10n a ×的形式,其中1||10a ≤<,n 为整数.确定n 的值时,要看把原来的数,变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正数;当原数的绝对值1<时,n 是负数,确定a 与n 的值是解题的关键. 3. 如图中六棱柱的左视图是( )A. B. C. D.【答案】A【解析】【分析】根据几何体的三视图的定义,画出从左面看所得到的图形即可.【详解】根据三视图的概念,可知选项A 中的图形是左视图,选项C 中的图形是主视图,选项D 中的图形是俯视图,故选A .【点睛】本题主要考查了简单几何体的三视图,理解三视图的定义,熟练掌握三视图的画法是解题的关键. 4. 如图,某人沿路线A B C D →→→行走,AB 与CD 方向相同,1128∠=°,则2∠=( )A. 52°B. 118°C. 128°D. 138°【答案】C【解析】 【分析】证明AB CD ,利用平行线的性质即可得到答案.【详解】解:AB 与CD 方向相同,AB CD ∴ ,12∴∠=∠,1128∠=° ,2128∴∠=°.故选:C .【点睛】本题主要考查平行线的判定与性质,掌握平行线的性质是解题的关键.5. 如图,边长为3的正方形OBCD 两边与坐标轴正半轴重合,点C 的坐标是( )A. (3,3)−B. ()3,3−C. ()3,3D. (3,3)−−【答案】C【解析】 【分析】根据正方形的性质,结合坐标的意义即可求解.【详解】解:∵边长为3的正方形OBCD 两边与坐标轴正半轴重合,∴3OB BC ==∴()3,3C ,故选:C .【点睛】本题考查了坐标与图形,熟练掌握正方形的性质,数形结合是解题的关键.6. 下列交通标志图案中,既是中心对称图形又是轴对称图形的是( )A. B. C. D.【答案】B【解析】【分析】根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,进行逐一判断即可.【详解】解:A 、是轴对称图形,不是中心对称图形,故A 选项不合题意;B 、既是轴对称图形又是中心对称图形,故B 选项符合题意;C 、既不是轴对称图形,也不是中心对称图形,故C 选项不合题意;D 、是轴对称图形,不是中心对称图形,故D 选项不合题意.故选:B .【点睛】本题主要考查了轴对称图形和中心对称图形,解题的关键在于能够熟练掌握轴对称图形和中心对称图形的定义.7. 下列说法正确的是( )A. 甲、乙两人10次测试成绩的方差分别是224,14S S ==甲乙,则乙的成绩更稳定 B. 某奖券的中奖率为1100,买100张奖券,一定会中奖1次 C. 要了解神舟飞船零件质量情况,适合采用抽样调查D. 3x =是不等式()213x −>的解,这是一个必然事件【答案】D【解析】【分析】根据方差的意义,概率的意义,抽样调查与普查,不等式的解与必然事件的定义逐项分析判断【详解】解:A. 甲、乙两人10次测试成绩的方差分别是224,14S S ==甲乙,则甲的成绩更稳定,故该选项不正确,不符合题意;B. 某奖券的中奖率为1100,买100张奖券,可能会中奖1次,故该选项不正确,不符合题意; C. 要了解神舟飞船零件质量情况,适合采用全面调查D.解:2()13x −>,25x >, 解得:52x >, ∴3x =是不等式2()13x −>的解,这是一个必然事件,故该选项正确,符合题意;故选:D .【点睛】本题考查了方差的意义,概率的意义,抽样调查与普查,不等式的解与必然事件的定义,熟练掌握以上知识是解题的关键.8. 如图,ABC 内接于O ,CD 是O 的直径,连接BD ,41DCA ∠=°,则ABC ∠的度数是( )A. 41°B. 45°C. 49°D. 59°【答案】C【解析】 【分析】由CD 是O 的直径,得出90DBC ∠=°,进而根据同弧所对的圆周角相等,得出41ABD ACD ∠=∠=°,进而即可求解.【详解】解:∵CD 是O 的直径,∴90DBC ∠=°,� AD AD =,∴41ABD ACD ∠=∠=°,∴904149ABC DBC DBA ∠=∠−∠=°−°=°,故选:C .【点睛】本题考查了圆周角定理的推论,熟练掌握圆周角定理是解题的关键.9. 第29届自贡国际恐龙灯会“辉煌新时代”主题灯组上有一幅不完整的正多边形图案,小华量得图中一边与对角线的夹角15ACB ∠=°,算出这个正多边形的边数是( )A. 9B. 10C. 11D. 12【答案】D【解析】 【分析】根据三角形内角和定理以及正多边形的性质,得出150B ∠=°,然后可得每一个外角为30°,进而即可求解.【详解】解:依题意,AB BC =,15ACB ∠=°,∴15BAC ∠=°∴180150ABC ACB BAC ∠=°−−=°∠∠∴这个正多边形的一个外角为18015030°−°=°, 所以这个多边形的边数为360=1230, 故选:D .【点睛】本题考查了三角形内角和定理,正多边形的性质,正多边形的外角与边数的关系,熟练掌握正多边的外角和等于360°是解题的关键.10. 如图1,小亮家、报亭、羽毛球馆在一条直线上.小亮从家跑步到羽毛球馆打羽毛球,再去报亭看报,最后散步回家.小亮离家距离y 与时间x 之间的关系如图2所示.下列结论错误的是( )A. 小亮从家到羽毛球馆用了7分钟B. 小亮从羽毛球馆到报亭平均每分钟走75米C. 报亭到小亮家的距离是400米D. 小亮打羽毛球的时间是37分钟【答案】D【解析】【分析】根据函数图象,逐项分析判断即可求解. 【详解】解:A. 从函数图象可得出,小亮从家到羽毛球馆用了7分钟,故该选项正确,不符合题意; B. 1000400=754537−−(米/分钟), 即小亮从羽毛球馆到报亭平均每分钟走75米,故该选项正确,不符合题意;C. 从函数图象可得出,报亭到小亮家的距离是400米,故该选项正确,不符合题意;D. 小亮打羽毛球的时间是37730−=分钟,故该选项不正确,符合题意;故选:D .【点睛】本题考查了函数图象,理解函数图像上点的坐标的实际意义,数形结合是解题的关键.11. 经过23,()41,),(A b m B b c m −+−两点的抛物线22122y x bx b c =−+−+(x 为自变量)与x 轴有交点,则线段AB 长为( )A. 10B. 12C. 13D. 15【答案】B【解析】【分析】根据题意,求得对称轴,进而得出1c b =−,求得抛物线解析式,根据抛物线与x 轴有交点得出240b ac ∆=−≥,进而得出2b =,则1c =,求得,A B 的横坐标,即可求解. 【详解】解:∵抛物线22122y x bx b c =−+−+的对称轴为直线1222b b x b a =−=−= ×−∵抛物线经过23,()41,),(A b m B b c m −+−两点 ∴23412b bc b −++−=, 即1c b =−, ∴原方程为221222y x bx b b =−+−+−, ∵抛物线与x 轴有交点,∴240b ac ∆=−≥, 即()22142202b b b −×−×−+−≥, 即2440b b −+≤,即()220b −≤,∴2b =,1211c b =−=−=,∴23264,418118b b c −=−=−+−=+−=, ∴()()41238412AB b c b =+−−−=−−=,故选:B .【点睛】本题考查了二次函数的对称性,与x 轴交点问题,熟练掌握二次函数的性质是解题的关键. 12. 如图,分别经过原点O 和点()4,0A 的动直线a ,b 夹角30OBA ∠=°,点M 是OB 中点,连接AM ,则sin OAM ∠的最大值是( )A.B.C. D. 56【答案】A【解析】【分析】根据已知条件,30OBA ∠=°,得出B 的轨迹是圆,取点()8,0D ,则AM 是OBD 的中位线,则求得ODB ∠的正弦的最大值即可求解,当BD 与C 相切时,ODB ∠最大,则正弦值最大,据此即可求解.【详解】解:如图所示,以OA 为边向上作等边OAC ,过点C 作CE x ⊥轴于点E ,则4OC OA AC ===,则C 的横坐标为2,纵坐标为CE =sin 60OC ×°=,�(2,C ,取点()8,0D ,则AM 是OBD 的中位线,�CD ==�30OBA ∠=°,∴点B 在半径为4的C 上运动,∵AM 是OBD 的中位线,�AM BD ∥�∴OAM ODB ∠=∠,当BD 与C 相切时,ODB ∠最大,则正弦值最大,在Rt BCD 中,BD =过点B 作FB x ∥轴,过点C 作CF FG ⊥于点F ,过点D 作DG FG ⊥于点G ,则F G ∠=∠�BD 与C 相切,∴BD CB ⊥,�90FBC FCB FBC DBG ∠+∠=∠+∠=°,�FCB DBG ∠=∠,�CFB BGD ∽,�CF FB BC GB GD BD == 设CF a =,FB b =,则,BG DG =�()()2,,F a G +∴826,FG DG a =−==+∴28b a ++= +解得:2b =+∴sin sin DG ODB GBD BD ∠=∠=故选:A .【点睛】本题考查了相似三角形的性质与判定,求正弦,等边三角形的性质。
2021年全国中考数学真题分类汇编--四边形:多边形与平行四边形(答案版 )
2021全国中考真题分类汇编(四边形)----多边形与平行四边形一、选择题1. (2021•湖南省常德市)一个多边形的内角和是1800°,则这个多边形是( )边形.A. 9B. 10C. 11D. 12 【答案】D【解析】【分析】根据n 边形的内角和是(n ﹣2)×180 ,根据多边形的内角和为1800 ,就得到一个关于n 的方程,从而求出边数.【详解】根据题意得:(n ﹣2)×180=1800,解得:n =12.故选:D .2. (2021•株洲市)如图所示,在正六边形内,以为边作正五边形,则( )A.B. C. D.【答案】B 3. (2021•江苏省连云港)正五边形的内角和是( )A.B. C. D.【答案】D【解析】【分析】n 边形的内角和是 ,把多边形的边数代入公式,就得到多边形的内角︒︒︒︒ABCDEF AB ABGHI FAI ∠=10︒12︒14︒15︒360︒540︒720︒900︒()2180n -⋅︒和.详解】(7﹣2)×180°=900°.故选D .4. (2021•江苏省南京市)下列长度的三条线段与长度为5的线段能组成四边形的是( )A. 1,1,1B. 1,1,8C. 1,2,2D. 2,2,2 【答案】D【解析】【分析】若四条线段能组成四边形,则三条较短边的和必大于最长边,由此即可完成.【详解】A 、1+1+1<5,即这三条线段的和小于5,根据两点间距离最短即知,此选项错误; B 、1+1+5<8,即这三条线段的和小于8,根据两点间距离最短即知,此选项错误; C 、1+2+2=5,即这三条线段的和等于5,根据两点间距离最短即知,此选项错误; D 、2+2+2>5,即这三条线段的和大于5,根据两点间距离最短即知,此选项正确; 故选:D .5. (2021•江苏省扬州) 如图,点A 、B 、C 、D 、E 在同一平面内,连接、、、、,若,则( )A.B. C. D.【答案】D【解析】 【分析】连接BD ,根据三角形内角和求出∠CBD +∠CDB ,再利用四边形内角和减去∠CBD 和∠CDB 的和,即可得到结果.【详解】解:连接BD ,∵∠BCD =100°,∴∠CBD +∠CDB =180°-100°=80°,∴∠A +∠ABC +∠E +∠CDE =360°-∠CBD -∠CDB =360°-80°=280°,【AB BC CD DE EA 100BCD ∠=︒A B D E ∠+∠+∠+∠=220︒240︒260︒280︒故选D .6. (2021•四川省眉山市)正八边形中,每个内角与每个外角的度数之比为( )A .1:3B .1:2C .2:1D .3:1【分析】此题要结合多边形的内角与外角的关系来寻求等量关系,构建方程求出每个外角.多边形外角和是固定的360°.【解答】解:这个八边形的内角和为:(8﹣2)×180°=1080°;这个八边形的每个内角的度数为:1080°÷8=135°;这个八边形的每个外角的度数为:360°÷8=45°;∴这个八边形每个内角与每个外角的度数之比为:135:45=3:1.故选:D .7. (2021•四川省自贡市) 如图,AC 是正五边形ABCDE 的对角线,的度数是( )A. 72°B. 36°C. 74°D. 88°【答案】A【解析】 【分析】根据正五边形的性质可得,,根据等腰三角形的性质可得,利用角的和差即可求解.ACD∠108B BCD ∠=∠=︒AB BC =36BCA BAC ∠=∠=︒【详解】解:∵ABCDE 是正五边形,∴,,∴,∴,故选:A .8. (2021•北京市)下列多边形中,内角和最大的是( )DA.B .C .D . 9. (2021•福建省)如图,点F 在正ABCDE 五边形的内部,△ABF 为等边三角形,则∠AFC 等于( )CA .108°B .120°C .126°D .132° 10. (2021•云南省)一个10边形的内角和等于( )CA .1800°B .1660°C .1440°D .1200° 11. (2021•山东省济宁市)如图,正五边形ABCDE 中,∠CAD 的度数为( )A .72°B .45°C .36°D .35°【分析】首先可根据五边形内角和公式求出每个内角的度数,然后求出∠CAB 和∠DAE ,108B BCD ∠=∠=︒AB BC =36BCA BAC ∠=∠=︒1083672ACD ∠=︒-︒=︒即可求出∠CAD.【解答】解:根据正多边形内角和公式可得,正五边形ABCDE的内角和=180°×(5﹣2)=540°,则∠BAE=∠B=∠E==108°,根据正五边形的性质,△ABC≌△AED,∴∠CAB=∠DAE=(180°﹣108°)=36°,∴∠CAD=108°﹣36°﹣36°=36°,故选:C.12.(2021•贵州省铜仁市)用形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙、不重叠地铺成一片,这就是平面图形的镶嵌.工人师傅不能用下列哪种形状、大小完全相同的一种地砖在平整的地面上镶嵌()A. 等边三角形B. 正方形C. 正五边形D. 正六边形【答案】C13.(2021•襄阳市)正多边形的一个外角等于60°,这个多边形的边数是()A. 3B. 6C. 9D. 12【答案】B14.(2021•绥化市)已知一个多边形内角和是外角和的4倍,则这个多边形是()A. 八边形B. 九边形C. 十边形D. 十二边形【答案】C【解析】【分析】设这个多边形的边数为n,然后根据内角和与外角和公式列方程求解即可.【详解】设这个多边形的边数为n,则(n-2)×180°=4×360°,解得:n=10,故选C.15. (2021•河北省)如图,点O为正六边形ABCDEF对角线FD上一点,S△AFO=8,S△CDO =2,则S正六边边ABCDEF的值是( )A.20B.30C.40D.随点O位置而变化【分析】正六边形ABCDEF的面积=S矩形AFDC+S△EFD+S△ABC,由正六边形每个边相等,每个角相等可得FD=AF,过E作FD垂线,垂足为M,利用解直角三角形可得△FED 的高,即可求出正六边形的面积.【解答】解:设正六边形ABCDEF的边长为x,过E作FD的垂线,垂足为M,连接AC,∵∠FED=120°,FE=ED,∴∠EFD=∠FDE,∴∠EDF=(180°﹣∠FED)=30°,∵正六边形ABCDEF的每个角为120°.∴∠CDF=120°﹣∠EDF=90°.同理∠AFD=∠FAC=∠ACD=90°,∴四边形AFDC为矩形,∵S△AFO=FO×AF,S△CDO=OD×CD,在正六边形ABCDEF中,AF=CD,∴S△AFO+S△CDO=FO×AF+OD×CD=(FO +OD )×AF=FD ×AF=10,∴FD ×AF =20,DM =cos30°DE =x ,DF =2DM =x , EM =sin30°DE =,∴S 正六边形ABCDEF =S 矩形AFDC +S △EFD +S △ABC=AF ×FD +2S △EFD=x •x +2×x •x=x 2+x 2 =20+10=30,故选:B .16.(2021•株洲市) 如图所示,四边形是平行四边形,点在线段的延长线上,若,则( )A. B. C. D.ABCD E BC 132DCE ∠=︒A ∠=38︒48︒58︒66︒【答案】B17.(2021•山东省泰安市)如图,在平行四边形ABCD中,E是BD的中点,则下列四个结论:①AM=CN;②若MD=AM,∠A=90°,则BM=CM;③若MD=2AM,则S△MNC=S△BNE;④若AB=MN,则△MFN与△DFC全等.其中正确结论的个数为( )A.1个B.2个C.3个D.4个【分析】根据平行四边形的性质,证明△MDB≌△NBD,从而判断①正确;若MD=AM,∠A=90°,则平行四边形ABCD为矩形,通过证明△BAM≌△CDM可以判断②;过点M作MG⊥BC,交BC于G,过点E作EH⊥BC,交BC于H,通过三角形面积公式可以判断③;若AB=MN则四边形MNCD是等腰梯形,通过证明△MNC≌△DCN和△MFN≌△DFC即可判断④.【解答】解:①∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠ADB=∠CBD,∵E是BD的中点,∴BE=DE,在△MDB和△NBD中,,∴△MDB≌△NBD(ASA),∴DM=BN,∴AM=CN,故①正确;②若MD=AM,∠A=90°,则平行四边形ABCD为矩形,∴∠D=∠A=90°,在△BAM和△CDM中,,∴△BAM≌△CDM(SAS),∴BM=CM,故②正确;③过点M作MG⊥BC,交BC于G,过点E作EH⊥BC,交BC于H,由①可知四边形MBCD是平行四边形,E为BD中点,∴MG=2EH,又∵MD=2AM,BN=MD,AM=NC,∴S△ANC=NC•MG=•BN•2EH=BN•EH=S△BNE,故③正确;④∵AB=MN,AB=DC,∴MN=DC,∴四边形MNCD是等腰梯形,∴∠MNC=∠DCN,在△MNC和△DCN中,,∴△MNC≌△DCN(SAS),∴∠NMC=∠CDN,在△MFN和△DFC中,,∴△MFN≌△DFC(AAS),故④正确.∴正确的个数是4个,故选:D.18.(2021•陕西省)在菱形ABCD中,∠ABC=60°,连接AC、BD,则( )A.B.C.D.【分析】由菱形的性质可得AO=CO,BO=DO,AC⊥BD,∠ABD=∠ABC=30°,由锐角三角函数可求解.【解答】解:设AC与BD交于点O,∵四边形ABCD是菱形,∴AO=CO,BO=DO,∠ABD=,∵tan∠ABD=,∴,故选:D.19.(2021•河北省)如图1,▱ABCD中,AD>AB,∠ABC为锐角.要在对角线BD上找点N,M,使四边形ANCM为平行四边形,现有图2中的甲、乙、丙三种方案,则正确的方案( )A.甲、乙、丙都是B.只有甲、乙才是C.只有甲、丙才是D.只有乙、丙才是【分析】方案甲,连接AC,由平行四边形的性质得OB=OD,OA=OC,则NO=OM,得四边形ANCM为平行四边形,方案甲正确;方案乙:证△ABN≌△CDM(AAS),得AN=CM,再由AN∥CM,得四边形ANCM为平行四边形,方案乙正确;方案丙:证△ABN≌△CDM(ASA),得AN=CM,∠ANB=∠CMD,则∠ANM=∠CMN,证出AN∥CM,得四边形ANCM为平行四边形,方案丙正确.【解答】解:方案甲中,连接AC,如图所示:∵四边形ABCD是平行四边形,O为BD的中点,∴OB=OD,OA=OC,∵BN=NO,OM=MD,∴NO=OM,∴四边形ANCM为平行四边形,方案甲正确;方案乙中:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABN=∠CDM,∵AN⊥B,CM⊥BD,∴AN∥CM,∠ANB=∠CMD,在△ABN和△CDM中,,∴△ABN≌△CDM(AAS),∴AN=CM,又∵AN∥CM,∴四边形ANCM为平行四边形,方案乙正确;方案丙中:∵四边形ABCD是平行四边形,∴∠BAD=∠BCD,AB=CD,AB∥CD,∴∠ABN=∠CDM,∵AN平分∠BAD,CM平分∠BCD,∴∠BAN=∠DCM,在△ABN和△CDM中,,∴△ABN≌△CDM(ASA),∴AN=CM,∠ANB=∠CMD,∴∠ANM=∠CMN,∴AN∥CM,∴四边形ANCM为平行四边形,方案丙正确;故选:A.20.(2021•泸州市)如图,在平行四边形ABCD中,AE平分∠BAD且交BC于点E,∠D=58°,则∠AEC的大小是()A. 61°B. 109°C. 119°D. 122°【答案】C【解析】 【分析】根据四边形ABCD 是平行四边形,得到对边平行,再利用平行的性质求出,根据角平分线的性质得:AE 平分∠BAD 求,再根据平行线的性质得,即可得到答案.【详解】解:∵四边形ABCD 是平行四边形∴,∴∵AE 平分∠BAD∴ ∵∴故选C .21. (2021•四川省南充市)如图,点O 是▱ABCD 对角线的交点,EF 过点O 分别交AD ,BC 于点E ,F ,下列结论成立的是( )A .OE =OFB .AE =BFC .∠DOC =∠OCD D .∠CFE =∠DEF【分析】证△AOE ≌△COF (ASA ),得OE =OF ,AE =CF ,∠CFE =∠AEF ,进而得出结论.【解答】解:∵▱ABCD 的对角线AC ,BD 交于点O ,∴AO =CO ,BO =DO ,AD ∥BC ,180122BAD D ∠=︒-∠=︒DAE ∠AEC ∠//AB CD //AD BC 180********BAD D ∠=︒-∠=︒-︒=︒111226122DAE BAD ∠=∠=⨯︒=︒//AD BC 180********AEC DAE ∠=︒-∠=︒-︒=︒∴∠EAO =∠FCO ,在△AOE 和△COF 中,,∴△AOE ≌△COF (ASA ),∴OE =OF ,AE =CF ,∠CFE =∠AEF ,又∵∠DOC =∠BOA ,∴选项A 正确,选项B 、C 、D 不正确,故选:A .22. (2021•天津市)如图,的顶点A ,B ,C 的坐标分别是,则顶点D 的坐标是( )A.B. C. D.【答案】C【解析】 【分析】根据平行四边形性质以及点的平移性质计算即可.【详解】解:∵四边形ABCD 平行四边形,点B 的坐标为(-2,-2),点C 的坐标为(2,-2),∴点B 到点C 为水平向右移动4个单位长度,∴A 到D 也应向右移动4个单位长度,∵点A 的坐标为(0,1),则点D 的坐标为(4,1),故选:C .23. (2021•湖北省恩施州)如图,在▱ABCD 中,AB =13,AD =5,AC ⊥BC ,则▱ABCD ABCD Y ()()()2,0,1,2,2,2---()4,1-()4,2-()4,1()2,1是的面积为( )A.30B.60C.65D.【分析】根据平行四边形的性质以及勾股定理求出四边形ABCD的底边BC和其对角线AC的值,然后根据平行四边形的面积计算公式求解.【解答】解:∵四边形ABCD为平行四边形,∴BC=AD=5.∵AC⊥BC,∴△ACB是直角三角形.∴AC===12.∴S▱ABCD=BC•AC=5×12=60.故选:B.24.(2021•湖北省荆门市)如图,将一副三角板在平行四边形ABCD中作如下摆放,设∠1=30°,那么∠2=( )A.55°B.65°C.75°D.85°【分析】根据等腰直角三角形的性质求出∠FHE=45°,求出∠NHB=∠FHE=45°,根据三角形内角和定理求出∠HNB=105°,根据平行四边形的性质得出CD∥AB,根据平行线的性质得出∠2+∠HNB=180°,带哦求出答案即可.【解答】解:延长EH交AB于N,∵△EFH 是等腰直角三角形,∴∠FHE =45°,∴∠NHB =∠FHE =45°,∵∠1=30°,∴∠HNB =180°﹣∠1﹣∠NHB =105°,∵四边形ABCD 是平行四边形,∴CD ∥AB ,∴∠2+∠HNB =180°,∴∠2=75°,故选:C .25.(2021•山东省威海市) 如图,在平行四边形ABCD 中,AD-3,CD=2.连接AC ,过点B 作BE ∥AC ,交DC 的延长线于点E ,连接AE ,交BC 于点F .若∠AFC=2∠D ,则四边形ABEC 的面积为( )B.C. 6D.【答案】B【解析】 【分析】先证明四边形ABEC 为矩形,再求出AC ,即可求出四边形ABEC 的面积.【详解】解:∵四边形ABCD 平行四边形,∴AB ∥CD ,AB =CD =2,BC =AD =3,∠D =∠ABC ,∵,是//BE AC∴四边形ABEC 为平行四边形,∵,∴,∵∠AFC =∠ABF +∠BAF ,∴∠ABF =∠BAF ,∴AF =BF ,∴2AF =2BF ,即BC =AE ,∴平行四边形ABEC 是矩形,∴∠BAC =90°,∴,∴矩形ABEC 的面积为故选:B26.(2021•浙江省衢州卷)如图,在中,,,,点D ,E ,F 分别是AB ,BC ,CA 的中点,连结DE ,EF ,则四边形ADEF 的周长为( )A. 6B. 9C. 12D. 15【答案】B27.(2021•贵州省贵阳市)如图,在▱ABCD 中,∠ABC 的平分线交AD 于点E ,∠BCD 的平分线交AD 于点F ,若AB =3,AD =4,则EF 的长是( )2AFC D ∠=∠2AFC ABC ∠=∠AC ===AB AC =g ABC V 4AB =5AC =6BC =A .1B .2C .2.5D .3【分析】根据平行四边形的性质证明DF =CD ,AE =AB ,进而可得AF 和ED 的长,然后可得答案.【解答】解:∵四边形ABCD 是平行四边形,∴AD ∥CB ,AB =CD =3,AD =BC =5,∴∠DFC =∠FCB ,又∵CF 平分∠BCD ,∴∠DCF =∠FCB ,∴∠DFC =∠DCF ,∴DF =DC =3,同理可证:AE =AB =3,∵AD =4,∴AF =5﹣4=1,DE =4﹣3=1,∴EF =4﹣1﹣1=2.故选:B .28.(2021•湖南省娄底市)如图,点在矩形的对角线所在的直线上,,则四边形是( )A. 平行四边形B. 矩形C. 菱形D. 正方形 【答案】A【解析】【分析】利用三角形全等的性质得,对应边相等及对应角相等,得出一组对边平行且相等,即可判断出形状. ,E F ABCD BD BE DFAECF【详解】解:由题意:,,又,,,,四边形为平行四边形,故选:A .二.填空题1. (2021•湖北省黄冈市)正五边形的一个内角是 108 度.【分析】因为n 边形的内角和是(n ﹣2)•180°,因而代入公式就可以求出内角和,再用内角和除以内角的个数就是一个内角的度数.【解答】解:(5﹣2)•180=540°,540÷4=108°.2. (2021•陕西省)正九边形一个内角的度数为 140° .【分析】先根据多边形内角和定理:180°•(n ﹣2)求出该多边形的内角和,再求出每一个内角的度数.【解答】解:该正九边形内角和=180°×(9﹣2)=1260°,则每个内角的度数==140°.故答案为:140°.3. (2021•上海市)六个带角的直角三角板拼成一个正六边形,直角三角板的最短边为1,求中间正六边形的面积_________.//,AD BC ADB CBD ∴∠=∠ FDA EBC ∴∠=∠,AD BC BE DF == ()ADF CBE SAS ∴V V ≌AF EC ∴=,//AFD CEB AF EC ∴∠=∠∴∴AECF 30°【解析】【分析】由六个带角的直角三角板拼成一个正六边形,直角三角板的最短边为1,可以得到中间正六边形的边长为1,做辅助线以后,得到△ABC 、△CDE、△AEF 为以1为边长的等腰三角形,△ACE 为等边三角形,再根据等腰三角形与等边三角形的性质求出边长,求出面积之和即可.【详解】解:如图所示,连接AC 、AE 、CE ,作BG ⊥AC 、DI ⊥CE、FH ⊥AE ,AI ⊥CE ,在正六边形ABCDEF 中,∵直角三角板的最短边为1,∴正六边形ABCDEF 为1,∴△ABC 、△CDE 、△AEF 为以1为边长的等腰三角形,△ACE 为等边三角形, ∵∠ABC =∠CDE =∠EFA =120︒,AB =BC = CD =DE = EF =FA =1,∴∠BAG =∠BCG =∠DCE =∠DEC =∠FAE =∠FEA =30︒,∴BG =DI = FH =, ∴由勾股定理得:AG =CG = CI = EI = EH = AH ∴AC =AE =,∴由勾股定理得:AI=, ∴S = 30°1232111332222⨯+=4. (2021•新疆) 四边形的外角和等于_______.【答案】360°.5. (2021•浙江省湖州市)为庆祝中国共产党建党100周年,某校用红色灯带制作了一个如图所示的正五角星(A ,B ,C,D ,E 是正五边形的五个顶点),则图中∠A 的度数是 度.【答案】36【解析】首先根据正五边形的内角和计算公式,求出每个内角的度数为108°,即∠ABC =∠BAE =108°,那么等腰△ABC 的底角∠BAC =36°,同理可求得∠DAE =36°,故∠CAD =∠BAE ﹣∠BAC ﹣∠EAD =108°﹣36°﹣36°=36°.其实正五角星的五个角是36°,可以作为一个常识直接记住.6. (2021•江苏省盐城市)若一个多边形的每个外角均为40°,则这个多边形的边数为 9 .【分析】一个多边形的外角和为360°,而每个外角为40°,进而求出外角的个数,即为多边形的边数.【解答】解:360°÷40°=9,故答案为:9.7. (2021•广西玉林市)如图、在正六边形中,连接线,,,,,与交于点,与交于点为,与交于点,分别延长,于点,设.有以下结论:①;②;③重心、内心及外心均是点;④四边形绕点逆时针旋转与四边形重合.则所有正确结论的序号是______.ABCDEF AD AE AC DF DB AC BD M AE DF N MN AD O AB DC G 3AB =MN AD ⊥MN =DAG △的M FACD O 30°ABDE【答案】①②③8. (2021•浙江省衢州卷)如图,在正五边形ABCDE 中,连结AC ,BD 交于点F ,则的度数为________.【答案】9. (2021•江苏省扬州)如图,在中,点E 在上,且平分,若,,则的面积为________.【答案】50【解析】【分析】过点E 作EF ⊥BC ,垂足为F ,利用直角三角形的性质求出EF ,再根据平行线的性质和角平分线的定义得到∠BCE =∠BEC ,可得BE =BC =10,最后利用平行四边形的面积公式计算即可.【详解】解:过点E 作EF ⊥BC ,垂足为F ,∵∠EBC =30°,BE =10,AFB∠72︒ABCD Y AD EC BED ∠30EBC ∠=︒10BE =ABCDY∴EF =BE =5, ∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠DEC =∠BCE ,又EC 平分∠BED ,即∠BEC =∠DEC ,∴∠BCE =∠BEC ,∴BE =BC =10,∴四边形ABCD 的面积===50,故答案为:50.10.(2021•山东省临沂市)在平面直角坐标系中,平行四边形ABCD 的对称中心是坐标原点,顶点A 、B 的坐标分别是(﹣1,1)、(2,1),将平行四边形ABCD 沿x 轴向右平移3个单位长度,则顶点C 的对应点C 1的坐标是 (4,﹣1) .【分析】由题意A ,C 关于原点对称,求出点C 的坐标,再利用平移的性质求出点C 1的坐标可得结论.【解答】解:∵平行四边形ABCD 的对称中心是坐标原点,∴点A ,点C 关于原点对称,∵A (﹣1,1),∴C (1,﹣1),∴将平行四边形ABCD 沿x 轴向右平移3个单位长度,则顶点C 的对应点C 1的坐标是(4,﹣1),故答案为:(4,﹣1).11.(2021•山东省菏泽市)如图,在Rt △ABC 中,∠C =30°,D 、E 分别为AC 、BC 的中点,DE =2,过点B 作BF ∥AC ,交DE 的延长线于点F ,则四边形ABFD 的面积为 8 .12BC EF ⨯105⨯【分析】由三角形的中位线定理证得DE∥AB,AB=2DE=4,进而证得四边形ABFD是平行四边形,在Rt△ABC中,根据勾股定理求出BC=4,得到BE=2,根据平行四边形的面积公式即可求出四边形ABFD的面积.【解答】解:∵D、E分别为AC、BC的中点,∵DE是△ABC的中位线,∴DE∥AB,DE=AB,∴AB=2DE,DF∥AB,又∵BF∥AC,∴BF∥AD,∴四边形ABFD是平行四边形,∵AB⊥BE,∴S平行四边形ABFD=AB•BE,∵DE=2,∴AB=2×2=4,在Rt△ABC中,∵∠C=30°,∴AC=2AB=2×4=8,∴BC===4,∴BE=BC=2,∴S平行四边形ABFD=4×2=8,故答案为8.12. 6.(2021•浙江省丽水市)一个多边形过顶点剪去一个角后,所得多边形的内角和为720°,则原多边形的边数是__________.【答案】6或7【解析】【分析】求出新的多边形为6边形,则可推断原来的多边形可以是6边形,可以是7边形.【详解】解:由多边形内角和,可得(n-2)×180°=720°,∴n=6,∴新的多边形为6边形,∵过顶点剪去一个角,∴原来的多边形可以是6边形,也可以是7边形,故答案为6或7.13.(2021•青海省)如图,在▱ABCD中,对角线BD=8cm,AE⊥BD,垂足为E,且AE=3cm,BC=4cm,则AD与BC之间的距离为 6cm .【分析】设AB与CD之间的距离为h,由条件可知▱ABCD的面积是△ABD的面积的2倍,可求得▱ABCD的面积,再S四边形ABCD=BC•h,可求得h的长.【解答】解:∵四边形ABCD为平行四边形,∴AB=CD,AD=BC,在△ABD和△BCD中∴△ABD≌△BCD(SSS),∵AE⊥BD,AE=3cm,BD=8cm,∴S△ABD=BD•AE=×8×3=12(cm2),∴S四边形ABCD=2S△ABD=24cm2,设AD与BC之间的距离为h,∵BC=4cm,∴S四边形ABCD=AD•h=4h,∴4h=24,解得h=6cm,故答案为:6cm.14.(2021•浙江省嘉兴市)如图,在▱ABCD中,对角线AC,BD交于点O,AB⊥AC,AH⊥BD于点H,若AB=2,BC=2,则AH的长为 .【分析】在Rt△ABC和Rt△OAB中,分别利用勾股定理可求出BC和OB的长,又AH⊥OB ,可利用等面积法求出AH 的长.【解答】解:如图,∵AB ⊥AC ,AB =2,BC =2, ∴AC ==2,在▱ABCD 中,OA =OC ,OB =OD ,∴OA =OC =,在Rt △OAB 中,OB ==,又AH ⊥BD ,∴OB •AH =OA •AB ,即=, 解得AH =. 故答案为:. 15.(2021•黑龙江省龙东地区)如图,在平行四边形中,对角线、相交于点O ,在不添加任何辅助线的情况下,请你添加一个条件______________,使平行四边形是矩形..【答案】【解析】【分析】根据矩形的判定方法即可得出答案.【详解】解:∵四边形ABCD 为平行四边形,∴当时,四边形ABCD 为矩形.故答案为:.三、解答题1.(2021•湖北省武汉市)如图,AB ∥CD ,∠B =∠D ,BC 的延长线分别交于点E ,F,求ABCD AC BDABCD 90ABC ∠=︒90ABC ∠=︒90ABC ∠=︒证:∠DEF=∠F.【分析】由平行线的性质得到∠DCF=∠B,进而推出∠DCF=∠D,根据平行线的判定得到AD∥BC,根据平行线的性质即可得到结论.【解答】证明:∵AB∥CD,∴∠DCF=∠B,∵∠B=∠D,∴∠DCF=∠D,∴AD∥BC,∴∠DEF=∠F.2.(2021•怀化市)已知:如图,四边形ABCD为平行四边形,点E、A、C、F在同一直线上,AE=CF.求证:(1)△ADE≌△CBF;(2)ED∥BF.【分析】(1)根据平行四边形的性质,可以得到DA=BC,DA∥BC,然后即可得到∠EAD =∠FCB,再根据SAS即可证明△ADE≌△CBF;(2)根据(1)中的结论和全等三角形的性质,可以得到∠E=∠F,从而可以得到ED∥BF.【解答】证明:(1)∵四边形ABCD为平行四边形,∴DA=BC,DA∥BC,∴∠DAC=∠BCA,∵∠DAC+∠EAD=180°,∠BCA+∠FCB=180°,∴∠EAD=∠FCB,在△ADE和△CBF中,,∴△ADE ≌△CBF (SAS );(2)由(1)知,△ADE ≌△CBF ,∴∠E =∠F ,∴ED ∥BF .3. 如(2021•岳阳市)图,在四边形中,,,垂足分别为点,.(1)请你只添加一个条件(不另加辅助线),使得四边形为平行四边形,你添加的条件是________;(2)添加了条件后,证明四边形为平行四边形.【答案】(1)(答案不唯一,符合题意即可);(2)见解析4. (2021•宿迁市)在①AE=CF ;②OE=OF ;③BE ∥DF 这三个条件中任选一个补充在下面横线上,并完成证明过程.已知,如图,四边形ABCD 是平行四边形,对角线AC 、BD 相交于点O ,点E 、F 在AC 上,(填写序号).求证:BE=DF .注:如果选择多个条件分别解答,按第一个解答计分.【答案】见解析【解析】ABCD AE BD ⊥CF BD ⊥EF AECF AECF //AFCE【分析】若选②,即OE=OF;根据平行四边形的性质可得BO=DO,然后即可根据SAS证明△BOE≌△DOF,进而可得结论;若选①,即AE=CF;根据平行四边形的性质得出OE=OF 后,同上面的思路解答即可;若选③,即BE∥DF,则∠BEO=∠DFO,再根据平行四边形的性质可证△BOE≌△DOF,于是可得结论.【详解】解:若选②,即OE=OF;证明:∵四边形ABCD是平行四边形,∴BO=DO,∵OE=OF,∠BOE=∠DOF,∴△BOE≌△DOF(SAS),∴BE=DF;若选①,即AE=CF;证明:∵四边形ABCD是平行四边形,∴BO=DO,AO=CO,∵AE=CF,∴OE=OF,又∠BOE=∠DOF,∴△BOE≌△DOF(SAS),∴BE=DF;若选③,即BE∥DF;证明:∵四边形ABCD是平行四边形,∴BO=DO,∵BE∥DF;∴∠BEO=∠DFO,又∠BOE=∠DOF,∴△BOE≌△DOF(AAS),∴BE =DF ;5. (2021•山东省聊城市) 如图,在四边形ABCD 中,AC 与BD 相交于点O ,且AO =CO ,点E 在BD 上,满足∠EAO =∠DCO .(1)求证:四边形AECD 是平行四边形;(2)若AB =BC ,CD =5,AC =8,求四边形AECD 的面积.【答案】(1)见解析;(2)24【解析】【分析】(1)根据题意可证明,得到OD =OE ,从而根据“对角线互相平分的四边形为平行四边形”证明即可;(2)根据AB =BC ,AO =CO ,可证明BD 为AC 的中垂线,从而推出四边形AECD 为菱形,然后根据条件求出DE 的长度,即可利用菱形的面积公式求解即可.【详解】(1)证明:在△AOE 和△COD 中,∴.∴OD =OE .又∵AO =CO ,∴四边形AECD 是平行四边形.(2)∵AB =BC ,AO =CO ,∴BO 为AC 的垂直平分线,.∴平行四边形 AECD 是菱形.∵AC =8,.AOE COD V V ≌EAO DCO AO COAOE COD ∠=∠⎧⎪=⎨⎪∠=∠⎩()AOE COD ASA V V ≌BO AC ⊥142CO AC ∴==在 Rt △COD 中,CD =5,,∴,, ∴四边形 AECD 的面积为24.6. (2021•湖南省永州市)如图,已知点A ,D ,C ,B 在同一条直线上,AD =BC ,AE =BF ,AE ∥BF .(1)求证:△AEC ≌△BFD .(2)判断四边形DECF 的形状,并证明.7.(2021•四川省广元市)如图,在平行四边形ABCD 中,E 为DC 边的中点,连接AE ,若AE 的延长线和BC 的延长线相交于点F .(1)求证:BC=CF ;(2)连接AC 和相交于点为G ,若△GEC 的面积为2,求平行四边形ABCD 的面积.【答案】(1)证明见解析;(2)24.【解析】【分析】(1)根据E 是边DC 的中点,可以得到,再根据四边形ABCD 是平行四边形,可以得到,再根据,即可得到,则答案可证;3OD ∴===26DE OD ==11682422AECD S DE AC ∴=⋅=⨯⨯=菱形BE DE CE =ADE ECF ∠∠=AED CEF ∠=∠ADE ECF V V ≌(2)先证明,根据相似三角形的性质得出,,进而得出,由得,则答案可解.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴,,∴,∵点E 为DC 的中点,∴,在和中∴,∴,∴;(2)∵四边形ABCD 是平行四边形,点E 为DC 的中点,∴,,∴,,∴,∵的面积为2, ∴,即, ∵ ∴, ∴, ∴,∴.CEG ABG V :V 8ABG S =V 12AG AB GC CE ==4BGC S =V ABC ABG BCG S S S =+V V V 12ABC S =△//B AD C AD BC =ADE ECF ∠∠=DE CE =ADE V ECF △ADE ECF DE CEAED CEF ∠=∠⎧⎪=⎨⎪∠=∠⎩()ADE ECF ASA V V ≌AD CF =BC CF =//AB DC 2AB EC =GEC ABG ∠=∠GCE GAB ∠=∠CEG ABG V :V GEC V 221124ABG CEG S AB S CE ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭V V 4428ABG CEG S S ==⨯=V V CEG ABG V :V 12AG AB GC CE ==118422BGC ABG S S ==⨯=V V 8412ABC ABG BCG S S S =+=+=V V V 221224ABCD ABC S S ==⨯=Y V8. (2021•新疆)如图,在矩形ABCD 中,点E 在边BC 上,点F 在BC 的延长线上,且.求证:(1);(2)四边形AEFD 是平行四边形.【答案】(1)证明过程见解析;(2)证明过程见解析.9.(2021•浙江省绍兴市)问题:如图,在▱ABCD 中,AB =8,∠DAB ,∠ABC 的平分线AE ,F ,求EF 的长.答案:EF =2.探究:(1)把“问题”中的条件“AB =8”去掉,其余条件不变.①当点E 与点F 重合时,求AB 的长;②当点E 与点C 重合时,求EF 的长.(2)把“问题”中的条件“AB =8,AD =5”去掉,其余条件不变,D ,E ,F 相邻两点间的距离相等时,求的值.【分析】(1)①证∠DEA =∠DAE ,得DE =AD =5,同理BC =CF =5,即可求解; ②由题意得DE =DC =5,再由CF =BC =5,即可求解;(2)分三种情况,由(1)的结果结合点C ,D ,E ,F 相邻两点间的距离相等,分别求解即可.【解答】解:(1)①如图1所示:BE CF ABE DCF △≌△∵四边形ABCD是平行四边形,∴CD=AB=8,BC=AD=5,∴∠DEA=∠BAE,∵AE平分∠DAB,∴∠DAE=∠BAE,∴∠DEA=∠DAE,∴DE=AD=5,同理:BC=CF=5,∵点E与点F重合,∴AB=CD=DE+CF=10;②如图3所示:∵点E与点C重合,∴DE=DC=5,∵CF=BC=5,∴点F与点D重合,∴EF=DC=5;(2)分三种情况:①如图3所示:同(1)得:AD=DE,∵点C,D,E,F相邻两点间的距离相等,∴AD=DE=EF=CF,∴=;②如图4所示:同(1)得:AD=DE=CF,∵DF=FE=CE,∴=;③如图5所示:同(1)得:AD=DE=CF,∵DF=DC=CE,∴=2;综上所述,的值为或.。
2021年-四川省自贡市中考数学试卷及解析
2021年四川省自贡市中考数学试卷一。
选择题(共12个小题,每小题4分,共48分;在每题给出的四个选项中,只有一项是符合题目要求的)1.(4分)计算﹣3+1的结果是()A.﹣2 B.﹣4 C.4 D.22.(4分)下列计算正确的是()A.(a﹣b)2=a2﹣b2 B.x+2y=3xy C. D.(﹣a3)2=﹣a63.(4分)2021年我市用于资助贫困学生的助学金总额是445800000元,将445800000用科学记数法表示为()A.44。
58×107B.4。
458×108C.4。
458×109D.0。
4458×10104.(4分)在平面内,将一个直角三角板按如图所示摆放在一组平行线上;若∠1=55°,则∠2的度数是()A.50°B.45°C.40°D.35°5.(4分)下面几何的主视图是()A.B.C.D.6.(4分)如图,在△ABC中,点D、E分别是AB、AC的中点,若△ADE的面积为4,则△ABC的面积为()A.8 B.12 C.14 D.167.(4分)在一次数学测试后,随机抽取九年级(3)班5名学生的成绩(单位:分)如下:80、98、98、83、91,关于这组数据的说法错误的是()A.众数是98 B.平均数是90 C.中位数是91 D.方差是568.(4分)回顾初中阶段函数的学习过程,从函数解析式到函数图象,再利用函数图象研究函数的性质,这种研究方法主要体现的数学思想是()A.数形结合B.类比C.演绎D.公理化9.(4分)如图,若△ABC内接于半径为R的⊙O,且∠A=60°,连接OB、OC,则边BC的长为()A.B.C.D.10.(4分)从﹣1、2、3、﹣6这四个数中任取两数,分别记为m、n,那么点(m,n)在函数y=图象的概率是()A.B.C.D.11.(4分)已知圆锥的侧面积是8πcm2,若圆锥底面半径为R(cm),母线长为l(cm),则R关于l的函数图象大致是()A.B.C.D.12.(4分)如图,在边长为a正方形ABCD中,把边BC绕点B逆时针旋转60°,得到线段BM,连接AM并延长交CD于N,连接MC,则△MNC的面积为()A.B.C.D.二。
2021年全国中考数学真题分类汇编 (16)
2021全国中考真题分类汇编(函数)----函数的实际应用一、选择题1. (2021·安徽省)某品牌鞋子的长度y cm 与鞋子的“码”数x 之间满足一次函数关系.若22码鞋子的长度为16cm ,44码鞋子的长度为27cm ,则38码鞋子的长度为( ) A. 23cmB. 24cmC. 25cmD. 26cm2. (2021•江苏省连云港)关于某个函数表达式,甲、乙、丙三位同学都正确地说出了该函数的一个特征. 甲:函数图像经过点;乙:函数图像经过第四象限;丙:当0x >时,y 随x 的增大而增大. 则这个函数表达式可能是( ) A. y x =-B. 1y x=C. 2yx D. 1y x=-3. (2021•四川省自贡市)已知蓄电池的电压为定值,使用蓄电池时,电流O (单位:A )与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示.下列说法正确的是( )A. 函数解析式为13I R=B. 蓄电池的电压是18VC. 当10A I ≤时, 3.6R ≥ΩD. 当6R =Ω时,4A I =4. (2021•江苏省苏州市)如图,线段AB =10,点C 、D 在AB 上,以每秒1个单位长度的速度沿着AB 向点D 移动,到达点D 后停止移动.在点P 移动过程中作如下操作:先以点P 为圆心,再将两个扇形分别围成两个圆锥的侧面,设点P 的移动时间为t (秒),则S 关于t 的函数图象大致是( )A.B.C.D.5.(2021•江西省)在同一平面直角坐标系中,二次函数y=ax2与一次函数y=bx+c的图象如图所示,则二次函数y=ax2+bx+c的图象可能是()A. B.C.D.6.(2021•山东省聊城市)已知二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+c的图象和反比例函数y=a b cx++的图象在同一坐标系中大致为()A. B. C. D.7.(2021•山东省聊城市)如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,顶点A,C分别在x轴,y轴上,B,D两点坐标分别为B(﹣4,6),D(0,4),线段EF在边OA上移动,保持EF=3,当四边形BDEF的周长最小时,点E的坐标为__________.8.(2021•上海市)某人购进一批苹果到集贸市场零售,已知卖出的苹果数量与售价之间的关系如图所示,成本为5元/千克,现以8元/千克卖出,赚___________元.9.(2021•湖北省恩施州)某物体在力F的作用下,沿力的方向移动的距离为s,力对物体所做的功W与s的对应关系如图所示,则下列结论正确的是()A .W =sB .W =20sC .W =8sD .s =10. (2021•浙江省杭州)已知y 1和y 2均是以x 为自变量的函数,当x =m 时,函数值分别是M 1和M 2,若存在实数m ,使得M 1+M 2=0,则称函数y 1和y 2具有性质P .以下函数y 1和y 2具有性质P 的是( ) A .y 1=x 2+2x 和y 2=﹣x ﹣1 B .y 1=x 2+2x 和y 2=﹣x +1C .y 1=﹣和y 2=﹣x ﹣1D .y 1=﹣和y 2=﹣x +111. (2021•浙江省丽水市)一杠杆装置如图,杆的一端吊起一桶水,水桶对杆的拉力的作用点到支点的杆长固定不变.甲、乙、丙、丁四位同学分别在杆的另一端竖直向下施加压力F F F F 丁乙甲丙、、、,将相同重量的水桶吊起同样的高度,若 F F F F <<<甲丁丙乙,则这四位同学对杆的压力的作用点到支点的距离最远的是( )A. 甲同学B. 乙同学C. 丙同学D. 丁同学12. (2021•湖南省张家界市)若二次函数)0(2≠++=a c bx ax y 的图象如图所示,则一次函数b ax y +=与反比例函数xcy -=在同一个坐标系内的大致图象为( )13. (2021•北京市)如图,用绳子围成周长为10m 的矩形,记矩形的一边长为xm ,它的邻边长为ym ,矩形的面积为Sm 2.当x 在一定范围内变化时,y 和S 都随x 的变化而变化,则y 与x ,S 与x 满足的函数关系分别是( )O yxO y xAO y Bx O yCxO yDxA .一次函数关系,二次函数关系B .反比例函数关系,二次函数关系C .一次函数关系,反比例函数关系D .反比例函数关系,一次函数关系14. (2021•内蒙古包头市) 已知二次函数2(0)y ax bx c a =-+≠的图象经过第一象限的点(1,)b -,则一次函数y bx ac =-的图象不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限15. (2021•深圳)二次函数21y ax bx =++的图象与一次函数2y ax b =+在同一平面直角坐标系中的图象可能是( )ABCD16. (2021•湖南省娄底市)用数形结合等思想方法确定二次函数22y x =+的图象与反比例函数2y x=的图象的交点的横坐标0x 所在的范围是( ) A. 0104x <≤ B.01142x <≤ C.01324x <≤ D.0314x <≤ 二、填空题1. (2021•江苏省连云港)某快餐店销售A 、B 两种快餐,每份利润分别为12元、8元,每天卖出份数分别为40份、80份.该店为了增加利润,准备降低每份A 种快餐的利润,同时提高每份B 种快餐的利润.售卖时发现,在一定范围内,每份A 种快餐利润每降1元可多卖2份,每份B 种快餐利润每提高1元就少卖2份.如果这两种快餐每天销售总份数不变,那么这两种快餐一天的总利润最多是______元.2. (2021•江苏省无锡市)请写出一个函数表达式,使其图象在第二、四象限且关于原点对称: .3.(2021•襄阳市)从喷水池喷头喷出的水珠,在空中形成一条抛物线,如图所示,在抛物线各个位置上,水珠的竖直高度y (单位:m )与它距离喷头的水平距离x (单位:m )之间满足函数关系式2-241y x x =++,喷出水珠的最大高度是______m .三、解答题1. (2021•湖北省黄冈市)红星公司销售一种成本为40元/件产品,若月销售单价不高于50元/件,一个月可售出5万件,月销售量就减少0.1万件.其中月销售单价不低于成本.设月销售单价为x (单位:元/件),月销售量为y (单位:万件). (1)直接写出y 与x 之间的函数关系式,并写出自变量x 的取值范围; (2)当月销售单价是多少元时,月销售利润最大,最大利润是多少万元?(3)为响应国家“乡村振兴”政策,该公司决定在某月每销售1件产品便向大别山区捐款a 元.已知该公司捐款当月的月销售单价不高于70元/件,月销售最大利润是78万元2. (2021•湖北省武汉市)在“乡村振兴”行动中,某村办企业以A ,B 两种农作物为原料开发了一种有机产品.A 原料的单价是B 原料单价的1.5倍,每盒还需其他成本9元.市场调查发现:该产品每盒的售价是60元时,每天可以销售500盒,每天少销售10盒. (1)求每盒产品的成本(成本=原料费+其他成本);(2)设每盒产品的售价是x 元(x 是整数),每天的利润是w 元,求w 关于x 的函数解析式(不需要写出自变量的取值范围);(3)若每盒产品的售价不超过a 元(a 是大于60的常数,且是整数),直接写出每天的最大利润.3.(2021•怀化市)某超市从厂家购进A、B两种型号的水杯,两次购进水杯的情况如表:进货批次A型水杯(个)B型水杯(个)总费用(元)一1002008000二20030013000(1)求A、B两种型号的水杯进价各是多少元?(2)在销售过程中,A型水杯因为物美价廉而更受消费者喜欢.为了增大B型水杯的销售量,超市决定对B型水杯进行降价销售,当销售价为44元时,每天可以售出20个,每降价1元,每天将多售出5个,请问超市应将B型水杯降价多少元时,每天售出B型水杯的利润达到最大?最大利润是多少?(3)第三次进货用10000元钱购进这两种水杯,如果每销售出一个A型水杯可获利10元,售出一个B型水杯可获利9元,超市决定每售出一个A型水杯就为当地“新冠疫情防控”捐b元用于购买防控物资.若A、B两种型号的水杯在全部售出的情况下,捐款后所得的利润始终不变,此时b为多少?利润为多少?4.(2021•江苏省扬州)甲、乙两汽车出租公司均有50辆汽车对外出租,下面是两公司经理的一段对话:说明:①汽车数量为整数..;②月利润=月租车费-月维护费;③两公司月利润差=月利润较高公司的利润-月利润较低公司的利润.在两公司租出的汽车数量相等的条件下,根据上述信息,解决下列问题:(1)当每个公司租出的汽车为10辆时,甲公司的月利润是_______元;当每个公司租出的汽车为_______辆时,两公司的月利润相等;(2)求两公司月利润差的最大值;a>给慈善机构,如果捐款后甲公(3)甲公司热心公益事业,每租出1辆汽车捐出a元()0司剩余的月利润仍高于乙公司月利润,且当两公司租出的汽车均为17辆时,甲公司剩余的月利润与乙公司月利润之差最大,求a的取值范围.5.(2021•山东省临沂市)公路上正在行驶的甲车,发现前方20m处沿同一方向行驶的乙车后,开始减速,减速后甲车行驶的路程s(单位:m)、速度v(单位:m/s)与时间t (单位:s)的关系分别可以用二次函数和一次函数表示,其图象如图所示.(1)当甲车减速至9m/s时,它行驶的路程是多少?(2)若乙车以10m/s的速度匀速行驶,两车何时相距最近,最近距离是多少?6.(2021•河北省)如图是某机场监控屏显示两飞机的飞行图象,1号指挥机(看成点P)始终以3km/min的速度在离地面5km高的上空匀速向右飞行,2号试飞机(看成点Q)一直保持在1号机P的正下方.2号机从原点O处沿45°仰角爬升,到4km高的A处便立刻转为水平飞行,再过1min到达B处开始沿直线BC降落,要求1min后到达C(10,3)处.(1)求OA的h关于s的函数解析式,并直接写出2号机的爬升速度;(2)求BC的h关于s的函数解析式,并预计2号机着陆点的坐标;(3)通过计算说明两机距离PQ不超过3km的时长是多少.[注:(1)及(2)中不必写s的取值范围]7.(2021•河北省)如图是某同学正在设计的一动画示意图,x轴上依次有A,O,N三个点,且AO=2,在ON上方有五个台阶T1~T5(各拐角均为90°),每个台阶的高、宽分别是1和1.5,台阶T1到x轴距离OK=10.从点A处向右上方沿抛物线L:y=﹣x2+4x+12发出一个带光的点P.(1)求点A的横坐标,且在图中补画出y轴,并直接指出点P会落在哪个台阶上;(2)当点P落到台阶上后立即弹起,又形成了另一条与L形状相同的抛物线C,且最大高度为11,求C的解析式,并说明其对称轴是否与台阶T5有交点;(3)在x轴上从左到右有两点D,E,且DE=1,从点E向上作EB⊥x轴,且BE=2.在△BDE沿x轴左右平移时,必须保证(2)中沿抛物线C下落的点P能落在边BD(包括端点)上,则点B横坐标的最大值比最小值大多少?[注:(2)中不必写x的取值范围]8. (2021•湖北省随州市)如今我国的大棚(如图1)种植技术已十分成熟.小明家的菜地上有一个长为16米的蔬菜大棚,其横截面顶部为抛物线型,大棚的一端固定在离地面高1米的墙体A 处,另一端固定在离地面高2米的墙体B 处,现对其横截面建立如图2所示的平面直角坐标系.已知大棚上某处离地面的高度y (米)与其离墙体A 的水平距离x (米)之间的关系满足216y x bx c =-++,现测得A ,B 两墙体之间的水平距离为6米.(1)直接写出b ,c 的值;(2)求大棚的最高处到地面的距离;(3)小明的爸爸欲在大棚内种植黄瓜,需搭建高为3724米的竹竿支架若干,已知大棚内可以搭建支架的土地平均每平方米需要4根竹竿,则共需要准备多少根竹竿?9. (2021•四川省达州市)渠县是全国优质黄花主产地,某加工厂加工黄花的成本为30元/千克,根据市场调查发现,每天可销售500千克,为增大市场占有率,工厂采取降价措施,批发价每千克降低1元(1)写出工厂每天的利润W 元与降价x 元之间的函数关系.当降价2元时,工厂每天的利润为多少元?(2)当降价多少元时,工厂每天的利润最大,最大为多少元?(3)若工厂每天的利润要达到9750元,并让利于民,则定价应为多少元?10. (2021•四川省乐山市)通过实验研究发现:初中生在数学课上听课注意力指标随上课时间的变化而变化,上课开始时,学生兴趣激增,中间一段时间,学生的兴趣保持平稳状态,随后开始分散.学生注意力指标y 随时间x (分钟)变化的函数图象如图所示,当010x ≤<和1020x ≤<时,图象是线段;当2045x ≤≤时,图象是反比例函数的一部分.(1)求点A 对应的指标值;(2)张老师在一节课上讲解一道数学综合题需要17分钟,他能否经过适当的安排,使学生在听这道综合题的讲解时,注意力指标都不低于36?请说明理由.11. (2021•天津市)在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.已知学校、书店、陈列馆依次在同一条直线上,书店离学校12km ,陈列馆离学校20km .李华从学校出发,匀速骑行0.6h 到达书店;在书店停留0.4h 后,匀速骑行0.5h 到达陈列馆;在陈列馆参观学习一段时间,然后回学校;回学校途中,匀速骑行0.5h 后减速,继续匀速骑行回到学校.给出的图象反映了这个过程中李华离学校的距离km y 与离开学校的时间h x 之间的对应关系.请根据相关信息,解答下列问题: (Ⅰ)填表 离开学校的时间/h 0.1 0.5 0.8 1 3离学校的距离/km 212(Ⅱ)填空:①书店到陈列馆的距离为________km ; ②李华在陈列馆参观学的时间为_______h ;③李华从陈列馆回学校途中,减速前的骑行速度为______km/h ; ④当李华离学校的距离为4km 时,他离开学校的时间为_______h . (Ⅲ)当0 1.5x ≤≤时,请直接写出y 关于x 的函数解析式.12.(2021•浙江省丽水市)李师傅将容量为60升的货车油箱加满后,从工厂出发运送一批物资到某地.行驶过程中,货车离目的地的路程s(千米)与行驶时间t(小时)的关系如图所示(中途休息、加油的时间不计.当油箱中剩余油量为10升时,货车会自动显示加油提醒.设货车平均耗油量为0.1升/千米,请根据图象解答下列问题:(1)直接写出工厂离目的地的路程;(2)求s关于t的函数表达式;(3)当货车显示加油提醒后,问行驶时间t在怎样的范围内货车应进站加油?13.(2021•浙江省宁波市)某通讯公司就手机流量套餐推出三种方案,如下表:A方案B方案C方案每月基本费用(元)20 56 266每月免费使用流量(兆)1024 m 无限超出后每兆收费(元)n nA,B,C三种方案每月所需的费用y(元)与每月使用的流量x(兆)之间的函数关系如图所示.(1)请直接写出m,n的值.(2)在A方案中,当每月使用的流量不少于1024兆时,求每月所需的费用y(元)与每月使用的流量x(兆)之间的函数关系式.(3)在这三种方案中,当每月使用的流量超过多少兆时,选择C方案最划算?14.(2021•浙江省台州)电子体重科读数直观又便于携带,为人们带来了方便.某综合实践活动小组设计了简易电子体重秤:制作一个装有踏板(踏板质量忽略不计)的可变电阻R1,R1与踏板上人的质量m之间的函数关系式为R1=km+b(其中k,b为常数,0≤m≤120),其图象如图1所示;图2的电路中,电源电压恒为8伏,定值电阻R0的阻值为30欧,接通开关,人站上踏板,电压表显示的读数为U0 ,该读数可以换算为人的质量m,温馨提示:①导体两端的电压U,导体的电阻R,通过导体的电流I,满足关系式I=U R;②串联电路中电流处处相等,各电阻两端电压之和等于总电压.(1)求k,b的值;(2)求R1关于U0的函数解析式;(3)用含U0的代数式表示m;(4)若电压表量程为0~6伏,为保护电压表,请确定该电子体重秤可称的最大质量.15.(2021•湖北省荆门市)某公司电商平台,在2021年五一长假期间,举行了商品打折促销活动,经市场调查发现,某种商品的周销售量y(件)是关于售价x(元/件)的一次函数,如表仅列出了该商品的售价x,周销售量y,周销售利润W(元)的三组对应值数据.x407090y1809030W360045002100(1)求y关于x的函数解析式(不要求写出自变量的取值范围);(2)若该商品进价a(元/件),售价x为多少时,周销售利润W最大?并求出此时的最大利润;(3)因疫情期间,该商品进价提高了m(元/件)(m>0),公司为回馈消费者,规定该商品售价x不得超过55(元/件),且该商品在今后的销售中,周销售量与售价仍满足(1)中的函数关系,若周销售最大利润是4050元,求m的值.16.(2021•贵州省铜仁市)某品牌汽车销售店销售某种品牌汽车,每辆汽车的进价16(万元).当每辆售价为22(万元)时,每月可销售4辆汽车.根据市场行情,现在决定进行降x )满足价销售.通过市场调查得到了每辆降价的费用1y(万元)与月销售量x(辆)(4某种函数关系的五组对应数据如下表:(1)请你根据所给材料和初中所学的函数知识写出1y与x的关系式1y=________;(2)每辆原售价为22万元,不考虑其它成本,降价后每月销售利润y=(每辆原售价-1y-进价)x,x x≥为多少时,销售利润最大?最大利润是多少?请你根据上述条件,求出月销售量()417.(2021•浙江省衢州卷)如图1是一座抛物线型拱桥侧面示意图.水面宽AB与桥长CD 均为24m,在距离D点6米的E处,测得桥面到桥拱的距离EF为1.5m,以桥拱顶点O为原点,桥面为x轴建立平面直角坐标系.(1)求桥拱项部O离水面的距离.(2)如图2,桥面上方有3根高度均为4m的支柱CG,OH,DI,过相邻两根支柱顶端的钢缆呈形状相同的抛物线,其最低点到桥面距离为1m.①求出其中一条钢缆抛物线的函数表达式.②为庆祝节日,在钢缆和桥拱之间竖直装饰若干条彩带,求彩带长度的最小值.18.(2021•贵州省贵阳市)为庆祝“中国共产党的百年华诞”,某校请广告公司为其制作“童心向党”文艺活动的展板、宣传册和横幅,其中制作宣传册的数量是展板数量的5倍,广告公司制作每件产品所需时间和利润如表:产品展板宣传册横幅1制作一件产品所需时间(小时)制作一件产品所获利润20310(元)(1)若制作三种产品共计需要25小时,所获利润为450元,求制作展板、宣传册和横幅的数量;(2)若广告公司所获利润为700元,且三种产品均有制作,求制作三种产品总量的最小值.19.(2021•贵州省贵阳市)甲秀楼是贵阳市一张靓丽的名片.如图①,甲秀楼的桥拱截面OBA可视为抛物线的一部分,在某一时刻,桥拱内的水面宽OA=8m,桥拱顶点B到水面的距离是4m.(1)按如图②所示建立平面直角坐标系,求桥拱部分抛物线的函数表达式;(2)一只宽为1.2m的打捞船径直向桥驶来,当船驶到桥拱下方且距O点0.4m时,桥下水位刚好在OA处,有一名身高1.68m的工人站立在打捞船正中间清理垃圾,他的头顶是否会触碰到桥拱,请说明理由(假设船底与水面齐平).(3)如图③,桥拱所在的函数图象是抛物线y=ax2+bx+c(a≠0),该抛物线在x轴下方部分与桥拱OBA在平静水面中的倒影组成一个新函数图象.将新函数图象向右平移m(m >0)个单位长度,平移后的函数图象在8≤x≤9时,y的值随x值的增大而减小,结合函数图象,求m的取值范围.20.(2021•绥化市)小刚和小亮两人沿着直线跑道都从甲地出发,沿着同一方向到达乙地,甲乙两地之间的距离是720米,先到乙地的人原地休息,已知小刚先从甲地出发4秒后,小亮从甲地出发,两人均保持匀速前行.第一次相遇后,保持原速跑一段时间,小刚突然加速,速度比原来增加了2米/秒,并保持这一速度跑到乙地(小刚加速过程忽略不计).小刚与小亮两人的距离S(米)与小亮出发时间t(秒)之间的函数图象,如图所示.根据所给信息解决以下问题.(1)m=_______,n=______;(2)求CD和EF所在直线的解析式;(3)直接写出t为何值时,两人相距30米.21.(2021•浙江省金华市)某游乐场的圆形喷水池中心O有一雕塑OA,从A点向四周喷水,喷出的水柱为抛物线,且形状相同.如图,以水平方向为x轴,点O为原点建立直角坐标系,点A在y轴上,x轴上的点C,D为水柱的落水点,水柱所在抛物线(第一象限部分)的函数表达式为y=﹣(x﹣5)2+6.(1)求雕塑高OA.(2)求落水点C,D之间的距离.(3)若需要在OD上的点E处竖立雕塑EF,OE=10m,EF=1.8m,EF⊥OD.问:顶部F是否会碰到水柱?请通过计算说明.22.(2021•浙江省绍兴市)小聪设计奖杯,从抛物线形状上获得灵感,在平面直角坐标系中画出截面示意图,杯体ACB是抛物线的一部分,抛物线的顶点C在y轴上,且点A,B 关于y轴对称,杯高DO=8,杯底MN在x轴上.(1)求杯体ACB所在抛物线的函数表达式(不必写出x的取值范围);(2)为使奖杯更加美观,小敏提出了改进方案,如图2,杯口直径A′B′∥AB,杯脚高CO不变,求A′B′的长.。
2021年四川省自贡市中考数学试卷
四川省自贡市中考数学试卷一.选择题(共12个小题,每小题4分,共48分;在每题给出的四个选项中,只有一项是符合题目要求的)1.(4.00分)计算﹣3+1的结果是()A.﹣2 B.﹣4 C.4 D.22.(4.00分)下列计算正确的是()A.(a﹣b)2=a2﹣b2 B.x+2y=3xy C. D.(﹣a3)2=﹣a6 3.(4.00分)2017年我市用于资助贫困学生的助学金总额是445800000元,将445800000用科学记数法表示为()A.44.58×107B.4.458×108C.4.458×109D.0.4458×10104.(4.00分)在平面内,将一个直角三角板按如图所示摆放在一组平行线上;若∠1=55°,则∠2的度数是()A.50°B.45°C.40°D.35°5.(4.00分)下面几何的主视图是()A.B.C.D.6.(4.00分)如图,在△ABC中,点D、E分别是AB、AC的中点,若△ADE的面积为4,则△ABC的面积为()A.8 B.12 C.14 D.167.(4.00分)在一次数学测试后,随机抽取九年级(3)班5名学生的成绩(单位:分)如下:80、98、98、83、91,关于这组数据的说法错误的是()A.众数是98 B.平均数是90 C.中位数是91 D.方差是568.(4.00分)回顾初中阶段函数的学习过程,从函数解析式到函数图象,再利用函数图象研究函数的性质,这种研究方法主要体现的数学思想是()A.数形结合B.类比C.演绎D.公理化9.(4.00分)如图,若△ABC内接于半径为R的⊙O,且∠A=60°,连接OB、OC,则边BC的长为()A.B.C.D.10.(4.00分)从﹣1、2、3、﹣6这四个数中任取两数,分别记为m、n,那么点(m,n)在函数y=图象的概率是()A.B.C.D.11.(4.00分)已知圆锥的侧面积是8πcm2,若圆锥底面半径为R(cm),母线长为l(cm),则R关于l的函数图象大致是()A.B.C.D.12.(4.00分)如图,在边长为a正方形ABCD中,把边BC绕点B逆时针旋转60°,得到线段BM,连接AM并延长交CD于N,连接MC,则△MNC的面积为()A.B.C.D.二.填空题(共6个小题,每题4分,共24分)13.(4.00分)分解因式:ax2+2axy+ay2=.14.(4.00分)化简+结果是.15.(4.00分)若函数y=x2+2x﹣m的图象与x轴有且只有一个交点,则m的值为.16.(4.00分)六一儿童节,某幼儿园用100元钱给小朋友买了甲、乙两种不同的玩具共30个,单价分别为2元和4元,则该幼儿园购买了甲、乙两种玩具分别为、个.17.(4.00分)观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2018个图形共有个○.18.(4.00分)如图,在△ABC中,AC=BC=2,AB=1,将它沿AB翻折得到△ABD,则四边形ADBC的形状是形,点P、E、F分别为线段AB、AD、DB的任意点,则PE+PF的最小值是.三、解答题(共8个题,共78分)19.(8.00分)计算:|﹣|+()﹣1﹣2cos45°.20.(8.00分)解不等式组:,并在数轴上表示其解集.21.(8.00分)某校研究学生的课余爱好情况,采取抽样调查的方法,从阅读、运动、娱乐、上网等四个方面调查了若干名学生的兴趣爱好,并将调查结果绘制成下面两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中,一共调查了名学生;(2)补全条形统计图;(3)若该校共有1500名,估计爱好运动的学生有人;(4)在全校同学中随机选取一名学生参加演讲比赛,用频率估计概率,则选出的恰好是爱好阅读的学生的概率是.22.(8.00分)如图,在△ABC中,BC=12,tanA=,∠B=30°;求AC和AB的长.23.(10.00分)如图,在△ABC中,∠ACB=90°.(1)作出经过点B,圆心O在斜边AB上且与边AC相切于点E的⊙O(要求:用尺规作图,保留作图痕迹,不写作法和证明)(2)设(1)中所作的⊙O与边AB交于异于点B的另外一点D,若⊙O的直径为5,BC=4;求DE的长.(如果用尺规作图画不出图形,可画出草图完成(2)问)24.(10.00分)阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(J.Nplcr,1550﹣1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evlcr,1707﹣1783年)才发现指数与对数之间的联系.对数的定义:一般地,若a x=N(a>0,a≠1),那么x叫做以a为底N的对数,记作:x=log a N.比如指数式24=16可以转化为4=log216,对数式2=log525可以转化为52=25.我们根据对数的定义可得到对数的一个性质:log a(M•N)=log a M+log a N(a>0,a≠1,M>0,N>0);理由如下:设log a M=m,log a N=n,则M=a m,N=a n∴M•N=a m•a n=a m+n,由对数的定义得m+n=log a(M•N)又∵m+n=log a M+log a N∴log a(M•N)=log a M+log a N解决以下问题:(1)将指数43=64转化为对数式;(2)证明log a=log a M﹣log a N(a>0,a≠1,M>0,N>0)(3)拓展运用:计算log32+log36﹣log34=.25.(12.00分)如图,已知∠AOB=60°,在∠AOB的平分线OM上有一点C,将一个120°角的顶点与点C重合,它的两条边分别与直线OA、OB相交于点D、E.(1)当∠DCE绕点C旋转到CD与OA垂直时(如图1),请猜想OE+OD与OC 的数量关系,并说明理由;(2)当∠DCE绕点C旋转到CD与OA不垂直时,到达图2的位置,(1)中的结论是否成立?并说明理由;(3)当∠DCE绕点C旋转到CD与OA的反向延长线相交时,上述结论是否成立?请在图3中画出图形,若成立,请给于证明;若不成立,线段OD、OE与OC之间又有怎样的数量关系?请写出你的猜想,不需证明.26.(14.00分)如图,抛物线y=ax2+bx﹣3过A(1,0)、B(﹣3,0),直线AD 交抛物线于点D,点D的横坐标为﹣2,点P(m,n)是线段AD上的动点.(1)求直线AD及抛物线的解析式;(2)过点P的直线垂直于x轴,交抛物线于点Q,求线段PQ的长度l与m的关系式,m为何值时,PQ最长?(3)在平面内是否存在整点(横、纵坐标都为整数)R,使得P、Q、D、R为顶点的四边形是平行四边形?若存在,直接写出点R的坐标;若不存在,说明理由.2018年四川省自贡市中考数学试卷参考答案与试题解析一.选择题(共12个小题,每小题4分,共48分;在每题给出的四个选项中,只有一项是符合题目要求的)1.(4.00分)计算﹣3+1的结果是()A.﹣2 B.﹣4 C.4 D.2【分析】利用异号两数相加取绝对值较大的加数的符号,然后用较大的绝对值减去较小的绝对值即可.【解答】解:﹣3+1=﹣2;故选:A.【点评】本题考查了有理数的加法,比较简单,属于基础题.2.(4.00分)下列计算正确的是()A.(a﹣b)2=a2﹣b2 B.x+2y=3xy C. D.(﹣a3)2=﹣a6【分析】根据相关的运算法则即可求出答案.【解答】解:(A)原式=a2﹣2ab+b2,故A错误;(B)原式=x+2y,故B错误;(D)原式=a6,故D错误;故选:C.【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.3.(4.00分)2017年我市用于资助贫困学生的助学金总额是445800000元,将445800000用科学记数法表示为()A.44.58×107B.4.458×108C.4.458×109D.0.4458×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:445800000=4.458×108,故选:B.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(4.00分)在平面内,将一个直角三角板按如图所示摆放在一组平行线上;若∠1=55°,则∠2的度数是()A.50°B.45°C.40°D.35°【分析】直接利用平行线的性质结合已知直角得出∠2的度数.【解答】解:由题意可得:∠1=∠3=55°,∠2=∠4=90°﹣55°=35°.故选:D.【点评】此题主要考查了平行线的性质,正确得出∠3的度数是解题关键.5.(4.00分)下面几何的主视图是()A.B.C.D.【分析】主视图是从物体正面看所得到的图形.【解答】解:从几何体正面看,从左到右的正方形的个数为:2,1,2.故选B.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图,解答时学生易将三种视图混淆而错误地选其它选项.6.(4.00分)如图,在△ABC中,点D、E分别是AB、AC的中点,若△ADE的面积为4,则△ABC的面积为()A.8 B.12 C.14 D.16【分析】直接利用三角形中位线定理得出DE∥BC,DE=BC,再利用相似三角形的判定与性质得出答案.【解答】解:∵在△ABC中,点D、E分别是AB、AC的中点,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∵=,∴=,∵△ADE的面积为4,∴△ABC的面积为:16,故选:D.【点评】此题主要考查了三角形的中位线以及相似三角形的判定与性质,正确得出△ADE∽△ABC是解题关键.7.(4.00分)在一次数学测试后,随机抽取九年级(3)班5名学生的成绩(单位:分)如下:80、98、98、83、91,关于这组数据的说法错误的是()A.众数是98 B.平均数是90 C.中位数是91 D.方差是56【分析】根据众数、中位数的概念、平均数、方差的计算公式计算.【解答】解:98出现的次数最多,∴这组数据的众数是98,A说法正确;=(80+98+98+83+91)=90,B说法正确;这组数据的中位数是91,C说法正确;S2=[(80﹣90)2+(98﹣90)2+(98﹣90)2+(83﹣90)2+(91﹣90)2]=×278=55.6,D说法错误;故选:D.【点评】本题考查的是众数、中位数的概念、平均数和方差的计算,掌握方差的计算公式s12=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2]是解题的关键.8.(4.00分)回顾初中阶段函数的学习过程,从函数解析式到函数图象,再利用函数图象研究函数的性质,这种研究方法主要体现的数学思想是()A.数形结合B.类比C.演绎D.公理化【分析】从函数解析式到函数图象,再利用函数图象研究函数的性质正是数形结合的数学思想的体现.【解答】解:学习了一次函数、二次函数和反比例函数,都是按照列表、描点、连线得到函数的图象,然后根据函数的图象研究函数的性质,这种研究方法主要体现了数形结合的数学思想.故选:A.【点评】本题考查了函数图象,解题的关键是掌握初中数学常用的数学思想.9.(4.00分)如图,若△ABC内接于半径为R的⊙O,且∠A=60°,连接OB、OC,则边BC的长为()A.B.C.D.【分析】延长BO交圆于D,连接CD,则∠BCD=90°,∠D=∠A=60°;又BD=2R,根据锐角三角函数的定义得BC=R.【解答】解:延长BO交⊙O于D,连接CD,则∠BCD=90°,∠D=∠A=60°,∴∠CBD=30°,∵BD=2R,∴DC=R,∴BC=R,故选:D.【点评】此题综合运用了圆周角定理、直角三角形30°角的性质、勾股定理,注意:作直径构造直角三角形是解决本题的关键.10.(4.00分)从﹣1、2、3、﹣6这四个数中任取两数,分别记为m、n,那么点(m,n)在函数y=图象的概率是()A.B.C.D.【分析】根据反比例函数图象上点的坐标特征可得出mn=6,列表找出所有mn 的值,根据表格中mn=6所占比例即可得出结论.【解答】解:∵点(m,n)在函数y=的图象上,∴mn=6.列表如下:m﹣1﹣1﹣1222333﹣6﹣6﹣6n23﹣6﹣13﹣6﹣12﹣6﹣123mn﹣2﹣36﹣26﹣12﹣36﹣186﹣12﹣18mn的值为6的概率是=.故选:B.【点评】本题考查了反比例函数图象上点的坐标特征以及列表法与树状图法,通过列表找出mn=6的概率是解题的关键.11.(4.00分)已知圆锥的侧面积是8πcm2,若圆锥底面半径为R(cm),母线长为l(cm),则R关于l的函数图象大致是()A.B.C.D.【分析】根据圆锥的侧面展开图是扇形、扇形面积公式列出关系式,根据反比例函数图象判断即可.【解答】解:由题意得,×2πR×l=8π,则R=,故选:A.【点评】本题考查的是圆锥的计算、函数图象,掌握圆锥的圆锥的侧面积的计算公式是解题的关键.12.(4.00分)如图,在边长为a正方形ABCD中,把边BC绕点B逆时针旋转60°,得到线段BM,连接AM并延长交CD于N,连接MC,则△MNC的面积为()A.B.C.D.【分析】作MG⊥BC于G,MH⊥CD于H,根据旋转变换的性质得到△MBC是等边三角形,根据直角三角形的性质和勾股定理分别求出MH、CH,根据三角形的面积公式计算即可.【解答】解:作MG⊥BC于G,MH⊥CD于H,则BG=GC,AB∥MG∥CD,∴AM=MN,∵MH⊥CD,∠D=90°,∴MH∥AD,∴NH=HD,由旋转变换的性质可知,△MBC是等边三角形,∴MC=BC=a,由题意得,∠MCD=30°,∴MH=MC=a,CH=a,∴DH=a﹣a,∴CN=CH﹣NH=a﹣(a﹣a)=(﹣1)a,∴△MNC的面积=××(﹣1)a=a2,故选:C.【点评】本题考查的是旋转变换的性质、正方形的性质,掌握正方形的性质、平行线的性质是解题的关键.二.填空题(共6个小题,每题4分,共24分)13.(4.00分)分解因式:ax2+2axy+ay2=a(x+y)2.【分析】先提取公因式a,再根据完全平方公式进行二次分解.完全平方公式:(a+b)2=a2+2ab+b2.【解答】解:原式=a(x2+2xy+y2)…(提取公因式)=a(x+y)2.…(完全平方公式)【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行两次分解,注意要分解要彻底.14.(4.00分)化简+结果是.【分析】根据分式的运算法则即可求出答案.【解答】解:原式=+=故答案为:【点评】本题考查分式的运算法则,解题的关键是熟练运分式的运算法则,本题属于基础题型.15.(4.00分)若函数y=x2+2x﹣m的图象与x轴有且只有一个交点,则m的值为﹣1.【分析】由抛物线与x轴只有一个交点,即可得出关于m的一元一次方程,解之即可得出m的值.【解答】解:∵函数y=x2+2x﹣m的图象与x轴有且只有一个交点,∴△=22﹣4×1×(﹣m)=0,解得:m=﹣1.故答案为:﹣1.【点评】本题考查了抛物线与x轴的交点,牢记“当△=b2﹣4ac=0时,抛物线与x轴有1个交点”是解题的关键.16.(4.00分)六一儿童节,某幼儿园用100元钱给小朋友买了甲、乙两种不同的玩具共30个,单价分别为2元和4元,则该幼儿园购买了甲、乙两种玩具分别为10、20个.【分析】根据二元一次方程组,可得答案.【解答】解:设甲玩具购买x个,乙玩具购买y个,由题意,得,解得,甲玩具购买10个,乙玩具购买20个,故答案为:10,20.【点评】本题考查了二次元一次方程组的应用,根据题意找出两个等量关系是解题关键.17.(4.00分)观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2018个图形共有6055个○.【分析】每个图形的最下面一排都是1,另外三面随着图形的增加,每面的个数也增加,据此可得出规律,则可求得答案.【解答】解:观察图形可知:第1个图形共有:1+1×3,第2个图形共有:1+2×3,第3个图形共有:1+3×3,…,第n个图形共有:1+3n,∴第2018个图形共有1+3×2018=6055,故答案为:6055.【点评】本题为规律型题目,找出图形的变化规律是解题的关键,注意观察图形的变化.18.(4.00分)如图,在△ABC中,AC=BC=2,AB=1,将它沿AB翻折得到△ABD,则四边形ADBC的形状是菱形,点P、E、F分别为线段AB、AD、DB的任意点,则PE+PF的最小值是.【分析】根据题意证明四边相等即可得出菱形;作出F关于AB的对称点M,再过M作ME⊥AD,交ABA于点P,此时PE+PF最小,求出ME即可.【解答】解:∵△ABC沿AB翻折得到△ABD,∴AC=AD,BC=BD,∵AC=BC,∴AC=AD=BC=BD,∴四边形ADBC是菱形,故答案为菱;如图作出F关于AB的对称点M,再过M作ME⊥AD,交ABA于点P,此时PE+PF最小,此时PE+PF=ME,过点A作AN⊥BC,∵AD∥BC,∴ME=AN,作CH⊥AB,∵AC=BC,∴AH=,由勾股定理可得,CH=,∵,可得,AN=,∴ME=AN=,∴PE+PF最小为,故答案为.【点评】此题主要考查路径和最短问题,会结合轴对称的知识和“垂线段最短”的基本事实分析出最短路径是解题的关键.三、解答题(共8个题,共78分)19.(8.00分)计算:|﹣|+()﹣1﹣2cos45°.【分析】本题涉及绝对值、负整数指数幂、特殊角的三角函数值3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=+2﹣2×=+2﹣=2.故答案为2.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、特殊角的三角函数值、绝对值等考点的运算.20.(8.00分)解不等式组:,并在数轴上表示其解集.【分析】分别解不等式①、②求出x的取值范围,取其公共部分即可得出不等式组的解集,再将其表示在数轴上,此题得解.【解答】解:解不等式①,得:x≤2;解不等式②,得:x>1,∴不等式组的解集为:1<x≤2.将其表示在数轴上,如图所示.【点评】本题考查了解一元一次不等式组以及在数轴上表示不等式的解集,通过解不等式组求出x的取值范围是解题的关键.21.(8.00分)某校研究学生的课余爱好情况,采取抽样调查的方法,从阅读、运动、娱乐、上网等四个方面调查了若干名学生的兴趣爱好,并将调查结果绘制成下面两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中,一共调查了100名学生;(2)补全条形统计图;(3)若该校共有1500名,估计爱好运动的学生有600人;(4)在全校同学中随机选取一名学生参加演讲比赛,用频率估计概率,则选出的恰好是爱好阅读的学生的概率是.【分析】(1)根据爱好运动人数的百分比,以及运动人数即可求出共调查的人数;(2)根据两幅统计图即可求出阅读的人数以及上网的人数,从而可补全图形.(3)利用样本估计总体即可估计爱好运动的学生人数.(4)根据爱好阅读的学生人数所占的百分比即可估计选出的恰好是爱好阅读的学生的概率.【解答】解:(1)爱好运动的人数为40,所占百分比为40%∴共调查人数为:40÷40%=100(2)爱好上网的人数所占百分比为10%∴爱好上网人数为:100×10%=10,∴爱好阅读人数为:100﹣40﹣20﹣10=30,补全条形统计图,如图所示,(3)爱好运动所占的百分比为40%,∴估计爱好运用的学生人数为:1500×40%=600(4)爱好阅读的学生人数所占的百分比30%,∴用频率估计概率,则选出的恰好是爱好阅读的学生的概率为故答案为:(1)100;(3)600;(4)【点评】本题考查统计与概率,解题的关键是正确利用两幅统计图的信息,本题属于中等题型.22.(8.00分)如图,在△ABC中,BC=12,tanA=,∠B=30°;求AC和AB的长.【分析】如图作CH⊥AB于H.在Rt△求出CH、BH,这种Rt△ACH中求出AH、AC即可解决问题;【解答】解:如图作CH⊥AB于H.在Rt△BCH中,∵BC=12,∠B=30°,∴CH=BC=6,BH==6,在Rt△ACH中,tanA==,∴AH=8,∴AC==10,∴AB=AH+BH=8+6.【点评】本题考查解直角三角形,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.23.(10.00分)如图,在△ABC中,∠ACB=90°.(1)作出经过点B,圆心O在斜边AB上且与边AC相切于点E的⊙O(要求:用尺规作图,保留作图痕迹,不写作法和证明)(2)设(1)中所作的⊙O与边AB交于异于点B的另外一点D,若⊙O的直径为5,BC=4;求DE的长.(如果用尺规作图画不出图形,可画出草图完成(2)问)【分析】(1)作∠ABC的角平分线交AC于E,作EO⊥AC交AB于点O,以O为圆心,OB为半径画圆即可解决问题;(2)作OH⊥BC于H.首先求出OH、EC、BE,利用△BCE∽△BED,可得=,解决问题;【解答】解:(1)⊙O如图所示;(2)作OH⊥BC于H.∵AC是⊙O的切线,∴OE⊥AC,∴∠C=∠CEO=∠OHC=90°,∴四边形ECHO是矩形,∴OE=CH=,BH=BC﹣CH=,在Rt△OBH中,OH==2,∴EC=OH=2,BE==2,∵∠EBC=∠EBD,∠BED=∠C=90°,∴△BCE∽△BED,∴=,∴=,∴DE=.【点评】本题考查作图﹣复杂作图,切线的判定和性质,相似三角形的判定和性质、勾股定理、角平分线的定义,等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24.(10.00分)阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(J.Nplcr,1550﹣1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evlcr,1707﹣1783年)才发现指数与对数之间的联系.对数的定义:一般地,若a x=N(a>0,a≠1),那么x叫做以a为底N的对数,记作:x=log a N.比如指数式24=16可以转化为4=log216,对数式2=log525可以转化为52=25.我们根据对数的定义可得到对数的一个性质:log a(M•N)=log a M+log a N(a>0,a≠1,M>0,N>0);理由如下:设log a M=m,log a N=n,则M=a m,N=a n∴M•N=a m•a n=a m+n,由对数的定义得m+n=log a(M•N)又∵m+n=log a M+log a N∴log a(M•N)=log a M+log a N解决以下问题:(1)将指数43=64转化为对数式3=log464;(2)证明log a=log a M﹣log a N(a>0,a≠1,M>0,N>0)(3)拓展运用:计算log32+log36﹣log34=1.【分析】(1)根据题意可以把指数式43=64写成对数式;(2)先设log a M=m,log a N=n,根据对数的定义可表示为指数式为:M=a m,N=a n,计算的结果,同理由所给材料的证明过程可得结论;(3)根据公式:log a(M•N)=log a M+log a N和log a=log a M﹣log a N的逆用,将所求式子表示为:log3(2×6÷4),计算可得结论.【解答】解:(1)由题意可得,指数式43=64写成对数式为:3=log464,故答案为:3=log464;(2)设log a M=m,log a N=n,则M=a m,N=a n,∴==a m﹣n,由对数的定义得m﹣n=log a,又∵m﹣n=log a M﹣log a N,∴log a=log a M﹣log a N(a>0,a≠1,M>0,N>0);(3)log32+log36﹣log34,=log3(2×6÷4),=log33,=1,故答案为:1.【点评】本题考查整式的混合运算、对数与指数之间的关系与相互转化的关系,解题的关键是明确新定义,明白指数与对数之间的关系与相互转化关系.25.(12.00分)如图,已知∠AOB=60°,在∠AOB的平分线OM上有一点C,将一个120°角的顶点与点C重合,它的两条边分别与直线OA、OB相交于点D、E.(1)当∠DCE绕点C旋转到CD与OA垂直时(如图1),请猜想OE+OD与OC 的数量关系,并说明理由;(2)当∠DCE绕点C旋转到CD与OA不垂直时,到达图2的位置,(1)中的结论是否成立?并说明理由;(3)当∠DCE绕点C旋转到CD与OA的反向延长线相交时,上述结论是否成立?请在图3中画出图形,若成立,请给于证明;若不成立,线段OD、OE与OC之间又有怎样的数量关系?请写出你的猜想,不需证明.【分析】(1)先判断出∠OCE=60°,再利用特殊角的三角函数得出OD=OC,同OE=OC,即可得出结论;(2)同(1)的方法得OF+OG=OC,再判断出△CFD≌△CGE,得出DF=EG,最后等量代换即可得出结论;(3)同(2)的方法即可得出结论.【解答】解:(1)∵OM是∠AOB的角平分线,∴∠AOC=∠BOC=∠AOB=30°,∵CD⊥OA,∴∠ODC=90°,∴∠OCD=60°,∴∠OCE=∠DCE﹣∠OCD=60°,在Rt△OCD中,OD=OC•cos30°=OC,同理:OE=OC,∴OD+OE=OC;(2)(1)中结论仍然成立,理由:过点C作CF⊥OA于F,CG⊥OB于G,∴∠OFC=∠OGC=90°,∵∠AOB=60°,∴∠FCG=120°,同(1)的方法得,OF=OC,OG=OC,∴OF+OG=OC,∵CF⊥OA,CG⊥OB,且点C是∠AOB的平分线OM上一点,∴CF=CG,∵∠DCE=120°,∠FCG=120°,∴∠DCF=∠ECG,∴△CFD≌△CGE,∴DF=EG,∴OF=OD+DF=OD+EG,OG=OE﹣EG,∴OF+OG=OD+EG+OE﹣EG=OD+OE,∴OD+OE=OC;(3)(1)中结论不成立,结论为:OE﹣OD=OC,理由:过点C作CF⊥OA于F,CG⊥OB于G,∴∠OFC=∠OGC=90°,∵∠AOB=60°,∴∠FCG=120°,同(1)的方法得,OF=OC,OG=OC,∴OF+OG=OC,∵CF⊥OA,CG⊥OB,且点C是∠AOB的平分线OM上一点,∴CF=CG,∵∠DCE=120°,∠FCG=120°,∴∠DCF=∠ECG,∴△CFD≌△CGE,∴DF=EG,∴OF=DF﹣OD=EG﹣OD,OG=OE﹣EG,∴OF+OG=EG﹣OD+OE﹣EG=OE﹣OD,∴OE﹣OD=OC.【点评】此题是几何变换综合题,主要考查了角平分线的定义和定理,全等三角形的判定和性质,特殊角的三角函数直角三角形的性质,正确作出辅助线是解本题的关键.26.(14.00分)如图,抛物线y=ax2+bx﹣3过A(1,0)、B(﹣3,0),直线AD 交抛物线于点D,点D的横坐标为﹣2,点P(m,n)是线段AD上的动点.(1)求直线AD及抛物线的解析式;(2)过点P的直线垂直于x轴,交抛物线于点Q,求线段PQ的长度l与m的关系式,m为何值时,PQ最长?(3)在平面内是否存在整点(横、纵坐标都为整数)R,使得P、Q、D、R为顶点的四边形是平行四边形?若存在,直接写出点R的坐标;若不存在,说明理由.【分析】(1)根据待定系数法,可得抛物线的解析式;根据自变量与函数值的对应关系,可得D点坐标,再根据待定系数法,可得直线的解析式;(2)根据平行于y轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得二次函数,根据二次函数的性质,可得答案;(3)根据PQ的长是正整数,可得PQ,根据平行四边形的性质,对边平行且相等,可得DR的长,根据点的坐标表示方法,可得答案.【解答】解:(1)把(1,0),(﹣3,0)代入函数解析式,得,解得,抛物线的解析式为y=x2+2x﹣3;当x=﹣2时,y=(﹣2)2+2×(﹣2)﹣3,解得y=﹣3,即D(﹣2,﹣3).设AD的解析式为y=kx+b,将A(1,0),D(﹣2,﹣3)代入,得,解得,直线AD的解析式为y=x﹣1;(2)设P点坐标为(m,m﹣1),Q(m,m2+2m﹣3),l=(m﹣1)﹣(m2+2m﹣3)化简,得l=﹣m2﹣m+2配方,得l=﹣(m+)2+,=;当m=﹣时,l最大(3)由(2)可知,0<PQ≤.当PQ为边时,DR∥PQ且DR=PQ.∵R是整点,D(﹣2,﹣3),∴PQ是正整数,∴PQ=1,或PQ=2.当PQ=1时,DR=1,此时点R的横坐标为﹣2,纵坐标为﹣3+1=﹣2或﹣3﹣1=﹣4,∴R(﹣2,﹣2)或R(﹣2,﹣4);当PQ=2时,DR=2,此时点R的横坐标为﹣2,纵坐标为﹣3+2=﹣1或﹣3﹣2=﹣5,即R(﹣2,﹣1)或R(﹣2,﹣5).设点R的坐标为(n,n+m2+m﹣3),则QR2=2(m﹣n)2.又∵P(m,m﹣1)、D(﹣2,﹣3),∴PD2=(m+2)2,∴(m+2)2=(m﹣n)2,解得n=﹣2(不合题意,舍去)或n=2m+2.∴点R的坐标为(2m+2,m2+3m﹣1).∵R是整点,﹣2<m<1,∴当m=﹣1时,点R的坐标为(0,﹣3);当m=0时,点R的坐标为(2,﹣1).综上所述,存在满足R的点,它的坐标为(﹣2,﹣2)或(﹣2,﹣4)或(﹣2,﹣1)或(﹣2,﹣5)或(0,﹣3)或(2,﹣1).【点评】本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用二次函数的性质;解(3)的关键是利用DR=PQ且是正整数得出DR 的长.。
2021年中考数学真题 图形的相似(共55题)-(解析版)
2021年中考数学真题分项汇编【全国通用】(第01期)22图形的相似(共55题)姓名:__________________ 班级:______________ 得分:_________________一、单选题1.(2021·浙江温州市·中考真题)如图,图形甲与图形乙是位似图形,O 是位似中心,位似比为2:3,点A ,B 的对应点分别为点A ',B '.若6AB =,则A B ''的长为( )A .8B .9C .10D .15【答案】B 【分析】直接利用位似图形的性质得出线段比进而得出答案. 【详解】解:∵图形甲与图形乙是位似图形,O 是位似中心,位似比为2:3,∵23AB A B ='', ∵6AB =,∵623A B ='', ∵9A B ''= 故答案为:B .【点睛】此题主要考查了位似变换,正确掌握位似图形的性质是解题关键.2.(2021·山东东营市·中考真题)如图,ABC 中,A 、B 两个顶点在x 轴的上方,点C 的坐标是(1,0),以点C 为位似中心,在x 轴的下方作ABC 的位似图形A B C '',并把ABC 的边长放大到原来的2倍,设点B 的横坐标是a ,则点B 的对应点B '的横坐标是( )A .23a -+B .21a -+C .22a -+D .22a --【答案】A 【分析】设点'B 的横坐标为x ,然后表示出BC 、'B C 的横坐标的距离,再根据位似比列式计算即可得解. 【详解】设点'B 的横坐标为x ,则B 、C 间的横坐标的差为1a -,'B 、C 间的横坐标的差为1x -+,ABC 放大到原来的2倍得到'''A B C ,∴()211a x -=-+,解得:23x a =-+. 故选:A. 【点睛】本题考查了位似变换,坐标与图形的性质,根据位似比的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键.3.(2021·浙江绍兴市·中考真题)如图,树AB 在路灯O 的照射下形成投影AC ,已知路灯高5m PO =,树影3m AC =,树AB 与路灯O 的水平距离 4.5m AP =,则树的高度AB 长是( )A .2mB .3mC .3m 2D .10m 3【答案】A 【分析】利用相似三角形的性质得到对应边成比例,列出等式后求解即可. 【详解】解:由题可知,CAB CPO ∽,∵AB ACOP CP =, ∵353 4.5AB =+, ∵()2AB m =, 故选A .【点睛】本题考查了相似三角形的判定与应用,解决本题的关键是能读懂题意,建立相似关系,得到对应边成比例,完成求解即可,本题较基础,考查了学生对相似的理解与应用等.4.(2021·四川遂宁市·中考真题)如图,在△ABC 中,点D 、E 分别是AB 、AC 的中点,若△ADE 的面积是3cm 2,则四边形BDEC 的面积为( )A .12cm 2B .9cm 2C .6cm 2D .3cm 2【答案】B 【分析】由三角形的中位线定理可得DE =12BC ,DE ∵BC ,可证∵ADE ∵∵ABC ,利用相似三角形的性质,即可求解. 【详解】解:∵点D ,E 分别是边AB ,AC 的中点,∵DE =12BC ,DE ∵BC ,∵∵ADE ∵∵ABC , ∵21()4ADEABCS DE SBC ∆∆==, ∵S ∵ADE =3, ∵S ∵ABC =12,∵四边形BDEC的面积=12-3=9(cm2),故选:B.【点睛】本题考查了相似三角形的判定和性质,三角形中位线定理,掌握相似三角形的性质是解题的关键.5.(2021·重庆中考真题)如图,△ABC与△BEF位似,点O是它们的位似中心,其中OE=2OB,则△ABC与△DEF的周长之比是()A.1:2B.1:4C.1:3D.1:9【答案】A【分析】利用位似的性质得∵ABC∵∵DEF,OB:OE= 1:2,然后根据相似三角形的性质解决问题.【详解】解:∵∵ABC与∵DEF位似,点O为位似中心.∵∵ABC∵∵DEF,OB:OE= 1:2,∵∵ABC与∵DEF的周长比是:1:2.故选:A.【点睛】本题主要考查了位似变换,正确掌握位似图形的性质是解题关键.6.(2021·江苏扬州市·中考真题)如图,点P 是函数()110,0k y k x x=>>的图像上一点,过点P 分别作x 轴和y 轴的垂线,垂足分别为点A 、B ,交函数()220,0k y k x x=>>的图像于点C 、D ,连接OC 、OD 、CD 、AB ,其中12k k >,下列结论:△//CD AB ;△122OCDk kS -=;△()21212DCPk k Sk -=,其中正确的是( )A .△△B .△△C .△△D .△【答案】B 【分析】设P (m ,1k m),分别求出A ,B ,C ,D 的坐标,得到PD ,PC ,PB ,P A 的长,判断PD PB和PC PA 的关系,可判断∵;利用三角形面积公式计算,可得∵PDC 的面积,可判断∵;再利用OCD OAPB OBD OCA DPC S S S S S =---△△△△计算∵OCD 的面积,可判断∵.【详解】解:∵PB ∵y 轴,P A ∵x 轴,点P 在1k y x =上,点C ,D 在2k y x=上,设P (m ,1k m ), 则C (m ,2k m ),A (m ,0),B (0,1k m),令12k k m x =,则21k m x k =,即D (21k m k ,1k m ),∵PC =12k k m m -=12k k m -,PD =21k m m k -=()121m k k k -, ∵()121121m k k k k k PD PB m k --==,121211k k k k PC m kPA k m--==,即PD PCPB PA =,又∵DPC =∵BP A , ∵∵PDC ∵∵PBA , ∵∵PDC =∵PBC , ∵CD ∵AB ,故∵正确; ∵PDC的面积=12PD PC ⨯⨯=()1212112m k k k k km --⨯⨯=()21212k k k -,故∵正确;OCD OAPB OBD OCA DPC S S S S S =---△△△△=()112221222112k k k k k k ----=()2121122k k k k k ---=()()21121112222k k k k k k k --- =()22112211222k k k k k k --- =221212k k k -,故∵错误;故选B . 【点睛】此题主要考查了反比例函数的图象和性质,k 的几何意义,相似三角形的判定和性质,解题关键是表示出各点坐标,得到相应线段的长度.7.(2021·江苏连云港市·中考真题)如图,ABC 中,BD AB ⊥,BD 、AC 相交于点D ,47AD AC =,2AB =,150ABC ∠=︒,则DBC △的面积是( )A B C D 【答案】A 【分析】过点C 作CE AB ⊥的延长线于点E ,由等高三角形的面积性质得到:3:7DBCABCS S=,再证明ADB ACE ,解得47AB AE =,分别求得AE 、CE 长,最后根据ACE 的面积公式解题. 【详解】解:过点C 作CE AB ⊥的延长线于点E ,DBC 与ADB △是等高三角形,43:::4:377ADB DBCSSAD DC AC AC === :3:7DBCABCSS∴=BD AB ⊥∴ADB ACE22416749ADB ACEAC S AD SAC AC ⎛⎫ ⎪⎛⎫∴===⎪ ⎪⎝⎭ ⎪⎝⎭47AB AE ∴= 2AB =72AE ∴=73222BE ∴=-=150,ABC ∠=︒18015030CBE ∴∠=︒-︒=︒tan 30CE BE ∴=︒⋅=设4,3ADBDBCSx Sx ==494ACESx ∴=∴4917422x ∴=⨯14x ∴=3x ∴=, 故选:A . 【点睛】本题考查相似三角形的判定与性质、正切等知识,是重要考点,掌握相关知识是解题关键.8.(2021·浙江绍兴市·中考真题)如图,Rt ABC 中,90BAC ∠=︒,1cos 4B =,点D 是边BC 的中点,以AD 为底边在其右侧作等腰三角形ADE ,使ADE B ∠=∠,连结CE ,则CEAD的值为( )A .32BCD .2【答案】D 【分析】由直角三角形斜边中线等于斜边一半可得出12AD BD CD BC ===,在结合题意可得BAD B ADE ∠=∠=∠,即证明//AB DE ,从而得出BAD B ADE CDE ∠=∠=∠=∠,即易证()ADE CDE SAS ≅,得出AE CE =.再由等腰三角形的性质可知AE CE DE ==,BAD B ADE DAE ∠=∠=∠=∠,即证明ABD ADE ∼,从而可间接推出CE BDAD AB=.最后由1cos 4AB B BC ==,即可求出BD AB 的值,即CEAD的值. 【详解】∵在Rt ABC 中,点D 是边BC 的中点, ∵12AD BD CD BC ===, ∵BAD B ADE ∠=∠=∠, ∵//AB DE .∵BAD B ADE CDE ∠=∠=∠=∠,∵在ADE 和CDE △中,AD CD ADE CDE DE DE =⎧⎪∠=∠⎨⎪=⎩,∵()ADE CDE SAS ≅,∵AE CE =,∵ADE 为等腰三角形,∵AE CE DE ==,BAD B ADE DAE ∠=∠=∠=∠,∵ABD ADE ∼, ∵DE AD BD AB =,即CE BD AD AB=. ∵1cos 4AB B BC ==, ∵12AB BD =, ∵2CE BD AD AB ==. 故选D .【点睛】本题考查直角三角形的性质,等腰三角形的性质,平行线的判定和性质,全等三角形与相似三角形的判定和性质以及解直角三角形.熟练掌握各知识点并利用数形结合的思想是解答本题的关键.9.(2021·重庆中考真题)如图,在平面直角坐标系中,将OAB 以原点O 为位似中心放大后得到OCD ,若()0,1B ,()0,3D ,则OAB 与OCD 的相似比是( )A .2:1B .1:2C .3:1D .1:3 【答案】D【分析】直接利用对应边的比等于相似比求解即可.【详解】解:由B 、D 两点坐标可知:OB =1,OD =3;∵OAB 与∵OCD 的相似比等于13OB OD =; 故选D .【点睛】本题考查了在平面直角坐标系中求两个位似图形的相似比的概念,同时涉及到了位似图形的概念、平面直角坐标系中点的坐标、线段长度的确定等知识;解题关键是牢记相似比等于对应边的比,准确求出对应边的比即可完成求解,考查了学生对概念的理解与应用等能力.10.(2021·浙江丽水市·中考真题)如图,在Rt ABC △纸片中,90,4,3ACB AC BC ∠=︒==,点,D E 分别在,AB AC 上,连结DE ,将ADE 沿DE 翻折,使点A 的对应点F 落在BC 的延长线上,若FD 平分EFB ∠,则AD 的长为( )A .259B .258C .157D .207【答案】D【分析】先根据勾股定理求出AB ,再根据折叠性质得出∵DAE=∵DFE ,AD=DF ,然后根据角平分线的定义证得∵BFD=∵DFE =∵DAE ,进而证得∵BDF=90°,证明Rt∵ABC ∵Rt∵FBD ,可求得AD 的长.【详解】解:∵90,4,3ACB AC BC ∠=︒==,∵AB =,由折叠性质得:∵DAE=∵DFE ,AD=DF ,则BD =5﹣AD ,∵FD 平分EFB ∠,∵∵BFD =∵DFE=∵DAE ,∵∵DAE +∵B =90°,∵∵BDF +∵B =90°,即∵BDF =90°,∵Rt∵ABC ∵Rt∵FBD , ∵BD BC DF AC =即534AD AD -=, 解得:AD =205, 故选:D .【点睛】本题考查折叠性质、角平分线的定义、勾股定理、相似三角形的判定与性质、三角形的内角和定理,熟练掌握折叠性质和相似三角形的判定与性质是解答的关键.11.(2021·山东东营市·中考真题)如图,ABC 是边长为1的等边三角形,D 、E 为线段AC 上两动点,且30DBE ∠=︒,过点D 、E 分别作AB 、BC 的平行线相交于点F ,分别交BC 、AB 于点H 、G .现有以下结论:△ABC S =;△当点D 与点C 重合时,12FH =;△AE CD +=;△当AE CD =时,四边形BHFG 为菱形,其中正确结论为( )A.△△△B.△△△C.△△△△D.△△△【答案】B【分析】过A作AI∵BC垂足为I,然后计算∵ABC的面积即可判定∵;先画出图形,然后根据等边三角形的性质和相似三角形的性质即可判定∵;如图将∵BCD绕B点逆时针旋转60°得到∵ABN,求证NE=DE;再延长EA到P使AP=CD=AN,证得∵P=60°,NP=AP=CD,然后讨论即可判定∵;如图1,当AE=CD时,根据题意求得CH=CD、AG=CH,再证明四边形BHFG为平行四边形,最后再说明是否为菱形.【详解】解:如图1, 过A作AI∵BC垂足为I∵ABC是边长为1的等边三角形∵∵BAC=∵ABC=∵C=60°,CI=1212 BC=∵AI=∵S∵ABC=1112224AI BC=⨯⨯=,故∵正确;如图2,当D 与C 重合时∵∵DBE =30°,ABC 是等边三角形∵∵DBE =∵ABE =30°∵DE =AE =1122AD =∵GE //BD ∵1BGDEAG AE ==∵BG =1122AB =∵GF //BD ,BG //DF∵HF =BG =12,故∵正确;如图3,将∵BCD 绕B 点逆时针旋转60°得到∵ABN∵∵1=∵2,∵5=∵6=60°,AN =CD ,BD =BN∵∵2+∵4=∵1+∵4=30°∵∵NBE=∵3=30°又∵BD=BN,BE=BE∵∵NBE∵∵DBE(SAS)∵NE=DE延长EA到P使AP=CD=AN∵∵NAP=180°-60°-60°=60°∵∵ANP为等边三角形∵∵P=60°,NP=AP=CD成立,则PE,需∵NEP=90°,但∵NEP不一定为90°,如果AE+CD=故∵不成立;如图1,当AE=CD时,∵GE//BC∵∵AGE=∵ABC=60°,∵GEA=∵C=60°∵∵AGE=∵AEG=60°,同理:CH=CD∵AG=CH∵BG//FH,GF//BH∵四边形BHFG是平行四边形∵BG=BH∵四边形BHFG为菱形,故∵正确.故选B.【点睛】本题主要考查了等边三角形的性质、旋转变换、全等三角形的判定和性质以及菱形的判定等知识点,灵活运用相关知识成为解答本题的关键.12.(2021·四川眉山市·中考真题)如图,在以AB为直径的O中,点C为圆上的一点,3⊥于点E,弦AF交CE于点H,交BC于点G.若点H是=,弦CD ABBC AC∠的度数为()AG的中点,则CBFA.18°B.21°C.22.5°D.30°【答案】C【分析】根据直径所对的圆周角是90︒,可知90ACB AFB ∠=∠=︒,根据3BC AC =,可知ABC ∠、BAC ∠的度数,根据直角三角形斜边上的中线等于斜边的一半可知,AHC 为等腰三角形,再根据CAE BFG BCA ∽∽可求得CBF ∠的度数.【详解】解:∵AB 为O 的直径,∵90ACB AFB ∠=∠=︒,∵3BC AC =,∵=22.5ABC ∠︒,=67.5BAC ∠︒,∵点H 是AG 的中点,∵CE AH =,∵CAH ACH ∠=∠,∵CD AB ⊥,∵AEC GCA ∽,又∵,CAF CBF CGA FGB ∠=∠∠=∠,∵AEC GCA GFB ∽∽,∵90ACE ECB ABC ECB ∠+∠=∠+∠=︒,∵ABE ABC ∠=∠,∵AEC GCA GFB ACB ∽∽∽,∵22.5ABC ACE GAC GBF ∠=∠=∠=∠=︒,∵=22.5CBF ∠︒,故选:C .【点睛】本题主要考查圆周角定理,垂径定理,相似三角形,直角三角形斜边上中线等知识点,找出图形中几个相似三角形是解题关键.13.(2021·山东聊城市·中考真题)如图,四边形ABCD中,已知AB△CD,AB与CD之间的距离为4,AD=5,CD=3,△ABC=45°,点P,Q同时由A点出发,分别沿边AB,折线ADCB向终点B方向移动,在移动过程中始终保持PQ△AB,已知点P的移动速度为每秒1个单位长度,设点P的移动时间为x秒,△APQ的面积为y,则能反映y与x之间函数关系的图象是()A.B.C.D.【答案】B【分析】依次分析当03t≤≤、36t<≤、610t<≤三种情况下的三角形面积表达式,再根据其对应图像进行判断即可确定正确选项.【详解】解:如图所示,分别过点D、点C向AB作垂线,垂足分别为点E、点F,∵已知AB∥CD,AB与CD之间的距离为4,∵DE =CF =4,∵点P ,Q 同时由A 点出发,分别沿边AB ,折线ADCB 向终点B 方向移动,在移动过程中始终保持PQ ∵AB ,∵PQ∥DE∥CF ,∵AD =5, ∵3==AE ,∵当03t ≤≤时,P 点在AE 之间,此时,AP =t , ∵AP PQ AE DE=, ∵4=3PQ t , ∵2142=2233APQ t S AP PQ t t ⋅=⨯=, 因此,当03t ≤≤时,其对应的图像为()22033y t t =≤≤,故排除C 和D ; ∵CD =3,∵EF =CD =3,∵当36t <≤时,P 点位于EF 上,此时,Q 点位于DC 上,其位置如图中的P 1Q 1,则111422APQ S t t =⨯⨯=, 因此当36t <≤时,对应图像为()236y t t =<≤,即为一条线段;∵∵ABC =45°,∵BF =CF =4,∵AB =3+3+4=10,∵当610t <≤时,P 点位于FB 上,其位置如图中的P 2Q 2,此时,P 2B =10-t , 同理可得,Q 2P 2=P 2B =10-t ,()2221110522AP Q S t t t t =⨯-=-+,因此当610t <≤时,对应图像为()2156102y t t t =-+<≤,其为开口向下的抛物线的610t <≤的一段图像; 故选:B .【点睛】本题考查了平行线分线段成比例的推论、勾股定理、平行线的性质、三角形的面积公式、二次函数的图像等内容,解决本题的关键是牢记相关概念与公式,能分情况讨论等,本题蕴含了数形结合与分类讨论的思想方法等.14.(2021·四川广元市·中考真题)如图,在边长为2的正方形ABCD 中,AE 是以BC 为直径的半圆的切线,则图中阴影部分的面积为( )A .32π+B .2π-C .1D .52π- 【答案】D【分析】取BC的中点O,设AE与∵O的相切的切点为F,连接OF、OE、OA,由题意可得OB=OC=OA=1,∵OF A=∵OFE=90°,由切线长定理可得AB=AF=2,CE=CF,然后根据割补法进行求解阴影部分的面积即可.【详解】解:取BC的中点O,设AE与∵O的相切的切点为F,连接OF、OE、OA,如图所示:∵四边形ABCD是正方形,且边长为2,∵BC=AB=2,∥ABC=∥BCD=90°,∵AE是以BC为直径的半圆的切线,∵OB=OC=OF=1,∵OF A=∵OFE=90°,∵AB=AF=2,CE=CF,∵OA=OA,∵Rt∵ABO∵Rt∵AFO(HL),同理可证∵OCE∵∵OFE,∵,∠=∠∠=∠,AOB AOF COE FOE∵90∠+∠=︒=∠+∠,AOB COE AOB BAO∵COE BAO ∠=∠,∵ABO OCE ∽, ∵OC CE AB OB=, ∵12CE =, ∵15222222ABO OCE ABCE S S S SS S ππ-=-=+-=+-=阴影半圆半圆四边形; 故选D .【点睛】 本题主要考查切线的性质定理、切线长定理、正方形的性质及相似三角形的性质与判定,熟练掌握切线的性质定理、切线长定理、正方形的性质及相似三角形的性质与判定是解题的关键.15.(2021·四川自贡市·中考真题)如图,在正方形ABCD 中,6AB =,M 是AD 边上的一点,:1:2AM MD =.将BMA △沿BM 对折至BMN △,连接DN ,则DN 的长是( )A .52BC .3D 【答案】D【分析】延长MN 与CD 交于点E ,连接BE ,过点N 作NF CD ⊥,根据折叠的正方形的性质得到NE CE =,在Rt MDE 中应用勾股定理求出DE 的长度,通过证明MDE NFE ∽,利用相似三角形的性质求出NF 和DF 的长度,利用勾股定理即可求解.【详解】解:如图,延长MN 与CD 交于点E ,连接BE ,过点N 作NF CD ⊥,∵6AB =,M 是AD 边上的一点,:1:2AM MD =,∵2AM =,4DM =,∵将BMA △沿BM 对折至BMN △,四边形ABCD 是正方形,∵90BNE C ∠=∠=︒,AB AN BC ==,∵Rt BNE Rt BCE ≌(HL),∵NE CE =,∵2EM MN NE NE =+=+,在Rt MDE 中,设DE x =,则628ME x x =-+=-,根据勾股定理可得()22248x x +=-,解得3x =,∵3NE DE ==,5ME =,∵NF CD ⊥,90MDE ∠=︒,∵MDE NFE ∽, ∵25EF NFNE DE MD ME ===,∵125NF =,95EF =, ∵65DF =,∵DN =,故选:D .【点睛】本题考查折叠的性质、相似三角形的判定与性质、勾股定理的应用等内容,做出合适的辅助线是解题的关键.16.(2021·四川泸州市·中考真题)如图,△O 的直径AB =8,AM ,BN 是它的两条切线,DE 与△O 相切于点E ,并与AM ,BN 分别相交于D ,C 两点,BD ,OC 相交于点F ,若CD =10,则BF 的长是A B C D 【答案】A【分析】过点D 作DG ∵BC 于点G ,延长CO 交DA 的延长线于点H ,根据勾股定理求得6GC =,即可得AD=BG =2,BC = 8,再证明∵HAO ∵∵BCO ,根据全等三角形的性质可得AH=BC =8,即可求得HD= 10;在Rt∵ABD 中,根据勾股定理可得BD =∵DHF ∵∵BCF ,根据相似三角形的性质可得DH DF BC BF=,由此即可求得BF=9【详解】过点D作DG∵BC于点G,延长CO交DA的延长线于点H,∵AM,BN是它的两条切线,DE与∵O相切于点E,∵AD=DE,BC=CE,∵DAB=∵ABC=90°,∵DG∵BC,∵四边形ABGD为矩形,∵AD=BG,AB=DG=8,在Rt∵DGC中,CD=10,∵6GC===,∵AD=DE,BC=CE,CD=10,∵CD= DE+CE = AD+BC =10,∵AD+BG +GC=10,∵AD=BG=2,BC=CG+BG=8,∵∵DAB=∵ABC=90°,∵AD∵BC,∵∵AHO=∵BCO,∵HAO=∵CBO,∵OA=OB,∵∵HAO∵∵BCO,∵AH=BC=8,∵AD=2,∵HD=AH+AD=10;在Rt∵ABD中,AD=2,AB=8,∵BD==∵AD∵BC,∵∵DHF∵∵BCF,∵DH DF=,BC BF∵10=,8解得,BF=故选A.【点睛】本题是圆的综合题,考查了切线长定理、勾股定理、全等三角形的判定及性质、相似三角形的判定于性质,熟练运用相关知识是解决问题的关键.17.(2021·内蒙古通辽市·中考真题)如图,已知//⊥,3AD BC,AB BCAB=,点E 为射线BC上一个动点,连接AE,将ABE△沿AE折叠,点B落在点B'处,过点B'作AD的垂线,分别交AD,BC于M,N两点,当B'为线段MN的三等分点时,BE 的长为()A .32BC .32D 【答案】D【分析】因为点'B 为线段MN 的三等分点,没有指明线段'B M 的占比情况,所以需要分两种情况讨论:∵1'3B M MN =;∵ 2'3B M MN =.然后由一线三垂直模型可证 'AMB ∵'B NE ,再根据相似三角形的性质求得 EN 的值,最后由 BE BN EN =-即可求得 BE 的长.【详解】当点'B 为线段MN 的三等分点时,需要分两种情况讨论:∵如图1,当1'3B M MN =时,∵AD ∵BC ,AB BC ⊥, MN BC ⊥,∵四边形ABNM 为矩形, ∵11'133B M MN AB ===, 22'233B N MN AB ===, BN AM =.由折叠的性质可得'3A B AB ==,'90AB E ABC ∠=∠=︒.在'Rt AB M 中,AM ==.∵''90AB M MAB ∠+∠=︒, ''90AB M EB N ∠+∠=︒,∵''EB N MAB ∠=∠,∵'B NE ∵'AMB ,∵''ENB N B M AM =,即 1EN =,解得 EN =,∵BE BN EN =-==.∵如图2,当2'3B M MN =时,∵AD ∵BC ,AB BC ⊥, MN BC ⊥,∵四边形ABNM 为矩形, ∵22'233B M MN AB ===, 11'133B N MN AB ===, BN AM =.由折叠的性质可得'3AB AB ==,'90AB E ABC ∠=∠=︒.在'Rt AB M 中,AM ===∵''90AB M MAB ∠+∠=︒, ''90AB M EB N ∠+∠=︒,∵''EB N MAB ∠=∠,∵'B NE ∵'AMB ,∵''EN B N B M AM =,即 2EN =EN =,∵BE BN EN =-==.综上所述,BE 的长为2或 5. 故选:D .【点睛】 本题考查了矩形的判定,勾股定理,相似三角形的判定和性质,由'B 为线段MN 的三等分点,分两种情况讨论线段'B M 的占比情况,以及利用K 型相似进行相关计算是解决此题的关键.18.(2021·四川资阳市·中考真题)如图是中国古代数学家赵爽用来证明勾股定理的弦图的示意图,它是由四个全等的直角三角形和一个小正方形EFGH 组成,恰好拼成一个大正方形ABCD .连结EG 并延长交BC 于点M .若1AB EF ==,则GM 有长为( )A .5B .3CD .5【答案】D【分析】添加辅助线,过F 点作FI ∵HM ,通过证明两组三角形相似,得到FI 和GM 的两个关系式,从而求解GM .【详解】如图所示,过F 点作FI ∵HM ,交BC 于点I ,证明勾股定理的弦图的示意图是由四个全等的直角三角形和一个小正方形EFGH 组成∴=90AEB ∠︒,BF AE CG ==,CF BE =,1FG EF ==,EG =又1AB EF ==∴222AE BE AB +=,即 ()2221BF BF ++=解得2BF =或3BF =-(舍去)∴=2BF AE CG ==,=3CF BE =FI∵HM∴CGM CFI ∆,~BFI BEM ∆ ∴32FICFGM CG ==, 32EMBEFI BF == ∴32FI GM =,32EG GMGMFI FI +==∴322GM=解得:GM =经检验:GM =故选:D .【点睛】本题考查了相似三角形和勾股定理.本题的关键在于添加辅助线,建立所求线段与已知条件之间的联系.19.(2021·河北中考真题)图1是装了液体的高脚杯示意图(数据如图),用去一部分液体后如图2所示,此时液面AB ()A.1cm B.2cmC.3cm D.4cm【答案】C【分析】先求出两个高脚杯液体的高度,再通过三角形相似,建立其对应边的比与对应高的比相等的关系,即可求出AB.【详解】解:由题可知,第一个高脚杯盛液体的高度为:15-7=8(cm),第二个高脚杯盛液体的高度为:11-7=4(cm),因为液面都是水平的,图1和图2中的高脚杯是同一个高脚杯,所以图1和图2中的两个三角形相似,∵468AB , ∵=3AB (cm ),故选:C .【点睛】本题考查了相似三角形的判定与性质,解决本题的关键是读懂题意,与图形建立关联,能灵活运用相似三角形的判定得到相似三角形,并能运用其性质得到相应线段之间的关系等,本题对学生的观察分析的能力有一定的要求.20.(2021·四川宜宾市·中考真题)如图,在矩形纸片ABCD 中,点E 、F 分别在矩形的边AB 、AD 上,将矩形纸片沿CE 、CF 折叠,点B 落在H 处,点D 落在G 处,点C 、H 、G 恰好在同一直线上,若AB =6,AD =4,BE =2,则DF 的长是( )A .2B .74C .2D .3【答案】A【分析】 构造如图所示的正方形CMPD ,然后根据相似三角形的判定和性质解直角三角形FNP 即可.【详解】如图,延长CE ,FG 交于点N ,过点N 作//l AB ,延长,CB DA 交l 于,M P , ∵∵CMN =∵DPN =90°,∵四边形CMPD 是矩形,根据折叠,∵MCN =∵GCN ,CD =CG ,DF FG =,∵∵CMN =∵CGN =90°,CN =CN ,∵Rt MNC Rt GNC ∆≅∆,∵6CM CG CD ===,MN NG =∴四边形CMPD 为正方形,//BE MN∵CBE CMN , ∵4263BE CB MN CM ===, 2BE =,3MN ∴=,3NP ∴=,设DF x =,则4AF x =-, 在Rt PNF 中,由222FP NP NF +=可得222(42)3(3)x x -++=+解得2x =;故选A .【点睛】 本题考查了折叠问题,正方形的性质与判定,矩形的性质,平行线的性质,全等三角形的性质和判定,相似三角形,勾股定理等知识点的综合运用,难度较大.作出合适的辅助线是解题的关键.21.(2021·湖北恩施土家族苗族自治州·中考真题)如图,在44⨯的正方形网格中,每个小正方形的边长都为1,E 为BD 与正方形网格线的交点,下列结论正确的是( )A .12CE BD ≠B .ABC CBD ≌ C .AC CD = D .ABC CBD ∠=∠【答案】D【分析】 由题意易得CE ∵AB ,然后根据相似三角形的性质与判定、直角三角形斜边中线定理及全等三角形的判定可排除选项.【详解】解:∵每个小正方形的边长都为1,∵4,2,5AB AC BC CD BD ====,∵22225BC CD BD +==,AC CD ≠,故C 错误;∵∵BCD 是直角三角形,∵90BCD BAC ∠=∠=︒,∵5AB AC BC CD ==, ∵C ABC BD ∽△△,故B 错误;∵ABC CBD ∠=∠,故D 正确;∵E 为BD 与正方形网格线的交点,∵CE ∵AB ,∵ABC BCE CBD ∠=∠=∠,∵90DBC BDC BCE ECD ∠+∠=∠+∠=︒,∵BDC ECD ∠=∠, ∵12BE CE ED BD ===,故A 错误;故选D .【点睛】本题主要考查勾股定理的逆定理、相似三角形的性质与判定及直角三角形斜边中线定理,熟练掌握勾股定理的逆定理、相似三角形的性质与判定及直角三角形斜边中线定理是解题的关键.22.(2021·山东威海市·中考真题)如图,在ABC 和ADE 中,36CAB DAE ∠=∠=︒,AB AC =,AD AE =.连接CD ,连接BE 并延长交AC ,AD 于点F ,G .若BE 恰好平分ABC ∠,则下列结论错误的是( )A .ADC AEB ∠=∠B .//CD ABC .DE GE =D .2BF CF AC =⋅【答案】C【分析】 根据SAS 即可证明DAC EAB △≌△,再利用全等三角形的性质以及等腰三角形的性质,结合相似三角形的判定和性质,即可一一判断【详解】,,36AB AC AD AE CAB DAE ==∠=∠=︒DAC EAB ∴∠=∠∴DAC EAB △≌△ADC AEB ∴∠=∠,故选项A 正确;,36AB AC CAB =∠=︒72ABC ACB ∴∠=∠=︒ BE 平分ABC ∠1362ABE CBF ABC ∴∠=∠=∠=︒DAC EAB △≌△36ACD ABE ∴∠=∠=︒ACD CAB ∴∠=∠//CD AB ∴,故选项B 正确;,36AD AE DAE =∠=︒72ADE ∴∠=︒72DGE DAE EAB ABE EAB ∠=∠+∠+∠=︒+∠即ADE DGE ∠≠∠DE GE ∴≠,故选项C 错误;72,36ABC ACB CAB CBF ∠=∠=︒∠=∠=︒∴∠=︒CFB72∴=BC BF∴△∽△ABC BFCBF CF∴=AB BCAB AC=BF CF∴=AC BF2=⋅,故选项D正确;BF CF AC故答案选:C.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的判定和性质,相似三角形的判定和性质,平行线的判定,能利用全等三角形的判定和性质以及等腰三角形的性质是解题关键.二、填空题23.(2021·江苏无锡市·中考真题)下列命题中,正确命题的个数为________.△所有的正方形都相似△所有的菱形都相似△边长相等的两个菱形都相似△对角线相等的两个矩形都相似【答案】∵【分析】根据多边形的判定方法对∵进行判断;利用菱形的定义对∵进行判断;根据菱形的性质对∵进行判断;根据矩形的性质和相似的定义可对∵进行判断.【详解】解:所有的正方形都相似,所以∵正确;所有的菱形不一定相似,所以∵错误;边长相等的两个菱形,形状不一定相同,即:边长相等的两个菱形不一定相似所以∵错误;对角线相等的两个矩形,对应边不一定成比例,即不一定相似,所以∵错误; 故答案是:∵.【点睛】本题考查了判断命题真假,熟练掌握图形相似的判定方法,菱形,正方形,矩形的性质,是解题的关键.24.(2021·内蒙古中考真题)如图,在Rt ABC 中,90ACB ∠=︒,过点B 作BD CB ⊥,垂足为B ,且3BD =,连接CD ,与AB 相交于点M ,过点M 作MN CB ⊥,垂足为N .若2AC =,则MN 的长为__________.【答案】65【分析】根据MN ∵BC ,AC ∵BC ,DB ∵BC ,得,BNM BCA CNM ABD ,可得,MN BN MN CN AC BC BD BC ,因为1BN CN BC BC ,列出关于MN 的方程,即可求出MN 的长.【详解】∵MN ∵BC ,DB ∵BC , 90ACB ∠=︒∵AC ∵MN ∵DB ,∵,BNM BCA CNM ABD , ∵,MN BN MN CN AC BC BD BC 即,23MN BN MN CN BC BC , 又∵1BN CN BCBC , ∵123MN MN , 解得65MN =, 故填:65. 【点睛】本题考查相似三角形的判定和性质,解题关键是根据题意得出两组相似三角形以及它们对应边之比的等量关系.25.(2021·山东东营市·中考真题)如图,正方形纸片ABCD 的边长为12,点F 是AD 上一点,将CDF 沿CF 折叠,点D 落在点G 处,连接DG 并延长交AB 于点E .若5AE =,则GE 的长为________.【答案】4913【分析】因为折叠,则有DG CF ⊥,从而可知AED HDC △∽△,利用线段比求出DG 的长,即可求出EG .【详解】如图, 四边形ABCD 是正方形12=90∴∠+∠︒因为折叠,DG CF ∴⊥,设垂足为HDH HG ∴=2390∴∠+∠=︒13∠∠∴=AED HDC ∴△∽△AE DHED DC =5AE =,12AD DC ==51312DH∴=6013DH ∴=EG ED GD ∴=-2ED GH =-6013213=-⨯4913=故答案为4913. 【点睛】本题考查了正方形的性质,轴对称的性质,三角形相似的判定与性质,勾股定理,找到AED HDC △∽△是解题的关键.26.(2021·四川南充市·中考真题)如图,在ABC 中,D 为BC 上一点,3BC BD ==,则:AD AC 的值为________.【分析】证明∵ABD ∵∵CBA ,根据相似三角形的性质即可解答.【详解】 ∵3BC BD ==,∵ABBC ==BDAB =,∵3ABBDBC AB ==,∵∵B =∵B ,∵∵ABD ∵∵CBA ,∵3ADBDAC AB ==.故答案为:3. 【点睛】 本题考查了相似三角形的判定及性质,证明∵ABD ∵∵CBA 是解决问题的关键. 27.(2021·湖北随州市·中考真题)如图,在Rt ABC 中,90ACB ∠=︒,O 为AB 的中点,OD 平分AOC ∠交AC 于点G ,OD OA =,BD 分别与AC ,OC 交于点E ,F ,连接AD ,CD ,则OG BC 的值为______;若CE CF =,则CF OF的值为______.【答案】12【分析】(1)根据条件,证明AOD COD ≅△△,从而推断90OGA ∠=,进一步通过角度等量,证明AOG ABC △△,代入推断即可.(2)通过OA OD OC OB ===,可知,,,A B C D 四点共圆,通过角度转化,证明ODF CBF △△,代入推断即可. 【详解】解:(1)∵90ACB ∠=︒,O 为AB 的中点∵OA OC =又∵OD 平分AOC ∠∵AOD COD ∠=∠又∵OD OD =∵AOD COD ≅△△∵AD CD =∵OD AC ⊥∵90OGA ∠=在AOG 与ABC 中GAO BAC ∠=∠,90OGA BCA ∠=∠=∵AOG ABC △△12OGAOBC AB ==(2∵OA OD OC OB ===∵,,,A B C D 四点共圆,如下图:∵CE CF =∵CEF CFE ∠=∠又∵CFE BFO ∠=∠∵CEF BFO ∠=∠∵AOD COD ≅△△∵AD CD =∵AD CD =∵OBF CBE ∠=∠∵90BFO OBF CEF CBE ∠+∠=∠+∠=即90BOC ∠=∵OB OC = ∵BC ===∵90OGA BCA ∠=∠= ∵ODB FBC ∠=∠∵OFD CFB ∠=∠∵ODF CBF △△∵CF BC OF OD==故答案为:12【点睛】本题考查三角形的相似,三角形的全等以及圆的相关知识点,根据图形找见相关的等量关系是解题的关键.28.(2021·四川广元市·中考真题)如图,在正方形ABCD 中,点O 是对角线BD 的中点,点P 在线段OD 上,连接AP 并延长交CD 于点E ,过点P 作PF AP ⊥交BC 于点F ,连接AF 、EF ,AF 交BD 于G ,现有以下结论:△AP PF =;△DE BF EF +=;△PB PD -=;△AEF S 为定值;△APG PEFG S S =四边形.以上结论正确的有________(填入正确的序号即可).【答案】∵∵∵∵【分析】由题意易得∵APF =∵ABC =∵ADE =∵C =90°,AD =AB ,∵ABD =45°,对于∵:易知点A 、B 、F 、P 四点共圆,然后可得∵AFP =∵ABD =45°,则问题可判定;对于∵:把∵AED 绕点A 顺时针旋转90°得到∵ABH ,则有DE =BH ,∵DAE =∵BAH ,然后易得∵AEF ∵∵AHF ,则有HF =EF ,则可判定;对于∵:连接AC ,在BP 上截取BM =DP ,连接AM ,易得OB =OD ,OP =OM ,然后易证∵AOP ∵∵ABF ,进而问题可求解;对于∵:过点A 作AN ∵EF 于点N ,则由题意可得AN =AB ,若∵AEF 的面积为定值,则EF 为定值,进而问题可求解;对于∵由∵可得2AP AF =得∵APG ∵∵AFE ,然后可得相似比为AP AF =相似比的关系可求解.【详解】解:∵四边形ABCD 是正方形,PF AP ⊥,∵∵APF =∵ABC =∵ADE =∵C =90°,AD =AB ,∵ABD =45°,∵∵180ABC APF ∠+∠=︒,∵由四边形内角和可得180BAP BFP ∠+∠=︒,∵点A、B、F、P四点共圆,∵∵AFP=∵ABD=45°,∵∵APF是等腰直角三角形,∵AP PF=,故∵正确;∵把∵AED绕点A顺时针旋转90°得到∵ABH,如图所示:∵DE=BH,∵DAE=∵BAH,∵HAE=90°,AH=AE,∵45∠=∠=︒,HAF EAF∵AF=AF,∵∵AEF∵∵AHF(SAS),∵HF=EF,∵HF BH BF=+,∵DE BF EF+=,故∵正确;∵连接AC,在BP上截取BM=DP,连接AM,如图所示:∵点O 是对角线BD 的中点,∵OB =OD ,BD AC ⊥,∵OP =OM ,∵AOB 是等腰直角三角形, ∵AB =,由∵可得点A 、B 、F 、P 四点共圆,∵APO AFB ∠=∠,∵90ABF AOP ∠=∠=︒,∵∵AOP ∵∵ABF ,∵2OPOAAPBF AB AF ===,∵OP =,∵2BP DP BP BM PM OP -=-==, ∵PB PD -=,故∵正确;∵过点A 作AN ∵EF 于点N ,如图所示:由∵可得∵AFB =∵AFN ,∵∵ABF =∵ANF =90°,AF =AF ,∵∵ABF ∵∵ANF (AAS ),∵AN =AB ,若∵AEF 的面积为定值,则EF 为定值,∵点P 在线段OD 上,∵EF 的长不可能为定值,故∵错误;∵由∵可得2APAF =∵∵AFB =∵AFN =∵APG ,∵F AE =∵P AG ,∵∵APG ∵∵AFE ,∵2GP AP EF AF ==,∵2122AGP AEF S S ⎛== ⎝⎭,∵12AGP AEF S S =,∵APGPEFG S S =四边形,故∵正确;综上所述:以上结论正确的有∵∵∵∵;故答案为∵∵∵∵.【点睛】本题主要考查正方形的性质、旋转的性质、圆的基本性质及相似三角形的性质与判定,熟练掌握正方形的性质、旋转的性质、圆的基本性质及相似三角形的性质与判定是解题的关键.29.(2021·江苏南京市·中考真题)如图,将ABCD 绕点A 逆时针旋转到AB C D '''的位置,使点B '落在BC 上,B C ''与CD 交于点E ,若3,4,1AB BC BB '===,则CE 的长为________.【答案】98【分析】 过点C 作CM //C D ''交B C ''于点M ,证明ABB ADD ''∆∆∽求得53C D '=,根据AAS 证明ABB B CM ''∆≅∆可求出CM =1,再由CM //C D ''证明∵CME DC E '∆∽,由相似三角形的性质查得结论.【详解】解:过点C 作CM //C D ''交B C ''于点M ,。
部编版初中九年级数学反比例函数(含中考真题解析答案)
部编版初中九年级数学反比例函数(含中考真题解析答案)反比例函数(含答案)?解读考点知识点 1.反比例函数概念反比例函数概2.反比例函数图象念、图象和性3.反比例函数的性质质 4.一次函数的解析式确定名师点晴会判断一个函数是否为反比例函数。
知道反比例函数的图象是双曲线,。
会分象限利用增减性。
能用待定系数法确定函数解析式。
会用数形结合思想解决此类问题.反比例函5.反比例函数中比例系数的几何能根据图象信息,解决相应的实际问题.数的应用意义能解决与三角形、四边形等几何图形相关的计算和证明。
?2年中考【2021年题组】y?1.(2021崇左)若反比例函数kx的图象经过点(2,-6),则k的值为()A.-12 B.12 C.-3 D.3【答案】A.【解析】y?试题分析:∵反比例函数kx的图象经过点(2,��6),∴k?2?(?6)??12,解得k=��12.故选A.考点:反比例函数图象上点的坐标特征. 2.(2021苏州)若点A(a,b)在反比例函数A.0 B.��2 C.2 D.��6 【答案】B.【解析】y?y?2x的图象上,则代数式ab��4的值为()试题分析:∵点(a,b)反比例函数22b?x上,∴a,即ab=2,∴原式=2��4=��2.故选B.考点:反比例函数图象上点的坐标特征. 3.(2021来宾)已知矩形的面积为10,长和宽分别为x和y,则y关于x的函数图象大致是()- 1 -A. B. C.D.【答案】C.考点:1.反比例函数的应用;2.反比例函数的图象.4.(2021河池)反比例函数y1?mx(x?0)的图象与一次函数y2??x?b的图象交于A,B两点,其中A(1,2),当y2?y1时,x的取值范围是()A.x<1 B.1<x<2 C.x>2 D.x<1或x>2 【答案】B.【解析】试题分析:根据双曲线关于直线y=x对称易求B(2,1).依题意得:如图所示,当1<x<2时,y2?y1.故选B.考点:反比例函数与一次函数的交点问题.- 2 -5.(2021贺州)已知k1?0?k2,则函数y?k1x和y?k2x?1的图象大致是()A.【答案】C.B.C. D.考点:1.反比例函数的图象;2.一次函数的图象. 6.(2021宿迁)在平面直角坐标系中,点A,B的坐标分别为(��3,0),(3,0),点P在y?反比例函数2x的图象上,若△PAB为直角三角形,则满足条件的点P的个数为()A.2个 B.4个 C.5个 D.6个【答案】D.【解析】y?试题分析:①当∠PAB=90°时,P点的横坐标为��3,把x=��3代入此时P点有1个;22y??x得3,所以2222222(x?3)?()(x?3)?()22x,PB=x,AB2 ②当∠APB=90°,设P(x,x),PA=222222(x?3)?()?(x?3)?()222(3?3)xxPA?PB?AB==36,因为,所以=36,整理得2x4?9x2?4?0,所以x2?9?659?65x2?22,或,所以此时P点有4个;y?22y?x得3,所以此时P点有1个;③当∠PBA=90°时,P点的横坐标为3,把x=3代入综上所述,满足条件的P点有6个.故选D.考点:1.反比例函数图象上点的坐标特征;2.圆周角定理;3.分类讨论;4.综合题.7.(2021自贡)若点(的点,并且x1,y1),(x2,y2),(x3,y3y??),都是反比例函数1x图象上y1?0?y2?y3,则下列各式中正确的是()- 3 -A.D.x1?x2?x3 B.x1?x3?x2 C.x2?x1?x3x2?x3?x1【答案】D.【解析】试题分析:由题意得,点(的点,且(x1,y1)xy,xy,(2,2)(3,3)都是反比例函数y??1x上y1?0?y2?y3,xy,xy位于第三象限,x?x3,则(2,2)(3,3)y随x的增大而增大,2 x1,y1)位于第一象限,x1最大,故x1、x2、x3的大小关系是x2?x3?x1.故选D.考点:反比例函数图象上点的坐标特征.8.(2021凉山州)以正方形ABCD两条对角线的交点O为坐标原点,建立如图所示的平面y?直角坐标系,双曲线3x经过点D,则正方形ABCD的面积是()A.10 B.11 C.12 D.13 【答案】C.考点:反比例函数系数k的几何意义.y?9.(2021眉山)如图,A、B是双曲线kx上的两点,过A点作AC⊥x轴,交OB于D点,垂足为C.若△ADO的面积为1,D为OB的中点,则k的值为()48A.3 B.3 C.3 D.4- 4 -【答案】B.考点:1.反比例函数系数k的几何意义;2.相似三角形的判定与性质. 10.(2021内江)如图,正方形ABCD位于第一象限,边长为3,点A在直线y=x上,点Ay?的横坐标为1,正方形ABCD的边分别平行于x轴、y轴.若双曲线有公共点,则k的取值范围为()kx与正方形ABCDA.1<k<9 B.2≤k≤34 C.1≤k≤16 D.4≤k<16 【答案】C.【解析】试题分析:点A在直线y=x上,其中A点的横坐标为1,则把x=1代入y=x解得y=1,则Ay?的坐标是(1,1),∵AB=BC=3,∴C点的坐标是(4,4),∴当双曲线kx经过点(1,1)时,k=1;当双曲线kx经过点(4,4)时,k=16,因而1≤k≤16.故选C.考点:1.反比例函数与一次函数的交点问题;2.综合题.- 5 -11.(2021孝感)如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函y?数1ky?x的图象上.若点B在反比例函数x的图象上,则k的值为()A.��4 B.4 C.��2 D.2【答案】A.考点:1.反比例函数图象上点的坐标特征;2.相似三角形的判定与性质;3.综合题.41012.(2021宜昌)如图,市煤气公司计划在地下修建一个容积为m3的圆柱形煤气储存室,则储存室的底面积S(单位:m2)与其深度d(单位:m)的函数图象大致是()- 6 -【答案】A.B. C. D.考点:1.反比例函数的应用;2.反比例函数的图象.y?13.(2021三明)如图,已知点A是双曲线2x在第一象限的分支上的一个动点,连接AO并延长交另一分支于点B,过点A作y轴的垂线,过点B作x轴的垂线,两垂线交于点C,随着点A的运动,点C的位置也随之变化.设点C的坐标为(m,n),则m,n满足的关系式为()A.n??2m B.【答案】B.【解析】n??24n??m C.n??4m D.m2试题分析:∵点C的坐标为(m,n),∴点A的纵坐标是n,横坐标是:n,∴点A 的坐22标为(n,n),∵点C的坐标为(m,n),∴点B的横坐标是m,纵坐标是:m,∴点B2nm?2222mmn??mn,∴m2n2?4,又∵m<0,n>0,∴的坐标为(m,m),又∵n,∴- 7 -mn??2,∴n??2m,故选B.考点:反比例函数图象上点的坐标特征.y?14.(2021株洲)从2,3,4,5中任意选两个数,记作a和b,那么点(a,b)在函数图象上的概率是()12x1111A.2 B.3 C.4 D.6【答案】D.考点:1.列表法与树状图法;2.反比例函数图象上点的坐标特征.OA3?OB4.15.(2021乌鲁木齐)如图,在直角坐标系xOy中,点A,B分别在x轴和y轴,∠y?AOB的角平分线与OA的垂直平分线交于点C,与AB交于点D,反比例函数kx的图象2过点C.当以CD为边的正方形的面积为7时,k的值是()- 8 -A.2 B.3 C.5 D.7 【答案】D.考点:1.反比例函数综合题;2.综合题;3.压轴题. 16.(2021重庆市)如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴y?平行,A,B两点的纵坐标分别为3,1.反比例函数ABCD的面积为()3x的图象经过A,B两点,则菱形A.2 B.4 C.22 D.42 【答案】D.【解析】y?试题分析:过点A作x轴的垂线,与CB的延长线交于点E,∵A,B两点在反比例函数3x的图象上且纵坐标分别为3,1,∴A,B横坐标分别为1,3,∴AE=2,BE=2,∴AB=22,S菱形ABCD=底×高=22×2=42,故选D.- 9 -考点:1.菱形的性质;2.反比例函数图象上点的坐标特征;3.综合题.17.(2021临沂)在平面直角坐标系中,直线y??x?2与反比例函数1y?x的图象有2个公共点,则b的取值范围是公共点,若直线y??x?b与反比例函数()y?1x的图象有唯一A.b>2 B.��2<b<2 C.b>2或b<��2 D.b<��2 【答案】C.考点:反比例函数与一次函数的交点问题. 18.(2021滨州)如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转,若∠BOA12y??y?x、x的图象交于B、A两点,则∠OAB的大小的变化趋势为的两边分别与函数()- 10 -A.逐渐变小 B.逐渐变大 C.时大时小 D.保持不变【答案】D.考点:1.相似三角形的判定与性质;2.反比例函数图象上点的坐标特征;3.综合题. 19.(2021扬州)已知一个正比例函数的图象与一个反比例函数的一个交点坐标为(1,3),则另一个交点坐标是.【答案】(��1,��3).【解析】试题分析:∵反比例函数的图象与经过原点的直线的两个交点一定关于原点对称,∴另一个交点的坐标与点(1,3)关于原点对称,∴该点的坐标为(��1,��3).故答案为:(��1,��3).考点:反比例函数图象的对称性.20.(2021泰州)点(a��1,1)、(a+1,2)在反比例函数yyy?k?k?0?x的图象上,若y1?y2,- 11 -则a的范围是.【答案】��1<a<1.考点:1.反比例函数图象上点的坐标特征;2.分类讨论.y?21.(2021南宁)如图,点A在双曲线23ky?x(x?0)上,x(x?0)点B在双曲线上(点B在点A的右侧),且AB∥x轴.若四边形OABC是菱形,且∠AOC=60°,则k= .【答案】63.【解析】y?试题分析:因为点A在双曲线2323x(x?0)上,设A点坐标为(a,a),因为四23边形OABC是菱形,且∠AOC=60°,所以OA=2a,可得B点坐标为(3a,a),可得:3a?k=23a=63,故答案为:63.考点:1.菱形的性质;2.反比例函数图象上点的坐标特征;3.综合题. 22.(2021桂林)如图,以?ABCO的顶点O为原点,边OC所在直线为x轴,建立平面直y?角坐标系,顶点A、C的坐标分别是(2,4)、(3,0),过点A的反比例函数交BC于D,连接AD,则四边形AOCD的面积是.kx的图象- 12 -【答案】9.考点:1.平行四边形的性质;2.反比例函数系数k的几何意义;3.综合题;4.压轴题. 23.(2021贵港)如图,已知点A1,A2,…,An均在直线y?x?1上,点B1,B2,…,y??Bn均在双曲线1x上,并且满足:A1B1⊥x轴,B1A2⊥y轴,A2B2⊥x轴,B2A3⊥y轴,…,AnBn⊥x轴,BnAn+1⊥y轴,…,记点An的横坐标为an(n为正整数).若则a2021= .a1??1,【答案】2.- 13 -考点:1.反比例函数图象上点的坐标特征;2.一次函数图象上点的坐标特征;3.规律型;4.综合题.24.(2021南京)如图,过原点O的直线与反比例函数y1,y2的图象在第一象限内分别交于点A,B,且A为OB的中点,若函数y1?1x,则y2与x的函数表达式是.【答案】【解析】y2?4x.试题分析:过A作AC⊥x轴于C,过B作BD⊥x轴于D,∵点A在反比例函数y1?1x上,11∴设A(a,a),∴OC=a,AC=a,∵AC⊥x轴,BD⊥x轴,∴AC∥BD,∴△OAC∽△ACOCOAACOCOA12?????OBD,∴BDODOB,∵A为OB的中点,∴BDODOB2,∴BD=2AC=a,- 14 -2k2y2?2a??4yx,∴k=aOD=2OC=2a,∴B(2a,a),设,∴2与x的函数表达式是:y2?44y2?x.故答案为:x.考点:1.反比例函数与一次函数的交点问题;2.综合题;3.压轴题.y?25.(2021攀枝花)如图,若双曲线kx(k?0)与边长为3的等边△AOB(O为坐标原点)的边OA、AB分别交于C、D两点,且OC=2BD,则k的值为.363【答案】25.- 15 -考点:1.反比例函数图象上点的坐标特征;2.等边三角形的性质;3.综合题.93(x>0)y?x26.(2021荆门)如图,点A1,A2依次在的图象上,点B1,B2依次在x轴的正半轴上,若△A1OB1,△A2B1B2均为等边三角形,则点B2的坐标为.【答案】(62,0).- 16 -考点:1.反比例函数图象上点的坐标特征;2.等边三角形的性质;3.综合题;4.压轴题. 27.(2021南平)如图,在平面直角坐标系xOy中,△OAB的顶点A在x轴正半轴上,OCy?是△OAB的中线,点B,C在反比例函数于.3x(x?0)的图象上,则△OAB的面积等9【答案】2.考点:1.反比例函数系数k的几何意义;2.综合题. 28.(2021烟台)如图,矩形OABC的顶点A、C的坐标分别是(4,0)和(0,2),反比y?例函数kx(x>0)的图象过对角线的交点P并且与AB,BC分别交于D,E两点,连接OD,OE,DE,则△ODE的面积为.- 17 -15【答案】4.考点:1.反比例函数系数k的几何意义;2.反比例函数综合题;3.综合题. 29.(2021玉林防城港)已知:一次函数y??2x?10的图象与反比例函数y?kx(k?0)的图象相交于A,B两点(A在B的右侧).(1)当A(4,2)时,求反比例函数的解析式及B点的坐标;(2)在(1)的条件下,反比例函数图象的另一支上是否存在一点P,使△PAB是以AB为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.(3)当A(a,��2a+10),B(b,��2b+10)时,直线OA与此反比例函数图象的另一支交BC5?BD2,求△ABC的面积.于另一点C,连接BC交y轴于点D.若y?【答案】(1)81?x,B(1,8);(2)(��4,��2)、(��16,2);(3)10.- 18 -【解析】y?试题分析:(1)把点A的坐标代入kx,就可求出反比例函数的解析式;解一次函数与反比例函数的解析式组成的方程组,就可得到点B的坐标;(2)①若∠BAP=90°,过点A作AH⊥OE于H,设AP与x轴的交点为M,如图1,对于y=��2x+10,当y=0时,��2x+10=0,解得x=5,∴点E(5,0),OE=5.∵A(4,2),∴OH=4,AH=2,∴HE=5��4=1.∵AH⊥OE,∴∠AHM=∠AHE=90°.又∵∠BAP=90°,∴∠AME+∠AEM=90°,∠AME+∠MAH=90°,∴∠MAH=∠AEM,∴△AHM∽△EHA,∴AHMH2MH??EHAH,∴12,∴MH=4,∴M(0,0),可设直线AP的解析式为y?mx,1?y?x??2??x?4811?y??y?xy?2?x,2,则有4m?2,解得m=2,∴直线AP的解析式为解方程组?得:??x??4?y??2,∴点P的坐标为(��4,��2)或?.1②若∠ABP=90°,同理可得:点P的坐标为(��16,2).?- 19 -1综上所述:符合条件的点P的坐标为(��4,��2)、(��16,2);?(3)过点B作BS⊥y轴于S,过点C作CT⊥y轴于T,连接OB,如图2,则有BS∥CT,CDCTBC5CTCD3????BD2.∵A(a,��2a+10)∴△CTD∽△BSD,∴BDBS.∵BD2,∴BS,B(b,��2b+10),∴C(��a,2a��考点:1.反比例函数综合题;2.待定系数法求一次函数解析式;3.反比例函数与一次函数的交点问题;4.相似三角形的判定与性质;5.压轴题.【2021年题组】1. (2021年湖南湘潭)如图,A、B两点在双曲线线段,已知S阴影=1,则S1+S2=()y?4x上,分别经过A、B两点向轴作垂- 20 -④若OABC是菱形,则两双曲线既关于x轴对称,也关于y轴对称.其中正确的结论是(把所有正确的结论的序号都填上).【答案】①④.考点:1.反比例函数综合题;2. 反比例函数的图象和k的几何意义;3.平行四边形、矩形的性质和菱形的性质.- 26 -9. (2021年湖北荆州)如图,已知点A是双曲线y?2x在第一象限的分支上的一个动点,连结AO并延长交另一分支于点B,以AB为边作等边△ABC,点C在第四象限.随着点A的运动,点C的位置也不断变化,但点C始终在双曲线是.y?kx(k<0)上运动,则k的值【答案】��6.考点:1.单动点问题;2.曲线上点的坐标与方程的关系;3. 等边三角形的性质;4.相似三角形的判定和性质;5.锐角三角函数定义;6.特殊角的三角函数值.- 27 -10. (2021年江苏淮安)如图,点A(1,6)和点M(m,n)都在反比例函数y?kx(x>0)的图象上,(1)k的值为;(2)当m=3,求直线AM的解析式;(3)当m>1时,过点M作MP⊥x轴,垂足为P,过点A作AB⊥y轴,垂足为B,试判断直线BP与直线AM的位置关系,并说明理由.【答案】(1)6;(2)y=��2x+8;(3)直线BP与直线AM的位置关系为平行,.- 28 -考点:1.反比例函数综合题;2.待定系数法的应用;3.曲线上点的坐标与方程的关系;4.相似三角形的判定和性质;5.平行的判定.?考点归纳归纳 1:反比例函数的概念基础知识归纳:一般地,函数(k是常数,k0)叫做反比例函数。
2021年全国中考数学真题分项汇编-专题21图形的旋转(共50题)(解析版)
2021年中考数学真题分项汇编【全国通用】(第01期)专题21图形的旋转(共50题)一、单选题1.(2021·湖南永州市·中考真题)如图,在平面内将五角星绕其中心旋转180︒后所得到的图案是( )A .B .C .D .【答案】C【分析】根据旋转的性质找出阴影部分三角形的位置即可得答案.【详解】∵将五角星绕其中心旋转180︒,∵图中阴影部分的三角形应竖直向下,故选:C .【点睛】本题考查旋转的性质,图形旋转前后,对应边相等,对应角相等,前后两个图形全等;熟练掌握旋转的性质是解题关键.2.(2021·四川广安市·中考真题)如图,将ABC 绕点A 逆时针旋转55︒得到ADE ,若70E ∠=︒且AD BC ⊥于点F ,则BAC ∠的度数为( )A .65︒B .70︒C .75︒D .80︒【答案】C【分析】 由旋转的性质可得∵BAD =55°,∵E =∵ACB =70°,由直角三角形的性质可得∵DAC =20°,即可求解.【详解】解:∵将∵ABC 绕点A 逆时针旋转55°得∵ADE ,∵∵BAD =55°,∵E =∵ACB =70°,∵AD ∵BC ,∵∵DAC =20°,∵∵BAC =∵BAD +∵DAC =75°.故选C .【点睛】本题考查了旋转的性质,掌握旋转的性质是本题的关键.3.(2021·江苏苏州市·中考真题)如图,在方格纸中,将Rt AOB △绕点B 按顺时针方向旋转90°后得到Rt A O B ''△,则下列四个图形中正确的是( )A .B .C .D .【答案】B【分析】根据绕点B 按顺时针方向旋转90°逐项分析即可.【详解】A 、Rt A OB ''△是由Rt AOB △关于过B 点与OB 垂直的直线对称得到,故A 选项不符合题意; B 、Rt A O B ''△是由Rt AOB △绕点B 按顺时针方向旋转90°后得到,故B 选项符合题意;C 、Rt A O B ''△与Rt AOB △对应点发生了变化,故C 选项不符合题意;D 、Rt AOB △是由Rt AOB △绕点B 按逆时针方向旋转90°后得到,故D 选项不符合题意.故选:B .【点睛】本题考查旋转变换.解题的关键是弄清旋转的方向和旋转的度数.4.(2021·天津中考真题)如图,在ABC 中,120BAC ∠=︒,将ABC 绕点C 逆时针旋转得到DEC ,点A ,B 的对应点分别为D ,E ,连接AD .当点A ,D ,E 在同一条直线上时,下列结论一定正确的是( )A .ABC ADC ∠=∠B .CB CD =C .DE DC BC +=D .AB CD ∥【答案】D【分析】 由旋转可知120EDC BAC ∠=∠=︒,即可求出60ADC ∠=︒,由于60ABC ∠<︒,则可判断ABC ADC ∠≠∠,即A 选项错误;由旋转可知CB CE =,由于CE CD >,即推出CB CD >,即B 选项错误;由三角形三边关系可知DE DC CE +>,即可推出DE DC CB +>,即C 选项错误;由旋转可知DC AC =,再由60ADC ∠=︒,即可证明ADC 为等边三角形,即推出60ACD ∠=︒.即可求出180ACD BAC ∠+∠=︒,即证明//AB CD ,即D 选项正确;【详解】由旋转可知120EDC BAC ∠=∠=︒,∵点A ,D ,E 在同一条直线上,∵18060ADC EDC ∠=︒-∠=︒,∵60ABC ∠<︒,∵ABC ADC ∠≠∠,故A 选项错误,不符合题意;由旋转可知CB CE =,∵120EDC ∠=︒为钝角,∵CE CD >,∵CB CD >,故B 选项错误,不符合题意;∵DE DC CE +>,∵DE DC CB +>,故C 选项错误,不符合题意;由旋转可知DC AC =,∵60ADC ∠=︒,∵ADC 为等边三角形,∵60ACD ∠=︒.∵180ACD BAC ∠+∠=︒,∵//AB CD ,故D 选项正确,符合题意;故选D .【点睛】本题考查旋转的性质,三角形三边关系,等边三角形的判定和性质以及平行线的判定.利用数形结合的思想是解答本题的关键.5.(2021·湖南邵阳市·中考真题)如图,在AOB 中,1AO =,32BO AB ==.将AOB 绕点O 逆时针方向旋转90︒,得到A OB ''△,连接AA '.则线段AA '的长为( )A .1B C .32 D 【答案】B【分析】根据旋转性质可知=OA OA ',90AOA '∠=︒,再由勾股定理即可求出线段AA '的长.【详解】解:∵旋转性质可知==1OA OA ',90AOA '∠=︒,∵AA ',故选:B .【点睛】此题主要考查旋转的性质和勾股定理求出直角三角形边长,解题关键是根据旋转性质得出OAA '是等腰直角三角形.6.(2021·四川达州市·中考真题)在平面直角坐标系中,等边AOB ∆如图放置,点A 的坐标为()1,0,每一次将AOB ∆绕着点О逆时针方向旋转60︒,同时每边扩大为原来的2倍,第一次旋转后得到11AOB ∆,第二次旋转后得到22A OB ∆,…,依次类推,则点2021A 的坐标为( )A .()202020202,2- B .()202120212,2C .()202020202,2D .()201120212,2-【答案】C【分析】由题意,点A 每6次绕原点循环一周,利用每边扩大为原来的2倍即可解决问题.【详解】解:由题意,点A 每6次绕原点循环一周,20216371......5÷=,2021A ∴点在第四象限,202120212OA =,202160xOA ∠=︒ ,∴点2020A 的横坐标为20212020122=2⨯,纵坐标为20212020=22, ()2020202020212,2A ∴-, 故选:C .【点睛】本题考查坐标与图形变化-旋转,规律型问题,解题的关键是理解题意,学会探究规律的方法,属于中考常考题型.7.(2021·浙江衢州市·中考真题)如图.将菱形ABCD 绕点A 逆时针旋转α∠得到菱形'''AB C D ,B β∠=∠.当AC 平分''B AC ∠时,α∠与β∠满足的数量关系是( )A .2αβ∠=∠B .23αβ∠=∠C .4180αβ∠+∠=︒D .32180αβ∠+∠=︒【答案】C【分析】 根据菱形的性质可得AB =AC ,根据等腰三角形的性质可得∵BAC =∵BCA =1(180)2B ︒-∠,根据旋转的性质可得∵CAC ′=∵BAB ′=α∠,根据AC 平分''B AC ∠可得∵B ′AC =∵CAC =α∠,即可得出4180αβ∠+∠=︒,可得答案.【详解】∵四边形ABCD 是菱形,B β∠=∠,∵AB =AC ,∵∵BAC =∵BCA =1(180)2B ︒-∠=1(180)2β︒-∠, ∵将菱形ABCD 绕点A 逆时针旋转α∠得到菱形'''AB C D ,∵∵CAC ′=∵BAB ′=α∠,∵AC 平分''B AC ∠,∵∵B ′AC =∵CAC =α∠,∵∵BAC =∵B ′AC +∵BAB′=2α∠=1(180)2β︒-∠, ∵4180αβ∠+∠=︒,故选;C .【点睛】本题考查旋转的性质及菱形的性质,熟练掌握相关性质并正确找出旋转角是解题关键.8.(2021·山东聊城市·中考真题)如图,在直角坐标系中,点A ,B 的坐标为A (0,2),B (﹣1,0),将△ABO 绕点O 按顺时针旋转得到△A 1B 1O ,若AB △OB 1,则点A 1的坐标为( )A .(B .C .(24,33)D .(48,55) 【答案】A【分析】先求出AB ,OA 1,再作辅助线构造相似三角形,如图所示,得到对应边成比例,求出OC 和A 1C ,即可求解.【详解】解:如图所示,∵点A ,B 的坐标分别为A (0,2),B (﹣1,0),∵OB =1,OA =2,∵AB =,∵∵AOB =90°,∵∵A 1OB 1=90°,∵O A 1∵OB 1,又∵AB ∵OB 1,∵O A 1∵AB ,∵∵1=∵2,过A 1点作A 1C ∵x 轴,∵∵A 1CO =∵AOB ,∵1AOB CO A △∽△, ∵11=O C OC AB O OA B A A =,∵O A 1=OA =2, 112OC AC =,∵OC 1AC∵1A ⎝⎭,故选:A .【点睛】本题综合考查了勾股定理、旋转的性质、相似三角形的判定和性质等内容,解决本题的关键是理解并掌握相关概念,能通过作辅助线构造相似三角形等,本题蕴含了数形结合的思想方法等.9.(2021·河南中考真题)如图,OABC 的顶点(0,0)O ,(1,2)A ,点C 在x 轴的正半轴上,延长BA 交y 轴于点D .将ODA 绕点O 顺时针旋转得到OD A ''△,当点D 的对应点D 落在OA 上时,D A ''的延长线恰好经过点C ,则点C 的坐标为( )A .B .C .1,0)+D .1,0)【答案】B【分析】连接A C ',由题意可证明ADO OD C '△∽△,利用相似三角形线段成比例即可求得OC 的长,即得点C 的坐标.【详解】如图,连接A C ',因为AD y ⊥轴, ODA 绕点O 顺时针旋转得到OD A ''△,所以90CD O '∠=︒,OD OD '=DOA D OC D CO D OC '''∠+∠=∠+∠DOA D CO '∴∠=∠ADO OD C '∴△∽△AD OD AO OC'∴= (1,2)A1,2AD OD ∴==AO ∴2OD OD '== 25OC故答案为B .【点睛】本题考查了旋转的性质,勾股定理,相似三角形的判定与性质,找到ADO OD C '△∽△是解题的关键. 10.(2021·黑龙江大庆市·中考真题)如图,F 是线段CD 上除端点外的一点,将ADF 绕正方形ABCD 的顶点A 顺时针旋转90︒,得到ABE △.连接EF 交AB 于点H .下列结论正确的是( )A .120EAF ∠=︒B .:AE EF =C .2AF EH EF =⋅D .::EB AD EH HF =【答案】D【分析】根据旋转的性质可以得到∵EAF 是等腰直角三角形,然后根据相似三角形的判定和性质,以及平行线分线段成比例定理即可作出判断.【详解】解:根据旋转的性质知:∵EAF =90°,故A 选项错误;根据旋转的性质知:∵EAF =90°,EA =AF ,则∵EAF 是等腰直角三角形,∵EF ,即AE :EF =1B 选项错误;若C 选项正确,则22•AF AE EH EF ==,即EA EF EH EA=, ∵∵AEF =∵HEA =45°,∵∵EAF ~∵EHA ,∵∵EAH =∵EF A ,而∵EF A =45°,∵EAH ≠45°,∵∵EAH ≠∵EF A ,∵假设不成立,故C 选项错误;∵四边形ABCD 是正方形,∵CD ∵AB ,即BH ∵CF ,AD =BC , ∵EB :BC =EH :HF ,即EB :AD =EH :HF ,故D 选项正确;故选:D【点睛】本题考查了旋转的性质,正方形的性质,相似三角形的判定和性质,平行线分线段成比例定理,正确运用反证法是解题的关键.11.(2021·湖北黄石市·中考真题)如图,ABC 的三个顶点都在方格纸的格点上,其中A 点的坐标是()1,0-,现将ABC 绕A 点按逆时针方向旋转90︒,则旋转后点C 的坐标是( )A .()2,3-B .()2,3-C .()2,2-D .()3,2- 【答案】B【分析】在网格中绘制出CA 旋转后的图形,得到点C 旋转后对应点.【详解】如图,绘制出CA 绕点A 逆时针旋转90°的图形,由图可得:点C 对应点C '的坐标为(-2,3) .故选B .【点睛】本题考查旋转,需要注意题干中要求顺时针旋转还是逆时针旋转.12.(2021·山东泰安市·中考真题)如图,在矩形ABCD 中,5AB =,BC =P 在线段BC 上运动(含B 、C 两点),连接AP ,以点A 为中心,将线段AP 逆时针旋转60°到AQ ,连接DQ ,则线段DQ 的最小值为( )A .52B .C .3D .3【答案】A【分析】 根据题中条件确定出点P 的轨迹是线段,则线段DQ 的最小值就转化为定点D 到点P 的轨迹线段的距离问题.【详解】 解:AP 与AQ 固定夹角是60︒,:1AP AQ =,点P 的轨迹是线段,Q ∴的轨迹也是一条线段.两点确定一条直线,取点P 分别与,B C 重合时,所对应两个点Q ,来确定点Q 的轨迹,得到如下标注信息后的图形:求DQ 的最小值,转化为点D 到点Q 的轨迹线段的距离问题,5,AB BC ==∴在Rt ABC 中,tan 60BAC BAC ∠==∴∠=︒, //AB DC ,60DCA ∴∠=︒,将AC 逆时针绕点A 转动60︒后得到1AQ ,1ACQ ∴为等边三角形,15DC DQ ==,2Q 为AC 的中点,根据三线合一知,1230CQQ ∠=︒,过点D 作12Q Q 的垂线交于点Q ,在1Rt QQD 中,30对应的边等于斜边的一半,11522DQ DQ ∴==, ∴DQ 的最小值为52, 故选:A .【点睛】本题考查了动点问题中,两点间距离的最小值问题,解题的关键是:需要确定动点的轨迹,才能方便找到解决问题的突破口.13.(2021·山东东营市·中考真题)如图,ABC 是边长为1的等边三角形,D 、E 为线段AC 上两动点,且30DBE ∠=︒,过点D 、E 分别作AB 、BC 的平行线相交于点F ,分别交BC 、AB 于点H 、G .现有以下结论:△ABC S =;△当点D 与点C 重合时,12FH =;△AE CD +=;△当AE CD =时,四边形BHFG 为菱形,其中正确结论为( )A .△△△B .△△△C .△△△△D .△△△【答案】B【分析】过A 作AI ∵BC 垂足为I ,然后计算∵ABC 的面积即可判定∵;先画出图形,然后根据等边三角形的性质和相似三角形的性质即可判定∵;如图将∵BCD 绕B 点逆时针旋转60°得到∵ABN ,求证NE =DE ;再延长EA 到P 使AP =CD =AN ,证得∵P =60°,NP =AP =CD ,然后讨论即可判定∵;如图1,当AE =CD 时,根据题意求得CH =CD 、AG =CH ,再证明四边形BHFG 为平行四边形,最后再说明是否为菱形.【详解】解:如图1, 过A 作AI ∵BC 垂足为I∵ABC 是边长为1的等边三角形∵∵BAC =∵ABC =∵C =60°,CI =1212BC =∵AI =2∵S ∵ABC =11122AI BC =⨯=,故∵正确;如图2,当D 与C 重合时∵∵DBE =30°,ABC 是等边三角形∵∵DBE =∵ABE =30°∵DE =AE =1122AD = ∵GE //BD∵1BG DE AG AE==∵BG=11 22 AB∵GF//BD,BG//DF∵HF=BG=12,故∵正确;如图3,将∵BCD绕B点逆时针旋转60°得到∵ABN∵∵1=∵2,∵5=∵6=60°,AN=CD,BD=BN∵∵3=30°∵∵2+∵4=∵1+∵4=30°∵∵NBE=∵3=30°又∵BD=BN,BE=BE∵∵NBE∵∵DBE(SAS)∵NE=DE延长EA到P使AP=CD=AN∵∵NAP=180°-60°-60°=60°∵∵ANP为等边三角形∵∵P=60°,NP=AP=CD如果AE+CD成立,则PE,需∵NEP=90°,但∵NEP不一定为90°,故∵不成立;如图1,当AE=CD时,∵GE//BC∵∵AGE=∵ABC=60°,∵GEA=∵C=60°∵∵AGE=∵AEG=60°,∵AG=AE同理:CH=CD∵AG=CH∵BG//FH,GF//BH∵四边形BHFG是平行四边形∵BG=BH∵四边形BHFG为菱形,故∵正确.故选B.【点睛】本题主要考查了等边三角形的性质、旋转变换、全等三角形的判定和性质以及菱形的判定等知识点,灵活运用相关知识成为解答本题的关键.二、填空题AB C D的14.(2021·贵州铜仁市·中考真题)如图,将边长为1的正方形ABCD绕点A顺时针旋转30到111位置,则阴影部分的面积是______________;【答案】2 【分析】 CD 交11B C 于点E ,连接AE ;根据全等三角形性质,通过证明1AB E ADE △≌△,得1EAB EAD ∠=∠;结合旋转的性质,得130EAB EAD ∠=∠=︒;根据三角函数的性质计算,得1EB ,结合正方形和三角形面积关系计算,即可得到答案.【详解】解:如图,CD 交11B C 于点E ,连接AE根据题意,得:190AB E ADE ∠=∠=︒,11AB AD ==∵AE AE =∵1AB E ADE △≌△∵1EAB EAD ∠=∠∵正方形ABCD 绕点A 顺时针旋转30到111AB C D∵130BAB ∠=︒,90BAD ∠=︒∵119060B AD BAB ∠=︒-∠=︒∵130EAB EAD ∠=∠=︒∵111tan 3EB EAB AB =∠=∵1EB =∵1111122AB E ADE S S AB EB ==⨯==△△ ∵阴影部分的面积()()122AB E ADE AB BC S S =⨯-+△△2=故答案为:23-. 【点睛】 本题考查了正方形、全等三角形、旋转、三角函数的知识;解题的关键是熟练掌握正方形、全等三角形、旋转、三角函数的性质,从而完成求解.15.(2021·湖北鄂州市·中考真题)如图,在平面直角坐标系中,点C 的坐标为()1,0-,点A 的坐标为()3,3-,将点A 绕点C 顺时针旋转90︒得到点B ,则点B 的坐标为_____________.【答案】()2,2【分析】根据题意画出图形,易证明ADC CEB △≌△,求出OE 、BE 的长即可求出B 的坐标.【详解】解:如图所示,点A 绕点C 顺时针旋转90︒得到点B ,过点A 作x 轴垂线,垂足为D ,过点B 作x 轴垂线,垂足为E ,∵点C 的坐标为()1,0-,点A 的坐标为()3,3-,∵CD=2,AD =3,根据旋转的性质,AC =BC ,∵90ACB ∠=︒,∵90ACD BCE ∠+∠=︒,∵90ACD DAC ∠+∠=︒,∵BCE DAC ∠=∠,∵ADC CEB △≌△,∵AD =CE =3,CD =BE =2,∵OE =2,BE =2,故答案为:()2,2.【点睛】本题主要考查旋转变换和三角形全等的判定与性质,证明ADC CEB △≌△是解题关键.16.(2021·湖南中考真题)如图,Rt ABC 中,390,tan 2BAC ABC ∠=︒∠=,将ABC 绕A 点顺时针方向旋转角9(0)0αα︒<<︒得到AB C ''△,连接BB ',CC ',则CAC '△与BAB '△的面积之比等于_______.【答案】9:4【分析】 先根据正切三角函数的定义可得32AC AB =,再根据旋转的性质可得,,AB AB AC AC BAB CAC α''''==∠=∠=,从而可得1AC AB AC AB =='',然后根据相似三角形的判定可得CAC BAB ''~,最后根据相似三角形的性质即可得.【详解】 解:在Rt ABC 中,390,tan 2BAC ABC ∠=︒∠=, 32AC AB ∴=, 由旋转的性质得:,,AB AB AC AC BAB CAC α''''==∠=∠=, 1AC AB AC AB ∴=='', 在CAC '△和BAB '△中,AC AB AC AB CAC BAB ''''⎧=⎪⎨⎪∠=∠⎩,CAC BAB ''~∴,294CAC BAB AC S AB S ''⎛⎫== ⎪⎝⎭∴, 即CAC '△与BAB '△的面积之比等于9:4,故答案为:9:4.【点睛】本题考查了正切三角函数、旋转的性质、相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题关键.17.(2021·江苏苏州市·中考真题)如图,射线OM 、ON 互相垂直,8OA =,点B 位于射线OM 的上方,且在线段OA 的垂直平分线l 上,连接AB ,5AB =.将线段AB 绕点O 按逆时针方向旋转得到对应线段A B '',若点B '恰好落在射线ON 上,则点A '到射线ON 的距离d ≈______.【答案】245【分析】添加辅助线,连接'OA OB 、,过'A 点作'A P ON ⊥交ON 与点P .根据旋转的性质,得到''A B O ABO ≅,在'Rt A PO ∆和中,'B OA BOA ∠=∠,根据三角函数和已知线段的长度求出点A '到射线ON 的距离=A'P d .【详解】如图所示,连接'OA OB 、,过'A 点作'A P ON ⊥交ON 与点P .∵线段AB 绕点O 按逆时针方向旋转得到对应线段A B ''∵'8OA OA ==,''B OB A OA ∠=∠∵''''B OB BOA A OA BOA ∠-∠=∠-∠即''B OA BOA ∠=∠∵点B 在线段OA 的垂直平分线l 上∵118422OC OA ==⨯=,5OB AB ==3BC =∵''B OA BOA ∠=∠ ∵'sin ''sin 'A P BC B OA BOA A O OB ∠==∠= ∵'385A P = ∵24'5d A P ==【点睛】本题主要考查旋转的性质和三角函数.对应点到旋转中心的距离相等,对应点与旋转中心所连的线段的夹角等于旋转角,旋转前、后的图形全等.18.(2021·广西玉林市·中考真题)如图、在正六边形ABCDEF 中,连接线AD ,AE ,AC ,DF ,DB ,AC 与BD 交于点M ,AE 与DF 交于点为N ,MN 与AD 交于点O ,分别延长AB ,DC 于点G ,设3AB =.有以下结论:△MN AD ⊥;△MN =△DAG △的重心、内心及外心均是点M ;△四边形FACD 绕点O 逆时针旋转30与四边形ABDE 重合.则所有正确结论的序号是______.【答案】∵∵∵【分析】由题意易得AB BC CD DE EF FA =====,120ABC BCD CDE DEF EFA FAB ∠=∠=∠=∠=∠=∠=︒,则有30EFD EDF ∠=∠=︒,进而可得90DFA FDC ∠=∠=︒,则有四边形FACD 是矩形,然后可得FAN BAM ≌,ADG 为等边三角形,最后可得答案.【详解】解:∵六边形ABCDEF 是正六边形,∵AB BC CD DE EF FA =====,120ABC BCD CDE DEF EFA FAB ∠=∠=∠=∠=∠=∠=︒,∵在∵DEF 中,180302DEF EFD EDF ︒-∠∠=∠==︒, ∵90DFA FDC ∠=∠=︒,同理可得90FAC DCA ∠=∠=︒,∵四边形FACD 是矩形,同理可证四边形ABDE 是矩形,∵//,//DN AM AN MD ,∵四边形AMDN 是平行四边形,∵,90,30AF AB NFA MBA FAN MAB =∠=∠=︒∠=∠=︒,∵FAN BAM ≌(ASA ),∵AN AM =,∵四边形AMDN 是菱形,∵MN AD ⊥,∵∵NAM =60°,∵∵NAM 是等边三角形,∵AM =MN ,∵AB =3,∵cos AB AM MAB==∠ ∵MN =∵∵MAB =30°,∵ACG =90°,∵∵G =60°,∵∵ADG 是等边三角形,∵AC 与BD 交于点M ,∵由等边三角形的性质及重心、内心、外心可得:DAG △的重心、内心及外心均是点M ,连接OF ,如图所示:易得∵FOA=60°,∵四边形FACD绕点O逆时针旋转60︒与四边形ABDE重合,∵综上所述:正确结论的序号是∵∵∵;故答案为∵∵∵.【点睛】本题主要考查正多边形的性质、矩形及菱形的判定与性质、等边三角形的性质与判定、三角形的重心、内心、外心及三角函数,熟练掌握正多边形的性质、矩形及菱形的判定与性质、等边三角形的性质与判定、三角形的重心、内心、外心及三角函数是解题的关键.19.(2021·上海中考真题)定义:在平面内,一个点到图形的距离是这个点到这个图上所有点的最短距离,P OP=,当正方形绕着点O旋转时,在平面内有一个正方形,边长为2,中心为O,在正方形外有一点,2则点P到正方形的最短距离d的取值范围为__________.【答案】21d≤【分析】先确定正方形的中心O与各边的所有点的连线中的最大值与最小值,然后结合旋转的条件即可求解.【详解】解:如图1,设AD的中点为E,连接OA,OE,则AE=OE=1,∵AEO=90°,OA=∵点O与正方形ABCD边上的所有点的连线中,OE最小,等于1,OA∵2OP=,∵点P与正方形ABCD边上的所有点的连线中,如图2所示,当点E落在OP上时,最大值PE=PO-EO=2-1=1;如图3所示,当点A落在OP上时,最小值2PA PO AO=-=∵当正方形ABCD绕中心O旋转时,点P到正方形的距离d的取值范围是21d≤≤.故答案为:21d≤≤【点睛】本题考查了新定义、正方形的性质、勾股定理等知识点,准确理解新定义的含义和熟知正方形的性质是解题的关键.20.(2021·江苏南京市·中考真题)如图,将ABCD绕点A逆时针旋转到AB C D'''的位置,使点B'落在BC上,B C''与CD交于点E,若3,4,1AB BC BB'===,则CE的长为________.【答案】98【分析】过点C作CM//C D''交B C''于点M,证明ABB ADD''∆∆∽求得53C D'=,根据AAS证明ABB B CM''∆≅∆可求出CM =1,再由CM //C D ''证明∵CME DC E '∆∽,由相似三角形的性质查得结论.【详解】解:过点C 作CM //C D ''交B C ''于点M ,∵平行四边形ABCD 绕点A 逆时针旋转得到平行四边形AB C D '''∵AB AB '=,,AD AD '=B AB C D D '''∠=∠=∠=∠,BAD B AD ''∠=∠∵BAB DAD ''∠=∠,B D '∠=∠∵ABB ADD ''∆∆∽ ∵3,4BB AB AB DD AD BC ''=== ∵1BB '= ∵43DD '= ∵C D C D DD ''''=-CD DD '=-AB DD '=-433=- 53= AB C AB C CB M ABC BAB '''''∠=∠+∠=∠+∠∵∵CB M BAB ''=∠∵413B C BC BB ''=-=-=∵B C AB '=∵AB AB '=∵∵AB B AB C ABB ''''=∠=∠∵//AB C D ''',//C D CM ''∵//AB CM '∵∵AB C B MC '''=∠∵∵AB B B MC ''=∠在ABB '∆和B MC '∆中,BAB CB M AB B B MC AB B C ∠=∠⎧⎪∠='''∠''⎨⎪=⎩∵ABB B CM ''∆≅∆∵1BB CM '==∵//CM C D '∵∵CME DC E '∆∽ ∵13553CM CE DC DE '=== ∵38CE CD = ∵333938888CE CD AB ===⨯= 故答案为:98. 【点睛】此题主要考查了旋转的性质,平行四边形的性质,全等三角形的判定与性质以及相似三角形的判定与性质,正确作出辅助线构造全等三角形和相似三角形是解答本题的关键.21.(2021·新疆中考真题)如图,已知正方形ABCD 边长为1,E 为AB 边上一点,以点D 为中心,将DAE△按逆时针方向旋转得DCF ,连接EF ,分別交BD ,CD 于点M ,N .若25AE DN =,则sin EDM ∠=__________.【分析】过点E 作EP ∵BD 于P ,将∵EDM 构造在直角三角形DEP 中,设法求出EP 和DE 的长,然后用三角函数的定义即可解决.【详解】解:∵四边形ABCD 是正方形,∵AB ∵DC ,∵A =∵BCD =∵ADC =90°,AB =BC = CD =DA =1,BD =.∵∵DAE 绕点D 逆时针旋转得到∵DCF ,∵CF =AE ,DF =DE ,∵EDF =∵ADC =90°.设AE =CF =2x ,DN =5x ,则BE =1-2x ,CN =1-5x ,BF=1+2x .∵AB ∵DC ,∵~FNC FEB .∵NC FC EB FB=. ∵1521212x x x x -=-+. 整理得,26510x x +-=. 解得,116x =,21x =-(不合题意,舍去). ∵1221233AE x EB x ===-=,.∵DE === 过点E 作EP ∵BD 于点P ,如图所示,设DP=y,则BP y=.∵22222 EB BP EP DE DP-==-,∵)2222233y y⎛⎛⎫-=-⎪⎝⎭⎝⎭.解得,3y=∵3EP===.∵在Rt∵DEP中,sinEPEDPED∠===sin EDM∠=故答案为:5【点睛】本题考查了正方形的性质、旋转的性质、相似三角形的判定与性质、勾股定理、锐角三角函数、方程的数学思想等知识点,熟知各类图形的性质与判定是解题的基础,构造直角三角形,利用锐角三角函数的定义是解题的关键.22.(2021·湖北随州市·中考真题)如图,在Rt ABC中,90C∠=︒,30ABC∠=︒,BC,将ABC 绕点A逆时针旋转角α(0180α︒<<︒)得到AB C''△,并使点C'落在AB边上,则点B所经过的路径长为______.(结果保留π)【答案】23π.利用勾股定理求出AB =2,根据旋转的性质得到旋转角为∵'BAB =60°,再由弧长计算公式,计算出结果.【详解】解:∵90C ∠=︒,30ABC ∠=︒,BC =,∵AB =2AC ,设AC =x ,则AB =2x ,由勾股定理得:222(2)x x +=,解得:x =1,则:AC =1,AB =2,∵将ABC 绕点A 逆时针旋转角α(0180α︒<<︒)得到'AB C ',且点C '落在AB 边上, ∵旋转角为60°,∵∵'BAB =60°,∵点B 所经过的路径长为:602218018033n r AB ππππ=⨯=⨯= , 故答案为:23π. 【点睛】 本题主要考查了勾股定理、旋转的性质和弧长的计算公式,解题关键在于找到旋转角,根据弧长公式进行计算.23.(2021·湖南怀化市·中考真题)如图,在平面直角坐标系中,已知(2,1)A -,(1,4)B -,(1,1)C -,将ABC先向右平移3个单位长度得到111A B C △,再绕1C 顺时针方向旋转90︒得到221A B C △,则2A 的坐标是____________.【答案】(2,2).直接利用平移的性质和旋转的性质得出对应点位置,然后作图,进而得出答案.【详解】解:如图示:111A B C △,221A B C △为所求,根据图像可知,2A 的坐标是(2,2),故答案是:(2,2).【点睛】本题主要考查了平移作图和旋转作图,熟悉相关性质是解题关键.24.(2021·浙江温州市·中考真题)如图,O 与OAB 的边AB 相切,切点为B .将OAB 绕点B 按顺时针方向旋转得到O A B '''△,使点O '落在O 上,边A B '交线段AO 于点C .若25A '∠=︒,则OCB ∠=______度.【答案】85【分析】连结OO′,先证∵BOO′为等边三角形,求出∵AOB =∵OBO′=60°,由O 与OAB 的边AB 相切,可求∵CBO ==30°,利用三角形内角和公式即可求解.【详解】解:连结OO′,∵将OAB 绕点B 按顺时针方向旋转得到O A B '''△,∵BO′=BO =OO′,∵∵BOO′为等边三角形,∵∵OBO′=60°,∵O 与OAB 的边AB 相切,∵∵OBA =∵O′BA′=90°,∵∵CBO =90°-∵OBO′=90°-60°=30°,∵∵A′=25°∵∵A′O′B =90°-∵A′=90°-25°=65°∵∵AOB =∵A′O′B =65°,∵∵OCB =180°-∵COB -∵OBC =180°-65°-30°=85°.故答案为85.【点睛】本题考查图形旋转性质,切线性质,等边三角形判定与性质,直角三角形性质,掌握图形旋转性质,切线性质,等边三角形判定与性质,直角三角形性质是解题关键.25.(2021·四川广安市·中考真题)如图,在平面直角坐标系中,AB y ⊥轴,垂足为B ,将ABO 绕点A 逆时针旋转到11ABO 的位置,使点B 的对应点1B 落在直线34y x =-上,再将11ABO 绕点1B 逆时针旋转到112A B O 的位置,使点1O 的对应点2O 也落在直线34y x =-上,以此进行下去……若点B 的坐标为()0,3,则点21B 的纵坐标...为______.【答案】3875【分析】计算出∵AOB 的各边,根据旋转的性质,求出OB 1,B 1B 3,...,得出规律,求出OB 21,再根据一次函数图像上的点求出点B 21的纵坐标即可.【详解】解:∵AB ∵y 轴,点B (0,3),∵OB =3,则点A 的纵坐标为3,代入34y x =-, 得:334x =-,得:x =-4,即A (-4,3),∵OB =3,AB =4,OA ,由旋转可知:OB =O 1B 1=O 2B 1=O 2B 2=...=3,OA =O 1A =O 2A 1=...=5,AB =AB 1=A 1B 1=A 2B 2= (4)∵OB 1=OA +AB 1=4+5=9,B 1B 3=3+4+5=12,∵OB 21=OB 1+B 1B 21=9+(21-1)÷2×12=129,设B 21(a ,34a -),则OB 21129, 解得:5165a =-或5165(舍), 则335163874455a ⎛⎫-=-⨯-= ⎪⎝⎭,即点B 21的纵坐标为3875, 故答案为:3875. 【点睛】本题考查了一次函数图象上点的坐标特征,旋转以及直角三角形的性质,求出∵OAB的各边,计算出OB21的长度是解题的关键.26.(2021·青海中考真题)如图所示的图案由三个叶片组成,绕点O旋转120°后可以和自身重合,若每个叶片的面积为4cm2,△AOB=120°,则图中阴影部分的面积为__________.【答案】4 cm2【分析】根据旋转的性质和图形的特点解答.【详解】每个叶片的面积为4cm2,因而图形的面积是12cm2.∵图案绕点O旋转120°后可以和自身重合,∵AOB为120°,∵图形中阴影部分的面积是图形的面积的13,因而图中阴影部分的面积之和为4cm2.故答案为4cm2.【点睛】本题考查了图形的旋转与重合,理解旋转对称图形的定义是解决本题的关键.注:旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.27.(2021·山东枣庄市·中考真题)如图,在平面直角坐标系xOy中,△A′B′C′由△ABC绕点P旋转得到,则点P的坐标为_______.【答案】P(1,-1).【详解】试题分析:连接AA′、CC′,作线段AA′的垂直平分线MN ,作线段CC′的垂直平分线EF ,直线MN 和直线EF 的交点为P ,点P 就是旋转中心.∵直线MN 为:x=1,设直线CC′为y=kx+b , 由题意:, ∵, ∵直线CC′为y=x+,∵直线EF∵CC′,经过CC′中点(,), ∵直线EF 为y=﹣3x+2,由得, ∵P (1,﹣1).考点:坐标与图形变化-旋转三、解答题28.(2021·四川成都市·中考真题)在Rt ABC 中,90,5,3ACB AB BC ∠=︒==,将ABC 绕点B 顺时针旋转得到A BC ''△,其中点A ,C 的对应点分别为点A ',C '.(1)如图1,当点A '落在AC 的延长线上时,求AA '的长;(2)如图2,当点C '落在AB 的延长线上时,连接CC ',交A B '于点M ,求BM 的长;(3)如图3,连接,AA CC '',直线CC '交AA '于点D ,点E 为AC 的中点,连接DE .在旋转过程中,DE 是否存在最小值?若存在,求出DE 的最小值;若不存在,请说明理由.【答案】(1)8AA '=;(2)1511BM =;(3)存在,最小值为1 【分析】(1)根据题意利用勾股定理可求出AC 长为4.再根据旋转的性质可知AB A B '=,最后由等腰三角形的性质即可求出AA '的长.(2)作CD AC '⊥交AC '于点D ,作//CE A B '交AC '于点E .由旋转可得A BC ABC ''∠=∠,3BC BC '==.再由平行线的性质可知CEB A BC ''∠=∠,即可推出CEB ABC ∠=∠,从而间接求出3CE BC BC '===,DE DB =.由三角形面积公式可求出125CD =.再利用勾股定理即可求出185BE =,进而求出335C E '=.最后利用平行线分线段成比例即可求出BM 的长. (3)作//AP A C ''且交CD '延长线于点P ,连接A C '.由题意易证明BCC BC C ''∠=∠,90ACP BCC '∠=︒-∠,90A C D BC C '''∠=︒-∠,即得出ACP A C D ''∠=∠.再由平行线性质可知APC A C D ''∠=∠,即得出ACP APC ∠=∠,即可证明AP AC A C ''==,由此即易证()APD A C D AAS ''≅,得出AD A D '=,即点D 为AA '中点.从而证明DE 为ACA '的中位线,即12DE A C '=.即要使DE 最小,A C '最小即可.根据三角形三边关系可得当点A C B '、、三点共线时A C '最小,且最小值即为=A C A B BC ''-,由此即可求出DE 的最小值.【详解】(1)在Rt ABC 中,4AC ==.根据旋转性质可知AB A B '=,即ABA '△为等腰三角形.∵90ACB ∠=︒,即BC AA '⊥,∵4A C AC '==,∵8AA '=.(2)如图,作CD AC '⊥交AC '于点D ,作//CE A B '交AC '于点E .由旋转可得A BC ABC ''∠=∠,3BC BC '==.∵//CE A B ',∵CEB A BC ''∠=∠,∵CEB ABC ∠=∠,∵3CE BC BC '===,DE DB =. ∵1122ABC S AB CD AC BC ==,即543CD ⨯=⨯, ∵125CD=. 在Rt BCD 中,95DB ==, ∵185BE =. ∵335C E BE BC ''=+=. ∵//CE A B ', ∵BM BC CE C E '=',即33335BM =, ∵1511BM =. (3)如图,作//AP A C ''且交C D '延长线于点P ,连接A C '.∵BC BC '=,∵BCC BC C ''∠=∠,∵180ACP ACB BCC '∠=︒-∠-∠,即90ACP BCC '∠=︒-∠,又∵90A C D BC C '''∠=︒-∠,∵ACP A C D ''∠=∠.∵//AP A C '',∵APC A C D ''∠=∠,∵ACP APC ∠=∠,∵AP AC =,∵AP A C ''=.∵在APD △和AC D ''中ADP A DC APD A C D AP A C '''∠=∠⎧⎪∠=∠'''⎨⎪=⎩,∵()APD A C D AAS ''≅,∵AD A D '=,即点D 为AA '中点.∵点E 为AC 中点,∵DE 为ACA '的中位线, ∵12DE A C '=, 即要使DE 最小,A C '最小即可.根据图可知A C A B BC ''≤-,即当点A C B '、、三点共线时A C '最小,且最小值为==53=2A C A B BC ''--.∵此时1=12DE A C '=,即DE 最小值为1.【点睛】本题为旋转综合题.考查旋转的性质,勾股定理,等腰三角形的判定和性质,平行线的性质,平行线分线段成比例,全等三角形的判定和性质,中位线的判定和性质以及三角形三边关系,综合性强,为困难题.正确的作出辅助线为难点也是解题关键.29.(2021·广西贵港市·中考真题)已知在ABC 中,O 为BC 边的中点,连接AO ,将AOC 绕点O 顺时针方向旋转(旋转角为钝角),得到EOF ,连接AE ,CF .(1)如图1,当△BAC =90°且AB =AC 时,则AE 与CF 满足的数量关系是 ;(2)如图2,当△BAC =90°且AB ≠AC 时,(1)中的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)如图3,延长AO 到点D ,使OD =OA ,连接DE ,当AO =CF =5,BC =6时,求DE 的长.【答案】(1)AE CF =;(2)成立,证明见解析;(3【分析】 (1)结论AE CF =.证明()AOE COF SAS ∆≅∆,可得结论.(2)结论成立.证明方法类似(1).(3)首先证明90AED ∠=︒,再利用相似三角形的性质求出AE ,利用勾股定理求出DE 即可.【详解】解:(1)结论:AE CF =.理由:如图1中,AB AC =,90BAC ∠=︒,OC OB =,OA OC OB ∴==,AO BC ⊥,90AOC EOF ∠=∠=︒,AOE COF ∴∠=∠,OA OC =,OE OF =,()AOE COF SAS ∴∆≅∆,AE CF ∴=.(2)结论成立.理由:如图2中,=,∠=︒,OC OB90BAC∴==,OA OC OB∠=∠,AOC EOF∴∠=∠,AOE COF=,OE OFOA OC=,∴∆≅∆,()AOE COF SAS∴=.AE CF(3)如图3中,=,由旋转的性质可知OE OAOA OD=,OE OA OD∴===,5∴∠=︒,AED90∠=∠,=,OC OFOA OE=,AOE COF ∴OA OE=,OC OFAOE COF ∴∆∆∽,∴AE OACF OC=, 5CF OA ==,∴553AE =, 253AE ∴=,DE ∴==. 【点睛】本题属于几何变换综合题,考查了旋转变换,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,属于中考压轴题.30.(2021·黑龙江鹤岗市·中考真题)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,ABO 的三个顶点坐标分别为()()()1,3,4,3,00,0A B --.(1)画出ABO 关于x 轴对称的11A BO ,并写出点1A 的坐标;(2)画出ABO 绕点O 顺时针旋转90︒后得到的22A B O ,并写出点2A 的坐标; (3)在(2)的条件下,求点A 旋转到点2A 所经过的路径长(结果保留π).【答案】(1)见解析,1(1,3)A --;(2)见解析,2(3,1)A ;(3 【分析】(1)分别作出点A 、B 关于x 轴的对称点,然后依次连接即可,最后通过图象可得点1A 的坐标;。
2021年自贡市中考数学试卷含答案解析
2021年自贡市中考数学试卷含答案解析2021年四川省自贡市中考数学试卷一、选择题(本大题共12小题,共48分) 1. 计算的结果是A. B. C. 4 D. 2 【答案】A【解析】解:;故选:A.利用异号两数相加取绝对值较大的加数的符号,然后用较大的绝对值减去较小的绝对值即可.本题考查了有理数的加法,比较简单,属于基础题.2. 下列计算正确的是A. B. C. D. 【答案】C【解析】解:原式,故A错误;原式,故B错误;原式,故D错误;故选:C.根据相关的运算法则即可求出答案.本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.3. 2021年我市用于资助贫困学生的助学金总额是445800000元,将445800000用科学记数法表示为 A. B. C. D. 【答案】B【解析】解:,故选:B.科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是非负数;当原数的绝对值时,n是负数.此题考查了科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.4. 在平面内,将一个直角三角板按如图所示摆放在一组平行线上;若,则的度数是A. B. C. D. 【答案】D【解析】解:由题意可得:,.故选:D.直接利用平行线的性质结合已知直角得出的度数.第1页,共15页此题主要考查了平行线的性质,正确得出的度数是解题关键.5. 下面几何的主视图是A.B.C.D.【答案】B【解析】解:从几何体正面看,从左到右的正方形的个数为:2,1,故选B.主视图是从物体正面看所得到的图形.本题考查了三视图的知识,主视图是从物体的正面看得到的视图,解答时学生易将三种视图混淆而错误地选其它选项.E分别是AB、AC的中点,6. 如图,在中,点D、若的面积为4,则的面积为 A. 8 B. 12 C. 14 D. 16 【答案】D【解析】解:在中,点D、E分别是AB、AC的中点,,,∽,,,的面积为4,的面积为:16,故选:D.,直接利用三角形中位线定理得出,再利用相似三角形的判定与性质得出答案.此题主要考查了三角形的中位线以及相似三角形的判定与性质,正确得出∽是解题关键.80、98、7. 在一次数学测试后,随机抽取九年级班5名学生的成绩单位:分如下:98、83、91,关于这组数据的说法错误的是 A. 众数是98 B. 平均数是90 C. 中位数是91 D. 方差是56 【答案】D第2页,共15页【解析】解:98出现的次数最多,这组数据的众数是98,A说法正确;,B说法正确;这组数据的中位数是91,C说法正确;,D说法错误;故选:D.根据众数、中位数的概念、平均数、方差的计算公式计算.本题考查的是众数、中位数的概念、平均数和方差的计算,掌握方差的计算公式是解题的关键.8. 回顾初中阶段函数的学习过程,从函数解析式到函数图象,再利用函数图象研究函数的性质,这种研究方法主要体现的数学思想是A. 数形结合B. 类比C. 演绎D. 公理化【答案】A【解析】解:学习了一次函数、二次函数和反比例函数,都是按照列表、描点、连线得到函数的图象,然后根据函数的图象研究函数的性质,这种研究方法主要体现了数形结合的数学思想.故选:A.从函数解析式到函数图象,再利用函数图象研究函数的性质正是数形结合的数学思想的体现.本题考查了函数图象,解题的关键是掌握初中数学常用的数学思想.9. 如图,若内接于半径为R的,且,连接OB、OC,则边BC的长为 A.B. C.D.【答案】D【解析】解:延长BO交于D,连接CD,则,,,,,,故选:D.延长BO交圆于D,连接CD,则,;又,根据第3页,共15页锐角三角函数的定义得此题综合运用了圆周角定理、直角三角形角的性质、勾股定理,注意:作直径构造直角三角形是解决本题的关键.2、3、n,这四个数中任取两数,10. 从、分别记为m、那么点在函数图象的概率是A.【答案】BB.C.D.【解析】解:点在函数的图象上,.列表如下: m n mn 2 3 2 2 2 3 3 3 3 3 62 2 6 6 6 mn的值为6的概率是.故选:B.根据反比例函数图象上点的坐标特征可得出,列表找出所有mn的值,根据表格中所占比例即可得出结论.本题考查了反比例函数图象上点的坐标特征以及列表法与树状图法,通过列表找出的概率是解题的关键.11. 已知圆锥的侧面积是,若圆锥底面半径为,母线长为,则R关于l的函数图象大致是A. B. C. D.【答案】A【解析】解:由题意得,,则,故选:A.根据圆锥的侧面展开图是扇形、扇形面积公式列出关系式,根据反比例函数图象判断即可.本题考查的是圆锥的计算、函数图象,掌握圆锥的圆锥的侧面积的计算公式是解题的关键.第4页,共15页12. 如图,在边长为a正方形ABCD中,把边BC绕点B逆时针旋转,得到线段BM,连接AM并延长交CD于N,连接MC,则的面积为A.B. C.D.【答案】C【解析】解:作于G,于H,则,,,,,,,由旋转变换的性质可知,是等边三角形,,由题意得,,,,,,的面积,故选:C.作于G,于H,根据旋转变换的性质得到是等边三角形,根CH,据直角三角形的性质和勾股定理分别求出MH、根据三角形的面积公式计算即可.本题考查的是旋转变换的性质、正方形的性质,掌握正方形的性质、平行线的性质是解题的关键.二、填空题(本大题共6小题,共24分) 13. 分解因式: ______.【答案】【解析】解:原式提取公因式完全平方公式先提取公因式a,再根据完全平方公式进行二次分解完全平方公式:.本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行两次分解,注意要分解要彻底.第5页,共15页14. 化简结果是______.【答案】【解析】解:原式故答案为:根据分式的运算法则即可求出答案.本题考查分式的运算法则,解题的关键是熟练运分式的运算法则,本题属于基础题型.15. 若函数的图象与x轴有且只有一个交点,则m的值为______.【答案】【解析】解:函数的图象与x轴有且只有一个交点,,解得:.故答案为:.由抛物线与x轴只有一个交点,即可得出关于m的一元一次方程,解之即可得出m的值.本题考查了抛物线与x轴的交点,牢记“当时,抛物线与x轴有1个交点”是解题的关键.16. 六一儿童节,某幼儿园用100元钱给小朋友买了甲、乙两种不同的玩具共30个,单价分别为2元和4元,则该幼儿园购买了甲、乙两种玩具分别为______、______个【答案】10;20【解析】解:设甲玩具购买x个,乙玩具购买y个,由题意,得,解得,甲玩具购买10个,乙玩具购买20个,故答案为:10,20.根据二元一次方程组,可得答案.本题考查了二次元一次方程组的应用,根据题意找出两个等量关系是解题关键.17. 观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2021个图形共有______个.第6页,共15页【答案】6055【解析】解:观察图形可知:第1个图形共有:,第2个图形共有:,第3个图形共有:,,第n个图形共有:,第2021个图形共有,故答案为:6055.每个图形的最下面一排都是1,另外三面随着图形的增加,每面的个数也增加,据此可得出规律,则可求得答案.本题为规律型题目,找出图形的变化规律是解题的关键,注意观察图形的变化. 18. 如图,在中,,,将它沿AB翻折得到,则四边形ADBC的形状是______形,点P、E、F分别为线段AB、AD、DB的任意点,则的最小值是______.【答案】菱;【解析】解:沿AB翻折得到,,,,,四边形ADBC是菱形,故答案为菱;如图第7页,共15页作出F关于AB的对称点M,再过M作,交ABA于点P,此时最小,此时,过点A作,,,作,,,由勾股定理可得,,,可得,,,最小为,故答案为.根据题意证明四边相等即可得出菱形;作出F关于AB的对称点M,再过M作,交ABA于点P,此时最小,求出ME即可.此题主要考查路径和最短问题,会结合轴对称的知识和“垂线段最短”的基本事实分析出最短路径是解题的关键.三、解答题(本大题共8小题,共78分) 19. 计算:.【答案】解:原式.故答案为2.第8页,共15页【解析】本题涉及绝对值、负整数指数幂、特殊角的三角函数值3个考点在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型解决此类题目的关键是熟练掌握负整数指数幂、特殊角的三角函数值、绝对值等考点的运算.20. 解不等式组:,并在数轴上表示其解集.【答案】解:解不等式,得:;解不等式,得:,不等式组的解集为:.将其表示在数轴上,如图所示.【解析】分别解不等式、求出x的取值范围,取其公共部分即可得出不等式组的解集,再将其表示在数轴上,此题得解.本题考查了解一元一次不等式组以及在数轴上表示不等式的解集,通过解不等式组求出x的取值范围是解题的关键.21. 某校研究学生的课余爱好情况吧,采取抽样调查的方法,从阅读、运动、娱乐、上网等四个方面调查了若干名学生的兴趣爱好,并将调查结果绘制成下面两幅不完整的统计图,请你根据图中提供的信息解答下列问题:在这次调查中,一共调查了______名学生;补全条形统计图;若该校共有1500名,估计爱好运动的学生有______人;在全校同学中随机选取一名学生参加演讲比赛,用频率估计概率,则选出的恰好是爱好阅读的学生的概率是______.【答案】100;600;【解析】解:爱好运动的人数为40,所占百分比为共调查人数为:爱好上网的人数所占百分比为爱好上网人数为:,爱好阅读人数为:,补全条形统计图,如图所示,爱好运动所占的百分比为,估计爱好运用的学生人数为:第9页,共15页。
专题5二次根式(共36题)-2021年中考数学真题分项汇编(解析版)【全国通用】(第01期)
专题5二次根式(共36题)-2021年中考数学真题分项汇编(解析版)【全国通用】(第01期)姓名:__________________ 班级:______________ 得分:_________________一、单选题1.(2021·湖南衡阳市·中考真题)下列计算正确的是( )A 4=±B .()021-=C =D 3=【答案】B【分析】利用算术平方根,零指数幂,同类二次根式,立方根逐项判断即可选择.【详解】4=,故A 选项错误,不符合题意;0(2)1-=,故B 选项正确,符合题意;C 选项错误,不符合题意;D 选项错误,不符合题意;故选B .2.(2021·浙江杭州市·中考真题)下列计算正确的是( )A 2=B 2=-C 2=±D 2=± 【答案】A【分析】由二次根式的性质,分别进行判断,即可得到答案. 【详解】2==,故A 正确,C 错误;2,故B 、D 错误;故选:A .3.(2021·上海中考真题)下列实数中,有理数是( )A B C D 【答案】C【分析】先化简二次根式,再根据有理数的定义选择即可【详解】解:A2B3C 12为有理数D5故选:C4.(2021·江苏苏州市·中考真题)计算2的结果是()A B.3C.D.9【答案】B【分析】直接根据二次根式的性质求解即可.【详解】解:2=3,故选B.【点睛】此题主要考查了二次根式的性质,熟练掌握2(0)a a=≥是解答此题的关键.5.(2021·甘肃武威市·中考真题)下列运算正确的是()A 3=B .4=C =D 4=【答案】C【分析】直接根据二次根式的运算法则计算即可得到答案.【详解】=A 错;=B 错;=C 正确;2=,故D 错.故选:C .6.(2021· )A .7B .C .D .【答案】B【分析】根据二次根式的运算法则,先算乘法再算减法即可得到答案;【详解】===故选:B .7.(2021·浙江嘉兴市·中考真题)能说明命题“若x 为无理数,则x 2也是无理数”是假命题的反例是( )A .1x =B .1x =C .x =D .x =【答案】C【分析】根据反例满足条件,但不能得到结论,所以利用此特征可对各选项进行判断.【详解】解:A 、)221=3x =-B 、)221x =C 、(22=18x =,是有理数,符合题意;D 、22=5x =-,是无理数,不符合题意;故选:C .【点睛】本题考查了无理数的概念以及二次根式的运算,熟练掌握运算法则和定义是解题的关键.8.(2021·重庆中考真题)下列计算中,正确的是( )A .21=B .2+=C =D 3= 【答案】C【分析】根据二次根式运算法则逐项进行计算即可.【详解】解:A. =,原选项错误,不符合题意;B. 2不是同类二次根式,不能合并,原选项错误,不符合题意;C.=D. =故选:C .【点睛】本题考查了二次根式的运算,解题关键是熟练运用二次根式运算法则,进行准确计算.9.(2021· )A .4B .4±C .D .±【分析】()0,0,a b a b=≥≥直接化简即可得到答案.【详解】==故选:.C【点睛】本题考查的是二次根式的化简,掌握积的算术平方根的含义是解题的关键.10.(2021·江苏苏州市·中考真题)已知点)A m,3,2B n⎛⎫⎪⎝⎭在一次函数21y x=+的图像上,则m与n 的大小关系是()A.m n>B.m n=C.m n<D.无法确定【答案】C【分析】根据一次函数的增减性加以判断即可.【详解】解:在一次函数y=2x+1中,∵k=2>0,∵y随x的增大而增大.∵2<94,32<.∵m<n.故选:C【点睛】本题考查了一次函数的性质、实数的大小比较等知识点,熟知一次函数的性质是解题的关键.11.(2021·浙江台州市·之间的整数有()A.0个B.1个C.2个D.3个【分析】【详解】解:∵12<<,23<<,∵2,这一个数,故选:B .【点睛】此题主要考查了无理数的估算能力,解决本题的关键是得到最接近无理数的两个有理数的值.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.12.(2021·四川资阳市·中考真题)若a =b =2c =,则a ,b ,c 的大小关系为( ) A .b c a <<B .b a c <<C .a c b <<D .a b c << 【答案】C【分析】根据无理数的估算进行大小比较.【详解】解:<>又∵a c b <<故选:C .【点睛】本题考查求一个数的算术平方根,求一个数的立方根及无理数的估算,理解相关概念是解题关键.13.(2021·浙江中考真题)已知,a b 是两个连续整数,1a b <<,则,a b 分别是( ) A .2,1--B .1-,0C .0,1D .1,2 【答案】C【分析】1的范围即可得到答案.【详解】<<解:12,∴011,<-<∴==0,1,a b故选:.C【点睛】本题考查的是无理数的估算,掌握利用算术平方根的含义估算无理数是解题的关键.二、填空题14.(2021·天津中考真题)计算1)的结果等于_____.【答案】9【分析】根据二次根式的混合运算法则结合平方差公式计算即可.【详解】2=-=.1)19故答案为9.【点睛】本题考查二次根式的混合运算.掌握二次根式的混合运算法则是解答本题你的关键.15.(2021·浙江丽水市·有意义,则x可取的一个数是__________.x≥)【答案】如4等(答案不唯一,3【分析】根据二次根式的开方数是非负数求解即可.【详解】解:∵有意义,∵x﹣3≥0,∵x≥3,∵x可取x≥3的任意一个数,故答案为:如4等(答案不唯一,3x ≥.【点睛】本题考查二次根式、解一元一次不等式,理解二次根式的开方数是非负数是解答的关键.16.(2021·江苏连云港市·=__________. 【答案】5【分析】直接运用二次根式的性质解答即可.【详解】5.故填5.【点睛】()()00a a a a ⎧-⎪=⎨≥⎪⎩<成为解答本题的关键. 17.(2021·湖南衡阳市·有意义,则x 的取值范围是________.【答案】x ≥3【分析】根据二次根式被开方数为非负数进行求解.【详解】由题意知,30x -≥,解得,x ≥3,故答案为:x ≥3.【点睛】本题考查二次根式有意义的条件,二次根式中的被开方数是非负数.18.(2021·浙江金华市·x 的取值范围是___.【答案】x 3≥.【详解】x 30x 3-≥⇒≥.19.(2021·四川广安市·中考真题)在函数y =x 的取值范围是___. 【答案】1x 2≥【详解】 试题分析:求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非在实数范围内有意义,必须12x 10x 2-≥⇒≥.20.(2021·湖南岳阳市·中考真题)已知1x x +=,则代数式1x x +=______. 【答案】0【分析】把1x x+=直接代入所求的代数式中,即可求得结果的值. 【详解】10x x+== 故答案为:0.【点睛】本题考查了求代数式的值,涉及二次根式的减法运算,整体代入法是解决本题的关键.21.(2021·四川眉山市·中考真题)观察下列等式:1311212x ===+⨯;2711623x ===+⨯;313111234x ===+⨯; ……根据以上规律,计算12320202021x x x x ++++-=______. 【答案】12016-【分析】根据题意,找到第n 1与1n(n 1)+的和;利用这个结论得到原式=112+116+1112+…+1120202021⨯﹣2021,然后把12化为1﹣12,16化为12﹣13,120152016⨯化为12015﹣12016,再进行分数的加减运算即可. 【详解】11(1)n n =++,20201120202021x =+⨯ 12320202021x x x x ++++- =112+116+1112+…+1120202021⨯﹣2021 =2020+1﹣12+12﹣13+…+12015﹣12016﹣2021 =2020+1﹣12016﹣2021 =12016-. 故答案为:12016-. 【点睛】本题考查了二次根式的化简和找规律,解题关键是根据算式找的规律,根据数字的特征进行简便运算.三、解答题22.(2021·陕西中考真题)计算:0112⎛⎫-+ ⎪⎝⎭【答案】【分析】根据零次幂、算术平方根及二次根式的加减运算可直接进行求解.【详解】解:原式11=-=【点睛】本题主要考查零次幂、算术平方根及二次根式的加减运算,熟练掌握零次幂、算术平方根及二次根式的加减运算是解题的关键.23.(2021·湖南邵阳市·中考真题)计算:()020212tan 60π--︒.【答案】﹣【分析】 根据零指数幂运算法则、绝对值符号化简、特殊角的三角函数值代入计算,然后根据同类二次根式合并求解即可.【详解】解:()020212tan 60π--︒=(12--=12-+=﹣.【点睛】本题主要考查了实数的综合运算能力,是中考题中常见的计算题型.熟练掌握零指数幂、特殊角的三角函数值、绝对值化简方法,同类二次根式是解题关键.24.(2021·四川眉山市·中考真题)计算:(10143tan 602-⎛⎫--︒--+ ⎪⎝⎭【答案】3【分析】依次计算“0次方”、tan 60︒等,再进行合并同类项即可.【详解】解:原式=()132123--+=-+=【点睛】本题综合考查了非零数的零次幂、特殊角的三角函数、负整数指数幂以及二次根式的化简等内容,解决本题的关键是牢记相关计算公式等,本题易错点为对112-⎛⎫-- ⎪⎝⎭的化简,该项出现的“ -”较多,因此符号易出错,因此要注意.25.(2021·上海中考真题)计算: 1129|12-+-【答案】2【分析】根据分指数运算法则,绝对值化简,负整指数运算法则,化最简二次根式,合并同类二次根式以及同类项即可.【详解】 解:1129|12-+--,(112-⨯=31,=2.26.(2021·浙江台州市·中考真题)计算:|-2|【答案】【分析】先算绝对值,化简二次根式,再算加减法,即可求解.【详解】解:原式=2+【点睛】本题主要考查二次根式的运算,熟练掌握二次根式的性质以及合并同类二次根式法则,是解题的关键.27.(2021·山东临沂市·中考真题)计算221122⎫⎫+-⎪⎪⎭⎭.【答案】【分析】化简绝对值,同时利用平方差公式计算,最后合并.【详解】解:221122⎫⎫+-⎪⎪⎭⎭11112222⎡⎤⎡⎤⎫⎫⎫⎫+-⎪⎪⎪⎪⎢⎥⎢⎥⎭⎭⎭⎭⎣⎦⎣⎦=【点睛】本题考查了二次根式的混合运算,解题的关键是合理运用平方差公式进行计算.28.(2021·甘肃武威市·中考真题)计算:011(2021)()2cos 452π--+-︒.【答案】3【分析】先进行零指数幂和负整数指数幂,余弦函数值计算,再计算二次根式的乘法,合并同类项即可.【详解】 解:011(2021)()2cos 452π--+-︒,122=+-3=【点睛】 本题主要考查零指数幂和负整数指数幂,特殊角三角函数值,掌握零指数幂和负整数指数幂的运算法则,特殊角锐角三角函数值是解题的关键.29.(2021·浙江金华市·中考真题)计算:()202114sin 45+2-︒-. 【答案】1【分析】利用乘方的意义,二次根式的化简,特殊角的函数值,绝对值的化简,化简后合并计算即可【详解】解:原式1422=-+⨯+12=-+1=.【点睛】本题考查了二次根式的化简,特殊角的三角函数值,绝对值的化简等知识,熟练运用各自的运算法则化简是解题的关键.30.(2021·四川遂宁市·中考真题)计算:()101tan 60232-⎛⎫-+︒-+- ⎪⎝⎭π【答案】-3【分析】分别利用负整指数幂,特殊角的三角函数值,绝对值,零指数幂,二次根式的性质化简,再进行计算即可.【详解】解:()101tan 60232-⎛⎫-+︒-+- ⎪⎝⎭π(=2-=221-- =3-【点睛】本题考查了负整指数幂,特殊角的三角函数值,绝对值,零指数幂,二次根式的化简等知识点,熟悉相关性质是解题的关键.31.(2021·江苏苏州市·中考真题)先化简再求值:21111x x x-⎛⎫+⋅ ⎪-⎝⎭,其中1x =.【答案】1x +【分析】先算分式的加法,再算乘法运算,最后代入求值,即可求解.【详解】 解:原式()()111111x x x x x x+--+=⋅=+-.当1x =时,原式=【点睛】本题主要考查分式的化简求值,熟练掌握分式的通分和约分,是解题的关键.32.(2021·四川广安市·中考真题)计算:()03.1414sin 60π-+︒.【答案】0【分析】分别化简各数,再作加减法.【详解】解:()03.1414sin 60π-+︒=1142-+⨯=11-+=0【点睛】本题考查了实数的混合运算,特殊角的三角函数值,解题的关键是掌握运算法则.33.(2021·江苏苏州市·223--.【答案】-5【分析】分别化简算术平方根、绝对值和有理数的乘方,然后再进行加减运算即可得到答案.【详解】223-- 229=+-5=-.【点睛】此题主要考查了实数的混合运算,熟练掌握运算法则是解答此题的关键.34.(2021·江苏扬州市·中考真题)计算或化简:(1)013|tan603⎛⎫-++︒ ⎪⎝⎭; (2)()11a b a b ⎛⎫+÷+ ⎪⎝⎭. 【答案】(1)4;(2)ab【分析】(1)分别化简各数,再作加减法;(2)先通分,计算加法,再将除法转化为乘法,最后约分计算.【详解】解:(1)013|tan603⎛⎫-++︒ ⎪⎝⎭=13+=4;(2)()11a b a b ⎛⎫+÷+⎪⎝⎭ =()a b a b ab++÷ =()ab a b a b+⨯+ =ab【点睛】本题考查了实数的混合运算,特殊角的三角函数值,零指数幂,分式的混合运算,解题的关键是熟练掌握运算法则.35.(2021·四川自贡市·0|7|(2-+-.【答案】1-【分析】利用算术平方根、绝对值的性质、零指数幂分别计算各项即可求解.【详解】解:原式5711=-+=-.【点睛】本题考查实数的混合运算,掌握算术平方根、绝对值的性质、零指数幂是解题的关键.36.(2021·浙江丽水市·中考真题)计算:0|2021|(3)-+-.【答案】2020【分析】先计算绝对值、零指数幂和算术平方根,最后计算加减即可;【详解】解:0|2021|(3)-+--202112=+-,2020=.【点睛】本题主要考查实数的混合运算,解题的关键是掌握实数的混合运算顺序及相关运算法则.。
2021年中考数学真题分类汇编:专题15几何图形初步与视图(解析版)
2021年中考数学真题分类汇编:专题15几何图形初步与视图一、单选题1.(2021·北京中考真题)如图是某几何体的展开图,该几何体是( )A .长方体B .圆柱C .圆锥D .三棱柱【答案】B【分析】根据几何体的展开图可直接进行排除选项.【详解】解:由图形可得该几何体是圆柱;故选B .【点睛】本题主要考查几何体的展开图,熟练掌握几何体的展开图是解题的关键.2.(2021·四川眉山市·中考真题)如图,将直角三角板放置在矩形纸片上,若148∠=︒,则2∠的度数为()A .42°B .48°C .52°D .60°【答案】A【分析】先通过作辅助线,将∠1转化到∠BAC ,再利用直角三角形两锐角互余即可求出∠2.【详解】解:如图,延长该直角三角形一边,与该矩形纸片一边的交点记为点A ,由矩形对边平行,可得∠1=∠BAC ,∠∠BAC +∠2=90°,∠∠1+∠2=90°,因为∠1=48°,∠∠2=42°;故选:A .【点睛】本题考查了矩形的性质、平行线的性质、直角三角形的性质等内容,要求学生能根据题意理解其中的隐含关系,解决本题的关键是对角进行的转化,因此需要牢记并能灵活应用相关性质等.3.(2021·山东临沂市·中考真题)如图,在//AB CD 中,40AEC ∠=︒,CB 平分DCE ∠,则ABC ∠的度数为( )A .10︒B .20︒C .30D .40︒【答案】B【分析】 根据平行线的性质得到∠ABC =∠BCD ,再根据角平分线的定义得到∠ABC =∠BCD ,再利用三角形外角的性质计算即可.【详解】解:∠AB ∠CD ,∠CB平分∠DCE,∠∠BCE=∠BCD,∠∠BCE=∠ABC,∠∠AEC=∠BCE+∠ABC=40°,∠∠ABC=20°,故选B.【点睛】本题考查了平行线的性质,角平分线的定义和外角的性质,掌握平行线的性质:两直线平行,内错角相等是解题的关键.4.(2021·浙江台州市·中考真题)小光准备从A地去往B地,打开导航、显示两地距离为37.7km,但导航提供的三条可选路线长却分别为45km,50km,51km(如图).能解释这一现象的数学知识是()A.两点之间,线段最短B.垂线段最短C.三角形两边之和大于第三边D.两点确定一条直线【答案】A【分析】根据线段的性质即可求解.【详解】解:两地距离显示的是两点之间的线段,因为两点之间线段最短,所以导航的实际可选路线都比两地距离要长,故选:A.【点睛】本题考查线段的性质,掌握两点之间线段最短是解题的关键.5.(2021·江苏南京市·中考真题)下列长度的三条线段与长度为5的线段能组成四边形的是()A.1,1,1B.1,1,8C.1,2,2D.2,2,2【答案】D【分析】若四条线段能组成四边形,则三条较短边的和必大于最长边,由此即可完成.【详解】A、1+1+1<5,即这三条线段的和小于5,根据两点间距离最短即知,此选项错误;B、1+1+5<8,即这三条线段的和小于8,根据两点间距离最短即知,此选项错误;C、1+2+2=5,即这三条线段的和等于5,根据两点间距离最短即知,此选项错误;D、2+2+2>5,即这三条线段的和大于5,根据两点间距离最短即知,此选项正确;故选:D.【点睛】本题考查了两点间线段最短,类比三条线段能组成三角形的条件,任两边的和大于第三边,因而较短的两边的和大于最长边即可,四条线段能组成四边形,作三条线段的和大于第四条边,因而较短的三条线段的和大于最长的线段即可.6.(2021·浙江中考真题)将如图所示的长方体牛奶包装盒沿某些棱剪开,且使六个面连在一起,然后铺平,则得到的图形可能是()A.B.C.D.【答案】A【分析】依据长方体的展开图的特征进行判断即可.【详解】解:A、符合长方体的展开图的特点,是长方体的展开图,故此选项符合题意;B、不符合长方体的展开图的特点,不是长方体的展开图,故此选项不符合题意;C、不符合长方体的展开图的特点,不是长方体的展开图,故此选项不符合题意;D、不符合长方体的展开图的特点,不是长方体的展开图,故此选项不符合题意.故选:A.【点睛】本题考查了长方体的展开图,熟练掌握长方体的展开图的特点是解题的关键.7.(2021·四川自贡市·中考真题)如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“迎”字一面的相对面上的字是()A.百B.党C.年D.喜【答案】B【分析】正方体的表面展开图“一四一”型,相对的面之间一定相隔一个正方形,根据这一特点解答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方体,“迎”与“党”是相对面,“建”与“百”是相对面,“喜”与“年”是相对面.故答案为:B.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.8.(2021·江苏扬州市·中考真题)把图中的纸片沿虚线折叠,可以围成一个几何体,这个几何体的名称是()A.五棱锥B.五棱柱C.六棱锥D.六棱柱【答案】A【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【详解】解:由图可知:折叠后,该几何体的底面是五边形,则该几何体为五棱锥,故选A.【点睛】本题考查了几何体的展开图,掌握各立体图形的展开图的特点是解决此类问题的关键.9.(2021·浙江金华市·中考真题)将如图所示的直棱柱展开,下列各示意图中不可能...是它的表面展开图的是()A.B.C.D.【答案】D【分析】由直棱柱展开图的特征判断即可.【详解】解:图中棱柱展开后,两个三角形的面不可能位于同一侧,因此D选项中的图不是它的表面展开图;故选D.【点睛】本题考查了常见几何体的展开图,解决本题的关键是牢记三棱柱展开图的特点,即其两个三角形的面不可能位于展开图中侧面长方形的同一侧即可.10.(2021·江苏苏州市·中考真题)如图所示的圆锥的主视图是()A.B.C.D.【答案】A【详解】试题分析:主视图是从正面看所得到的图形,圆锥的主视图是等腰三角形,如图所示:,故选A.考点:三视图.11.(2021·山东泰安市·中考真题)如图,直线//m n ,三角尺的直角顶点在直线m 上,且三角尺的直角被直线m 平分,若160∠=︒,则下列结论错误的是( )A .275∠=︒B .345∠=︒C .4105∠=︒D .5130∠=︒【答案】D【分析】 根据角平分线的定义求出∠6和∠7的度数,再利用平行线的性质以及三角形内角和求出∠3,∠8,∠2的度数,最后利用邻补角互补求出∠4和∠5的度数.【详解】首先根据三角尺的直角被直线m 平分,∠∠6=∠7=45°;A 、∠∠1=60°,∠6=45°,∠∠8=180°-∠1-∠6=180-60°-45°=75°,m∥n ,∠∠2=∠8=75°结论正确,选项不合题意;B 、∠∠7=45°,m ∠n ,∠∠3=∠7=45°,结论正确,选项不合题意;C 、∠∠8=75°,∠∠4=180-∠8=180-75°=105°,结论正确,选项不合题意;D 、∠∠7=45°,∠∠5=180-∠7=180-45°=135°,结论错误,选项符合题意.故选:D .【点睛】本题考查了角平分线的定义,平行线的性质,三角形内角和,邻补角互补,解答本题的关键是掌握平行线的性质:两直线平行,同位角相等,内错角相等,同旁内角互补.12.(2021·四川资阳市·中考真题)如图,已知直线//,140,230m n ∠=︒∠=︒,则3∠的度数为( )A.80︒B.70︒C.60︒D.50︒【答案】B【分析】如图,由题意易得∠4=∠1=40°,然后根据三角形外角的性质可进行求解.【详解】解:如图,m n∠=︒,∠//,140∠∠4=∠1=40°,∠=︒,∠230∠=∠+∠=︒;∠34270故选B.【点睛】本题主要考查平行线的性质及三角形外角的性质,熟练掌握平行线的性质及三角形外角的性质是解题的关键.13.(2021·湖南岳阳市·中考真题)下列命题是真命题的是()A.五边形的内角和是720︒B.三角形的任意两边之和大于第三边C.内错角相等D.三角形的重心是这个三角形的三条角平分线的交点【答案】B【分析】根据相关概念逐项分析即可.【详解】A 、五边形的内角和是540︒,故原命题为假命题,不符合题意;B 、三角形的任意两边之和大于第三边,原命题是真命题,符合题意;C 、两直线平行,内错角相等,故原命题为假命题,不符合题意;D 、三角形的重心是这个三角形的三条中线的交点,故原命题为假命题,不符合题意;故选:B .【点睛】本题考查命题判断,涉及多边形的内角和,三角形的三边关系,平行线的性质,以及三角形的重心等,熟记基本性质和定理是解题关键.14.(2021·山东聊城市·中考真题)如图,AB ∥CD ∥EF ,若∥ABC =130°,∥BCE =55°,则∥CEF 的度数为( )A .95°B .105°C .110°D .115°【答案】B【分析】 由//AB CD 平行的性质可知ABC DCB ∠=∠,再结合//EF CD 即可求解.【详解】解://AB CD130ABC DCB ∴∠=∠=︒1305575ECD DCB BCE ∴∠=∠-∠=︒-︒=︒//EF CD180ECD CEF ∴∠+∠=︒18075105CEF ∴∠=︒-︒=︒故答案是:B .【点睛】本题考查平行线的性质和角度求解,难度不大,属于基础题.解题的关键是掌握平行线的性质.15.(2021·安徽中考真题)两个直角三角板如图摆放,其中90BAC EDF ∠=∠=︒,45E ∠=︒,30C ∠=︒,AB 与DF 交于点M .若//BC EF ,则BMD ∠的大小为( )A .60︒B .67.5︒C .75︒D .82.5︒【答案】C【分析】根据//BC EF ,可得45FDB F ∠=∠=︒,再根据三角形内角和即可得出答案.【详解】由图可得6045B F ∠=︒∠=︒,,∠//BC EF ,∠45FDB F ∠=∠=︒,∠180180456075BMD FDB B ∠=︒-∠-∠=︒-︒-︒=︒,故选:C .【点睛】本题考查了平行线的性质和三角形的内角和,掌握平行线的性质和三角形的内角和是解题的关键. 16.(2021·浙江金华市·中考真题)某同学的作业如下框,其中∥处填的依据是( ) 如图,已知直线1234,,,l l l l .若12∠=∠,则34∠=∠.请完成下面的说理过程.解:已知12∠=∠,根据(内错角相等,两直线平行),得12//l l .再根据( ∥ ),得34∠=∠.A .两直线平行,内错角相等B .内错角相等,两直线平行C .两直线平行,同位角相等D .两直线平行,同旁内角互补【答案】C【分析】首先准确分析题目,已知12//l l ,结论是34∠=∠,所以应用的是平行线的性质定理,从图中得知∠3和∠4是同位角关系,即可选出答案.【详解】解:∠12//l l ,∠34∠=∠(两直线平行,同位角相等).故选C .【点睛】本题主要考查了平行线的性质的应用,解题的关键是理解平行线之间内错角的位置,从而准确地选择出平行线的性质定理.17.(2021·湖北随州市·中考真题)如图是由4个相同的小正方体构成的一个组合体,该组合体的三视图中完全相同的是( )A .主视图和左视图B .主视图和俯视图C .左视图和俯视图D .三个视图均相同【答案】A【分析】画出组合体的三视图,即可得到结论.【详解】解:所给几何体的三视图如下,所以,主视图和左视图完全相同,故选:A.【点睛】本题考查了简单组合体的三视图,利用三视图的定义是解题关键.18.(2021·四川资阳市·中考真题)如图是由6个相同的小立方体堆成的几何体的俯视图,小正方形中的数字表示该位置小立方体的个数,则这个几何体的主视图是()A.B.C.D.【答案】C【分析】根据俯视图可确定主视图的列数和小正方形的个数,即可解答.【详解】解:由俯视图可得主视图有2列组成,左边一列由3个小正方形组成,右边一列由1个小正方形组成.故选:C.【点睛】本题考查了由三视图判断几何体的知识,由几何体的俯视图可确定该几何体的主视图和左视图,要熟练掌握.19.(2021·湖北黄冈市·中考真题)如图是由四个相同的正方体组成的几何体,其俯视图是()A.B.C.D.【答案】C【分析】根据俯视图的定义即可得.【详解】解:俯视图是指从上往下看几何体得到的视图.这个几何体的俯视图是由排在一行的三个小正方形组成,观察四个选项可知,只有选项C符合,故选:C.【点睛】本题考查了俯视图,熟记定义是解题关键.20.(2021·四川广安市·中考真题)下列几何体的主视图既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】B【分析】先判断主视图,再根据轴对称图形与中心对称图形的概念求解.【详解】解:A、主视图是等腰三角形,是轴对称图形,不是中心对称图形,故不合题意;B、主视图是是矩形,是轴对称图形,也是中心对称图形,故符合题意;C、主视图是等腰梯形,是轴对称图形,不是中心对称图形,故不合题意;D、主视图是等腰三角形,是轴对称图形,不是中心对称图形,故不合题意;故选B.【点睛】本题考查了几何体的三视图,中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合;中心对称图形关键是要寻找对称中心,图形旋转180°后与原图重合.21.(2021·湖南衡阳市·中考真题)如图是由6个相同的正方体堆成的物体,它的左视图是().A.B.C.D.【答案】A【分析】结合题意,根据视图的性质分析,即可得到答案.【详解】由6个相同的正方体堆成的物体,它的左视图如下:故选:A【点睛】本题考查了视图的知识;解题的关键是熟练掌握左视图的性质,从而完成求解.22.(2021·浙江嘉兴市·中考真题)如图是由四个相同的小正方体组成的立体图形,它的俯视图为()A.B.C.D.【答案】C【分析】根据俯视图是从上边看得到的图形,可得答案.【详解】解:从上边看第一行是两个小正方形,第二行是一个小正方形并且在第二列,【点睛】本题考查了简单组合体的三视图,俯视图是从上边看得到的图形.23.(2021·安徽中考真题)几何体的三视图如图所示,这个几何体是()A.B.C.D.【答案】C【分析】根据三视图,该几何体的主视图可确定该几何体的形状,据此求解即可.【详解】解:根据A,B,C,D三个选项的物体的主视图可知,与题图有吻合的只有C选项,故选:C.【点睛】本题考查了由三视图判断几何体的知识,熟练掌握三视图并能灵活运用,是解题的关键.24.(2021·四川乐山市·中考真题)如图是由4个相同的小正方体成的物体,将它在水平面内顺时针旋转90 后,其主视图是()A.B.C.D.【分析】根据该几何体它在水平面内顺时针旋转90︒后,旋转后几何体的主视图与该几何体旋转前从右面看到的图形一样,由此即可解答.【详解】把该几何体它在水平面内顺时针旋转90︒后,旋转后的主视图与该几何体旋转前从右面看到的图形一样,∠该几何体的从右面看到的图形为,∠该几何体它在水平面内顺时针旋转90︒后,旋转后几何体的主视图为.故选C.【点睛】本题考查了简单几何体的三视图,熟知把该几何体它在水平面内顺时针旋转90︒后,旋转后几何体的主视图与该几何体旋转前从右面看到的图形一样是解决问题的关键.25.(2021·四川成都市·中考真题)如图所示的几何体是由6个大小相同的小立方块搭成,它的俯视图是()A.B.C.D.【答案】C【分析】根据简单几何体的三视图中俯视图从上面看得到的图形即可求解.【详解】解:从上面看简单组合体可得两行小正方形,第二行四个小正方形,第一行一个小正方形右侧对齐.故选C.【点睛】此题主要考查三视图的判断,解题的关键是熟知三视图的定义.26.(2021·四川遂宁市·中考真题)如图所示的几何体是由6个完全相同的小正方体搭成,其主视图是()A.B.C.D.【答案】D【分析】从正面看:共有2列,从左往右分别有2,1个小正方形;据此可画出图形.【详解】解:如图所示的几何体的主视图是.故选:D.【点睛】本题考查了简单组合体的三视图,从正面看得到的视图是主视图.27.(2021·四川泸州市·中考真题)下列立体图形中,主视图是圆的是()A.B.C.D.【答案】D【分析】分别得出棱柱,圆柱,圆锥,球体的主视图,得出结论.【详解】解:棱柱的主视图是矩形(中间只有一条线段),不符合题意;圆柱的主视图是矩形,不符合题意;圆锥的主视图是等腰三角形,不符合题意;球体的主视图是圆,符合题意;故选:D.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.28.(2021·浙江宁波市·中考真题)如图所示的几何体是由一个圆柱和一个长方体组成的,它的主视图是()A.B.C.D.【答案】C【分析】根据主视图是从物体的正面看到的图形解答即可.【详解】解:由于圆柱的主视图是长方形,长方体的主视图是长方形,所以该物体的主视图是:.故选:C.【点睛】本题考查了简单组合体的三视图,属于常考题型,熟知主视图是从物体的正面看到的图形是解题关键.29.(2021·山东泰安市·中考真题)如图是由若干个同样大小的小正方体所搭几何体的俯视图,小正方形中的数字表示在该位置小正方体的个数,则这个几何体的左视图是()A.B.C.D.【答案】B【分析】直接从左边观察几何体,确定每列最高的小正方体个数,即对应左视图的每列小正方形的个数,即可确定左视图.【详解】解:如图所示:从左边看几何体,第一列是2个正方体,第二列是4个正方体,第三列是3个正方体;因此得到的左视图的小正方形个数依次应为2,4,3;故选:B.【点睛】本题考查了几何体的三视图,要求学生理解几何体的三种视图并能明白左视图的含义,能确定几何体左视图的形状等,解决本题的关键是牢记三视图定义及其特点,能读懂题意和从题干图形中获取必要信息等,本题蕴含了数形结合的思想方法,对学生的空间想象能力有一定的要求.30.(2021·浙江温州市·中考真题)直六棱柱如图所示,它的俯视图是()A.B.C.D.【答案】C【分析】直接从上往下看,得到的是一个六边形,即可选出正确选项.【详解】解:从上往下看直六棱柱,看到的是个六边形;故选:C.【点睛】本题考查了三视图的相关内容,要求学生明白俯视图是对几何体进行从上往下看得到的视图,实际上也是从上往下得到的正投影,本题较为基础,考查了学生对三视图概念的理解与应用等.31.(2021·浙江绍兴市·中考真题)如图的几何体由五个相同的小正方体搭成,它的主视图是()A.B.C.D.【答案】D【分析】根据从正面看得到的图形是主视图,可得答案.【详解】解:从正面看第一层是三个小正方形,第二层左边一个小正方形,故选:D.【点睛】本题考查了简答组合体的三视图,从正面看得到的图形是主视图.32.(2021·浙江衢州市·中考真题)如图是由四个相同的小正方体搭成的立体图形,它的主视图是()A.B.C.D.【答案】B【分析】根据主视图是从几何体正面看得到的图形即可得到答案.【详解】从正面看可以看到有3列小正方形,从左至右小正方体的数目分别为1、2、1,所以主视图为:,故选B.【点睛】本题考查了简单几何体的三视图,关键是掌握主视图所看的位置.33.(2021·浙江丽水市·中考真题)如图是由5个相同的小立方体搭成的几何体,它的主视图是()A.B.C.D.【答案】B【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【详解】解:从正面看下面一层是三个正方形,上面一层中间是一个正方形.即:故选:B.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.34.(2021·四川乐山市·中考真题)七巧板起源于我国先秦时期,古算书《周髀算经》中有关于正方形的分割术,经历代演变而成七巧板,如图1所示.19世纪传到国外,被称为“唐图”(意为“来自中国的拼图”),图2是由边长为4的正方形分割制作的七巧板拼摆成的“叶问蹬”图.则图中抬起的“腿”(即阴影部分)的面积为()A.3B.72C.2D.52【答案】A【分析】根据由边长为4的正方形分割制作的七巧板,可得共5种图形,然后根据阴影部分的构成图形,计算阴影部分面积即可.【详解】解:如下图所示,由边长为4的正方形分割制作的七巧板,共有以下几种图形:∠腰长是22的等腰直角三角形,∠腰长是2的等腰直角三角形,∠腰长是2的等腰直角三角形,∠边长是2的正方形,∠边长分别是2245和135的平行四边形,根据图2可知,图中抬起的“腿”(即阴影部分)是由一个腰长是2的等腰直角三角形,和一个边长分别是2和2,顶角分别是45和135的平行四边形组成,如下图示,根据平行四边形的性质可知,顶角分别是45和135的平行四边形的高是DB,且2DB=,∠21221 2=,顶角分别是45和135222=,∠阴影部分的面积为:123+=,故选:A.【点睛】本题考查了七巧板中的图形的构成和面积计算,熟悉七巧板中图形的分类是解题的关键.二、填空题35.(2021·上海中考真题)70︒的余角是__________.【答案】20︒【分析】根据余角的定义即可求解.【详解】70︒的余角是90°-70︒=20︒故答案为:20︒.此题主要考查余角的求解,解题的关键是熟知余角的定义与性质.36.(2021·湖北武汉市·中考真题)如图,海中有一个小岛A,一艘轮船由西向东航行,在B点测得小岛A 在北偏东60︒方向上;航行12n mile到达C点,这时测得小岛A在北偏东30方向上.小岛A到航线BC的距离是__________n mile(3 1.73≈,结果用四舍五入法精确到0.1).【答案】10.4【分析】过点A作AD∠BC,垂足为D,根据题意,得∠ABC=30°,∠ACD=60°,从而得到AC=BC=12,利用sin60°=AD AC计算AD即可【详解】过点A作AD∠BC,垂足为D,根据题意,得∠ABC=30°,∠ACD=60°,∠∠ABC=∠CAB=30°,∠AC=BC=12,∠sin60°=AD AC,∠AD=AC sin60°=1232⨯3 1.73610.38≈⨯=≈10.4故答案为:10.4.本题考查了方位角,解直角三角形,准确理解方位角的意义,构造高线解直角三角形是解题的关键.37.(2021·山东临沂市·中考真题)数学知识在生产和生活中被广泛应用,下列实例所应用的最主要的几何知识,说法正确的是___(只填写序号).∥射击时,瞄准具的缺口、准星和射击目标在同一直线上,应用了“两点确定一条直线”;∥车轮做成圆形,应用了“圆是中心对称图形”;∥学校门口的伸缩门由菱形而不是其他四边形组成,应用了“菱形的对角线互相垂直平分”;∥地板砖可以做成矩形,应用了“矩形对边相等”.【答案】∠【分析】根据直线的性质,圆的性质,特殊四边形的性质分别判断即可.【详解】解:∠射击时,瞄准具的缺口、准星和射击目标在同一直线上,应用了“两点确定一条直线”,故正确;∠车轮做成圆形,应用了“同圆的半径相等”,故错误;∠学校门口的伸缩门由菱形而不是其他四边形组成,应用了“菱形的四边相等”,故错误;∠地板砖可以做成矩形,应用了“矩形的四个角是直角,可以密铺”,故错误;故答案为:∠.【点睛】本题考查了直线的性质,圆的性质,特殊四边形的性质,都属于基本知识,解题的关键是联系实际,掌握相应性质定理.38.(2021·浙江中考真题)由沈康身教授所著,数学家吴文俊作序的《数学的魅力》一书中记载了这样一个故事:如图,三姐妹为了平分一块边长为1的祖传正方形地毯,先将地毯分割成七块,再拼成三个小正方形(阴影部分).则图中AB 的长应是______.【答案】21- 【分析】 根据裁剪和拼接的线段关系可知3CD =,1BD CE ==,在Rt ACD △中应用勾股定理即可求解.【详解】解:∠地毯平均分成了3份,∠每一份的边长为1333=,∠3CD =,在Rt ACD △中,根据勾股定理可得222AD CD AC =-,根据裁剪可知1BD CE ==,∠21AB AD BD =-=,故答案为:21-.【点睛】本题考查勾股定理,根据裁剪找出对应面积和线段的关系是解题的关键.39.(2021·河北中考真题)下图是可调躺椅示意图(数据如图),AE 与BD 的交点为C ,且A ∠,B ,E ∠保持不变.为了舒适,需调整D ∠的大小,使110EFD ∠=︒,则图中D ∠应___________(填“增加”或“减少”)___________度.【答案】减少 10【分析】先通过作辅助线利用三角形外角的性质得到∠EDF 与∠D 、∠E 、∠DCE 之间的关系,进行计算即可判断.【详解】解:∠∠A +∠B =50°+60°=110°,∠∠ACB =180°-110°=70°,∠∠DCE =70°,如图,连接CF 并延长,∠∠DFM =∠D +∠DCF =20°+∠DCF ,∠EFM =∠E +∠ECF =30°+∠ECF ,∠∠EFD =∠DFM +∠EFM =20°+∠DCF+30°+∠ECF=50°+∠DCE=50°+70°=120°,要使∠EFD =110°,则∠EFD 减少了10°,若只调整∠D 的大小,由∠EFD =∠DFM +∠EFM =∠D +∠DCF +∠E +∠ECF =∠D +∠E +∠ECD =∠D +30°+70°=∠ D +100°,因此应将∠D 减少10度;故答案为:∠减少;∠10.【点睛】本题考查了三角形外角的性质,同时涉及到了三角形的内角和与对顶角相等的知识;解决本题的关键是理解题意,读懂图形,找出图形中各角之间的关系以及牢记公式建立等式求出所需的角,本题蕴含了数形结合的思想方法.40.(2021·江苏扬州市·中考真题)如图是某圆柱体果罐,它的主视图是边长为10cm的正方形,该果罐侧面积为_____2cm.【答案】100π【分析】根据圆柱体的主视图为边长为10cm的正方形,得到圆柱的底面直径和高,从而计算侧面积.【详解】解:∠果罐的主视图是边长为10cm的正方形,为圆柱体,∠圆柱体的底面直径和高为10cm,π⨯=100π,∠侧面积为1010故答案为:100π.【点睛】本题考查了几何体的三视图,解题的关键是根据三视图得到几何体的相关数据.。
中考数学专题02 代数式【考点巩固】(解析版)
专题02 代数式考点1:代数式的概念与求值1.(2021·四川自贡市·中考真题)已知23120x x --=,则代数式2395x x -++的值是( ) A .31 B .31-C .41D .41-【答案】B 【分析】根据题意,可先求出x 2-3x 的值,再化简()22395=3+53x x x x -++--,然后整体代入所求代数式求值即可. 【详解】解:∵23120x x --=, ∴23=12x x -,∴()223395=3+5=312+5=31x x x x -++---⨯-. 故选:B .2.(2021·浙江温州市·中考真题)某地居民生活用水收费标准:每月用水量不超过17立方米,每立方米a 元;超过部分每立方米()1.2a +元.该地区某用户上月用水量为20立方米,则应缴水费为( )A .20a 元B .()2024a +元C .()17 3.6a +元D .元【答案】D 【分析】分两部分求水费,一部分是前面17立方米的水费,另一部分是剩下的3立方米的水费,最后相加即可. 【详解】解:∵20立方米中,前17立方米单价为a 元,后面3立方米单价为(a +1.2)元, ∴应缴水费为17a +3(a +1.2)=20a +3.6(元), 故选:D .3.(2021·浙江嘉兴市·中考真题)观察下列等式:,,,…按此规律,则第个等式为__________________.【答案】.()20 3.6a +22110=-22321=-22532=-n 21n -=()221n n --【分析】第一个底数是从1开始连续的自然数的平方,减去从0开始连续的自然数的平方,与从1开始连续的奇数相同,由此规律得出答案即可. 【详解】解:∵,, ,…∴第个等式为:故答案是:.4.(2021·浙江台州市·中考真题)将x 克含糖10的糖水与y 克含糖30的糖水混合,混合后的糖水含糖( ) A .20 B .C .D .【答案】D 【分析】先求出两份糖水中糖的重量,再除以混合之后的糖水总重,即可求解. 【详解】解:混合之后糖的含量:, 故选:D .5.(2021·甘肃武威市·中考真题)一组按规律排列的代数式:,…,则第个式子是___________.【答案】【分析】根据已知的式子可以看出:每个式子的第一项中a 的次数是式子的序号;第二项中b 的次数是序号的2倍减1,而第二项的符号是第奇数项时是正号,第偶数项时是负号. 【详解】解:∵当n 为奇数时,;当n 为偶数时,,∴第n 个式子是:.22110=-22321=-22532=-n ()22211n n n -=--()221n n --%%%+100%2x y⨯+3100%20x y⨯+3100%10+10x yx y⨯10%30%3100%1010x y x yx y x y++=⨯++2335472,2,2,2a b a b a b a b +-+-n ()12112n nn a b +-+-⋅()111n +-=()111n +-=-()1211·2n n n a b +-+-故答案为:考点2:整式相关概念6.多项式 是一个关于x 的三次四项式,它的次数最高项的系数是﹣5,二次项的系数是34,一次项的系数是﹣2,常数项是4.【分析】直接利用多项式的次数与项数确定方法分析得出答案. 【解答】解:由题意可得,此多项式可以为: ﹣5x 3+34x 2﹣2x +4. 故答案为:﹣5x 3+34x 2﹣2x +4.7.若单项式﹣x 3y n +5的系数是m ,次数是9,则m +n 的值为 .【分析】先依据单项式的系数和次数的定义确定出m 、n 的值,然后求解即可. 【解答】解:根据题意得:m =﹣1,3+n +5=9, 解得:m =﹣1,n =1, 则m +n =﹣1+1=0. 故答案为:0. 考点3:整式的运算8.(2021·广西来宾市·中考真题)下列运算正确的是( ) A . B .C .D .【答案】A 【分析】分别根据同底数幂的乘法、同底数幂的除法、幂的乘方、整式的加减法则进行计算,即可求解. 【详解】解:A. ,原选项计算正确,符合题意; B. ,原选项计算错误,不合题意; C. ,原选项计算错误,不合题意;D. ,不是同类项,无法相减,原选项计算错误,不合题意. 故选:A9.(2021·四川达州市·中考真题)已知,满足等式,则___________.【答案】-3()1211·2n n n a b +-+-235a a a ⋅=623a a a ÷=()325a a =2232a a a -=235a a a ⋅=624a a a ÷=()326a a =232a a -ab 2690a a ++=20212020a b =【分析】先将原式变形,求出a 、b ,再根据同底数幂的乘法、积的乘方的逆运算即可求解. 【详解】解:由,变形得, ∴, ∴, ∴.故答案为:-310.(2021·广东中考真题)若且,则_____. 【答案】 【分析】 根据,利用完全平方公式可得,根据x 的取值范围可得的值,利用平方差公式即可得答案. 【详解】 ∵, ∴, ∵, ∴, ∴=, ∴==, 故答案为: 考点4:整式化简求值2690a a ++=()230a +=130,03a b +=-=13,3a b =-=()()()()20202020202020212020202120201113=33=33=3333a b ⎛⎫⎛⎫⎛⎫=-⨯-⨯-⨯-⨯-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1136x x +=01x <<221x x-=6536-1136x x +=2125(36x x -=1x x-1136x x +=2211125()(436x x x xxx -=+-⋅=01x <<1x x <1x x -56-221x x -=11()(x x x x +-135(66⨯-6536-6536-11.(2021·吉林长春市·中考真题)先化简,再求值:(2)(2)(1)a a a a +-+-,其中4a =+.【答案】a - 【分析】首先利用平方差公式,单项式乘以多项式去括号,再合并同类项,然后将a 的值代入化简后的式子,即可解答本题. 【详解】()()()221a a a a +-+-224a a a =-+-当时,原式.12.(2021·贵州安顺市·中考真题)(1)有三个不等式,请在其中任选两个不等式,组成一个不等式组,并求出它的解集: (2)小红在计算时,解答过程如下:第一步第二步 第三步小红的解答从第_________步开始出错,请写出正确的解答过程. 【答案】(1)x <-3;(2)第一步,正确过程见详解 【分析】(1)先挑选两个不等式组成不等式组,然后分别求出各个不等式的解,再取公共部分,即可;(2)根据完全平方公式、去括号法则以及合并同类项法则,进行化简,即可. 【详解】解:(1)挑选第一和第二个不等式,得,由①得:x <-2, 由②得:x <-3,∴不等式组的解为:x <-3;4a =-4a =44-=()231,515,316x x x +--->()()211a a a +--2(1)(1)a a a +--22(1)a a a =+--221a a a =+--1a =-231515x x +<-⎧⎨->⎩①②(2)小红的解答从第一步开始出错,正确的解答过程如下:.故答案是:第一步 考点5:因式分解13.(2021·四川成都市·中考真题)因式分解:__________. 【答案】 【详解】解:=; 故答案为14.(2021·云南中考真题)分解因式:=______. 【答案】x (x +2)(x ﹣2). 【详解】试题分析:==x (x+2)(x ﹣2). 故答案为x (x+2)(x ﹣2).15.(2021·江苏盐城市·中考真题)分解因式:a 2+2a +1=_____. 【答案】(a +1)2 【分析】直接利用完全平方公式分解. 【详解】a 2+2a +1=(a +1)2. 故答案为.考点6:分式有意义及分式为零的条件 16.(2021·浙江宁波市·中考真题)要使分式有意义,x 的取值应满足( ) A . B .C .D .【答案】B 【分析】由分式有意义,分母不为零,再列不等式,解不等式即可得到答案. 【详解】2(1)(1)a a a +--22(21)a a a a =+--+2221a a a a =+-+-31a =-24x -=(x+2)(x-2)24x -=222x -(2)(2)x x +-(2)(2)x x +-34x x -34x x -2(4)x x -()21+a 12x +0x ≠2x ≠-2x ≥-2x >-解: 分式有意义,故选: 考点7:分式性质17.(2021·四川自贡市·中考真题)化简:_________. 【答案】 【分析】利用分式的减法法则,先通分,再进行计算即可求解. 【详解】 解:, 故答案为:. 考点8:分式化简与运算18.(2021·四川南充市·中考真题)下列运算正确的是( )A .B .C .D .【答案】D 【分析】根据分式的加减乘除的运算法则进行计算即可得出答案 【详解】12x +20,x ∴+≠2.x ∴≠-.B 22824a a -=--22a +22824a a ---()()28222a a a =--+-()()()()()2282222a a a a a +=-+-+-()()()2222a a a -=+-22a =+22a +232496b a b a b ⋅=2312332b b ab a ÷=11223a a a +=2112111a a a -=-+-解:A.,计算错误,不符合题意; B. ,计算错误,不符合题意;C.,计算错误,不符合题意; D.,计算正确,符合题意; 故选:D19.(2021·江苏盐城市·中考真题)先化简,再求值:,其中. 【答案】,3 【分析】先通分,再约分,将分式化成最简分式,再代入数值即可. 【详解】 解:原式.∵∴原式.20.(2021·山东威海市·中考真题)先化简,然后从,0,1,3中选一个合适的数作为a 的值代入求值.【答案】2(a -3),当a =0时,原式=-6;当a =1时,原式=-4. 【分析】先根据分式的混合运算顺序和运算法则化简原式,再根据分式有意义的条件确定a 的值,继而代入计算可得答案. 【详解】= 2324916b a a b b⋅=2231213=333221b a ab a ab b b÷=⨯23111=2222a a a a a+=++--=--+---22211112=11111a a a a a a a 21111m m m-⎛⎫+ ⎪-⎝⎭2m =1m +11(1)(1)1m m m m m-+-+=⋅-(1)(1)1m m m m m-+=⋅-1m =+2m =213=+=2211(1)369a a a a a a -+--÷--+1-2211(1)369a a a a a a -+--÷--+()()()221311333a a a a a a a +-⎡⎤-+-÷⎢⎥---⎣⎦= = = =2(a -3), ∵a ≠3且a ≠-1, ∴a =0,a =1,当a =0时,原式=2×(0-3)=-6; 当a =1时,原式=2×(1-3)=-4.21.(2021·内蒙古通辽市·中考真题)先化简,再求值:,其中x 满足. 【答案】x (x +1);6 【分析】先求出方程的解,然后化简分式,最后选择合适的x 代入计算即可. 【详解】解:∵ ∴x =2或x =-1 ∴ = = ==x (x +1)∵x =-1分式无意义,∴x =2当x =2时,x (x +1)=2×(2+1)=6.()2223123331a a a a a a a -⎛⎫----⋅⎪--+⎝⎭()222312331a a a a a a ---++⋅-+()()221331a a a a +-⋅-+2212(1)121x x x x x x +++-÷+++220x x --=220x x --=220x x --=2212(1)121x x x x x x +++-÷+++()221212()111x x x x x x +++÷+++-()2222()11x x x x x ++÷++()()22112x x x x x ++⨯++22.(2021·四川遂宁市·中考真题)先化简,再求值:,其中m 是已知两边分别为2和3的三角形的第三边长,且m 是整数. 【答案】; 【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,利用三角形三边的关系,求得m 的值,代入计算即可求出值. 【详解】解: , ∵m 是已知两边分别为2和3的三角形的第三边长, ∴3-2<m <3+2,即1<m <5, ∵m 为整数, ∴m =2、3、4, 又∵m ≠0、2、3 ∴m =4, ∴原式=. 23.(2021·四川凉山彝族自治州·中考真题)阅读以下材料,苏格兰数学家纳皮尔(J .Npler ,1550-1617年)是对数的创始人,他发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evler .1707-1783年)才发现指数与对数之间的联系. 对数的定义:一般地.若x a N =(且),那么x 叫做以a 为底N 的对数, 记作,比如指数式可以转化为对数式,对数式可以转化为指数式.我们根据对数的定义可得到对数的一个性质:322293443m m m m m m -⎛⎫÷++ ⎪-+-⎝⎭32m m --12322293443m m m m m m -⎛⎫÷++ ⎪-+-⎝⎭222(2)99(2)33m m m m m m ⎛⎫--÷+ ⎪---⎝⎭=2223m m m m ÷--=2232m m m m-⋅-=32m m --=431422-=-0a >1a ≠log a x N =4216=24log 16=32log 9=239=,理由如下:设,则..由对数的定义得又.根据上述材料,结合你所学的知识,解答下列问题:(1)填空:①___________;②_______,③________; (2)求证:; (3)拓展运用:计算.【答案】(1)5,3,0;(2)见解析;(3)2【分析】(1)直接根据定义计算即可;(2)结合题干中的过程,同理根据同底数幂的除法即可证明;(3)根据公式:log a (M •N )=log a M +log a N 和log a=log a M -log a N 的逆用,将所求式子表示为:,计算可得结论. 【详解】解:(1)①∵,∴5,②∵,∴3,③∵,∴0;(2)设log a M =m ,log a N =n ,∴,,∴, ∴, ∴; (3)= log ()log log (0,1,0,0)a a a M N M N a a M N ⋅=+>≠>>log ,log a a M m N n ==,n m M a N a ==m n m n M N a a a +∴⋅=⋅=log ()a m n M N +=⋅log log a a m n M N +=+ log ()log log a a a M N M N ∴⋅=+2log 32=3log 27=7log l =log log log (0,1,0,0)a a a M M N a a M N N=->≠>>555log 125log 6log 30+-M N 5125630log ⨯5232=2log 32=3327=3log 27=071=7log 1=m a M =n a N =m n m n M a a a N-÷==log aM m n N =-log log log a a a M M N N=-555log 125log 6log 30+-5125630log ⨯==2.25.(2021·安徽)某矩形人行道由相同的灰色正方形地砖与相同的白色等腰直角三角形地砖排列而成,图1表示此人行道的地砖排列方式,其中正方形地砖为连续排列.[观察思考]当正方形地砖只有1块时,等腰直角三角形地砖有6块(如图2);当正方形地砖有2块时,等腰直角三角形地砖有8块(如图3);以此类推,[规律总结](1)若人行道上每增加1块正方形地砖,则等腰直角三角形地砖增加 块;(2)若一条这样的人行道一共有n (n 为正整数)块正方形地砖,则等腰直角三角形地砖的块数为 (用含n 的代数式表示).[问题解决](3)现有2021块等腰直角三角形地砖,若按此规律再建一条人行道,要求等腰直角三角形地砖剩余最少,则需要正方形地砖多少块?【答案】(1)2 ;(2);(3)1008块【分析】(1)由图观察即可;(2)由每增加一块正方形地砖,即增加2块等腰直角三角形地砖,再结合题干中的条件正方形地砖只有1块时,等腰直角三角形地砖有6块,递推即可;(3)利用上一小题得到的公式建立方程,即可得到等腰直角三角形地砖剩余最少时需要正方形地砖的数量.【详解】解:(1)由图可知,每增加一块正方形地砖,即增加2块等腰直角三角形地砖; 故答案为:2 ;(2)由(1)可知,每增加一块正方形地砖,即增加2块等腰直角三角形地砖; 当正方形地砖只有1块时,等腰直角三角形地砖有6块,即2+4;所以当地砖有n 块时,等腰直角三角形地砖有()块;故答案为:;(3)令 则5log25 24n +24n +24n +242021n +=1008.5n =当时,此时,剩下一块等腰直角三角形地砖 需要正方形地砖1008块1008n =242020n +=∴。
2021年中考数学真题分类汇编:专题24圆的有关性质(解析版)
2021年中考数学真题分类汇编:专题24圆的有关性质一、单选题1.(2021·甘肃武威市·中考真题)如图,点,,,,A B C D E 在O 上,,42AB CD AOB =∠=︒,则CED ∠=( )A .48︒B .24︒C .22︒D .21︒ 【答案】D【分析】先证明,AB CD =再利用等弧的性质及圆周角定理可得答案.【详解】 解: 点,,,,A B C D E 在O 上,,42AB CD AOB =∠=︒,,AB CD ∴=114221,22CED AOB ∴∠=∠=⨯︒=︒ 故选:.D【点睛】本题考查的两条弧,两个圆心角,两条弦之间的关系,圆周角定理,等弧的概念与性质,掌握同弧或等弧的概念与性质是解题的关键.2.(2021·广西玉林市·中考真题)学习圆的性质后,小铭与小熹就讨论起来,小铭说:“被直径平分的弦也与直径垂直”,小熹说:“用反例就能说明这是假命题” .下列判断正确的是( )A .两人说的都对B .小铭说的对,小燕说的反例不存在C .两人说的都不对D .小铭说的不对,小熹说的反例存在【答案】D【分析】根据垂径定理可直接进行排除选项.【详解】解:由垂径定理的推论“平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧”可知:小铭忽略了垂径定理中的“弦不能是直径”这一条件,因为一个圆中的任意两条直径都互相平分,但不垂直,所以小铭说法错误,小熹所说的反例即为两条直径的情况下;故选D.【点睛】本题主要考查垂径定理,熟练掌握垂径定理是解题的关键.3.(2021·青海中考真题)如图是一位同学从照片上剪切下来的海上日出时的画面,“图上”太阳与海平线交AB 厘米.若从目前太阳所处位置到太阳完全跳出于A,B两点,他测得“图上”圆的半径为10厘米,16海平面的时间为16分钟,则“图上”太阳升起的速度为().A.1.0厘米/分B.0.8厘米分C.12厘米/分D.1.4厘米/分【答案】A【分析】首先过⊙O的圆心O作CD⊙AB于C,交⊙O于D,连接OA,由垂径定理,即可求得OC的长,继而求得CD的长,又由从目前太阳所处位置到太阳完全跳出海面的时间为10分钟,即可求得“图上”太阳升起的速度.【详解】解:过⊙O的圆心O作CD⊙AB于C,交⊙O于D,连接OA,⊙AC=12AB=12×16=8(厘米),在Rt⊙AOC中,6OC===(厘米),⊙CD=OC+OD=16(厘米),⊙从目前太阳所处位置到太阳完全跳出海面的时间为16分钟,⊙16÷16=1(厘米/分).⊙“图上”太阳升起的速度为1.0厘米/分.故选:A.【点睛】此题考查了垂径定理的应用.解题的关键是结合图形构造直角三角形,利用勾股定理求解.4.(2021·山东聊城市·中考真题)如图,A,B,C是半径为1的⊙O上的三个点,若AB⊙CAB=30°,则⊙ABC的度数为()A.95°B.100°C.105°D.110°【答案】C【分析】连接OB,OC,根据勾股定理逆定理可得⊙AOB=90°,⊙ABO=⊙BAO=45°,根据圆周角定理可得⊙COB=2⊙CAB=60°,⊙OBC=⊙OCB=60°,由此可求得答案.【详解】解:如图,连接OB,OC,⊙OA =OB =1,AB⊙OA 2+OB 2=AB 2,⊙⊙AOB =90°,又⊙OA =OB ,⊙⊙ABO =⊙BAO =45°,⊙⊙CAB =30°,⊙⊙COB =2⊙CAB =60°,又⊙OC =OB ,⊙⊙OBC =⊙OCB =60°,⊙⊙ABC =⊙ABO +⊙OBC =105°,故选:C .【点睛】本题考查了勾股定理的逆定理,等腰三角形的性质,圆周角定理,熟练掌握圆周角定理是解决本题的关键. 5.(2021·湖北鄂州市·中考真题)已知锐角40AOB ∠=︒,如图,按下列步骤作图:⊙在OA 边取一点D ,以O 为圆心,OD 长为半径画MN ,交OB 于点C ,连接CD .⊙以D 为圆心,DO 长为半径画GH ,交OB 于点E ,连接DE .则CDE ∠的度数为( )A .20︒B .30C .40︒D .50︒【答案】B【分析】 根据画图过程,得到OD =OC ,由等边对等角与三角形内角和定理得到⊙ODC =⊙OCD =70︒,同理得到⊙DOE =⊙DEO =40⊙,由⊙OCD 为⊙DCE 的外角,得到结果.【详解】解:⊙以O 为圆心,OD 长为半径画MN ,交OB 于点C ,⊙OD =OC ,⊙⊙ODC =⊙OCD ,⊙⊙AOB =40⊙,⊙⊙ODC =⊙OCD =118040702⨯︒-︒=︒, ⊙以D 为圆心,DO 长为半径画GH ,交OB 于点E ,⊙DO =DE ,⊙⊙DOE =⊙DEO =40⊙,⊙⊙OCD 为⊙DCE 的外角,⊙⊙OCD =⊙DEC +⊙CDE ,⊙70⊙=40⊙+⊙CDE ,⊙⊙CDE =30⊙,故选:B .【点睛】本题考查了等腰三角形的判定与性质、以及三角形外角的性质,关键在于等边对等角与三角形的外角等于与它不相邻的两个内角之和两个知识点的熟练运用.6.(2021·海南中考真题)如图,四边形ABCD 是O 的内接四边形,BE 是O 的直径,连接AE .若2BCD BAD ∠=∠,则DAE ∠的度数是( )A .30B .35︒C .45︒D .60︒【答案】A【分析】 先根据圆内接四边形的性质可得60BAD ∠=︒,再根据圆周角定理可得90BAE ∠=︒,然后根据角的和差即可得.【详解】 解:四边形ABCD 是O 的内接四边形,180BCD BAD ∴∠+∠=︒,2BCD BAD ∠=∠,1180603BAD =⨯︒∴∠=︒, BE 是O 的直径,90BAE ∴∠=︒,906030DAE BAE BAD ∴∠=∠-∠=︒-︒=︒,故选:A .【点睛】本题考查了圆内接四边形的性质、圆周角定理,熟练掌握圆内接四边形的性质是解题关键.7.(2021·四川眉山市·中考真题)如图,在以AB 为直径的O 中,点C 为圆上的一点,3BC AC =,弦CD AB ⊥于点E ,弦AF 交CE 于点H ,交BC 于点G .若点H 是AG 的中点,则CBF ∠的度数为( )A .18°B .21°C .22.5°D .30°【答案】C【分析】根据直径所对的圆周角是90︒,可知90ACB AFB ∠=∠=︒,根据3BC AC =,可知ABC ∠、BAC ∠的度数,根据直角三角形斜边上的中线等于斜边的一半可知,AHC 为等腰三角形,再根据CAE BFG BCA ∽∽可求得CBF ∠的度数.【详解】解:⊙AB 为O 的直径,⊙90ACB AFB ∠=∠=︒,⊙3BC AC =,⊙=22.5ABC ∠︒,=67.5BAC ∠︒,⊙点H 是AG 的中点,⊙CE AH =,⊙CAH ACH ∠=∠,⊙CD AB ⊥,⊙AEC GCA ∽,又⊙,CAF CBF CGA FGB ∠=∠∠=∠,⊙AEC GCA GFB ∽∽,⊙90ACE ECB ABC ECB ∠+∠=∠+∠=︒,⊙ABE ABC ∠=∠,⊙AEC GCA GFB ACB ∽∽∽,⊙22.5ABC ACE GAC GBF ∠=∠=∠=∠=︒,⊙=22.5CBF ∠︒,故选:C .【点睛】本题主要考查圆周角定理,垂径定理,相似三角形,直角三角形斜边上中线等知识点,找出图形中几个相似三角形是解题关键.8.(2021·四川南充市·中考真题)如图,AB 是O 的直径,弦CD AB ⊥于点E ,2CD OE =,则BCD ∠的度数为( )A .15︒B .22.5︒C .30D .45︒【答案】B【分析】连接OD ,根据垂径定理得CD =2DE ,从而得ODE 是等腰直角三角形,根据圆周角定理即可求解.【详解】解:连接OD ,⊙AB 是O 的直径,弦CD AB ⊥于点E ,⊙CD =2DE ,⊙2CD OE =,⊙DE =OE ,⊙ODE 是等腰直角三角形,即⊙BOD =45°,⊙BCD ∠=12⊙BOD =22.5°, 故选B .【点睛】本题主要考查圆的基本性质,熟练掌握垂径定理和圆周角定理,是解题的关键.9.(2021·四川广安市·中考真题)如图,公园内有一个半径为18米的圆形草坪,从A 地走到B 地有观赏路(劣弧AB )和便民路(线段AB ).已知A 、B 是圆上的点,O 为圆心,120AOB ∠=︒,小强从A 走到B ,走便民路比走观赏路少走( )米.A .6π-B .6π-C .12π-D .12π-【答案】D【分析】 作OC ⊙AB 于C ,如图,根据垂径定理得到AC =BC ,再利用等腰三角形的性质和三角形内角和计算出⊙A ,从而得到OC 和AC ,可得AB ,然后利用弧长公式计算出AB 的长,最后求它们的差即可.【详解】解:作OC ⊙AB 于C ,如图,则AC =BC ,⊙OA =OB ,⊙⊙A =⊙B =12(180°-⊙AOB )=30°, 在Rt ⊙AOC 中,OC =12OA =9,AC =⊙AB =2AC =又⊙12018180AB π⨯⨯==12π,⊙走便民路比走观赏路少走12π-故选D .【点睛】本题考查了垂径定理:垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.10.(2021·重庆中考真题)如图,AB 是⊙O 的直径,AC ,BC 是⊙O 的弦,若20A ∠=︒,则B 的度数为( )A .70°B .90°C .40°D .60°【答案】A【分析】直接根据直径所对的圆周角为直角进行求解即可.【详解】⊙AB 是⊙O 的直径,⊙⊙ACB =90°,⊙在Rt ⊙ABC 中,⊙B =90°-⊙A =70°,故选:A .【点睛】本题考查直径所对的圆周角为直角,理解基本定理是解题关键.11.(2021·浙江丽水市·中考真题)如图,AB 是O 的直径,弦CD OA ⊥于点E ,连结,OC OD .若O 的半径为,m AOD α∠=∠,则下列结论一定成立的是( )A .tan OE m α=⋅B .2sin CD m α=⋅C .cos AE m α=⋅D .2sin COD S m α=⋅【答案】B【分析】 根据垂径定理、锐角三角函数的定义进行判断即可解答.【详解】解:⊙AB 是O 的直径,弦CD OA ⊥于点E , ⊙12DE CD = 在Rt EDO ∆中,OD m =,AOD α∠=∠ ⊙tan =DE OEα ⊙=tan 2tan DE CD OE αα=,故选项A 错误,不符合题意;又sin DE ODα= ⊙sin DE OD α=⊙22sin CD DE m α==,故选项B 正确,符合题意; 又cos OE ODα= ⊙cos cos OE OD m αα==⊙AO DO m ==⊙cos AE AO OE m m α=-=-,故选项C 错误,不符合题意;⊙2sin CD m α=,cos OE m α= ⊙2112sin cos sin cos 22COD S CD OE m m m αααα∆=⨯=⨯⨯=,故选项D 错误,不符合题意; 故选B .【点睛】本题考查了垂径定理,锐角三角函数的定义以及三角形面积公式的应用,解本题的关键是熟记垂径定理和锐角三角函数的定义.12.(2021·山东泰安市·中考真题)如图,在ABC 中,6AB =,以点A 为圆心,3为半径的圆与边BC 相切于点D ,与AC ,AB 分别交于点E 和点G ,点F 是优弧GE 上一点,18CDE ∠=︒,则GFE ∠的度数是( )A .50°B .48°C .45°D .36°【答案】B【分析】 连接AD ,由切线性质可得⊙ADB =⊙ADC =90°,根据AB=2AD 及锐角的三角函数可求得⊙BAD =60°,易求得⊙ADE =72°,由AD=AE 可求得⊙DAE =36°,则⊙GAC =96°,根据圆周角定理即可求得⊙GFE 的度数.【详解】解:连接AD ,则AD =AG =3,⊙BC与圆A相切于点D,⊙⊙ADB=⊙ADC=90°,在Rt⊙ADB中,AB=6,则cos⊙BAD=ADAB=12,⊙⊙BAD=60°,⊙⊙CDE=18°,⊙⊙ADE=90°﹣18°=72°,⊙AD=AE,⊙⊙ADE=⊙AED=72°,⊙⊙DAE=180°﹣2×72°=36°,⊙⊙GAC=36°+60°=96°,⊙⊙GFE=12⊙GAC=48°,故选:B.【点睛】本题考查切线性质、锐角的三角函数、等腰三角形的性质、三角形的内角和定理、圆周角定理,熟练掌握切线性质和圆周角定理,利用特殊角的三角函数值求得⊙BAD=60°是解答的关键.13.(2021·浙江绍兴市·中考真题)如图,正方形ABCD内接于O,点P在AB上,则P∠的度数为()A.30B.45︒C.60︒D.90︒【答案】B【分析】连接OB ,OC ,由正方形ABCD 的性质得90BOC ∠=°,再根据圆周角与圆心角的关系即可得出结论.【详解】解:连接OB ,OC ,如图,⊙正方形ABCD 内接于O ,⊙90BOC ∠=° ⊙11904522BPC BOC ∠=∠=⨯︒=︒ 故选:B .【点睛】此题主要考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.14.(2021·四川凉山彝族自治州·中考真题)点P 是O 内一点,过点P 的最长弦的长为10cm ,最短弦的长为6cm ,则OP 的长为( )A .3cmB .4cmC .5cmD .6cm 【答案】B【分析】根据直径是圆中最长的弦,知该圆的直径是10cm ;最短弦即是过点P 且垂直于过点P 的直径的弦;根据垂径定理即可求得CP 的长,再进一步根据勾股定理,可以求得OP 的长.【详解】解:如图所示,CD ⊙AB 于点P .根据题意,得AB =10cm ,CD =6cm .⊙OC =5,CP =3⊙CD ⊙AB ,⊙CP =12CD =3cm .根据勾股定理,得OP .故选B .【点睛】此题综合运用了垂径定理和勾股定理.正确理解圆中,过一点的最长的弦和最短的弦.15.(2021·四川自贡市·中考真题)如图,AB 为⊙O 的直径,弦CD AB ⊥于点F ,OE AC ⊥于点E ,若3OE =,5OB =,则CD 的长度是( )A .9.6B .C .D .19【答案】A【分析】 先利用垂径定理得出AE =EC ,CF =FD ,再利用勾股定理列方程即可【详解】解:连接OC⊙AB ⊙CD , OE ⊙AC⊙ AE =EC ,CF =FD⊙OE =3,OB =5⊙OB =OC =OA =5⊙在Rt ⊙OAE 中4AE =⊙AE =EC =4设OF =x ,则有2222AC AF OC OF -=-22228(5)5x x -+=-x =1.4在Rt ⊙OFC 中, 4.8FC ==⊙29.6CD FC ==故选:A【点睛】本题考查垂径定理、勾股定理、方程思想是解题关键16.(2021·山东临沂市·中考真题)如图,PA 、PB 分别与O 相切于A 、B ,70P ∠=︒,C 为O 上一点,则ACB ∠的度数为( )A .110︒B .120︒C .125︒D .130︒ 【答案】C【分析】由切线的性质得出⊙OAP =⊙OBP =90°,利用四边形内角和可求⊙AOB =110°,再利用圆周角定理可求⊙ADB =55°,再根据圆内接四边形对角互补可求⊙ACB .【详解】解:如图所示,连接OA ,OB ,在优弧AB 上取点D ,连接AD ,BD ,⊙AP 、BP 是切线,⊙⊙OAP =⊙OBP =90°,⊙⊙AOB =360°-90°-90°-70°=110°,⊙⊙ADB =55°,又⊙圆内接四边形的对角互补,⊙⊙ACB =180°-⊙ADB =180°-55°=125°.故选:C .【点睛】本题考查了切线的性质、圆周角定理、圆内接四边形的性质.解题的关键是连接OA 、OB ,求出⊙AOB .17.(2021·湖北鄂州市·中考真题)如图,Rt ABC 中,90ACB ∠=︒,AC =3BC =.点P 为ABC ∆内一点,且满足22PA PC +2AC =.当PB 的长度最小时,ACP ∆的面积是( )A .3B .CD 【答案】D【分析】由题意知90APC ∠=︒,又AC 长度一定,则点P 的运动轨迹是以AC 中点O 为圆心,12AC 长为半径的圆弧,所以当B 、P 、O 三点共线时,BP 最短;在Rt BCO ∆中,利用勾股定理可求BO 的长,并得到点P 是BO 的中点,由线段长度即可得到PCO ∆是等边三角形,利用特殊Rt APC ∆三边关系即可求解.【详解】解:222PA PC AC +=∴90APC ∠=︒取AC 中点O ,并以O 为圆心,12AC 长为半径画圆 由题意知:当B 、P 、O 三点共线时,BP 最短AO PO CO ∴== 11322CO AC BC ==⨯==BO ∴=BP BO PO ∴=-=∴点P 是BO 的中点∴在Rt BCO ∆中,12CP BO PO === ∴PCO ∆是等边三角形∴60ACP ∠=︒ ∴在Rt APC ∆中,tan 603AP CP =⨯︒=12APC S AP CP ∆∴=⨯==【点睛】本题主要考察动点的线段最值问题、点与圆的位置关系和隐形圆问题,属于动态几何综合题型,中档难度.解题的关键是找到动点P 的运动轨迹,即隐形圆.18.(2021·浙江嘉兴市·中考真题)如图,在ABC ∆中,90BAC ∠=︒,AB =AC =5,点D 在AC 上,且2AD =,点E 是AB 上的动点,连结DE ,点F ,G 分别是BC ,DE 的中点,连接AG ,FG ,当AG =FG 时,线段DE 长为( )A B .2C D .4 【答案】A【分析】连接DF ,EF ,过点F 作FN ⊙AC ,FM ⊙AB ,结合直角三角形斜边中线等于斜边的一半求得点A ,D ,F ,E 四点共圆,⊙DFE =90°,然后根据勾股定理及正方形的判定和性质求得AE 的长度,从而求解.【详解】解:连接DF ,EF ,过点F 作FN ⊙AC ,FM ⊙AB⊙在ABC ∆中,90BAC ∠=︒,点G 是DE 的中点,⊙AG =DG =EG又⊙AG =FG⊙点A ,D ,F ,E 四点共圆,且DE 是圆的直径⊙⊙DFE =90°⊙在Rt ⊙ABC 中,AB =AC =5,点F 是BC 的中点,⊙CF =BF =122BC =,FN =FM =52 又⊙FN ⊙AC ,FM ⊙AB ,90BAC ∠=︒⊙四边形NAMF 是正方形⊙AN =AM =FN =52又⊙90NFD DFM ∠+∠=︒,90DFM MFE ∠+∠=︒⊙NFD MFE ∠=∠⊙⊙NFD ⊙⊙MFE⊙ME =DN =AN -AD =12 ⊙AE =AM +ME =3⊙在Rt ⊙DAE 中,DE故选:A .【点睛】本题考查直径所对的圆周角是90°,四点共圆及正方形的判定和性质和用勾股定理解直角三角形,掌握相关性质定理正确推理计算是解题关键.19.(2021·四川自贡市·中考真题)如图,()8,0A,()2,0C -,以点A 为圆心,AC 长为半径画弧,交y 轴正半轴于点B ,则点B 的坐标为( )A .()0,5B .()5,0C .()6,0D .()0,6 【答案】D【分析】先根据题意得出OA =8,OC =2,再根据勾股定理计算即可【详解】解:由题意可知:AC =AB⊙()8,0A ,()2,0C -⊙OA =8,OC =2⊙AC =AB =10在Rt ⊙OAB 中,6OB ==⊙B (0,6)故选:D【点睛】本题考查勾股定理、正确写出点的坐标,圆的半径相等、熟练进行勾股定理的计算是关键 20.(2021·广西来宾市·中考真题)如图,O 的半径OB 为4,OC AB ⊥于点D ,30BAC ∠=︒,则OD 的长是( )A B C .2 D .3【答案】C【分析】 根据圆周角定理求出⊙COB 的度数,再求出⊙OBD 的度数,根据“30°的锐角所对的直角边等于斜边的一半”求出OD 的长度.【详解】⊙ ⊙BAC =30°,⊙⊙COB =60°,⊙⊙ODB =90°,⊙⊙OBD =30°,⊙OB =4,⊙OD =12OB =142⨯=2. 故选:C .【点睛】本题考查了圆周角定理,直角三角形的性质,掌握相关定理和性质是解题的关键.21.(2021·湖北荆州市·中考真题)如图,矩形OABC 的边OA ,OC 分别在x 轴、y 轴的正半轴上,点D 在OA 的延长线上.若()2,0A ,()4,0D ,以О为圆心、OD 长为半径的弧经过点B ,交y 轴正半轴于点E ,连接DE ,BE 、则BED ∠的度数是( )A .15︒B .22.5︒C .30D .45︒【答案】C【分析】连接OB ,由题意易得⊙BOD =60°,然后根据圆周角定理可进行求解.【详解】解:连接OB ,如图所示:⊙()2,0A ,()4,0D ,⊙2,4OA OB OE OD ====, ⊙12OA OB =, ⊙四边形OABC 是矩形,⊙90OAB ∠=︒,⊙30OBA ∠=︒,⊙9060BOD OBA ∠=︒-∠=︒, ⊙1302BED BOD ∠=∠=︒; 故选C .【点睛】本题主要考查圆周角定理、矩形的性质及含30°的直角三角形的性质,熟练掌握圆周角定理、矩形的性质及含30°的直角三角形的性质是解题的关键.22.(2021·湖北宜昌市·中考真题)如图,C ,D 是O 上直径AB 两侧的两点.设25ABC ∠=︒,则BDC ∠=( )A .85︒B .75︒C .70︒D .65︒【答案】D【分析】 先利用直径所对的圆周角是直角得到⊙ACB =90°,从而求出⊙BAC ,再利用同弧所对的圆周角相等即可求出⊙BDC .【详解】解:⊙C ,D 是⊙O 上直径AB 两侧的两点,⊙⊙ACB =90°,⊙⊙ABC =25°,⊙⊙BAC =90°-25°=65°,⊙⊙BDC =⊙BAC =65°,故选:D .【点睛】本题考查了圆周角定理的推论,即直径所对的圆周角是90°和同弧或等弧所对的圆周角相等,解决本题的关键是牢记相关概念与推论,本题蕴含了属性结合的思想方法.23.(2021·河北中考真题)如图,等腰AOB 中,顶角40AOB ∠=︒,用尺规按⊙到⊙的步骤操作: ⊙以O 为圆心,OA 为半径画圆;⊙在O 上任取一点P (不与点A ,B 重合),连接AP ;⊙作AB 的垂直平分线与O 交于M ,N ;⊙作AP 的垂直平分线与O 交于E ,F .结论⊙:顺次连接M ,E ,N ,F 四点必能得到矩形;结论⊙:O 上只有唯一的点P ,使得OFM OAB S S =扇形扇形.对于结论⊙和⊙,下列判断正确的是( )A .⊙和⊙都对B .⊙和⊙都不对C .⊙不对⊙对D .⊙对⊙不对【答案】D【分析】 ⊙、根据“弦的垂直平分线经过圆心”,可证四边形MENF 的形状;⊙、在确定点P 的过程中,看⊙MOF =40°是否唯一即可.【详解】解:⊙、如图所示.⊙MN 是AB 的垂直平分线,EF 是AP 的垂直平分线,⊙MN 和EF 都经过圆心O ,线段MN 和EF 是⊙O 的直径.⊙OM =ON ,OE =OF .⊙四边形MENF 是平行四边形.⊙线段MN 是⊙O 的直径,⊙⊙MEN =90°.⊙平行四边形MENF 是矩形.⊙结论⊙正确;⊙、如图2,当点P 在直线MN 左侧且AP =AB 时,⊙AP =AB ,⊙AB AP =.⊙MN ⊙AB ,EF ⊙AP , ⊙1122AE AP AN AB ==,. ⊙AE AN =. ⊙1===202AOE AON AOB ∠∠∠.⊙40EON =∠.⊙=40MOF EON =∠∠.⊙扇形OFM 与扇形OAB 的半径、圆心角度数都分别相等,⊙OFM OAB S S =扇形扇形.如图3,当点P 在直线MN 右侧且BP =AB 时,同理可证:FOM AOB S S =扇形扇形.⊙结论⊙错误.故选:D【点睛】本题考查了圆的有关性质、矩形的判定、扇形面积等知识点,熟知圆的有关性质、矩形的判定方法及扇形面积公式是解题的关键.24.(2021·湖北黄冈市·中考真题)如图,O 是Rt ABC △的外接圆,OE AB ⊥交O 于点E ,垂足为点D ,AE ,CB 的延长线交于点F .若3OD =,8AB =,则FC 的长是( )A .10B .8C .6D .4【答案】A【分析】 先根据垂径定理可得4=AD ,再利用勾股定理可得5OE OA ==,然后根据三角形中位线定理即可得.【详解】解:,8OE AB AB ⊥=,142AD AB ∴==, 3OD =,5OA ∴=,5OE ∴=,OE AB ⊥,90A ADO BC =︒∠∴∠=,//OE FC ∴,又OA OC =,OE ∴是ACF 的中位线,210FC OE ∴==,故选:A .【点睛】本题考查了垂径定理、三角形中位线定理等知识点,熟练掌握垂径定理是解题关键.25.(2021·湖南邵阳市·中考真题)如图,点A ,B ,C 是O 上的三点.若90AOC ∠=︒,30BAC ∠=︒,则AOB ∠的大小为( )A .25︒B .30C .35︒D .40︒【答案】B【分析】首先根据圆周角定理求得BOC ∠的度数,根据AOC ∠的度数求AOB AOC BOC ∠=∠-∠即可.【详解】解:⊙30BAC ∠=︒⊙⊙BOC=223060BAC ∠=⨯︒=︒,⊙90AOC ∠=︒,906030AOB AOC BOC ,故选:B .【点睛】考查了圆周角定理及两锐角互余性质,求得BOC ∠的度数是解题的关键.26.(2021·湖南长沙市·中考真题)如图,点A ,B ,C 在⊙O 上,54BAC ∠=︒,则BOC ∠的度数为()A .27︒B .108︒C .116︒D .128︒【答案】B【分析】直接利用圆周角定理即可得.【详解】解:54BAC ∠=︒,∴由圆周角定理得:2108BOC BAC ∠=∠=︒,故选:B .【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解题关键.27.(2021·湖北武汉市·中考真题)如图,AB 是O 的直径,BC 是O 的弦,先将BC 沿BC 翻折交AB 于点D .再将BD 沿AB 翻折交BC 于点E .若BE DE =,设ABC α∠=,则α所在的范围是( )A .21.922.3α︒<<︒B .22.322.7α︒<<︒C .22.723.1α︒<<︒D .23.123.5α︒<<︒【答案】B【分析】 将⊙O 沿BC 翻折得到⊙O ′,将⊙O ′沿BD 翻折得到⊙O ″,则⊙O 、⊙O ′、⊙O ″为等圆.依据在同圆或等圆中相等的圆周角所对的弧相等可证明AC DC DE EB ===,从而可得到弧AC 的度数,由弧AC 的度数可求得⊙B 的度数.【详解】解:将⊙O 沿BC 翻折得到⊙O ′,将⊙O ′沿BD 翻折得到⊙O ″,则⊙O 、⊙O ′、⊙O ″为等圆.⊙⊙O 与⊙O ′为等圆,劣弧AC 与劣弧CD 所对的角均为⊙ABC ,⊙AC CD =.同理:DE CD =.又⊙F 是劣弧BD 的中点,⊙DE BE =.⊙AC DC DE EB ===.⊙弧AC 的度数=180°÷4=45°.⊙⊙B =12×45°=22.5°. ⊙α所在的范围是22.322.7α︒<<︒;故选:B .【点睛】本题主要考查的是圆的综合应用,解答本题主要应用了翻折的性质、弧、弦、圆周角之间的关系、圆内接四边形的性质,等腰三角形的判定,找出图形中的等弧是解题的关键.二、填空题28.(2021·黑龙江中考真题)如图,在O 中,AB 是直径,弦AC 的长为5cm ,点D 在圆上,且30ADC ∠=︒,则O 的半径为_____.【答案】5cm【分析】连接BC ,由题意易得30ABC ADC ∠=∠=︒,进而问题可求解.【详解】解:连接BC ,如图所示:⊙30ADC ∠=︒,⊙30ABC ADC ∠=∠=︒,⊙AB 是直径,⊙90ACB ∠=︒,⊙5cm AC =,⊙210cm AB AC ==,⊙O 的半径为5cm ;故答案为5cm .【点睛】本题主要考查圆周角定理及含30°直角三角形的性质,熟练掌握圆周角定理及含30°直角三角形的性质是解29.(2021·安徽中考真题)如图,圆O 的半径为1,ABC 内接于圆O .若60A ∠=︒,75B ∠=︒,则AB =______.【分析】先根据圆的半径相等及圆周角定理得出⊙ABO =45°,再根据垂径定理构造直角三角形,利用锐角三角函数解直角三角形即可【详解】解:连接OB 、OC 、作OD ⊙AB⊙60A ∠=︒⊙⊙BOC =2⊙A =120°⊙OB =OC⊙⊙OBC =30°又75B ∠=︒⊙⊙ABO =45°在Rt ⊙OBD 中,OB =1⊙BD⊙BD =AD =⊙AB【点睛】本题考查垂径定理、圆周角定理,正确使用圆的性质及定理是解题关键30.(2021·湖南张家界市·中考真题)如图,ABC 内接于O ,50A ∠=︒,点D 是BC 的中点,连接OD ,OB ,OC ,则BOD ∠=_________.【答案】50︒【分析】圆上弧长对应的圆周角等于圆心角的一半,再利用等腰三角形三线合一的性质,即可得出答案.【详解】解:根据圆上弦长对应的圆周角等于圆心角的一半,12A BOC ∠=∠, 100BOC ∴∠=︒,OB OC =, BOC ∴为等腰三角形, 又点D 是BC 的中点,根据等腰三角形三线合一,OD ∴为BOC ∠的角平分线,50BO D ∴∠=︒,故答案是:50︒.【点睛】本题考查了弦长所对应的圆周角等于圆心角的一半和等腰三角形三线合一的性质,解题的关键是:根据性质求出BOC ∠,再利用角平分线或三角形全等都能求出解.31.(2021·广东中考真题)在ABC 中,90,2,3ABC AB BC ∠=︒==.点D 为平面上一个动点,45ADB ∠=︒,则线段CD 长度的最小值为_____.-【分析】由已知45ADB ∠=︒,2AB =,根据定角定弦,可作出辅助圆,由同弧所对的圆周角等于圆心角的一半可知,点D 在以O 为圆心OB 为半径的圆上,线段CD 长度的最小值为CO OD -.【详解】如图: 以12AB 为半径作圆,过圆心O 作,ON AB OM BC ⊥⊥, 以O 为圆心OB 为半径作圆,则点D 在圆O 上,45ADB ∠=︒90AOB ∠=︒∴2AB =1AN BN ==AO ∴==112ON OM AB ===,3BC =OC ∴==CO OD ∴-线段CD 长度的最小值为-.-【点睛】 本题考查了圆周角与圆心角的关系,圆外一点到圆上的线段最短距离,勾股定理,正确的作出图形是解题的关键.32.(2021·江苏宿迁市·中考真题)如图,在Rt⊙ABC 中,⊙ABC =90°,⊙A =32°,点B 、C 在O 上,边AB 、AC 分别交O 于D 、E 两点﹐点B 是CD 的中点,则⊙ABE =__________.【答案】13︒【分析】如图,连接,DC 先证明,BDC BCD ∠=∠再证明,ABE ACD ∠=∠利用三角形的外角可得:,BDC A ACD A ABE ∠=∠+∠=∠+∠再利用直角三角形中两锐角互余可得:()2902,BDC A ABE ∠=︒-∠+∠再解方程可得答案.【详解】解:如图,连接,DC B 是CD 的中点,,,BD BC BDC BCD ∴=∠=∠,DE DE =,ABE ACD ∴∠=∠,BDC A ACD A ABE ∴∠=∠+∠=∠+∠90,32,ABC A ∠=︒∠=︒()2902,BDC A ABE ∴∠=︒-∠+∠45453213.ABE A ∴∠=︒-∠=︒-︒=︒故答案为:13.︒【点睛】本题考查的是圆周角定理,三角形的外角的性质,直角三角形的两锐角互余,掌握圆周角定理的含义是解题的关键.33.(2021·江苏南京市·中考真题)如图,AB 是O 的弦,C 是AB 的中点,OC 交AB 于点D .若8cm,2cm AB CD ==,则O 的半径为________cm .【答案】5【分析】连接OA ,由垂径定理得AD =4cm ,设圆的半径为R ,根据勾股定理得到方程2224(2)R R =+-,求解即可【详解】解:连接OA ,⊙C 是AB 的中点,⊙OC AB ⊥ ⊙14cm 2AD AB == 设O 的半径为R ,⊙2cm CD =⊙(2)cm OD OC CD R =-=-在Rt OAD ∆中,222OA AD OD =+,即2224(2)R R =+-,解得,5R =即O 的半径为5cm故答案为:5【点睛】本题考查的是垂径定理及勾股定理,根据垂径定理判断出OC 是AB 的垂直平分线是解答此题的关键. 34.(2021·湖北随州市·中考真题)如图,O 是ABC 的外接圆,连接AO 并延长交O 于点D ,若50C ∠=︒,则BAD ∠的度数为______.【答案】40︒【分析】连接BD ,则C D ∠=∠,再根据AD 为直径,求得BAD ∠的度数【详解】如图,连接BD ,则50D C ∠=∠=︒AD 为直径90ABD ∴∠=︒90905040BAD D ∴∠=︒-∠=︒-︒=︒故答案为40︒【点睛】此题主要考查了圆周角定理,圆周角定理是中考中考查重点,熟练掌握圆周角定理是解决问题的关键. 35.(2021·江苏连云港市·中考真题)如图,OA 、OB 是O 的半径,点C 在O 上,30AOB ∠=︒,40OBC ∠=︒,则OAC ∠=______︒.【答案】25【分析】连接OC ,根据等腰三角形的性质和三角形内角和定理得到⊙BOC =100°,求出⊙AOC ,根据等腰三角形的性质计算.【详解】解:连接OC ,⊙OC =OB ,⊙⊙OCB =⊙OBC =40°,⊙⊙BOC =180°-40°×2=100°,⊙⊙AOC =100°+30°=130°,⊙OC =OA ,⊙⊙OAC =⊙OCA =25°,故答案为:25.【点睛】本题考查的是圆的基本性质、等腰三角形的性质,三角形内角和定理,掌握三角形内角和等于180°是解题的关键.36.(2021·四川成都市·中考真题)如图,在平面直角坐标系xOy 中,直线33y x =+与O 相交于A ,B 两点,且点A 在x 轴上,则弦AB 的长为_________.【答案】【分析】过O 作OE ⊙AB 于C ,根据垂径定理可得AC =BC =12AB ,可求OA =2,OD Rt ⊙AOD 中,由勾股定理AD =,可证⊙OAC ⊙⊙DAO ,由相似三角形性质可求AC 即可. 【详解】 解:过O 作OE ⊙AB 于C ,⊙AB 为弦,⊙AC =BC =12AB ,⊙直线33y x =+与O 相交于A ,B 两点,⊙当y =00x +=,解得x =-2, ⊙OA =2,⊙当x =0时,y =⊙OD=3, 在Rt ⊙AOD中,由勾股定理3AD ===, ⊙⊙ACO =⊙AOD =90°,⊙CAO =⊙OAD ,⊙⊙OAC ⊙⊙DAO ,AC AO AO AD =即2AO AC AD === ⊙AB =2AC故答案为【点睛】本题考查直线与圆的位置关系,垂径定理,直线与两轴交点,勾股定理,三角形相似判定与性质,掌握以上知识、正确添加辅助线是解题关键.37.(2021·江苏扬州市·中考真题)在一次数学探究活动中,李老师设计了一份活动单:“追梦”学习小组通过操作、观察、讨论后汇报:点A 的位置不唯一,它在以BC 为弦的圆弧上(点B 、C 除外),…….小华同学画出了符合要求的一条圆弧(如图1).(1)小华同学提出了下列问题,请你帮助解决.⊙该弧所在圆的半径长为___________;⊙ABC 面积的最大值为_________;(2)经过比对发现,小明同学所画的角的顶点不在小华所画的圆弧上,而在如图1所示的弓形内部,我们记为A ',请你利用图1证明30BA C '∠>︒;(3)请你运用所学知识,结合以上活动经验,解决问题:如图2,已知矩形ABCD 的边长2AB =,3BC =,点P 在直线CD 的左侧,且4tan 3DPC ∠=. ⊙线段PB 长的最小值为_______;⊙若23PCD PAD S S =,则线段PD 长为________.【答案】(1)⊙2;2;(2)见解析;(3);⊙4 【分析】(1)⊙设O 为圆心,连接BO ,CO ,根据圆周角定理得到⊙BOC =60°,证明⊙OBC 是等边三角形,可得半径;⊙过点O 作BC 的垂线,垂足为E ,延长EO ,交圆于D ,以BC 为底,则当A 与D 重合时,⊙ABC 的面积最大,求出OE ,根据三角形面积公式计算即可;(2)延长BA ′,交圆于点D ,连接CD ,利用三角形外角的性质和圆周角定理证明即可;(3)⊙根据4tan 3DPC ∠=,连接PD ,设点Q 为PD 中点,以点Q 为圆心,12PD 为半径画圆,可得点P 在优弧CPD 上,连接BQ ,与圆Q 交于P ′,可得BP ′即为BP 的最小值,再计算出BQ 和圆Q 的半径,相减即可得到BP ′;⊙根据AD ,CD 和23PCD PAD S S =推出点P 在⊙ADC 的平分线上,从而找到点P 的位置,过点C 作CF ⊙PD ,垂足为F ,解直角三角形即可求出DP .【详解】解:(1)⊙设O 为圆心,连接BO ,CO ,⊙⊙BAC =30°,⊙⊙BOC =60°,又OB =OC ,⊙⊙OBC 是等边三角形,⊙OB =OC =BC =2,即半径为2;⊙⊙⊙ABC 以BC 为底边,BC =2,⊙当点A 到BC 的距离最大时,⊙ABC 的面积最大,如图,过点O 作BC 的垂线,垂足为E ,延长EO ,交圆于D ,⊙BE =CE =1,DO =BO =2,⊙OE⊙DE 2,⊙⊙ABC 的最大面积为)1222⨯⨯2;(2)如图,延长BA ′,交圆于点D ,连接CD ,⊙点D 在圆上,⊙⊙BDC =⊙BAC ,⊙⊙BA ′C =⊙BDC +⊙A ′CD ,⊙⊙BA ′C >⊙BDC ,⊙⊙BA ′C >⊙BAC ,即⊙BA ′C >30°;(3)⊙如图,当点P在BC上,且PC=32时,⊙⊙PCD=90°,AB=CD=2,AD=BC=3,⊙tan⊙DPC=CDPC=43,为定值,连接PD,设点Q为PD中点,以点Q为圆心,12PD为半径画圆,⊙当点P在优弧CPD上时,tan⊙DPC=43,连接BQ,与圆Q交于P′,此时BP′即为BP的最小值,过点Q作QE⊙BE,垂足为E,⊙点Q是PD中点,⊙点E为PC中点,即QE=12CD=1,PE=CE=12PC=34,⊙BE=BC-CE=3-34=94,⊙BQ4,⊙PD 52,⊙圆Q的半径为155 224⨯=,⊙BP′=BQ-P′Q,即BP;⊙⊙AD =3,CD =2,23PCD PAD S S =, 则23CD AD =, ⊙⊙P AD 中AD 边上的高=⊙PCD 中CD 边上的高,即点P 到AD 的距离和点P 到CD 的距离相等,则点P 到AD 和CD 的距离相等,即点P 在⊙ADC 的平分线上,如图,过点C 作CF ⊙PD ,垂足为F ,⊙PD 平分⊙ADC ,⊙⊙ADP =⊙CDP =45°,⊙⊙CDF 为等腰直角三角形,又CD =2,⊙CF =DF⊙tan⊙DPC =CF PF =43,⊙PF =4,⊙PD =DF +PF【点睛】本题是圆的综合题,考查了圆周角定理,三角形的面积,等边三角形的判定和性质,最值问题,解直角三角形,三角形外角的性质,勾股定理,知识点较多,难度较大,解题时要根据已知条件找到点P 的轨迹. 38.(2021·辽宁本溪市·中考真题)如图,由边长为1的小正方形组成的网格中,点A ,B ,C 都在格点上,以AB 为直径的圆经过点C 和点D ,则tan =ADC ∠________.。
2021年四川省自贡市数学中考试题(含答案)
绝密★启用前 [考试时间:2021年6月12日上午9∶00-11∶00]四川省自贡市2021年初中毕业生学业考试数学试卷重新排版:赵化中学郑宗平本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页。
选择题部分40分,非选择题110分共150分.注意事项:1、答卷前,考生务必将自己的姓名,准考证号、考试科目涂写(用0.5毫米的黑色签字笔)在答题卡上,并检查条形码粘贴是否正确.2、选择题使用2B铅笔填涂在答题卡对应题目标号的位置上,如需改动,用橡皮擦擦干净后,再选涂其它答案标号,不能答在试卷中。
非选择题用0.5毫米的黑色签字笔书写在答题卡的对应框内,超出答题区域的书写的答案无效,在草稿纸、试题卷上答题无效.3、考试结束后,将答题卡、试卷、草稿纸从上往下依次放好,并等待监考老师验收后一并收回.第Ⅰ卷选择题(共40分)一、选择题(共10个小题,每小题4分,共40分)1、比-1大1的数是()A.2 B.1 C.0 D.-22.等于()A. B. C. D.3.如图,是由几个小立方体所搭成的几何体的俯视图,小正方形中的数字表示在该位置上的立方体的个数,这个几何体的正视图是()4.拒绝“餐桌浪费”刻不容缓,据统计全国每年浪费食物总量约为50000000000千克,这个数据用科学记数法表示为()A.5×1010 B.0.5×1011 C.5×1011 D.0.5×10105.一元二次方程x2-4x+5=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根.6.下面的图形中,既是轴对称图形又是中心对称图形的是()7.一组数据,6、4、a、3、2的平均数是5,这组数据的方差为()A.8 B.5 C. D.38.一个扇形的半径为8cm,弧长为,则扇形的圆心角为()A.60° B.120° C.150° D.180°9.关于的函数和在同一坐标系中的图像大致是()10.如图,在半径为1的⊙O中,∠AOB=45°,则sinC的值为()AB CD第Ⅱ卷非选择题(共110分)二、填空题(共5个小题,每小题4分,共20分)11.因式分解:x2y-y= .12.不等式组的解集是 .13.一个多边形的内角和比它的外角和的3倍少180°,则它的边数是 .14.如图,一个边长为4cm的等边三角形ABC的高与⊙O的直径相等.⊙O与BC相切于点C与AC相交于点E。
2022年四川省自贡市中考数学试卷(解析版)
2022年四川省自贡市中考数学试卷参考答案与试题解析一、选择题(共12个小题,每小题4分,共48分,在每题给出的四个选项中,只有一项是符合题目要求的)1.(4分)如图,直线AB 、CD 相交于点O ,若130∠=︒,则2∠的度数是()A .30︒B .40︒C .60︒D .150︒【分析】根据对顶角相等可得2130∠=∠=︒.【解答】解:130∠=︒ ,1∠与2∠是对顶角,2130∴∠=∠=︒.故选:A .2.(4分)自贡市江姐故里红色教育基地自去年底开放以来,截止到今年5月,共接待游客180000余人.人数180000用科学记数法表示为()A .41.810⨯B .41810⨯C .51.810⨯D .61.810⨯【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10时,n 是正数;当原数的绝对值1<时,n 是负数.【解答】解:5180000 1.810=⨯,故选:C .3.(4分)如图,将矩形纸片ABCD 绕边CD 所在直线旋转一周,得到的立体图形是()A .B .C .D .【分析】将矩形纸片ABCD 绕边CD 所在直线旋转一周,可知上面和下面都是平面,所以得到的立体图形是圆体.【解答】解:根据“点动成线,线动成面,面动成体”,将矩形纸片ABCD 绕边CD 所在直线旋转一周,所得到的立体图形是圆柱.故选:A .4.(4分)下列运算正确的是()A .2(1)2-=-B .1-=C .632a a a ÷=D .01()02022-=【分析】根据有理数的乘方判断A 选项;根据平方差公式判断B 选项;根据同底数幂的除法判断C 选项;根据零指数幂判断D 选项.【解答】解:A 、原式1=,故该选项不符合题意;B 、原式22321=-=-=,故该选项符合题意;C 、原式3a =,故该选项不符合题意;D 、原式1=,故该选项不符合题意;故选:B .5.(4分)如图,菱形ABCD 对角线交点与坐标原点O 重合,点(2,5)A -,则点C 的坐标是()A .(5,2)-B .(2,5)-C .(2,5)D .(2,5)--【分析】菱形的对角线相互平分可知点A与C关于原点对称,从而得结论.【解答】解: 四边形ABCD是菱形,∴=,即点A与点C关于原点对称,OA OCA-,点(2,5)-.∴点C的坐标是(2,5)故选:B.6.(4分)剪纸与扎染、龚扇被称为自贡小三绝,以下学生剪纸作品中,轴对称图形是() A.B.C.D.【分析】根据轴对称图形定义进行分析即可.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【解答】解:选项A,B,C都不能找到这样的一条直线,使这些图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;选项D能找到这样的一条直线,使这个图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形.故选:D.7.(4分)如图,四边形ABCD内接于O∠=︒,则BCD∠的的直径,20ABD,AB是O度数是()A.90︒B.100︒C.110︒D.120︒【分析】方法一:根据圆周角定理可以得到AOD∠的度数,再根据三角形内角和可以求得OAD ∠的度数,然后根据圆内接四边形对角互补,即可得到BCD ∠的度数.方法二:根据AB 是O 的直径,可以得到90ADB ∠=︒,再根据20ABD ∠=︒和三角形内角和,可以得到A ∠的度数,然后根据圆内接四边形对角互补,即可得到BCD ∠的度数.【解答】解:方法一:连接OD ,如图所示,20ABD ∠=︒ ,40AOD ∴∠=︒,OA OD = ,OAD ODA ∴∠=∠,180OAD ODA AOD ∠+∠+∠=︒ ,70OAD ODA ∴∠=∠=︒,四边形ABCD 是圆内接四边形,180OAD BCD ∴∠+∠=︒,110BCD ∴∠=︒,故选:C .方法二:AB 是O 的直径,90ADB ∴∠=︒,20ABD ∠=︒ ,70A ∴∠=︒,四边形ABCD 是圆内接四边形,180A BCD ∴∠+∠=︒,110BCD ∴∠=︒,故选:C .8.(4分)六位同学的年龄分别是13、14、15、14、14、15岁,关于这组数据,正确说法是()A .平均数是14B .中位数是14.5C .方差是3D .众数是14【分析】分别计算这组数据的平均数,中位数,方差,众数即可得出答案.【解答】解:A 选项,平均数1(131415141415)6146=+++++÷=(岁),故该选项不符合题意;B 选项,这组数据从小到大排序为:13,14,14,14,15,15,中位数1414142+==(岁),故该选项不符合题意;C 选项,方差222111117[(1314(1414)3(15142]666636=⨯-+-⨯+-⨯=,故该选项不符合题意;D 选项,14出现的次数最多,众数是14岁,故该选项符合题意;故选:D .9.(4分)等腰三角形顶角度数比一个底角度数的2倍多20︒,则这个底角的度数是()A .30︒B .40︒C .50︒D .60︒【分析】设底角的度数是x ︒,则顶角的度数为(220)x +︒,根据三角形内角和是180︒列出方程,解方程即可得出答案.【解答】解:设底角的度数是x ︒,则顶角的度数为(220)x +︒,根据题意得:220180x x x +++=,解得:40x =,故选:B .10.(4分)P 为O 外一点,PT 与O 相切于点T ,10OP =,30OPT ∠=︒,则PT 长为()A .B .5C .8D .9【分析】根据切线的性质得到90OTP ∠=︒,根据含30度角的直角三角形的性质得到OT 的值,根据勾股定理即可求解.【解答】解:方法一:如图,PT 与O 相切于点T ,90OTP ∴∠=︒,又10OP = ,30OPT ∠=︒,1110522OT OP ∴==⨯=,PT ∴==.故选:A .方法二:在Rt OPT ∆中,cos PT P OP =,3cos30102PT OP ∴=⋅︒=⨯=.故选:A .11.(4分)九年级2班计划在劳动实践基地内种植蔬菜,班长买回来8米长的围栏,准备围成一边靠墙(墙足够长)的菜园,为了让菜园面积尽可能大,同学们提出了围成矩形、等腰三角形(底边靠墙)、半圆形这三种方案,最佳方案是()A .方案1B .方案2C .方案3D .方案1或方案2【分析】分别计算三个方案的菜园面积进行比较即可.【解答】解:方案1:设AD x =米,则(82)AB x =-米,则菜园面积22(82)282(2)8x x x x x =-=-+=--+,当2x =时,此时菜园最大面积为8米2;方案2:当90BAC ∠=︒时,菜园最大面积14482=⨯⨯=米2;方案3:半圆的半径8π=,∴此时菜园最大面积28()322πππ⨯==米28>米2;故选:C .12.(4分)已知(3,2)A --,(1,2)B -,抛物线2(0)y ax bx c a =++>顶点在线段AB 上运动,形状保持不变,与x 轴交于C ,D 两点(C 在D 的右侧),下列结论:①2c -;②当0x >时,一定有y 随x 的增大而增大;③若点D 横坐标的最小值为5-,则点C 横坐标的最大值为3;④当四边形ABCD 为平行四边形时,12a =.其中正确的是()A .①③B .②③C .①④D .①③④【分析】根据顶点在线段AB 上抛物线与y 轴的交点坐标为(0,)c 可以判断出c 的取值范围,得到①正确;根据二次函数的增减性判断出②错误;先确定1x =时,点D 的横坐标取得最大值,然后根据二次函数的对称性求出此时点C 的横坐标,即可判断③正确;令0y =,利用根与系数的关系与顶点的纵坐标求出CD 的长度的表达式,然后根据平行四边形的对边平行且相等可得AB CD =,然后列出方程求出a 的值,判断出④正确.【解答】解: 点A ,B 的坐标分别为(3,2)--和(1,2)-,∴线段AB 与y 轴的交点坐标为(0,2)-,又 抛物线的顶点在线段AB 上运动,抛物线与y 轴的交点坐标为(0,)c ,2c ∴-,(顶点在y 轴上时取“=”),故①正确;抛物线的顶点在线段AB 上运动,开口向上,∴当1x >时,一定有y 随x 的增大而增大,故②错误;若点D 的横坐标最小值为5-,则此时对称轴为直线3x =-,C 点的横坐标为1-,则4CD =, 抛物线形状不变,当对称轴为直线1x =时,C 点的横坐标为3,∴点C 的横坐标最大值为3,故③正确;令0y =,则20ax bx c ++=,22224()4b c b ac CD a a a -=--⨯=,根据顶点坐标公式,2424ac b a-=-,∴248ac b a -=-,即248b ac a-=,2188CD a a∴=⨯=, 四边形ACDB 为平行四边形,1(3)4CD AB ∴==--=,∴28416a==,解得12a =,故④正确;综上所述,正确的结论有①③④.故选:D .二、填空题(共6个小题,每小题4分,共24分)13.(4分)计算:|2|-=2.【分析】根据绝对值定义去掉这个绝对值的符号.【解答】解:20-< ,|2|2∴-=.故答案为:2.14.(4分)分解因式:2m m +=(1)m m +.【分析】根据多项式的特征选择提取公因式法进行因式分解.【解答】解:2(1)m m m m +=+.故答案为:(1)m m +.15.(4分)化简:223424432a a a a a a --⋅+=++-+2a a +.【分析】先将原分式的分子、分母分解因式,然后约分,再计算加法即可.【解答】解:223424432a a a a a a --⋅+++-+23(2)(2)2(2)32a a a a a a -+-=⋅++-+2222a a a -=+++2a a =+,故答案为:2a a +.16.(4分)为了比较甲、乙两鱼池中的鱼苗数目,小明从两鱼池中各捞出100条鱼苗,每条做好记号,然后放回原鱼池.一段时间后,在同样的地方,小明再从甲、乙两鱼池中各捞出100条鱼苗,发现其中有记号的鱼苗分别是5条、10条,可以初步估计鱼苗数目较多的是甲鱼池.(填甲或乙)【分析】根据题意和题目中的数据可以计算出甲鱼池和乙鱼池中鱼苗的数量,然后比较大小即可.【解答】解:由题意可得,甲鱼池中的鱼苗数量约为:51002000100÷=(条),乙鱼池中的鱼苗数量约为:101001000100÷=(条),20001000> ,∴初步估计鱼苗数目较多的是甲鱼池,故答案为:甲.17.(4分)一块圆形玻璃镜面碎成了几块,其中一块如图所示,测得弦AB 长20厘米,弓形高CD 为2厘米,则镜面半径为26厘米.【分析】根据题意,弦AB 长20厘米,弓形高CD 为2厘米,根据勾股定理和垂径定理可以求得圆的半径.【解答】解:如图,点O 是圆形玻璃镜面的圆心,连接OC ,则点C ,点D ,点O 三点共线,由题意可得:OC AB ⊥,1102AC AB ==(厘米),设镜面半径为x 厘米,由题意可得:22210(2)x x =+-,26x ∴=,∴镜面半径为26厘米,故答案为:26.18.(4分)如图,矩形ABCD 中,4AB =,2BC =,G 是AD 的中点,线段EF 在边AB 上左右滑动,若1EF =,则GE CF +的最小值为【分析】利用已知可以得出GC ,EF 长度不变,求出GE CF +最小时即可得出四边形CGEF 周长的最小值,利用轴对称得出E ,F 位置,即可求出.【解答】解:如图,作G 关于AB 的对称点G ',在CD 上截取1CH =,然后连接HG '交AB 于E ,在EB 上截取1EF =,此时GE CF +的值最小,1CH EF == ,//CH EF ,∴四边形EFCH 是平行四边形,EH CF ∴=,G H EG EH EG CF ''∴=+=+,4AB = ,2BC AD ==,G 为边AD 的中点,213DG AD AG ''∴=+=+=,413DH =-=,由勾股定理得:HG '==即GE CF +的最小值为.故答案为:.三、解答题(共8个题,共78分)19.(8分)解不等式组:365432x x x <⎧⎨+>+⎩,并在数轴上表示其解集.【分析】先求出不等式的解集,求出不等式组的解集即可.【解答】解:由不等式36x <,解得:2x <,由不等式5432x x +>+,解得:1x >-,∴不等式组的解集为:12x -<<,∴在数轴上表示不等式组的解集为:20.(8分)如图,ABC ∆是等边三角形,D 、E 在直线BC 上,DB EC =.求证:D E ∠=∠.【分析】要证明D E ∠=∠,只要证明ABD ACE ∆≅∆即可,根据等边三角形的性质和SAS 可以证明ABD ACE ∆≅∆,本题得以解决.【解答】证明:ABC ∆ 是等边三角形,AB AC ∴=,60ABC ACB ∠=∠=︒,120ABD ACE ∴∠=∠=︒,在ABD ∆和ACE ∆中,AB AC ABD ACE BD CE =⎧⎪∠=∠⎨⎪=⎩,()ABD ACE SAS ∴∆≅∆,D E ∴∠=∠.21.(8分)学校师生去距学校45千米的吴玉章故居开展研学旅行活动,骑行爱好者张老师骑自行车先行2小时后,其余师生乘汽车出发,结果同时到达.已知汽车速度是自行车速度的3倍,求张老师骑车的速度.【分析】根据题意可知:张老师骑车用的时间-汽车用的时间2=,即可列出相应的分式方程,然后求解即可,注意分式方程要检验.【解答】解:设张老师骑车的速度为x 千米/小时,则汽车的速度为3x 千米/小时,由题意可得:454523x x-=,解得15x =,经检验,15x =是原分式方程的解,答:张老师骑车的速度是15千米/小时.22.(8分)为了解学生每周参加课外兴趣小组活动的累计时间t (单位:小时),学校采用随机抽样的方法,对部分学生进行了问卷调查,调查结果按03t <,34t <,45t <,5t 分为四个等级,分别用A 、B 、C 、D 表示.如图是受损的调查统计图,请根据图上残存信息解决以下问题:(1)求参与问卷调查的学生人数n ,并将条形统计图补充完整;(2)全校共有学生2000人,试估计学校每周参加课外兴趣小组活动累计时间不少于4小时的学生人数;(3)某小组有4名同学,A 、D 等级各2人,从中任选2人向老师汇报兴趣活动情况.请用画树状图法或列表法求这2人均属D 等级的概率.【分析】(1)利用抽查的学生总数A =等级的人数÷对应的百分比计算,即可求D 等级的人数;(2)用全校的学生人数乘以每周参加课外兴趣小组活动累计时间不少于4小时的学生所占的百分比,即可求解;(3)设A 等级2人分别用1A ,2A 表示,D 等级2人分别用1D ,2D 表示,画出树状图,即可求解.【解答】解:(1)4010040%n ==,D ∴等级的人数10040151035=---=(人),条形统计图补充如下:(2)学校每周参加课外兴趣小组活动累计时间不少于4小时的学生人数10352000900100+=⨯=(人),∴估计每周参加课外兴趣小组活动累计时间不少于4小时的学生为900人;(3)设A 等级2人分别用1A ,2A 表示,D 等级2人分别用1D ,2D 表示,随机选出2人向老师汇报兴趣活动情况的树状图如下:∴共有12种等可能结果,而选出2人中2人均属D 等级有2种,∴所求概率21126==.23.(10分)如图,在平面直角坐标系中,一次函数y kx b =+的图象与反比例函数n y x =的图象相交于(1,2)A -,(,1)B m -两点.(1)求反比例函数和一次函数的解析式;(2)过点B 作直线//l y 轴,过点A 作AD l ⊥于点D ,点C 是直线l 上一动点,若2DC DA =,求点C 的坐标.【分析】(1)先把(1,2)A -代入反比例函数n y x=求出n 的值即可得出其函数解析式,再把(,1)B m -代入反比例函数的解析式即可得出m 的值,把A ,B 两点的坐标代入一次函数y kx b =+,求出k 、b 的值即可得出其解析式;(2)根据已知确定AD 的长和点D 的坐标,由2DC AD =可得6DC =,从而得点C 的坐标.【解答】解:(1)(1,2)A - 在反比例函数n y x =的图象上,2(1)2n ∴=⨯-=-,∴其函数解析式为2y x=-;(,1)B m - 在反比例函数的图象上,2m ∴-=-,2m ∴=,(2,1)B ∴-.(1,2)A - ,(2,1)B -两点在一次函数y kx b =+的图象上,∴221k b k b -+=⎧⎨+=-⎩,解得11k b =-⎧⎨=⎩,∴一次函数的解析式为:1y x =-+;(2) 直线//l y 轴,AD l ⊥,3AD ∴=,(2,2)D ,2DC DA = ,6DC ∴=,点C 是直线l 上一动点,(2,8)C ∴或(2,4)-.24.(10分)如图,用四根木条钉成矩形框ABCD ,把边BC 固定在地面上,向右边推动矩形框,矩形的形状会发生改变(四边形具有不稳定性).(1)通过观察分析,我们发现图中线段存在等量关系,如线段EB 由AB 旋转得到,所以EB AB =.我们还可以得到FC =CD ,EF =;(2)进一步观察,我们还会发现//EF AD ,请证明这一结论;(3)已知30BC cm =,80DC cm =,若BE 恰好经过原矩形DC 边的中点H ,求EF 与BC 之间的距离.【分析】(1)由推动矩形框时,矩形ABCD 的各边的长度没有改变,可求解;(2)通过证明四边形BEFC 是平行四边形,可得结论;(3)由勾股定理可求BH 的长,由相似三角形的性质可求解.【解答】(1)解: 把边BC 固定在地面上,向右边推动矩形框,矩形的形状会发生改变,∴矩形ABCD 的各边的长度没有改变,AB BE ∴=,EF AD =,CF CD =,故答案为:CD ,AD ;(2)证明: 四边形ABCD 是矩形,//AD BC ∴,AB CD =,AD BC =,AB BE = ,EF AD =,CF CD =,BE CF ∴=,EF BC =,∴四边形BEFC 是平行四边形,//EF BC ∴,//EF AD ∴;(3)如图,过点E 作EG BC ⊥于G ,80DC AB BE cm === ,点H 是CD 的中点,40CH DH cm ∴==,在Rt BHC ∆中,50()BH cm ===,EG BC ⊥ ,//CH EG ∴,BCH BGE ∴∆∆∽,∴BH CH BE EG =,∴504080EG=,64EG ∴=,EF ∴与BC 之间的距离为64cm .25.(12分)某数学兴趣小组自制测角仪到公园进行实地测量,活动过程如下:(1)探究原理制作测角仪时,将细线一端固定在量角器圆心O 处,另一端系小重物G .测量时,使支杆OM 、量角器90︒刻度线ON 与铅垂线OG 相互重合(如图①),绕点O 转动量角器,使观测目标P 与直径两端点A 、B 共线(如图②),此时目标P 的仰角POC GON ∠=∠.请说明这两个角相等的理由.(2)实地测量如图③,公园广场上有一棵树,为测树高,同学们在观测点K 处测得树顶端P 的仰角60POQ ∠=︒,观测点与树的距离KH 为5米,点O 到地面的距离OK 为1.5米,求树高PH . 1.73≈,结果精确到0.1米)(3)拓展探究公园高台上有一凉亭,为测量凉亭顶端P 距地面的高度PH (如图④),同学们经过讨论,决定先在水平地面上选取观测点E 、(F E 、F 、H 在同一直线上),分别测得点P 的仰角α、β,再测得E 、F 间的距离m ,点1O 、2O 到地面的距离1O E 、2O F 均为1.5米.求PH (用α、β、m 表示).【分析】(1)根据图形和同角的余角相等可以说明理由;(2)根据锐角三角函数和题意,可以计算出PH 的长;(3)根据锐角三角函数和题目中的数据,可以用含α、β、m 的式子表示出PH .【解答】解:(1)90COG ∠=︒ ,90AON ∠=︒,POC CON GON CON ∴∠+∠=∠+∠,POC GON ∴∠=∠;(2)由题意可得,5KH OQ ==米, 1.5QH OK ==米,90PQO ∠=︒,60POQ ∠=︒,tan PQ POQ OQ ∠=,tan 605PQ ∴︒=,解得PQ =,1.510.2PH PQ QH ∴=+=≈(米),即树高PH 为10.2米;(3)由题意可得,12O O m =,12 1.5O E O F DH ===米,由图可得,2tan PD O D β=,1tan PD O D α=,2tan PD O D β∴=,1tan PD O D α=,1221O O O D O D =- ,tan tan PD PD m βα∴=-,tan tan tan tan m PD αβαβ∴=-,tan tan (1.5)tan tan m PH PD DH αβαβ∴=+=+-米.26.(14分)已知二次函数2(0)y ax bx c a =++≠.(1)若1a =-,且函数图象经过(0,3),(2,5)-两点,求此二次函数的解析式,直接写出抛物线与x 轴交点及顶点坐标;(2)在图①中画出(1)中函数的大致图象,并根据图象写出函数值3y 时自变量x 的取值范围;(3)若0a b c ++=且a b c >>,一元二次方程20ax bx c ++=两根之差等于a c -,函数图象经过1(2P c -,1)y ,2(13,)Q c y +两点,试比较1y 、2y的大小.【分析】(1)利用待定系数法可求抛物线的解析式,即可求解;(2)由题意画出图象,结合图象可求解;(3)结合题意分别求出1a =,1b c =--,将点P ,点Q 坐标代入可求1y ,2y 的值,即可求解.【解答】解:(1)由题意可得:13542a c a b c =-⎧⎪=⎨⎪-=++⎩,解得:123a b c =-⎧⎪=-⎨⎪=⎩,∴抛物线的解析式为:2223(1)4y x x x =--+=-++,∴顶点坐标为(1,4)-,当0y =时,则2023x x =--+,11x ∴=,23x =-,∴抛物线与x 轴的交点坐标为(1,0),(3,0)-;(2)如图,当3y =时,2323x x =--+,10x ∴=,22x =-,由图象可得:当20x -时,3y ;(3)0a b c ++= 且a b c >>,0a ∴>,0c <,b a c =--,一元二次方程20ax bx c ++=必有一根为1x =, 一元二次方程20ax bx c ++=两根之差等于a c -,∴方程的另一个根为1c a +-,∴抛物线2y ax bx c =++的对称轴为:直线12c a x -=+,122b c a a -∴-=+,22a c a ac a ∴+=-++,(1)()0a a c ∴--=,a c > ,1a ∴=,1(2P c -,1)y ,2(13,)Q c y +,1b c ∴=--,∴抛物线解析式为:2(1)y x c x c =-++,∴当12x c =-时,则2211111()(1)()22224y c c c c c c =--+-+=+-,当13x c =+时,则222(13)(1)(13)63y c c c c c c =+-+++=+,222211159(63)(2)4(241664y y c c c c c ∴-=+-+-=+-,b c > ,1c c ∴-->,12c ∴<-,2594(01664c ∴+->,21y y ∴>.第21页,共21页。
中考数专题02 整式与因式分解中考真题数学分项汇编(全国通用)(解析版)
专题02整式与因式分解一.选择题1.(2021·湖北十堰市·中考真题)下列计算正确的是()A .3332a a a ⋅=B .22(2)4a a -=C .222()a b a b +=+D .2(2)(2)2a a a +-=-【答案】B【分析】根据同底数幂相乘、积的乘方、乘法公式逐一判断即可.【详解】解:A .336a a a ⋅=,该项计算错误;B .22(2)4a a -=,该项计算正确;C .222()2a b a ab b +=++,该项计算错误;D .2(2)(2)4a a a +-=-,该项计算错误;故选:B .【点睛】本题考查整式乘法,掌握同底数幂相乘、积的乘方、乘法公式是解题的关键.2.(2021·四川成都市·中考真题)下列计算正确的是()A .321mn mn -=B .()22346m n m n =C .()34m m m -⋅=D .()222m n m n +=+【答案】B 【分析】利用合并同类项法则可判定A ,利用积的乘方法则与幂的乘方法则可判定B ,利用同底数幂乘法法则可判定C ,利用完全平方公式可判定D .【详解】解:A .321mn mn mn -=≠,故选项A 计算不正确;B.()()()222232346m n m n m n =⋅=,故选项B 计算正确;C .()3344m m m m m m -⋅=-⋅=-≠,故选项C 计算不正确;D .()222222m n m mn n m n +=++≠+,故选项D 计算不正确.故选择B .【点睛】本题考查同类项合并,积的乘方与幂的乘方,同底数幂乘法,完全平方公式,掌握同类项合并,积的乘方与幂的乘方,同底数幂乘法,完全平方公式是解题关键.3.(2021·陕西中考真题)计算:()23a b -=()A .621a b B .62a b C .521a b D .32a b-【答案】A【分析】根据积的乘方,幂的乘方以及负整数指数幂运算法则计算即可.【详解】解:()23621a ba b -=,故选:A .【点睛】本题考查积的乘方,幂的乘方以及负整数指数幂等知识点,熟记相关定义与运算法则是解答本题的关键.4.(2021·上海中考真题)下列单项式中,23a b 的同类项是()A .32a b B .232a b C .2a bD .3ab 【答案】B【分析】比较对应字母的指数,分别相等就是同类项【详解】∵a 的指数是3,b 的指数是2,与23a b 中a 的指数是2,b 的指数是3不一致,∴32a b 不是23a b 的同类项,不符合题意;∵a 的指数是2,b 的指数是3,与23a b 中a 的指数是2,b 的指数是3一致,∴232a b 是23a b 的同类项,符合题意;∵a 的指数是2,b 的指数是1,与23a b 中a 的指数是2,b 的指数是3不一致,∴2a b 不是23a b 的同类项,不符合题意;∵a 的指数是1,b 的指数是3,与23a b 中a 的指数是2,b 的指数是3不一致,∴3ab 不是23a b 的同类项,不符合题意;故选B【点睛】本题考查了同类项,正确理解同类项的定义是解题的关键.5.(2021·浙江杭州市·中考真题)因式分解:214y -=()A .()()1212y y -+B .()()22y y -+C .()()122y y -+D .()()212y y -+【答案】A【分析】利用平方差公式因式分解即可.【详解】解:214y -=()()1212y y -+,故选:A .【点睛】本题考查利用平方差公式进行因式分解,是重要考点,难度较易,掌握相关知识是解题关键.6.(2020·柳州市柳林中学中考真题)下列多项式中,能用平方差公式进行因式分解的是()A .a 2﹣b 2B .﹣a 2﹣b 2C .a 2+b 2D .a 2+2ab +b 2【答案】A【分析】根据平方差公式的结构特点,两个平方项,并且符号相反,对各选项分析判断后利用排除法求解.【详解】解:A 、a 2﹣b 2符合平方差公式的特点,能用平方差公式进行因式分解;B 、﹣a 2﹣b 2两平方项符号相同,不能用平方差公式进行因式分解;C 、a 2+b 2两平方项符号相同,不能用平方差公式进行因式分解;D 、a 2+2ab +b 2是三项,不能用平方差公式进行因式分解.故选:A .【点睛】本题考查了用平方差公式进行因式分解.熟记平方差公式的结构特点是解题的关键.平方差公式:()()22a b a b a b -=+-.7.(2021·湖北宜昌市·中考真题)从前,古希腊一位庄园主把一块边长为a 米(6a >)的正方形土地租给租户张老汉.第二年,他对张老汉说:“我把这块地的一边增加6米,相邻的另一边减少6米,变成矩形土地继续租给你,租金不变,你也没有吃亏,你看如何?”如果这样,你觉得张老汉的租地面积会()A .没有变化B .变大了C .变小了D .无法确定【答案】C【分析】分别求出2次的面积,比较大小即可.【详解】原来的土地面积为2a 平方米,第二年的面积为2(6)(6)36a a a +-=-22(36)360a a --=-< ∴所以面积变小了,故选C .【点睛】本题考查了列代数式,整式的运算,平方差公式,代数式大小的比较,正确理解题意列出代数式并计算是解题的关键.8.(2021·江苏苏州市·中考真题)已知两个不等于0的实数a 、b 满足0a b +=,则b aa b+等于()A .2-B .1-C .1D .2【答案】A【分析】先化简式子,再利用配方法变形即可得出结果.【详解】解:∵22=b a b a a b ab ++,∴()2222==a b ab b a b a a b ab ab+-++,∵两个不等于0的实数a 、b 满足0a b +=,∴()22-2===-2a b ab b a ab a b ab ab+-+,故选:A .【点睛】本题考查分式的化简、配完全平方、灵活应用配方法是解题的关键.9.(2021·浙江台州市·中考真题)将x 克含糖10%的糖水与y 克含糖30%的糖水混合,混合后的糖水含糖()A .20%B .+100%2x y⨯C .+3100%20x y⨯D .+3100%10+10x yx y⨯【答案】D【分析】先求出两份糖水中糖的重量,再除以混合之后的糖水总重,即可求解.【详解】解:混合之后糖的含量:10%30%3100%1010x y x yx y x y++=⨯++,故选:D .【点睛】本题考查列代数式,理解题意是解题的关键.10.(2021·浙江台州市·中考真题)已知(a +b )2=49,a 2+b 2=25,则ab =()A.24B .48C .12D .【答案】C【分析】利用完全平方公式计算即可.【详解】解:∵()222249a b a b ab +=++=,2225a b +=,∴4925122ab -==,故选:C .【点睛】本题考查整体法求代数式的值,掌握完全平方公式是解题的关键.11.(2021·山东临沂市·中考真题)实验证实,放射性物质在放出射线后,质量将减少,减少的速度开始较快,后来较慢,实际上,物质所剩的质量与时间成某种函数关系.下图为表示镭的放射规律的函数图象,据此可计算32mg 镭缩减为1mg 所用的时间大约是()A .4860年B .6480年C .8100年D .9720年【答案】C【分析】根据物质所剩的质量与时间的规律,可得答案.【详解】解:由图可知:1620年时,镭质量缩减为原来的12,再经过1620年,即当3240年时,镭质量缩减为原来的21142=,再经过1620×2=3240年,即当4860年时,镭质量缩减为原来的31182=,...,∴再经过1620×4=6480年,即当8100年时,镭质量缩减为原来的511232=,此时132132⨯=mg ,故选C .【点睛】本题考查了函数图象,规律型问题,利用函数图象的意义是解题关键.12.(2021·甘肃武威市·中考真题)对于任意的有理数,a b ,如果满足2323a b a b++=+,那么我们称这一对数,a b 为“相随数对”,记为(),a b .若(),m n 是“相随数对”,则()323[]21m m n ++-=()A .2-B .1-C .2D .3【答案】A【分析】先根据新定义,可得9m +4n =0,将整式()21]2[33m m n ++-去括号合并同类项化简得942m n +-,然后整体代入计算即可.【详解】解:∵(),m n 是“相随数对”,∴2323m n m n++=+,整理得9m +4n =0,()323213642942[]2m m n m m n m n ++-=++-=+-=-.故选择A .【点睛】本题考查新定义相随数对,找出数对之间关系,整式加减计算求值,掌握新定义相随数对,找出数对之间关系,整式加减计算求值是解题关键.13.(2021·四川泸州市·中考真题)已知1020a =,10050b =,则1322a b ++的值是()A .2B .52C .3D .92【答案】C【分析】根据同底数幂的乘法31010010a b ⋅=,可求23a b +=再整体代入即可.【详解】解:∵1020a =,10050b =,∴2310100102050100010a b a b +⋅==⨯==,∴23a b +=,∴()()1311233332222a b a b ++=++=+=.故选:C .【点睛】本题考查幂的乘方,同底数幂的乘法逆运算,代数式求值,掌握幂的乘方,同底数幂的乘法法则,与代数式值求法是解题关键.14.(2020·四川眉山市·中考真题)已知221224a b a b +=--,则132a b -的值为()A .4B .2C .2-D .4-【答案】A【分析】根据221224a b a b +=--,变形可得:()22221121111042a a b b a b ⎛⎫-++++=-++= ⎪⎝⎭,因此可求出1a =,2b =-,把a 和b 代入132a b -即可求解.【详解】∵221224a b a b +=--∴()22221121111042a a b b a b ⎛⎫-++++=-++= ⎪⎝⎭即2(1)0a -=,21(1)02b +=∴求得:1a =,2b =-∴把a 和b 代入132a b -得:131(2)42⨯-⨯-=故选:A 【点睛】本题主要考查了完全平方公式因式分解,熟记完全平方公式,通过移项对已知条件进行配方是解题的关键.15.(2021·浙江温州市·中考真题)某地居民生活用水收费标准:每月用水量不超过17立方米,每立方米a 元;超过部分每立方米()1.2a +元.该地区某用户上月用水量为20立方米,则应缴水费为()A .20a 元B .()2024a +元C .()17 3.6a +元D .()20 3.6a +元【答案】D【分析】分两部分求水费,一部分是前面17立方米的水费,另一部分是剩下的3立方米的水费,最后相加即可.【详解】解:∵20立方米中,前17立方米单价为a 元,后面3立方米单价为(a +1.2)元,∴应缴水费为17a +3(a +1.2)=20a +3.6(元),故选:D .【点睛】本题考查的是阶梯水费的问题,解决本题的关键是理解其收费方式,能求出不同段的水费,本题较基础,重点考查了学生对该种计费方式的理解与计算方法等.16.(2020·湖南娄底市·中考真题)下列各正方形中的四个数之间都有相同的规律,根据此规律,x 的值为()A .135B .153C .170D .189【答案】C【分析】由观察发现每个正方形内有:224,236,248,⨯=⨯=⨯=可求解b ,从而得到a ,再利用,,a b x 之间的关系求解x 即可.【详解】解:由观察分析:每个正方形内有:224,236,248,⨯=⨯=⨯=218,b ∴=9,b ∴=由观察发现:8,a =又每个正方形内有:2419,36220,48335,⨯+=⨯+=⨯+=18,b a x ∴+=1898170.x ∴=⨯+=故选C .【点睛】本题考查的是数字类的规律题,掌握由观察,发现,总结,再利用规律是解题的关键.17.(2020·湖南郴州市·中考真题)如图1,将边长为x 的大正方形剪去一个边长为1的小正方形(阴影部分),并将剩余部分沿虚线剪开,得到两个长方形,再将这两个长方形拼成图2所示长方形.这两个图能解释下列哪个等式()A .2221(1)x x x -+=-B .21(1)(1)x x x -=+-C .2221(1)x x x ++=+D .2(1)x x x x -=-【答案】B【分析】利用大正方形的面积减去小正方形的面积得到空白部分的面积,然后根据面积相等列出等式即可.【详解】第一个图形空白部分的面积是x 2-1,第二个图形的面积是(x+1)(x-1).则x 2-1=(x+1)(x-1).故选:B .【点睛】本题考查了平方差公式的几何背景,正确用两种方法表示空白部分的面积是解决问题的关键.18.(2020·湖北中考真题)根据图中数字的规律,若第n 个图中出现数字396,则n =()A .17B .18C .19D .20【答案】B【分析】观察上三角形,下左三角形,下中三角形,下右三角形各自的规律,让其等于396,解得n 为正整数即成立,否则舍去.【详解】根据图形规律可得:上三角形的数据的规律为:2(1)n n +,若2(1)396n n +=,解得n 不为正整数,舍去;下左三角形的数据的规律为:21n -,若21396n -=,解得n 不为正整数,舍去;下中三角形的数据的规律为:21n -,若21396n -=,解得n 不为正整数,舍去;下右三角形的数据的规律为:(4)n n +,若(4)396n n +=,解得18n =,或22n =-,舍去,故选:B .【点睛】本题考查了有关数字的规律,能准确观察到相关规律是解题的关键.19.(2020·山东潍坊市·中考真题)若221m m +=,则2483m m +-的值是()A .4B .3C .2D .1【答案】D【分析】把所求代数式2483m m +-变形为24(2)3m m +-,然后把条件整体代入求值即可.【详解】∵221m m +=,∴2483m m +-=24(2)3m m +-=4×1-3=1.故选:D .【点睛】此题主要考查了代数式求值以及“整体代入”思想,解题的关键是把代数式2483m m +-变形为24(2)3m m +-.20.(2020·河南中考真题)电子文件的大小常用, ,,B KB MB GB 等作为单位,其中10101012,12,12GB MB MB KB KB B ===,某视频文件的大小约为1,1GB GB 等于()A .302B B .308BC .10810B ⨯D .30210B⨯【答案】A【分析】根据题意及幂的运算法则即可求解.【详解】依题意得1010101010101222222GB MB KB B ==⨯=⨯⨯=302B 故选A .【点睛】此题主要考查幂的运算,解题的关键是熟知同底数幂的运算法则.21.(2020·江苏无锡市·中考真题)若2x y +=,3z y -=-,则x z +的值等于()A .5B .1C .-1D .-5【答案】C【分析】将两整式相加即可得出答案.【详解】∵2x y +=,3z y -=-,∴()()1x y z y x z ++-=+=-,∴x z +的值等于1-,故选:C .【点睛】本题考查了整式的加减,熟练掌握运算法则是解本题的关键.22.(2020·湖南中考真题)如图,将一枚跳棋放在七边形ABCDEFG的顶点A处,按顺时针方向移动这枚跳棋2020次.移动规则是:第k次移动k个顶点(如第一次移动1个顶点,跳棋停留在B处,第二次移动2个顶点,跳棋停留在D处),按这样的规则,在这2020次移动中,跳棋不可能停留的顶点是()A.C、E B.E、F C.G、C、E D.E、C、F【答案】D【分析】设顶点A,B,C,D,E,F,G分别是第0,1,2,3,4,5,6格,因棋子移动了k次后走过的总格数是1+2+3+…+k=12k(k+1),然后根据题目中所给的第k次依次移动k个顶点的规则,可得到不等式最后求得解.【详解】设顶点A,B,C,D,E,F,G分别是第0,1,2,3,4,5,6格,因棋子移动了k次后走过的总格数是1+2+3+…+k=12k(k+1),应停在第12k(k+1)﹣7p格,这时P是整数,且使0≤12k(k+1)﹣7p≤6,分别取k=1,2,3,4,5,6,7时,12k(k+1)﹣7p=1,3,6,3,1,0,0,发现第2,4,5格没有停棋,若7<k≤2020,设k=7+t(t=1,2,3)代入可得,12k(k+1)﹣7p=7m+12t(t+1),由此可知,停棋的情形与k=t时相同,故第2,4,5格没有停棋,即顶点C,E和F棋子不可能停到.故选:D.【点睛】本题考查的是探索图形、数字变化规律,从图形中提取信息,转化为数字信息,探索数字变化规律是解答的关键.23.(2020·山东枣庄市·中考真题)图(1)是一个长为2m,宽为2n(m>n)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是()A.2mn B.(m+n)2C.(m-n)2D.m2-n2【答案】C【详解】解:由题意可得,正方形的边长为(m+n),故正方形的面积为(m+n)2.又∵原矩形的面积为4mn,∴中间空的部分的面积=(m+n)2-4mn=(m-n)2.故选C.24.(2020·山东日照市·中考真题)用大小相同的圆点摆成如图所示的图案,按照这样的规律摆放,则第10个图案中共有圆点的个数是()A.59B.65C.70D.71【答案】C【分析】由题意观察图形可知,第1个图形共有圆点5+2个;第2个图形共有圆点5+2+3个;第3个图形共有圆点5+2+3+4个;第4个图形共有圆点5+2+3+4+5个;…;则第n个图形共有圆点5+2+3+4+…+n+(n+1)个;由此代入n=10求得答案即可.【详解】解:根据图中圆点排列,当n=1时,圆点个数5+2;当n=2时,圆点个数5+2+3;当n=3时,圆点个数5+2+3+4;当n=4时,圆点个数5+2+3+4+5,…∴当n=10时,圆点个数5+2+3+4+5+6+7+8+9+10+11=4+(1+2+3+4+5+6+7+8+9+10+11)=1411(111)2+⨯⨯+70=.故选:C.【点睛】本题考查图形的变化规律,注意找出数量上的变化规律,从而推出一般性的结论,利用规律解决问题.25.(2019·湖北中考真题)一列数按某规律排列如下:1121231234 ,,,,,,,,, 1213214321…,若第n个数为57,则n=()A.50B.60C.62D.71【答案】B【分析】根据题目中的数据可以发现,分子变化是1,(1,2),(1,2,3),…,分母变化是1,(2,1),(3,2,1),…,从而可以求得第n个数为57时n的值,本题得意解决.【详解】1121231234,,,,,,,,,1213214321,…,可写为:1121231234,,,,,,,,,1213214321⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,…,∵57的分子和分母的和为12,∴分母为11开头到分母为1的数有11个,分别为1234567891011,,,,,,,,,,1110987654321,∴第n 个数为57,则123410560n =++++⋯++=,故选B .【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律.26.(2019·重庆中考真题)按如图所示的运算程序,能使输出y 值为1的是()A .11m n ==,B .10m n ==,C .12m n ==,D .21m n ==,【答案】D 【分析】逐项代入,寻找正确答案即可.【详解】解:A 选项满足m≤n ,则y=2m+1=3;B 选项不满足m≤n ,则y=2n-1=-1;C 选项满足m≤n ,则y=2m-1=3;D 选项不满足m≤n ,则y=2n-1=1;故答案为D ;【点睛】本题考查了根据条件代数式求值问题,解答的关键在于根据条件正确的所代入代数式及代入得值.27.(2019·四川绵阳市·中考真题)已知4m a =,8n b =,其中m ,n 为正整数,则262m n +=()A .2ab B .2a b +C .23a b D .23a b +【答案】A【分析】先变形262m n +成4m 与8n 的形式,再将已知等式代入可得.【详解】解:∵4m a =,8n b =,∴2626222m n m n +=⨯()()22322m n =⋅248m n =⋅()248m n =⋅2ab =,故选A .【点睛】本题主要考查幂的运算,解题的关键是熟练掌握幂的乘方与同底数幂的乘法运算法则.28.(2019·广西柳州市·中考真题)定义:形如a bi +的数称为复数(其中a 和b 为实数,i 为虚数单位,规定21i =-),a 称为复数的实部,b 称为复数的虚部.复数可以进行四则运算,运算的结果还是一个复数.例如2222(13)1213(3)16916986i i i i i i i +=+⨯⨯+=++=+-=-+,因此,2(13)i +的实部是﹣8,虚部是6.已知复数2(3)mi -的虚部是12,则实部是()A .﹣6B .6C .5D .﹣5【答案】C【分析】先利用完全平方公式得出(3-mi )2=9-6mi+m 2i 2,再根据新定义得出复数(3-mi )2的实部是9-m 2,虚部是-6m ,由(3-mi )2的虚部是12得出m=-2,代入9-m 2计算即可.【详解】解:∵222222(3)323()9696mi mi mi mi m i m mi-=-⨯⨯+=-+=--∴复数2(3)mi -的实部是29m -,虚部是6m -,∴612m -=,∴2m =-,∴2299(2)945m -=--=-=.故选C .【点睛】本题考查了新定义,完全平方公式,理解新定义是解题的关键.二.填空题1.(2021·四川达州市·中考真题)已知a ,b 满足等式2690a a +++=,则20212020a b =___________.【答案】-3【分析】先将原式变形,求出a 、b ,再根据同底数幂的乘法、积的乘方的逆运算即可求解.【详解】解:由2690a a +++=,变形得()230a ++=,∴130,03a b +=-=,∴13,3a b =-=,∴()()()()20202020202020212020202120201113=33=33=3333a b ⎛⎫⎛⎫⎛⎫=-⨯-⨯-⨯-⨯-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故答案为:-3【点睛】本题考查了完全平方公式,平方、算术平方根的非负性,同底数幂的乘法、积的乘方的逆用等知识,根据题意求出a 、b 的值,熟知同底数幂的乘法、积的乘方是解题关键.2.(2021·湖南怀化市·中考真题)观察等式:232222+=-,23422222++=-,2345222222+++=-,……,已知按一定规律排列的一组数:1002,1012,1022,……,1992,若1002=m ,用含m 的代数式表示这组数的和是___________.【答案】100(21)m-【分析】根据规律将1002,1012,1022,……,1992用含m 的代数式表示,再计算0199222+++ 的和,即可计算1001011011992222++++ 的和.【详解】由题意规律可得:2399100222222++++=- .∵1002=m ∴23991000222222=2m m +++++== ,∵22991001012222222+++++=- ,∴10123991002222222=++++++ 12=2m m m m =+=.102239910010122222222+=++++++ 224=2m m m m m =++=.1032399100101102222222222=++++++++ 3248=2m m m m m m =+++=.……∴1999922m =.故10010110110199992222222m m m ++++=+++ .令012992222S ++++= ①12310022222S ++++= ②②-①,得10021S-=∴10010110110199992222222m m m ++++=+++ =100(21)m -故答案为:100(21)m -.【点睛】本题考查规律问题,用含有字母的式子表示数、灵活计算数列的和是解题的关键.3.(2021·四川广安市·中考真题)若x 、y 满足2223x y x y -=-⎧⎨+=⎩,则代数式224x y -的值为______.【答案】-6【分析】根据方程组中x +2y 和x -2y 的值,将代数式利用平方差公式分解,再代入计算即可.【详解】解:∵x -2y =-2,x +2y =3,∴x 2-4y 2=(x +2y )(x -2y )=3×(-2)=-6,故答案为:-6.【点睛】本题主要考查方程组的解及代数式的求值,观察待求代数式的特点与方程组中两方程的联系是解题关键.4.(2021·江苏苏州市·中考真题)若21m n +=,则2366m mn n ++的值为______.【答案】3【分析】根据21m n +=,将式子2366m mn n ++进行变形,然后代入求出值即可.【详解】∵21m n +=,∴2366m mn n ++=3m (m +2n )+6n =3m +6n =3(m +2n )=3.故答案为:3.【点睛】本题考查了代数式的求值,解题的关键是利用已知代数式求值.5.(2021·江苏扬州市·中考真题)将黑色圆点按如图所示的规律进行排列,图中黑色圆点的个数依次为:1,3,6,10,……,将其中所有能被3整除的数按从小到大的顺序重新排列成一组新数据,则新数据中的第33个数为___________.【答案】1275【分析】首先得到前n 个图形中每个图形中的黑色圆点的个数,得到第n 个图形中的黑色圆点的个数为()12n n +,再判断其中能被3整除的数,得到每3个数中,都有2个能被3整除,再计算出第33个能被3整除的数所在组,为原数列中第50个数,代入计算即可.【详解】解:第①个图形中的黑色圆点的个数为:1,第②个图形中的黑色圆点的个数为:()1222+⨯=3,第③个图形中的黑色圆点的个数为:()1332+⨯=6,第④个图形中的黑色圆点的个数为:()1442+⨯=10,...第n 个图形中的黑色圆点的个数为()12n n +,则这列数为1,3,6,10,15,21,28,36,45,55,66,78,91,...,其中每3个数中,都有2个能被3整除,33÷2=16...1,16×3+2=50,则第33个被3整除的数为原数列中第50个数,即50512⨯=1275,故答案为:1275.【点睛】此题考查了规律型:图形的变化类,关键是通过归纳与总结,得到其中的规律.6.(2021·重庆中考真题)某销售商五月份销售A 、B 、C 三种饮料的数量之比为3:2:4,A 、B 、C 三种饮料的单价之比为1:2:1.六月份该销售商加大了宣传力度,并根据季节对三种饮料的价格作了适当的调整,预计六月份三种饮料的销售总额将比五月份有所增加,A 饮料增加的销售占六月份销售总额的115,B 、C 饮料增加的销售额之比为2:1.六月份A 饮料单价上调20%且A 饮料的销售额与B 饮料的销售额之比为2:3,则A 饮料五月份的销售数量与六月份预计的销售数量之比为_____________.【答案】910【分析】设销售A 饮料的数量为3x ,销售B 种饮料的数量2x,销售C 种饮料的数量4x ,A 种饮料的单价y .B 、C 两种饮料的单价分别为2y 、y .六月份A 饮料单价上调20%,总销售额为m ,可求A 饮料销售额为3xy+115m ,B 饮料的销售额为91210xy m +,C 饮料销售额:171420xy m +,可求=15m xy ,六月份A 种预计的销售额4xy ,六月份预计的销售数量103x ,A 饮料五月份的销售数量与六月份预计的销售数量之比103:3x x 计算即可【详解】解:某销售商五月份销售A 、B 、C 三种饮料的数量之比为3:2:4,设销售A 饮料的数量为3x ,销售B 种饮料的数量2x,销售C 种饮料的数量4x ,A 、B 、C 三种饮料的单价之比为1:2:1.,设A 种饮料的单价y .B 、C 两种饮料的单价分别为2y 、y .六月份A 饮料单价上调20%后单价为(1+20%)y,总销售额为m ,A 饮料增加的销售占六月份销售总额的115,A 饮料销售额为3xy+115m ,A 饮料的销售额与B 饮料的销售额之比为2:3,,B 饮料的销售额为31913=215210xy m xy m ⎛⎫++ ⎪⎝⎭B 饮料的销售额增加部分为3134215xy m xy ⎛⎫+- ⎪⎝⎭∴C 饮料增加的销售额为131342215xy m xy ⎡⎤⎛⎫+- ⎪⎢⎥⎝⎭⎣⎦∴C 饮料销售额:13117134+42215420xy m xy xy xy ⎡⎤⎛⎫+-=+ ⎪⎢⎥⎝⎭⎣⎦∴191171315210420xy m xy m xy m m +++++=∴=15m xy 六月份A 种预计的销售额1315415xy xy xy +⨯=,六月份预计的销售数量()1041+20%y 3xy x ÷=∴A 饮料五月份的销售数量与六月份预计的销售数量之比1093:9:10=310x x =故答案为910【点睛】本题考查销售问题应用题,用字母表示数,列代数式,整式的加减法,单项式除以单项式,掌握销售额=销售单价×销售数量是解题关键7.(2021·浙江嘉兴市·中考真题)观察下列等式:22110=-,22321=-,22532=-,…按此规律,则第n 个等式为21n -=__________________.【答案】()221n n --.【分析】第一个底数是从1开始连续的自然数的平方,减去从0开始连续的自然数的平方,与从1开始连续的奇数相同,由此规律得出答案即可.【详解】解:∵22110=-,22321=-,22532=-,…∴第n 个等式为:()22211n n n -=--故答案是:()221n n --.【点睛】本题考查了数字的变化类,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题的关键.8.(2021·湖北十堰市·中考真题)已知2,33xy x y =-=,则322321218x y x y xy -+=_________.【答案】36【分析】先把多项式因式分解,再代入求值,即可.【详解】∵2,33xy x y =-=,∴原式=()222322336xy x y -=⨯⨯=,故答案是:36.【点睛】本题主要考查代数式求值,掌握提取公因式法和公式法分解因式,是解题的关键.9.(2021·陕西中考真题)分解因式:3269x x x ++=______.【答案】()23x x +【分析】题目中每项都含有x ,提取公因式x ;先提取公因式,再用完全平方公式即可得出答案.【详解】()322269(69)3x x x x x x x x ++=+++=故答案为()23x x +.【点睛】本题考查了整式的因式分解,提公因式法和公式法,熟练掌握提公因式法分解因式、完全平方公式法分解因式是解题关键.10.(2021·江苏连云港市·中考真题)分解因式:2961x x ++=____.【答案】(3x +1)2【分析】原式利用完全平方公式分解即可.【详解】解:原式=(3x +1)2,故答案为:(3x +1)2【点睛】此题考查了因式分解−运用公式法,熟练掌握完全平方公式是解本题的关键.11.(2020·四川绵阳市·中考真题)因式分解:x 3y ﹣4xy 3=_____.【答案】xy (x+2y )(x ﹣2y )【分析】原式提取公因式xy ,再利用平方差公式分解即可;【详解】解:x 3y ﹣4xy 3,=xy (x 2﹣4y 2),=xy (x+2y )(x ﹣2y ).故答案为:xy (x+2y )(x ﹣2y ).【点睛】本题考查了提公因式法与公式法因式分解.一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.12.(2020·湖南中考真题)阅读理解:对于x 3﹣(n 2+1)x +n 这类特殊的代数式可以按下面的方法分解因式:x 3﹣(n 2+1)x +n =x 3﹣n 2x ﹣x +n =x (x 2﹣n 2)﹣(x ﹣n )=x (x ﹣n )(x +n )﹣(x ﹣n )=(x ﹣n )(x 2+nx ﹣1).理解运用:如果x 3﹣(n 2+1)x +n =0,那么(x ﹣n )(x 2+nx ﹣1)=0,即有x ﹣n =0或x 2+nx ﹣1=0,因此,方程x﹣n=0和x2+nx﹣1=0的所有解就是方程x3﹣(n2+1)x+n=0的解.解决问题:求方程x3﹣5x+2=0的解为_____.【答案】x=2或x=﹣或x=﹣1.【分析】将原方程左边变形为x3﹣4x﹣x+2=0,再进一步因式分解得(x﹣2)[x(x+2)﹣1]=0,据此得到两个关于x的方程求解可得.【详解】解:∵x3﹣5x+2=0,∴x3﹣4x﹣x+2=0,∴x(x2﹣4)﹣(x﹣2)=0,∴x(x+2)(x﹣2)﹣(x﹣2)=0,则(x﹣2)[x(x+2)﹣1]=0,即(x﹣2)(x2+2x﹣1)=0,∴x﹣2=0或x2+2x﹣1=0,解得x=2或x=﹣1,故答案为:x=2或x=﹣或x=﹣1.【点睛】此题主要考查一元二次方程的应用,解题的关键是根据题意找到解方程的方法.13.(2020·贵州黔南布依族苗族自治州·中考真题)若单项式a m﹣2b n+7与单项式﹣3a4b4的和仍是一个单项式,则m﹣n=_______.【答案】9【分析】直接利用合并同类项法则得出m,n的值,进而得出答案.【详解】由题意知:单项式a m﹣2b n+7与单项式﹣3a4b4是同类项,∴m−2=4,n+7=4,解得:m=6,n=−3,故m−n=6−(−3)=9.故填:9.【点睛】此题主要考查了合并同类项,正确得出m,n的值是解题关键.14.(2020·四川中考真题)将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,我们称“4”是第2组第1个数字,“16”是第4组第2个数字,若2020是第m组第n个数字,则m+n=_____.【答案】65【分析】根据题目中数字的特点,可知每组的个数依次增大,每组中的数字都是连续的偶数,然后即可求出2020是多少组第多少个数,从而可以得到m、n的值,然后即可得到m+n的值.【详解】解:∵将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,∴第m组有m个连续的偶数,∵2020=2×1010,∴2020是第1010个偶数,∵1+2+3+…+44=44(441)2⨯+=990,1+2+3+ (45)45(451)2⨯+=1035,∴2020是第45组第1010-990=20个数,∴m=45,n=20,∴m+n=65.故答案为:65.【点睛】本题考查探索规律,认真观察所给数据总结出规律是解题的关键.15.(2020·四川绵阳市·中考真题)若多项式||22(2)1m n xy n x y -+-+是关于x ,y 的三次多项式,则mn =_____.【答案】0或8【分析】直接利用多项式的次数确定方法得出答案.【详解】解: 多项式||22(2)1m n xy n x y -+-+是关于x ,y 的三次多项式,20n ∴-=,1||3m n +-=,2n ∴=,||2m n -=,2m n ∴-=或2n m -=,4m ∴=或0m =,0mn \=或8.故答案为:0或8.【点睛】本题主要考查了多项式,正确掌握多项式的次数确定方法是解题关键.16.(2020·山东威海市·中考真题)如图①,某广场地面是用A .B .C 三种类型地砖平铺而成的,三种类型地砖上表面图案如图②所示,现用有序数对表示每一块地砖的位置:第一行的第一块(A 型)地砖记作(1,1),第二块(B 型)地时记作(2,1)…若(,)m n 位置恰好为A 型地砖,则正整数m ,n 须满足的条是__________.【答案】m 、n 同为奇数或m 、n 同为偶数【分析】几何图形,观察A 型地砖的位置得到当列数为奇数时,行数也为奇数,当列数为偶数,行数也为偶数的,从而得到m 、n 满足的条件.【详解】解:观察图形,A 型地砖在列数为奇数,行数也为奇数的位置上或列数为偶数,行数也为偶数的位置上,若用(m ,n )位置恰好为A 型地砖,正整数m ,n 须满足的条件为m 、n 同为奇数或m 、n 同为偶数,故答案为:m 、n 同为奇数或m 、n 同为偶数.【点睛】本题考查了坐标表示位置:通过类比点的坐标考查解决实际问题的能力和阅读理解能力.分析图形,寻找规律是关键.17.(2020·宁夏中考真题)2002年8月,在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图1),且大正方形的面积是15,小正方形的面积是3,直角三角形的较短直角边为a ,较长直角边为b .如果将四个全等的直角三角形按如图2的形式摆放,那么图2中最大的正方形的面积为____.【答案】27【分析】根据题意得出a 2+b 2=15,(b-a )2=3,图2中大正方形的面积为:(a+b )2,然后利用完全平方公式的变形求出(a+b )2即可.【详解】解:由题意可得在图1中:a 2+b 2=15,(b-a )2=3,图2中大正方形的面积为:(a+b )2,∵(b-a )2=3a 2-2ab+b 2=3,∴15-2ab=32ab=12,∴(a+b )2=a 2+2ab+b 2=15+12=27,故答案为:27.【点睛】本题考查了完全平方公式在几何图形中的应用,熟知完全平方式的形式是解题关键.18.(2020·湖南长沙市·中考真题)某数学老师在课外活动中做了一个有趣的游戏:首先发给A ,B ,C 三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成下列三个步骤:第一步,A 同学拿出三张扑克牌给B 同学;第二步,C 同学拿出三张扑克牌给B 同学;第三步,A 同学手中此时有多少张扑克牌,B 同学就拿出多少张扑克牌给A 同学,请你确定,最终B 同学手中剩余的扑克牌的张数为___________________.【答案】9【分析】把每个同学的扑克牌的数量用相应的字母表示出来,列式表示变化情况即可找出最后答案.【详解】设每个同学的扑克牌的数量都是x ;第一步,A 同学的扑克牌的数量是3x -,B 同学的扑克牌的数量是3x +;第二步,B 同学的扑克牌的数量是33x ++,C 同学的扑克牌的数量是3x -;第三步,A 同学的扑克牌的数量是2(3x -),B 同学的扑克牌的数量是33x ++-(3x -);。
2021年中考数学真题分类汇编--圆:与圆有关的计算(老师版)
中考真题分类汇编(圆)----与圆有关的计算一、选择题1. (2021•山西)如图,正六边形 ABCDEF 的边长为 2,以 A 为圆心,AC 的长 为半径画弧,得BC ,连接 AC 、AE ,则图中阴影部分的面积为( )A. 2πB. 4πC. 33πD. 233π解:过B 点作AC 垂线,垂直为G ,根据正六边形性质可知,30CAB BCA ∠=∠=︒,∴22222=222123AC AG AB GH =⨯-=⨯-=,∴S 扇形=260(23)2360ππ⨯⨯=, 故选:A .2. (2021•河北省)如图,等腰△AOB 中,顶角∠AOB =40°,用尺规按①到④的步骤操作:①以O 为圆心,OA 为半径画圆;②在⊙O 上任取一点P (不与点A ,B 重合),连接AP ;③作AB 的垂直平分线与⊙O 交于M ,N ;④作AP 的垂直平分线与⊙O 交于E ,F .结论Ⅰ:顺次连接M,E,N,F四点必能得到矩形;结论Ⅱ:⊙O上只有唯一的点P,使得S扇形FOM=S扇形AOB.对于结论Ⅰ和Ⅱ,下列判断正确的是()A.Ⅰ和Ⅱ都对B.Ⅰ和Ⅱ都不对C.Ⅰ不对Ⅱ对D.Ⅰ对Ⅱ不对【分析】如图,连接EM,EN,MF.NF.根据矩形的判定证明四边形MENF是矩形,再说明∠MOF≠∠AOB,可知(Ⅱ)错误.【解答】解:如图,连接EM,EN,MF.NF.∵OM=ON,OE=OF,∴四边形MENF是平行四边形,∵EF=MN,∴四边形MENF是矩形,故(Ⅰ)正确,观察图象可知∠MOF≠∠AOB,∴S扇形FOM≠S扇形AOB,故(Ⅱ)错误,故选:D.3.(2021•四川省成都市)如图,正六边形ABCDEF的边长为6,以顶点A为圆心,AB的长为半径画圆,则图中阴影部分的面积为()A.4πB.6πC.8πD.12π【分析】首先确定扇形的圆心角的度数,然后利用扇形的面积公式计算即可.【解答】解:∵正六边形的外角和为360°,∴每一个外角的度数为360°÷6=60°,∴正六边形的每个内角为180°﹣60°=120°,∵正六边形的边长为6,∴S阴影==12π,故选:D4.(2021•湖北省荆州市)如图,在菱形ABCD中,∠D=60°,AB=2,以B为圆心、BC 长为半径画,点P为菱形内一点,连接P A,PB,PC.当△BPC为等腰直角三角形时,图中阴影部分的面积为()A.B.C.2πD.【分析】连接AC,延长AP,交BC于E,根据菱形的性质得出△ABC是等边三角形,进而通过三角形全等证得AE⊥BC,从而求得AE、PE,利用S阴影=S扇形ABC﹣S△P AB﹣S△PBC即可求得.【解答】解:连接AC,延长AP,交BC于E,在菱形ABCD中,∠D=60°,AB=2,∴∠ABC=∠D=60°,AB=BC=2,∴△ABC是等边三角形,∴AB=AC,在△APB和△APC中,,∴△APB≌△APC(SSS),∴∠P AB=∠P AC,∴AE⊥BC,BE=CE=1,∵△BPC为等腰直角三角形,∴PE=BC=1,在Rt△ABE中,AE=AB=,∴AP=﹣1,∴S阴影=S扇形ABC﹣S△P AB﹣S△PBC=﹣(﹣1)×1﹣=π﹣,故选:A.5.(2021•四川省广元市)如图,在边长为2的正方形ABCD中,AE是以BC为直径的半圆的切线,则图中阴影部分的面积为()A. 32π+B. 2π- C. 1 D.52π-【答案】D【解析】【分析】取BC的中点O,设AE与⊙O的相切的切点为F,连接OF、OE、OA,由题意可得OB=OC=OA=1,∠OF A=∠OFE=90°,由切线长定理可得AB=AF=2,CE=CF,然后根据割补法进行求解阴影部分的面积即可.【详解】解:取BC 的中点O ,设AE 与⊙O 的相切的切点为F ,连接OF 、OE 、OA ,如图所示:∵四边形ABCD 是正方形,且边长为2,∴BC=AB =2,∠ABC=∠BCD =90°,∵AE 是以BC 为直径的半圆的切线,∴OB =OC =OF =1,∠OF A =∠OFE =90°,∴AB =AF =2,CE =CF ,∵OA =OA ,∴Rt △ABO ≌Rt △AFO (HL ),同理可证△OCE ≌△OFE ,∴,AOB AOF COE FOE ∠=∠∠=∠,∴90AOB COE AOB BAO ∠+∠=︒=∠+∠,∴COE BAO ∠=∠,∴ABO OCE ∽, ∴OC CE AB OB=, ∴12CE =, ∴15222222ABO OCE ABCE S S S S S S ππ-=-=+-=+-=阴影半圆半圆四边形; 6.(2021•四川省广元市)如图,从一块直径是2的圆形铁片上剪出一个圆心角为90︒的扇形,将剪下来的扇形围成一个圆锥.那么这个圆锥的底面圆的半径是( )A. 4πB. 24C. 12D. 1【答案】B【解析】【分析】先计算BC 的长度,然后围成的圆锥底面周长等同于BC 的长度,根据公式计算即可.【详解】解:如下图:连接BC ,AO ,∵90BAC ∠=,∴BC 是直径,且BC=2,又∵AB AC =,∴45ABC ACB ∠=∠=,,AO BC ⊥又∵sin 45OA AB ︒=,112OA BC == , ∴ 12sin 452OA AB ===︒ ∴BC 的长度为:9022=1802π⨯,∴围成的底面圆周长为22π, 设圆锥的底面圆的半径为r , 则:222r ππ=, ∴212=224r ππ=⨯. 故选:B7. (2021•浙江省衢州卷) 已知扇形的半径为6,圆心角为150︒.则它的面积是( )A. 32πB. 3πC. 5πD. 15π【答案】D8. (2021•遂宁市) 如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 分别与BC ,AC 交于点D ,E ,过点D 作DF ⊥AC ,垂足为点F ,若⊙O 的半径为43,∠CDF =15°, 则阴影部分的面积为( )A. 16123π-B. 16243π-C. 20123π-D. 20243π-【答案】A【解析】 【分析】连接AD ,连接OE ,根据圆周角定理得到∠ADB =90°,根据等腰三角形的性质得到∠BAC =2∠DAC =2×15°=30°,求得∠AOE =120°,过O 作OH ⊥AE 于H ,解直角三角形得到OH 3AH =6,根据扇形和三角形的面积公式即可得到结论.【详解】解:连接AD ,连接OE ,∵AB 是直径,∴∠ADB =90°,∴AD ⊥BC ,∴∠ADB =∠ADC =90°,∵DF ⊥AC ,∴∠DFC =∠DF A =90°,∴∠DAC =∠CDF =15°,∵AB =AC ,D 是BC 中点,∴∠BAC =2∠DAC =2×15°=30°,∵OA =OE ,∴∠AOE =120°,过O 作OH ⊥AE 于H ,∵AO 3∴OH =12AO 3, ∴AH 3=6,∴AE =2AH =12,∴S 阴影=S 扇形AOE -S △AOE =(212043112233602π⨯-⨯⨯163π=-故选:A .9. (2021•四川省自贡市)如图,直线22y x =-+与坐标轴交于A 、B 两点,点P 是线段AB 上的一个动点,过点P 作y 轴的平行线交直线3y x =-+于点Q ,OPQ △绕点O 顺时针旋转45°,边PQ 扫过区域(阴影部份)面积的最大值是( )A. 23πB. 12π C. 1116π D. 2132π 【答案】A【解析】【分析】根据题意得OQM OMN S S S =-阴影扇形扇形,设P (a ,2-2a ),则Q (a ,3-a ),利用扇形面积公式得到()21325?8S a a π=-++阴影,利用二次函数的性质求解即可.【详解】解:如图,根据旋转的性质,OPQ OMN ≅,∴OPQ OMN S S =,则OMN OPQ OQM OPN S S S S S =+--阴影扇形扇形OQM OPN S S =-扇形扇形,∵点P 在直线22y x =-+上,点Q 在直线3y x =-+上,且PQ ∥y 轴,设P (a ,2-2a ),则Q (a ,3-a ),∴OP 2=()22222584a a a a +-=-+,OQ 2=()2223269a a a a +-=-+, OQM OPN S S S =-阴影扇形扇形2245?45?360360OQ OP ππ=- ()21325?8a a π=-++, 设22116325333y a a a ⎛⎫=-++=--+ ⎪⎝⎭, ∵30-<,∴当13a =时,y 有最大值,最大值为163, ∴S 阴影的最大值为1612383ππ⨯=. 故选:A .10. (2021•青海省)如图,一根5m 长的绳子,一端拴在围墙墙角的柱子上,另一端拴着一只小羊A (羊只能在草地上活动)那么小羊A 在草地上的最大活动区域面积是( )A .πm 2B .πm 2C .πm 2D .πm 2【分析】小羊的最大活动区域是一个半径为5、圆心角为90°和一个半径为1、圆心角为60°的小扇形的面积和.所以根据扇形的面积公式即可求得小羊的最大活动范围.【解答】解:大扇形的圆心角是90度,半径是5,所以面积==π(m 2);小扇形的圆心角是180°﹣120°=60°,半径是1m ,则面积==(m 2),则小羊A 在草地上的最大活动区域面积=π+=π(m 2). 故选:B .11. (2021•浙江省湖州市)如图,已知在矩形ABCD 中,AB =1,BC =3,点P 是AD 边上的一个动点,连结BP ,点C 关于直线BP 的对称点为C 1,当点P 运动时,点C 1也随之运动.若点P 从点A 运动到点D ,则线段CC 1扫过的区域的面积是A .πB .334π+C .332D .2π 【答案】B【解析】如图,C 1运动的路径是以B 为圆心,3为半径,圆心角为120°的弧上运动,故线段CC 1扫过的区域是一个圆心角为120°的扇形+一个以3为边长的等边三角形,故S =22120(3)333(3)36044ππ+⨯=+,故选B .12. (2021•湖南省张家界市)如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称,设正方形ABCD 的面积为S ,黑色部分面积为1S ,则1S :S 的比值为(A ).A 8π .B 4π .C 41 .D 2113. (2021•云南省)如图,等边△ABC 的三个顶点都在⊙O 上,AD 是⊙O 的直径.若0A =3,则劣弧BD 的长是( )BA .B .πC .D .2π14. (2021•广西贺州市)如图,在边长为2的等边ABC 中,D 是BC 边上的中点,以点A 为圆心,AD 为半径作圆与AB ,AC 分别交于E ,F 两点,则图中阴影部分的面积为( )A. π6B. π3C. π2D. 2π3【答案】C【解析】【分析】由等边ABC 中,D 是BC 边上的中点,可知扇形的半径为等边三角形的高,利用扇形面积公式即可求解.【详解】ABC 是等边三角形,D 是BC 边上的中点AD BC ∴⊥,60A ∠=︒2222213AD AB BD ∴=-=-=S 扇形AEF 226060(3)3602r πππ⨯=== 故选C .15. (2021•湖北省江汉油田)用半径为30cm ,圆心角为120︒的扇形纸片恰好能围成一个圆锥的侧面,则这个圆锥底面半径为( )A. 5cmB. 10cmC. 15cmD. 20cm【答案】B【解析】【分析】根据圆锥的侧面是一个扇形,这个扇形的弧长等于圆锥底面周长即可得.【详解】解:设这个圆锥底面半径为cmr,由题意得:12030 2180ππ⨯=r,解得10(cm)r=,即这个圆锥底面半径为10cm,故选:B.16.(2021•呼和浩特市)如图,正方形的边长为4,剪去四个角后成为一个正八边形,则可求出此正八边形的外接圆直径d,根据我国魏晋时期数学家刘的“割圆术”思想,如果用此正八边形的周长近似代替其外接圆周长,便可估计的值,下面d及π的值都正确的是CA.8(21)sin22.5d-=︒,8sin22.5π≈︒B.4(21)sin22.5d-=︒,4sin22.5π≈︒C.4(21)sin22.5d-=︒,8sin22.5π≈︒D.8(21)sin22.5d-=︒,4sin22.5π≈︒二.填空题1..(2021•湖南省衡阳市)底面半径为3,母线长为4的圆锥的侧面积为12π.(结果保留π)【分析】圆锥的侧面积=底面周长×母线长÷2,把相应数值代入即可求解.【解答】解:圆锥的侧面积=2π×3×4÷2=12π.故答案为:12π.2.(2021•怀化市)如图,在⊙O中,OA=3,∠C=45°,则图中阴影部分的面积是π﹣.(结果保留π)【分析】由∠C=45°根据圆周角定理得出∠AOB=90°,根据S阴影=S扇形AOB﹣S△AOB 可得出结论.【解答】解:∵∠C=45°,∴∠AOB=90°,∴S阴影=S扇形AOB﹣S△AOB==π﹣.故答案为:π﹣.3.(2021•宿迁市)已知圆锥的底面圆半径为4,侧面展开图扇形的圆心角为120°,则它的侧面展开图面积为_____________.【答案】48π【解析】【分析】首先根据底面圆的半径求得扇形的弧长,然后根据弧长公式求得扇形的半径,然后利用公式求得面积即可.【详解】解:∵底面圆的半径为4,∴底面周长为8π,∴侧面展开扇形的弧长为8π,设扇形的半径为r,∵圆锥的侧面展开图的圆心角是120°,∴120180r π=8π, 解得:r =12,∴侧面积为π×4×12=48π,故答案为:48π.4. (2021•山东省聊城市)用一块弧长16πcm 的扇形铁片,做一个高为6cm 的圆锥形工件侧面(接缝忽略不计),那么这个扇形铁片的面积为_______cm 2【答案】80π【解析】【分析】先求出圆锥的底面半径,再利用勾股定理求出圆锥的母线长,最后利用扇形的面积公式求解即可.【详解】解:∵弧长16πcm 的扇形铁片,∴做一个高为6cm 的圆锥的底面周长为16πcm ,∴圆锥的底面半径为:16π÷2π=8cm ,∴圆锥的母线长为:226810cm +=,∴扇形铁片的面积=16110280ππ⨯⨯=cm 2, 故答案是:80π.5. (2021•山东省泰安市)若△ABC 为直角三角形,AC =BC =4,以BC 为直径画半圆如图所示,则阴影部分的面积为 4 .【分析】连接CD .构建直径所对的圆周角∠BDC =90°,然后利用等腰直角△ABC 的性质:斜边上的中线是斜边的一半、中线与垂线重合,求得CD =BD =AD ,从而求得弦BD 与CD 所对的弓形的面积相等,所以图中阴影部分的面积=直角三角形ABC 的面积﹣直角三角形BCD 的面积.【解答】解:连接CD .∵BC是直径,∴∠BDC=90°,即CD⊥AB;又∵△ABC为等腰直角三角形,∴CD是斜边AB的垂直平分线,∴CD=BD=AD,∴=,∴S弓形BD=S弓形CD,∴S阴影=S Rt△ABC﹣S Rt△BCD;∵△ABC为等腰直角三角形,CD是斜边AB的垂直平分线,∴S Rt△ABC=2S Rt△BCD;又S Rt△ABC=×4×4=8,∴S阴影=4;故答案为:4.6..(2021•湖北省宜昌市)“莱洛三角形”是工业生产中加工零件时广泛使用的一种图形.如图,以边长为2厘米的等边三角形ABC的三个顶点为圆心,以边长为半径画弧,三段圆弧围成的图形就是“莱洛三角形”,该“莱洛三角形”的面积为(2π﹣2)平方厘米.(圆周率用π表示)【分析】图中三角形的面积是由三块相同的扇形叠加而成,其面积等于三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.【解答】解:过A作AD⊥BC于D,∵AB =AC =BC =2厘米,∠BAC =∠ABC =∠ACB =60°,∵AD ⊥BC ,∴BD =CD =1厘米,AD =BD =厘米, ∴△ABC 的面积为BC •AD =(厘米2), S 扇形BAC ==π(厘米2),∴莱洛三角形的面积S =3×π﹣2×=(2π﹣2)厘米2, 故答案为:(2π﹣2).7. (2021•广东省)如题13图,等腰直角三角形ABC 中,90A ∠=︒,4BC =.分别以点B 、点C 为圆心,线段BC 长的一半为半径作圆弧,交AB 、BC 、AC 于点D 、E 、F ,则图中阴影部分的面积为_________.【答案】4π- 【解析】211142π24π424ABC B S S S =-=⨯⨯-⨯⨯=-△⊙阴影,考查阴影面积的求法(主要还是用整体减去局部)8. (2021•湖北省恩施州)《九章算术》被尊为古代数学“群经之首”,其卷九勾股篇记载:今有圆材埋于壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?如图,大意是,今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深CD 等于1寸,锯道AB 长1尺,问圆形木材的直径是多少?(1尺=10寸)答:圆材直径 26 寸.【分析】过圆心O 作OC ⊥AB 于点C ,延长OC 交圆于点D ,则CD =1寸,AC =BC =AB ,连接OA ,设圆的半径为x ,利用勾股定理在Rt △OAC 中,列出方程,解方程可得半径,进而直径可求.【解答】解:过圆心O 作OC ⊥AB 于点C ,延长OC 交圆于点D ,连接OA ,如图:∵OC ⊥AB ,∴AC =BC =AB ,.则CD =1寸,AC =BC =AB =5寸.设圆的半径为x 寸,则OC =(x ﹣1)寸.在Rt △OAC 中,由勾股定理得:52+(x ﹣1)2=x 2,解得:x =13.∴圆材直径为2×13=26(寸).故答案为:26.9. (2021•浙江省宁波市) 抖空竹在我国有着悠久的历史,是国家级的非物质文化遗产之一.如示意图,,AC BD 分别与O 相切于点C ,D ,延长,AC BD 交于点P .若120P ∠=︒,O 的半径为6cm ,则图中CD 的长为________cm .(结果保留π)【答案】2π【解析】【分析】连接OC 、OD ,利用切线的性质得到90OCP ODP ∠=∠=︒,根据四边形的内角和求得60COD ∠=︒,再利用弧长公式求得答案.【详解】连接OC 、OD ,∵,AC BD 分别与O 相切于点C ,D ,∴90OCP ODP ∠=∠=︒,∵120P ∠=︒,360OCP ODP P COD ∠+∠+∠+∠=︒,∴60COD ∠=︒,∴CD 的长=6062180(cm ),故答案为:2π..10. (2021•浙江省台州)如图,将线段AB 绕点A 顺时针旋转30°,得到线段AC .若AB =12,则点B 经过的路径BC 长度为_____.(结果保留π)【答案】2π【解析】【分析】直接利用弧长公式即可求解.【详解】解:30122180BC l ππ⋅==, 故答案为:2π.11. 2021•浙江省温州市)若扇形的圆心角为30°,半径为17,则扇形的弧长为π . 【分析】根据弧长公式代入即可.【解答】解:根据弧长公式可得:l===π.故答案为:π.12.(2021•湖北省荆门市)如图,正方形ABCD的边长为2,分别以B,C为圆心,以正方形的边长为半径的圆相交于点P,那么图中阴影部分的面积为2﹣.【分析】连接PB、PC,作PF⊥BC于F,根据等边三角形的性质得到∠PBC=60°,解直角三角形求出BF、PF,根据扇形面积公式、三角形的面积公式计算,得到答案.【解答】解:连接PB、PC,作PF⊥BC于F,∵PB=PC=BC,∴△PBC为等边三角形,∴∠PBC=60°,∠PBA=30°,∴BF=PB•cos60°=PB=1,PF=PB•sin60°=,则图中阴影部分的面积=[扇形ABP的面积﹣(扇形BPC的面积﹣△BPC的面积)]×2=[﹣(﹣×2×)]×2=2﹣,故答案为:2﹣.13.(2021•江苏省盐城市)设圆锥的底面半径为2,母线长为3,该圆锥的侧面积为6π.【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【解答】解:该圆锥的侧面积=×2π×2×3=6π.故答案为6π.14.(2021•重庆市A)如图,矩形ABCD的对角线AC,BD交于点O,分别以点A,C为圆心,AO长为半径画弧,分别交AB,CD于点E,F.若BD=4,∠CAB=36°,则图中阴影部分的面积为___________.(结果保留π).【答案】4 5π【解析】【分析】利用矩形的性质求得OA=OC=OB=OD=2,再利用扇形的面积公式求解即可.【详解】解:∵矩形ABCD的对角线AC,BD交于点O,且BD=4,∴AC=BD=4,OA=OC=OB=OD=2,∴22362423605AOES Sππ⨯⨯===阴影扇形,故答案为:45π.15. (2021•重庆市B)如图,在菱形ABCD中,对角线AC=12,BD=16,分别以点A,B,C,D为圆心,AB的长为半径画弧,与该菱形的边相交,则图中阴影部分的面积为96﹣100π.(结果保留π)【分析】先求出菱形面积,再计算四个扇形的面积即可求解.【解答】解:在菱形ABCD中,有:AC=12,BD=16.∴.∵∠ABC +∠BCD +∠CDA +∠DAB =360°.∴四个扇形的面积,是一个以AB 的长为半径的圆.∴图中阴影部分的面积=×12×16﹣π×102=96﹣100π.故答案为:96﹣100π.16.(2021•湖北省十堰市)如图,在边长为4的正方形ABCD 中,以AB 为直径的半圆交对角线AC 于点E ,以C 为圆心、BC 长为半径画弧交AC 于点F ,则图中阴影部分的面积是_________.【答案】3π-6【解析】【分析】连接BE ,可得ABE △是等腰直角三角形,弓形BE 的面积=2π-,再根据阴影部分的面积=弓形BE 的面积+扇形CBF 的面积-BCE 的面积,即可求解.【详解】连接BE ,∵在正方形ABCD 中,以AB 为直径的半圆交对角线AC 于点E ,∴∠AEB =90°,即:AC ⊥BE ,∵∠CAB =45°,∴ABE △是等腰直角三角形,即:AE =BE ,∴弓形BE 的面积=211222242ππ⨯-⨯⨯=-, ∴阴影部分的面积=弓形BE 的面积+扇形CBF 的面积-BCE 的面积=2π-+2454360π⨯⨯-114422⨯⨯⨯=3π-6. 故答案是:3π-6.17. (2021•湖南省永州市)某同学在数学实践活动中,制作了一个侧面积为60π,底面半径为6的圆锥模型(如图所示),则此圆锥的母线长为 .18.(2021•黑龙江省大庆市)一个圆柱形橡皮泥,底面积是12cm 2.高是5cm .如果这个橡皮泥的一半,把它捏成高为5cm 的圆锥,则这个圆锥的底面积是 cm 2;【分析】首先求出圆柱体积,根据题意得出圆柱体积的一半即为圆锥的体积,根据圆锥体积计算公式列出方程,即可求出圆锥的底面积.【详解】V圆柱=Sh =212560cm , 这个橡皮泥的一半体积为:2160302V cm ,把它捏成高为5cm 的圆锥,则圆锥的高为5cm ,故1303Sh , 即15=303S , 解得=18S (cm 2),故填:18.19. (2021•黑龙江省大庆市) 如图,作⊙O 的任意一条直经FC ,分别以F 、C 为圆心,以FO 的长为半径作弧,与⊙O 相交于点E 、A 和D 、B ,顺次连接AB 、BC 、CD 、DE 、EF 、F A ,得到六边形ABCDEF ,则⊙O 的面积与阴影区域的面积的比值为 ;16题图DBE A OF C【分析】可将图中阴影部分的面积转化为两个等边三角形的面积之和,设⊙O 的半径与等边三角形的边长为a ,分别表示出圆的面积和两个等边三角形的面积,即可求解 【详解】连接OE ,OD ,OB ,OA ,由题可得:EF OF OE FA OA AB OB BC OC CD OD ==========,,,,,EFO OFA OAB OBC OCD ∴△△△△△△ODE 为边长相等的等边三角形∴可将图中阴影部分的面积转化为ODE 和OAB 的面积之和,如图所示:设⊙O 的半径与等边三角形的边长为a ,∴⊙O 的面积为22S r a ππ==等边OED 与等边OAB 的边长为a234OAB a S S ∴==△OED △ 23=2OED OABa S S S ∴+=△△阴 ∴⊙O 的面积与阴影部分的面积比为22233S S a π=阴故答案为:233π. 20. (2021•吉林省长春市)如图是圆弧形状的铁轨示意图,半径OA 的长度为200米,圆心角90AOB ∠=︒,则这段铁轨的长度 米,(铁轨的宽度忽略不计,结果保留π)【分析】根据圆的弧长计算公式l =,代入计算即可. 【解答】解:圆弧长是:=100π(米).故答案是:100π.21. (2021•绥化市)一条弧所对的圆心角为135°弧长等于半径为5cm 的圆的周长的3倍,则这条弧的半径为__________cm .【答案】40【解析】【分析】设出弧所在圆的半径,由于弧长等于半径为5cm 的圆的周长的3倍,所以根据原题所给出的等量关系,列出方程,解方程即可.【详解】解:设弧所在圆的半径为r ,由题意得, 135253180r ππ⨯⨯=⨯⨯, 解得,r=40cm .22. (2021•江苏省无锡市)用半径为50,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面半径为 .【分析】圆锥的底面圆半径为r ,根据圆锥的底面圆周长=扇形的弧长,列方程求解.【解答】解:设圆锥的底面圆半径为r ,依题意,得2πr =,解得r =. 故答案为:. 23. (2021•山东省济宁市)如图,△ABC 中,∠ABC =90°,AB =2,AC =4,点O 为BC 的中点,以O 为圆心,以OB 为半径作半圆,交AC 于点D ,则图中阴影部分的面积是 ﹣ .【分析】根据题意,作出合适的辅助线,即可求得DE的长、∠DOB的度数,然后根据图形可知阴影部分的面积是△ABC的面积减去△COD的面积和扇形BOD的面积,从而可以解答本题.【解答】解,连接OD,过D作DE⊥BC于E,在△ABC中,∠ABC=90°,AB=2,AC=4,∴sin C===,BC===2,∴∠C=30°,∴∠DOB=60°,∵OD=BC=,∴DE=,∴阴影部分的面积是:2×2﹣﹣=﹣,故答案为:﹣.24.(2021•呼和浩特市)已知圆锥的母线长为10,高为8,则该圆锥的侧面展开图(扇形)的弧长为__________.(用含π的代数式表示),圆心角为__________度.12 ,21625.(2021•齐齐哈尔市)一个圆锥的底面圆半径为6cm,圆锥侧面展开图扇形的圆心角为240°,则圆锥的母线长为_____cm.【答案】9.【解析】【详解】试题分析:求得圆锥的底面周长,利用弧长公式即可求得圆锥的母线长:∵圆锥的底面周长为:2π×6=12π,∴圆锥侧面展开图的弧长为12π.设圆锥的母线长为R,∴24012180Rππ⨯=,解得R=9cm.考点:圆锥的计算.26.(2021•内蒙古通辽市)如图,AB是⊙O的弦,AB=2,点C是⊙O上的一个动点,且∠ACB=60°,若点M,N分别是AB,BC的中点,则图中阴影部分面积的最大值是﹣.【分析】连接OA、OB、OM,根据圆周角定理得到∠AOB=120°,求出OM=1,OA=2,再根据三角形中位线性质得到MN∥AC,MN=AC,然后根据三角形相似得到=()2=,故当△ABC的面积最大时,△MBN的面积最大,由C、O、M在一条直线时,△ABC的面积最大,求得△ABC的最大值,进而即可求得△MBN的面积最大值,利用扇形的面积和三角形的面积求得弓形的面积,进而即可求得阴影部分的最大值.【解答】解:连接OA、OB、OM,如图,∵∠ACB=60°,∴∠AOB=120°,∵OA=OB,∴∠OAB=∠OBA=30°,∵AM=BM=AB=,∴OM⊥AB,∴tan30°=,∴OM=×=1,∴OA=2OM=2,∵点M、N分别是AB、BC的中点,∴MN∥AC,MN=AC,∴△MBN∽△ABC,∴=()2=,∴当△ABC的面积最大时,△MBN的面积最大,∵C、O、M在一条直线时,△ABC的面积最大,∴△ABC的面积最大值为:××(2+1)=3,∴△MBN的面积最大值为:,∵S弓形=S扇形OAB﹣S△AOB=﹣=﹣,∴此时,S阴影=﹣+=﹣,故答案为:﹣.三、解答题1.(2021•湖北省黄冈市)如图,在Rt△ABC中,∠ACB=90°,AC分别相切于点E,F,BO平分∠ABC(1)求证:AB是⊙O的切线;(2)若BE=AC=3,⊙O的半径是1,求图中阴影部分的面积.【分析】(1)有切点则连圆心,证明垂直关系;无切点则作垂线,证明等于半径;(2)将不规则图形转化为规则图形间的换算.【解答】(1)证明:连接OE,OF,∵BO是∠ABC的平分线,∴OD═OE,OE是圆的一条半径,∴AB是⊙O的切线,故:AB是⊙O的切线.(2)∵BC、AC与圆分别相切于点E,∴OE⊥BC,OF⊥AC,∴四边形OECF是正方形,∴OE═OF═EC═FC═1,∴BC═BE+EC═4,又AC═3,∴S阴影═(S△ABC﹣S正方形OECF﹣优弧所对的S扇形EOF)═×()═﹣.故图中阴影部分的面积是:﹣.2.(2021•湖南省邵阳市)某种冰激凌的外包装可以视为圆锥,它的底面圆直径ED与母线AD长之比为1:2.制作这种外包装需要用如图所示的等腰三角形材料,其中AB=AC,AD⊥BC.将扇形AEF围成圆锥时,AE,AF恰好重合.(1)求这种加工材料的顶角∠BAC的大小.(2)若圆锥底面圆的直径ED为5cm,求加工材料剩余部分(图中阴影部分)的面积.(结果保留π)【分析】(1)设∠BAC=n°.根据弧EF的两种求法,构建方程,可得结论.(2)根据S阴=•BC•AD﹣S扇形AEF求解即可.【解答】解:(1)设∠BAC=n°.由题意得π•DE=,AD=2DE,∴n=90,∴∠BAC=90°.(2)∵AD=2DE=10(cm),∴S阴=•BC•AD﹣S扇形AEF=×10×20﹣=(100﹣25π)cm2.3.(2021•江西省)如图1,四边形ABCD内接于⊙O,AD为直径,点C作CE⊥AB于点E,连接AC.(1)求证:∠CAD=∠ECB;(2)若CE是⊙O的切线,∠CAD=30°,连接OC,如图2.①请判断四边形ABCO的形状,并说明理由;②当AB=2时,求AD,AC与围成阴影部分的面积.【分析】(1)先判断出∠CBE=∠D,再用等角的余角相等,即可得出结论;(2)①先判断出OC∥AB,再判断出BC∥OA,进而得出四边形ABCO是平行四边形,即可得出结论;②先求出AC,BC,再用面积的和,即可得出结论.【解答】(1)证明:∵四边形ABCD是⊙O的内接四边形,∴∠CBE=∠D,∵AD为⊙O的直径,∴∠ACD=90°,∴∠D+∠CAD=90°,∴∠CBE+∠CAD=90°,∵CE⊥AB,∴∠CBE+∠BCE=90°,∴∠CAD=∠BCE;(2)①四边形ABCO是菱形,理由:∵∠CAD=30°,∴∠COD=2∠CAD=60°,∠D=90°﹣∠CAD=60°,∵CE是⊙O的切线,∴OC⊥CE,∴CE⊥AB,∴OC∥AB,∴∠DAB=∠COD=60°,由(1)知,∠CBE+∠CAD=90°,∴∠CBE=90°﹣∠CAD=60°=∠DAB,∴BC∥OA,∴四边形ABCO是平行四边形,∵OA=OC,∴▱ABCO是菱形;②由①知,四边形ABCO是菱形,∴OA=OC=AB=2,∴AD=2OA=4,由①知,∠COD=60°,在Rt△ACD中,∠CAD=30°,∴CD=2,AC=2,∴AD,AC与围成阴影部分的面积为S△AOC+S扇形COD=S△ACD+S扇形COD=××2×2+=+π.4.(2021•湖北省随州市)等面积法是一种常用的、重要的数学解题方法.它是利用“同一个图形的面积相等”、“分割图形后各部分的面积之和等于原图形的面积”、“同底等高或等底同高的两个三角形面积相等”等性质解决有关数学问题,在解题中,灵活运用等面积法解决相关问题,可以使解题思路清晰,解题过程简便快捷.(1)在直角三角形中,两直角边长分别为3和4,则该直角三角形斜边上的高的长为_____,其内切圆的半径长为______;(2)①如图1,P是边长为a的正ABC内任意一点,点O为ABC的中心,设点P到ABC各边距离分别为1h,2h,3h,连接AP,BP,CP,由等面积法,易知()123123ABC OAB h h h S a S ++==△△,可得123h h h ++=_____;(结果用含a 的式子表示) ②如图2,P 是边长为a 的正五边形ABCDE 内任意一点,设点P 到五边形ABCDE 各边距离分别为1h ,2h ,3h ,4h ,5h ,参照①的探索过程,试用含a 的式子表示12345h h h h h ++++的值.(参考数据:8tan 3611≈°,11tan 548≈°)(3)①如图3,已知O 的半径为2,点A 为O 外一点,4OA =,AB 切O 于点B ,弦//BC OA ,连接AC ,则图中阴影部分的面积为______;(结果保留π)②如图4,现有六边形花坛ABCDEF ,由于修路等原因需将花坛进行改造.若要将花坛形状改造成五边形ABCDG ,其中点G 在AF 的延长线上,且要保证改造前后花坛的面积不变,试确定点G 的位置,并说明理由. (1)125,1;(2)①32a;②5516a ;(3)①23π;②见解析. 【分析】(1)根据等积法解得直角三角形斜边上的高的长,及利用内切圆的性质解题即可; (2)①先求得边长为a 的正ABC 的面积,再根据()123123ABC OAB h h h S a S ++==△△解题即可;②设点O 为正五边形ABCDE 的中心,连接OA ,OB ,过O 作OQ AB ⊥于Q ,先由正切定义,解得OQ 的长,由①中结论知,5OAB ABCDE S S =五边形△,继而得到()123451115tan 54222a h h h h h a a ++++=⨯⨯°,据此解题; (3)①由切线性质解得30OAB ∠=︒,再由平行线性质及等腰三角形性质解得60COB ∠=︒,根据平行线间的距离相等,及同底等高或等底同高的两个三角形面积相等的性质,可知图中阴影部分的面积等于扇形OBC 的面积,最后根据扇形面积公式解题;②连接DF ,过点E 作//EG DF 交AF 的延长线于G 点,根据DGF ABCDEF ABCDF ABCDG S S S S =+=六边形五边形五边形△,据此解题.【详解】解:(1)直角三角形的面积为:13462⨯⨯=,5=, 设直角三角形斜边上的高为h ,则1562h ⨯⋅= 125h ∴=设直角三角形内切圆的半径为r ,则11(345)3422++=⨯⨯ 1r ∴=,故答案为:125,1;(2)①边长为a 的正ABC ,面积为:212OAB a S =⋅=△()12322431ABC OAB h h h S S a a =++==△△123h h h =∴++2a ,故答案为:2a ; ②类比①中方法可知()1234512ABCDE a h h h h h S ++++=五边形, 设点O 为正五边形ABCDE 的中心,连接OA ,OB ,由①得5OAB ABCDE S S =五边形△,过O 作OQ AB ⊥于Q ,()1180521085EAB ∠=⨯⨯-=°°, 故54OAQ ∠=°,1tan 54tan 542OQ AQ a =⨯=°°,故()123451115tan 54222a h h h h h a a ++++=⨯⨯°,从而得到: 12345555tan 54216h h h h h a a ++++=≈°. (3)①AB 是O 的切线,OB AB ∴⊥90OBA ∴∠=︒2,4OB OA30OAB ∴∠=︒ 60AOB ∴∠=︒//BC OA60AOB OBC ∴∠=∠=︒OC OB =60OBC OCB ∴∠=∠=︒60COB ∴∠=︒过点O 作OQ BC ⊥//BC OA ,OQ ∴是COB ABC 、的高,ABCOCBSS∴=26060423603603OBCr S S πππ⨯⨯∴====阴影部分扇形故答案为:23π; ②如图,连接DF ,过点E 作//EG DF 交AF 的延长线于G 点,则点G 即为所求,连接DG ,∵DEF ABCDEF ABCDF S S S =+六边形五边形△, ∵//EG DF , ∴DEF DGF S S =△△,∴DGF ABCDEF ABCDF ABCDG S S S S =+=六边形五边形五边形△.5. (2021•襄阳市) 如图,直线AB 经过O 上的点C ,直线BO 与O 交于点F 和点D ,OA 与O 交于点E ,与DC 交于点G ,OA OB =,CA CB =.(1)求证:AB 是O 的切线;(2)若//FC OA ,6CD =,求图中阴影部分面积.【答案】(1)见解析;(2)33 2π26.(2021•贵州省贵阳市)如图,在⊙O中,AC为⊙O的直径,AB为⊙O的弦,点E是的中点,过点E作AB的垂线,交AB于点M,交⊙O于点N,分别连接EB,CN.(1)EM与BE的数量关系是BE=EM;(2)求证:=;(3)若AM=,MB=1,求阴影部分图形的面积.【分析】(1)证得△BME是等腰直角三角形即可得到结论;(2)根据垂径定理得到∠EMB=90°,进而证得∠ABE=∠BEN=45°,得到=,根据题意得到=,进一步得到=;(3)先解直角三角形得到∠EAB=30°,从而得到∠EOB=60°,证得△EOB是等边三角形,则OE=BE=,然后证得△OEB≌△OCN,然后根据扇形的面积公式和三角形面积公式求得即可.【解答】解:(1)∵AC为⊙O的直径,点E是的中点,∴∠ABE=45°,∵AB⊥EN,∴△BME是等腰直角三角形,∴BE=EM,故答案为BE=EM;(2)连接EO,AC是⊙O的直径,E是的中点,∴∠AOE=90°,∴∠ABE=∠AOE=45°,∵EN⊥AB,垂足为点M,∴∠EMB=90°∴∠ABE=∠BEN=45°,∴=,∵点E是的中点,∴=,∴=,∴﹣=﹣,∴=;(3)连接AE,OB,ON,∵EN⊥AB,垂足为点M,∴∠AME=∠EMB=90°,∵BM=1,由(2)得∠ABE=∠BEN=45°,∴EM=BM=1,又∵BE=EM,∴BE=,∵在Rt△AEM中,EM=1,AM=,∴tan∠EAB==,∴∠EAB=30°,∵∠EAB=∠EOB,∴∠EOB=60°,又∵OE=OB,∴△EOB是等边三角形,∴OE=BE=,又∵=,∴BE=CN,∴△OEB≌△OCN(SSS),∴CN=BE=又∵S扇形OCN==,S△OCN=CN•CN=×=,∴S阴影=S扇形OCN﹣S△OCN=﹣.7.(2021•湖北省黄石市)如图,PA、PB是O的切线,A、B是切点,AC是O的直径,连接OP,交O于点D,交AB于点E.(1)求证://BC OP;(2)若E恰好是OD的中点,且四边形OAPB的面积是163,求阴影部分的面积;(3)若1sin3BAC∠=,且23AD=,求切线PA的长.【答案】(1)见解析;(2)823π-;(3)2【解析】。
四川省自贡市2021年中考数学真题(解析版)
2021年四川省自贡市中考数学试卷一、选择题(共12个小题,每小题4分,共48分,在每题给出的四个选项中,只有一项是符合题目要求的)1.自贡恐龙博物馆是世界三大恐龙遗址博物馆之一.今年“五一黄金周”共接待游客8.87万人次,人数88700用科学记数法表示为( )A. 50.88710⨯ B. 38.8710⨯ C. 48.8710⨯ D. 388.710⨯【答案】C【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.【详解】解: 88700用科学记数法表示为48.8710⨯.故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.2. 如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“迎”字一面的相对面上的字是( ) A. 百 B. 党 C. 年 D. 喜【答案】B【解析】【分析】正方体的表面展开图“一四一”型,相对的面之间一定相隔一个正方形,根据这一特点解答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方体,“迎”与“党”是相对面,“建”与“百”是相对面,“喜”与“年”是相对面.故答案为:B .【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.3. 下列运算正确的是( )A. 22541a a -= B. ()22346ab a b -=C. 933a a a ÷= D. 222(2)4ab a b -=-【答案】B【解析】【分析】根据合并同类项法则,积的乘方,同底数幂的除法,完全平方公式逐一计算即可.【详解】解:A .22254a a a -=,该项运算错误;B .()22346a b a b -=,该项运算正确;C .936a a a ÷=,该项运算错误;D .222(2)44a b a ab b -=-+,该项运算错误;故选:B .【点睛】本题考查整式的运算,掌握合并同类项法则,积的乘方,同底数幂的除法,完全平方公式是解题的关键.4. 下列图形中,是轴对称图形且对称轴条数最多的是( )A. B. C. D.【答案】D【解析】【分析】利用轴对称图形的定义逐一判断即可.【详解】解:A 是轴对称图形,对称轴有1条;B 不是轴对称图形;C 不是轴对称图形;D 是轴对称图形,对称轴有2条;故选:D .【点睛】本题考查识别轴对称图形,掌握轴对称图形的定义是解题的关键.5. 如图,AC 是正五边形ABCDE 的对角线,ACD ∠的度数是( )A. 72°B. 36°C. 74°D. 88°【答案】A【解析】【分析】根据正五边形的性质可得108B BCD ∠=∠=︒,AB BC =,根据等腰三角形的性质可得36BCA BAC ∠=∠=︒,利用角的和差即可求解.【详解】解:∵ABCDE 是正五边形,∴108B BCD ∠=∠=︒,AB BC =,∴36BCA BAC ∠=∠=︒,∴1083672ACD ∠=︒-︒=︒,故选:A .【点睛】本题考查正五边形的性质,求出正五边形内角的度数是解题的关键.6.学校为了解“阳光体育”活动开展情况,随机调查了50名学生一周参加体育锻炼时间,数据如下表所示:人数(人)9161411时间(小时)78910这些学生一周参加体育锻炼时间的众数、中位数分别是( )A. 16,15B. 11,15C. 8,8.5D. 8,9【答案】C【解析】【分析】根据众数和中位数的意义与表格直接求解即可.【详解】解:这50名学生这一周在校的体育锻炼时间是8小时的人数最多,故众数为8;统计表中是按从小到大的顺序排列的,最中间两个人的锻炼时间分别是8,9,故中位数是(8+9)÷2=8.5.故选:C .【点睛】本题考查了众数和中位数的意义,一组数据中出现次数最多的数据叫做众数.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.7. 已知23120x x --=,则代数式2395x x -++的值是( )A. 31B. 31-C. 41D. 41-【答案】B【解析】【分析】根据题意,可先求出x 2-3x 的值,再化简()22395=3+53x x x x -++--,然后整体代入所求代数式求值即可.【详解】解:∵23120x x --=,∴23=12x x -,∴()223395=3+5=312+5=31x x x x -++---⨯-.故选:B .【点睛】此题考查了代数式求值,此题的关键是代数式中的字母表示的数没有明确告知,而是隐含在题设中,得出23=12x x -,是解题的关键.8. 如图,()8,0A,()2,0C -,以点A 为圆心,AC 长为半径画弧,交y 轴正半轴于点B ,则点B 的坐标为() A. ()0,5 B. ()5,0 C. ()6,0D. ()0,6【答案】D【解析】【分析】先根据题意得出OA =8,OC =2,再根据勾股定理计算即可【详解】解:由题意可知:AC =AB∵()8,0A ,()2,0C -∴OA =8,OC =2∴AC =AB =10在Rt △OAB 中,6OB ===∴B (0,6)故选:D【点睛】本题考查勾股定理、正确写出点的坐标,圆的半径相等、熟练进行勾股定理的计算是关键9.已知蓄电池的电压为定值,使用蓄电池时,电流O (单位:A )与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示.下列说法正确的是( ) A. 函数解析式为13I R = B. 蓄电池的电压是18VC. 当10A I ≤时, 3.6R ≥ΩD. 当6R =Ω时,4A I =【答案】C【解析】【分析】将将()4,9代入U I R =求出U 的值,即可判断A ,B ,D ,利用反比例函数的增减性可判断C .【详解】解:设U I R=,将()4,9代入可得36I R =,故A 错误;∴蓄电池的电压是36V ,故B 错误;当10A I ≤时, 3.6R ≥Ω,该项正确;当当6R =Ω时,6A I =,故D 错误,故选:C .【点睛】本题考查反比例函数的实际应用,掌握反比例函数的图象与性质是解题的关键.10.如图,AB 为⊙O 的直径,弦CD AB ⊥于点F ,OE AC ⊥于点E ,若3OE =,5OB =,则CD 的长度是( )A. 9.6B.C.D. 19【答案】A【解析】【分析】先利用垂径定理得出AE =EC ,CF =FD ,再利用勾股定理列方程即可【详解】解:连接OC∵AB ⊥CD , OE ⊥AC∴ AE =EC ,CF =FD∵OE =3,OB =5∴OB =OC =OA =5∴在Rt △OAE 中4AE ===∴AE =EC =4设OF =x ,则有2222AC AF OC OF -=-22228(5)5x x -+=-x =1.4在Rt △OFC 中, 4.8FC ===∴29.6CD FC ==故选:A【点睛】本题考查垂径定理、勾股定理、方程思想是解题关键11. 如图,在正方形ABCD 中,6AB =,M 是AD 边上的一点,:1:2AM MD =.将BMA △沿BM 对折至BMN △,连接DN ,则DN 的长是( )A. 52 C. 3【答案】D【解析】【分析】延长MN 与CD 交于点E ,连接BE ,过点N 作NF CD ⊥,根据折叠的正方形的性质得到NE CE =,在Rt MDE 中应用勾股定理求出DE 的长度,通过证明MDE NFE ∽,利用相似三角形的性质求出NF 和DF 的长度,利用勾股定理即可求解.【详解】解:如图,延长MN 与CD 交于点E ,连接BE ,过点N 作NF CD ⊥,∵6AB =,M 是AD 边上的一点,:1:2AM MD =,∴2AM =,4DM =,∵将BMA △沿BM 对折至BMN △,四边形ABCD 是正方形,∴90BNE C ∠=∠=︒,AB AN BC ==,∴Rt BNE Rt BCE ≌(HL),∴NE CE =,∴2EM MN NE NE =+=+,在Rt MDE 中,设DE x =,则628ME x x =-+=-,根据勾股定理可得()22248x x +=-,解得3x =,∴3NE DE ==,5ME =,∵NF CD ⊥,90MDE ∠=︒,∴MDE NFE ∽,∴25EF NF NE DE MD ME ===,∴125NF =,95EF =,∴65DF =,∴DN =,故选:D .【点睛】本题考查折叠的性质、相似三角形的判定与性质、勾股定理的应用等内容,做出合适的辅助线是解题的关键.12.如图,直线22y x =-+与坐标轴交于A 、B 两点,点P 是线段AB 上的一个动点,过点P 作y 轴的平行线交直线3y x =-+于点Q ,OPQ △绕点O 顺时针旋转45°,边PQ 扫过区域(阴影部份)面积的最大值是( ) A. 23π B. 12π C. 1116π D. 2132π【答案】A【解析】【分析】根据题意得OQM OMN S S S =-阴影扇形扇形,设P (a ,2-2a ),则Q (a ,3-a ),利用扇形面积公式得到()21325•8S a a π=-++阴影,利用二次函数的性质求解即可.【详解】解:如图,根据旋转的性质,OPQ OMN ≅ ,∴OPQ OMN S S = ,则OMN OPQ OQM OPNS S S S S =+-- 阴影扇形扇形OQM OPN S S =-扇形扇形,∵点P 在直线22y x =-+上,点Q 在直线3y x =-+上,且PQ ∥y 轴,设P (a ,2-2a ),则Q (a ,3-a ),∴OP 2=()22222584a a a a +-=-+,OQ 2=()2223269a a a a +-=-+,OQM OPN S S S =-阴影扇形扇形2245•45•360360OQ OP ππ=-()21325•8a a π=-++,设22116325333y a a a ⎛⎫=-++=--+ ⎪⎝⎭,∵30-<,∴当13a =时,y 有最大值,最大值为163,∴S 阴影的最大值为1612383ππ⨯=.故选:A .【点睛】本题考查了旋转的性质,扇形的面积公式,二次函数的性质,解答本题的关键是明确题意,找出所求问题需要的条件.二、填空题(共6个小题,每小题4分,共24分)13. 请写出一个满足不等式7x >的整数解_________.【答案】6(答案不唯一)【解析】的值约为1.4,再解不等式即可.【详解】解: 1.4≈,∴7x >-,∴ 5.6x >.所以6是该不等式的其中一个整数解(答案不唯一,所有不小于6的整数都是该不等式的整数解);故答案为:6(答案不唯一).【点睛】本题考查了解一元一次不等式、不等式的整数解、二次根式的值的估算等内容,要求学生在理解相关概念的前提下能灵活运用解决问题,本题答案不唯一,有一定的开放性.14.某中学规定学生的学期体育成绩满分为100,其中体育课外活动占30%,期末考试成绩占70%,小彤的这两项成绩依次是90,80.则小彤这学期的体育成绩是_________.【答案】83分.【解析】【分析】根据加权平均数的计算公式列出算式,再进行计算即可.【详解】解:根据题意得:90×30%+80×70%=83(分);答:小彤这学期的体育成绩是83分.故答案为:83分.【点睛】此题考查了加权平均数,掌握加权平均数的计算公式是本题的关键,是一道常考题.15. 化简:22824a a -=-- _________.【答案】22a +【解析】【分析】利用分式的减法法则,先通分,再进行计算即可求解.【详解】解:22824a a ---()()28222a a a =--+-()()()()()2282222a a a a a +=-+-+-()()()2222a a a -=+-22a =+,故答案为:22a +.【点睛】本题考查分式的减法,掌握分式的基本性质是解题的关键.16.某校园学子餐厅把WIFI 密码做成了数学题,小亮在餐厅就餐时,思索了一会,输入密码,顺利地连接到了学子餐厅的网络,那么他输入的密码是______.【答案】143549【解析】【分析】根据题中密码规律确定所求即可.【详解】5⊗3⊗2=5×3×10000+5×2×100+5×(2+3)=1510259⊗2⊗4=9×2×10000+9×4×100+9×(2+4)=183654,8⊗6⊗3=8×6×10000+8×3×100+8×(3+6)=482472,∴7⊗2⊗5=7×2×10000+7×5×100+7×(2+5)=143549.故答案为143549【点睛】本题考查有理数的混合运算,根据题意得出规律并熟练掌握运算法则是解题关键.17.如图,ABC 的顶点均在正方形网格格点上.只用不带刻度的直尺,作出ABC 的角平分线BD (不写作法,保留作图痕迹).【答案】见解析【解析】【分析】取格点E ,连接AE ,作AE 的中点D ,根据等腰三角形三线合一的性质可知:BD 即为ABC 的角平分线.【详解】解:如图,射线BD 即为所求作..【点睛】本题考查作图-应用与设计作图,等腰三角形三线合一的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.18.当自变量13x -≤≤时,函数y x k =-(k 为常数)的最小值为3k +,则满足条件的k 的值为_________.【答案】2-【解析】【分析】分1k <-时,13k -≤≤时,3k >时三种情况讨论,即可求解.【详解】解:①若1k <-时,则当13x -≤≤时,有x k >,故y x k x k =-=-,故当1x =-时,y 有最小值,此时函数1y k =--,由题意,1 3k k --=+,解得:2k =-,满足1k <-,符合题意;②若13k -≤≤,则当13x -≤≤时,0y x k =-≥,故当x k =时,y 有最小值,此时函数0y =,由题意,0 3k =+,解得:3k =-,不满足13k -≤≤,不符合题意;③若3k >时,则当13x -≤≤时,有x k <,故y x k k x =-=-,故当3x =时,y 有最小值,此时函数3y k =-,由题意,3 3k k -=+,方程无解,此情况不存在,综上,满足条件的k 的值为2-.故答案为:2-.【点睛】本题考查了一次函数的性质,绝对值的性质,分类讨论是解题的关键.三、解答题(共8个题,共78分)19. 0|7|(2-+.【答案】1-【解析】【分析】利用算术平方根、绝对值的性质、零指数幂分别计算各项即可求解.【详解】解:原式5711=-+=-.【点睛】本题考查实数的混合运算,掌握算术平方根、绝对值的性质、零指数幂是解题的关键.20. 如图,在矩形ABCD 中,点E 、F 分别是边AB 、CD 的中点.求证:DE=BF .【答案】证明见试题解析.【解析】【分析】由矩形的性质和已知得到DF=BE ,AB ∥CD ,故四边形DEBF 是平行四边形,即可得到答案.【详解】∵四边形ABCD 是矩形,∴AB ∥CD ,AB=CD ,又E 、F 分别是边AB 、CD 的中点,∴DF=BE ,又AB ∥CD ,∴四边形DEBF 是平行四边形,∴DE=BF .考点:1.矩形的性质;2.全等三角形的判定.21.在一次数学课外实践活动中,小明所在的学习小组从综合楼顶部B 处测得办公楼底部D 处的俯角是53°,从综合楼底部A 处测得办公楼顶部C 处的仰角恰好是30°,综合楼高24米.请你帮小明求出办公楼的高度.(结果精确到0.1,参考数据tan 370.75︒≈,tan 53 1.33︒≈1.73≈)【答案】办公楼的高度约为10.4米.【解析】【分析】直接利用锐角三角函数关系得出AD 的长,进而得出CD 的高度.【详解】解:根据题意,∠BDA =53°,AB =24,在Rt △BDA 中,tan 53AB AD ︒=,∴AD =241.33,在Rt △ACD 中,∠CAD =30°,∴tan 30CD AD ︒=,∴CD=2424 1.7310.41.33 1.333=⨯≈(米),故办公楼的高度约为10.4米.【点睛】本题考查了解直角三角形-仰角俯角问题,锐角三角函数等知识,解题的关键是灵活应用所学知识解决问题,属于中考常考题型.22.随着我国科技事业不断发展,国产无人机大量进入快递行业.现有A ,B 两种型号的无人机都被用来运送快件,A 型机比B 型机平均每小时多运送20件,A 型机运送700件所用时间与B 型机运送500件所用时间相等,两种无人机平均每小时分别运送多少快件?【答案】A 型机平均每小时运送70件,B 型机平均每小时运送50件【解析】的【分析】设A型机平均每小时运送x件,根据A型机比B型机平均每小时多运送20件,得出B型机平均每小时运送(x-20)件,再根据A型机运送700件所用时间与B型机运送500件所用时间相等,列出方程解之即可.【详解】解:设A型机平均每小时运送x件,则B型机平均每小时运送(x-20)件,根据题意得:70050020 x x=-解这个方程得:x=70.经检验x=70是方程的解,∴x-20=50.∴A型机平均每小时运送70件,B型机平均每小时运送50件.【点睛】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.23.为了弘扬爱国主义精神,某校组织了“共和国成就”知识竞赛,将成绩分为:A(优秀)、B(良好)、C (合格)、D(不合格)四个等级.小李随机调查了部分同学的竞赛成绩,绘制了如下统计图.(1)本次抽样调查的样本容量是_________,请补全条形统计图;(2)已知调查对象中只有两位女生竞赛成绩不合格,小李准备随机回访两位竞赛成绩不合格的同学,请用树状图或列表法求出恰好回访到一男一女的概率;(3)该校共有2000名学生,请你估计该校竞赛成绩“优秀”的学生人数.【答案】(1)100,补全条形统计图见解析;(2)P(恰好回访到一男一女)35=;(3)700人【解析】【分析】(1)根据条形统计图和扇形统计图可知C等级的人数与所占比例,即可求出样本容量,根据B所占百分比求出B等级的人数,再求出D等级的人数即可;(2)画出表格,利用概率公式即可求解;(3)利用样本估计总体的方法求解即可.÷=(人),【详解】解:(1)2525%100⨯(人),B等级的人数为10035%=35---=(人),D等级的人数为:1003535255补全条形统计图如下:;(2)列表如下:男男男女女男男男男男女男女男男男男男男女男女男男男男男男女男女男女男女男女男女女女女男女男女男女女女P(恰好回访到一男一女)123205==;(3)200035%700⨯=(人).【点睛】本题考查条形统计图与扇形统计图综合,从统计图中获取相关信息是解题的关键.24.函数图象是研究函数的重要工具.探究函数性质时,我们经历了列表、描点、连线画出函数图象,然后观察分析图象特征,概括函数性质的过程.请结合已有的学习经验,画出函数284x y x =-+的图象,并探究其性质.列表如下:x...4-3-2-1-01234...y (8)52413a 850b 2-2413-85-…(1)直接写出表中a 、b 的值,并在平面直角坐标系中画出该函数的图象;(2)观察函数284x y x =-+的图象,判断下列关于该函数性质的命题:①当22x -≤≤时,函数图象关于直线y x =对称;②2x =时,函数有最小值,最小值为2-;③11x -<<时,函数y 的值随x 的增大而减小.其中正确的是_________.(请写出所有正确命题的序号)(3)结合图象,请直接写出不等式284x x x >+的解集_________.【答案】(1)2a =,85b =-,画出函数的图象见解析;(2)②;(3)0x <【解析】【分析】(1)把2x =-和1x =分别代入函数解析式,即可求得a 、b 的值,再利用描点法作出图像即可;(2)结合图象可从函数的增减性及对称性进行判断;(3)根据图象求得即可.【详解】解:(1)当2x =-时,()()228282424x a x ⨯-=-=-=+-+,当1x =时,288184145x b x ⨯=-=-=-++,∴2a =,85b =-,画出函数的图象如图:(2)①函数图象关于直线y x =对称,原说法错误;②2x =时,函数有最小值,最小值为2-,原说法正确;③22x -<<时,函数y 的值随x 的增大而减小,则原说法正确.其中正确的是②,③.故答案为:②,③;(3)画出直线y x =,由图象可知:当0x <时,函数284x y x =-+的图象在直线y x =的上方,∴不等式284x x x ->+的解集为0x <.故答案为:0x <.【点睛】本题主要考查一次函数的图象和性质,反比例函数的图象和性质,会用描点法画出函数图象,利用数形结合的思想得到函数的性质是解题的关键.25.如图,点D 在以AB 为直径的⊙O 上,过D 作⊙O 的切线交AB 延长线于点C ,AE CD ⊥于点E ,交⊙O 于点F ,连接AD ,FD .(1)求证:DAE DAC ∠=∠;(2)求证:DF AC AD DC ⋅=⋅;(3)若1sin 4C ∠=,AD =,求EF 的长.【答案】(1)见解析;(2)见解析;(3)EF 6=.【解析】【分析】(1)连接OD ,BD ,由圆的切线的性质结合圆周角定理可求得∠EDA =∠ABD ,再利用等角的余角相等,可证明结论;(2)如图,连接BD 、BF ,利用平行线的性质以及圆周角定理证得∠C =∠ADF ,根据(1)的结论可证明△ADF ~△ACD ,可证明结论;(3)设OA =OD =x ,利用三角函数的定义和勾股定理得到OC =4x ,CD =,AC=5x ,根据相似三角形的判定和性质求解即可.详解】(1)证明:连接OD ,BD ,∵ED 是⊙O 的切线,D 为切点,【∴OD⊥ED,∴∠ODA+∠EDA=90°,∵AB为⊙O的直径,∴∠ADB=90°,∴∠ODA+∠ODB=90°,∴∠ODB=∠EDA,∵OB=OD,∴∠ODB=∠OBD,∴∠EDA=∠ABD,∵AE CD⊥,∴∠E=90°,∴DAE DAC∠=∠(等角余角相等);(2)如图,连接BD、BF,∵AB为⊙O的直径,∴∠AFB=90°,∴BF∥CF,∴∠C=∠ABF=∠ADF,由(2)得DAE DAC∠=∠,∴△ADF~△ACD,∴AD DF AC CD=,∴DF AC AD DC⋅=⋅;(3)过D作DH⊥AB于H,连接OD,BD,的设OA =OD =x ,在Rt △ODC 中,1sin 4OD C OC ==,∴OC =4x ,则CD=,AC =OA +OC =5x ,由(2)得DF AC AD DC ⋅=⋅,即DF ==,∵∠C +∠DOC =90°,∠ODH +∠DOH =90°,∴∠ODH =∠C ,在Rt △ODH 中,1sin 4OH ODH OD ∠==,∴OH =14x ,∴DHx =,由(1)得DAE DAC ∠=∠,DH =DEx ,∵∠EFD =∠ABD (圆内接四边形外角等于内对角),由(1)得∠EDA =∠ABD ,∴∠EFD =∠EDA ,∴△EAD ~△EDF ,∴ED AD EF DF ==∴EF 34x =,在Rt △DEF 中,222EF DE DF +=,即(22234x x ⎫⎛⎫+=⎪ ⎪⎪⎝⎭⎭,解得:8x =,∴EF 3864=⨯=.【点睛】本题考查了切线的性质定理,也考查了相似三角形的判定和性质,平行线的判定和性质,解直角三角形,正确的理解题意是解题的关键.26. 如图,抛物线(1)()y x x a =+-(其中1a >)与x 轴交于A 、B 两点,交y 轴于点C .(1)直接写出OCA ∠的度数和线段AB 的长(用a表示);(2)若点D 为ABC 的外心,且BCD △与ACO △:4,求此抛物线的解析式;(3)在(2)的前提下,试探究抛物线(1)()y x x a =+-上是否存在一点P ,使得CAP DBA ∠=∠?若存在,求出点P 的坐标;若不存在,请说明理由.【答案】(1)∠OCA =45°,AB =a +1;(2)2y x x 2=--;(3)存在,P 1(12-,54-),P 2(1,-2).【解析】【分析】(1)根据二次函数解析式可得A (a ,0),C (0,-a ),B (-1,0),即可得出OA =OB =a ,OB =1,即可证明△OCA 是等腰直角三角形,可得∠OCA =45°,根据线段的和差关系可表示AB 的长;(2)如图,作△ABC 的外接圆⊙D ,根据等腰直角三角形的性质可得AC ,利用两点间距离公式可用a 表示出BC 的长,根据圆周角定理可得∠D =2∠OAC =90°,可得△DBC 是等腰直角三角形,即可证明△DBC ∽△OCA ,根据相似三角形周长之比等于相似比列方程求出a 值即可得答案;(3)如图,过点D 作DH ⊥AB 于H ,过点C 作AC 的垂线,交x 轴于F ,过点O 作OG ⊥AC 于G ,连接AP 交CF 于E ,可得△OCF 是等腰直角三角形,利用待定系数法可得直线CF的解析式,根据外心的定义及等腰直角三角形的性质可求出点D 坐标,即可得出BH 、DH 的长,根据CAP DBA ∠=∠,∠BHD =∠ACE =90°可证明△BHD ∽△ACE ,根据相似三角形的性质可求出CE 的长,根据两点间距离公式可得点E 坐标,利用待定系数法可得直线AE 解析式,联立直线AE 与抛物线的解析式求出点P 坐标即可得答案.【详解】(1)∵抛物线(1)()y x x a =+-(其中1a >)与x 轴交于A 、B 两点,交y 轴于点C .∴当x =0时,y =-a ,当y =0时,(1)()0x x a +-=,解得:11x =-,2x a =,∴A (a ,0),C (0,-a ),B (-1,0),∴OB =1,OA =OC =a ,∴△OCA 是等腰直角三角形,∴∠OCA =45°,AB =OA +OB =a +1.(2)如图,作△ABC 的外接圆⊙D ,∵点D 为ABC 的外心,∴DB =DC ,∵△OCA 是等腰直角三角形,OA =a ,∴∠OAC =45°,AC ,∵∠BDC 和∠BAC 是 BC所对的圆心角和圆周角,∴∠BDC =2∠BAC =90°,∴∠DBC =45°,∴∠DBC =∠OAC ,∴△DBC ∽△OCA ,∵BCD △与ACO △4,∴BC AC ==解得:2a =±,经检验:2a =±是原方程的根,∵1a >,∴a=2,∴抛物线解析式为:(1)(2)y x x =+-=22x x --.(3)如图,过点D 作DH ⊥AB 于H ,过点C 作AC 的垂线,交x 轴于F ,过点O 作OG ⊥AC 于G ,连接AP 交CF 于E ,∵a =2,∴C (0,-2),A (2,0),AC =∵∠OCA =45°,∴∠OCF =45°,∴△OCF 是等腰直角三角形,∴F (-2,0),设直线CF 的解析式为y =kx +b ,∴202k b b -+=⎧⎨=-⎩,解得:12k b =-⎧⎨=-⎩,∴直线CF 的解析式为2y x =--,∵△OCA 是等腰直角三角形,OG ⊥AC ,∴OG 所在直线为AC 的垂直平分线,点G 为AC 中点,∵点D 为ABC 的外心,∴点D 在直线OG 上,∵A (2,0),C (0,-2),∴G (1,-1),设直线OG 的解析式y =mx ,∴m =-1,∴直线OG 解析式y =-x ,∵点D 为△ABC 的外心,∴点D 在AB 的垂直平分线上,∴点D 的横坐标为122-+=12,把x =12代入y =-x 得y =-12,∴D (12,-12),∴DH =12,BH =1+12=32,∵CAP DBA ∠=∠,∠BHD =∠ACE =90°,∴△BHD ∽△ACE ,∴DH BH CE AC =,即12CE =解得:CE =,∵点E 在直线CF 上,∴设点E 坐标为(n ,-n -2),∴CE,解得:23n =±,∴1E (23-,43-),2E (23,83-),设直线AE 1的解析式为y =k 1x+b 1,∴1111243320k b k b ⎧-+=-⎪⎨⎪+=⎩,解得:11121k b ⎧=⎪⎨⎪=-⎩,∴直线AE 1的解析式为112y x =-,同理:直线AE 2的解析式为24y x =-,的联立直线AE 1解析式与抛物线解析式得21122y x y x x ⎧=-⎪⎨⎪=--⎩,解得:111254x y ⎧=-⎪⎪⎨⎪=-⎪⎩,1220x y =⎧⎨=⎩(与点A 重合,舍去),∴P 1(12-,54-),联立直线AE 2解析式与抛物线解析式得2242y x y x x =-⎧⎨=--⎩,解得:1112x y =⎧⎨=-⎩,2220x y =⎧⎨=⎩(与点A 重合,舍去),∴P 2(1,-2).综上所述:存在点P ,使得CAP DBA ∠=∠,点P 坐标为P 1(12-,54-),P 2(1,-2).【点睛】本题考查二次函数的综合,考查了二次函数的性质、待定系数法求一次函数解析式、圆周角定理、等腰三角形的性质、相似三角形的判定与性质,熟练掌握相关性质及定理是解题关键.。
2021年中考真题精品解析数学(四川自贡卷)精编word版(解析版)
一、选择题(共10个小题,每小题4分,共40分;在每题给出的四个选项中,只有一项是符合题目要求的)1.计算1﹣(﹣1)的结果是( )A .2B .1C .0D .﹣2 【答案】A . 【解析】试题分析:1﹣(﹣1)=1+1=2.故选A . 考点:有理数的减法.2.将0.00025用科学记数法表示为( )A .42.510⨯ B .40.2510-⨯ C .42.510-⨯ D .42510-⨯ 【答案】C . 【解析】试题分析:0.00025=42.510-⨯,故选C . 考点:科学记数法—表示较小的数.3.下列根式中,不是最简二次根式的是( )A .10B .8C .6D .2 【答案】B .考点:最简二次根式.4.多项式24a a -分解因式,结果正确的是( )A .()4a a -B .()()22a a +-C .()()22a a a +-D .()224a -- 【答案】A . 【解析】试题分析:24a a -=()4a a -,故选A .考点:因式分解-提公因式法.5.如图,⊙O 中,弦AB 与CD 交于点M ,∠A =45°,∠AMD =75°,则∠B 的度数是( )A .15°B .25°C .30°D .75° 【答案】C . 【解析】试题分析:∵∠A =45°,∠AMD =75°,∴∠C =∠AMD ﹣∠A =75°﹣45°=30°,∴∠B =∠C =30°,故选C . 考点:圆周角定理;三角形的外角性质.6.若21440a b b -+-+=,则ab 的值等于( ) A .﹣2 B .0 C .1 D .2 【答案】D .考点:非负数的性质:算术平方根;非负数的性质:偶次方.7.已知关于x 的一元二次方程()2220x x m +--=有实数根,则m 的取值范围是( )A .1m >B .1m <C .1m ≥D .1m ≤ 【答案】C . 【解析】考点:根的判别式.8.如图是几何体的俯视图,所表示数字为该位置小正方体的个数,则该几何体的正视图是( )A .B .C .D .【答案】B . 【解析】试题分析:主视图,如图所示:.故选B .考点:由三视图判断几何体;简单组合体的三视图.9.圆锥的底面半径为4cm ,高为5cm ,则它的表面积为( )A .12πcm 2B .26πcm 2C .41πcm 2D .(44116)π+cm 2 【答案】D .考点:圆锥的计算;压轴题.10.二次函数=++2y ax bx c 的图象如图,反比例函数=ay x与正比例函数=y bx 在同一坐标系的大致图象是( )A .B .C .D .【解析】试题分析:由=++2y ax bx c 的图象开口向下,得a <0.由图象,得2ba->0.由不等式的性质,得b >0.a <0,=ay x图象位于二四象限,b >0,y =bx 图象位于一三象限,故选C . 考点:二次函数的性质;正比例函数的图象;反比例函数的图象.二、填空题(共5个小题,每题4分,共20分)11.若代数式1x x-有意义,则x 的取值范围是 . 【答案】x ≥1.考点:二次根式有意义的条件;分式有意义的条件.【答案】7. 【解析】试题分析:根据题意得:180(n ﹣2)=900,解得:n =7.故答案为:7. 考点:多边形内角与外角.13.一只昆虫在如图所示的树枝上寻觅食物,假定昆虫在每个岔路口都会随机选择一条路径,则它获取食物的概率是 .【答案】13. 【解析】考点:列表法与树状图法.14.如图,把Rt △ABC 放在直角坐标系内,其中∠CAB =90°,BC =5,点A 、B 的坐标分别为(1,0)、(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为cm2.【答案】16.即线段BC扫过的面积为16cm2.故答案为:16.考点:一次函数综合题;压轴题.【答案】3,2.考点:锐角三角函数的定义;相似三角形的判定与性质;网格型.三、解答题(共2个题,每小题8分,共16分)16.计算:()101sin 6012cos30312-⎛⎫+--+- ⎪⎝⎭.【答案】2. 【解析】试题分析:根据负整数指数幂,零指数幂,特殊角的三角函数值,绝对值的定义化简即可. 试题解析:原式=3212312+-⨯+-=2. 考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值. 17.解不等式组12231x x x -<⎧⎨+≥-⎩.请结合题意填空,完成本题的解答.(1)解不等式①,得: ; (2)解不等式②,得: ;(4)不等式组的解集为: .【答案】(1)x <3;(2)x ≥-4;(3)答案见解析;(4)-4≤x <3.考点:解一元一次不等式组;在数轴上表示不等式的解集.四、解答题((共2个题,每小题8分,共16分)18.某厂为了丰富大家的业余生活,组织了一次工会活动,准备一次性购买若干钢笔和笔记本(每支钢笔的价格相同,每本笔记本的价格相同)作为奖品.若购买2支钢笔和3本笔记本共需62元,购买5支钢笔和1本笔记本共需90元.问购买一支钢笔和一本笔记本各需多少元?【答案】一支钢笔需16元,一本笔记本需10元.【解析】试题分析:首先用未知数设出买一支钢笔和一本笔记本所需的费用,然后根据关键语“购买2支钢笔和3本笔记本共需62元,购买5支钢笔和1本笔记本共需90元”,列方程组求出未知数的值,即可得解.试题解析:设一支钢笔需x元,一本笔记本需y元,由题意得:2362590x yx y+=⎧⎨+=⎩,解得:1610xy=⎧⎨=⎩.答:一支钢笔需16元,一本笔记本需10元.考点:二元一次方程组的应用.19.某国发生8.1级强烈地震,我国积极组织抢险队赴地震灾区参与抢险工作,如图,某探测对在地面A、B两处均探测出建筑物下方C处由生命迹象,已知探测线与地面的夹角分别是25°和60°,且AB=4米,求该生命迹象所在位置C的深度.(结果精确到1米,参考数据:sin25°≈0.4,cos25°≈0,9,tan25°≈0.5,31.7)【答案】3.即生命迹象所在位置C的深度约为3米.考点:解直角三角形的应用.五、解答题((共2个题,每小题10分,共20分)20.我市开展“美丽自宫,创卫同行”活动,某校倡议学生利用双休日在“花海”参加义务劳动,为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制了不完整的统计图,根据图中信息回答下列问题:(1)将条形统计图补充完整;(2)扇形图中的“1.5小时”部分圆心角是多少度?(3)求抽查的学生劳动时间的众数、中位数.【答案】(1)答案见解析;(2)144°;(3)抽查的学生劳动时间的众数为1.5小时、中位数为1.5小时.试题解析:(1)根据题意得:30÷30%=100(人),∴学生劳动时间为“1.5小时”的人数为100﹣(12+30+18)=40(人),补全统计图,如图所示:(2)根据题意得:40%×360°=144°,则扇形图中的“1.5小时”部分圆心角是144°;21.如图,⊙O是△ABC的外接圆,AC为直径,弦BD=BA,BE⊥DC交DC的延长线于点E,求证:(1)∠1=∠BAD;(2)BE是⊙O的切线.【答案】(1)证明见解析;(2)证明见解析.(2)连结OB ,OD ,在△ABO 和△DBO 中,∵AB =BD ,BO =BO ,OA =OD ,∴△ABO ≌△DBO (SSS ),∴∠DBO =∠ABO ,∵∠ABO =∠OAB =∠BDC ,∴∠DBO =∠BDC ,∴OB ∥ED ,∵BE ⊥ED ,∴EB ⊥BO ,∴BE 是⊙O 的切线.考点:切线的判定. 六、解答题(本题12分)22.如图,已知A (﹣4,n ),B (2,﹣4)是一次函数y kx b =+和反比例函数my x=的图象的两个交点. (1)求一次函数和反比例函数的解析式; (2)观察图象,直接写出方程0mkx b x+-=的解; (3)求△AOB 的面积;(4)观察图象,直接写出不等式0mkx b x+-<的解集.【答案】(1)y =﹣x ﹣2,8y x =-;(2)14x =-,22x =;(3)6;(4)﹣4<x <0或x >2. (4)观察函数图象得到当x <﹣4或0<x <2时,一次函数的图象在反比例函数图象上方,即使0m kx b x+-<. 试题解析:(1)∵B (2,﹣4)在m y x =上,∴m =﹣8,∴反比例函数的解析式为8y x =-. ∵点A (﹣4,n )在8y x=-上,∴n =2,∴A (﹣4,2). ∵y =kx +b 经过A (﹣4,2),B (2,﹣4),∴4224k b k b -+=⎧⎨+=-⎩.解得:12k b =-⎧⎨=-⎩,∴一次函数的解析式为y =﹣x ﹣2. (2):∵A (﹣4,n ),B (2,﹣4)是一次函数y =kx +b 的图象和反比例函数m y x =的图象的两个交点,∴方程0m kx b x+-=的解是14x =-,22x =. (3)∵当x =0时,y =﹣2,∴点C (0,﹣2),∴OC =2,∴S △AOB =S △ACO +S △BCO =12×2×4+12×2×2=6; (4)不等式0m kx b x+-<的解集为﹣4<x <0或x >2. 考点:反比例函数与一次函数的交点问题;反比例函数的性质.七、解答题(本题12分)23.矩形ABCD 一条边AD =8,将矩形ABCD 折叠,使得点B 落在CD 边上的点P 处.(1)如图1,已知折痕与边BC 交于点O ,连接AP 、OP 、OA .若△OCP 与△PDA 的面积比为1:4,求边CD的长.(2)如图2,在(1)的条件下,擦去AO和OP,连接BP.动点M在线段AP上(不与点P、A重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP于点E.试问动点M、N在移动的过程中,线段EF的长度是否发生变化?若不变,求出线段EF的长度;若变化,说明理由.【答案】(1)10;(2)25.(2)作MQ∥AN,交PB于点Q,求出MP=MQ,BN=QM,得出MP=MQ,根据ME⊥PQ,得出EQ=12 PQ,根据∠QMF=∠BNF,证出△MFQ≌△NFB,得出QF=12QB,再求出EF=12PB,由(1)中的结论求出PB的长,最后代入EF=12PB即可得出线段EF的长度不变.(2)作MQ∥AN,交PB于点Q,如图2,∵AP=AB,MQ∥AN,∴∠APB=∠ABP=∠MQP,∴MP=MQ,∵BN=PM,∴BN=QM.∵MP=MQ,ME⊥PQ,∴EQ=12PQ.∵MQ∥AN,∴∠QMF=∠BNF,在△MFQ和△NFB中,∵∠QFM=∠NFB,∠QMF=∠BNF,MQ=BN,∴△MFQ≌△NFB(AAS),∴QF=12 QB,∴EF=EQ+QF=12PQ+12QB=12PB,由(1)中的结论可得:PC=4,BC=8,∠C=90°,∴PB228445∴EF=12PB=25∴在(1)的条件下,当点M、N在移动过程中,线段EF的长度不变,它的长度为25考点:翻折变换(折叠问题);矩形的性质;相似形综合题.八、解答题(本题14分)24.抛物线()240y x ax b a =-++>与x 轴相交于O 、A 两点(其中O 为坐标原点),过点P (2,2a )作直线PM ⊥x 轴于点M ,交抛物线于点B ,点B 关于抛物线对称轴的对称点为C (其中B 、C 不重合),连接AP 交y 轴于点N ,连接BC 和PC .(1)32a =时,求抛物线的解析式和BC 的长; (2)如图1a >时,若AP ⊥PC ,求a 的值; (3)是否存在实数a ,使12AP PN =,若存在,求出a 的值;若不存在,请说明理由.【答案】(1)26y x x =-+,BC =2;(2)22(3)34. 【解析】试题分析:(1)由抛物线()240y x ax b a =-++>与x 轴相交于O 、A 两点(其中O 为坐标原点),得到b =0,故抛物线为24y x ax =-+,把32a =代入,得到P (2,3)和26y x x =-+,由对称轴x =2,即可得到BC 的长; (2)把x =2代入24y x ax =-+,得到B (2,84a -),设C (x , 84a -),由对称轴2x a =,得到C (42a -,84a -),由24y x ax =-+,得到A (4a ,0),由AP ⊥PC ,得到1AP PC k k ⋅=-,即26412444a a a a -⋅=---,解方程即可得到结论;(2)当x =2时,24y x ax =-+=84a -,∴B (2,84a -),设C (x , 84a -),∵对称轴2x a =,∴222x a +=,∴42x a =-,∴C (42a -, 84a -),∵24y x ax =-+,∴A (4a ,0),∵AP ⊥PC ,∴1AP PC k k ⋅=-,∴26412444a a a a -⋅=---,整理得:2420a a -+=,解得:22a =1a >,∴22a = (3)∵A (4a ,0),∴OA =4a ,∵P (2,2a ),∴OM =2,∴AM =4a -2,∵PM ∥ON ,∴12AP AM PN OM ==, ∴42122a -=,解得:34a =. 考点:二次函数综合题;存在型;综合题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四川省自贡市初2021届毕业学生考试数学满分:150分 时间:120分钟本试卷分为第I 卷(选择题)和第II 卷(非选择题两部分)第I 卷 选择题(共48分)一.选择题(共12个小题,每小题4分,共48分,在每题给出的四个选项中,只有一项是符合题目要求的)1.自贡恐龙博物馆是世界三大恐龙博物馆之一.今年“五一黄金周”共接待游客8.87万人次,人数88700用科学记数法表示为( )A .50.88710⨯B .38.8710⨯C .48.8710⨯D .388.710⨯2.如图是一个正方体的展开图,把展开图叠成小正方体后,有“迎”字一面的向对面上的字是( )A .百B .党C .年D .喜3.下列运算正确的是( )A .22541a a -=B .23246()a b a b -= C .933a a a ÷= D .222(2)4a b a b -=- 4.下列图形中,是轴对称图形且对称轴条数最多的是( )5.如图,AC 是正五边形ABCDE 的对角线,∠ACD 的度数是( ) A .72° B .36° C .74° D .88°6.学校为了解“阳光体育”活动展开情况,随机调查了50名学生一周参加体育锻炼时间,数据如下表所示:这些学生一周参加体育锻炼时间的众数、中位数分别是( ) A .16,15 B .11,15 C .8,8.5 D .8,97.已知23120,x x --=则代数式2395x x -++的值是( ) A .31 B .-31 C .41 D .-418.如图,A (8,0),C (-2,0),以点A 为圆心,AC 长为半径画弧,交y 轴正半轴于点B ,则点B 的坐标为( )A .(0,5)B .(5,0)C .(6,0)D .(0,6)9.已知蓄电池的电压为定值,使用蓄电池时,电流I (单位:A )与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示,下列说法正确的是( ) A .函数解析式为13I R=B .蓄电池的电压是18VC .当10I ≤A 时, 3.6R ≥ΩD .当6R =Ω时,4I A =时10.如图,AB 为⊙O 的直径,弦CD ⊥AB 于点F ,OE ⊥AC 于点E ,若OE =3,OB =5,则CD 的长度是( )A .9.6B .C .D .1011.如图,在正方形ABCD 中,AB =6,M 是AD 边上的一动点,AM :MD =1:2,将△BMA 沿BM 对折至△BMN ,连接DN ,则DN 的长是( )A .52B C .3 D12.如图,直线22y x =-+与坐标轴交于A 、B 两点,点P 是线段AB 上的一个动点,过点P 作y 轴的平行线交直线3y x =-+于点Q ,△OPQ 绕点O 顺时针旋转45°,边PQ 扫过区域(阴影部分)面积的最大值是( )A .23πB .12π C .1116π D .2132π第II 卷(非选择题 共102分)二、填空题(共6个小题,每小题4分,共24分)13.请写出一个满足不等式7x >的整数解.14.某中学规定学生的学期体育成绩满分为100,其中体育课外活动占30%,期末考试成绩占70%.小彤的这两项成绩依次是90,80.则小彤这学期的体育成绩是. 15.化简:22824a a -=--. 16.如图,某学校“桃李餐厅”把WIFI 密码做成了数学题.小红在餐厅就餐时,思索了一会儿,输入密码,顺利地连接到了“桃李餐厅”的网络,那么她输入的密码是.17.如图,△ABC 的顶点均在正方形网格格点上,只用不带尺度的直尺,作出△ABC 角平分线BD (不写作法,保留作图痕迹)18.当自变量13x -≤≤时,函数||y x k =-(k 为常数)的最小值为3k +,则满足条件的k 的值为.三.解答题(共8个题,共78分) 19.本题满分(8分)|7|(2-+-.20.(本题满分8分)如图,在矩形ABCD 中,E ,F 分别是AB ,CD 的中点.求证:DE =BF21.(本题满分8分)在一次数学课外实践活动中,小明所在的学习小组从综合楼顶部B处测得办公楼底部D处的俯角是53°,从综合楼底部A处测得办公楼顶部C处的仰角恰好是30°,综合楼高24米.请你帮小明求出办公楼的高度(结果精确到0.1,参考数据tan37°≈0.75,tan53°≈1.33,,1.73)22.(本题满分8分)随着我国科技事业的不断发展,国产无人机大量进入快递行业,现有A,B两种型号的无人机都被用来送快递,A型机比B型机平均每小时多运送20件,A型机运送700件所有时间与B型机运送500件所用时间相等,两种无人机平均每小时分别运送多少快件?23.为了弘扬爱国主义精神,某校组织了“共和国成就”知识竞赛,将成绩为:A(优秀)、B (优良)、C(合格)、D(不合格)四个等级.小李随机调查了部分同学的竞赛成绩,绘制成了如下统计图(1)本次抽样调查的样本容量是,请补全条形统计图;(2)已知调查对象中只有两位女生竞赛成绩不合格,小李准备随机回访两位竞赛成绩不合格的同学,请用树状图或列表法求出恰好回访到一男一女的概率;(3)该校共有2000名学生,请你估计该校竞赛成绩“优秀”的学生人数.24.函数图象是研究函数的重要工具.探究函数性质时,我们经历了列表、描点、连线画出函数图象,然后观察分析图象特征,概括函数性质的过程.结合自己已有的学习经验,画出函数284xy x =-+的图象,并探究其性质. 列表如下:(1)直接写出表中a ,b 的值,并在平面直角坐标系中画出该函数的图象; (2)观察函数284xy x =-+的图象,判断下列关于该函数性质的命题: ①当22x -≤≤时,函数图象关于直线y x =对称; ②2x =时,函数有最小值,最小值为-2 ③11x -<<时,函数y 的值随x 的增大而减小. 其中正确的是(请写出所有正确命题的番号) (3)结合图象,请直接写出不等式2844xx >+的解集为.25.(本题满分12分)如图,点D 在以AB 为直径的⊙O 上,过D 作⊙O 的切线交AB 的延长线于点C ,AE ⊥CD 于点E ,交⊙O 于点F ,连接AD ,FD . (1)求证:∠DAE =∠DAC ; (2)求证:DF ·AC =AD ·DC ;(3)若sin ∠C =14,AD =,求EF 的长.26.(本题满分14分)如图,抛物线(x 1)(x a)y =+-(其中1a >)与x 轴交于A 、B 两点,交y 轴于点C . (1)直接写出∠OCA 的度数和线段AB 的长(用a 表示);(2)若点D 为△ABC 的外心,且△BCD 与△ACO 4,求此抛物线的解析式;y=+-上是否存在一点P,使得(3)在(2)的前提下,试探究抛物线(x1)(x a)∠CAP=∠DBA?若存在,求出点P的坐标;若不存在,请说明理由.参考答案与解析一.选择题(共12个小题,每小题4分,共48分,在每题给出的四个选项中,只有一项是符合题目要求的)1.自贡恐龙博物馆是世界三大恐龙博物馆之一.今年“五一黄金周”共接待游客8.87万人次,人数88700用科学记数法表示为( )A .50.88710⨯ B .38.8710⨯ C .48.8710⨯ D .388.710⨯【解析】科学记数法表示为a×10N,其中1≤|a |<10,故答案为C2.如图是一个正方体的展开图,把展开图叠成小正方体后,有“迎”字一面的向对面上的字是( )A .百B .党C .年D .喜【解析】根据正方体展开图可得,“迎”与“党”相对,故答案为B 3.下列运算正确的是( )A .22541a a -=B .23246()a b a b -= C .933a a a ÷= D .222(2)4a b a b -=-【解析】A 正确答案为a 2,B 选项正确,C 选项答案为a 6,D 选项为a 2−4ab +4b2,故答案为B4.下列图形中,是轴对称图形且对称轴条数最多的是( )【解析】A 选项,对称轴1条,B 选项和C 选项为中心对称图形,D 选项对称轴两条,故答案为D5.如图,AC 是正五边形ABCDE 的对角线,∠ACD 的度数是( ) A .72° B .36° C .74° D .88°【解析】正5边形每一个内角为(n 2)180108n-︒=︒,∵AB =BC ,∴∠ACB =36°,∴∠ACD =72°,故答案为A6.学校为了解“阳光体育”活动展开情况,随机调查了50名学生一周参加体育锻炼时间,数据如下表所示:这些学生一周参加体育锻炼时间的众数、中位数分别是( ) A .16,15 B .11,15 C .8,8.5 D .8,9【解析】众数是出现次数最多的数,故众数为8,中位数即将数据排序后,中间两个数(8和9)的平均数8.5,故答案为C7.已知23120,x x --=则代数式2395x x -++的值是( ) A .31 B .-31 C .41 D .-41【解析】2223=12393639531x x x x x x -⇒-+=-⇒-++=-,故答案为B8.如图,A (8,0),C (-2,0),以点A 为圆心,AC 长为半径画弧,交y 轴正半轴于点B ,则点B 的坐标为( )A .(0,5)B .(5,0)C .(6,0)D .(0,6)【解析】AB =AC =10,AO =8,在Rt △AOB 中,根据勾股定理可得OB =6,故B (0,6),故答案为D9.已知蓄电池的电压为定值,使用蓄电池时,电流I (单位:A )与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示,下列说法正确的是( ) A .函数解析式为13I R=B .蓄电池的电压是18VC .当10I ≤A 时, 3.6R ≥ΩD .当6R =Ω时,4I A =时【解析】函数解析式为36y x=故A 选项错误,蓄电池电压是49=36⨯V ,D 选项,当6R =Ω时,6I A =,故答案为C10.如图,AB 为⊙O 的直径,弦CD ⊥AB 于点F ,OE ⊥AC 于点E ,若OE =3,OB =5,则CD 的长度是( )A .9.6B .C .D .10【解析】在Rt △ACF 中,sin ∠BAC =CFAC ,在Rt △AOE 中,sin ∠BAC =OEOA =35,故CD 的长度为245=4.8,故答案为A11.如图,在正方形ABCD 中,AB =6,M 是AD 边上的一动点,AM :MD =1:2,将△BMA 沿BM 对折至△BMN ,连接DN ,则DN 的长是( )A .52B C .3 D【解析】过N 作直线∥AB ,交AD 于H ,交BC 于G ,由翻折性质可知△AMB ≌△NMB ,∴∠BNM =90°,进而可得△MNH ∽△NBG ,∴MNNB =NH BG =13,设NH =y ,则BG =3y ,MH =3y -2,在Rt △MHN 中,MH 2+NH 2=MN 2,∴(3y −2)2+y 2=22,∴y =65,∴DH =CG =125,在Rt △DNH 中,DH²+NH 2=DN 2,∴DN =6√55,故答案为D12.如图,直线22y x =-+与坐标轴交于A 、B 两点,点P 是线段AB 上的一个动点,过点P 作y 轴的平行线交直线3y x =-+于点Q ,△OPQ 绕点O 顺时针旋转45°,边PQ 扫过区域(阴影部分)面积的最大值是( ) A .23π B .12π C .1116π D .2132π【解析】由旋转性质可知,该阴影部分的的面积等于以OQ 为大圆半径R ,OP 为小圆半径r 且圆心角为45°的扇形环的面积,即S 阴影=S 环=πR 28−πr 28,由题意可得,R 2=x 2+(−x +3)²r 2=x 2+(−2x +2)²,且0<x <1,∴R 2−r 2=−3(x −3)2+163,当x =13时,取得最大值163,故阴影部分面积最大值为2π3,故答案选A .第II 卷(非选择题 共102分)二、填空题(共6个小题,每小题4分,共24分)13.请写出一个满足不等式7x >的整数解.【解析】x >7−√2,故答案很多,最小整数为6,只需填6以上整数即可,答案不唯一 14.某中学规定学生的学期体育成绩满分为100,其中体育课外活动占30%,期末考试成绩占70%.小彤的这两项成绩依次是90,80.则小彤这学期的体育成绩是. 【解析】加权平均数计算方法为90×30%+80×70%=83,故答案为83 15.化简:22824a a -=--. 【解析】2(a+2)a 2−4−8a 2−4=2(a−2)(a+2)(a−2)=2a+2,故答案为2a+216.如图,某学校“桃李餐厅”把WIFI 密码做成了数学题.小红在餐厅就餐时,思索了一会儿,输入密码,顺利地连接到了“桃李餐厅”的网络,那么她输入的密码是.【解析】根据观察a ∗b ⊕6=ac ,bc ,c (a +b )运算的结果进行的顺序排列,故密码为244872. 17.如图,△ABC 的顶点均在正方形网格格点上,只用不带尺度的直尺,作出△ABC 角平分线BD (不写作法,保留作图痕迹)【解析】根据网格图,可算出AB =5,所以在BC 延长线上取长度为5的格点D ,连接AD ,E 为AD 中点,利用等腰三角形三线合一的性质可推出BE 即为∠ABC 的角平分线18.当自变量13x -≤≤时,函数||y x k =-(k 为常数)的最小值为3k +,则满足条件的k 的值为.【解析】当k ≥3时,x =3时函数取得最小值,∴k -3=k +3,不成立,当k ≤-1时,x =-1取得最小值,此时-k -1=k +3,∴k =-2满足题意,当-1<k <3时,x =k 时取得最小值,∴k +3=0,k =-3不满足题意,综上所述,k =-2三.解答题(共8个题,共78分) 19.本题满分(8分)|7|(2-+-.【解析】5-7+1=-120.(本题满分8分)如图,在矩形ABCD 中,E ,F 分别是AB ,CD 的中点.求证:DE =BF【解析】证明:∵四边形ABCD 为矩形,∴DC ∥AB 且DC =AB ,∵E 、F 分别为AB 、CD 的中点,∴BE =12AB ,DF =12CD ,∴DF ∥BE 且DF =BE ,∴四边形EBFD 为平行四边形,∴DE =BF .21.(本题满分8分)在一次数学课外实践活动中,小明所在的学习小组从综合楼顶部B 处测得办公楼底部D 处的俯角是53°,从综合楼底部A 处测得办公楼顶部C 处的仰角恰好是30°,综合楼高24米.请你帮小明求出办公楼的高度(结果精确到0.1,参考数据tan 37°≈0.75,tan 53°≈1.33,,1.73)【解析】∵在B 处测得D 处的俯角为53°,∴∠BDA =53°,在Rt △BAD 中,tan ∠BDA =BAAD ,∴AD =24tan53°,在Rt △CAD 中,tan ∠CAD =CDAD ,且∠CAD =30°,CD =√3∴10.4CD =≈米22.(本题满分8分)随着我国科技事业的不断发展,国产无人机大量进入快递行业,现有A,B两种型号的无人机都被用来送快递,A型机比B型机平均每小时多运送20件,A型机运送700件所有时间与B型机运送500件所用时间相等,两种无人机平均每小时分别运送多少快件?【解析】设B型机每小时运送x件,则A型机每小时运送x+20件根据题意可得700x+20=500x,解之可得x=50,经检验x=50是方程的根,也符合实际意义,∴A型机每小时运送70件,B型机每小时运送50件23.为了弘扬爱国主义精神,某校组织了“共和国成就”知识竞赛,将成绩为:A(优秀)、B (优良)、C(合格)、D(不合格)四个等级.小李随机调查了部分同学的竞赛成绩,绘制成了如下统计图(1)本次抽样调查的样本容量是,请补全条形统计图;(2)已知调查对象中只有两位女生竞赛成绩不合格,小李准备随机回访两位竞赛成绩不合格的同学,请用树状图或列表法求出恰好回访到一男一女的概率;(3)该校共有2000名学生,请你估计该校竞赛成绩“优秀”的学生人数.【解析】(1)100,补全图形如下:(2)作出树状图如下所示:随机回访两位竞赛成绩合格的同学共20种情况,其中一男一女共12种情况,所以恰好回访到一男一女的概率为1220=35(3)2000×0.35=700人,估计该校竞赛成绩“优秀”人数为700人24.函数图象是研究函数的重要工具.探究函数性质时,我们经历了列表、描点、连线画出函数图象,然后观察分析图象特征,概括函数性质的过程.结合自己已有的学习经验,画出函数284xy x =-+的图象,并探究其性质. 列表如下:(3)直接写出表中a ,b 的值,并在平面直角坐标系中画出该函数的图象;(4)观察函数284xy x =-+的图象,判断下列关于该函数性质的命题:①当22x -≤≤时,函数图象关于直线y x =对称; ②2x =时,函数有最小值,最小值为-2 ③11x -<<时,函数y 的值随x 的增大而减小. 其中正确的是(请写出所有正确命题的番号) (3)结合图象,请直接写出不等式2844xx >+的解集为.【解析】(1)作出函数图象如图所示(2)②③ (3)将不等式284x x x >+两边同时乘以-1可得284xx x -<-+可得不等式的解集为2x <-或02x <<25.(本题满分12分)如图,点D 在以AB 为直径的⊙O 上,过D 作⊙O 的切线交AB 的延长线于点C ,AE ⊥CD 于点E ,交⊙O 于点F ,连接AD ,FD . (4)求证:∠DAE =∠DAC ; (5)求证:DF ·AC =AD ·DC ;(6)若sin ∠C =14,AD =,求EF 的长.【解析】(1)连接OD ,∵DC 为⊙O 的切线,∴OD ⊥CD ,即∠ODC =90° ∵AE ⊥CD ,∴∠AED =90°,∴∠AED =∠ODC =90°,∴AE ∥OD ,∴∠ODA =∠DAE 又∵OD =OA =r ,∴∠ODA =∠DAC ,∴∠DAE =∠DAC(2)证明:连接BD ,设∠DAE =α,又(1)可知∠CAD =∠DAE =α,∵AB 为⊙O 的直径,∴∠ADB =90°,在Rt △ADB 中,∠BAD +∠ABD =90°,∴∠ABD =90°-α,又∵四边形ABDF 为⊙O 的内接四边形,∴∠AFD +∠ABD =180°,∴∠AFD =90°+α ∵∠CDO =90°,∴∠ADC =90°+α在△AFD 和△ADC 中有∠AFD =∠ADC ,∠F AD =∠DAC ,∴△AFD ∽△ADC ∴DF DC=AD AC,即DF ·AC =AD ·DC(3)设OD =x ,在Rt △COD 中sin ∠C =14,∴OC =4x ,根据勾股定理可得CD =√15x ,∵OA 、OB 、OD 均为⊙O 的半径,∴OA =x ,∵OD ∥AE ,∴△COD ∽△CAE ,∴ODAE =OCCA =CDCE ,∴AE =54x ,CE =5√154x ,故DE =√154x . 由(2)可知△AFD ∽△ADC ,∴AD AC=AF AD,且AD =4√10,可得AF =32x在Rt △ADE 中,AE 2+DE 2=AD 2,∴2516x 2+1516x 2=160,∴x =8 ∴AF =32x=4,AE =54x =10,∴EF =AE -AF =10-4=6 26.(本题满分14分)如图,抛物线(x 1)(x a)y =+-(其中1a >)与x 轴交于A 、B 两点,交y 轴于点C . (4)直接写出∠OCA 的度数和线段AB 的长(用a 表示);(5)若点D 为△ABC 的外心,且△BCD 与△ACO 4,求此抛物线的解析式;(6)在(2)的前提下,试探究抛物线(x 1)(x a)y =+-上是否存在一点P ,使得∠CAP =∠DBA ?若存在,求出点P 的坐标;若不存在,请说明理由.【解析】(1)A (a ,0),C (0,-a ),可得OC =OA =a ,∴△AOC 为等腰直角三角形,∴∠OCA =45°, AB =a +1.(2)∵D 为△ABC 的外心,∴∠BAC 为⊙D 中弧BC 所对的圆周角,∠BDC 为弧BC 所对圆心角,∴∠BDC =2∠BAC =90°,∴△BDC 和△AOC 均为等腰直角三角形,故△BCD ∽△ACO∴△BCD 与△ACO 的周长之比等于相似比,记⊙D 半径为R ,∴Ra =√104,∴R =√104a ∵在等腰直角△BCD 中,BC =√1+a 2,且BC =√2R ,∴R =√1+a 2√2∴√1+a 2√2=√104a ,解得a 2=4,又a >1,∴a =2,,故二次函数的解析式为y =x 2−x −2(3)当P 在AC 下方时,∠CBD =∠CAD =45°,且∠CAP =∠DBA ,∴∠P AO =∠CBO . tan ∠CBO =2,作PF ⊥x 轴于F ,∴2PFAF=,设AF =m ,则PF =2m ,∴(2,2)P m m --代入二次函数可得1m =,∴(1,2)P -当P 在AC 上方时,作(1,2)-关于直线2y x =-对称点(0,1)M -,∴直线AM 的方程为112y x =-,联立112(1)(2)y x y x x ⎧=-⎪⎨⎪=+-⎩得1212,2x x ==-,∴此时P 点横坐标为12-,将12-代入抛物线可得,P 点纵坐标为54-,所以此时P 15(,)24-- 综上所述,存在P 点的坐标为(1,2)-和15(,)24--。