第二章系统模型与系统分析
系统分析第二章系统分析ppt
系统分析第二章系统分析ppt一、模型与模型化简介模型化模型化就是为描述系统的构成和行为,对实体系统的各种因素进行适当筛选,用一定方式(数学、图像等)表达系统实体的方法。
------构模的过程3.模型(化)的地位与作用3.模型(化)的地位与作用地位:4.模型的分类概念模型:通过人们的经验、知识和直觉形成的。
形式上分为思维、字句或描述的。
5.建立模型的一般原则①建立方框图6.建模的基本步骤①明确建模的目的和要求;②对系统进行一般语言描述;③弄清系统中的主要因素及其相互关系;④确定模型的结构;⑤估计模型的参数;⑥实验研究;⑦必要修改。
7.模型化的基本方法(4)老手法:2、系统结构的表达方式二元关系的性质二元关系的集合系统结构的表达方式有向连接图:图的基本的矩阵表示,描述图中各节点两两间邻接的关系,记作A。
矩阵A的元素aij定义:汇点:矩阵A中元素全为零的行所对应的节点。
在可达矩阵中存在两个节点相应的行、列元素值分别完全相同,则说明这两个节点构成回路集,只要选择其中的一个节点即可代表回路集中的其他节点,这样就可简化可达矩阵,称为缩减可达矩阵,记作Mˊ。
(1)区域分解:将系统元素分成相互独立的子系统(2)级位分解:对各子系统元素进行分级(3)提取骨架矩阵(4)画有向图将M分级重新排列实现某一可达矩阵M、具有最小二元关系个数(“1”元素最少)的邻接矩阵叫做M的最小实现二元关系矩阵,即骨架矩阵,记作A’。
骨架矩阵(二)解释结构模型技术(ISM)(InteractiveStructureModeling)1.作用:主要描述系统构成元素之间的关联关系,主要适用于一些宏观问题的定性分析。
2.任务:通过构造解析将复杂的系统分解成条理分明、多级递阶的结构形式(结构图)ISM技术的基本思想:ISM技术的核心:通过各种创造性技术,提取问题的构成要素,利用有向图、矩阵等工具和计算机技术,对要素及其相互关系等信息进行处理,最后用文字加以解释说明,明确问题的层次和整体结构,提高对问题的认识和理解程度。
(完整版)第二章模型化
第二章 系统模型与模型化第一节 概述一、模型及模型化的定义模型可以说是现实系统的替代物。
模型应反映出系统的主要组成部分、各部分的相互作用,以及在运用条件下的因果作用及相互关系。
模型是现实系统的理想化抽象或简洁表示,它描绘了现实系统的某些主要特点,它是为了客观地研究系统而发展起来的。
模型有三个特征:①它是现实世界部分的抽象或模仿;②它是由那些与分析的问题有关的因素构成; ③它表明了有关因素间的相互关系。
模型是描述现实世界的一个抽象。
在构造模型时,要兼顾到它的现实性和易处理性。
考虑到现实性,模型必须包含现实系统中的主要因素。
考虑到易处理性,模型要采取一些理想化的办法,即去掉一些外在的影响并对一些过程作合理的简化。
二、模型化的本质、作用及地位模型化就是为描述系统的构成和行为,对实体系统的各种因素进行适当筛选后,用一定方式(数学、图象等)表达系统实体的方法。
简言之就是构模的过程。
1 本质:利用模型与原型之间某方面的相似关系,在研究过程中用模型来代替原型,通过对于模型的研究得到关于原型的一些信息。
这里的相似关系是指两事物不论其自身结构如何不同,其某些属性是相似的。
2 作用:①模型本身是人们对客体系统一定程度研究结果的表达。
这种表达是简洁的、形式化的。
②模型提供了脱离具体内容的逻辑演绎和计算的基础,这会导致对科学规律、理论、原理的发现。
③利用模型可以进行“思想”试验。
3 地位:模型的本质决定了它的作用的局限性。
它不能代替对客观系统内容的研究,只有在和对客体系统内容研究相配合时,模型的作用才能充分发挥。
模型是对客体的抽象,由它得到的结果,必须再回到现实中去检验。
系统模型(化)的作用与地位如图4-1所示。
图4-1 模型的作用与地位三、模型的分类一般说来,模型可按图4-2所示进行分类。
概念模型是通过人们的经验、知识和直觉形成的。
符号模型用符号来代表系统的各种因素和它们间的相互关系。
这种模型是抽象模型。
它通常采用图示或数学形式,一般分为结构模型和数学模型。
05第二章系统可靠性模型03
1
内容提要
§ 2—3 串联系统的可靠性模型 一、定义和特点 二、可靠性框图 三、数学模型 四、提高串联系统可靠性的措施
§2—4 并联系统的可靠性模型 一. 定义和特点 二、可靠性框图 三、数学模型 四、提高并联系统可靠性的措施
§2-5 混联系统的可靠性模型 一、 串并联系统(附加单元系统) 二、并串联系统(附加通路系统) 三、较复杂的混联系统
一、 串并联系统(附加单元系统),图2—20。 27
20
上图串联了n个组成单元,而每个组 成单元由m个基本单元并联。
28
设每个组成单元的可靠度为Ri(t),则 RS1(t):
n
Rs1(t) 1 (1 Ri (t))m (2-18) i1
(括号里为每个并联系统的可靠性)
二、并串联系统(附加通路系统),图2-21
17
求: (1) 滤网堵塞时的可靠度、失效率、
21
平均寿命;
(2) 滤网破损时的可靠度、失效率、 平均寿命。
解 :(1 ) 滤网堵塞时系统的可靠性框图2-18, 为串联系统。
18
由于 λ = 常数,所以其为指数分布。
22
故有:
2
s i 5105 1105 i1
6 10 5 h-1
RS (1000) est e61051000 e0.06 0.94176
1 2 1 2
1 5 105
1 1105
1 (5 1) 105
10333.3h
25
S
(t)
e1t 1
e2t 2
e1t e2t
(1 2 )e(12 )t
e(12 )t
5105
e51051000 1105 e11051000 (5 1) 105 e e e 51051000 11051000 61051000
第二章2系统分析—需求分析.
(3)确定调研方案
调研方式
主导型
用户经验不足,认识不清晰,需要调研人员整理需 求概要内容,提交给用户进行分析和初步确认,最 终由用户和调研实施人员对需求内容进行细化、确 认的过程。 对调研人员要求较高; 与用户真实意图可能存在偏差。
(3)确定调研方案
调研方式
引导型
用户有较为完整、系统的知识、经验积累,调研人 员引导用户将需求阐述完整、清晰,最终由用户对 需求进行确认的过程称之为引导型调研。 用户和调研实施人员相互配合程度高 ; 此种调研方式的进度和质量风险最小 。
……
需求工程的主要阶段
需求工程 需求开发 需求管理
需 求 获 取
需 求 分 析
需 求 规 约
需 求 验 证
变 更 控 制
版 本 控 制
需 求 跟 踪
需 求 状 态 跟 踪
需求规格说明书
需求开发
需求验证 —— 帮 助确定实现了正确 的需求 需求获取 —— 搜集 与探索需求的过程
需求开发 过程
组织机构或用户对系统的高层次目标要求用户使用系统必须要完成的任务必须要实现的软件功能内容层次常见非功能需求可用性计划开机时长平均故障时间间隔mtbf等高效性系统如何高效利用处理器磁盘空间通讯带宽灵活性向产品中加入其它功能需要多大劤力完整性阻止未经授权的访问修改互操作性与其他系统交换数据或服务可靠性无错误的软件执行稳健性系统遭遇无效数据或其他干扰时继续正常运作的程度易用性用户友好易于使用符合人机工程维护性是否易于修正一个缺陷或改劢软件移植性把软件从一个操作系统移植到另一个所需的劤力支持平台数重用性为某个应用所设计的模块能被其他应用重复所用的程度测试软件模块或者所整合产品的难易度量化需求需求类型测量范例观感接受率易用性错误率性能与速度响应时间可靠性停工时间移植性平台数稳健性致命非致命错误比例维护性修改所需的时间和工作量大小源代码行数sourcelinescodesloc认证所符合的诸标准需求的来源调研前活动调研前活动调研实施调研实施识别调研范围组建调研团队确定调研方案调研准备前期沟通识别调研范围组建调研团队确定调研方案调研准备前期沟通决定了需求调研对象调研参与人员和调研周期的长短
控制系统中的系统建模与分析
控制系统中的系统建模与分析在控制系统中,建模分析是十分重要的一环。
通过对系统进行精细的建模,可以实现对系统的深刻理解,为控制系统的设计提供支持和依据。
本文将介绍控制系统中的系统建模与分析,帮助读者更好地理解和应用控制系统。
一、控制系统简介控制系统是一个涉及工程、数学、物理、计算机等多个学科的复杂系统,它的作用是在符合一定性能指标的前提下,使系统达到一定的预定目标。
常见的控制系统包括飞行器控制系统、汽车自动驾驶系统、机器人控制系统等。
二、系统建模1. 建模方式在控制系统中,系统建模有两种主要方式:基于物理方程(物理建模)和基于实验数据(数据建模)。
物理建模是通过物理学、力学、电学等学科,建立控制对象的系统模型,包括状态空间模型、传递函数模型等。
物理建模效果较好,其模型能够准确地反映控制对象的物理特性。
但是物理建模需要精通相关物理学原理和数学知识,建模难度较大。
数据建模是通过采集已知控制对象的实验数据,利用机器学习等方法,建立控制对象的模型。
数据建模对专业知识的要求相对较低,但是数据采集和处理需要耗费时间和精力,并且在建立模型中可能存在误差。
2. 建模过程系统建模的目的是利用数学模型描述和分析实际系统,从而实现对系统的控制。
建模过程可以分为以下几步:(1)收集系统信息:了解控制对象的系统结构、工作原理、性能指标等相关信息。
(2)选择建模方法:选择合适的建模方法,根据具体情况进行物理建模或数据建模。
(3)建立模型:针对控制对象的工作原理和性能指标,建立相应的数学模型。
(4)验证模型:对建立的模型进行测试和验证,检验其准确性和可靠性。
(5)优化模型:根据验证结果对模型进行调整和优化,实现对模型的完善和精细化。
三、系统分析1. 稳定性分析稳定性是控制系统中最基本的性质之一。
稳定性分析可分为稳定性判据和稳定性分析两方面。
稳定性判据是建立在数学理论基础上,针对控制系统建立一系列的稳定性判定定理,如Routh-Hurwitz准则、Nyquist准则等,根据这些判据来判断控制系统的稳定性。
系统分析与设计第2章
计算机
菜单
显示器
CPU
列表框
按钮
内存
键盘
§2.3.2 对象和类的提取和确定
三、类之间的关系 4.接口和实现关系 接口:也是一个类,接口用于描述类或组件必 须实现的契约。 实现关系:一个类元描述了另一个类元保证实 现的契约。
<<interface>> Interface Interface
§2.3.2 对象和类的提取和确定
三、类之间的关系 3.关联关系:关联是一种结构关系,代表类的 对象(实例)之间的一组连接(链)。 (1)关联的属性 ①名称 ②角色:
人员
雇用
公司
§2.3.2 对象和类的提取和确定
三、类之间的关系 ③多重性:通常需要说明一个关联实例中有多少 个相互连接的对象,这就是关联的多重性。
§
2.3.1 对象图、类图
二、对象图 对象图(Object Diagram) 是显示了一组对象和 他们之间的关系。对象图可以看作是类图的一个 实例。 1.对象图的定义 对象图中通常含有:对象和连接。对象图也可 以像其他的图一样,包含注解、约束、包或子系 统。 2.理解对象图的方法 (1) 识别出对象图中所有的类。 (2) 了解每个对象的语义及对象之间连接含 义。
§2.3.2 对象和类的提取和确定
三、类之间的关系 1.泛化(继承)关系 泛化关系指类之间的“一般与特殊关系”。 通常称一般元素为父类,称特殊元素为子类。 子类继承父类的特性(属性、操作、关联等), 同时可以有自己的特性。 单继承 多继承 继承有传递性
客户 学生
个人客户
团体客户
大学生
中学生
§2.1.3加速系统分析法
加速系统分析法强调构造原型,以便更快速地
生态系统模型与分析方法
生态系统模型与分析方法生态系统是指由生物群落、非生物环境和它们之间的相互作用构成的一个复杂的系统。
为了更好地理解生态系统的结构和功能,生态学家们提出了各种生态系统模型和分析方法。
本文将介绍几种常用的生态系统模型和分析方法。
一、营养链模型营养链是指生物之间由食物转化而成的能量关系。
营养链模型可以帮助我们理解生态系统中的能量流动以及物种之间的相互关系。
在营养链模型中,每个物种被划分为一个营养等级,即它在食物链中所处的位置。
能量从一个营养等级流向下一个营养等级,直至最后得到生态系统中的所有生物的总产量。
营养链模型还可以被用来预测生态系统的稳定性。
例如,如果某个物种在营养链中被消除,会对生态系统产生何种影响。
营养链模型已经被广泛应用于生态学研究中。
二、物种多样性模型物种多样性是指生态系统中不同物种的数量和比例。
物种多样性模型可以帮助我们理解生态系统中不同物种之间的相互作用,以及它们对整个生态系统的影响。
物种多样性模型可以通过测量生态系统中的物种数量、物种丰富度和物种均匀度来确定。
物种多样性模型还可以帮助我们评估生态系统受到干扰的程度。
例如,在一个受到人类活动影响的区域中,物种多样性可能会下降,导致生态系统的不稳定性。
因此,了解生态系统中物种多样性的变化情况,可以帮助我们更好地保护生态系统。
三、生境模型生境是指生物栖息的地方,包括自然生境和人工生境。
生境模型可以帮助我们理解生态系统中生物所处的不同生境类型,并可以帮助我们评估生物在这些不同生境中的适应性和竞争力。
生境模型还可以帮助我们预测生物受到环境变化的影响。
例如,在全球气候变化的背景下,生境模型可以帮助我们预测不同生物的分布范围和种群数量的变化。
四、生态经济模型生态经济模型是指将生态系统看作一种经济系统,分析其中的生产、消费和交换行为。
生态经济模型可以帮助我们理解生态系统中不同物种之间的经济相互作用,以及如何最大限度地利用生态系统资源。
生态经济模型还可以帮助我们评估各种利益相关者对生态系统的影响。
2.4第二章 系统的数学模型--第四节 系统的微分方程及线性化
四、电气系统中的元件复阻抗
2、电容
i(t)
C
u(t)
u (t )
1 C
i(t
)dt
u(t)
1 C
i(t)
sU (s) 1 I (s) U (s) 1 I (s)
C
Cs
零初始状态下
四、电气系统中的元件复阻抗 3、电感 i(t) L
u(t)
u(t) L di(t) dt
U (s) Ls I (s) 零初始状态下
R
ui
C
uo
3、列出如图电气系统的微分方程。
解:物理规律: 基尔霍夫原理 输 入: 电压 ui(t) 输 出: 电压 uo(t)
设:电路电流为 i(t)
i
ui
R
C
uo
ui (t)
uo (t)
R i
1 C
(t) 1 C
i(t)d t
i(t
)d
t
iu(it()t
五、微分方程建立示例
2、列出如图机械系统的微分方程。
解:物理规律: 达朗贝尔原理 输 入: 力矩 τ(t) 输 出: 位移 θ(t)
τ
ห้องสมุดไป่ตู้
kJ
θ(t)
J
t kJ t cJ wt J t t kJ t cJt Jt Jt cJt kJ t t
线性系统的特点:可以运用叠加原理。
2、非线性系统 必须用非线性微分方程描述
的系统。 不能使用叠加原理
y(t) x2 (t) 对于非线性问题通常采用如下的处理途径 线 性 化 处 理:在工作点附近将非线性函数用泰勒级
[交通运输]公共管理定量分析2 系统模型与系统分析
7
定量分析方法
为什么要使用系统模型
模型的作用:
– 可以对难以进行实体实验的系统进行预测和分析; – 可以具体地反映出复杂问题的逻辑关系和数量关系; – 可以对系统进行优化,以及方案间的比较和优选。
模型的意义:
– 模型可以超脱现实而不受其约束,可以试验、优化, 从而节省大量的人力、物力、财力和时间。
模拟模型:与现实系统具有共性的、可控的实体和条 件,来模拟系统行为特性的模拟物或计算机软件。
– 优点:可以解决用其他方法无法解决的问题,建模过程符合人 们的一般思维,不要求过高的数学水平; – 缺点:要求对系统有全面、深入的了解;造价较高,一般是求 得问题的近似解。
数学模型:用数学符号和数学方程式来描述系统。
定量分析方法
系统建模的遵循原则是:
12
2019/1/29
系统建模方法
根据系统对象的不同,则系统建模的方法可分为
推理法
实验法
统计分析法 混合法和类似法
根据系统特性的不同描述,则系统建模的方法可以有 状态空间法、结构模型解析法(ISM)以及最小二乘估 计法( LKL)等。其中,最小二乘估计法(LKL)是一 种基于工程系统的统计学特征和动态辨识,寻求在小 样本数据下克服较大观测误差的参数估计方法,它属 于动态建模范畴。
3.
4.
5.
重复步骤(3)和(4),分别形成小组、中组和大组,但对难以编组的卡片不 要勉强地编组,可把它们单独放在一边。
把小组(卡片)放在桌子上进行移动,根据小组间的类似关系、对应关系、 从属关系和因果关系等进行排列。 将排列结果画成图表,即把小组按大小用粗细线框起来,把一个个有关 系的框用“有向枝”(带箭头的线)连接起来,构成一目了然的整体结构 图。 观察结构图,分析其含义,取得对整个问题的明确认识。
第二章 自动控制系统原理的数学模型分析
c(t ) a n1
d n1
c(t ) ... a1
d c (t ) a 0 c (t ) dt d r (t ) ... b1 r (t ) b0 r (t ) dt
在初始条件为零时,对方程两边进行拉氏变换并整理得
C ( s) bm s m bm 1 s m 1 b1 s b0 M ( s) G ( s) (2-25) n n 1 R( s ) N ( s) a n s a n 1 s a1 s a 0
一阶常系数线性微分方程
RC
duc uc ur dt
(2-4)
微分方程建立举例(2)
【例2-2】机械位移系统 (1)确定输入、输出量
设外作用力F (t ) 为输入量,质量 物体的位移 y (t )为输出量。
(2)建立微分方程组
根据牛顿第二定律可得:
F (t ) FB (t ) FK (t ) ma
初始条件为零,一般是指输入量在t=0时刻以后才 作用于系统,系统的输入量和输出量及其各阶导数在 t≤时的值也均为零。
传递函数的一般表达式
如果系统的输入量为 r (t ) ,输出量为 c(t ) ,并 由下列微分方程描述
an
bm
dn dt n dm
dt m
dt n1 d m 1 r (t ) bm 1d m 1 dt
c (t ) 1
式中
<1时
(2-44)
1 2
e n t 1 2
4.应用实例 例2-2机械位 移系统等。
sin( d t )
,
arctan
d n 1 2
R 将 R1 1 K 、 2 1 K 代入上式得: 2 1
系统建模与系统分析详解课件
第三章
如今,兰德公司的研究范围已从最初的 军事、外交事务扩大到经济、交通、通 讯等公共事务的各个方面。系统分析方 法也从改善武器装备系统,走向了经济 管理、社会发展等各个域。
第三章
3.3.1 系统分析的定义
目前对于系统分析的解释有广义与狭义之分。 广义的解释是把系统分析作为系统工程的同义 语,认为系统分析就是系统工程。 狭义的解释是把系统分析作为系统工程的一个 逻辑步骤,系统工程在处理大型复杂系统的规划、 研制和运用问题时,必须经过这个逻辑步骤。
第三章
步骤
明确 问题
确定 目标
探索 建立模型 方案
优化或 仿真 分析
系统 评价
Y
决策 (分析)
N
第三章
案例: 企业与系统管理案例—— 海尔OEC管理法
O—Overall;E—Everything, Everyone ,Everyday; C—Control and clear
OEC—全方位地对每个人每一天的所做的每 件事进行控制和清理,即“日事日毕,日 清日高”,总账不漏项,事事有人管,人 人都管事,管事凭效果,管人凭考核。
3.地位:模型的本质决定了它的作用的局限性。它不 能代替以客观系统内容的研究,只有在和对客体系统相 配合时,模型的作用才能充分发挥。
第三章
3.1.2 使用系统模型的必要性
人类认识和改造客观世界的研究方法,一 般来说主要有三种,即实验法、抽象法、模 型法。
第三章
三种系统研究方法对比
实验法 抽象法
模型法
目标
发展能源
手段 目标
发展能源生产
开发新能源 节能
手段 资源 基地 目标 勘探 建设
运输
太生 阳物 能能
第二章-系统分析—结构化分析方法
1、结构化方法概述
一种面向数据流的传统软件开发方法,以 数据流为中心构建软件的分析模型和设计 模型。
结构化分析(Structured Analysis
分为:
简称SA) 结构化设计(Structuresd Design 简称SD) 结构化程序设计(Structured Programmin 简 称SP)
1、结构化方法概述
主要思想:抽象与自顶向下的逐层分解 (控制复杂性的两个基本手段)
抽象:在每个抽象层次上忽略问题的内部复杂
性,只关注整个问题与外界的联系。 个最底层的问题都足够简单为止。
分解:将问题不断分解为较小的问题,直到每
抽象:从作为整体的软件系统开始(第一层),每一 抽象层次上只关注于系统的输入输出。 分解:将系统不断分解为子系统、模块…… 随着分解层次的增加,抽象的级别越来越低,也 越接近问题的解(算法和数据结构)。
(1)源或宿
存在于软件系统之外的人员或组织,表示软件系 统输入数据的来源和输出数据的去向,因此也称 为源点和终点。
例如,对一个图书馆信息管理系统而言 读者向系统提供查询条件(输入数据流),所以读者是管理系统 的一个源 管理系统向供货商发出购书请求(输出数据流),所以供货商 是管理系统的一个源
经理
图书库存 库存状态 库存查询 书库 管理
入库单
采购单
帐务数据库
图书代理 商
数据流图的扩充符号
描述一个加工的多个数据流之间的关系
星号(*):表示数据流之间存在“与”关系
所有输入数据流同时存在时,才能进行加工处理 或加工处理的结果是同时产生所有输出数据流 至少存在一个输入数据流时才能进行加工处理 或加工处理的结果是至少产生一个输出数据流
系统工程第二章系统模型
第二章系统模型方法2.1 模型概述模型是对研究对象的一种描述方法。
模型的类型可分为物理模型、数学模型、结构模型、仿真模型等几大类。
物理模型是指通过实物建立的系统对象的实物模型或类比模型;数学模型是用数学语言描述的一类模型;结构模型是主要反映系统的结构特点和因果关系的模型(其中的一类重要模型是图模型,即用结构图表示系统的结构);仿真模型是通过在计算机上运行的程序表达的模型。
采用适当的仿真语言或程序,物理模型、数学模型和结构模型一般都能转变为仿真模型。
系统工程建立的模型可统称为系统模型,通常是非物理模型。
数学模型是应用最多的一种模型,可进一步分为原理性模型、系统学模型、规划模型、预测模型、管理决策模型、仿真模型、计量经济模型等类型。
⑪原理性模型。
原理性模型是指自然科学中所有的定理及公式。
自然科学已建立起一套完整的原理性模型,如开普勒的行星运动三大定律、牛顿的经典力学三大定律以及近代的爱因斯坦相对论等。
⑫系统学模型。
系统学是研究系统结构与功能(演化、协同和控制)的一般规律的科学,其研究对象是各类系统,系统可分为简单系统和复杂巨系统,系统的研究方法主要有运筹学、信息论、数学以及耗散结构理论、协同学和突变论等。
系统学模型通常包括:系统动力学、大系统理论、灰色系统、系统辩识、系统控制、最优控制和创造工程学等。
⑬规划模型。
数学规划是研究合理使用有限资源以取得最佳效果的数学方法,其实质是用数学模型来研究系统的优化决策问题。
在规划问题中,必须满足的条件称为约束条件,要达到的目标用目标函数来表示,规划模型要解决的问题是,在约束条件的限制下,根据一定的准则从若干可行方案中选取一个最优方案。
规划模型通常包括:线性规划、非线性规划、目标规划、更新理论和运输问题等。
⑭预测模型。
预测是对事物的发展规律和结果的推断。
预测方法可分为定性预测和定量预测两大类。
⑮管理决策模型。
管理决策是在管理过程中做出的各种决策。
管理决策模型通常包括:关键路线法、计划评审技术、风险评审技术和层次分析法等。
第二章系统的数学模型
2.2 控制系统的复数域数学模型(传递函数)
一.传递函数
1.线性定常系统的传递函数定义为:
零初始条件下,系统输出量的拉氏变换与输入 量的拉氏变换之比。
R(s) G(s) C(s)
传递函数
输出的拉氏变换 输入的拉氏变换
|零初始条件
C(s) R(s)
G(s)
零初始条件
➢ 零初始条件指的是输入、输出初始条件均为零,即
在给定工作点 ( x0,y0 )附近,将上式展开泰勒级数:
y
f (x)
df f ( x0 ) dx
1 d2 f x x0 ( x x0 ) 2! dx2
(x x0 )2
x x0
若在工作点 ( x0,y0 ) 附近增量 x x0 的变化很小,则可略去式中 ( x x0 )2 项及其后面所有的高阶项,这样,上式近似表示为:
l
s
1)
G(s)
i 1 d
l 1 e
sv (Tjs 1) (Tk2s2 2 kTk s 1)
j 1
k 1
纯微分环节
s
es
积分环节
惯性环节
振荡环节
延迟环节
典型环节
➢ 比例环节的传递函数为:
Proportional element (link)
C(s) G(s) K R(s)
齿轮传动
方框图为:
➢ 频域数学模型:
频率特性
2.1 线性系统的时域数学模型
本节主要研究描述 线性、定常、集总参量控制系统的微分方程的
建立和求解方法
线性元件的微分方程
一.微分方程:
给定量和扰动量作为系统输入量,被控制量作为系统输出 的一种系统描述方法
系统工程---第二章 系统分析与评价
(3)局部利益和整体利益相结合
(4)定量分析和定性分析相结合
山东理工大学管理学院
2.1 系统分析概述
2.1.3 系统分析的原则
(1)内部因素和外部因素相结合
在建立一个工厂或实施一 个方案时,不仅要从目前 利益出发,而且还要考虑 到将来的利益。如果采用 的方案,对目前和将来都 是有利的,这当然是最理 想的。当长远利益与当前 利益发生矛盾时,就要从 实际出发,根据各种要素 认真权衡利弊、慎重考虑。 如:毁林造田,英国与德 国的工业发展,牧民定居?
山东理工大学管理学院
模型
效果(+)
+
2.1 系统分析概述
2.1.3 系统分析的原则
(1)内部因素和外部因素相结合 (2)当前利益和长远利益相结合
构成一个系统,不仅受到内 部因素的影响,而且也受到 外部条件的制约,例如设计 一个企业,作为一个系统, 不仅要受到企业本身的各种 因素的,如生产类型、生产 过程、生产环节、物流和信 息流的相互制约,而且要受 到外部自然环境、市场状况、 协作和运输情况等外部因素 的影响。所以进行系统分析 时,必须把内部因素和外部 条件结合起来综合分析。
一个系统是由若干个子系统构 成的,如果每个子系统的效益 是好的,组织起来的总系统的 效益也是好的话,这当然是最 为理想的,但实际中却往往很 难做到这一步。
例如:两人得、失和问题 方案1 方案2 方案3 得: 5 4 1 失: -4 -2 -1 追求局部最优,但不是 整体最优
山东理工大学管理学院
2.1 系统分析概述
硬件模型 软件模型
山东理工大学管理学院
2.2 系统模型化
2.2.4 系统模型的作用
(1)直观和定量; (2)应用范围广、成本低;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章系统模型与系统分析
一、系统模型
系统模型是指对一个系统进行抽象和描述,用以揭示其内部结构、运行规律和相互关系的方法和工具。
系统模型是系统分析的基础,通过构建系统模型可以更好地理解和分析系统的特性和问题。
1.系统模型的分类
系统模型可以分为静态模型和动态模型两类。
静态模型描述了系统的结构和组成部分,包括系统的元素、关系和属性。
常用的静态模型方法有系统框图、数据流图和实体关系图等。
动态模型描述了系统的行为和变化过程,主要包括状态转换和信息流动。
常用的动态模型方法有状态转换图、时序图和活动图等。
2.系统模型的构建方法
构建系统模型的方法有多种,常用的方法有层次分析法和系统动力学方法。
层次分析法是一种定性和定量相结合的分析方法,通过对系统进行层次划分,分析各层次元素的相互关系和影响程度,从而得出系统的总体性能。
系统动力学方法是一种动态系统建模和仿真的方法,通过建立差分方程或微分方程来描述系统的演化过程,在不同的时间段内模拟系统的运行过程和结果。
二、系统分析
系统分析是指对一个系统进行全面深入地研究和分析,以了解其内部机制、运行规律和问题点,为系统的优化改进提供依据。
1.系统分析的步骤
系统分析通常包括问题定义、数据收集、系统描述、模型建立、模型验证和模型求解等步骤。
问题定义阶段需要明确研究的目标和内容,确定问题的范围和界限。
数据收集阶段需要收集系统运行所需的数据和信息,包括实际运行数据和用户需求等。
系统描述阶段需要对系统进行全面的描述和分析,包括系统的功能、结构和性能等。
模型建立阶段需要根据系统描述构建数学模型,用以描述系统的运行过程和规律。
模型验证阶段需要对建立的模型进行验证和评估,确保模型的有效性和准确性。
模型求解阶段需要利用建立的模型进行仿真和优化,找出系统的优化方案和改进措施。
2.系统分析的工具和技术
系统分析常用的工具和技术包括面向对象分析、数据流图、系统动力学、Petri网等。
面向对象分析是一种以对象和类为核心的分析方法,通过建立对象模型和类模型来描述系统的结构和行为,强调系统的模块化和可重用性。
数据流图是一种图形化的工具,用来表示系统中信息的流动和处理过程,通过数据流和处理器之间的关系来描述系统的功能和结构。
系统动力学是一种描述和分析系统变化和行为的工具,通过建立微分方程来描述系统的演化过程,分析系统的稳定性和可行性。
Petri网是一种描述系统并发和同步的工具,通过描述系统中各个部分的状态和变迁之间的关系来描述系统的行为和运行过程。
总结:系统模型和系统分析是系统工程中重要的一环,通过构建系统模型和进行系统分析可以更好地理解和解决问题,为系统的优化和改进提供依据和方法。
在实际应用中,可以根据具体的需要选择合适的方法和工具进行系统模型的构建和系统分析的实施。