高等数学习题详解-第2章-极限与连续
《高等数学一》第二章 极限与连续 历年试题模拟试题课后习题(汇总)(含答案解析)
第二章极限与连续[单选题]1、若x0时,函数f(x)为x2的高阶无穷小量,则=()A、0B、C、1D、∞【从题库收藏夹删除】【正确答案】A【您的答案】您未答题【答案解析】本题考察高阶无穷小.根据高阶无穷小的定义,有.[单选题]2、与都存在是函数在点处有极限的().A、必要条件B、充分条件C、充要条件D、无关条件【从题库收藏夹删除】【正确答案】A【您的答案】您未答题【答案解析】时,极限存在的充分必要条件为左、右极限都存在并且相等,所以若函数在点处有极限,则必有与都存在.但二者都存在,不一定相等,所以不一定有极限.[单选题]3、().A、B、1C、D、0【从题库收藏夹删除】【正确答案】A【您的答案】您未答题【答案解析】[单选题]4、如果则().A、0B、1C、2【从题库收藏夹删除】【正确答案】D【您的答案】您未答题【答案解析】根据重要极限,[单选题]5、().A、0B、∞C、2D、-2【从题库收藏夹删除】【正确答案】C【您的答案】您未答题【答案解析】分子分母同除以,即[单选题]().A、0B、∞C、2D、-2【从题库收藏夹删除】【正确答案】C【您的答案】您未答题【答案解析】[单选题]7、设,则(). A、B、2C、D、0【从题库收藏夹删除】【正确答案】B【您的答案】您未答题【答案解析】[单选题]8、当时,与等价的无穷小量是(). A、C、D、【从题库收藏夹删除】【正确答案】B【您的答案】您未答题【答案解析】由于故与等价,推广,当时,[单选题]9、时,与等价的无穷小量是(). A、B、C、D、【从题库收藏夹删除】【正确答案】A【您的答案】您未答题【答案解析】由于,故与等价,推广,当时,[单选题]函数的间断点是().A、x=6、x=-1B、x=0、x=6C、x=0、x=6、x=-1D、x=-1、x=0【从题库收藏夹删除】【正确答案】C【您的答案】您未答题【答案解析】由于,所以的间断点是x=0,x=6,x=-1. [单选题]11、设,则是的().A、可去间断点B、跳跃间断点C、无穷间断点D、连续点【从题库收藏夹删除】【正确答案】A【您的答案】您未答题【答案解析】,即的左右极限存在且相等,但极限值不等于函数值,故为可去型间断点.[单选题]12、计算().A、B、C、D、【从题库收藏夹删除】【正确答案】D【您的答案】您未答题【答案解析】[单选题]13、计算().B、C、D、1【从题库收藏夹删除】【正确答案】A【您的答案】您未答题【答案解析】[单选题]14、().A、1B、﹣1C、2D、﹣2【从题库收藏夹删除】【正确答案】B【您的答案】您未答题析】[单选题]15、下列各式中正确的是().A、B、C、D、【从题库收藏夹删除】【正确答案】D【您的答案】您未答题【答案解析】A,当时,极限为,错误;B,,错误;C,,错误,D正确. [单选题]16、函数的间断点个数为().A、0B、1C、2D、3【从题库收藏夹删除】【正确答案】C【您的答案】您未答题【答案解析】在x=0和x=1处,无定义,故间断点为2个.[单选题]17、下列变量在的变化过程中为无穷小量的是()A、B、C、D、arctanx【从题库收藏夹删除】【正确答案】C【您的答案】您未答题【答案解析】,.[单选题]18、()A、0B、1C、不存在,但不是∞D、∞【从题库收藏夹删除】【正确答案】C【您的答案】您未答题【答案解析】[单选题]19、函数,则x=0是f(x)的( )A、可去间断点B、跳跃间断点C、无穷间断点D、连续点【从题库收藏夹删除】【正确答案】A【您的答案】您未答题【答案解析】故为可去间断点.[单选题]20、().A、-1B、2C、1D、0【从题库收藏夹删除】【正确答案】D【您的答案】您未答题【答案解析】为有界函数,故原式=. [单选题]21、().A、B、C、D、【从题库收藏夹删除】【正确答案】B【您的答案】您未答题【答案解析】[单选题]22、下列极限存在的是().A、B、C、D、【从题库收藏夹删除】【正确答案】D【您的答案】您未答题【答案解析】当x趋近于0时,为有界函数,故极限存在. [单选题]23、下列变量在的变化过程中为无穷小量的是().A、B、C、D、【从题库收藏夹删除】【正确答案】C【您的答案】您未答题【答案解析】,,,不存在,[单选题]极限=( )A、0B、2/3C、3/2D、9/2【从题库收藏夹删除】【正确答案】C【您的答案】您未答题【答案解析】[单选题]25、函数f(x)=的所有间断点是( )A、x=0B、x=1C、x=0,x=-1D、x=0,x=1【从题库收藏夹删除】【正确答案】D【您的答案】您未答题【答案解析】x=1时,分母为0,无意义。
2极限与连续
第2章 极限与连续§2.1 极 限1. 极限的概念(1)数列的极限:0>∀ε,N ∃(正整数),当N n >时,恒有ε<-A x nA x n n =∞→lim 或 A x n → )(∞→n几何意义:在),(εε+-A A 之外,{}n x 至多有有限个点N x x x ,,,21(2)函数的极限x →∞的极限:0>∀ε,0>∃X ,当X x >时,恒有ε<-A x f )(A x f x =∞→)(lim 或 A x f →)( )(∞→x几何意义:在()X x X <<-之外,)(x f 的值总在),(εε+-A A 之间。
0x x →的极限:0>∀ε,0>∃δ,当δ<-<00x x 时,恒有ε<-A x f )(A x f x x =→)(lim 0或 A x f →)( )(0x x →几何意义:在0000(,)(,)x x x x x δδ∈-+ 邻域内,)(x f 的值总在),(εε+-A A 之间。
(3) 左右极限左极限:0>∀ε,0>∃δ,当00x x x <<-δ时,恒有ε<-A x f )(A x f x x =-→)(lim 0或 A x f x f =-=-)0()(00右极限:0>∀ε,0>∃δ,当δ+<<00x x x 时,恒有ε<-A x f )(A x f x x =+→)(lim 0或 A x f x f =+=+)0()(00极限存在的充要条件:0lim ()lim ()x x x x f x A f x -+→→==(4)极限的性质唯一性:若A x f x x =→)(lim 0,则A 唯一保号性:若A x f x x =→)(lim 0,则在0x 的某邻域内0A >(0)A < ⇒ ()0f x >(()0)f x <;()0f x ≥(()0)f x ≤ ⇒ 0A ≥(0)A ≤有界性:若A x f x x =→)(lim 0,则在0x 的某邻域内,)(x f 有界2. 无穷小与无穷大(1)定义:以0为极限的变量称无穷小量;以∞为极限的变量称无穷大量;同一极限 过程中,无穷小(除0外)的倒数为无穷大;无穷大的倒数为无穷小。
应用高等数学(经管类) 第2章 极限与连续
2.4 函数的连续性
第2章 极限与连续
2.4.1 自变量的增量
定义2-7 【自变量的增量】 设自变量x 从初值x0 变化到终值x0+Δx, 终值与初值的差是Δx,记为自变量x 的增量.
注意:增量Δx 可以是正的,也可以是负的.当增量Δx 为正时,自变量x 从x0 变化到x0+Δx 是增大的;当Δx 为负时,x 从x0 变化到x0+Δx 是减小的.
极限思想的完善
达朗贝尔等人; 捷克数学家波尔查诺, 法国数学家柯西,维 尔斯特拉斯。
第2章 极限与连续
2.1.1 极限思想概述
2.建立概念的极限思想
极限的思想方法贯穿于数学分析课程的始终。可以说数学分析 中的几乎所有的概念都离不开极限。
3.解决问题的极限思想 极限思想方法是数学分析乃至全部高等数学必不可少的一种重
第2章 极限与连续
2.3.2 计算极限的基本方法
第2章 极限与连续
2.3.2 计算极限的基本方法
第2章 极限与连续
2.3.2 计算极限的基本方法
第2章 极限与连续
2.3.2 计算极限的基本方法
第2章 极限与连续
2.3.2 计算极限的基本方法
第2章 极限与连续
2.3.2 计算极限的基本方法
第2章 极限与连续
2.1.2 数列的极限
定义2-1 【数列{an}的极限】 对于数列{an},当n无限增大(即n→∞) 时,通项an无限趋近于某一个确定的常数A,则称A 为n→∞时数列{an}的 极限,或称数列{an}收敛于A.记作
第2章 极限与连续
2.1.2 数列的极限
第2章 极限与连续
2.1.2 数列的极限
2.5.1 计息方式
高等数学习题详解-第2章-极限与连续
习题2-11. 观察下列数列的变化趋势,写出其极限:(1) 1n n x n =+ ; (2) 2(1)nn x =--; (3) 13(1)n n x n =+-; (4) 211n x n =-.解:(1) 此数列为12341234,,,,,,23451n nx x x x x n =====+L L 所以lim 1n n x →∞=。
(2) 12343,1,3,1,,2(1),nn x x x x x =====--L L 所以原数列极限不存在。
(3) 1234111131,3,3,3,,3(1),234n n x x x x x n=-=+=-=+=+-L L 所以lim 3n n x →∞=。
(4) 12342111111,1,1,1,,1,4916n x x x x x n=-=-=-=-=-L L 所以lim 1n n x →∞=-2.下列说法是否正确:(1)收敛数列一定有界 ; (2)有界数列一定收敛; (3)无界数列一定发散;(4)极限大于0的数列的通项也一定大于0. 解:(1) 正确。
(2) 错误 例如数列{}(-1)n 有界,但它不收敛。
(3) 正确。
(4) 错误 例如数列21(1)nn x n ⎧⎫=+-⎨⎬⎩⎭极限为1,极限大于零,但是11x =-小于零。
*3.用数列极限的精确定义证明下列极限:(1) 1(1)lim1n n n n -→∞+-=;(2) 222lim 11n n n n →∞-=++; (3) 323125lim-=-+∞→n n n证:(1) 对于任给的正数ε,要使1(1)111n n n x n n ε-+--=-=<,只要1n ε>即可,所以可取正整数1N ε≥.因此,0ε∀>,1N ε⎡⎤∃=⎢⎥⎣⎦,当n N >时,总有1(1)1n n n ε-+--<,所以1(1)lim 1n n n n-→∞+-=.(2) 对于任给的正数ε,当3n >时,要使222222332211111n n n n n x n n n n n n n n n ε---+-=-==<<<+++++++,只要2n ε>即可,所以可取正整数2max ,3N ε⎧⎫=⎨⎬⎩⎭.因此,0ε∀>,2max ,3N ε⎧⎫∃=⎨⎬⎩⎭,当n N >时,总有22211n n n ε--<++,所以222lim 11n n n n →∞-=++. (3) 对于任给的正数ε,要使25221762()()131333(31)313n n x n n n n ε+--=--=<=<----,只要123n ε->即可,所以可取正整数213N ε≥+. 因此,0ε∀>,213N ε⎡⎤∃=+⎢⎥⎣⎦,当n N >时,总有522()133n n ε+--<-,所以323125lim-=-+∞→n n n .习题2-2 1. 利用函数图像,观察变化趋势,写出下列极限: (1) 21limx x →∞ ;(2) -lim xx e →∞;(3) +lim xx e-→∞;(4) +lim cot x arc x →∞;(5) lim2x →∞;(6) 2-2lim(1)x x →+;(7) 1lim(ln 1)x x →+;(8) lim(cos 1)x x π→-解:(1) 21lim0x x →∞= ;(2) -lim 0xx e →∞=;(3) +lim 0xx e -→∞=;(4) +lim cot 0x arc x →∞=;(5) lim 22x →∞= ;(6) 2-2lim(1)5x x →+=;(7) 1lim(ln 1)1x x →+=;(8) lim(cos 1)2x x π→-=-2. 函数()f x 在点x 0处有定义,是当0x x →时()f x 有极限的( D )(A ) 必要条件 (B ) 充分条件 (C ) 充要条件 (D ) 无关条件解:由函数极限的定义可知,研究()f x 当0x x →的极限时,我们关心的是x 无限趋近x 0时()f x 的变化趋势,而不关心()f x 在0x x =处有无定义,大小如何。
高等数学-第2章--极限与连续
第二章 极限与连续极限是高等数学中最主要的概念之一,也是研究微积分的重要工具,如导数、定积分、重积分等定义都需要用极限来定义,因此,掌握极限的思想和方法是学好微积分学的基本前提.第一节 极限的定义教学目的:1.理解极限的概念,理解函数左极限与右极限的概念,以及极限存在与左、右极限之间的关系。
2.理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。
教学重难点:1.极限的概念和左极限与右极限概念及应用;2.无穷小及无穷小的比较;本节将在中学学习过的数列的极限的基础上学习函数的极限、极限性质、无穷小的定义及性质、无穷大的定义及其与无穷小的关系.一、数列的极限定义 对于数列{}n x ,如果当n 无限增大时)(∞→n ,n x 无限趋近于一个确定的常数A , 则称A 为数列{}n x 的极限.记作=∞→n n x lim A 或 A x n →(n ∞→). 亦称数列{}n x 收敛于A ;如果数列{}n x 没有极限,就称数列{}n x 是发散的.数列极限的运算法则为:如果∞→n lim =n x A , ∞→n lim =n y B ,那么 法则1 ∞→n lim (n x ±n y ) ∞→=n lim n x ±∞→n lim =n y A ±B ;法则2 ∞→n lim (nx n y ) ⋅=∞→n n x lim n n y ∞→lim AB =;法则3 ∞→n lim lim n n n Cx C x →∞==CA (C 是常数); 法则4∞→n lim B A y x y x nn n n n n ==∞→∞→lim lim ()0≠B . 以上法则1,法则2可以推广到有限个数列的和与积的情形.二、函数的极限1.当∞→x 时,函数)(x f 的极限定义 如果当x 的绝对值无限增大(即∞→x )时,函数)(x f 无限趋近于一个确定的常数A ,那么A 称为函数)(x f 当∞→x 时的极限,记为 A x f x =∞→)(lim 或 当∞→x 时,A x f →)(. 如图1-5(b )所示, 函数xx f 1)(=当x 的绝对值无限增大时, 函数xx f 1)(=的图象无限接近于x 轴.也就是,当∞→x 时,)(x f 无限地接近于常数零,即01lim=∞→xx . 在上述定义中,自变量x 的绝对值无限增大指的是既取正值无限增大(记为+∞→x ),同时也取负值而绝对值无限增大(记为-∞→x ).但有时自变量的变化趋势只能或只需取这两种变化的一种情形,为此有下面的定义:定义 如果当+∞→x (或-∞→x )时,函数)(x f 无限趋近于一个确定的常数A ,那么A 称为函数)(x f 当+∞→x (或-∞→x )时的极限,记为 lim ()x f x A →+∞=或当x →+∞时,()f x A →; lim ()x f x A →-∞=或当x →-∞时,()f x A →. 由图1-5(b )可以看出,01lim=+∞→xx 及01lim =-∞→x x ,这两个极限与01lim =∞→x x 相等,都是0.由图1-11(b )可以看出,2arctan lim π=+∞→x x ,2arctan lim π-=-∞→x x .由于当+∞→x 和-∞→x 时,函数x y arctan =不是无限趋近于同一个确定的常数,所以x x arctan lim ∞→不存在.由上面的讨论,我们得出下面的定理: 定理 A x f x =∞→)(lim 的充要条件是: )(lim x f x +∞→A x f x ==-∞→)(lim .(证明略)2.当0x x →时,函数)(x f 的极限定义 设函数()y f x =在点0x 的某个近旁(点0x 本身可以除外)内有定义,如果当x 趋于0x (但0x x ≠)时,函数)(x f 无限趋近于一个确定的常数A ,那么A 称为函数)(x f 当0x x →时的极限,记为A x f xx =→)(lim 0或 当0x x →时,A x f →)(.例1 考察极限C x x 0lim → (C 为常数)和x xx 0lim →. 解 因为当0x x →时,)(x f 的值恒为C ,所以=→)(lim 0x f x x C C xx =→0lim . 因为当0x x →时,()x ϕx=的值无限接近于x ,所以lim ()x x x ϕ→=00lim x x xx =→. 3.当0x x →时,)(x f 的左、右极限因为0x x →有左右两种趋势,而当x 仅从某一侧趋于0x 时,只需讨论函数的单边趋势,于是有下面的定义:定义 如果当x 从0x 左侧趋近0x (记为0x x -→)时,函数)(x f 无限趋近于一个确定的常数A ,那末A 称为函数)(x f 当0x x →时的左极限,记为 0lim ()x x f x A -→=.如果当x 从0x 右侧趋近0x (记为0x x +→)时,函数)(x f 无限趋近于一个确定的常数A ,那末A 称为函数)(x f 当0x x →时的右极限,记为 0lim ()x x f x A +→=定理 A x f xx =→)(lim 0的充要条件是: 0lim ()lim ()x x x x f x f x A -+→→==. (证明略)例2 讨论函数10()0010x x f x x x x -<⎧⎪==⎨⎪+>⎩当0→x 时的极限.解 观察图2-1可知:0lim ()x f x -→1)1(lim 0-=-=-→x x ,0lim ()x f x +→1)1(lim 0=+=+→x x .因此,当0→x 时,)(x f 的左右极限存在但不相等,由定理2知,极限 )(lim 0x f x →不存在. 例3 研究当x →0时, x x f =)(的极限.解 观察图2-2可知:⎩⎨⎧≥<-==0)(x x x x x x f 由于)(lim 0x f x -→0)(lim 0=-=-→x x ,=+→)(lim 0x f x 0lim 0=+→x x .所以当x 0→时,)(x f 的左, 右极限都存在且相等.由定理2知x →0时, x x f =)(的极限存在,且等于0.三、无穷小量实际问题中,常有极限为零的变量.例如,电容器放电时,其电压随着时间的增加而逐渐减小并趋近于零.对于这样的变量,有下面的定义:1.无穷小量的定义定义 极限为零的变量称为无穷小量,简称为无穷小. 如果0lim ()0x x x α→=,则变量()x α是0x x →时的无穷小,如果lim ()0x x β→∞=,则称()x β是x →∞时的无穷小,类似的还有0x x +→,0x x -→,x →+∞,x →-∞等情形下的无穷小.根据定义可知,无穷小是一种变化状态,而不是一个量的大小,无论多么小的一个数都不是无穷小,只有零是唯一的一个可作为无穷小的常数,无穷小是有极限变量中最简单而最重要的一类,在数学史上,很多数学家都致力于“无穷小分析”.2.无穷小量的性质定理 有限个无穷小的代数和为无穷小.(证明略)注意,无穷个无穷小之和未必是无穷小,如n →∞时,21n ,22n ,2nn 都是无穷小,但是222212(1)2n n n n n n n +++⋅⋅⋅+=,当n →∞时2(1)122n n n +→,所以不是无穷小.定理 有界函数与无穷小的积为无穷小. (证明略) 推论1 常数与无穷小的乘积是无穷小. (证明略)图2-1图2-2推论2 有限个无穷小的积为无穷小.(证明略) 例4 求极限01lim sin x x x→. 解 因为x 是当0→x 时的无穷小,而x1sin 是一个有界函数,所以1lim sin0x x x→=. 3.函数极限与无穷小的关系 设A x f xx =→)(lim 0,即0x x →时()f x 无限接近于常数A ,有()f x A -就接近于零,即()f x A -是0x x →时的无穷小,若记()()x f x A α=-,于是有 定理 3 (极限与无穷小的关系)A x f xx =→)(lim 0的充分必要条件是()()f x A x α=+,其中()x α是0x x →的无穷小.例如11x x +→当()x →∞时,有111x x x +=+,其中1x就是()x →∞时的无穷小.四、 无穷大量 1.无穷大的定义定义 6 若当0x x →(x →∞)时,函数()f x 的绝对值无限增大,则称函数()f x 为当0x x →(或x →∞)时的无穷大.函数()f x 当0x x →(或x →∞)时为无穷大,它的极限是不存在的,但为了便于描述函数的这种变化趋势,我们也说“函数的极限为无穷大”,并记为lim ()x x f x →=∞ 或 lim ()x f x →∞=∞. 例如,当0→x 时,x1是一个无穷大,又例如, 当x →+∞时,x e 是一个无穷大.注意,说一个函数()f x 是无穷大,必须指明自变量x 的变化趋向;无穷大是一个函数,而不是一个绝对值很大的常数.2.无穷大与无穷小的关系我们知道,当2x →时,2x -是无穷小,12x -是无穷大;当x →∞时,x 是无穷大,1x是无穷小.一般地,在自变量的同一变化过程中,如果)(x f 为无穷大,则)(1x f 是无穷小;反之,如果)(x f 为无穷小,且)(x f 0≠,则)(1x f 是无穷大. 利用这个关系,可以求一些函数的极限.例5 求极限13lim1-+→x x x . 解 因为031lim1=+-→x x x ,由无穷大与无穷小的关系,所以∞=-+→13lim 1x x x .五、无穷小量比较 由无穷小的性质,我们知道两个无穷小的和、差及乘积仍是无穷小.但两个无穷小的商却会出现不同的情况.例如,当0x →时, x 2、2x 、x sin 均为无穷小,而02lim 20=→x x x ,∞=→202lim x x x ,1sin lim 0=→xx x .两个无穷小之比的极限的不同情况,反映了不同的无穷小趋向于零的“快慢”程度.一般地,对于两个无穷小之比有下面定义:定义 设α和β都是同一过程的两个无穷小量,即lim 0α=,lim 0β=,1.若lim0αβ=,则称α是β的高阶无穷小量;记作()o αβ=,此时也称β是α的低阶无穷小量.2.若lim 0C αβ=≠,则称α与β是同阶的无穷小量.记作()O αβ=.3.若lim 1αβ=,则称α与β是等价无穷小量.记作βα~.例16 当1x →时,比较无穷小1x -与31x -的阶. 解 由于 0)1(lim 1=-→x x ,0)1(lim 31=-→x x ,且 3111limx x x --→3111lim 21=++=→x x x , 所以当1x →时,1x -与31x -是同阶无穷小.例17 当0→x 时,证明x cos 1-与22x 等价.解 由于 0)cos 1(lim 0=-→x x ,02lim20=→x x ,且=-→2cos 1lim 20xx x 122sin 2lim 220=→x xx .所以,当0→x 时,x cos 1-与22x 为等价无穷小.习题训练1.利用函数图像,观察函数的变化趋势,并写出其极限: (1)21limx x →∞; (2)lim 2x x →-∞; (3)1lim ()10x x →+∞; (4)1lim(2)x x→∞+;(5)2lim(45)x x →-; (6)2lim sin x x π→. 2.设2,1()1,1x x f x x ⎧≥-=⎨<-⎩,作出它的图象,求出当1-→x 时,()f x 的左极限、右极限,并判断当1-→x 时,()f x 的极限是否存在?3.设1()1x f x x -=-,求(10)f -和 (10)f +,并判断()f x 在1→x 时的极限是否存在?4.设21()1x f x x-=-,求0lim ()x f x →,1lim ()x f x →. 5.下列函数在自变量怎样变化时是无穷小?无穷大? (1)31y x = ; (2)211y x=+;(3) ln y x =;(4)y =6.求下列函数的极限:(1) sin limx x x →∞; (2)01lim cos x x x→; (3) 1lim1x xx →-; (4)32222lim (2)x x x x →+-.第二节 极限的运算教学目的:1.掌握极限的性质及四则运算法则;2.掌握利用两个重要极限求极限的方法。
02第2章 极限与连续
α 是无穷小. 小.
α 即 lim f (x) = A⇔ limα = 0, = f (x) − A.
3. 无穷小的运算性质 性质1 性质1 性质2 性质2 性质3 性质3 性质4 性质4 有限个无穷小的代数和是无穷小. 有限个无穷小的代数和是无穷小. 有限个无穷小的积是无穷小. 有限个无穷小的积是无穷小 有界函数与无穷小的积是无穷小. 有界函数与无穷小的积是无穷小. 常数与无穷小的积是无穷小. 常数与无穷小的积是无穷小.
(2) x→ x0 时 函 的 限 , 数 极
邻域的概念: 邻域的概念: 设实数x0 ,δ
{ 且 δ >0, ,数集 x x0 −δ < x < x0 +δ}.叫点
x0 的 邻 , 作 (x0 ,δ ) . U(x0 ,δ ) = {x x0 −δ < x < x0 +δ}. δ 域 记 U 域, 即
如图2-5 所示 解 如图 lim f (x)=lim(x −1) = −1; − −
x→0 x→0 x→0
y = x +1
1
O
lim f (x)=lim(x +1) =1; + +
x→0 x→0 x→0
x
因 lim f (x)≠lim f (x) − + 不存在. 故 lim f (x)不存在. x→0
+ x→x0
+ + x → x0 ) f (x0 ) = A ( 或
, 极 统 单 限 左 右 限 称 侧极 .
− x, x ≤ 0; − x 例5 求函数 f (x) = 当 → 0 时的左极限 f (x0 )和右 1, x > 0.
限 + 极 f ( ) .
第二章-极限与连续--基础练习题(含解答)
第二章 极限与连续 基础练习题(作业)§2.1 数列的极限一、观察并写出下列数列的极限:1.4682,,,357极限为1 2.11111,,,,,2345--极限为03.212212⎧-⎪⎪=⎨+⎪⎪⎩n nn nnn a n 为奇数为偶数极限为1§2.2 函数的极限一、画出函数图形,并根据函数图形写出下列函数极限: 1.lim →-∞xx e极限为零 2.2lim tan x x π→无极限3.lim arctan →-∞x x极限为2π-4.0lim ln x x +→ 无极限,趋于-∞二、设2221,1()3,121,2x x f x x x x x x +⎧⎪=-+<⎨⎪->⎩,问当1x →,2x →时,()f x 的极限是否存在?211lim ()lim(3)3x x f x x x ++→→=-+=;11lim ()lim(21)3x x f x x --→→=+= 1lim () 3.x f x →∴=222lim ()lim(1)3x x f x x ++→→=-=;222lim ()lim(3)53x x f x x x --→→=-+=≠ 2lim ()x f x →∴不存在。
三、设()111xf x e=+,求 0x →时的左、右极限,并说明0x →时极限是否存在.()101lim lim 01x x xf x e ++→→==+()11lim lim 11x x x f x e--→→==+lim ()x f x →∴不存在。
四、试讨论下列函数在0x →时极限是否存在. 1.绝对值函数()||=f x x ,存在极限为零 2.取整函数()[]=f x x 不存在 3.符号函数()sgn =f x x 不存在§2.3 无穷小量与无穷大量一、判断对错并说明理由: 1.1sinx x是无穷小量. 错,无穷小量需相对极限过程而言,在某个极限过程中的无穷小量在其它极限过程中可能不再是无穷小量。
专升本高等数学(二)-极限和连续
专升本高等数学(二)-极限和连续(总分:100.00,做题时间:90分钟)一、{{B}}选择题{{/B}}(总题数:19,分数:20.00)1.下列各组函数中,两个函数相同的是______A. B.f(x)=x,C.f(x)=ln|x|,g(x)=lnx D.f(x)=1nx3,g(x)=3lnx(分数:2.00)A.B.C.D. √解析:[解析] 选项A中,D(f)=(-∞,-1)∪(-1,+∞),D(g)=(-∞,+∞),定义域不相同;选项B中,f(x)=x,g(x)=[*]=|x|,对应规律不相同;选项C中,D(f)=(-∞,0)∪(0,+∞),D(g)=(0,+∞),定义域不相同;选项D中,D(f)=(0,+∞),D(g)=(0,+∞),且lnx3=3lnx,即两个函数的定义域相同且对应规律相同,为相同函数.2.______∙ A.(0,5]∙ B.(1,5]∙ C.(1,5)∙ D.(1,+∞)(分数:1.00)A.B. √C.D.解析:[解析] 使函数解析式有意义,自变量x应满足 [*]解得1<x≤5,即D(f)=(1,5].3.下列函数为奇函数的是______A.y=x4+x-2 B.y=tax+C. D(分数:1.00)A.B.C.D. √解析:[解析] 根据函数的奇偶性的定义,应选D.4.已知f(x)是(-∞,+∞)上的单调增加函数,则F(x)=e-f(x)是______∙ A.单调增加∙ B.单调减少∙ C.不单调但有界∙ D.不单调但无界(分数:1.00)A.B. √C.D.解析:[解析] 因为f(x)在(-∞,+∞)上单调增加,f(x)在(-∞,+∞)上一定单调减少,则F(x)=e-f(x)在(-∞,+∞)上一定单调减少.5.函数的反函数是______A.y=3log2x+1 B.y=3log2(x+1)C.y=log23x+1 D.y=log+1(分数:1.00)A.B.C. √D.解析:[解析] 由[*],得x=log23y+1,即y=log23x+1.6.函数y=cos3(5x+2)的复合过程是______∙ A.y=cos3u,u=5x+2∙ B.y=u3,u=cos(5x+2)∙ C.y=u3,u=cosv,v=5x+2∙ D.y=cosu3,u=5x+2(分数:1.00)A.B.C. √D.解析:[解析] y=u3,u=cosv,v=5x+2.7.当x→0时,sin(2x+x)与x比较是______∙ A.较高价的无穷小量∙ B.较低价的无穷小量∙ C.等价的无穷小量∙ D.同阶无穷小量(分数:1.00)A.B.C.D. √解析:[解析] 因为[*]所以当x→0时,sin(2x+x2)与x比较是同阶无穷小量.8.等于______ A.0 B.1 D.5(分数:1.00)A.B.C.D. √解析:[解析] 根据重要极限[*].9.等于______ A.0 B.1 D.2(分数:1.00)A. √B.C.D.解析:[解析] 注意到当x→∞时,[*]不存在,但|sin2x|≤1,即sin2x是一个有界变量,而当x→∞时,[*],根据无穷小量的性质:“有界变量乘无穷小量仍为无穷小量”,则有 [*].10.下列极限中,正确的是______ A. B. C. D(分数:1.00)A.B.C. √D.解析:[解析] 选项A,[*];选项B,[*];选项C,[*];选项D,[*](有界变量与无穷小量的乘积仍为无穷小量).11.等于______ A.0 B. C.1(分数:1.00)A.B. √C.D.解析:[解析] 将分母分解因式后,再运用极限的四则运算法则及重要极限Ⅰ,求极限. [*] 另解:(等价无穷小量代换)当x→2时,sin(x-2)~x-2,则 [*].______∙ A.e2∙ B.e∙ C.e-1∙ D.e-2(分数:1.00)A.B.C.D. √解析:[解析] 根据重要极限Ⅱ:有[*]13.下列各式中,正确的是______ A. B. C. D(分数:1.00)A.B. √C.D.解析:[解析] 根据重要极限Ⅱ:[*].14.∙ A.-1∙ B.0∙ C.1∙ D.不存在(分数:1.00)A.B.C.D. √解析:[解析] [*] 因为f(0-0)≠f(0+0),所以[*]不存在.15.在x=0处连续,则a=______∙ A.-1∙ B.1∙ C.2∙ D.3(分数:1.00)A.B.C.D. √解析:[解析] [*],因为[*]f(x)=f(0),所以a=3.16.下列函数中在点x=0处不连续的是______ A. B. C. D (分数:1.00)A. √B.C.D.解析:[解析] 选项A中,f(0)=0,[*]f(x)在点x=0处不连续;选项B中,f(0)=0,[*],f(x)在点x=0处连续;选项C中,f(0)=1.[*],f(x)在点x=0处连续;选项D中,f(0)=1.[*],f(x)在点x=0处连续.17.______∙ A.1∙ B.0∙ C.3∙ D.2(分数:1.00)A.B.C.D. √解析:[解析] f(x)的间断点为x=-1,x=1.18.函数f(x)=ln(4-x2)的连续区间是______∙ A.(-∞,-2)∙ B.(-2,2)∙ C.(2,+∞)∙ D.[-2,2](分数:1.00)A.B. √C.D.解析:[解析] 由4-x2>0,解得-2<x<2,函数f(x)=ln(4-x2)的连续区间是(-2,2).19.x=1处______∙ A.有定义∙ B.无定义且无极限∙ C.有极限但不连续∙ D.连续(分数:1.00)A.B.C. √D.解析:[解析] 函数f(x)点x=1处无定义. [*] 所以函数f(x)点x=1处有极限但不连续.二、{{B}}填空题{{/B}}(总题数:18,分数:20.00)20.设f(x)=3x+5,则f[f(x)-2]= 1.(分数:2.00)填空项1:__________________ (正确答案:9x+14)解析:f[f(x)-2]=3[f(x)-2]+5=3[3x+5-2]+5=9x+14.21.设,则(分数:1.00)填空项1:__________________ (正确答案:[*])解析:由[*],得[*] 所以[*]22.设f(x+1)=x2-3x+4,则f(x)=______.(分数:1.00)填空项1:__________________ (正确答案:x2-5x+8)解析:令x+1=t,则x=t-1,得f(t)=(t-1)2-3(t-1)+4=t2-5t+8.即f(x)=x2-5x+8.23.f(0)= 1.(分数:1.00)填空项1:__________________ (正确答案:1)解析:当x≤0时,f(x)=cosx,则f(0)=cos0=1.24.当x∈(-∞,+∞)时,f[f(x)]=______.(分数:1.00)填空项1:__________________ (正确答案:1)解析:当|x|≤1时,f(x)=1,则f[f(x)]=f(1)=1;当|x|>1时,f(x)=0,则f[f(x)]=f(0)=1. 综上所述,当x∈(-∞,+∞)时,f[f(x)]=1.25.y=______.(分数:1.00)填空项1:__________________ (正确答案:y=ln(x2+1)(x≥0))解析:由[*],解得x=ln(y2+1)(y≥0),所以[*]的反函数为y=ln(x2+1)(x≥0).26.设f(x)=e x,g(x)=cosx,则f[g(x)]= 1.(分数:1.00)填空项1:__________________ (正确答案:f[g(x)]=e cosx.)解析:27.设y=lnu,u=cosv,v=x2+x+1,则复合函数y=f(x)= 1.(分数:1.00)填空项1:__________________ (正确答案:y=ln cosv=ln cos(x2+x+1).)解析:(分数:1.00)填空项1:__________________ (正确答案:[*])解析:[*](分数:1.00)填空项1:__________________ (正确答案:2)解析:[*](分数:1.00)填空项1:__________________ (正确答案:[*])解析:[*](分数:1.00)填空项1:__________________ (正确答案:[*])解析:[*](分数:1.00)填空项1:__________________ (正确答案:e-2)解析:[*]33.设,(分数:1.00)填空项1:__________________ (正确答案:1)解析:[*] 因为f(0-0)=f(0+0)=1,所以[*]34.x=1处连续,则常数a=______.(分数:1.00)填空项1:__________________ (正确答案:3)解析:f(1)=a,f(1-0)=[*] 因为函数f(x)在x=1处连续,所以f(1-0)=f(1+0)=f(0),因此a=3.35.x=0处连续,则常数k=______.(分数:1.00)填空项1:__________________ (正确答案:2)解析:f(0)=2,f(0-0)=[*] f(0+0)=[*] 因为函数f(x)在x=0处连续,则有f(0-0)=f(0+0)=f(0),所以k=2.36.x=______.(分数:1.00)填空项1:__________________ (正确答案:3)解析:已知函数为分式函数,当x=3时,函数无定义.所以函数[*]的间断点为x=3.37.x=0处______.(分数:2.00)填空项1:__________________ (正确答案:连续)解析:f(0)e0-1=0,f(0-0)=[*]f(0+0)=[*],因为f(0-0)=f(0+0)=f(0)=0,所以函数[*]在点x=0处连续.三、{{B}}解答题{{/B}}(总题数:5,分数:60.00)求下列极限.(分数:9.00)(1). 3.00)正确答案:([*])解析:(2). 3.00)__________________________________________________________________________________________ 正确答案:(先对数列用拆项法求前n项之和,再求极限. [*])解析:(3). 3.00)__________________________________________________________________________________________ 正确答案:(本题为∞-∞型未定式的极限,要用有理化的方法进行恒等变形后再求极限. [*])解析:求下列极限.(分数:9.00)(1). 3.00)__________________________________________________________________________________________ 正确答案:([*])解析:(2). 3.00)__________________________________________________________________________________________ 正确答案:([*])解析:(3). 3.00)__________________________________________________________________________________________ 正确答案:([*])解析:求下列极限.(分数:12.00)3.00)__________________________________________________________________________________________ 正确答案:([*])解析:(2). 3.00)__________________________________________________________________________________________ 正确答案:([*])解析:(3). 3.00)__________________________________________________________________________________________ 正确答案:([*])解析:(4). 3.00)正确答案:(解法Ⅰ[*] 解法Ⅱ[*])解析:(1). 3.00)__________________________________________________________________________________________ 正确答案:([*] 因为f(0-0)≠f(0+0),所以[*]不存在.)解析:(2). 3.00)__________________________________________________________________________________________ 正确答案:([*] 因为f(0-0)=f(0+0)=2,所以[*])解析:求解下列极限的反问题.(分数:24.00)(1).k的值.(分数:3.00)__________________________________________________________________________________________ 正确答案:([*](x2-2x+k)=32-2×2+k=0,解得k=-3.)解析:(2).a的值.(分数:3.00)__________________________________________________________________________________________ 正确答案:([*](x2+ax+6)=1+a+6=0,解得a=-7)解析:(3).a,b的值.(分数:3.00)__________________________________________________________________________________________ 正确答案:(令x2+ax+b=(x-2)(x+m)=x2+(m-2)x-2m,得a=m-2,b=-2m,又[*]解得m=6,于是有a=4,b=-12.)解析:(4).a的值.(分数:3.00)__________________________________________________________________________________________ 正确答案:(此极限为∞-∞型未定式应转化为[*]型未定式,再求解.[*][*](-x2-x+a)=-1-1+a=0,解得a=2.)解析:(5).b的值,使f(x)在点x=1处连续.(分数:3.00)__________________________________________________________________________________________ 正确答案:(由于f(1)=2,且有[*] 依题意f(x)在点x=1处连续,则必有[*] 于是1+b=2,解得b=1.即当b=1时,f(x)在点x=1处连续.)解析:(6).k的值,使f(x)在其定义域上连续.(分数:3.00)__________________________________________________________________________________________ 正确答案:(函数f(x)的定义域为(-∞,+∞).因为当x<0时,[*]连续,当x>0时,f(x)=x2-2x+3k连续,为使f(x)在其定义域上连续,则必使f(x)在点x=0处连续.[*]因为f(0-0)=f(0+0)=f(0),于是3k=2,得[*]即当[*]时,f(x)在其定义域上连续.)解析:(7).证明方程x5+5x-1=0至少有一个正根.(分数:3.00)__________________________________________________________________________________________ 正确答案:(证明:令f(x)=x5+5x-1,则f(x)=x5+5x-1在区间[0,1]上连续,f(0)=-1<0,f(1)=15+5-1=5>0.根据闭区间上连续函数的零点定理可知,至少存在一点ζ∈(0,1),使得f(ζ)=ζ5+5ζ-1=0.即方程x5+5x-1=0在区间(0,1)内至少有一个实根.亦即方程x5+5x-1=0至少有一个正根.)解析:(8).证明方程1+x+sinx=0 3.00)__________________________________________________________________________________________ 正确答案:(证明:令f(x)=1+x+sinx,则f(x)=1+x+sinx;在区间[*]上连续, [*] 根据闭区间上连续函数的零点定理可知,至少存在一点ζ∈[*],使得 f(ζ)=1+ζ+sinζ=0.即方程1+x+sinx=0在区间[*]内至少有一个根.)解析:。
数学分析第二章极限与连续知识网络思维导图及复习
量求极限。 6、 理解函数连续的概念,会判断函数不连续点的类型。 7、 掌握用基本定理证明闭区间上连续函数的最大值、最小值、介值性定理的基本思路和方
法。 8、 理解一致连续的概念,并会应用其证明相关命题。 三、知识点梳理 1、数列极限的概念、性质与定理
不一致连续: 0
0,
xn
,xn
,
lim(
n
xn
x)
0 ,而 lim( n
f
(xn )
f
( xn)
c
0.
四、典型例题分析
基本题型 I 利用定义证明数列的极限
例
证明
lim
n
n 2n
0
证 明 : 0, 要 使 得
n 2n
0
成立,只要
n 2n
0
n 2n
2 n
(这是因为
2n (11)n 1 n n(n 1) ... n2
(ii) 同 阶 无 穷 小 : lim f (x) a 0 , 则 称 f (x) 是 g(x) 的 同 阶 无 穷 小 , 记 为 xx0 g(x)
f (x) Og(x) x x0 ,
0
特别地,如果 f (x) 在 O(x0 ) 有界,记作 f (x) O(1), (x x0 )
③ 函数的不连续点
(i)第一类不连续点: f (x0 0), f (x0 0) 存在,但不相等。
(ii)第二类不连续点: f (x0 0), f (x0 0) 中至少有一个不存在.
(iii)可移不连续点:
f (x0
0)
f
(x0
高等数学作业集第2章极限与连续及答案
x+ x �
(4) 1 + x − 1 − x � x , 1 阶,等价 x = x1/8 ,1/8 阶,
12.求下列极限 (1) lim
x →+∞
x sin x 2x + 3
x sin x 2x + 3 1 sin x lim = � 0 (无穷小与有界量的乘积) x →+∞ x (2 + 3 / x)
(1/ 2) n 4 4n +1 + 2n 4 + (1/ 2) n 4 + nlim →+∞ 解: = lim lim = = n →+∞ 3 ⋅ 4 n − 3n n →+∞ 3 − (3 / 4) n 3 − lim(3 / 4) n 3
n →∞
(3) lim ( n + 1 − n − n )
2 1/2
− 1 (3) cos( x 2 ) − 1 ,(4) tan( x3 )
x�
3 3 (4) tan( x ) � x [3 阶]; (3) x [1/2 阶]; (2) (1 + x 2 )1/2 − 1 � x 2 / 2 [2 阶];
cos( x 2 ) − 1 � − x 4 / 2 [4 阶]
2 3 − x x2 2 3 − =1 + 0 − 0 =1 x x2
(5) lim
4 x3 + 3x 2 x →∞ 5 x 4 + 2 x
4 x3 + 3x 2 1 4 + 3(1/ x) 1 4 + 3(1/ x) 4 解: lim =lim =lim �lim =0 × =0 x →∞ 5 x 4 + 2 x x →∞ x 5 + 2(1/ x 3 ) x →∞ x x →∞ 5 + 2(1/ x 3 ) 5
高等数学习题详解-第2章 极限与连续(精品范文).doc
【最新整理,下载后即可编辑】习题2-11. 观察下列数列的变化趋势,写出其极限: (1) 1n n x n =+ ; (2)2(1)n n x =--;(3)13(1)nn x n=+-; (4)211n x n=-. 解:(1) 此数列为12341234,,,,,,23451n n x x x x x n =====+ 所以lim 1n n x →∞=。
(2) 12343,1,3,1,,2(1),n n x x x x x =====-- 所以原数列极限不存在。
(3)1234111131,3,3,3,,3(1),234n n x x x x x n=-=+=-=+=+-所以lim 3n n x →∞=。
(4)12342111111,1,1,1,,1,4916n x x x x x n =-=-=-=-=- 所以lim 1n n x →∞=-2.下列说法是否正确:(1)收敛数列一定有界 ; (2)有界数列一定收敛; (3)无界数列一定发散;(4)极限大于0的数列的通项也一定大于0. 解:(1) 正确。
(2) 错误 例如数列{}(-1)n 有界,但它不收敛。
(3) 正确。
(4) 错误 例如数列21(1)nn x n ⎧⎫=+-⎨⎬⎩⎭极限为1,极限大于零,但是11x =-小于零。
*3.用数列极限的精确定义证明下列极限:(1) 1(1)lim1n n n n-→∞+-=;(2) 222lim 11n n n n →∞-=++; (3)323125lim -=-+∞→n n n证:(1) 对于任给的正数ε,要使1(1)111n n n x n n ε-+--=-=<,只要1n ε>即可,所以可取正整数1N ε≥.因此,0ε∀>,1N ε⎡⎤∃=⎢⎥⎣⎦,当n N >时,总有1(1)1n n n ε-+--<,所以1(1)lim 1n n n n-→∞+-=. (2) 对于任给的正数ε,当3n >时,要使222222332211111n n n n n x n n n n n n n n nε---+-=-==<<<+++++++,只要2n ε>即可,所以可取正整数2max ,3N ε⎧⎫=⎨⎬⎩⎭.因此,0ε∀>,2max ,3N ε⎧⎫∃=⎨⎬⎩⎭,当n N >时,总有22211n n n ε--<++,所以222lim 11n n n n →∞-=++. (3)对于任给的正数ε,要使25221762()()131333(31)313n n x n n n n ε+--=--=<=<----,只要123n ε->即可,所以可取正整数213N ε≥+.因此,0ε∀>,213N ε⎡⎤∃=+⎢⎥⎣⎦,当n N >时,总有522()133n n ε+--<-,所以323125lim-=-+∞→n n n . 习题2-21. 利用函数图像,观察变化趋势,写出下列极限: (1)21lim x x →∞ ; (2) -lim x x e →∞; (3) +lim x x e -→∞; (4) +lim cot x arc x →∞; (5) lim2x →∞;(6) 2-2lim(1)x x →+; (7) 1lim(ln 1)x x →+; (8) lim(cos 1)x x π→- 解:(1)21lim 0x x →∞= ;(2) -lim0x x e →∞=;(3) +lim 0x x e -→∞=; (4) +lim cot 0x arc x →∞=; (5) lim 22x →∞= ;(6) 2-2lim(1)5x x →+=; (7) 1lim(ln 1)1x x →+=; (8) lim(cos 1)2x x π→-=- 2. 函数()f x 在点x 0处有定义,是当0x x →时()f x 有极限的( D )(A ) 必要条件 (B ) 充分条件 (C ) 充要条件 (D ) 无关条件解:由函数极限的定义可知,研究()f x 当0x x →的极限时,我们关心的是x 无限趋近x 0时()f x 的变化趋势,而不关心()f x 在0x x =处有无定义,大小如何。
高等数学第二章极限与连续
第二章第二章 极限与连续极限与连续一、本章提要 1.基本概念函数的极限,左极限,右极限,数列的极限,无穷小量,无穷大量,等价无穷小,在一点连续,连续函数,间断点,第一类间断点(可去间断点,跳跃间断点),第二类间断点,第二类间断点. .2.基本公式 (1) 1sin lim0=®口口口,(2) e )11(lim 0=+®口口口(口代表同一变量代表同一变量).). 3.基本方法⑴ 利用函数的连续性求极限;利用函数的连续性求极限; ⑵ 利用四则运算法则求极限;利用四则运算法则求极限; ⑶ 利用两个重要极限求极限;利用两个重要极限求极限; ⑷ 利用无穷小替换定理求极限;利用无穷小替换定理求极限;⑸ 利用分子、分母消去共同的非零公因子求形式的极限;形式的极限; ⑹ 利用分子,分母同除以自变量的最高次幂求¥¥形式的极限;形式的极限;⑺ 利用连续函数的函数符号与极限符号可交换次序的特性求极限;利用连续函数的函数符号与极限符号可交换次序的特性求极限; ⑻ 利用“无穷小与有界函数之积仍为无穷小量”求极限利用“无穷小与有界函数之积仍为无穷小量”求极限. .4.定理左右极限与极限的关系,单调有界原理,夹逼准则,极限的惟一性,极限的保号性,极限的四则运算法则,极限与无穷小的关系,无穷小的运算性质,无穷小的替换定理,无穷小与无穷大的关系,初等函数的连续性,闭区间上连续函数的性质小与无穷大的关系,初等函数的连续性,闭区间上连续函数的性质. .二、要点解析问题1 如果如果如果 A x f x x =®)(lim 0存在,那么函数)(x f 在点0x 处是否一定有定义处是否一定有定义? ?解析 A x f x x =®)(lim 0存在与)(x f 在0x 处是否有定义无关.例如1sin lim0=®xxx ,而)(x f =xx sin 在0=x 处无定义;又如0lim 20=®x x ,而2)(x x f =在0=x 处有定义处有定义..所以,)(lim 0x f x x ®存在,不一定有)(x f 在0x 点有定义点有定义. .问题2 若若A x f x g x x =×®)()(lim 0存在,那么)(lim 0x g x x ®和)(lim 0x f x x ®是否一定存在?是否一定有)(lim 0x g x x ®·)(x f =)(lim 0x g x x ®·)(lim 0x f x x ®?解析 )(lim 0x g x x x x ®·A x f =)(存在,并不能保证)(lim 0x g x x x x ®与)(lim 0x f x xx x ®均存在均存在..例如0lim 1lim 020==®®x x x x x ,而x x 1lim 0®不存在不存在..又因为只有在)(lim 0x g x x ®与)(lim 0x f x x ®均存在的条件下,才有)(lim 0x g x x ®·)(x f =)(lim 0x g x x ®·)(lim 0x f x x ®,所以)(lim 0x g x x ®·)(x f 存在,不能保证)(lim 0x g x x ®·)(x f =)(lim 0x g x x ®·)(lim 0x f x x ®.问题3 +¥=®xx 1e lim 是否正确,为什么是否正确,为什么? ?解析 不正确不正确..尽管+¥=+®xx 10e lim ,而0e1lim elim e lim 101010===---®-®®xx xx xx .这说明这说明,,0®x 时,x1e 不是无穷大不是无穷大. .三、例题精解 例1 求下列极限求下列极限求下列极限: :(1) ))(cos sin (lim tan 2224πx x x x x ++®;(2) 1)1232(lim +¥®++x x x x ;(3) 3111limxxx --®;(4) )1sin sin (lim 0xx x x x ++®; (5) )2sin(lim x x x -++¥®;(6) xx x x1sin53lim 2-¥®. 解 (1)(1)由于讨论函数由于讨论函数xx x x x f tan222)(cos sin )(++=在4π=x 处有定义,而且在4π=x 处连续,所以有处连续,所以有 ])(cos sin [lim tan 2224πx x x x x ++®4πtan222)4π(cos )4π(sin )4π(++=222)22()22(16π++= 116π2+=. (2)123lim()21x x x x +®¥++1212lim()21x x x x +®¥++=+ 12lim(1)21x x x +®¥=++ (这是¥1型,设法将其化为口口)口(11lim +¥®)11221lim(1)12x x x ++®¥=++2121)2111(lim )2111(lim ++×++=¥®+¥®x x x x x212121)]2111(lim [)2111(lim ++++=¥®+¥®+x x x x x211e ×=e =.(3) 311lim 1x xx®-- (这是(这是00型未定式)23323331(1)(1)1()lim (1)1()(1)x x x x x x x x x ®éù-+++ëû=éù-+++ëû2331(1)1()lim (1)(1)x x x x x x ®éù-++ëû=-+ (分子、分母均含非零因子1-x ) 23311()lim 1x x x x®++=+ 32=. (4))1s i ns i n(l i m 0x x x x x ++®x x x x x x 1sin lim sin lim 00++®®+= 01+=1=.需要注意,01sin lim 0=+®x x x 是由于x 为+®0x 时的无穷小量,x 1sin ≤1,即x 1si n 为有界函数,所以x x1sin为+®0x 时的无穷小时的无穷小.. (5)lim sin(2)x x x ®+¥+-sin lim (2)x x x ®+¥=+- ( (函数符号与极限符号交换函数符号与极限符号交换函数符号与极限符号交换)) (2)(2)sin lim2x x x x x x x®¥+-++=++(分子有理化)2sin lim2x x x®+¥=++0s i n = 0=. (6)235lim1sinx x x x®¥-(35)lim11(sin )x x xx x ®¥-= (适当变形) lim (35)11lim (sin )x x x x x x®¥®¥-= (利用商的极限公式)105lim (3)111lim (sin )x xx x x ®¥®-= (利用重要极限1sin lim 0=®口口口)3=例2 设ïîïíì<+>=,0,,0,1sin )(22x x a x x x x f 问a 为何值时)(lim 0x f x ®存在,并求此极限值存在,并求此极限值. . 解解 对于分段函数,对于分段函数,讨论分段点处的极限讨论分段点处的极限..由于函数在分段点两边的解析式不同,所以,一般先求它的左、右极限一般先求它的左、右极限. .01sin lim )(lim 200==++®®xx x f x x ,a x a x f x x =+=--®®)(lim )(lim 20.为使为使)(lim 0x f x ®存在,必须即),(lim )(lim 0x f x f x x -+®®=0=a . 因此,因此,0=a 时,)(lim0x f x ®存在且0)(lim 0=®x f x . 例3 设ïïîïïíì<--³+=,0,,0,2cos )(x x x a a x x x x f 问当a 为何值时,0=x 是)(x f 的间断点? ? 是什么间断点是什么间断点是什么间断点? ?解0lim ()lim x x a a xf x x--®®--=0()()lim ()x a a x a a x x a a x -®--+-=+- 0lim ()x x x a a x -®=+-01limx a a x -®=+-12a=,212cos lim )(lim 0=+=++®®x x x f x x ,当ax f x f x x 2121)(lim )(lim 0¹¹-+®®,即,亦即1¹a 时,0=x 是)(x f 的间断点;由于a 为大于0的实数,故)0()0(-+f f 与均存在,只是)0()0(-+¹f f ,故0=x 为)(x f 的跳跃间断点的跳跃间断点. .例 4 已知已知 011lim 2=÷÷øöççèæ--++¥®b ax x x x ,求b a ,的值的值. . 解 因为因为 )11(lim 2b ax x x x --++¥®2(1)()1lim1x a x a b x bx ®¥--++-=+0=,由有理函数的极限知,上式成立,必须有2x 和x 的系数等于0,0,即即îíì=+=-01b a a ,于是1,1-==b a .四、练习题⒈ 判断正误⑴ 若函数)(x f 在0x 处极限存在,则)(x f 在0x 处连续处连续. ( . ( . ( ×× ) 解析 函数在一点连续,函数在一点连续,函数在一点连续,要求函数在该点极限存在,要求函数在该点极限存在,要求函数在该点极限存在,且极限值等于该点函数值.且极限值等于该点函数值.且极限值等于该点函数值.如函数如函数îíì=¹=,0,1,0,)(x x x x f 0lim )(lim 00==®®x x f x x ,即函数)(x f 在0=x 处极限存在;但1)0(0)(lim 0=¹=®f x f x ,所以函数îíì=¹=0,1,0,)(x x x x f 在0=x 处不连续.处不连续. ⑵分段函数必有间断点⑵分段函数必有间断点. ( . ( . ( ×× )解析 分段函数不一定有间断点.如函数îíì<-³=0,,0,)(x x x x x f 是分段函数,()0lim )(lim 0=-=--®®x x f x x ,0lim )(lim 0==++®®x x f x x ,所以0)(lim 0=®x f x ;又因为0)0(=f ,即)0()(lim 0f x f x =®,所以函数)(x f 在0=x 处连续,无间断点.处连续,无间断点.⑶x 3tan 与x 3sin 是0®x 时的等价无穷小时的等价无穷小. ( . ( . ( √√ ) 解析 13cos 1lim3sin 3tan lim 00==®®xxx x x ,由等价无穷小的定义,x 3tan 与x 3sin 是0®x 时的等价无穷小.的等价无穷小.⑷无界函数不一定是无穷大量⑷无界函数不一定是无穷大量. ( . ( . ( √√ ) 解析 无穷大必无界,但反之不真.如函数无穷大必无界,但反之不真.如函数x x x f cos )(=,当¥®x 时是无界函数;但若取2ππ2+=n x ,¥®x (¥®n )时0cos )(==x x x f ,不是无穷大量.,不是无穷大量. 2.选择题⑴下列极限存在的是⑴下列极限存在的是( B ) ( B )(A) xx 4lim ¥®; (B) 131lim 33-+¥®x x x ; (C)x x ln lim 0+®; (D) 11sin lim 1-®x x . 解析 (A)04lim =-¥®x x ,+¥=+¥®x x 4lim , 所以所以xx 4lim ¥®不存在;不存在;(B)311311lim 131lim 3333=-+=-+¥®¥®x x x x x x ,极限存在;,极限存在;(C)-¥=+®x x ln lim 0,所以x x ln lim 0+®不存在;不存在; (D)1®x 时,01®-x ,¥®-11x ,所以,所以11sinlim 1-®x x 不存在.不存在. ⑵已知615lim =-+¥®x ax x ,则常数=a ( C ).(A) 1(A) 1;; (B) 5 (B) 5 ;; (C) 6 (C) 6 ;; (D) -1.解析611515lim ==-+=-+¥®a xx a x ax x ,所以,所以6=a . ⑶xx f 12)(=在0=x 处 ( C ).(A) (A) 有定义;有定义;有定义; (B) (B) 极限存在;极限存在;极限存在; (C) (C) 左极限存在;左极限存在;左极限存在; (D) (D) 右极限存在右极限存在右极限存在. . 解析 因xx f 12)(=,在0=x 处无定义,处无定义,02lim )(lim 1==--®®xx x x f ,即xx f 12)(=在0=x 处左极限存在,处左极限存在,+¥==++®®x x x x f 102lim )(lim ,即xx f 12)(=在0=x 处右极限不存在,处右极限不存在,由极限存在的充要条件,可知函数xx f 12)(=在0=x 处的极限不存在.处的极限不存在. ⑷当⑷当+¥<<x 0时,xx f 1)(=( D ).(A) (A)有最大值与最小值有最大值与最小值有最大值与最小值; ; (B)(B)有最大值无最小值有最大值无最小值有最大值无最小值; ;(C)(C)无最大值有最小值无最大值有最小值无最大值有最小值; ; (D)(D)无最大值无最小值无最大值无最小值无最大值无最小值. . 解析 xx f 1)(=在()+¥,0上是连续函数,图形如下:上是连续函数,图形如下:所以当+¥<<x 0时,xx f 1)(=无最大值与最小值.无最大值与最小值. 3.填空题Oyxx1(1) (1)已知已知b a ,为常数,3122lim2=-++¥®x bx ax x ,则=a 0 0 ,,=b 6 6 ;; 解 ¥®x 时极限值存在且值为3,则分子、分母x 的最高次幂应相同,所以0=a ,那么那么 32122lim 122lim 122lim 2==-+=-+=-++¥®¥®¥®b xx b x bx x bx ax x x x ,所以6=b .(2)23)(2+-=x x x f 的连续区间是(][)¥+¥-,21, ;解 由0232³+-x x ,知函数)(x f 的定义区间为(][)¥+¥-,21, .又因为初等函数在其定义区间上连续,所以23)(2+-=x x x f 的连续区间是(][)¥+¥-,21, .(3)0=x 是xx x f sin )(=的 可去可去可去 间断点间断点间断点; ;解 0=x 时,函数xx x f sin )(=无定义,但1sin lim0=®xxx ,极限存在,所以0=x 是xx x f sin )(=的可去间断点.的可去间断点.(4)(4)若若a x x =¥®)(lim j (a 为常数为常数)),则=j ¥®)(elim x x ae.解 由复合函数求极限的方法,ax x x x e eelim )(lim )(==j j ¥®¥®.4.解答题⑴ qq q q sin cos 1lim 0-®; 解一 qq q q sin cos 1lim 0-®2cos2sin 22sin 2lim 2q q q qq ®=2cos2122sinlim 0qqqq ×=®2cos 21lim 10q q ®×=21=.解二 无穷小量的等价代换,由于无穷小量的等价代换,由于0®q 时,2~cos 1,~sin 2q q q q -,所以所以 q q q q sin cos1lim 0-®q q q q ×=®2lim 2021= .⑵ 设x x f ln )(=,求,求 1)(lim1-®x x f x ; 解由无穷小量的等价代换,1®x 即01®-x 时,()[]1~11ln ln )(--+==x x x x f ,所以所以 111lim 1ln lim 1)(lim 111=--=-=-®®®x x x x x x f x x x .⑶ x xx sin e lim -+¥®;解 +¥®x 时,x-e 是无穷小量,x sin 是有界变量.是有界变量. 因为有界变量乘无穷小量仍是无穷小量,所以因为有界变量乘无穷小量仍是无穷小量,所以 0sin e lim =-+¥®x xx .⑷ 设îíì>-£=,1,56,1,)(x x x x x f 试讨论)(x f 在1=x 处的连续性,写出)(x f 的连续区间;解 1lim )(lim 11==--®®x x f x x ,()156lim )(lim 11=-=++®®x x f x x ,所以1)(lim 1=®x f x .且1)1(=f ,即)1()(lim 1f x f x =®,所以函数)(x f 在1=x 处连续.处连续.又因为当1£x 时函数x x f =)(连续,当1>x 时函数56)(-=x x f 也连续,也连续,所以函数所以函数)(x f 的连续区间为()¥+¥-,.⑸ 设ïïîïïíì>=<=,0,sin ,0,1,0,e )(xx x x x x f x求)(lim ),(lim 00x f x f x x +-®®,并问)(x f 在0=x 处是否连续;处是否连续;e 1xe 1e 11=--xxe 1e 1e 1111=-=---++xx xxe 1e 11+-=xx 的跳跃间断点.的跳跃间断点. xx 2sin )1ln(lim0+;212lim 2sin )1ln(lim00=+x x x x .。
高等数学基础第二章
第二章 极限与连续
1.极限的概念 2.极限的运算 3.两个重要极限 4.函数的连续性
第一节 极限的概念
一、数列的极限
首先看下面三个无穷数列 a n
(1)1,
1 2
,
1 3
,
1 4
,
…
1 n
…
(2) 0, 12,32,43, .., .nn1,…
(3)
1,1,1, 1 2 4 8 16
f
(x)
1
2 x
x0 0 x2 x2
在x=0和x=2处的极限是否存在(图2-7为函数图像)。
解 在x=0处左极限
lim f(x)li( m x 1 ) 1
x 0
x 0
右极限 lim f(x)lim 11
x 0
x 0
可见,左、右极限存在且相等,所以,极限 limf x 1 x1
在x=2处左极限
(1)
1 lxi mx
00
(2) limqx 0 q 1 x
(3) limCC (C是任意常数) x
x x0
f x
我们讨论当 x无限趋近于1 时,函数 fx2x1的变化趋势。为此列出表2-2, 并画出函数 fx2x1的图象(如图2-6)。
f(x)2x1 f(x)2x1
f(x)2x1 3
lim (2x1)3
可约去不为零的因子 x2 ,所以
lim x 2 lim x 2 lim 1 1 x 2x 2 4x 2(x 2 )x ( 2 ) x 2x 24
例4 求
3x2 5x lim x x2 1
解 当 x 时,分子、分母都趋向无穷大,这类极限称为 型未定式,
当然商的极限法则不适用,通常需要把式子变形。用分子、分母的
高等数学 第二章 极限与连续 2.6 两个重要极限
k 1 k .
解: 原式 k lim x 0
kx 0
例4
求
2 sin x
2 2 x 2
解: 原式 lim 例5 求
x 0
sin lim x 2 x 0 2
1
x 2
2
1 2
1
2
解: 令 t
例11
求 x
lim (
x 2
x
2
2
x 1
)
x
x x x x 解: lim ( 2 ) lim lim x x x x 1 x 1 x 1 x 1 x 1
x
x
x
x
1 1 lim 1 1 x x 1 x 1
x,
OAB 的高为 BD ,
于是有
sin x BD ,
tan x AC ,
C
二、两个重要极限
B
(1)
lim
sin x x
x 0
1
0 0
型
x
o
D
A
△AOB 的面积<圆扇形AOB的面积<△AOD的面积
即
1 2
sin x
1 2
tan x
(0 x
2
2
sin x x tan x ,
单调减少
定理2.12
准则Ⅱ
单调有界数列必有极限.
几何解释:
m
x1
x 2 x 3x n x n 1
A
M
x
C
高等数学 第二章 极限与连续 2.7 利用等价无穷小量代换求极限
高等数学—第二章
极限与连续
基础课教学部 数学教研室
第七节 利用等价无穷小量代换求极限
0,
是 的高阶无穷小
lim ,
是 的低阶无穷小
C(0), 是 的同阶无穷小
1,
是 的等价无穷小
lim kC0,
是 的 k 阶无穷小
常用等价无穷小: 当x0时 ,
故 31 xsinx 1 1xsinx (x 0)
3
a r c t a n x 2 x 2 (x 0)
所以,原式
1 xsin x
lim 3
x x0
2
1 sinx lim
x0 3 x
1. 3
例4 求 litm ax nsixn . x 0 si32 n x
错解: 当 x 0 时 ,tx a ~ x ,s n x ~ i x . n 原式 lx i0m (x2 x)x3 0.
2
1
例2 求 lim(1x2)31. x0 coxs1
解:当 x 0时 ,
(1x2)1 31~1
1
原 式 lim3
x
2
2
x 0
1 2
x2
3
例3 求
3 1xsinx1 lim
x0 arctanx2
解:因当
x0时, 3 1x 1~
1 3
x
arctanx~x,
例如, lia m rx c s1 i s l n iix n s m 1 i 0 n
x 0
xx 0 x
例1 求 lim ta2n 2x.
x 01coxs
解:当 x 0 时 ,1 cx ~ o 1 x 2 , s t2 a x ~ 2 x n .
高等数学 第二章 极限与连续
lim
x x0
f
(x) 的值等于该点的函数值
f
(x0 )
如果
lim
xx
0
f (x)
f (x0 )
(或 lim
xx
0
f (x)
f (x0 )
一、函数极限的概念 二、函数极限的性质
一、函数极限的概念
1)自变量趋于有限值时函数的极限
设函数 f (x) 在点 x0 的去心邻域内有定义,如
果在 x x0 的过程中,对应的函数值 f (x) 无限接
近 于 确 定 的 数 值 A , 那 么 称 A 是 函 数 f (x) 当
x
x0
时的极限,记作
性质 1 有限个无穷小的代数和仍为无穷小. 性质 2 有界函数与无穷小的乘积仍是无穷小. 推论 1 常数与无穷小的乘积仍是无穷小. 推论 2 有限个无穷小的乘积仍是无穷小
定理 lim f (x) A的充分必要条件是 f (x) A , x x0
其中 为当 x x0 时的无穷小.
二、无穷大
性质 1 (极限的唯一性) 如果数列{yn} 有极 限(或收敛),那么它的极限是唯一的.
性质 2 (收敛数列的有界性) 如果数列{yn} 有极限,那么数列{yn} 一定有界.
性质 3(收敛数列的保号性)如果给定数列
{
y
n
}
,且
lim
n
yn
a ,a
0(或 a
0) 那么从某一项
起,都有 yn 0 (或 yn 0 ).
yn
AB;
(3)
lim xn n yn
lim
n
xn
lim
n
yn
A B
第2章 极限与连续 课件 《高等数学(IT类专业适用)》(高教版)
解 当 →
(6) =
∞时,
+1
=1
1
−
→ 1,故 = .
→∞
1
;
解 当 → +∞时, → +∞,故 = .
→+∞
c
2.1.2 函数的极限
1. 当 → 时,函数 = 的极限
引例 观察函数 = 的图像,考察当 → 时函数值的变化趋势.
(3)0,2,4,8, ⋯ , 2 , ⋯
v
0
2
8
4
16
当 → +∞时, = → ∞.
−2
1
+1 1
(4)2, −1, 2 , ⋯ , (−1)
,⋯
2
v
−1
1
−
4
0
1
8
1
2
2
当 → +∞时, = −
+ ()
→ .
定义2.1.2(数列的极限)
对于数列 ,如果当n无限增大时, 无限趋向于一个确定
则称为函数 = 在 处的左极限,记作
− = 或 → → −
.
→
定义 2.1.5(函数的极限) 设函数 = 在 的邻域 − , + 内有定义,当
自变量在此邻域内无限趋近于 时,相应的函数值 无限趋近于一个确定的常数,
定义 2.1.7
当自变量取负值且其绝对值无限增大时,函数 = 无限趋
近于一个确定的常数,则称为函数 = 在 → −∞处的极限,记作
= 或 → → −∞ .
→−∞
定义 2.1.8
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题2-11. 观察下列数列的变化趋势,写出其极限:(1) 1n nx n =+ ;(2) 2(1)n n x =--;(3) 13(1)n n x n =+-; (4) 211n x n =-. 解:(1) 此数列为12341234,,,,,,23451n nx x x x x n =====+ 所以lim 1n n x →∞=。
(2) 12343,1,3,1,,2(1),n n x x x x x =====-- 所以原数列极限不存在。
(3) 1234111131,3,3,3,,3(1),234nn x x x x x n=-=+=-=+=+-所以lim 3n n x →∞=。
(4) 12342111111,1,1,1,,1,4916n x x x x x n=-=-=-=-=- 所以lim 1n n x →∞=-2.下列说法是否正确: (1)收敛数列一定有界 ; (2)有界数列一定收敛; (3)无界数列一定发散;(4)极限大于0的数列的通项也一定大于0. 解:(1) 正确。
(2) 错误 例如数列{}(-1)n有界,但它不收敛。
(3) 正确。
(4) 错误 例如数列21(1)nn x n ⎧⎫=+-⎨⎬⎩⎭极限为1,极限大于零,但是11x =-小于零。
*3.用数列极限的精确定义证明下列极限:(1) 1(1)lim1n n n n-→∞+-=;(2) 222lim 11n n n n →∞-=++; (3) 323125lim-=-+∞→n n n证:(1) 对于任给的正数ε,要使1(1)111n n n x n n ε-+--=-=<,只要1n ε>即可,所以可取正整数1N ε≥.因此,0ε∀>,1N ε⎡⎤∃=⎢⎥⎣⎦,当n N >时,总有1(1)1n n n ε-+--<,所以1(1)lim 1n n n n-→∞+-=.(2) 对于任给的正数ε,当3n >时,要使222222332211111n n n n n x n n n n n n n n n ε---+-=-==<<<+++++++,只要2n ε>即可,所以可取正整数2max ,3N ε⎧⎫=⎨⎬⎩⎭.因此,0ε∀>,2max ,3N ε⎧⎫∃=⎨⎬⎩⎭,当n N >时,总有22211n n n ε--<++,所以222lim 11n n n n →∞-=++. (3) 对于任给的正数ε,要使25221762()()131333(31)313n n x n n n n ε+--=--=<=<----,只要123n ε->即可,所以可取正整数213N ε≥+.因此,0ε∀>,213N ε⎡⎤∃=+⎢⎥⎣⎦,当n N >时,总有522()133n n ε+--<-,所以323125lim-=-+∞→n n n .习题2-2 1. 利用函数图像,观察变化趋势,写出下列极限: (1) 21limx x →∞ ;(2) -lim xx e →∞;(3) +lim xx e-→∞;(4) +lim cot x arc x →∞;(5) lim 2x →∞;(6) 2-2lim(1)x x →+;(7) 1lim(ln 1)x x →+;(8) lim(cos 1)x x π→-解:(1) 21lim0x x →∞= ;(2) -lim 0xx e →∞=;(3) +lim 0xx e-→∞=;(4) +lim cot 0x arc x →∞=;(5) lim 22x →∞= ;(6) 2-2lim(1)5x x →+=;(7) 1lim(ln 1)1x x →+=;(8) lim(cos 1)2x x π→-=-2. 函数()f x 在点x 0处有定义,是当0x x →时()f x 有极限的( D )(A ) 必要条件 (B ) 充分条件 (C ) 充要条件 (D ) 无关条件解:由函数极限的定义可知,研究()f x 当0x x →的极限时,我们关心的是x 无限趋近x 0时()f x 的变化趋势,而不关心()f x 在0x x =处有无定义,大小如何。
3. ()00f x -与()00f x +都存在是函数()f x 在点x 0处有极限的( A ) (A ) 必要条件 (B ) 充分条件 (C ) 充要条件(D ) 无关条件解:若函数()f x 在点x 0处有极限则()00f x -与()00f x +一定都存在。
4. 设()21;0,;0,x x f x x x ⎧+<=⎨≥⎩作出()f x 的图像;求()0lim x f x +→与()0lim x f x -→;判别()0lim x f x →是否存在?解:()0lim lim 0x x f x x ++→→==,()200lim lim(1)1x x f x x --→→=+=,故()0lim x f x →不存在。
5.设()xf x x=,()x x x ϕ=,当0x →时,分别求()f x 与()x ϕ的左、右极限,问()0lim x f x →与()0lim x x ϕ→是否存在?解:由题意可知()1;0,1;0,x f x x <⎧=⎨>⎩,则()00lim lim11x x f x ++→→==,()00lim lim11x x f x --→→==,因此()0lim 1x f x →=。
由题意可知()1;0,1;0,x x x ϕ-<⎧=⎨>⎩,()00lim lim11x x x ϕ++→→==,()00lim lim(1)1x x x ϕ--→→=-=-,因此()0lim x x ϕ→不存在。
*6.用极限的精确定义证明下列极限:(1) 1lim11x xx →∞-=-+;(2) 2-11lim-2+1x x x →-=; (3) 01lim sin0x x x→=. 证:(1) 0ε∀>,要使()122(1)1111x f x x x x ε---=+=≤<++-,只要21x ε>+即可.所以,21X ε∃=+,当x X >时,都有()(1)f x ε--<,故1lim11x xx →∞-=-+.(2) 对于任给的正数ε,要使()221212111x x x f x A x x x ε-++-=+==+<++,只要1x ε+<. 所以0ε∀>, δε∃=, 当01x δ<+<时,都有不等式21(2)1x x ε---<+成立.故2-11lim-2+1x x x →-=. (3) 对于任给的正数ε,要使()1sin0f x A x x xε-=-≤<,只要x ε<.所以0ε∀>, δε∃=, 当0x δ<<时,都有不等式1sin 0x xε-<成立.故01lim sin 0x x x→=.习题2-31.下列函数在什么情况下为无穷小?在什么情况下为无穷大? (1)21x x +-; (2)ln x ; (3)21x x+. 解:(1) 因为22lim01x x x →-+=-,故2x →-时21x x +-为无穷小, 因为12lim1x x x →+=∞-,故1x →时21x x +-为无穷大。
(2) 因为1limln 0x x →=,故1x →时ln x 为无穷小,因为0lim ln x x +→=-∞,lim ln x x →+∞=+∞,故0x +→和x →+∞时ln x 都为无穷大。
(3) 因为211lim 0x x x →-+=,22111lim lim()0x x x x x x →∞→∞+=+=,故1x →-和x →∞时21x x+为无穷小, 因为201limx x x →+=∞,故0x →时21x x+为无穷大。
2.求下列函数的极限:(1) 201lim sin x x x →; (2)tan lim x arc x x →∞; (3)2cos lim n n n→∞.解:(1) 因为(),0(0,)x ∀∈-∞+∞,1sin1x≤,且20lim 0x x →=,故得201lim sin 0x x x →=.(2) 因为(),0(0,)x ∀∈-∞+∞,arctan 2x π<,且1lim0x x →∞=,故得tan lim 0x arc xx→∞=.(3) 因为2cos 1n ≤,且1lim 0n n →∞=,故得2cos lim 0n n n→∞=.习题2-41. 下列运算正确吗?为什么?(1) 0000111lim cos lim lim cos 0lim cos 0x x x x x x x x x →→→→⎛⎫=⋅=⋅= ⎪⎝⎭;(2)()22111lim lim1lim 1x x x x x x x →→→==∞--. 解:(1) 不正确,因为01limcos x x →不存在,所以此时极限的四则运算法则失效。
正确做法是:因为1cos1x≤,且0lim 0x x →=,故得01lim cos 0x x x →=.(2) 不正确,因为()1lim 10x x →-=,不能做分母,所以此时极限的四则运算法则失效。
正确做法是:因为211lim 0x x x →-=,由无穷小与无穷大的关系可知21lim 1x x x→=∞-.2. 求下列极限:(1)()()()2030503123lim 71x x x x →∞-++; (2) 1123lim 23n n n nn ++→∞++;(3)()33limh x h x h→+-;(4) 2112lim 11x x x →⎛⎫- ⎪--⎝⎭; (5) 322lim 2121x x x x x →∞⎛⎫- ⎪-+⎝⎭; (6)()23arccot lim 5x x x x x x →∞---; (7) 1111393lim 1111242n n n→∞++++++++; (8)123lim 22n n n n →∞++++⎛⎫- ⎪+⎝⎭;(9) ⎥⎦⎤⎢⎣⎡--→)1(21ln lim 21x x x . 解:(1)()()()2030203020305050501332312332lim lim 77117x x x x x x x x →∞→∞⎛⎫⎛⎫-+ ⎪ ⎪-+⎝⎭⎝⎭==+⎛⎫+ ⎪⎝⎭; (2) 1112232()32333lim lim lim 32223()1133n n n n nn nnn n n nn+++→∞→∞→∞+++===+++; (3)()33222200033limlim lim(33)3h h h x h x x h xh x xh x hh→→→+-+==+=;(4)222111122111 lim lim lim11(1)(1)12 x x xx xx x x x x→→→-+⎛⎫-=== ⎪----+⎝⎭;(5)3232222111 lim lim lim11 2121(21)(21)4(2)(2)x x xx x x x xx x x xx x→∞→∞→∞+⎛⎫+-=== ⎪-+-+⎝⎭-+;(6)()23arccotlim5xx x xx x→∞---; 因为arccot xπ<,且223211lim lim01551x xx x x xx xx x→∞→∞--==----,所以()23arccotlim05xx x xx x→∞-=--(7)111111()311111111()3339333lim lim lim111114411()1()24222112nnnn n nn nn++→∞→∞→∞++-++++--===++++---;(8)(1)12312lim lim lim22222(2)2n n nn nn n n nn n n→∞→∞→∞+⎛⎫⎪++++-⎛⎫-=-==-⎪⎪+++⎝⎭ ⎪⎝⎭;(9)22111111limln ln[lim]ln[lim]ln102(1)2(1)2x x xx x xx x→→→⎡⎤--+====⎢⎥--⎣⎦.3.已知⎪⎩⎪⎨⎧≥+-+<-=,113,1)(32xxxxxxxf, 求).(lim),(lim),(limxfxfxfxxx-∞→+∞→→解:因为230031lim()lim11x xx xf xx++→→+-==-+,00lim()lim(1)1x xf x x--→→=-=-,所以lim()1xf x→=-,2331lim()lim01x xx xf xx→+∞→+∞+-==+,lim()lim(1)x xf x x→-∞→-∞=-=-∞。