简述毕奥萨伐尔定律

合集下载

毕奥萨伐尔定律

毕奥萨伐尔定律

1820年,法国物理学家比奥特(Biot)和萨瓦特(Savart)通过实验,测量了一条长直电流线附近的小磁针的力定律,并发表了一篇论文,题为“传递给运动中的金属的电的磁化力”。

后来被称为比奥-萨瓦特定律。

后来,在数学家拉普拉斯(Laplace)的帮助下,该定律以数学公式表示。

毕奥-萨伐尔定律:载流导线上的电流元Idl在真空中某点P的磁感度dB的大小与电流元Idl的大小成正比,与电流元Idl和从电流元到P点的位矢r之间的夹角θ的正弦成正比,与位矢r的大小的平方成反比。

dB的方向垂直于Idl和r所确定的平面,当右手弯曲,四指从方向沿小于π角转向r时,伸直的大拇指所指的方向为dB的方向,即dB、Idl、r三个矢量的方向符合右手螺旋法则。

叠加原理:
与点电荷的场强公式相似,毕奥——萨伐尔定律是求电流周围磁感强度的基本公式.磁感强度B也遵从叠加原理.因此,任一形状的载流导线在空间某一点P的磁感强度B,等于各电流元在该点所产生的磁感应强度dB的矢量和。

特点:
从课程论和物理学课自身特点的角度来分析毕奥-萨伐尔定律,它体现的学科特点有以下几点:(1)是稳恒电流磁场的关键知识点;(2)具有高度的抽象性;(3)使用数学工具的复杂性;(4)掌握“方法”比掌握“内容”更重要;(5)在探索知识的过程中体现“把握本质联
系,揭示事物发展内在规律性”的唯物辩证法观点。

毕奥---萨伐尔定律

毕奥---萨伐尔定律
毕奥---萨伐尔定律 毕奥 萨伐尔定律
两电流元之间的安培定律也可表示成 两电流元之间的安培定律也可表示成
u r r uur u r ˆ I1 I 2 dl2 × (dl1 × r12 ) d F12 = k = I 2 dl2 × dB1 2 r 12
电流元 I1d l1产生的磁场
ˆ ˆ Idl × r µ0 Idl × r dB = k = 2 2 r 4π r
• 求二阶导数
d 2B 在O 令x = 0处的 2 = 0 ⇒ 在O点附近磁场最均匀的条件 dx µ0 d 2B 2a 2 − 2 R 2 = 6π R 2 I = 0 ⇒ a2 = R2 7 2 dx 2 x =0 4π 2 a 2 2 R + 4
a=R
例1、无限长载流直导线弯成如图形状
大小
µ0 Idl dB = 4π r2
r r 方向 Idl × r0
分析对称性、 分析对称性、写出分量式
r r B⊥ = ∫ dB = 0

µ0 Idl sinα Bx = ∫ dBx = ∫ 4π r2
统一积分变量
µ0 Idl sinα Bx = ∫ dBx = ∫ 4π r2 µ0IR µ0IR dl = π = ⋅2 R 3 ∫ 3 4 r 4 r π π
a


P T
µ0I 3 BL′A = (cos π − cosπ ) 4πa 4
µ0I π BLA = (cos0 − cos ) 方向 ⊗ 4 a 4 π
方向 ⊗
T点
Bp = BLA + BL′A = 2.94×10−5T 方向 ⊗
r 电流元 Idl
——右手定则 右手定则 r r r µ0 Idl ×r 毕奥-萨伐尔定律 毕奥 萨伐尔定律 dB = 4 π r3 r r r r µ0 Idl ×r 对一段载流导线 B = ∫ dB = ∫ 4π L r3

毕奥-萨伐尔定律介绍

毕奥-萨伐尔定律介绍
第七章 恒定磁场
en
S
I
13
物理学
第五版
7-4
毕奥-萨伐尔定律
例3 载流直螺线管内部的磁场. 如图所示,有一长为l ,半径为R的载 流密绕直螺线管,螺线管的总匝数为N, 通有电流I. 设把螺线管放在真空中,求管 内轴线上一点处的磁感强度.
R
*
P
×× × ×× × ×× × ×× ×× ×
第七章 恒定磁场
1
r
x
C
o r0
P
y
B 的方向沿 x 轴负方向
5
0 I (cos1 cos 2 ) 4 π r0
第七章 恒定磁场
物理学
第五版
7-4
毕奥-萨伐尔定律
B
0 I
4 π r0
(cos1 cos 2 )
z
D
无限长载流长直导线
1 0 2 π
×
2
B
0 I
2 π r0
1
物理学
第五版
7-4
毕奥-萨伐尔定律
任意载流导线在点 P 处的磁感强度 磁感强度 叠加原理 B dB
dB
r
Idl
0 I dl r 4 π r3
dB
P*
I

Idl
r
第七章 恒定磁场
2
物理学
第五版
7-4
毕奥-萨伐尔定律
例 判断下列各点磁感强度的方向和大小.
第五版
7-4
毕奥-萨伐尔定律
2
x Rcot
B dB
2
dx R csc d
0 nI
2
2 2

6-3毕奥—萨伐尔定律

6-3毕奥—萨伐尔定律

0 I 1 l r1 r2 0 I 2 l d r1 ln ln 2 r1 2 d r1 r2
2.26 10 6 Wb
运动电荷的磁场
三、 运动电荷的磁场
形成
电荷运动
电 流
磁 场
设电流元 Idl ,横截面积S,单位体积内有n 个定向运动的正电荷 , 每个电荷电量为 q ,定向 速度为v。

L
I d l er 2 r
二、毕奥—萨伐尔定律的应用 先将载流导体分割成许多电流元 Idl 写出电流元 Idl 在所求点处的磁感应强度,然后
按照磁感应强度的叠加原理求出所有电流元在该点 磁感应强度的矢量和。 实际计算时要应先建立合适的坐标系,求各电流元的 分量式。即电流元产生的磁场方向不同时,应先求出 各分量 dBx dBy dBz 然后再对各分量积分,
0 I sin B 2R 2 4r
I dl
R
r
d B


dB
IO
2 2
x
2
P
d B//
R R r R x ; sin 2 2 12 r (R x ) 0 IR 2 0 IS B 2 2 32 2 2 32 2 ( R x ) 2( R x )
0 qv sin dB B dN 4 r2
矢量式:
0 qv er B 2 4 r
其方向根 据 右手螺 旋法则, B 垂直 v 、r 组成的平面。 q 为正, B 为 v 的方向;q为 r 负, B 与 v r 的方向 相反。
1.71 105 T
方向
S点
L

0 I 1 1 BLA (sin sin ) 方向 4a 4 2 L 0 I 1 1 BAL (sin sin ) 方向 4a 2 4

2 毕-萨定律

2 毕-萨定律

到P点的矢径与电流流向之间的夹角。 讨论:若导线为无限长,则 1
0
, 2

B
0I
2 d
方向:右手定则
[例2] 圆电流轴线上的磁场
载流单匝圆线圈(圆电流),其半径 R ,电流 强度为 I ,计算它在轴线上任意一点 P 的磁 感应强度 B
R
I
O
P
步骤1: 取对称坐标系如图; 在圆电流上取任一电流元Idl, 画出矢径 r
[例1] 载流长直导线的磁场
真空中载流直导线通有电流 I, 计算空间任意P点的磁场 B
I d
P
步骤1: 以 P点到导线上的垂点为坐标原点O, 沿直导线的电流方向取坐标系OZ,在载 流导线正方向上任一位置取一电流元Idl 画出从电流元 Idl到 P点的矢径 r
步骤2: 写出该电流元在P点产生的 磁感应强度dB的大小
0
2
dr
0 R
2
0
所取的圆环对应的电流为 dI = σωr dr 面积为 S =πr2,载流圆环的磁矩为 dPm = dIS =σωr dr πr2 = πσωr3 dr 整个转动带电圆盘的磁矩为
Pm

S
dP m

R
r dr
3
1 4
R
4
1 4
QR
转动时,小圆环所对应的等效圆电流为
dI = dq/T =σ2πr dr/(2π/ω)= σωr dr dq
r dr
等效电流dI
等效圆电流在圆盘中心O处的磁感应强度为
dB
0 dI
2r

0
2
dB
dr
O
所有的小圆环转动方向都一致,整个带电圆盘 在盘心O处的磁感应强度为

毕奥-萨伐尔定律及毕奥-萨伐尔定律应用举例

毕奥-萨伐尔定律及毕奥-萨伐尔定律应用举例

毕奥-萨伐尔定律及毕奥-萨伐尔定律应用举例一、毕奥-萨伐尔定律1.毕奥-萨伐尔定律:载流导线产生磁场的基本规律。

微分形式为:整个闭合回路产生的磁场是各电流元所产生的元磁场dB的叠加。

磁感应线的方向服从右手定则,如图。

二、毕奥-萨伐尔定律应用举例两种基本电流周围的磁感应强度的分布:载流直导线;圆电流。

例1.载流长直导线的磁场解:建立如图坐标系,在载流直导线上,任取一电流元Idz,由毕-萨定律得元电流在P点产生的磁感应强度大小为:方向为垂直进入纸面。

所有电流元在P点产生的磁场方向相同,所以求总磁感强度的积分为标量积分,即:(1)由图得:,即:此外:,代入(1)可得:讨论:(1)无限长直通电导线的磁场:(2)半无限长直通电导线的磁场:(3)其他例子例2:圆形载流导线轴线上的磁场:设在真空中,有一半径为 R ,通电流为 I 的细导线圆环,求其轴线上距圆心 O 为 x 处的P点的磁感应强度。

解:建立坐标系如图,任取电流元,由毕-萨定律得:,方向如图:,所有dB形成锥面。

将dB进行正交分解:,则由由对称性分析得:,所以有:,因为: ,r=常量,所以:,又因为:所以:,方向:沿x轴正方向,与电流成右螺旋关系。

讨论:(1)圆心处的磁场:x=0 ,。

(2)当即P点远离圆环电流时,P点的磁感应强度为:。

例3:设有一密绕直螺线管。

半径为 R ,通电流 I。

总长度L,总匝数N(单位长度绕有n 匝线圈),试求管内部轴线上一点 P 处的磁感应强度。

解:建立坐标系,在距P 点 x 处任意截取一小段 dx ,其线圈匝数为: 电流为:。

其相当于一个圆电流,它在P点的磁感应强度为:。

因为螺线管各小段在P点的磁感应强度的方向均沿轴线向右,所以整个螺线管在P点的磁感应强度的大小为:因为:代入上式得:所以:讨论:(1)管内轴线上中点的磁场:(2)当 L>>R时,为无限长螺线管。

此时,,管内磁场。

即无限长螺线管轴线上及内部为均匀磁场,方向与轴线平行满足右手定则。

毕奥萨伐尔定律

毕奥萨伐尔定律
• 我们只计算了轴线上的磁场分布,轴线以外磁场分布的计算比 较复杂, 略。为了给同学们一个较全面的印象,下左图显示 了通过圆线圈轴线的平面上磁感应线的分布图。可以看出, 磁感应线是一些套连在圆电流环上的闭合曲线。
• 下右图给出另一个右手定则,用它可以判断载流线 圈的磁感应线方向。这右手定则是:用右手弯曲的 四指代替圆线圈中电流的方向,则伸直的姆指将沿着 轴线上B的方向。
生的磁感应强度的大小 • 与电流元Idl的大小成正比, • 与电流元和从电流元到P点的位矢之间的夹
角θ的正弦成正比, • 与位矢r的大小的平方成反比。即:
一、毕奥---萨伐尔定律
dB的方向 垂直于dl和r所确定的平面,沿
dl×r的方向,用右手螺旋法 则来判定。
矢量表示为: d B 0 Id l r 4 r 3
• 其中:S=πR2为圆线圈的面积。
三、载流圆环导线轴线上的磁场
• 圆线圈轴线上各点的磁感应强度都沿着轴线方向, 与电流方向组成右手螺旋关系。
• 下面讨论两种特殊的情况: • 1、在圆心O处,即a=0处的磁感应强度为: •
• 2、在远离线圈处,即 a>>R,轴线上各点的磁感 应强度约为:
三、载流圆环导线轴线上的磁场
• 由图
cos 1
x L 2
R2 (x L )2 2
cos 2
x L 2
R2 (x L)2 2
代入即得螺线管轴线上任一点P的磁感应强度。
B随x变化关系见上图中的曲线,由这曲线可以看出,当 L>>R时,在螺线管内部很大一个范围内磁场近于均匀, 只在端点附近B值才显著下降。
• 其中 40为比例系数, • μ0 称 为 真 空 磁 导 率 , :

毕奥萨伐尔定律

毕奥萨伐尔定律
电磁炉具有加热速度快、热效率高、安全可靠等优点,广泛 应用于家庭和餐饮行业。
磁力发电机
磁力发电机是一种利用磁场产生电能的装置。根据毕奥萨 伐尔定律,当导体在磁场中运动时,会在导体中产生感应 电流。磁力发电机通过转子产生的旋转磁场与定子绕组相 对运动,使定子绕组中产生感应电流,实现发电的目的。
磁力发电机广泛应用于风力发电、水力发电、汽车发动机 等领域,为可再生能源的开发和节能减排做出了重要贡献 。
06
毕奥萨伐尔定律的未来研 究与展望
磁场产生的原因与机制
磁场产生的原因
毕奥-萨伐尔定律指出,运动电荷或电流会产生磁场,这是磁场产生的根本原因。
磁场产生的机制
磁场的产生与电荷或电流的运动有关,当电荷或电流运动时,会激发周围的磁场 ,磁场的大小和方向与电荷或电流的运动状态有关。
磁场对物质的作用与影响
核磁共振成像等磁现象在医疗领域具有广泛的应用前景,同时磁 约束核聚变等前沿技术也在积极探索中。
磁现象在太阳能领域的应用
太阳能电池板在吸收太阳能时,利用磁性原理可以提高太阳能利 用率。
感谢您的观看
THANKS
磁场强度的方向与单位
磁场强度的方向
在右手螺旋定则中,拇指指向电流的方向 ,四指环绕的方向就是磁场的方向。
VS
磁场强度的单位
安培/米(A/m),国际单位制中,磁场强度 的单位是安培/米。
03
毕奥萨伐尔定律的实验验 证
实验设计思路
确定实验目标
验证毕奥萨伐尔定律在特定情况下 的适用性,即通过实验手段测量物 理量以验证理论的准确性。
总结词
描述电磁场基本规律的方程组。
详细描述
麦克斯韦方程组是描述电磁场基本规律的方程组,其 中包括了电场、磁场和电荷密度等物理量的关系。毕 奥萨伐尔定律是麦克斯韦方程组的一个推论,它描述 了磁场与电流之间的关系。此外,麦克斯韦方程组还 预言了电磁波的存在,即光、无线电波等。

毕奥萨法定律

毕奥萨法定律

毕奥萨法定律
毕奥萨法定律是热力学的重要概念,它定义了一个系统的热力学状态受到外力作用后,可能发生的机制。

毕奥萨法定律最初由德国物理学家和化学家西蒙毕奥萨提出,被广泛应用于物理学、化学等学科,具有重要的科学价值和应用价值。

毕奥萨法定律由3个基本原理组成:
(1)第一定律:定容物体的热力学状态是恒定的,它的总能量恒定;
(2)第二定律:在一定温度和压力下,定容物体的总能不会改变,只会从一种形式(热能)转化为另一种形式(动能);
(3)第三定律:在恒定温度和压强下,一定体系中的熵总是不断增加,直到达到最大值。

毕奥萨法定律有以下3个特点:
(1)它是一个综合性定律,涵盖了动力学和热力学的微观规律,它成为统治物理学和化学的基础;
(2)它表明,一个体系受到外力作用后,不能仅仅受到能量的影响,还会受到熵的影响;
(3)它对绝热过程也有重要启示,即它表明,一个体系在绝热过程中,熵的增加是不可避免的,这也是热力学的终极定律。

毕奥萨法定律的重要性不言而喻。

它使我们能够更全面地理解热力学,从而帮助我们更准确地研究和预测物理现象。

它不仅可以应用于物理学,也可以应用于化学等学科,对于研究物理过程和本质有重
要作用。

此外,它还可以用于开发新型热力学技术,如热力学工艺技术、热交换技术等。

总之,毕奥萨法定律具有重要的科学价值和应用价值,是热力学的重要概念,也是物理学和化学的重要基础。

它的发现和发展,对人们研究物理和化学有重要意义,今后将具有更广泛的应用前景,并在更多领域发挥重要作用。

磁学 3-2 毕奥-萨伐尔定律

磁学 3-2 毕奥-萨伐尔定律

B
0m 2x3
类似于电偶极子电场强度
m S en
I
B
磁偶极子
E
电偶极子
三、运动电荷产生的磁场
电流是大量电荷定向运动形 成的,所以从本质上说电流 产生的电场就是运动电荷所 产生的磁场。
I
qv
I = nqSv
S
P
在载流 导线中选取一段电流
dl
元 Idl ,其电流 I = nqSv
代入毕奥-萨伐尔定律,得
大小为
dB
0 4
Idl sin
r2
θ2
Id l
θ
r
l
Oa
θ1
B
P
由右手螺旋法则知其方向 垂直于纸面向内。因直导 线上所有电流元在 P 点产 生的磁感应强度方向均相
B
dB
0 4
Idl sin r2
l a cot ( ) a cot
同,故 P 点总的磁感应强
dl ad / sin 2
磁场叠加原理:任意形状的载流导线的磁场是所有
电流元的磁场的矢量和
B dB
0
L
L 4
Idl
r2
er
积分遍及整 个载流导线
实际上不存在孤立的电流元,毕奥-萨伐尔定律是基 于特殊情形的实验结果从数学上倒推出来的。但从 此定律出发推出任意恒定电流的磁场都与实验结果 相符,从而验证了毕奥-萨伐尔定律的正确性。
B 0I 4a
(3)直电流延长线上 B = 0
直线电流的 磁感应线
例 2 载流圆线圈半径为 R,电流强度为 I,求圆线圈 中轴线上与圆心 O 距离为 x 处 P 点的磁感应强度。
解:如图建立坐标 系
任取一电流元 Idl,注意到

毕奥-萨伐尔定律

毕奥-萨伐尔定律

半无限长载流长直导线的磁场
1
π 2
2 π
BP
0I
4π r
I
o r *P
例2 圆形载流导线的磁场.
真空中 , 半径为R 的载流导线 , 通有电流I , 称圆
电流. 求其轴线上一点 p 的磁感强度的方向和大小.
Idl
B
o
R
r
dB
pB
*
x
I
dB 0 Idl
4π r 2
解 根据对称性分析 B Bx dB sin
x2
x + + + + + + + + + + + + + + +
dB 0 2
R 2 Indx R2 x2 3/2
x Rcot
dx R csc2 d
B
dB 0nI
2
x2 x1
R2dx R2 x2 3/2
R2 x2 R2 csc2
B 0nI
2
2 R3csc2 d 1 R3 csc3 d
Idl
cos R r
R
r
dB r2 R2 x2
o
x
*p x
B 0I

cosdl
l r2
dB 0

Idl r2
dBx
0

I cosdl
r2
B
0IR
4π r3
2π R
dl
0
B
0IR2
(2 x2 R2)32
I
R
ox
B
*x
B
0IR2
(2 x2 R2)32

毕奥-萨伐尔定律介绍

毕奥-萨伐尔定律介绍
毕奥-萨伐尔定律介绍
$number {01}
目 录
• 毕奥-萨伐尔定律的背景 • 毕奥-萨伐尔定律的内容 • 毕奥-萨伐尔定律的应用 • 毕奥-萨伐尔定律的推导与证明 • 毕奥-萨伐尔定律的局限性与发展
01
毕奥-萨伐尔定律的背景
发现过程
毕奥和萨伐尔的研究
毕奥和萨伐尔在19世纪初对磁力和 电力进行研究,通过实验和观察,他 们发现电流在其周围空间产生磁场, 磁场的方向与电流的方向有关。
THANKS
对未来研究的展望
探索新型材料
实验验证与修正
随着新型材料的不断涌现,研究这些 材料在磁场中的行为,以及如何利用 毕奥-萨伐尔定律描述其磁效应,是未 来的研究重点之一。
通过实验验证毕奥-萨伐尔定律的准确 性,并对定律进行必要的修正,以适 应不断发展的研究和应用需求。
跨学科应用
毕奥-萨伐尔定律在物理学、工程学等 领域有广泛的应用,未来可以进一步 探索其在其他学科领域的应用,如生 物学、医学等。
在其他领域的应用
生物医学工程
在生物医学工程中,毕奥-萨伐尔定律 可用于研究生物体内的电流和磁场, 如心电、脑电等领域。
地球物理学
在地球物理学中,毕奥-萨伐尔定律可 用于研究地球内部的磁场分布和变化, 如地磁场的起源、变化规律等。
04
毕奥-萨伐尔定律的推导与 证明
推导过程
毕奥-萨伐尔定律的数学模型
基于电流元相互作用原理,通过微积分和矢量分析的方法,推导出两个电流元在空间中产生的磁 场分布。
电流元的位置和方向
考虑电流元的位置和方向的变化,对每个电流元分别进行推导,得出其在空间中产生的磁场分布 。
磁场分布的叠加
根据磁场分布的叠加原理,将各个电流元产生的磁场分布进行叠加,得到整个电流回路在空间中 产生的总磁场分布。

11-2,3 毕奥-萨伐尔定律

11-2,3 毕奥-萨伐尔定律

d N = nS d l
μ 0 qv sin θ dB B= = d N 4π r2
矢量式:
q+
v r
r r r μ 0 qv × r B= 3 4π r v − q v θ
v x B
v r
θ
v v
v B
条件
v << c
运动电荷除激发磁场外,同时还在其周围 空间激发电场。
r E=
r r r μ 0 qv × r B= 3 4π r
单位时间内通 过横截面 S 的电量 即为电流强度I:
I
θ P
I
I = qnvS
电流元在P点产生的磁感应强度
μ 0 qnvS d l sin θ dB = 2 4π r
μ 0 qnvS d l sin θ dB = 4π r2
设电流元内共有dN个以 速度v运动的带电粒子: 每个带电量为q的粒子以速度v 通过电流元所在位置时,在 P 点产生的磁感应强度大小为:
v r
θ
v Idl
I
r r r μ 0I d l × r dΒ = 3 4π r
任意载流导线在点 P 处的磁 感强度
P *v
r
磁感强度叠加原理 r
求解电流磁场分布基本思路: 将电流视为 电流元的集合
r μ0 B= 4π

L
r I dl ×r 3 r
Biot-Savart定 律的积分形式 电流磁场分布
=0
B =
μ 0I
2R
1) I (2 )
v R B x 0 μ I 0 o B0 = 2R
I R o
( 4)
BA =
d ( 5) I *A
R1

毕奥萨伐尔定律

毕奥萨伐尔定律

比奥·萨瓦特定律指出:磁场源是电流元素,磁场的衰减与场点到电流元素的距离的平方成正比。

磁场遵循叠加原理。

由任意形状的导线激励的总磁感应强度B是由电流元件激励的磁感应强度DB的矢量积。

任何形状的载流导线都可以视为许多电流元件IDL,只要已知由电流元件激发的磁场定律,就可以通过叠加原理获得任意载流导线激发的磁场的分布。

载流线的任何电流元素IDL在给定点P处产生的磁感应强度DB 与电流元素的大小成正比,与电流元素与从电流元素到矢量的矢量r 之间的夹角正弦成正比。

P点,与当前元素和P点之间的距离的平方成反比;DB的方向垂直于由DL和R确定的平面,并且该方向由右螺旋规则确定,也就是说,当右螺旋从IDL旋转小于180°到R的角度时,螺钉的方向如图1所示。

数学表达式为
地球磁场起源的理论
其中k为比例系数,真空中k = 107t·m·a-1,不同磁性介质的K值不同。

为了使DB的公式合理化,设k =μ/ 4π,μ为介质的渗透率,μ= 4π×107t·m·a-1在真空中
地球磁场起源的理论
Biot Savart定律的向量表达如下:
地球磁场起源的理论
由任意形状的载流线在点P处产生的磁感应强度B等于该点上导体上每个电流元素IDL产生的磁感应强度的矢量和
地球磁场起源的理论
Biot Savart定律给出了当前元素IDL在距R的空间中的点P处产生dB的幅度和方向。

但是,由于当前元素不能单独存在,因此无法通过实验直接验证Biot Savart定律。

间接证明了比奥·萨瓦特定律的正确性,因为从比奥·萨瓦特定律得到的所有结果都与实验结果吻合良好。

毕奥-萨伐尔定律介绍

毕奥-萨伐尔定律介绍

0I
4πr
6
无限长载流长直导线的磁场
B 0I
2πr
I B
I XB
电流与磁感强度成右手螺旋关系
7
例2 圆形载流导线轴线上的磁场.
解 分析点P处磁场方向得:B Bx dBsin
Idl
cos R r
R
o
r
dB
r2 R2 x2
x
*p x
dB
0

Idl r2
I
dBx
0

I
cosdl
r2
Idl
2
例 判断下列各点磁感强度的方向和大小.
1
8
2
×
7
Idl × 3
R
6
×
4
dB
5
0

Idl
r
r3
1、5点 :dB 0
3、7点
:dB
0 Idl
4π R2
2、4、6、8 点 :
dB
0 Idl
4π R2
sin
450
毕奥-萨伐尔定律
3
二 毕奥-萨伐尔定律应用举例
例1 载流长直导线的磁场.
一 毕奥-萨伐尔定律
(电流元在空间产生的磁场)
dB
0

Idl sin
r2
dB
0

Idl
r
r3
真空磁导率 0 4 π107 N A2
r
dB
P*r
Idl
dB
Idl
I
1
任意载流导线在点 P 处的磁感强度
磁感强度 叠加原理
B dB
0I
dl

132 毕奥-萨伐尔定律

132 毕奥-萨伐尔定律
2x 3
引入磁矩 引入磁矩
m = IS = ISn
m µ0 B= 2π (R 2 + x 2 )3 / 2
例题3、 例题 、载流螺旋管在其轴上的磁场 l
求半径为R, 求半径为 ,总长度 L,单 , 位长度上的匝数为n的螺线 位长度上的匝数为 的螺线 管在其轴线上一点的磁场。 管在其轴线上一点的磁场。 解:长度为dl内的各匝圆线圈 长度为 内的各匝圆线圈 的总效果, 的总效果,是一匝圆电流线圈 的ndl 倍。 选坐标如图示
L 1
∫ [R
R2 In ⋅ dl + (x − l) ]
2 3 2
2
B=
B=
µonI
2
µonI
2
∫β sin β ⋅ dβ
1
β2
演示
(cos β1 − cos β2 ) 磁场的方向
磁场方向与电流满足右手螺旋法则。 磁场方向与电流满足右手螺旋法则。
B
β1 = 0, β2 = π B = µ nI o β1 = 0, β2 = π / 2
2 1
磁感应强度B的方向,与电流成右手螺旋关系, 磁感应强度 的方向,与电流成右手螺旋关系,拇指表示电流 的方向 方向,四指给出磁场方向。 方向,四指给出磁场方向。
当θ1=0,θ2=π时, 时
µo I B= 2πro
若场点在导线的延长线上, 若场点在导线的延长线上,则有
B
I
演示
B=0
例题2、 例题 、载流圆线圈在其轴上的磁场
r
µ 0 Idl × r0 µ0 Idl × r dB = dB = 2 3 4π r 4π r −7 −2 µ 0 = 4π × 10 N ⋅ A 称为真空磁导率
3、 叠加原理 、 任一电流产生的磁场

8-3 毕奥-萨伐尔定律概述[文字可编辑]

8-3 毕奥-萨伐尔定律概述[文字可编辑]

m?
e? n
S I
?
? IR2 ?
? m?
B?
0
i?
0
2(R2 ? x2 )32 2? (R2 ? x2 )32
(2)圆心处磁场 x ? 0
B
?I
?0
;
N匝: B
N? I
?0
0 2R
0 2R
(3)在远离线圈处 x ?? R, x ? r
B?
? 0
IS
?
? 0
IS
2? x 3 2? r 3
? ? m?
? r?
I
dB
d B ? k I d l sin ?
r2
? Idl sin?
dB ? 0 4π r2
P *r?
??
Idl
真空磁导率 ? ? 4π?10?7 N?A?2 0
方向
? dB ?
? 0
? Idl ?
r?
4π r3
? Idl
? dB
? r?
I
dB
P * r?
??
Idl
? ? 任意载流导线在点
1820年10月:
法国物理学家毕奥和沙伐尔发表《运动的电传递给金属 的磁化力》,提出直线电流对磁针作用的实验规律。
法国数学、物理学家拉普拉斯由实验规律推出载流线段 元(电流元)磁场公式。毕奥和沙伐尔用实验验证了该 公式。
一 毕奥—萨伐尔定律 (电流元在空间产生的磁场 )
? Idl
? dB
? 电流元:Idl
?
? IR2 ?
B?
0
i
2( R2 ? x 2 ) 32
讨论: (1) 定义电流的磁矩
m? ? IS e? n

毕奥- 萨伐尔定律

毕奥- 萨伐尔定律

毕奥- 萨伐尔定律
如图9- 12所示.因此,总 磁感应强度B的矢量积分可化为 标量积分
图9- 12 直线电流的磁场
毕奥- 萨伐尔定律
(1)若直线电流为无限长,即θ1=0,θ2=π,则 (9- 13)
与实验结果一致.无限长直线电流是一个理想模型, 在实际问题中,若直线电流的长度远大于到场点P的距离 a,此时直线电流就可视为无限长.直线外到带电直线距 离相等的各点磁感应强度B,其大小都相等,方向沿每点 的切向,人们称无限长直线电流在场点激发的磁场具有 轴对称性.
毕奥- 萨伐尔定律
三、 典型电流的磁场计算——毕- 萨定律的应用
电流磁场的计算类似于带电体电场分布的计算,用毕奥- 萨伐 尔定律计算磁场中各点磁感应强度的具体步骤如下:
首先,将载流导线划分为一段段电流元,任选一段电流元Idl, 并标出Idl到场点P的位矢r,确定两者的夹角θ(Idl,r).
其次,根据毕奥- 萨伐尔定律,求出电流元Idl在场点P所激发 的磁感应强度dB的大小,并由右手螺旋法则决定dB的方向.
毕奥- 萨伐尔定律
(2)若直线电流为半无限长,即θ1=0, θ2=π/2(或θ1=π/2,θ2=π),则P点的B的大小 为
(3)P点在延长线上,θ=0或θ2=π, dB=0,B=0.
毕奥- 萨伐尔定律
2. 圆电流在其轴线上的磁场
设圆电流(载流线圈)半径为R,通有电流I,试计算它 在其轴线上任一点P的磁感应强度.
毕奥- 萨伐尔定律
【例9-1】
如图9-11所示,试求电流元Idl周围空间的磁感 应强度.
解:计算电流元Idl周围空间的磁感应强度dB.根 据毕- 萨定律先计算dB的大小,即
毕奥- 萨伐尔定律
图9- 11 例9- 1图
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简述毕奥萨伐尔定律
毕奥萨伐尔定律(Biossa-Fawer's law)是建筑物力学中的一项定律,它说明:支撑结构的垂直载荷或拉力大小与支撑结构的尺寸(或它的力学状态)之间存在着一定的关系。

换句话说,支撑结构的尺寸可以用来测量它所体现的垂直载荷或拉力的大小。

这个定律的定义是:一个结构件的最大垂向力(准确来说是最大结构备载)等于其端点的距离乘以另一个剪切力。

它可以用数学表达式来描述:F=Ld,其中F是结构的最大垂向力,L是其端点的距离,d是另一个剪切力。

毕奥萨伐尔定律还可以用来测量结构或系统的弯曲和扭转力,它可以用来确定结构或系统的最大受力情况,以便更好地设计其结构和系统。

这个定律也可以用来建立系统的力学分析,以便确定每个受力点的力和力矩。

相关文档
最新文档