大学生高等数学竞赛试题汇总与答案
高数竞赛试题及答案
高数竞赛试题及答案在高等数学领域中,竞赛试题的编写与解答一直是学生们提高自己数学水平的重要方式之一。
本文将提供一些高等数学竞赛试题,并附上详细的解答过程,以帮助读者更好地理解和应用数学知识。
1. 竞赛试题一考虑函数f(x) = |x^2 - 4x + 3|,其中x为实数。
(1)求函数f(x)的定义域。
(2)求函数f(x)的最大值和最小值。
解答过程:(1)为了求函数f(x)的定义域,我们需要确定使函数的值有意义的x 的范围。
由于函数f(x)中包含了一个绝对值,我们可以将其拆分成两种情况讨论:当x^2 - 4x + 3 ≥ 0时,函数f(x) = x^2 - 4x + 3;当x^2 - 4x + 3 < 0时,函数f(x) = -(x^2 - 4x + 3)。
对于第一种情况,我们需要求解不等式x^2 - 4x + 3 ≥ 0。
通过因式分解或配方法,我们可以得到(x-1)(x-3) ≥ 0。
解这个不等式可以得到x ≤ 1或x ≥ 3。
对于第二种情况,我们需要求解不等式x^2 - 4x + 3 < 0。
同样通过因式分解或配方法,可以得到(x-1)(x-3) < 0。
解这个不等式可以得到1< x < 3。
综上所述,函数f(x)的定义域为x ≤ 1或x ≥ 3,且1 < x < 3。
(2)为了求函数f(x)的最大值和最小值,我们可以分别考虑函数f(x)在定义域的两个区间内的取值情况。
当x ≤ 1时,函数f(x) = x^2 - 4x + 3。
通过求导可以知道,函数f(x)在x = 2处取得最小值。
代入可得最小值为f(2) = 1。
当x ≥ 3时,函数f(x) = -(x^2 - 4x + 3)。
同样通过求导可以知道,函数f(x)在x = 2处取得最大值。
代入可得最大值为f(2) = -1。
综上所述,函数f(x)的最大值为-1,最小值为1。
2. 竞赛试题二已知函数f(x) = 2^(x+1) - 3^(x-2),其中x为实数。
历届大学生高等数学竞赛真题及答案非数学类14页
前三届高数竞赛预赛试题(非数学类)(参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。
)2009年 第一届全国大学生数学竞赛预赛试卷一、填空题(每小题5分,共20分)1.计算=--++⎰⎰y x y x x yy x Dd d 1)1ln()(____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.解: 令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫⎝⎛-=,令u t -=1,则21t u -=2.设)(x f 是连续函数,且满足⎰--=2022d )(3)(x x f x x f , 则=)(x f ____________.解: 令⎰=20d )(x x f A ,则23)(2--=A x x f ,解得34=A 。
因此3103)(2-=x x f 。
3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________.解: 因平面022=-+z y x 的法向量为)1,2,2(-,而曲面2222-+=y x z 在),(00y x 处的法向量为)1),,(),,((0000-y x z y x z y x ,故)1),,(),,((0000-y x z y x z y x 与)1,2,2(-平行,因此,由x z x =,y z y 2=知0000002),(2,),(2y y x z x y x z y x ====,即1,200==y x ,又5)1,2(),(00==z y x z ,于是曲面022=-+z y x 在)),(,,(0000y x z y x 处的切平面方程是0)5()1(2)2(2=---+-z y x ,即曲面 2222-+=y x z 平行平面022=-+z y x 的切平面方程是0122=--+z y x 。
高数竞赛试题集
高等数学竞赛一、 填空题⒈ 若5)(cos sin lim0=--→b x ae xx x ,则a = ,b = .⒉ 设2(1)()lim 1n n xf x nx →∞-=+, 则()f x 的间断点为x = .⒊ 曲线y=lnx 上与直线1=+y x 垂直的切线方程为.⒋ 已知xx xe e f -=')(,且f (1) = 0, 则f (x ) = .⒌ 设函数()y x 由参数方程333131x t t y t t ⎧=++⎪⎨=-+⎪⎩ 确定, 则曲线()y y x =向上凸的x 取值 范围为 . ⒍ 设1ln arctan 22+-=xxxe e e y ,则==1x dx dy.⒎若0→x 时,1)1(412--ax 与x x sin 是等价无穷小,则a= .⒏ 设⎪⎩⎪⎨⎧≥-<≤-=21,12121,)(2x x xe x f x ,则=-⎰221)1(dx x f . ⒐ 由定积分的定义知,和式极限=+∑=∞→nk n k n n122lim . ⒑1+∞=⎰ . 二、 单项选择题11.把+→0x 时的无穷小量dt t dt t dt t xx x⎰⎰⎰===0302sin ,tan ,cos 2γβα,使排在后面的是前一个的高阶无穷小,则正确的排列次序是 【 】(A)γβα,,. (B)βγα,,. (C) γαβ,,. (D) αγβ,,.12.设函数f(x)连续,且,0)0(>'f 则存在0>δ,使得 【 】 (A) f(x)在(0,)δ内单调增加. (B )f(x)在)0,(δ-内单调减少.(C )对任意的),0(δ∈x 有f(x)>f(0) . (D) 对任意的)0,(δ-∈x 有f(x)>f(0) .13 . 设()(1)f x x x =-, 则 【 】(A )0x =是()f x 的极值点, 但(0,0)不是曲线()y f x =的拐点. (B )0x =不是()f x 的极值点, 但(0,0)是曲线()y f x =的拐点. (C )0x =是()f x 的极值点, 且(0,0)是曲线()y f x =的拐点.(D )0x =不是()f x 的极值点, (0,0)也不是曲线()y f x =的拐点.14 .22lim ln (1)n nn→∞+于 【 】(A )221ln xdx ⎰. (B )212ln xdx ⎰. (C )212ln(1)x dx +⎰. (D )221ln (1)x dx +⎰15 . 函数2)2)(1()2sin(||)(---=x x x x x x f 在下列哪个区间内有界. 【 】(A) (-1 , 0). (B) (0 , 1). (C) (1 , 2). (D) (2 , 3).16 . 设f (x )在(-∞ , +∞)内有定义,且a x f x =∞→)(lim ,⎪⎩⎪⎨⎧=≠=0,00,)1()(x x xf xg ,则 【 】(A) x = 0必是g (x )的第一类间断点. (B) x = 0必是g (x )的第二类间断点.(C) x = 0必是g (x )的连续点. (D) g (x )在点x = 0处的连续性与a 的取值有关. 17 . 设)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则下列结论中错误的是【 】(A) 至少存在一点),(0b a x ∈,使得)(0x f > f (a ).(B) 至少存在一点),(0b a x ∈,使得)(0x f > f (b ). (C) 至少存在一点),(0b a x ∈,使得0)(0='x f .(D) 至少存在一点),(0b a x ∈,使得)(0x f = 0.18 . 设⎪⎩⎪⎨⎧<-=>=0,10,00,1)(x x x x f ,⎰=x dt t f x F 0)()(,则【 】(A) F (x )在x = 0点不连续.(B) F (x )在(-∞ , +∞)内连续,但在x = 0点不可导.(C) F (x )在(-∞ , +∞)内可导,且满足)()(x f x F ='.(D) F (x )在(-∞ , +∞)内可导,但不一定满足)()(x f x F ='.三、解答题19.求极限3012cos lim 13x x x x→⎡⎤+⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.20.设函数()f x 在(,-∞+∞)上有定义, 在区间[0,2]上, 2()(4)f x x x =-, 若对任意的x 都满足()(2)f x k f x =+, 其中k 为常数.(Ⅰ)写出()f x 在[2,0]-上的表达式;(Ⅱ)问k 为何值时, ()f x 在0x =处可导.21.设 f (x ),g (x )均在[a , b ]上连续,证明柯西不等式⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡≤⎥⎦⎤⎢⎣⎡⎰⎰⎰ba b a b a dx x g dx x f dxx g x f )()()()(22222.设2e b a e <<<, 证明)(4ln ln 222a b ea b ->-.23曲线2x xe e y -+=与直线0,(0)x x t t ==>及0y =围成一曲边梯形. 该曲边梯形绕x 轴旋转一周得一旋转体, 其体积为()V t , 侧面积为()S t , 在x t =处的底面积为()F t .(Ⅰ)求()()S t V t 的值;(Ⅱ) ()lim ()t S t F t →+∞.24.设f (x ) , g (x )在[a , b ]上连续,且满足⎰⎰≥x axadt t g dt t f )()(,x ∈ [a , b ),⎰⎰=bab adt t g dt t f )()(.证明:⎰⎰≤babadx x xg dx x xf )()(.25. 某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg 的飞机,着陆时的水平速度为700km/h. 经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为).100.66⨯=k 问从着陆点算起,飞机滑行的最长距离是多少?注kg 表示千克,km/h表示千米/小时.高等数学竞赛试卷一、单项选择题1、若2lim()01x x ax b x →∞--=+,则(A )1,1a b == (B )1,1a b =-= (C ) 1,1a b ==- (D )1,1a b =-=-2、设(),0()(0),0f x x F x x f x ⎧≠⎪=⎨⎪=⎩ ,其中()f x 在0x =处可导且'(0)0f ≠,(0)0f =,则0x =是()F x 的(A ) 连续点 (B ) 第一类间断点 (C ) 第二类间断点 (D )以上都不是 3、设常数0k >,函数()ln xf x x k e =-+在(0,)+∞内零点的个数为 (A ) 0 (B ) 1 (C ) 2 (D ) 34、若在[0,1]上有(0)(0)0,(1)(1)0f g f g a ====>,且''()0f x >,''()0g x <,则110()I f x dx=⎰,120()I g x dx =⎰,130I ax dx =⎰的大小关系为(A ) 123I I I ≥≥ (B ) 231I I I ≥≥ (C ) 321I I I ≥≥ (D ) 213I I I ≥≥5、由平面图形0,0()a x b y f x ≤≤≤≤≤绕y 轴旋转所成的旋转体的体积为(A )2()b aV xf x dx π=⎰ (B ) 2()b aV f x dx π=⎰(C ) 2()b aV f x dx π=⎰ (D ) ()baV f x dx π=⎰6、(1,3,4)P -关于平面320x y z +-=的对称点是 (A ) (5,1,0)- (B )(5,1,0) (C )(5,1,0)-- (D )(5,1,0)-7、设D 为222x y R +≤,1D 是D 位于第一象限的部分,()f x 连续,则22()Df x y d σ+⎰⎰=(A )128()D f x d σ⎰⎰ (B )0 (C )22()R R RRdx f x y dy --+⎰⎰(D )1224()D f x y d σ+⎰⎰8、a为常数,则级数21sin()n na n ∞=⎡⎢⎣∑ (A ) 绝对收敛(B )发散C ) 条件收敛(D ) 收敛性与a 的取值有关二、填空题1、340tan 2lim(1)1x x x xx e →-=- 。
高数竞赛练习题答案(函数、极限、连续)
高数竞赛练习题答案(函数、极限、连续)第一篇:高数竞赛练习题答案(函数、极限、连续)函数、极限、连续1.f(x),g(x)∈C[a,b],在(a,b)内二阶可导且存在相等的最大值,又f(a)=g(a),f(b)=g(b),证明:(1)∃η∈(a,b),使f(η)=g(η)(2)∃ξ∈(a,b),使f''(ξ)=g''(ξ)证明:设f(x),g(x)分别在x=c,x=d处取得最大值M,不妨设c≤d(此时a<c≤d<b),作辅助函数F(x)=f(x)-g(x),往证∃ξ∈(a,b),使F''(ξ)=0令F(x)=f(x)-g(x),则F(x)在[a,b]上连续,在(a,b)二阶可导,且F(a)=F(b)=0,① 当c<d,由于F(c)=f(c)-g(c)=M-g(c)≥0F(d)=f(d)-g(d)=f(d)-M≤0由“闭.连.”零点定理,∃η∈[c,d]⊂(a,b),使f(η)=g(η)② 当c=d,由于F(c)=f(c)-g(c)=f(c)-g(d)=M-M=0即∃η∈(a,b),使f(η)=g(η) 对F(x)分别在[a,η],[η,b]上用罗尔定理,∃ξ1∈(a,η),ξ2∈(η,b),使在[ξ1,ξ2]上对F(x)在用罗尔定理,F'(ξ1)=F'(ξ2)=0,∃ξ∈(ξ1,ξ2)⊂(a,b),使F''(ξ)=0,∃ξ∈(a,b),使f''(ξ)=g''(ξ).2.设数列{xn}满足0<x1<π,xn+1=sinxn,n=1,2,Λxn存在,并求该极限(1)证明limn→∞xn+1x1n(2)计算lim()n→∞xn分析:(1)确定{xn}为单调减少有下界即可1xn,用洛必达法则.(2)利用(1)确定的limn→∞解:易得0<xn≤1(n=2,3,Λ),所以xn+1=sinxn<xn,n=(2,3,Λ),即{xn}为xn存在,并记为limxn=a,则a∈[0,1],单调减少有下界的数列,所以 lim n→∞n→∞对等式xn+1=sinxn<xn,两边令n→∞取极限,得a=sina,a∈[0,1],所以a=0,即limxn=0.n→∞lim((2)n→∞xn+1sinxn)=lim()n→∞xnxn2xn2xn令t=xn=lim(t→0sint)=et→0ttlimln()tt2由于limt→0tln(sin)ttsintln[1+(sin-1)]-1-1t2sint-t洛cost-11tt2=lim=lim=lim=lim=lim=- t→0t→0t→0t→0t→03t2t2t2t33t26 xn+1xn-1所以lim()=e.n→∞xn3.已知f(x)在[0,1]连续,在(0,1)可导,且f(0)=0,f(1)=1,证明:(1)∃ξ∈(0,1),使f(ξ)=1-ξ,(2)存在两个不同点η,ζ∈(0,1),使f'(η)f'(ζ)=1证:(1)令F(x)=f(x)+x-1,则F(x)在[0,1]上连续,且F(0)=-1<0,F(1)=1>0,由“闭.连.”零点定理,∃ξ∈(0,1),使F(ξ)=0,即f(ξ)=1-ξ(2)f(x)在[0,ξ],[ξ,1]上都满足拉格朗日中值定理,所以∃η∈(0,ξ),ζ∈(ξ,1),使f(ξ)-f(0)=f'(η)(ξ-0),f(1)-f(ξ)=f'(ζ)(1-ξ),即f'(η)=f'(ζ)=f(ξ)ξ=1-ξξ1-f(ξ)1-(1-ξ)ξ==1-ξ1-ξ1-ξ∴f'(η)f'(ζ)=1-ξξ⋅ξ1-ξ=14.设方程xn+nx-1=0,其中n为正整数,证明此方程存在唯一的正α实根xn,并证明当α>1时,级数∑xn收敛.n=1∞证:令f(x)=xn+nx-1,则f(x)在(0,+∞)上连续,且f(0)=-1<0,f()=()n>0nn所以由连续函数的零点定理,所给方程在(0,)内有根,又由f'(x)=n(xn-1+1)>0,即f(x)在(0,)内单调递增,所以所给方程(0,)内只有唯一的根,在(,∞)上无根,即所给方程存在唯一的正实根xn.α<由上述知,对n=1,2,Λ,有0<xn<,有0<xn∞1n1n1n1n1n1,nα此外,由α>1知,级数∑收敛,所以由正项级数比较审敛法,知αn=1n∑xα收敛.nn=1∞5.求lim(cosx)x→01ln(1+x)x→0ln(1+x)解:lim(cosx)x→01ln(1+x)=elimlncosx,其中limln(1+xx→0lncosx)=limx→0ln[1+(cosx-1)]ln(1+x)=limx→0-x22x=-(cosx)所以,limx→0ln(1+x)=e-6.f(x)在x=0的某邻域内具有一阶连续导数,且f(0)≠0,f'(0)≠0,若af(h)+bf(2h)-f(0)在h→0时是比h高阶的无穷小,试确定a,b的值.解1:(利用导数定义)0=limaf(h)+bf(2h)-f(0)af(h)-af(0)+af(0)+bf(2h)-bf(0)+bf(0)-f(0)=limh→0h→0hhaf(h)-af(0)bf(2h)-bf(0)[(a+b)-1]f(0)[(a+b)-1]f(0)=l im+lim+lim=(a+b)f'(0)+limh→0h→0h→0h→0hhhh⎧a+b=1'由f(0)≠0,f(0)≠0,得⎨,即a=2,b=-1a+2b=0⎩解2:按解1,只要假定f(x)在x=0处可导即可,但在题中“f(x)在x=0的某邻域内具有一阶连续导数”的假定下,有以下解法:由lim h→0h→0af(h)+bf(2h)-f(0)=0得 limaf(h)+bf(2h)-f(0)=0h→0h即0=limaf(h)+bf(2h)-f(0)=(a+b-1)f(0),由f(0)≠0,得a+b=1(1)af(h)+bf(2h)-f(0)洛=limaf'(h)+2bf'(2h)=(a+2b)f'(0)且f'(0)≠0,又由0=limh→0h→0h所以 a+2b=0(2)由(1)、(2)得a=2,b=-1.⎛2+esinx⎫⎪.7.求lim 4+x→0x⎪⎝1+e⎭解:⎛2e-+e-sinx⎫⎛2+esinx⎫⎪=1⎪=lim lim+4+4++-x→0x→0 x⎪x⎪⎝1+e⎭⎝e+1⎭⎛2+esinx⎫⎛2+esinx⎫ ⎪⎪=1 lim=lim4+4---⎪x→0x⎭x→0⎝1+ex⎪⎝1+e⎭所以原式 = 18.求limx→0143+x+-x-2.2x解1:(泰勒公式)因+x+-x-2=[1+1111x-x2+o(x2)]+[1-x-x2+o(x2)]-22828(x→0)=-x2+o(x2)~-x2所以1-x2+x+-x-2=-1lim=limx→0x→0x2x24解2:(洛必达法则)-+x+-x-2洛必达lim=limx→0x→0x22x1-x-+x1⋅lim=lim x→0+x-x4x→0x1-2x1=lim.=-4x→0x(-x++x)4第二篇:高数课件-函数极限和连续一、函数极限和连续自测题1,是非题(1)无界变量不一定是无穷大量()(2)若limf(x)=a,则f(x)在x0处必有定义()x→x012x(3)极限lim2sinx=limx=0()x→+∞x→+∞33x2,选择题(1)当x→0时,无穷小量1+x-1-x是x的()A.等价无穷小B.同阶但不等价C.高阶无穷小D.低价无穷小⎧x+1-1x≠0⎪(2)设函数f(x)=⎨,则x=0是f(x)的()x⎪0x=0⎩A.可去间断点 B.无穷间断点C 连续点D 跳跃间断点⎧exx<0(3)设函数f(x)=⎨,要使f(x)在x0处连续,则a=()⎩a+xx≥0A.2B 1C 0D -13n2-5n+1=()(4)lim2n→∞6n+3n-2A 151B -C -D ∞ 2321⎧xsinx<0⎪⎪x(5)设f(x)=⎨,则在x=0处f(x) ()⎪1sinx-1x>0⎪⎩xA 有定义B 有极限C 连续D左连续3(6)x=1是函数y=x-1的()x-1A 可去间断点B 无穷间断点C 连续D跳跃间断点3.求下列极限(1)limx→∞x+sinxsin(-2x)x+2-3(2)lim(3)limx→0x→12xln(1+2x)x-1e-2x-1(4)lim(5)limn[ln(1+n)-lnn](6)lim(sinn+1-sinn)n→∞n→∞x→0x2x+3x+2(sinx3)tanx2lim()(7)lim (8)(9)limx(x+1-x)x→∞2x+1x→01-cosx2x→∞cosx-cosaarctanxex-ex0(10)lim(11)lim(12)limx→ax→∞x→x0x-xx-ax0x2+32x2+1sin(x-1))(13)lim(14)lim(2x→∞x→1x-1x+24,求满足下列条件的a,b的值1x2+x+a=b(2)lim(3x-ax2-x+1)=(1)limx→+∞x→26x-2⎧tanaxx<0ax+b⎪=2(4)已知f(x)=⎨x(3)lim且limf(x)存在x→0x→1x-2⎪x+2x≥0⎩x<-1⎧-2⎪2(5)已知f(x)=⎨x+ax+b-1≤x≤1在(-∞,+∞)内连续⎪2x≥1⎩⎧sin2x+e2ax-1x≠0⎪(6)函数f(x)=⎨在x=0点连续x⎪ax=0⎩5.求下列函数的间断点并判断其类型⎧x-1x≤11-cosxx2-1(1)y=2(2)y=⎨(3)f(x)=sinxx-3x+2⎩3-xx>1⎧1x>0x⎪(4)f(x)=⎨ex-1(5)y=tanx⎪⎩ln(1+x)-1<x≤026.已知x→-1时,x+ax+5x+1是同阶无穷小,求a7.证明方程x-4x+2=0在区间(1,2)内至少有一个根8.当x→0时,e+ln(1-x)-1与x是同阶无穷小,求n 9.设函数f(x)=a,(a>0,a≠1),求limxxn41ln[f(1)f(2)K f(n)]n→∞n2第三篇:高数极限和连续第二章极限和连续【字体:大中小】【打印】2.1 数列极限一、概念的引入(割圆术)“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣” ——刘徽正六边形的面积A正十二边形的面积A2n-1正6×2形的面积AnA1,A2,A3,…,An,…→…S二、数列的定义定义:按自然数1,2,3...编号依次排列的一列数x1,x2,...,xn, (1)称为无穷数列,简称数列。
高数竞赛题
1、设函数 f(x) 在区间 [a, b] 上连续,在 (a, b) 内可导,且 f(a) = 0,f(b) = 1。
若存在ξ∈ (a,b) 使得 f'(ξ) = 2,则以下哪个结论必然成立?A. ∀x ∈ (a, b), f(x) ≤ 2x - aB. ∃x₁, x₂∈ (a, b), f(x₁) < f(x₂)C. ∀x ∈ (a, ξ), f(x) < (x - a)/(b - a)D. ∃x₀∈ (a, b), f(x₀) = 1/2 且 f'(x₀) = 0(答案)2、设数列 {a_n} 满足 a_1 = 1,a_{n+1} = a_n + 2/a_n,则以下关于数列 {a_n} 的说法正确的是?A. {a_n} 是递减数列B. 对任意正整数 n,有 a_n < n + 1C. 存在正整数 k,使得 a_k < k 但 a_{k+1} > k + 1D. 对任意正整数 n,有 a_n ≥√(2n + 1)(答案)3、设函数 f(x, y) = x2 + y2 - 2x - 2y + 1,则 f(x, y) 在区域 D = {(x, y) | x2 + y2 ≤ 2} 上的最小值为?A. -1B. 0C. 1 - √2(答案)D. 2 - 2√24、设向量 a = (1, 2),b = (2, 1),c = (1, -2),若 (a + λb) ⊥ c,则实数λ的值为?A. -1/2B. 1/2(答案)C. -2D. 25、设函数 f(x) = x3 - 3x2 + 2,则 f(x) 的极值点个数为?A. 0B. 1C. 2(答案)D. 36、设矩阵 A = [1 2; 3 4],B = [2 0; 1 1],则 AB - BA =?A. [0 -2; 2 0](答案)B. [2 2; -2 -2]C. [0 2; -2 0]D. [-1 -2; 3 4]7、设函数 f(x) = ex - x - 1,则不等式 ex > x2 + x + 1 的解集为?A. (-∞, 0)B. (0, +∞)(答案)C. (-∞, -1) ∪ (1, +∞)D. (-1, 0) ∪ (0, 1)8、设函数 f(x) = (x - a)(x - b)(x - c),其中 a, b, c 是互不相等的实数。
历届全国大学生数学竞赛真题及答案非数学类
高数竞赛预赛试题〔非数学类〕〔参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。
〕2021年 第一届全国大学生数学竞赛预赛试卷 一、填空题〔每题5分,共20分〕1.计算=--++⎰⎰y x yx x yy x D d d 1)1ln()(,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.解:令vx u y x ==+,,那么vu y v x -==,,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫⎝⎛-=,v u u v u u u y x y x x yy x D D d d 1ln ln d d 1)1ln()(⎰⎰⎰⎰--=--++⎰⎰⎰⎰----=---=1021000d 1)ln (1ln d )d ln 1d 1ln (u uu u u u u u u u v v u uv u u u u u〔*〕令u t -=1,那么21t u -=dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-,⎰+--=0142d )21(2(*)t t t⎰+-=1042d )21(2t t t 151651322153=⎥⎦⎤⎢⎣⎡+-=t t t 2.设)(x f 是连续函数,且满足⎰--=2022d )(3)(x x f x x f , 那么=)(x f .解:令⎰=20d )(x x f A ,那么23)(2--=A x x f ,A A x A x A 24)2(28d )23(202-=+-=--=⎰,解得。
因此。
3.曲面平行平面022=-+z y x 的切平面方程是.解:因平面022=-+z y x 的法向量为)1,2,2(-,而曲面在),(00y x 处的法向量为)1),,(),,((0000-y x z y x z y x ,故)1),,(),,((0000-y x z y x z y x 与)1,2,2(-平行,因此,由x z x =,y z y 2=知0000002),(2,),(2y y x z x y x z y x ====,即1,200==y x ,又5)1,2(),(00==z y x z ,于是曲面22=-+z y x 在)),(,,(0000y x z y x 处的切平面方程是0)5()1(2)2(2=---+-z y x ,即曲面 平行平面022=-+z y x 的切平面方程是0122=--+z y x 。
高数竞赛试题集
高等数学竞赛一、填空题 若 lim sin x (cosx -b) =5,则 a = i 0e X -a 设 f(X)= lim (n 2 "x,贝U f (x)的间断点为 x= ______ . nx +1 曲线y=lnx 上与直线X+y=1垂直的切线方程为 ________________________________ . 已知 f (e X ) =xe 」,且 f(1)= 0,贝u f (X)= ___________ . l x =t 3+3t +1设函数y(x)由参数方程彳 3确定,则曲线y = y(x)向上凸的x 取值[y =t -3t +11. 2.3. 4.5.范围为6.i 2x 设y =arctane X - InV e 2x17.若 X T 0时,(1 -ax2)4 -1xe x 2设 f (x) - {-1与xsinx 是等价无穷小,则a=1 < —2,则2B f(x —1)dx =29. 由定积分的定义知,和式极限lim ^n n 2+k 210. '1 8 dx X J X 2-1 二、单项选 择题 X x -— X T 0 时的无穷小量 a = Lcost 2dt,P = T tan 寸tdt,Y = 11 .把是前一个的高阶无穷小,则正确的排列次序是 【】(A)a ,P ,Y . (B) a ,Y , P . (C) P^J . 12•设函数f(x)连续,且f(0) :>0,则存在6 >0,使得 【 (A) f(x)在(0, 6)内单调增加. (C )对任意的 X 忘(0, 5)有 f(x)>f(0).13 .设 f(X)=|x(1-X)| ,贝U 【<x3 [si nt dt ,使排在后面的】(B ) f(x)在(-■& ,0)内单调减少.(D)对任 意的 X 亡(一6,0)有f(x)>f(0). (A ) (B) (C) (D ) =0是f (X)的极值点,但(0, 0)不是曲线y = f (X)的拐点. =0不是f (X)的极值点,但(0, 0)是曲线y = f(x)的拐点. =0是f (X)的极值点,且(0, 0)是曲 =0不是f (X)的极值点,(0, 0)也不 线y = 是曲线 f ( x)的拐点. y = f (x)的拐点. 14 . lim In 『(1+丄)2(1+2)2|II (1+卫)2等于 ¥ n n n 血X2 n2 (B) Zjxdx . [(c)2J In(1+x)dx .2 2(D)J In2(1 + x)dx15 .函数 (A)(一、| x |sin(x -2)亠 f(X)= --- --- 一在下列哪个区X (X -1)(X -2)21 , 0). (B ) (0 , 1).间内有界.【(C) (1 ,2). (D) (2,3).16.设 f(X)在(+ )内有定义,且lim f(x)=a ,ggJGw 0,则【】高等数学竞赛试卷Y [ 0 ,x=0 (B) X = 0必是g(x)的第二类间断点. (D) g(x)在点X = 0处的连续性与a 的取值有关. 】 (A) X = 0必是 (C) X = 0必是 17 .设f '(X)在[a , b ]上连续,且f "(a) >0, f'(b) v0,则下列结论中错误的是【 X 0 € (a, b),X 0 (a,b), X 0 丘(a,b), X 0 亡(a,b),g(x)的第一类间断点. g(x)的连续点. (A ) (B ) (C )(D ) 18 .设 (A) (B) (C) (D) 至少存在一点 至少存在一点 至少存在一点至少存在一点 使得 使得 使得 使得 f (X 0) > f (a). f (X 0)> f (b). f'(X 0)=O . f (X 0)=0. ,1, X >0 f(x) =40,x =0,F(x) [-1, x <0 点不连续.)内连续,但在X = 0点不可导.)内可导,且满足 F(x) = f(x).)内可导,但不一定满足F'(X)= f (x). F(x)在 X = 0 F(x)在( F(x)在(F(x)在( 三、解答题 1 r< 2 19.求极限ljm —(一 20 •设函数f (X)在(—壬 +再上有定义,在区间[0, 2]上,f(X)= x(x — 4),若对任意的X 都满足 f(X)=kf(X +2),其中k 为常数.(I )写出f (X)在[—2, 0]上的表达式;(n )问k 为何值时,f(x)在x = 0处可导.21 .设f ( X ),g (X )均在[a, b :上连续,证明柯西不等式 2 + COSX f 「b (x)dx h a 2 2 2 4 22 .设 ecacbce ,证明 ln b-ln a 》一f(b-a). e f (x)g(x)dx i 兰 if f 2 g 2(x)dx j X 丄 — e 中e 23曲线y =— ---- --- 与直线x=0, x = t(t> 0)及 y = 0围成一曲 边梯形.该曲边梯形绕x 轴旋转一周得一旋转体,其 体积为V(t),侧面积为S(t),在x=t 处的底面积为F(t).( I )求 V(t) X X24 .设 f (X) , g(x)在[a , b ]上连续,且满足 J f (t)dt > Jg(t)dt ,x a a 的值;(n ) lim -S(^). t -就 F(t) bb[a ,b),J a f(t)dt = J a g(t)dt .证明:[b xf(x)dx < f bxg(x)dx . •a 'a25. 速并停下.现有一质量为9000kg 飞机的速度成正比(比例系数为 表示千米/小时.尾部张开 减速伞,以增大阻 力,使飞机迅速减 经测试,减速伞打开后, 某种飞机在机场降落时,为了减少滑行距离,在触地的 瞬间,飞机的飞机,着陆时的水平 速度为 700km/h. k=6.0x106).问从着陆点算起,飞机滑行的最长距离是多少?飞机所受的总阻力与 注 kg 表示 千克,km/h 一、单项选择题 2 X -ax — b 尸 0 1、若 %+1 (A ) a =1, b =1(B) a=T, b =1 (C) a =1, b =—1 (D)a = —1, b=—1F(x )2、设 F (x )詔 x ,[f(0),(A ) 连续点 (B )3、设常数k A O ,函数 X 工0 c,其中f (x )在X =0处可导且f '(0) H 0X := 0 第一类间断点(C ) 第二类间断点 (D )以上都不X f (X )= In X —一 +k 在(0, xc )内零点的个数为e f (0) =0,贝U X = 0 是 F(X)的 (C) 4、若在[0,1]上有 f ( 0 > g (0=) 0, 4 g) = ab)且 f''X 另,0 g”(x)c0 ,I1 =f (X )dx ,I 2 5、 1 = J o g(x)dx ,I 3 I 1 > l 2> 图形0<a<x<b, 0<y<f(x 绕y 轴旋转所成 的旋转体 bb(A) 由平面 (A) 6、 7、1、 2、 3、 4、 5、 6、 7、1=f ax dx 的大小关系为 j 0 ------------------I 3 ( B ) I 2 > I 3 二 I 1 ( C )V =2兀 J xf(Mdx( B ) V =2和 f ( x) d X C )VP(1,3,4)关于平面 3x + y —2z =0的对称点是_( A ) (5, —1,0) 设D 为 X 2 + y 2<R 2,D 1 是 D 位于第一象限的部分,f (X)连续, 2(A)8JJf(X 2)dcrD 1(B ) 0( C )a 为常数,则级数二、填空题3 l :m tan 2x (1 hm —4—(1X —30 X y r sin(na) 1 1n 2"T n J13 — 12 — 11 的体积为 ___________ b2=兀 Ja f (x)dX (B ) (5,1,0) 则 JJ f (x 2D R R 2Jdxjj(x+ y 2)dy(D)bV " Ja f (x)dx (C ) (-5,-1,0) ( D ) (-5,1,0) + y 2)dcr = _______ (D ) (D )4JJf(x 2 D 1+ y 2)db绝对收敛(B )发散C )条件收敛(D )收敛性与a 的取值有关个。
大学生高等数学竞赛试题汇总与答案
大学生高等数学竞赛试题汇总与答案大学生高等数学竞赛试题汇总与答案1.试题一:已知函数f(x)在区间[0, 1]上连续,且f(0) = 0,f(1) = 1,若对任意的x ∈ [0, 1],都有f(x) ≤ x,证明函数f(x)在区间[0, 1]上存在唯一的根。
解答:首先,由题意可知,函数f(x)在区间[0, 1]上连续,且f(0) = 0,f(1) = 1,即函数f(x)在区间[0, 1]的端点值分别为0和1。
假设存在两个不同的根x1和x2,且0 ≤ x1 < x2 ≤ 1。
则根据题意有f(x1) = 0,f(x2) = 0。
由于f(x)在区间[0, 1]上连续,根据介值定理,对于任意的c ∈ (0, 1),都存在一个介于x1和x2之间的数x0,使得f(x0) = c。
当c = 0时,根据题意有f(x1) = 0,所以x1也是f(x) = 0的根,与x1和x2不同的假设矛盾。
当c = 1时,根据题意有f(x2) = 0,所以x2也是f(x) = 0的根,与x1和x2不同的假设矛盾。
综上所述,假设不成立,即函数f(x)在区间[0, 1]上存在唯一的根。
2.试题二:已知函数f(x)在区间[0, +∞)上连续,且f(0) = 0,f(x) > 0,对任意的x > 0,且f'(x) > 0,证明函数f(x)在区间(0, +∞)上单调递增。
解答:根据题意可知,函数f(x)在区间[0, +∞)上连续,且f(0) = 0,f(x) > 0,对任意的x > 0,且f'(x) > 0。
假设存在两个不同的数x1和x2,且0 < x1 < x2。
由于f(x)在区间[0, +∞)上连续,根据介值定理,对于任意的c ∈ (0, f(x2)),都存在一个介于x1和x2之间的数x0,使得f(x0) = c。
根据函数的导数性质,当x > 0时,f'(x) > 0,即函数f(x)在区间(0, +∞)上单调递增。
大专数学竞赛试题及答案
大专数学竞赛试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项是方程 \(x^2 - 5x + 6 = 0\) 的解?A. \(x = 1\)B. \(x = 2\)C. \(x = 3\)D. \(x = 4\)答案:B2. 函数 \(f(x) = \sin(x)\) 在区间 \([0, 2\pi]\) 上的值域是?A. \([-1, 1]\)B. \([0, 1]\)C. \([-1, 0]\)D. \([0, 2]\)答案:A3. 集合 \(A = \{1, 2, 3\}\) 和集合 \(B = \{2, 3, 4\}\) 的交集是什么?A. \(\{1, 2, 3\}\)B. \(\{2, 3\}\)C. \(\{1, 3, 4\}\)D. \(\{4\}\)答案:B4. 以下哪个选项是复数 \(z = 3 + 4i\) 的共轭复数?A. \(3 - 4i\)B. \(-3 + 4i\)C. \(-3 - 4i\)D. \(3 + 4i\)答案:A二、填空题(每题5分,共20分)5. 计算极限 \(\lim_{x \to 0} \frac{\sin(x)}{x}\) 的值是________。
答案:16. 给定函数 \(f(x) = x^3 - 3x\),求 \(f'(x)\) 的值。
\(f'(x) = ________\)。
答案:\(3x^2 - 3\)7. 计算定积分 \(\int_{0}^{1} x^2 dx\) 的值是 ________。
答案:\(\frac{1}{3}\)8. 已知 \(\log_2(3) = a\),那么 \(\log_2(9) = ________\)。
答案:\(2a\)三、解答题(每题10分,共30分)9. 证明:如果 \(a^2 + b^2 = c^2\),则 \(a\)、\(b\) 和 \(c\)构成直角三角形。
证明:由 \(a^2 + b^2 = c^2\),根据勾股定理的逆定理,可以得出\(a\)、\(b\) 和 \(c\) 构成直角三角形。
历届全国大学生高等数学竞赛真题及答案非数学类.docx
前三届高数竞赛预赛试题(非数学类)(参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。
)2009年 第一届全国大学生数学竞赛预赛试卷 一、填空题(每小题5分,共20分)1.计算=--++⎰⎰y x yx x yy x Dd d 1)1ln()(____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.解:令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫⎝⎛-=,v u u v u u u y x y x x yy x D D d d 1ln ln d d 1)1ln()(⎰⎰⎰⎰--=--++⎰⎰⎰⎰----=---=10210d 1)ln (1ln d )d ln 1d 1ln (u u u u u u u u u u v v u uv u u u u u ⎰-=12d 1u uu (*) 令u t -=1,则21t u -=dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-,⎰+--=0142d )21(2(*)tt t⎰+-=1042d )21(2t t t 151651322153=⎥⎦⎤⎢⎣⎡+-=t t t 2.设)(x f 是连续函数,且满足⎰--=2022d )(3)(x x f x x f , 则=)(x f ____________.解:令⎰=20d )(x x f A ,则23)(2--=A x x f ,A A x A x A 24)2(28d )23(202-=+-=--=⎰,解得34=A 。
因此3103)(2-=x x f 。
3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________. 解:因平面022=-+z y x 的法向量为)1,2,2(-,而曲面2222-+=y x z 在),(00y x 处的法向量为)1),,(),,((0000-y x z y x z y x ,故)1),,(),,((0000-y x z y x z y x 与)1,2,2(-平行,因此,由x z x =,y z y 2=知0000002),(2,),(2y y x z x y x z y x ====,即1,200==y x ,又5)1,2(),(00==z y x z ,于是曲面022=-+z y x 在)),(,,(0000y x z y x 处的切平面方程是0)5()1(2)2(2=---+-z y x ,即曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是0122=--+z y x 。
历年全国大学生高等数学竞赛真题及答案(2009-2011非数学类).
0
n
n1
0
n0
n0
n1
即
f (t)dt f (n) 1 f (t)dt ,
0
0
n0
又
f (n) xn2 ,
n0
n0
ln 1
1
lim x lim x 1
x1 1 x x1 1
f (t)dt
xt2 dt
t2 ln 1
e x dt
0
0
0
1
et2 dt
10
1 , 12
0
0
3
a2
1
x
4
dt
4 a(1 a)
1
x
3dt
4 (1 a)2
1
x
2dt
0
3
0
9
0
1 a2 1 a(1 a) 4 (1 a)2
5
3
27
即
V (a) 1 a2 1 a(1 a) 4 (1 a)2
5
3
27
令
V (a) 2 a 1 (1 2a) 8 (1 a) 0,
det
0 1
11 dudv dudv ,
D
(x
y) ln(1 1 x y
y) x dxdy
D
u
ln
u u ln 1u
vdudv
1
(
u
ln
u
u
dv
u
u
ln vdv)du
0 1u 0
1u 0
1 u2 ln u u(u ln u u) du
0 1u
1u
1
u2
du (*)
0 1u
L
全国大学生高等数学竞赛真题及答案(非数学类)无答案
2009年 第一届全国大学生数学竞赛预赛试卷一、填空题(每小题5分,共20分)1.计算=--++⎰⎰y x yx x yy x Dd d 1)1ln()(____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.2.设)(x f 是连续函数,且满足⎰--=2022d )(3)(x x f x x f , 则=)(x f ____________.3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________.4.设函数)(x y y =由方程29ln )(y y f e xe =确定,其中f 具有二阶导数,且1≠'f ,则=22d d xy________________.二、(5分)求极限xenx x x x ne e e )(lim 20+++→ ,其中n 是给定的正整数.三、(15分)设函数)(x f 连续,⎰=10d )()(t xt f x g ,且A xx f x =→)(lim,A 为常数,求)(x g '并讨论)(x g '在0=x 处的连续性.四、(15分)已知平面区域}0,0|),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界,试证:(1)⎰⎰-=---Lx y Lx yx ye y xe x ye y xed d d d sin sin sin sin ;(2)2sin sin 25d d π⎰≥--Ly yx ye y xe .五、(10分)已知x x e xe y 21+=,xx exe y -+=2,xx x e e xe y --+=23是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程.六、(10分)设抛物线c bx ax y ln 22++=过原点.当10≤≤x 时,0≥y ,又已知该抛物线与x 轴及直线1=x 所围图形的面积为31.试确定c b a ,,,使此图形绕x 轴旋转一周而成的旋转体的体积最小.七、(15分)已知)(x u n 满足),2,1()()(1 =+='-n e x x u x u x n n n, 且neu n =)1(, 求函数项级数∑∞=1)(n nx u之和.八、(10分)求-→1x 时, 与∑∞=02n n x 等价的无穷大量.2010年 第二届全国大学生数学竞赛预赛试卷一、(25分,每小题5分) (1)设22(1)(1)(1),nn x a a a =+++其中||1,a <求lim .n n x →∞(2)求21lim 1x xx ex -→∞⎛⎫+ ⎪⎝⎭。
历届全国大学生数学竞赛真题及答案非数学类
高数竞赛预赛试题〔非数学类〕〔参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。
〕2021年 第一届全国大学生数学竞赛预赛试卷 一、填空题〔每题5分,共20分〕1.计算=--++⎰⎰y x yx x yy x Dd d 1)1ln()(,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.解:令v x u y x ==+,,那么v u y v x -==,,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫⎝⎛-=,令u t -=1,那么21t u -=2.设)(x f 是连续函数,且满足⎰--=2022d )(3)(x x f x x f , 那么=)(x f .解:令⎰=20d )(x x f A ,那么23)(2--=A x x f , 解得。
因此。
3.曲面平行平面022=-+z y x 的切平面方程是.解:因平面022=-+z y x 的法向量为)1,2,2(-,而曲面在),(00y x 处的法向量为)1),,(),,((0000-y x z y x z y x ,故)1),,(),,((0000-y x z y x z y x 与)1,2,2(-平行,因此,由x z x =,y z y 2=知0000002),(2,),(2y y x z x y x z y x ====,即1,200==y x ,又5)1,2(),(00==z y x z ,于是曲面022=-+z y x 在)),(,,(0000y x z y x 处的切平面方程是0)5()1(2)2(2=---+-z y x ,即曲面 平行平面 022=-+z y x 的切平面方程是0122=--+z y x 。
4.设函数)(x y y =由方程29ln )(y y f e xe =确定,其中f 具有二阶导数,且1≠'f ,那么.解:方程29ln )(y y f e xe =的两边对x 求导,得 因)(29ln y f y xe e =,故,即,因此二、〔5分〕求极限x enx x x x ne e e )(lim 20+++→ ,其中n 是给定的正整数. 解:因 故 因此三、〔15分〕设函数)(x f 连续,⎰=10d )()(t xt f x g ,且,A 为常数,求)(x g '并讨论)(x g '在0=x 处的连续性.解:由与函数)(x f 连续知,0)(limlim )(lim )0(000===→→→xx f x x f f x x x 因⎰=10d )()(t xt f x g ,故0)0(d )0()0(10===⎰f t f g , 因此,当0≠x 时,,故 当0≠x 时,这说明)(x g '在0=x 处连续.四、〔15分〕平面区域}0,0|),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界,试证:〔1〕⎰⎰-=---Lx y Lx y x ye y xe x ye y xe d d d d sin sin sin sin ;〔2〕2sin sin 25d d π⎰≥--Ly y x ye y xe .证:因被积函数的偏导数连续在D 上连续,故由格林公式知 〔1〕y x ye y xe x x ye y xe Dx y Lx y d d )()(d d sin sin sin sin ⎰⎰⎰⎥⎦⎤⎢⎣⎡-∂∂-∂∂=---而D 关于x 与y 是对称的,即知 因此 〔2〕因 故 由知即 2sin sin 25d d π⎰≥--Ly y x ye y xe五、〔10分〕x x e xe y 21+=,x x e xe y -+=2,x x x e e xe y --+=23是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程.解设x x e xe y 21+=,x x e xe y -+=2,x x x e e xe y --+=23是二阶常系数线性非齐次微分方程的三个解,那么x x e e y y 212-=--与x e y y -=-13都是二阶常系数线性齐次微分方程的解,因此0=+'+''cy y b y 的特征多项式是0)1)(2(=+-λλ,而0=+'+''cy y b y 的特征多项式是因此二阶常系数线性齐次微分方程为02=-'-''y y y ,由)(2111x f y y y =-'-''与 知,1112)(y y y x f -'-''=)(2)2(42222x x x x x x x x e xe e e xe e e xe +-++-++= 二阶常系数线性非齐次微分方程为六、〔10分〕设抛物线c bx ax y ln 22++=过原点.当10≤≤x 时,0≥y ,又该抛物线与x 轴及直线1=x 所围图形的面积为31.试确定c b a ,,,使此图形绕x 轴旋转一周而成的旋转体的体积最小.解因抛物线c bx ax y ln 22++=过原点,故1=c ,于是 即而此图形绕x 轴旋转一周而成的旋转体的体积 即 令 得 即 因此七、〔15分〕)(x u n 满足),2,1()()(1 =+='-n e x x u x u x n n n, 且, 求函数项级数之与.解 即由一阶线性非齐次微分方程公式知 即 因此 由知,0=C , 于是下面求级数的与:令 那么 即由一阶线性非齐次微分方程公式知 令0=x ,得C S ==)0(0,因此级数的与 八、〔10分〕求-→1x 时, 与等价的无穷大量.解令2)(t x t f =,那么因当10<<x ,(0,)t ∈+∞时,2()2ln 0t f t tx x '=<,故xt t ex t f 1ln22)(-==在(0,)+∞上严格单调减。
高等数学竞赛试题含答案
高等数学竞赛试题一、求由方程032=-+xy y x所确定的函数()x y y =在()+∞,0内的极值,并判断是极大值还是极小值. 解:对032=-+xy y x两边求导得()2230x y y y xy ''+-+=,223y xy y x-'=- 令0y '=得2yx =,代入原方程解得11,84x y ==.()()()()()2111122,,,08484232613x y x y y y y x y x yy y yx '=====''-----''=-.故当18x =时,y 取极大值14.二、设xyyx u -+=1arctan ,求x u ∂∂, 22x u ∂∂.解:()()2211111xy yy x xy xy y x xu-++-⎪⎪⎭⎫ ⎝⎛-++=∂∂=211x+, 22x u ∂∂=()2212x x +-三、计算曲线积分⎰+-=Lyx ydxxdy I224,其中L 是以点(1,0)为中心,R 为半径的圆周,0>R 1≠R ,取逆时针方向.解:()224,yx yy x P +-=, ()224,y x x y x Q +=, 当()()0,0,≠y x 时,()x Qyx x y y P ∂∂=+-=∂∂2222244, 当10<<R 时()D ∉0,0,由格林公式知,0=I .当1>R 时, ()D ∈0,0,作足够小的椭圆曲线⎪⎩⎪⎨⎧==θεθεsin cos 2:y x C ,θ从0到π2.当>ε充分小时,C 取逆时针方向,使D C ⊂,于是由格林公式得0422=+-⎰-+CL yx ydxxdy , 因此⎰+-L y x ydx xdy 224⎰+-=C yx ydxxdy 224 =θεεπd ⎰202221 =π 四、设函数()x f 在()+∞,0内具有连续的导数,且满足()()()422222t dxdy y xfy x t f D+++=⎰⎰,其中D 是由222t y x =+所围成的闭区域,求当x ∈()+∞,0时()x f 的表达式.解:()()22402tf t d r f r rdr t πθ=+⎰⎰=()3404tr f r dr t π+⎰,两边对t 求导得()()3344f t t f t t π'=+,且()00f =,这是一个一阶线性微分方程,解得()()411t f t e ππ=-五、设dx x x a n n⎰=πsin ,求级数∑∞=+⎪⎪⎭⎫⎝⎛-1111n n na a 的和.解:令t n x -=π, 则()dt t t n a n n ⎰-=ππ0sin=n n a dt t n -⎰ππ0sin .sin 2n nn a t dt ππ=⎰2220sin sin 22n n t dt tdt n πππππ===⎰⎰.⎪⎭⎫ ⎝⎛+-=-+1111111n n a a n n π.1n n k S =⎛⎫=-∑=n k =111n ⎫-⎪+⎭, =S 111n n ⎫-=⎪+⎭六、设()f x 在[)+∞,0上连续且单调增加,试证:对任意正数a ,b ,恒有()()()[]⎰⎰⎰-≥ba ba dx x f a dx x fb dx x xf 0021. 解:令()()0xF x x f t dt =⎰,则()()()0xF x f t dt xf x '=+⎰,()()()ba Fb F a F x dx '-=⎰=()()0bx a f t dt xf x dx ⎡⎤+⎢⎥⎣⎦⎰⎰ ()()ba xf x xf x dx ≤⎡+⎤⎣⎦⎰ =()2baxf x dx ⎰,于是()()()()()001122bba axf x dx F b F a b f x dx a f x dx ⎡⎤≥⎡-⎤=-⎣⎦⎢⎥⎣⎦⎰⎰⎰. 七、设()v u ,ϕ具有连续偏导数,由方程()bz y az x --,ϕ=0确定隐函数()y x z z ,=,求yzb x z a ∂∂+∂∂. 解:两边对x 求偏导得1210z z a b x x ϕϕ∂∂⎛⎫⎛⎫''-+-= ⎪ ⎪∂∂⎝⎭⎝⎭g g ,两边对y 求偏导得1210z z ab y y ϕϕ⎛⎫⎛⎫∂∂''-+-= ⎪ ⎪∂∂⎝⎭⎝⎭g g , 112z x a b ϕϕϕ'∂=∂''+,212z x a b ϕϕϕ'∂=∂''+, yz b x z a ∂∂+∂∂=1.八、设nn x n121112----=Λ,判别数列{}n x 的敛散性.解:定义00x =,令1k k k u x x -=-,则1nk n k u x ==∑,当2n ≥时,1n n n u x x -=-=-,()21-==+.1lim 14n n u →∞=,由1n ∞=1n n u ∞=∑收敛,从而{}n x 收敛. 九、设半径为r 的球面∑的球心在球面0∑:()22220xy z R R ++=>上,问当r 为何值时,球面∑在球面0∑内部的那部分面积最大?解:由对称性可设∑的方程为()2222xy z R r ++-=,球面∑被球面0∑所割部分的方程为zR =z x ∂=∂, z x ∂=∂,=球面∑与球面0∑的交线在xoy 平面的投影曲线方程为422224r x y r R +=-,令l =所求曲面面积为()200l DSr d πθρ==⎰⎰,=222r r r R π⎛⎫- ⎪⎝⎭.令()0S r '=得驻点43r R =,容易判断当43rR =时,球面∑在球面0∑内部的那部分面积最大. 十.计算()ds yx y x IL⎰+-+=22221,其中曲线弧L 为:x y x 222=+,0≥y . 解: 22x x y-=, (1) 221xx x y --=',ds ==, (2)将(1)、(2)代入()ds y x y x IL⎰+-+=22221得 dx x x xI 220212-=⎰ =dx x⎰-2212 =4. 十一.计算曲面积分()3322231Ix dydz y dzdx z dxdy ∑=++-⎰⎰,其中∑是曲面221y x z --=被平面0=z 所截出部分的上侧.解:记1∑为xoy 平面上被园221x y +=所围成的部分的下侧,Ω为由∑与0∑围成的空间闭区域.由高斯公式知()()13322222316x dydz y dzdx z dxdy x y z dv ∑∑Ω+++-=++⎰⎰⎰⎰⎰Ò =()221126r d dr z r rdz πθ-+⎰⎰⎰=()()122320112112r r r r dr π⎡⎤-+-⎢⎥⎣⎦⎰ =2π.()221332122313x y x dydz y dzdx z dxdy dxdy ∑+≤++-=--⎰⎰⎰⎰=3π23I πππ=-=-。
历届全国大学生高等数学竞赛真题及答案非数学类.docx
前三届高数竞赛预赛试题(非数学类)(参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。
)2009年 第一届全国大学生数学竞赛预赛试卷 一、填空题(每小题5分,共20分)1.计算=--++⎰⎰y x yx x yy x Dd d 1)1ln()(____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.解:令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫⎝⎛-=,v u u v u u u y x y x x yy x D D d d 1ln ln d d 1)1ln()(⎰⎰⎰⎰--=--++⎰⎰⎰⎰----=---=10210d 1)ln (1ln d )d ln 1d 1ln (u u u u u u u u u u v v u uv u u u u u ⎰-=12d 1u uu (*) 令u t -=1,则21t u -=dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-,⎰+--=0142d )21(2(*)tt t⎰+-=1042d )21(2t t t 151651322153=⎥⎦⎤⎢⎣⎡+-=t t t 2.设)(x f 是连续函数,且满足⎰--=2022d )(3)(x x f x x f , 则=)(x f ____________.解:令⎰=20d )(x x f A ,则23)(2--=A x x f ,A A x A x A 24)2(28d )23(202-=+-=--=⎰,解得34=A 。
因此3103)(2-=x x f 。
3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________. 解:因平面022=-+z y x 的法向量为)1,2,2(-,而曲面2222-+=y x z 在),(00y x 处的法向量为)1),,(),,((0000-y x z y x z y x ,故)1),,(),,((0000-y x z y x z y x 与)1,2,2(-平行,因此,由x z x =,y z y 2=知0000002),(2,),(2y y x z x y x z y x ====,即1,200==y x ,又5)1,2(),(00==z y x z ,于是曲面022=-+z y x 在)),(,,(0000y x z y x 处的切平面方程是0)5()1(2)2(2=---+-z y x ,即曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是0122=--+z y x 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
原式=
(ln(1t)t)1/(1t)111
2
2(1t)
t2t2
limelimelimee
t0t0t0
(3)
11
sxnnsxnsxsxn
Iexdx()xde()[xe|edx]
n0
000
ss
nnn(n1)n!n!
sxn1
exdxIII
n12n2n0n1
sssss
0
二、(15分)设函数f(x)在(,)上具有二阶导数,并且
''()(2'
t2t)2(t)''()(2'
3
dxdx/dt(22t)
=。。。
上式可以得到一个微分方程,求解即可。
四、(15分)设
n
a0,Sa,证明:
nnk
k1
(1)当1时,级数
a
n
S
nn
1
收敛;
(2)当1且()
sn时,级数
n
a
n
S
nn
1
发散。
解:
(1)
a>0,
n
s单调递增
n
当
n1
a收敛时,
n
aa
nn
一、(25分,每小题5分)
(1)设
n
22
x(1a)(1a)(1a),其中|a|1,求limxn.
n
n
(2)求
x
lim e1
x
1
x
2
x
。
(3)设s0,求
sxn
Iexdxn。
(1,2,)
0
(4)设函数f(t)有二阶连续导数,
221
rxy,g(x,y)f
r
,求
22
gg
22
xy
。
(5)求直线
l
1
:
xy
z0
0
nn
于是
下面求级数的和:
令
则
即
由一阶线性非齐次微分方程公式知
令x0,得0S(0)C,因此级数
un(x)的和
n1
八、(10分)求x1时,与
2
x等价的无穷大量.
n
n0
解令
2
t
f,则因当0x1,t(0,)时,
(t)x
2
t
fttxx,
()2ln0
故
f
1
2
tln
2
te
(t)x在(0,)上严格单调减。因此
x
即
fttfnftt,
前三届高数竞赛预赛试题(非数学类)
(参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看
一些辅导书及相关题目,主要是一些各大高校的试题。)
2009-2010年第一届全国大学生数学竞赛预赛试卷
一、填空题(每小题5分)
y
(xy)ln(1)
x
1.计算xy
dd
D
1xy
16/15,其中区域D由直线xy1与
x2y1z3
与直线l2:的距离。
421
解:(1)
n
xaa2a2=
(1)(1)(1)
n
n
22
x(1a)(1a)(1a)(1a)/(1a)
n
nn1 =a2a2a2a==
2
(1)(1)(1)/(1)(1a)/(1a)
(2)
2
x
11
22
1
xx
lne(1)xln(1)x
xxx
lime1limelime
x
xxx
一.计算下列各题(本题共3小题,每小题各5分,共15分)
1
(1).求
lim
x0
sin
x
x
1cosx
;
解:(用两个重要极限):
(2).求
111
lim...
nn1n2nn
;
解:(用欧拉公式)令
x
n
111
...
n1n2nn
其中,o1表示n时的无穷小量,
(3)已知
2
t
xln1e
t
ytarctane
,求
2
dy
三.(本题15分)设函数f(x)在x=0的某邻域内具有二阶连续导数,
且
'"
f0,f0,f0均不为0,证明:存在唯一一组实数
kkk,
1,2,3
使得
kfhkf2hkf3hf0
123
lim0
2
h
h0
。
证明:由极限的存在性:
limkfhkf2hkf3hf00
123
h0
即
k1k2k31f00,又f00,k1k2k31①
xe2x
2和
1
yye
x
y3y1e都是二阶常系数线性齐次微
分方程
的解,因此ybycy0的特征多项式是(2)(1)0,而
ybycy0的特征多项式是
因此二阶常系数线性齐次微分方程为yy2y0,由
y1y2y1f(x)和
1
xxee
x2x
y1e2,
xxee2x
x
y12e4
知,f(x)y1y12y1x2e4e2x(xexex2ex)2(xexex)
n2
aa
n1
k
1
于是,
a
kkn
11
aa
nn2
sss
2n2nk
1
1
2
依此类推,可得存在
1kk...
12
使得
k
i
1a1
n
2
s
kn
i
成立,所以
k
N
1
a
n
s
n
N
1
2
当n时,N,所以
a
n
s
nn
1
发散
五、(15分)设l是过原点、方向为(,,),(其中
2221)的直
线,均匀椭球
222
xyz
2221
abc
,其中(0cba,密度为1)绕l旋转。
即
令
218
V(a)a(12a)(1a)0,
5327
得
即
因此
5
a,
4
3
b,c1.
2
nn,且
n
1exn
七、(15分)已知u(x)
n满足u(x)u(x)x(1,2,)
e
un(1),
n
求函数项级数
u之和.
n(x)
n1
解
n1x
un(x)u(x)xe,
n
即
由一阶线性非齐次微分方程公式知
即
因此
由(1)(1)
e
uneC知,C0,
2
dx
。
解:
t
e
1
2tt2t2tt
dxedyedyeee
2,111
2t2t2t2t
dt1edt1edx2e2e
1
2t
e
二.(本题10分)求方程2xy4dxxy1dy0的通解。
解:设P2xy4,Qxy1,则PdxQdy0
PQ
yx
1,PdxQdy0是一个全微分方程,设
dzPdxQdy
PQ
yx
,
该曲线积分与路径无关
2
x
2
2xyz,即曲面z2平行平面
(2)2(1)(5)0y
2
2x2yz0的切平面方程是2x2yz10。
4.设函数yy(x)由方程ln29
xe确定,其中f具有二阶导数,
f(y)ey
且f1,则
2
d
y________________.
2
dx
解:方程feln29
(y)y
xe的两边对x求导,得
因
1,即
yxe
f(y)
eln29,故f(y)yy
x
1
y,因此
x(1f(y))
x2x
ee
lim(
x0n
nx
e
)
e
x
二、(5分)求极限,其中n是给定的正整数.
解:因
故
因此
三、(15分)设函数f(x)连续,
1
f(x)
g(x)f (xt)dt,且limA
0x0
x
,A为
常数,求g(x)并讨论g(x)在x0处的连续性.
f(x)
解:由A
两坐标轴所围成三角形区域.
01
解:令xyu,xv,则xv,yuv,xydudvdudv
dddet,
11
1
0
2
u
1
u
du
(*)
令t1u,则u1t
2
du2tdt,
212t2t
4
2tt
u,u(1u)t(1)(1),
2.设f(x)是连续函数,且满足
2
f2()d2,则
(x)3xfxx
0
f____________.
()d()1()d
00
n0
又
2
fnx,
()
n
n0n0
f (t)dt
00
1
2
11
tln
22
t,
t
xtxdt
deedt
02
0
11
lnln
xx
所以,当x1时,与
n0
2
n
x等价的无穷大量是
1
2
1
x
。
2010-2012年第二届全国大学生数学竞赛预赛试卷