第七届“学用杯”全国知识应用竞赛九年级数学初赛试题(A) 人教新课标版
第七届“学用杯”全国知识应用竞赛七年级数学初赛试题(B) 新人教版
第七届“学用杯”全国数学知识应用竞赛七年级初赛B.卷试题一、填空题(每小题6分,共30分)1.数学谜语,既能激发好奇心,增强想象力,又能拓宽视野,丰富知识.下面的两则数学谜语,你能写出谜底吗?(1)七六五四三二一(打一数学名词):;(2)只识0和1,能算万和亿,软硬我都有,猜我很容易(打一计算工具):.2.在七年级的一次数学活动课中,为了让同学们感受身边的数据,X老师要求大家借助学校的篮球场,每一活动小组自己发现数据,并测量记录数据.某活动小组测得学校的篮球场长为A米,宽为B米,且长比宽多C米,周长是D米,面积是E平方米,篮球架高F 米.测量到的数据有:86,13,420,15,28,3.由于记录疏忽把数据弄乱了.你能帮他们整理一下吗?A=,B=,C=,D=,E=,F=.3.你玩过“数字黑洞”的游戏吗?“数字黑洞”,即满足某种条件的所有数,通过一种运算,都能被它“吸”进去,无一能逃脱它的魔掌.下面我们就来玩一种数字游戏,它可以产生“黑洞数”,操作步骤如下:第一步,任意写出一个自然数(以下称为原数);第二步,再写出一个新的三位数,它的百位数字是原数中偶数数字的个数,十位数字是原数中奇数数字的个数,个位数字是原数的位数;以下每一步,都对上一步得到的数按照第二步的规则继续操作,直至这个数不再变化为止.不管你开始写的是一个什么数,几步之后变成的自然数总是相同的,最后这个总相同的数就称为“黑洞数”.请你以2008为例尝试一下:第一步写出2008,第二步之后变为,再变为,再变为,再变为,再变为,……所以这个数字游戏的“黑洞数”是.4.将3个相同的长为2厘米、宽为1厘米、高为3厘米的小长方体拼成一个大长方体,共有种拼法;如果用包装纸把拼成的长方体包起来,最少需要平方厘米的包装纸.5.公园里准备修六条直的走廊,并且在走廊的交叉路口处设一个报亭,这样的报亭最多可设_______个.二、选择题(每小题6分,共30分)6.同学们,你经常上网浏览新闻吗?据新华网消息:2007年7月19日,国务院新闻办公室举行新闻发布会,国家统计局发言人介绍了2007年上半年国民经济运行情况,其中在谈到农业方面时提到,2007年上半年我国农业生产再获丰收,夏粮单产创历史新高.初步统计,全国夏粮产量达到11534万吨,增产146万吨,增长1.3%,连续四年获得丰收.用科学记数法表示2007年上半年的夏粮产量为(保留4个有效数字)( )A.81.153410⨯吨B.71.153410⨯吨 C.71.15010⨯吨D.81.15310⨯吨7.某城市新建了一座游乐场,即日将完工.当施工者准备给游乐场用砖头砌上围墙时,发现在设计图纸中的某些数据已经模糊不清了(如图1),从而无法计算出外围围墙的周长,因此无法备砖料.根据图中的标示,可计算出外围围墙的周长是 ( )A.320米B.260米 C.160米 D.100米8.2007年8月8日是2008奥运会一周年倒计时的日子.小刚制作了一个侧面边长为1的等边三角形样式的纸盒(如图2),把它的侧面三角形的顶点分别标出A B C ,,三个点,让这个纸盒按照同一个方向每天在平面上滚动一次(无滑动),那么到2008年奥运会开幕那天,点A 转动的路程是( )A.488π3 B.122π3 C.244π3 D.122π9.QQ 是一种流行的中文网络即时通讯软件.注册用户通过累积“活跃天数”就可获得相应的等级,如果用户当天(0∶00~24∶00)使用QQ 在2小时以上(包括2小时),其“活跃天数”累积为1天.一个新用户等级升到1级需要5天的“活跃天数”,这样可以得到1个星星,此后每升1级需要的“活跃天数”都比前一次多2天,每升1级可以得到1个星星,每4个星星可以换成一个月亮,每4个月亮可以换成1个太阳.网名是“未来”的某用户今天刚升到2个月亮1个星星的等级,那么他可以升到1个太阳最少还需经过的天数是( )A.205天 B.204天 C.203天 D.202天10.图3所示的九宫图中,汉字“欢迎你登录数学中国”分别表示1~9中的9个不同数字,且满足下列3个条件:(1)每个“田”字形内的4个数字之和都相等;(2)欢2=中2+国22;(3)录>数.那么“数”“学”“中”“国”这4个字所表示的数字之和是( )A.16 B.18 C.20 D.22三、解答题(每小题15分,共60分)11.李慧家有一个小型的家用烤面包器,一次只能放两片面包,每片面包烤一面需要1分钟,要烤另一面,就得取出面包片,把它翻过来,然后再放回烤面包器中.一天早晨,李慧妈妈烤了三片面包,两面都要烤,共用了4分钟(忽略取出面包片的时间).假设三片面包分别称为A B C ,,,每片面包的两面分别用1,2代表,李慧妈妈烤面包的程序是:第一分钟:烤1A 面和1B 面;第二分钟:烤2A 和2B 面;第三分钟:烤1C 面;第四分钟:烤2C 面.借助这个家用烤面包器,每片面包都烤两面,你能用更短的时间将三片面包烤完吗?如果能,请写出你烤面包的程序及所用的时间;如果不能,请说明理由.12.有两个盗宝贼,偶然获得一X 藏宝图,他们研究了大半天,破解了其中的秘密:在一片原始森林里,有A B C ,,三棵位于同一直线上的十分显眼的参天大树,A 树距B 树100米,B 树距C 树150米,宝藏就藏在C 树下面.盗宝贼跋山涉水找到那里一看,傻眼了:三棵树外形十分相似,根本不易辨认.请问:你有什么方法一次就能确定宝藏埋在哪棵树下吗?写出你的方法.13.请你阅读“龟兔赛跑新传”比赛规程,解答问题.赛程:全程5.2千米;限速:兔子每小时跑20千米,乌龟每小时跑3千米;跑法:乌龟不停的跑;但兔子却边跑边玩,它先跑了1分钟然后玩15分钟,又跑了2分钟然后玩15分钟,又跑了2分钟然后玩15分钟,再跑3分然后玩15分钟……通过计算说明:(1)它俩谁先到达终点?(2)先到达终点的比后到终点的要快多少分钟?14.翻牌游戏:在一次数学课上,老师把54X扑克牌按照1、2、3、…、54的顺序进行编号后,背面朝上摆成一排.班里正好有54名同学,同样把这54名同学按照1、2、3、…、54的顺序进行编号.游戏规则是:编号为1的同学把扑克牌中编号为1的倍数的所有牌翻一次;编号为2的同学把扑克牌中编号为2的倍数的所有牌再翻一次;编号为3的同学把扑克牌中编号为3的倍数的所有牌也翻一次……直到最后一名54号同学把54号牌翻过来游戏结束.问:游戏结束后有几X扑克牌最后被翻成正面朝上?写出它们的编号并说明理由.四、开放题(本题共30分)15.“减去一个数,等于加上这个数的相反数”.这是有理数的减法法则,在生活中应用这个法则还有一定的教育意义呢!请你编一个与此有关的富有教育意义的情景对话.第七届“学用杯”全国数学知识应用竞赛七年级初赛(B)卷试参考答案一、1.(1)倒数(2)电子计算机(电脑)2.28,15,13,86,420,33.404,303,123,123,123,1234.4,425.15(提示:六条直线,最多有15个交点,利用公式(1)2n n可以计算出).二、6.D7.B(提示:(1)图示提供的数据推知:A+B+C=50米,从而竖向的围墙总长度为100米;(2)从横的部分提供的数据推知,横向的围墙总长度为:50+A+30+50+30-A=160米,从而外围围墙的总长度为260米.故选B.)8.A(提示:一共有366天,每滚动3次为一个循环,每个循环中点A移动2次,每次移动的路程是12π3.)9.C(提示:升到2个月亮1个星星需要117天;而升到1个太阳需要320天,所以还需要203天.提示:若级数为N,天数为M,则M=N(N+4),升到1个太阳即到16级,则天数M=16(16+4)=320(天);升到2个月亮1个星星即到第9级,所用天数为:9(9+4)=117(天),所以320-117=203(天).故选C.)10.A(提示:因为欢2=中2+国2,所以52=32+42.即欢=5,中、国一个可能是3、一个可能是4.又根据已知“每个‘田’字形内的4个数字之和都相等”,所以迎+你+录+数=录+数+中+国.所以迎+你=中+国=7.则迎、你一个可能是1,一个可能是6.假设你=1,欢+登=你+数,即5+登=1+数,则数-登=4.但在余下的2、7、8、9中没有两数之差是4的,所以假设不成立.所以迎=1,你=6.又欢+迎=学+中=5+1=6,即学+中=6.而学只能是2、7、8、9中的一个数,所以学=2.则中=4,则国=3.又录>数,可见数是第二行中最小的一个数,所以数=7.又欢+登=你+数,即5+登=6+数,所以登-数=1.所以登=8.则录=9.即九宫图为:所以数+学+中+国=7+2+4+3=16.故选A.)三、11.解:3分钟.程序是:第一分钟:烤A1面和B1面,取出面包片A,把B翻个面放回烤面包器,把A放在一边而把C放入烤面包器.第二分钟:烤B2面和C1面,取出面包片B,把C翻个面放回烤面包器,把B放在一边(现在它的两面已经都烤好了),再把A放入烤面包器.第三分钟:烤A2面和C2面.12.解:可以用测量法来确定,且只需测量一次即可.方法是:测量第一棵树与第二棵树之间的距离,这个距离如果是100米,则宝藏埋在第三棵树下;这个距离如果是50米或150米,则宝藏就埋在第一棵树下(两端的两棵树均可作为第一棵树).(提示:如下图,A、B、C的位置共有四种不同的情况.无论哪种情况,只需任意测量相邻两棵树的距离,如果这个距离是100米,则宝藏埋在除这两棵树以外的第三棵树下;如果这个距离是50米或150米,则宝藏埋在这两棵树中第一棵(外端的一棵)树下.)÷3×60≈104(分钟);÷20×60=15.6(分钟),我们注意到兔子休息的规律是跑1、2、3……分钟后,休息15分钟.于是试着将15.6表示成:15.6=1+2+3+4+5+0.6,因有5个间隔,所以休息5×15=75(分钟),于是,兔子跑到终点所需时间为15.6+75=90.6分钟;显然,兔子先到达,先乌龟104-90.6=13.4(分钟).14.解:一共有7X扑克牌最后被翻成正面朝上,编号为1、4、9、16、25、36、49.理由:扑克牌最后是否被翻成正面朝上,主要看它被翻了几次,如果被翻了偶数次则它仍然和原来一样,如果它被翻了奇数次则它最后被翻成了正面朝上.第n号牌是否被翻了过来,关键是看数字n的因数的个数是奇数还是偶数(包括1和它本身),如1只有一个因数1,2有两个因数1、2,3有两个因数1、3,4有三个因数1、2、4,……不难判断,凡是平方数的因数的个数都是奇数个,因此编号为1、4、9、16、25、36、49的扑克牌最后被翻成正面朝上.四、15.说明:答案不惟一(只要情景对话积极、健康,能将法则嵌入得比较自然,又有教育意义即可)提供一个情景对话,如:小明从老师办公室回到座位上,自言自语的说:“不就是犯了个小错吗?有什么大惊小怪的”.他的同桌小聪问:“怎么了,小明”.“作业上出现了一个小错误,被老师批一顿.咳!”小聪看了看小明的作业,发现他在计算时忽略了换算.说:“这可不是一个小错误,再说,老师对你进行批评教育是为了帮助改掉这个不良习惯呀,你知道‘减去一个数,等于加上这个数的相反数’.改掉这个不良习惯,也就相当于增加了一个好的习惯呀”.“哦!明白了,还真是这样”.看看,这个运算法则对促使小明醒悟的作用还真大呢!。
九年级数学竞赛初赛试卷【含答案】
九年级数学竞赛初赛试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长为()。
A. a/2B. a√2C. 2aD. a²2. 下列哪个数是无理数?()A. √9B. √16C. √3D. √13. 一个等差数列的首项为2,公差为3,则第10项为()。
A. 29B. 30C. 31D. 324. 若函数f(x) = 2x + 3,则f(3)的值为()。
A. 6B. 9C. 12D. 155. 在直角坐标系中,点(3, 4)关于y轴的对称点为()。
A. (-3, 4)B. (3, -4)C. (-3, -4)D. (4, 3)二、判断题(每题1分,共5分)1. 两个等腰三角形一定是相似的。
()2. 任何数乘以0都等于0。
()3. 二次函数的图像一定是一个抛物线。
()4. 平行四边形的对角线互相平分。
()5. 一元一次方程的解一定是整数。
()三、填空题(每题1分,共5分)1. 若一个圆的半径为r,则它的周长为______。
2. 若等差数列的首项为a,公差为d,则第n项为______。
3. 若函数f(x) = ax² + bx + c,则它的顶点坐标为______。
4. 在直角坐标系中,点(2, -3)关于原点的对称点为______。
5. 若一个平行四边形的面积为S,底为b,高为h,则S =______。
四、简答题(每题2分,共10分)1. 简述等差数列的定义。
2. 简述二次函数的图像特点。
3. 简述勾股定理。
4. 简述平行线的性质。
5. 简述一元二次方程的解法。
五、应用题(每题2分,共10分)1. 已知一个正方形的边长为10cm,求它的对角线长。
2. 已知等差数列的首项为3,公差为2,求第10项。
3. 已知函数f(x) = 3x² 12x + 9,求它的顶点坐标。
4. 在直角坐标系中,已知点A(2, 3)和点B(4, 7),求线段AB的长度。
九年级数学竞赛初赛试卷【含答案】
九年级数学竞赛初赛试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长为()。
A. a/2B. a√2C. 2aD. a²2. 下列哪个数是无理数?()A. √9B. √16C. √3D. √13. 若函数f(x) = 2x + 3,则f(-1)的值为()。
A. 1B. 2C. 3D. 54. 下列哪个图形不是正多边形?()A. 等边三角形B. 等腰梯形C. 正方形D. 正五边形5. 若一个圆的半径为r,则它的周长为()。
A. 2rB. 2πrC. πr²D. r²/2二、判断题(每题1分,共5分)1. 两个负数相乘的结果一定是正数。
()2. 任何数乘以0都等于0。
()3. 对角线相等的四边形一定是矩形。
()4. 一元二次方程ax² + bx + c = 0(a≠0)的解可以用公式x = [-b ± √(b² 4ac)] / 2a求得。
()5. 任何数都有倒数。
()三、填空题(每题1分,共5分)1. 若一个三角形的两个内角分别为30°和60°,则第三个内角的度数为______°。
2. 若2x 5 = 0,则x的值为______。
3. 若一个圆的直径为10cm,则它的面积为______cm²。
4. 若一个等差数列的首项为3,公差为2,则第5项的值为______。
5. 若sinθ = 1/2,且θ是锐角,则θ的度数为______°。
四、简答题(每题2分,共10分)1. 请简述勾股定理的内容。
2. 请简述一元一次方程的求解方法。
3. 请简述等差数列的定义及通项公式。
4. 请简述平行四边形的性质。
5. 请简述圆的周长和面积的计算公式。
五、应用题(每题2分,共10分)1. 已知一个长方形的长是宽的2倍,且长方形的周长是24cm,求长方形的长和宽。
“数学 ”全国数学知识应用竞赛 九年级初赛试题
第二届“学用杯”全国数学知识应用竞赛九年级初赛试题一、填空题(每小题5分,共40分)1.初三(2)班生物兴趣小组培养了一种微生物,该微生物每天增加一倍,经过10天后,整个实验瓶充满微生物,则经过天微生物所占的体积是实验瓶体积的一半.2.小明从十字路口开始以4米/秒的速度向北前进,此时小峰在十字路口东方50米A处以3米/秒的速度向西前进,则经过秒后,此二人的距离为85米.3.小刚在一次投镖游戏中投了多于11支镖,共得100环,且每发都命中8、9或10环,则他打中8环的次数为次.4.在一次航空模型的设计制作中,需将两个半径为12cm和4cm的圆木棍用铁丝紧紧扎在一起,则最少需铁丝cm(接头忽略不计).5.一城市出租车的收费标准如下表,四位同学到郊外写生,到达目的地后,出租车打出的电子收费单为“里程11公里,应收29.1元,请付29元,谢谢!”则基本价N= 元(N<12).61米/秒的速度向东匀速走开,某时他的影子长1.3米,再过2秒,他的影子长为1.8米,则路灯高度为米. 7.某书店对同学们购书实行优惠,规定:(1)如一次购书不超过30元,则不予以折扣;(2)如一次购书超过30元,但不超过50元,按标价给予九折优惠;(3)如一次购书超过50元,其中50元给予九折优惠,超过50元的部分给予八折优惠,李华同学两次去购书,分别付款23元与36元,如果他只去一次购买同样的书籍,则应付款元. 8.如图1,张敏同学的狼狗“赛赛”的狗窝是8×8的正方形,用长为12的皮带将狗拴在A 点,在狗窝外面狗所能活动的面积为.二、选择题(每小题5分,共50分)9α,则它们公共部分(图2中阴影部分)的面积为().(A)1sinα(B)1cosα(C)sinα(D)110.小青步行从家出发,匀速向学校走去,同时她哥哥小强骑摩托车从学校出发,匀速向家驶去,二人在途中相遇,小强立即把小青送到学校,再向家里驶去,这样他在途中所用的时间是原来从学校直接驶回家所用时间的2.5倍,那么小强骑摩托车的速度是小青步行速度的(). (A)2倍(B)3倍(C)4倍(D)5倍11.学校大门如图3所示是一抛物线形水泥建筑物,大门的地面宽度为8米,两侧距地4米高处各有一挂校名横匾用的铁环,两铁环的水平距离为6米,则该校门的高度(精确到0.1米)为().(A )9.2米(B )9.1米 (C )9米(D )5.1米12.某校参加数学竞赛的选手平均分数是75分,其中参赛男选手比女选手人数多80%,而女选手的平均分比男选手的平均分高20%,那么女选手的平均分是 ( ).(A ) 81(B )82 (C )83 (D )8413.初三某班在庆祝申奥成功的活动中,制作某种喜庆用品需将一张半径为2的半圆形纸板沿它的一条弦折叠,使得弧与直径相切,如图4所示,如果切点分直径为3:1两部分,则折痕长为 ( ).(A (B (C )D 14.在居委会提出的“全民健身”倡导下,甲、乙两人早上晨练,同时从A 地赶往B 地,甲先骑自行车到中点,改为跑步,而乙则是先跑步到中点,改为骑自行车,最后两人同时到达B 地,又知甲骑自行车比乙骑自行车速度快,若某人离开A 地的距离s 与所用时间t 的函数图象表示,则下图给出的四个函数图象中,甲、乙两人的图象情况只能是 ( ).(A )甲是图(1),乙是图(2)(B )甲是图(1),乙是图(4)(C )甲是图(3),乙是图(2)(D )甲是图(3),乙是图(4)15.如图5,某海关缉私艇巡逻到达A 处时,接到 情报,在A 处北偏西60°方向的B 处发现一艘可疑的船只,正以24海里/小时的速度向正东方向前进,上级命令要对可疑船只进行检查,该艇立即沿北偏 西45°的方向快速前进,经过一小时的航行,正好在C 处截住可疑船只,则该艇的速度约为)1.414≈≈≈( ). (A )44(B )45(C )46(D )4716.本市一房地产公司在西部大开发活动中,成功中标一块锐角三角形地皮,现要在此地皮上建一个供市民休闲娱乐的正方形广场,若三角形地皮的三边长分别为a 、b 、c ,且a >b >c ,则正方形广场的两个顶点放在哪条边上可使广场面积最大 ( ).(A )最小边c 上(B )中间边b 上 (C )最大边a 上 (D )哪条边上都一样17.两名初三学生被允许参加高中学生举行的象棋比赛,每个选手都同其他每个选手比赛一A B C 图5 图4图3 (2) (3) (1) (4)次,胜得一分,和得半分,输得零分,两名初三学生共得8分,每个高中学生都和高中其他同学得到同样分数,则参赛的高中学生人数为(). (A)7 (B)9 (C)14 (D)7或1418.编号为1到101的101个小球分放在两个盒子A和B中,40号小球在盒子A中,把这个小球从盒子A中移至盒子B中,这时盒子A中小球号码数的平均数增加了14,B中小球号码数的平均数也增加了14,则原来在盒子A中的小球个数为().(A)70 (B)71 (C)72 (D)73三、解答题(每小题20分,共40分)19.某下岗职工开办的一小型服装厂里有大量形状为等腰直角三角形的边角布料(如图6),现找出其中一种,测得∠C=90°,AC=BC=4,今要从这种三角中剪出一种扇形(做成不同形状的玩具用),使扇形的边缘半径恰好都在△ABC的其他边上,且扇形的弧与△ABC的其他边相切.请你设计出所有可能符合题意的方案示意图,并求出扇形的半径(只要求画出示意图,并标上半径即可).20.某地引进外资兴办的一家公司生产的A种产品,它的成本是2元,售价是3元,年销售量为100万件,为了获得更好的效益,公司准备拿出一定的资金做广告.根据经验,每年投入的广告费是x(十万元)时,产品的年销量将是原销售量的y倍,且y是x的二次函数,(2)如果把利润看作是销售额减去成本费和广告费,试写出年利润S(十万元)与广告费x (十万元)的函数关系式;(3)如果投入的年广告费为10~30万元,问广告费在什么范围内,公司所获年利润随广告费的增大而增大?四、开放题(本大题20分)21.请用一个长方形纸片折出一个30°的角(不借助任何工具),写出你的作法,并说明理由.图6。
第七届全国中小学数学创新应用大赛初赛 九年级
动 6 个单位,且移动后的二次函数 g(x) 3x2 cx d ,则 c d ( ).
A.20
B.23
C.27
D.30
E.33
第 III 卷(附加卷 本题为选做题,可任选试题作答) (本题共 4 小题,每小题 5 分,共 20 分,答对得分答错不扣分.21 题、22 题为不定项选择题,有一 个或多个选项符合题意;23 题、24 题为填空题.请.把.答.案.填.到.答.题.卡.处.) 21.已知 f (x) 为多项式,若分别用 x 1, x 2 , x 3除 f (x) ,余式分别为 3、7、13,则 f (x) 除
24.
x、y
均为大于
1,小于
9
的整数,则 x 10 y
x
y 10x
y
的最大值为_______.
第七届全国中小学数学创新应用大赛 九年级初赛试题
第 3页,共 4页
第七届全国中小学数学创新应用大赛 九年级初赛试题
第 4页,共 4页
Danica 在理发时看到的镜子显示的时间,理发师告诉她这个数字表的电路出了故障,四个数字的同
三、逻辑判断推理(本题共 4 小题,每小题 4 分,共 16 分,在每小题给出的选项中,只有一个选项符
合题意.请.把.选.项.填.到.答.题.卡.处.)
有 6 件文物藏品:古书、银饰、木雕、瓷器、古画、古琴.每件的制作年代各不相同,从左至右,按
目要求的.请.把.选.项.填.到.答.题.卡.处.) 1.从结构和组合的角度观察下列文字,选择最合适的填入问号处,能使之呈现一定规律性的是( ).
音月日
有占贝
白立?
二、类比推理(本题共 2 小题,每小题 4 分,共 8 分,在每小题给出的选项中,找出一组与之逻辑关
7届数理化学科竞赛初赛数学A9年级
第七届全国中学生数理化学科能力展示活动九年级数学解题技能展示试题(A 卷)总分考生须知:1.本试卷共15小题,满分120分.2.考试时间为120分钟.3.请在密封线内填写所在地区㊁学校㊁姓名和准考证号.4.成绩查询:2015年1月9日起,考生可通过活动官方网站 理科学科能力评价网 (w w w.x k s l h .c o m )查询自己的分数及获奖情况.本题得分评卷人一㊁选择题(每题6分,共36分,每题只有1个选项是正确的)1.已知方程(2014x )2-2013ˑ2015x -1=0的两根中较大的根为a ,方程x 2+2014x -2015=0的两根中较小的根为b ,则a -b =( ).A 2014;B 2015;C 2016;D 20172.把若干个全等正五边形排成环状,右图所示的是前3个五边形,要完成这一圆环还需要( )个五边形.A 6; B 7; C 8; D 93.如右图,直线AM 与圆相切于点M ,A B C 与A D E 是圆的两条割线,且B D ʅA D ,连接MD ㊁E C .则下列结论中错误的是( ).A øE C A =90ʎ;B A D ㊃D E =A B ㊃BC ;C AM 2=AD ㊃AE ;D øC E M =øDMA +øD B A4.小明对一张圆形纸片(图甲)进行了如下连续操作:(1)将圆形纸片左右对折,折痕为A B ,如图乙.(2)将圆形纸片上下折叠,使A ㊁B 两点重合,折痕C D 与A B 相交于M ,如图丙.(3)将圆形纸片沿E F折叠,使B㊁M两点重合,折痕E F与A B相交于N,如图丁.(4)连接A E㊁A F㊁B E㊁B F,如图戊.经过以上操作,小明得到了以下结论:①C DʊE F;②四边形M E B F是菱形;③әA E F 为等边三角形;④S四边形A E B FʒS扇形B E M F=33ʒπ.以上结论正确的有().A 1个; B2个; C3个; D 4个5.W h i c ho f t h e f o l l o w i n g d e s c r i b e s t h e g r a p ho f t h e e q u a t i o n(x+y)2=x2+y2?()A T h e e m p t y s e t;B o n e p o i n t;C t w o l i n e s;D a6.右图为某城市中心广场绿地,该绿地为直角梯形,现要在绿地上开辟一个矩形区域供市民健身使用(右图中阴影部分),当截取的矩形面积最大时,矩形两边长x㊁y应为().(单位:m)A x=15,y=12;B x=12,y=15;C x=14,y=10;D x=10,y=14本题得分评卷人二、填空题(每题8分,共48分)7.如下图,将一条长为60c m的卷尺铺平后折叠,使得卷尺自身的一部分重合,然后在重合部分(阴影处)沿与卷尺边垂直的方向剪一刀,此时卷尺分为了三段,若这三段长度由短到长的比为1ʒ2ʒ3,则折痕对应的刻度有种可能.8.若b1=1-1n b2=1-1b1b3=1-1b2b2015的值为.n的代数式表示)9.观察下列各式:55=3125,56=15625,57=782015的末四位数字为10.4个小动物换座位,开始是猴㊁兔㊁猫㊁鼠分别坐在1㊁2㊁3㊁4号位置上(如右图),第一次前后排动物互换位置,第二次左右列互换座位 ,这样交替进行下去,那么第2014次互换座位后,小兔的位置对应的编号是.11.有两个不同型号的手机和与之匹配的保护盖(如右图所示)散乱地放在桌子上.若从中随机取两个,则恰好为一个手机和与之匹配的保护盖的概率为.12.如右图,抛物线y=12x2-52x与x轴交于O㊁A两点.半径为1的动圆(☉P),圆心从O点出发沿抛物线向靠近点A的方向移动;半径为2的动圆(☉Q),圆心从A点出发沿抛物线向靠近点O的方向移动.两圆同时出发,且移动速度相等,当运动到P㊁Q两点重合时同时停止运动.设点P的横坐标为t.若与相离,则t的取值范围是.本题得分评卷人三、解答题(每题12分,共36分)13.2014年双十一网上大促销又准时开幕.某网店店主计划从厂家采购高级羽绒服和时尚皮衣两种产品共20件,高级羽绒服的采购单价y 1(元/件)与采购数量x 1(件)满足y 1=-20x 1+1500(0<x 1ɤ20,x 1为整数);时尚皮衣的采购单价y 2(元/件)与采购数量x 2(件)满足y 2=-10x 2+1300(0<x 2ɤ20,x 2为整数).(1)经网店店主与厂家协商,采购高级羽绒服的数量不少于时尚皮衣数量的119,且高级羽绒服采购单价不低于1200元,问该店主共有几种进货方案?(2)该店主分别以1760元/件和1700元/件的销售单价售出高级羽绒服和时尚皮衣,且全部售完.则在(1)问的条件下,采购高级羽绒服多少件时总利润最大?并求最大利润.14.在平面直角坐标系中,一组有规律的点:A 1(0,1)㊁A 2(1,0)㊁A 3(2,1)㊁A 4(3,0)㊁A 5(4,1)㊁A 6(5,0), ,即当n 为奇数时,A n (n -1,1),n 为偶数时A n (n -1,0).抛物线C 1经过A 1㊁A 2㊁A 3三点,抛物线C 2经过A 2㊁A 3㊁A 4三点,抛物线C 3经过A 3㊁A 4㊁A 5三点,抛物线C 4经过A 4㊁A 5㊁A 6三点 抛物线C n 经过A n ㊁A n +1㊁A n +2三点.(1)直接写出抛物线C 1㊁C 4的解析式;(2)若点E (e ,f 1)㊁F (e ,f 2)分别在抛物线C 27㊁C 28上,当e =29时,求证:әA 28E F 是直角三角形;(3)若直线x =m 分别交x 轴㊁抛物线C 2013㊁C 2014于点P ㊁M ㊁N ,作直线A 2014M ㊁A 2014N ,当øP A 2014M =45ʎ时,求s i n øP A 2014N 的值.15.在某小区标准篮球场(长方形)的四个角分别有四盏足够高的灯,且灯的高度相等.当夜晚来临,四盏灯都打开时,某人在此篮球场内任一位置都有由四盏灯照射而形成的四个影子.(1)试求这4个影子长度之间的关系;(2)如果此人跳起来,这四个影子之间的关系有变化吗?请说明理由.。
人教版初三数学竞赛及答案
初中数学竞赛一、 填空题(1~5题每小题6分,6~10题每小题8分,共70分)1. 在2002当中嵌入一个数码组成五位数2002,若这五位数能被7整除,则嵌入的数码“”是________________。
【解析】 2或9 设“”中数字为a ,那么五位数2002的数值为210000100220002100a a ⨯+⨯+=+⨯,因为2002除以7的余数为3,所以,要使得五位数2002能被7整除,那么100a ⨯除以7的余数必须为4,而0,100,200,300,,900中,被7除余数为4的只有200和900,即2a =或者9,所以,嵌入的数码“”是2或92. 若实数a 满足32a a a <<,则不等式1x a ax +>-解为_____________。
【解析】 11ax a-<+ 已知32a a a <<,即232(1)0(1)0a a a a a a a a ⎧-=-<⎪⎨-=-<⎪⎩ (1) 如果0a >,上不等式组等价于201010a a a ⎧>⎪-<⎨⎪-<⎩即,0111a a a >⎧⎪>⎨⎪-<<⎩,这是一个矛盾不等式组,所以这种情况应舍去。
(2) 如果0a <,上不等式组等价于201010a a a ⎧<⎪->⎨⎪->⎩,即0111a a a a <⎧⎪<⎨⎪<->⎩或者,解得1a <-,此时,不等式1x a ax +>-等价于(1)1a x a +>-,因为1a <-,即10a +<,那么(1)1a x a +>-等价于11a x a -<+,所以,原不等式的解为11ax a-<+。
3. 如图,一张矩形纸片沿BC 折叠,顶点A 落在点'A 处,第二次过'A 再折叠,使折痕DE BC 若2AB =.3AC =,则梯形BDEC 的面积为______________。
两期平均数增长率公式推导_整理第七届学用杯全国数学知识应用竞赛
第七届学用杯全国数学知识应用竞赛整理表姓名:职业工种:申请级别:受理机构:填报日期:第七届“学用杯”全国数学知识应用竞赛九年级初赛(B)卷试题一、选择题(每小题6分,共30分)1.北京奥运会金牌创造性地将白玉圆环嵌在其中(如图1),这一设计不仅是对获胜者的礼赞,也形象地诠释了中华民族自古以来以“玉”比“德”的价值观.若白玉圆环面积与整个金牌面积的比值为k,则下列各数与k最接近的是()A.B.C.D.2.图2是由线和小棒吊挂4个小球,其中3个小球质量相同,1个是特殊的;图中的数字表示小棒的端点到支点的长度(即物理学中的力臂);假若小棒和线的重量均忽略不计;现在整个装置处于平衡,那么此特殊球应是()3.用同样大小的正方形瓷砖铺一块正方形地面,两条对角线铺黑色的,其它地方铺白色的(如图3).铺满这块地面一共用了白色瓷砖484块,那么黑色瓷砖共用()A.45块B.48块C.22块D.23块4.在“仓库世家”游戏中,游戏规则为“只要将所有木箱归位,便可过关,♀可以左右上下转身,♀推动木箱只可前进,无法后拉,按8、2、4、6可上、下、左、右移动.(△代表木箱,☆代表木箱应到的目的地,□代表空地,■代表墙壁,移动一次只动一个格)其中某一关是如图4(1),设计移动方案可以为:♀→4→8→2→6→6→6.图4(2)为又一关,则移动方案可以为:♀→()A.482666886884222B.482884666884222C.482884884666222D.2226668848844825.同学们都见过并玩过呼拉圈吧!我们把呼拉圈看作一个圆,现在某人在正常运动中,呼拉圈总是在一个水平面内沿人的腰部滚动(人的腰部近似看成一个圆,如图5).现设某人的腰围是70cm(转呼拉圈处),呼拉圈的直径为140cm.那么,当呼拉圈沿此人的腰部滚动100周时,呼拉圈自转的圈数约为()A.48B.72C.84D.98二、填空题(每小题6分,共30分)6.如图6,四边形ABCD为某一住宅区的平面示意图,其周长为800m,为了美化环境,计划在住宅区周围5m内(虚线以内,四边形ABCD之外)作为绿化带,则绿化带的面积为.7.芳芳和明明要玩一个游戏:两人轮流在一个正方形硬纸上放同样大小的硬币,规则是:每人每次只能放一枚,让硬币平躺在桌面上,任何两枚硬币不能重合.谁放完最后一枚,使得对方再也找不到空地放下一枚硬币的时候,谁就赢了.如果芳芳走第一步,她应该放在哪里才可能稳操胜券?请说明你的理由..8.在计算机屏幕上,相继出现了类似无锡“大阿福”式样(一种玩具,古时候就很有名气)的6副面孔.图7是它们依次出现的先后顺序.这些面孔的出现是按照一种简单而确定的逻辑得来的.那么,根据这6副面孔可以推测第7副面孔应是.(画出草图)9.李大伯第一次种植大棚菜,在塑料大棚内密植了100棵黄瓜秧,收获时,每棵黄瓜秧平均只收获2千克黄瓜,听说邻居每棵黄瓜秧可收获近5千克黄瓜,他便向县农业技术员请教,农业技术员查看了情况后说:种植太密,不通风,并告诉他如何改进.已知每少栽一棵秧苗,一棵黄瓜秧平均可多收0.1千克黄瓜,那么请你帮李伯伯计算减少棵黄瓜收获最多,最多收获千克.10.西清公园的喷水池边上有半圆形的石头(半径为1.68m)作为装饰(如图8),其中一块石头正对前方6m处的彩灯,某一时刻,该灯柱落在此半圆形石头上的影长为56πcm.如果同一时刻,一直立70cm的杆子的影长为1.8m,则灯柱的高为(精确到0.01m).三、解答题(第11、12、13题各15分,第14题20分,第15题25分,共90分)11.实践应用:台风“圣帕”所带来的强降水造成了许多地方洪水泛滥成灾,田地被冲毁十分严重,几户承包者的田地都被冲成了一片,灾后他们必须按原来的面积进行重新勘测划分,其中有张老汉家的一块,他已不知道原来那一块的面积是多少,几经回忆才想起原来那块地的形状是一个直角梯形,直角腰的两端恰好又各有一块大石头,另一腰的中点处有一棵大树.大家一看,两块大石头A、B及大树P还在(如图9所示),请问,如何知道张老汉原来那块地的面积?写出你的测量方案,并用字母表示相关的数据后计算出面积.12.实验探究:同学们,你注意过烟盒里的香烟是如何摆放的吗?已知,一个烟盒的长为56mm,宽为22mm,高为87mm,一根烟的直径是8mm,若把20根香烟摆放在烟盒中,请你探究合理的摆放方法.13.信息处理:某市在全面建设小康社会的25项指标中,有16项完成了序时进度,其中10项已达到小康指标值.根据所给的数据和图表,完成下列各题:(1)该市居民家庭年收入以及人均住房建筑面积的一项调查情况如图10(1)和图10(2),从图10(1)中可以得出:家庭收入的众数为美元;家庭收入的平均数为美元.小康指标规定:城镇、农村居民人均住房建筑面积应分别在35m2和40m2以上.观察图10(2),从2002年到2004年城镇、农村人均住房建筑面积的年平均增长率分别为.(2)若人均住房建筑面积的年平均增长率不变,那么到2007年城镇居民人均住房建筑面积能否达到小康指标值?请说明理由.14.猜想归纳:为了建设经济型节约型社会,“先锋”材料厂把一批三角形废料重新利用,因此工人师傅需要把它们截成不同大小的正方形铁片.(1)如图11①,若截取△ABC的内接正方形DEFG,请你求出此正方形的边长;(2)如图11②,若在△ABC内并排截取两个相同的正方形(它们组成的矩形内接于△ABC),请你求此正方形的边长;(3)如图11③,若在△ABC内并排截取三个相同的正方形(它们组成的矩形内接于△ABC),请你求此正方形的边长;(4)猜想:如图11④,假设在△ABC内并排截取n个相同的正方形,使它们组成的矩形内接于△ABC,则此正方形的边长是多少?(已知:AC=40,BC=30,∠C=90°)15.方案设计:“春江花月”生活区有一块长36米、宽26米的矩形场地,欲建成一个供居民休闲的小花园.计划在正中央建一个半径为3米的喷水池,其余部分面积的一半进行绿化,现生活区向居民征集设计方案,如果你是小区的居民,请你至少给出两种设计方案(要求美观大方,标出有关数据,并解释其可行性).第七届“学用杯”全国数学知识应用竞赛九年级初赛(B)卷试参考答案一、1.B2.D3.A4.A5.C二、6.25π+4 000(m)7.芳芳的第一步应放正方形硬纸板的中心位置.这时,明明放一枚硬币,芳芳总可以在硬纸板上放一枚硬币,使它与明明的硬币关于中心对称,直到明明无处可放,芳芳就赢了.8.如图1.9.40,36010.4.11m三、11.解:量出AB的长,记为a米,过点P作AB的垂线PQ,并量出它的长,记为b米,则张老汉原来那块地的面积为ab平方米.理由是:设原来那块地为直角梯形ABCD(如图2),其中AD∥BC,P是DC的中点,因为PQ ⊥AB,AD、BC也都垂直于AB,所以AD∥PQ∥BC,作DE⊥PQ于E,PF⊥BC于F.则四边形AQED、BFPQ都是矩形,所以AQ=DE,BQ=PF.又PD=PC,所以易知△DEP≌△PFC,所以DE=PF,从而AQ=BQ,所以PQ是梯形ABCD的中位线,所以梯形ABCD的面积为ab.12.解:(1)若并列摆放,如图3①,因为烟的直径为8mm,所以AD方向上能并排放(根)烟,而在AB方向上,因为8×3=24>22,所以只能放两根,即烟盒只能放2×7=14(根)烟,此法不行.(2)若错位摆放,如图3②,连接、、,则=8mm,△为等腰三角形,过作,则E是的中点.7(mm).所以在Rt△中,(mm).故排列后中排所需空间长度(mm),三排所需宽度为AB=22mm,故此摆放符合要求.13.解:(1)2 400;2 080;0.2和0.4;(2)能达到小康指标.理由如下:因为城镇人均住房建筑面积的年增长率为0.2,所以有,故到2007年城镇人均住房建筑面积能达到小康指标.14.解:(1)在图4①中作△ABC的高CN交GF于M,在Rt△ABC中,∵AC=40,BC=30,∴AB=50,CN=24.由GF∥AB,得△CGF∽△CAB,∴.设正方形的边长为x,则,解得.即正方形的边长为.(2)方法同(1),如图4②.△CGF∽△CAB,则.设小正方形的边长为x,则,解得.即小正方形的边长为.(3)同(1)、(2)可得小正方形的边长为.(4)每个小正方形的边长为.15.本题答案不惟一,现给出两种方案.方案一:如图5①,设计一个矩形绿化带,使绿化带四周的小路宽度都相等.设小路宽度为x米,则矩形的长为(36-2x)米,宽为(26-2x)米,从而有:(36-2x)(26-2x)-9=(36×26-9),整理得,4x-124x+468-4.5=0,解得,x≈26.7>26米(不合题意,舍去),x≈4.2米.所以图中小路宽4.2米.方案二:如图5②,在矩形场地的四个角分别设计四个相同的四分之一圆形绿化区.设四分之一圆形绿化区的半径为r米,则πr=(36×26-9π),r≈12(米).12+12<26,所以符合题意.注:本题为开放题,答案不惟一,只要合理、正确即可得分,给出一种方案得一半分,每多一种方案可加5分.全国2010年1月高等教育自学考试财务报表分析(一)试题课程代码:00161一、单项选择题(本大题共20小题,每小题1分,共20分)在每小题列出的四个备选项中只有一个选项是符合题目要求的,请将其代码填写在题后的括号内。
全国数学知识应用竞赛九年级初赛(校拟)试题卷附答案b
全国数学知识应用竞赛九年级初赛(校拟)试题卷(本卷满分150分,考试时间120分钟)一、填空题(每小题6分,共36分) 1.如图1的A 和B 是抗日战争时期敌人要塞阵地的两个“母子碉堡”,被称为“母碉堡”A 的半径是6米,“子碉堡”B 的半径是3米,两个碉堡中心的距离80AB =米.我侦察兵在安全地带P 的视线恰好与敌人的“母子碉堡”都相切,为了打击敌人,必须准确地计算出点P 到敌人两座碉堡中心的距离PA 和PB 的大小,请你利用圆的知识计算出____PA =,____PB =.2.小丽将一个边长为2a 的正方形纸片ABCD 折叠,顶点A 落到CD 边上的点M 的位置,折痕交AD 于E ,交BC 于F ,边AB 折叠后与BC 边交于点G (如图2).在折叠过程中,小丽发现当点M 在CD 边上的任意位置时,(点C D ,除外),CMG △的周长总是相等的,那么CMG △的周长为.3.国际蔬菜科技博览会开幕,学校将组织360名师生乘车参观.某客车出租公司有两种客车可供选择:甲种客车每辆40个座位,租金400元;乙种客车每辆50个座位,租金480元,则租用该公司客车最小需付租金 元. 4.光明路新华书店为了提倡人们“多读书,读好书”,每年都要开展分年级免费赠书活动,今年获得免费赠书的前提是:顺利通过书店前的A B C ,,三个房间(在每个房间内都有一道题,若能在规定的时间内顺利答对这三道题,就可免费得到赠书),同学们你们想参加吗?快快行动吧!(请把答案写在每间房所提供的答题卡上A图1ABCD E F GM图2B 房间答题卡: ;C 房间答题卡: .5.某校数学课外活动探究小组,在教师的引导下,对“函数(00)ky x x k x=+>>,的性质”作了如下探究:因为222k y x x =+=-+=+,所以当0x >,0k >时,函数ky x x=+有最小值=x =借助上述性质:我们可以解决下面的问题:某工厂要建造一个长方体无盖污水处理池,其容积为34800m ,深为3m ,如果池底每平方米的造价为150元,池壁每平方米的造价为120元,问怎样设计水池能使总造价最低,最低总造价为 元. 6.某公司员工分别住在A B C ,,三个住宅区,A 区有30人,B 区有15人,C 区有10人,三个区在一条直线上,位置如图3所示.公司的接送车打算在A 区,B 区,C 区中只设一个停靠点,要使所有员工步行到停靠点的路程总和最小,那么停靠点的位置应在 .7.如图是一个圆形的街心花园,A B C ,,是圆周上的三个娱乐点,且A B C ,,三等分圆周,街心花园内除了沿圆周的一条主要道路外还有经过圆心的沿 AOB , BOC ,AOC 三条道路,一天早晨,有甲、乙两位晨练者同时从A 点出发,其中甲沿着圆走回原处A ,乙沿着 AOB , BOC , COA也走回原处,假设他们行走的速度相同,则下列结论正确的是( ) A.甲先回到A B.乙先回到A C.同时回到A D.无法确定8.小明很喜欢打篮球,他是班里篮球队的主力队员,恰好这个星期他所在的九年级十个班要进行篮球比赛,比赛是每五个队进行单循环比赛,得分规则如下表,小组赛后总积分最高的两个队可以参加半决赛,若总积分相同还要按下一步的规则排序.现在小明若想直接进入半决赛,问小明所在的队至少要积( ) A.9分 B.10分 C.11分 D.12分A 区 区图3ABCOm图49.如图5,A B C ,,是固定在桌子上的三根立柱,其中A 柱上穿有三个大小不同的圆片,下面的直径总比上面的大,现想将这三个圆片移动到B 柱上,要求每次只能移动一片(叫移动一次),被移动的圆片只能放入A B C ,,三个柱之一,且较大的圆片不能叠在小圆片的上面,那么完成这件事至少要移动圆片的次数是( )A.6 B.7 C.8 D.910.有红、黄、绿三块面积均为220cm 的正方形纸片,放在一个底面是正方形的盒子内,它们之间互相叠合(如图6),已知露在外面的部分中,红色纸片面积是220cm ,黄色纸片面积是214cm ,绿色纸片面积是210cm ,那么正方形盒子的底面积是( ) A.2256cm 5B.254cmC.248cmD.2246cm 511.小明玩套圈游戏,套中小鸡一次得9分,套中小猴一次得5分,套中小狗一次得2分,小明共套10次,每次都套中了,每个小玩具都至少套中一次,小明套10次得61分,则小鸡被套中( ) A.2次 B.3次 C.4次 D.5次12.如图7,在边长是20m 的正方形池塘周围是草地,池塘边A B C D ,,,处各有一棵树,且4AB BC CD ===m ,现用长5m 的绳子将一头牛拴在一棵树上,为了使牛在草地上活动区域的面积最大,应将绳子拴在( )B 处或D 处D.D 处三、解答题(本大题共3个小题,满分38分) 13.(本题12分)阳光中学全体学生都办理了一种“学生团体住院医疗保险”,保险公司按(注:在被保险期间,被保险人按上述标准累计自付金额超过6 000元的部分,保险公司按A B 图5 图6图7100%的标准给付)现在,该中学的学生李明因病住院,除去保险公司给付的“住院医疗保险金”外,李明的家人又支付了医疗费用3 000元.请问保险公司为李明支付了多少保险金?14.(本题12分)轻纺城服装批发市场经营季节性服装,当季节即将来临时,服装价格呈上升趋势.设某种服装开始时预定价为每件10元,从第一周上市开始每周(7天)涨价2元,从第5周开始保持20元的价格平稳销售;在季节即将过去时,从第11周开始,服装批发市场开始削价,平均每周削价2元,直到16周周末后,该服装已不再销售.(1)试建立价格y与周次x之间的函数关系;(2)若此服装每件进价Q与周次x之间的关系为:2=--+且是整数≤≤,,试问该服装第几周每件销售利润M最Q x x x0.125(8)12(016)大?∠的内部有一15.(本题14分)如图8,某房地产开发公司购得一块三角形地块,在靠近B千年的古樟树要加以保护,市政府规定要过P点划一三角形的保护区,你怎样划这条线才△的面积最小?为什么?能使被划去的BDEC图8四、开放题(本大题满分40分) 16.(本题20分)在生活中不难发现这样的例子:三个量a b ,和c 之间存在着数量关系a bc =.例如:长方形面积=长×宽,匀速运动的路程=速度×时间. (1)如果三个量ab ,和c 之间有着数量关系a bc =,那么: ①当0a =时,必须且只须 ;②当b (或c )为非零定值时,a 与c (或b )之间成 函数关系;③当(0)a a ≠为定值时,b 与c 之间成 函数关系.(2)请你编一道有实际意义的应用性问题,解题所列的方程符合数量关系:ab x x c=-,(其中x 为未知数,a b c ,,为已知数,不必解方程). 17.(本题20分)金字塔是古代世界著名的奇迹之一,矗立在尼罗河西岸的70多座金字塔,每年都吸引着来自世界各地的游客,流连在金字塔下,抬眼望去,几十层楼高的塔像柄巨剑直刺云天,显得气势非凡.此刻,游人心里很自然地会想:金字塔究竟有多高呢?假设你是一位游人,如何测量金字塔的高度呢?写出你的测量方案,并说明理由(注意:至少提供两种测量方案,并且,你的方案一定要切实可行).九年级初赛试题卷参考答案一、填空题(每小题6分,共36分)1.160米,80米 2.4a 3.3 520元 4.A :105︒或15︒;B :C :15︒或75︒ 5.297 600 6.A 区二、选择题(每小题6分,共36分) 7~12.CBBAD B三、解答题(13题12分,14题12分,15题14分,满分38分) 13.解:当住院医疗费为7 000元时,被保险人应支付:1000(155)3000(160)3000(170)2550⨯-+⨯-+⨯-= % % % (元).由于李明家支付费用30002550>元元 ,所以李明住院的医疗费用在7 000元至10 000元之间(即第4级别). ···················· 5分 所以超过7 000元部分的医疗费为:(30002550)(180)2250-÷-= % 元. 所以保险公司为李明给付的保险费应为:7000225030006250+-= 元. ···· 11分 答:保险公司要再为李明给付保险金6 250元(付给医院). ···································· 12分 14.解:(1)根据价格的“上升”、“平稳”、“削价”,建立分段函数.102(05)120(510)3402(1016)5x x x y x x x x x +⎧⎪=⎨⎪-⎩且是整数且是整数且是整数分分分≤≤,…………≤≤,………≤≤,………(2)每件利润=每件售价-每件进价,即M y Q =-,所以当05x ≤≤时,221020.125(8)120.1256M x x x ⎡⎤=+---+=+⎣⎦. 所以当5x =时,M 取最大值9.125元. ···································································· 7分 当510x ≤≤时,20.125216M x x =-+.所以当5x =时,M 取最大值9.125元. ···································································· 9分 当1016x ≤≤时,20.125436M x x =-+.所以当10x =时,M 取最大值8.5元. ······································································ 11分以上x 的取值均为整数,因此,该服装第5周每件销售利润M 最大. ···················· 12分 15.过P 作直线DE AB ∥,交BC 于D ,交AC 于E ,在BC 上取点F ,使DF BD =,延长FP 交AB 于点G ,则BFG △的面积最小.······················································ 6分 证明:若过P 任作一直线,交BC 于M ,交AB 于N , 过G 作GK BC ∥,交MN 于K . ············································································· 8分 由DP AB ∥,BD DF =知:DP 是BFG △的中位线,得PG PF =. 进而可得MPF KPG △△≌. ···················································································· 12分NPG MPF S S >△△,所以BMN BFG S S >△△. ··································································· 14分四、开放题(每小题20分,共40分) 16.(1)①b 或c 中有一个为零;②正比例;③反比例.(每空2分,共6分) (2)答案不惟一. 评分标准:(满分共计14分) ①编写题目符合实际(5分);②解题所列方程符合所要求的数量关系(7分);C③题目新颖、有创新意义(2分). 17.方案一:应用相似三角形知识如图1所示:在距离金字塔一定距离的D F ,两点,分别竖立两个竿CD 和EF (长度都为h ),当人分别站在M N ,两点时能保证A C A E ,,,分别在一条直线上测出MN F N MD ,,的距离,则塔高即可得到(其中人的高度忽略不计). 理由如下: ····················································································································· 6分从图中易知:MCD MAB △△Rt ∽Rt ,NEF NAB △△Rt ∽Rt . ······················ 7分 可得AB MBCD MD =,即AB MD MB CD = .①···························································· 8分 AB NBEF FN=,即AB FN NB EF = .② ····································································· 9分 ②-①得()()AB FN MD NB MB CD -=- . 又知MN NB MB =-,可得MN CDAB FN MD=- .因为CD 已知,MN FN MD ,,均可测出,所以AB 的高度可以计算得出. ········································································ 10分方案二:应用解直角三角形知识 如图2所示,在平面内取C D ,两点,使B C D ,,三点在同一条直线上,用测角器在C D ,两点分别测得塔顶A 的仰角为αβ,,再测量出CD 间的距离,则塔高可求得(测角器的高度忽略不计). ··············································································································· 6分 理由如下:在ACB △Rt 和ADB △Rt 中,cot CB AB α= ,cot DB AB β= . ········································································· 7分 因为CB DB CD -=,所以cot cot AB AB CD αβ-= . ············································································· 8分 所以cot cot CDAB αβ=-.因为CD ,αβ,都可以测出,所以塔高AB 可求得. ·············································· 10分 (方案设计合理,正确可酌情给分)ABC D EM 图1AD 图2αβ。
数学知识应用竞赛九年级决赛(校拟)试题附答案
全国数学知识应用竞赛九年级决赛(校拟)试题一、(本题20分)判断与决赛利群商店积压了100件某种商品,为使这批商品尽快脱手,该商店采用了如下的销售方案:先将价格提高到原来售价的2.5倍,再作三次降价处理,第一次降价30%,标出“亏本价”;第二次又降价30%,标出“破产价”;第三次再降价30%,标出“跳楼价”.三次降价销售结果如下表所示:(1)如果一名消费者以促销的三种价格各买了一件该商品,请你通过计算说明相对于原售价,该消费者在促销活动中是否得到了实惠?(2)按新销售方案全部售完该商品,与按原价全部售完该商品相比,哪一种方案商场更赢利?(3)请结合(1),(2)的计算结果谈谈你对本销售方式的看法. 二、(本题20分)操作与探究九年级(1)班为即将到来的“五·一”国际劳动节排练节目时需要3个底面圆半径为10厘米,母线长为20厘米的圆锥形小红帽(不计接缝损失).(1)试确定这种圆锥形小红帽侧面展开图(扇形)的圆心角的度数; (2)现有宽为40厘米的矩形布料可供选用,按照题目要求在图1中画出使布料能充分利用(最省料)的示意图,并求出矩形布料的长至少为多少厘米. 三、(本题20分)图象与信息在对口扶贫活动中,企业甲将经营状况良好的某消费品专卖店,以5.8万元的优惠价转让给了尚有5万元无息贷款还没有偿还的小型残疾人企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支3600元后,逐步偿还转让费(不计利息).从企业甲提供的相关资料中可知这种消费品的进价是每件14元;月销售量Q (百件)与销售单价P (元)的关系如图2所示;维持企业的正常运转每月需最低生活费外的各种开支2000元. (1)试确定月销售量Q (百件)与销售单价P (元)之间的函数关系式.(2)当商品的销售单价为多少元时,扣除职工最低生活费后的月利润余额最大? (3)企业乙依靠该店,最早可望在几年内脱贫?四、(本题20分)综合实践应用图3是王老师休假钓鱼时的一张照片,鱼杆前部分近似呈抛物线的形状,后部分呈直线形.已知抛物线上关于对称轴对称的两点B C ,之间的距离为2米,顶点O 离水面的高度为图1)图2223米,人握的鱼杆底端D 离水面113米,离拐点C 的水平距离1米,且仰角为45︒,建立如图4所示的平面直角坐标系.(1)试根据上述信息确定抛物线BOC 和CD 所在直线的函数表达式;(2)当继续向上拉鱼使其刚好露出水面时,钓杆的倾斜角增大了15︒,直线部分的长度变成了1米(即ED 长为1米),顶点向上增高23米,且右移12米(即顶点变为F ),假设钓鱼线与人手(点D )的水平距离为124米,那么钓鱼线的长度为多少米?五、(本题30分)材料作文材料一:亲爱的同学们,你一定见过娱乐明星漫画吧!你能看出右边的歌星是谁吗?张学友!不错!尽管画得很夸张,但我们仍然一眼就能看出.这是因为虽然画像是夸张的、变形的,但画中人物的“特征不变量”在漫画中明显地表现出来了.我们在解决某些数学问题时,也应学会抓不变量,利用不变量解决问题.比如:将9个数字1,2,3,4,5,6,7,8,9任意排列,组成的所有九位数中,质数的个数是多少?显然我们不可能将所有九位数一一列举,再一一验证.如果注意到这九个数字的和是45,能被3整除,因而所有的九位数都是3的倍数,问题就迎刃而解了:所有这些九位数中,质数个数为0.材料一:一年一度的春节联欢晚会不仅仅是老百姓不可缺少的“年夜饭”,也成了企业展示自己的大舞台———前仆后继,只为争得在“春晚”上露个脸.据了解,直接在春节联欢晚会前后播出的套装广告时间为10分钟,加上晚会上两次报时广告,时长各十秒.这样算来“春晚”广告时长总共为620秒.620秒的广告费价值多少呢?请看下面提供的资料:春晚广告四种主要形式报时广告:966万央视春晚在20时和零时分别有时段报时.20点与零点两个报时广告的起价分别为539万元与966万元.贺电广告:1000万 在春晚进行当中,主持人会以刚刚收到贺电的形式告诉观众××单位给观众拜年,祝愿新年快乐.贺电是央视赠送给投放额度在1000万元以上的企业的. 字幕广告:500万图3图4春晚结束之际,电视上会出现一些央视的鸣谢单位,而这些单位就是投放央视广告额超过500万元或购得晚会片尾鸣谢字幕的企业. 冠名广告:4508万“2006年我最喜爱的春节晚会节目评选”独家冠名,被杭州民生药业以4508万元夺取. 阅读以上材料,你有什么体会?是否觉得生活与数学有很强的互融性?请结合你的学习、生活实际,写一篇数学小短文,字数控制在600字以内. 六、(本题40分)数学作文从下列题目中任选其一,联系相关知识及现实生活,写一篇数学作文,字数控制在1000字左右.1.一堂有趣的数学活动课 2.我说统计 3.游戏与数学4.我在生活中用数学 5.我与学用杯竞赛6.数字0是数学中的一个极为重要的角色,它活泼、机灵、神通广大,但又“调皮”、“桀骜不训”.如果能充分理解、把握它的脾气和秉性,它能帮你排忧解难,否则,它也会使你误入歧途,吃尽苦头,甚至碰得“头破血流”.我国著名数学家、数学教育家傅种孙先生说过,要想学好数学,就要“问道于零”.请自拟题目,谈谈你对这段话的理解.九年级决赛试题参考答案一、解:(1)设原价为x 元,则在促销活动中该消费者各买一件商品共花费32.50.7 2.50.70.7 2.50.7 3.8325x x x x ⨯+⨯⨯+⨯=(元). ············································ 3分而按原价购买三件该商品需3x 元. ······················································································ 6分 所以该消费者在此次促销活动中没有得到实惠. ································································· 8分 (2)按原价出售时,销售金额为100x . ·········································································· 10分 按促销价出售时,销售金额为:32.50.710 2.50.70.740 2.50.750109.375x x x x ⨯⨯+⨯⨯⨯+⨯⨯=. ··························· 13分因为109.375100x x >,所以新销售方案商场更赢利. ···················································· 15分 (3)视解答情况给0~5分.二、解:(1)设圆心角的度数为n,则20210180n π⨯=π⨯. ··············································································································· 3分 所以180n =.所以此圆锥形小红帽侧面展开图的圆心角度数为180. ··························· 5分(2)因为扇形的圆心角为180,圆锥母线长为20厘米,所以这个扇形的半径为20厘米的半圆.如图1所示,当三个半圆所在圆两两外切,且半圆的直径与长方形的边垂直时,能使布料得以充分利用. ············································································································· 10分如图2,连接12O O ,23O O ,31O O .因为1O ,2O ,3O 两两外切,12320AO BO CO ===, 所以1223311340OO O O O O O A CO ===+=. 过点3O 作312O E O O ⊥,垂足为E . 因为2313O O O O =, 所以12121202O E O E O O ===. 在13O EO △中,1390O EO = ∠,根据勾股定理3EO === ········································ 15分因为四边形ABCD 是矩形,所以AD BC ∥,AD BC =,90A D ==∠∠. 因为12AO BO =,12AO BO ∥, 所以四边形21ABO O 是矩形.所以1290AOO =∠.所以13O E DO ∥. 又因为13O E DO =,所以四边形13O EO D 是平行四边形. 所以31EO O D =.所以1120AD AO O D =+=+ ··············································································· 20分图1图223因此矩形布料的长至少应为(20+厘米.三、(1)由图象可知,月销售量Q (百件)与销售单价P (元)是一次函数关系, 设Q Px b =+, ······················································································································ 2分 则有1020P b =+,530P b =+. ······················································································ 4分解得1202P b =-=.所以1202Q x =-+. ······································································· 6分 (2)设月利润为W ,则有100(14)(20003600)W Q x =--+ ··················································································· 10分110020(14)(20003600)2x x ⎛⎫=-+--+ ⎪⎝⎭250270033600x x =-+-250(54729)2850x x =--++ 250(27)2850x =--+.所以当销售单价为27元时,月利润最大为2850元. ······················································· 12分 (3)设x 年内可脱贫,由(2)知最大月利润为2850元.·············································· 14分 2850125000058000x ⨯+≥. ························································································· 16分 3.2x ≥年. ························································································································· 18分 所以,企业乙最早在4年内脱贫. ······················································································ 20分 四、解:(1)由已知,得113C ⎛⎫- ⎪⎝⎭,. 设抛物线BOC 的函数表达式为2y ax =. 则13a =-,所以213y x =-. 设直线CD 的函数表达式为y kx b =+,由C D ,点的坐标分别为113⎛⎫- ⎪⎝⎭,,1213⎛⎫- ⎪⎝⎭,得1342.3k b k b ⎧+=-⎪⎪⎨⎪+=-⎪⎩,解得1k =-,23b =. 所以23y x =-+. ················································································································ 10分(2)由已知,得3423E ⎛⎫- ⎪ ⎪⎝⎭,1223F ⎛⎫⎪⎝⎭,. ······························································· 14分 设这时抛物线的函数表达式为21223y m x ⎛⎫=-+ ⎪⎝⎭.则2312422323m ⎛⎫-+=- ⎪⎝⎭.所以2m =-.所以212223y x ⎫⎛⎫=--+⎪ ⎪⎪⎝⎭⎝⎭. ····················································································· 18分又由已知A 点的横坐标为14-,得14A ⎛- ⎝⎭.所以钓鱼线的最小长度为21296米.。
第七届“学用杯”全国数学知识应用竞赛高一年级初赛试题(A)卷
第七届“学用杯”全国数学知识应用竞赛高一年级初赛试题(A )卷温馨提示:亲爱的同学们,这份试卷将记录你的自信、沉着与智慧.愿你能够放松心情,认真审题,缜密思考,细心演算,交一份满意的答卷. 一、选择题(每小题5分,共30分)1.祥隆泰超市选用每500克28元的巧克力糖3千克,每500克20元的玉米软糖2千克,每500克12元的酥心糖5千克,混合后成杂拌糖出售,则这种杂拌糖每500克的平均售价是( ) A.18元 B.18.4元 C.19.6元 D.20元2.图1所示的是2008年北京奥运会的会徽,其中最上方的“中国印”由四个色块构成,可以用线段在不穿越其它色块的条件下将其中任意两个色块连结起来(如同架桥),如果用三条线段将这四个色块连结起来,则不同的连结方法共有( ) A.8种 B.12种 C.16种 D.20种 3.Each symbol in this table has a value .The total of these values in each row and column is written at the end of the corresponding row of column .Can you find the value of each symbol ( )A.Triangle = 4.2-,Square 11.5=,Diamond 1.8=-,Circle 6.6= B.Triangle 3.2=-,Square 10.5=,Diamond 0.8=-,Circle 5.6= C.Triangle 5.2=-,Square 12.5=,Diamond 2.8=-,Circle 7.6= D.Triangle 6.2=-,Square 12.5=,Diamond 3.8=-,Circle 8.6=4.四个小伙伴在一所古老的房子里发现了一本魔法书,书中有四个地图,并有一段文字:从地图上标圆圈的点中选择一个作为出发点,然后沿地图中的路线走,如果能走完所有路线,且所有路线没有重复,又恰能回到出发点,就可以去魔法学校学习魔法.四个小伙伴经过仔细研究发现这四个地图中只有一个能达到要求,它是( )5.一款机器狗每秒钟只能沿直线前进或后退一步,现程序设计师让机器狗按“前进3步,然后再后退2步”的程序进行移动,如果将此机器狗放在数轴的原点,面向正方向,以1步的距离为1个单位长移动,令()P n 表示第n 秒时,机器狗所在位置的坐标,如(0)0P =,则下列结论中错误的是( ) A.(2006)402P = B.(2007)403P =C.(2008)404P =D.(2009)405P =6.一出版社为该社出版的一本书制定了满足右式:***12(124)()11(2548)10(49)n n n C n n n n n n n ⎧∈⎪=∈⎨⎪∈⎩N N N ≤≤,,≤≤,,≥,的促销计划,这里n 表示定购书的数量(单位:本),()C n 是购买n 本书的支付款(单位:元),那么有几个n 的值可以出现买多于n 本书比恰好买n 本书所花的钱少( ) A.4 B.5 C.6 D.7二、填空题(每小题5分,共40分)7.学校附近的邮局仅有面值为60分,80分,1.20元的三种邮票,张立同学现有邮资为8.20元的邮件一件,为使粘贴的邮票张数最少,且资费恰为8.20元,则至少要购买 张邮票. 8.美国的高税收是世界上出名的,生活在那里的人们总在抱怨各种税收.以工薪阶层的个人所得税为例,以年收入17850美元为界,低于(含等于)这个数字的缴纳15%的个人所得税,高于17850美元的缴纳28%的个人所得税.同时,美国政府规定捐赠可以免税,即收入中捐赠部分在缴税时予以扣除,这样,收入在 内(以区间的形式填写),通过捐赠可使获得的实际收入最多.(精确到0.1美元)9.1234A A A A ,,,四位同学去购买编号分别为123410,,,,,的10种不同的书.为了节约经费和相互交流的方便,他们约定每人购买其中5种不同的书各一本,任意两位同学不能买全这10本书,任意三位同学必须买全这10本书.若1A 买的书的号码为212345A ,,,,,买的书的号码为356789A ,,,,,买的书的号码为123910,,,,时,为满足上述要求,4A 买的书的编号为.10.图2为一组函数图象,它们分别与其后所列的一个现实情境相匹配:情境A:一份30分钟前从冰箱里的冷冻室取出来的食物,先被放到微波炉里加热,最后放到餐桌上,其温度与时间的关系(将0时刻确定为食物从冰箱里被取出来的那一刻);情境B:一个1970年生产的留声机从它刚开始的售价到现在的价值与时间的关系(它被一个爱好者收藏,并且被保存得很好);情境C:从你刚开始放水洗澡,到你洗完后把水排掉这段时间浴缸里水的高度与时间的关系;情境D:一辆公交车营运一趟的利润与乘客人数的关系.,,,对应的图象分别是.其中情境A B C D11.生产中需要一段铁链,库房中只有7截每截只有五个铁环的铁链,和4截每截只有三个铁环的铁链,这十一截铁链连起来的长度正好是所需要的.若切断一个铁环和焊接一个铁环都需一分钟,将这十一截铁链连起来最少需要分钟.12.如图3,育英中学的中心广场有一个圆形花圃,其中阴影部分是各种鲜花,剩余部分为草地,整个花圃的半径为2m,那么草地的面m.积为213.在中国古代的历法中,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被称为“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫作“十二地支”.将天干和地支分别从甲、子开始按顺序搭配组合成干支,用于纪年,如“辛亥革命”中的辛亥,“戊戌变法”中的戊戌均为年份的名称.已知公元2007年是丁亥年那么下一个丁亥年是公元年,距公元2007年最近的甲子年是公元年.14.德国数学家莱布尼兹发现了下面的单位分数三角形(单位分数是分子为1,分母为正整数的分数),又称为莱布尼兹三角形:根据前5行的规律,写出第6行的数依次是.三、解答题(每小题20分,共60分)15.校读书社在课余对一部分同学进行了一次读书喜好的调查.得到的数据如下:他们当中3人喜欢在平日(非周末)看早期的杂志,14人喜欢在平日看早期的读物,21人喜欢看早期的杂志,8人喜欢在平日看杂志,31人喜欢在平日看读物,36人喜欢看早期的读物,40人喜欢看杂志,13人喜欢在周末看近期的读物,但不是杂志.请你根据这些信息,判断有多少人不喜欢看杂志和多少人喜欢在周末看读物?16.中国共产党第十七次党代会上,胡锦涛主席作的报告中明确指出要解决贫困问题.在对口脱贫活动中,为了尽快脱贫(无债务)致富,企业甲将经营状况良好的某种消费品专卖店以5.8万元的优惠价格转让给尚有5万元无息贷款没有偿还的小型残疾人企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活开支36000元后,逐步偿还转让费(不计息).在甲提供的资料中有:①这种消费品的进价每件140元;②该店月销售量Q (百件)与销售价格P (元)的关系如图4;③每月需要各种开支20000元.(1)试问为使该店至少能够维持职工生活,商品价格应控制在什么范围内?(2)当商品的价格为每件多少元时,月利润扣除职工最低生活费后的余额最大,并求出最大余额;(3)企业乙只依靠该店,最早可望在几年后脱贫? 17.为节能降耗,一研究学习小组对教室照明情况进行调查,并建立数学模型如下:教室内有40瓦日光灯16盏,每盏灯的照明强度为10I =.在保证一定照明强度的条件下,为了节能,从早上7点至下午17点,在整点时刻根据光照情况关掉一些日光灯,如果照明强度()y 与时间()t满足的关系是259010141519at bt c t y t t kt d t ⎧++⎪=∈⎨⎪+⎩N ,≤≤,, ≤≤,,, ≤≤,试确定a b c k d ,,,,,使按此关系设计的照明强度与实际相吻合.请你根据这一关系,预测早自习6点和晚自习18点教室内应亮几盏灯? 四、开放题(本题20分)18.树形图是一种美丽图形,画树形图时,可以先画树干,再画两个树枝,树枝与树干的角度是120,并且其长度是树干的12,继续在树枝上画小树枝,要求同上,不断重复上述步骤就可得到分形树.下图给出了4个分形树:设分形树级数为n ,初始树高为1,请同学们探究: (1)新的树枝的数量; (2)新的树枝的长度; (3)全部树枝的长度; (4)分形树的结构特征.第七届“学用杯”全国数学知识应用竞赛高一年级初赛试题(A )卷参考答案一、选择题(每小题5分,共30分) 1.B 2.C 3.A 4.A 5.D 6.C 提示: 1.28322022125218.4322252⨯⨯+⨯⨯+⨯⨯=⨯+⨯+⨯.2.对四个包块分别标上①②③④,则连结方式有“线形”(如①—②—③—④等)和“星形”(如等),其中“线形”有12种,“星形”有4种,共16种.3.Triangle 简记为T ,Square 简记为S ,Diamond 简记为D ,Circle 简记为C ,则330.323.727.2315.6T S T S D T D C T C +=⎧⎪++=⎪⎨++=⎪⎪+=⎩,,,.解得 4.211.51.86.6T S D C =-⎧⎪=⎪⎨=-⎪⎪=⎩,,,.5.由题意知此机器狗从0秒开始每间隔5秒前进1步,∴2005(2005)4015P ==. ∴(2006)402(2007)403(2008)404(2009)403P P P P ====,,,.6.由于C (n )在各段上都是单调递增函数,因此在每一段上不存在买多于n 本书比恰好买n 本书所花的钱少的情况,一定是在各段分界点附近因单价的差别造成买多于n 本书比恰好买n 本书所花的钱少的现象.∵C (25)=11×25=275,C (23)=12×23=276, ∴C (25)<C (23); ∵C (24)=12×24=288, ∴C (25)<C (24);∵C (49)=49×10=490,C (48)=11×48=528, ∴C (49)<C (48);∵C (47)=11×47=517,∴C (49)<C (47); ∵C (46)=11×46=506,∴C (49)<C (46); ∵C (45)=11×45=495,∴C (49)<C (45). ∴这样的n 有23,24,45,46,47,48. 二、填空题(每小题5分,共40分) 7. 88. (17851,21072.9] 9. 4,6,7,8,10 10.①③④② 11.1612. 2π4- 13. 2067,1984 14.16,130,160,160,130,16提示:7.设三种面值的邮票分别需要x ,y ,z 张(x ,y ,z ∈Z ),由题意知681282x y z ++=,要使()x y z ++最小,则需使z 最大,并且保证x ,y 是整数,∴min ()8x y z ++=.8.由(128%)(115%)17850x -=-,可得21072.9x =.故收入在(17851,21072.9] 时,通过捐赠可使获得的实际收入最多.11.欲用时最少,断开的铁环最少即可.只需将一截五个铁环的铁链全部断开和一截三个铁环的铁链全部断开即可,共16分钟. 12.2221π24π122π42⨯-⨯⨯⨯-=-. 13.按此排法,当天干10个符号排了六轮与地支12个符号排了五轮以后,可构成60干支.继续排下去又将恢复原状,故下一个丁亥年是公元2067年.若计甲子为1号干支的话则丁亥为24号干支,故距公元2007年最近的甲子年是2007231984-=年. 14.由单位分数三角形可以发现111623=-,1111234=-,11112612=-,1112045=-,111301220=-,…,故第6行的数依次是16,130,160,160,130,16. 三、解答题(每小题20分,共60分)15.解:设M 为被调查的同学的集合,A 为喜欢看杂志的同学的集合,B 为喜欢看早期读物的同学的集合,C 为喜欢周末看读物的同学的集合, ·························································· (5分) 用韦恩(V enn )图表示上述集合,将集合A 涂上阴影,将集合B 涂上阴影,将集合C 涂上阴影,将集合M 涂上. ········································ (8分)根据题中调查数据可得下图,············································································ (15分)由上图得到:不喜欢看杂志的人数为121341140+++=;喜欢在周末看读物的人数为141841349+++=. ································································································ (20分) 16.解:(1)设该店月利润余额为L ,则由题设,得(140)1003600020000L Q P =-⨯--,① ································································ (2分)由销售图,易得:150(140200)5340(200260)20P P Q P P ⎧-+⎪⎪=⎨⎪-+<⎪⎩≤≤,≤. ············································································· (5分)代入①式得,150(140)10056000(140200)5340(140)10056000(200260)20P P P L P P P ⎧⎛⎫-+-⨯- ⎪⎪⎪⎝⎭=⎨⎛⎫⎪-+-⨯-< ⎪⎪⎝⎭⎩≤≤≤. ································ (7分) (1)当140200P ≤≤时,由0L ≥,得180200P ≤≤,当200260P <≤时,由0L ≥,得200220P <≤. ···································································································· (10分) 故商品销售价格在180220P ≤≤范围内时,可以维持职工生活.························ (12分) (2)180200P ≤≤时,4500L =最大(元),这时195P =元,当200220P ≤≤时,4166.7L 最大≈(元),此时P ≈203.3元. ································································ (13分) 故当195P =元时,月利润余额最大,为4500元. ·················································· (15分) (3)设可在n 年内脱贫,依题意,得12450050000580000n ⨯--≥, 解得2n ≥.················································································································· (18分) 故最早可望在2年后脱贫. ························································································· (20分) 17.解:根据给定的数据,代入函数表达式有100497806484081940158016a b c a b c a b c k d k d =++⎧⎪=++⎪⎪=++⎨⎪=+⎪=+⎪⎩,,,,.······································································································ (5分)解得1013032040560a b c k d =-⎧⎪=⎪⎪=-⎨⎪=⎪=-⎪⎩,,,,. ··········································································································· (10分)∴2101303205901014405601519t t t y t t t t ⎧-+-⎪=∈⎨⎪-⎩N , ≤≤,, ≤≤,, ≤≤,. ············································· (15分)故早上6点时,100y =,晚上18点时,160y =,从理论上看,早上要亮10盏灯,晚上要亮16盏灯,此模型说明与实际情形较吻合. ································································· (20分) 四、开放题(本小题20分)18.解:(1)2n; ········································································································· (5分) (2)12n ; ···················································································································· (10分) (3)n ; ······················································································································ (15分) (4)答案不唯一,只要合理有据,即可得分. ························································· (20分)。
九年级数学初赛试卷【含答案】
九年级数学初赛试卷【含答案】专业课原理概述部分一、选择题1. 若 a > 0,b < 0,则下列哪个选项正确?( )A. a + b > 0B. a b > 0C. a × b > 0D. a ÷ b > 02. 在直角坐标系中,点 P(a, b) 关于 x 轴对称的点是( )。
A. (a, -b)B. (-a, b)C. (-a, -b)D. (b, a)3. 下列哪个数是无理数?( )A. √9B. √16C. √3D. √14. 若a × b = 0,则下列哪个选项是正确的?( )A. a = 0 或 b = 0B. a = 0 且 b = 0C. a ≠ 0 且b ≠ 0D. a ≠ 0 或b ≠ 05. 若 |a| = 5,则 a 的值可能是( )。
A. 5 或 -5B. 0C. 5D. -5二、判断题1. 若 a > b,则 a c > b c。
( )2. 任何数乘以 0 都等于 0。
( )3. 两个负数相乘的结果是正数。
( )4. 在直角坐标系中,x 轴和 y 轴将平面分成四个部分,每个部分称为象限。
( )5. 若a ÷ b = c,则a = b × c。
( )三、填空题1. 若 |x| = 3,则 x 的值为______。
2. 在直角坐标系中,点 (2, -3) 关于原点对称的点是______。
3. 若a × b = 0,则 a 和 b 中至少有一个数为______。
4. 若 a > b,b > c,则 a 与 c 的大小关系为______。
5. 两个无理数的乘积可能是______。
四、简答题1. 请简述无理数的定义。
2. 请解释绝对值的概念。
3. 请简述平面直角坐标系的构成。
4. 请解释相反数的概念。
5. 请简述有理数的定义。
五、应用题1. 已知 |x 3| = 4,求 x 的值。
第四届“学用杯”全国知识应用竞赛九年级数学初赛试题(a) 人教新课标版
第四届“学用杯”全国数学知识应用竞赛 九年级初赛试题(A)卷一、填空题(每小题5分,共40分) 1.如图1,是一轴截面为等腰三角形的古塔,塔基圆直径为10米,塔共四层,每层高3米,天意广告公司欲沿塔面悬挂一幅公益广告条幅,要求条幅不能铺在地面上,也不能高于塔顶,则条幅的最大长度为 米. 2.抛掷两枚普通的正方体骰子,把两枚骰子的点数相加,若第一枚骰子的点数为1,第二枚骰子的点数为5,则是“和为6”的一种情况,我们按顺序记作(15),,如果一个游戏规定掷出“和为6”时甲方赢,掷出“和为9”时乙方赢,则这个游戏 (填“公平”、“不公平”).3.小明想知道刚来的数学老师家的电话号码是多少,老师说:“我家的电话号码是八位数,这个数的前四位数相同,后五位数是连续的自然数,全部数字之和恰好等于号码的最后两位数,动动脑筋,算出来后欢迎给我打电话.”则老师的电话号码是 .4.某船队要对下月是否出海作出决策,若出海后是好天气,可得收益5000元;若出海后天气变坏,将要损失2000元;若不出海,无论天气好坏都要承担1000元的损失费,船队队长通过上网查询下月的天气情况后,预测下月好天气的机会是60%,坏天气的机会是40%,则作出决策为 (填“出海”、“不出海”).5.为了充分利用课程资源,某校组织学生从学校出发,步行6千米到科技展览馆参观,返回时比去时每小时少走1千米,结果返回时比去时多用了半小时,则学生返回时步行的速度为 .6.我国古代算书《九章算术》中第九章第六题是:今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深葭长各几何?你读懂题意了吗?请回答水深 尺,葭长 尺.7.某公司董事会拨出总额为40万元款项作为奖励金,全部用于奖励本年度做出突出贡献的一、二、三等奖的职工,原来设定:一等奖每人5万元,二等奖每人3万元,三等奖每人2万元;后因考虑到一等奖的职工科技创新已给公司带来巨大的经济效益,现在改为:一等奖每人15万元,二等奖每人4万元,三等奖每人1万元,那么该公司本年度获得一、二、三等奖的职工共 人.8.用边长单位数大于1的一位数正方形地砖,铺一个矩形的房间,房间的长、宽单位数都是两位数,铺满而无余.已知组成以上三个数目(一位数一个,两位数两个)的五个数码,恰好是五个奇数码1,3,5,7,9,则正方形地砖的边长为 ,矩形房间的长为 ,二、选择题(每小题5分,共40分)9.操场上,王宏用一根长为a 的线围成一个等边三角形,测知这个等边三角形的面积为b ,10米图1王宏站在这个等边三角形内部,则他到等边三角形三边距离之和为( ) A.2b a B.4b a C.6b a D.视具体位置而定10.6张扑克牌正面分别是1,2,3,4,5,6,将其顺序打乱,正面朝下,在其背面分别写上1,2,3,4,5,6,则每一张牌的正、反两面的差是奇数与偶数的情况是( ) A.奇数可能性大 B.偶数可能性大 C.机会均等 D.无法判断11.活动课上,王蓓将两个同样大小的正方形方框,如图2放置可得到3个正方形,如果是5个同样大小的正方形,依照图2放置,最多得到的正方形个数为( )A.28 B.29 C.30 D.3112.为配合社区开展的“尊老爱老”活动,社区医院准备印刷一批关于老年人健康的小册子,为了方便阅读决定将原来用五号字(号数越大,字越小)排版改为用四号字排版.用五号字排版,32开本,每面为26行×26字,共105页,用四号字排版共169页,则同样开本每页排列格式可能为( )A.20行×20字 B.22行×19字 C.21行×19字 D.22行×20字13.A B C D ,,,是四个城市(如图3),它们之间(除B C ,外)都有飞机航班通行.机票价格与城市间距离成正比,已知各城市间的机票价格如下:A B ↔:1000元;A C ↔:1250元;A D ↔:800元;B D ↔:600元;C D ↔:450元.为了B C ,之间的交通方便,要在B C ,之间开通飞机航班,请按上述标准计算出B C ,之间飞机票价为( ) A.750元 B.780元 C.800元 D.900元14.魔术大师在表演魔术,他向观众出示一个盒子,内有10个小球,接着他从中任取一些小球,把每一个小球都变成8个小球,将其放回盒中,他不断地从盒中取一些小球,把每一个小球都变成8个小球后放回盒中,如此进行,到某一时刻,魔术师停止变魔术时,盒中球的总数可以是下面的( )A.2002 B.2003 C.2004 D.200515.某公园中有一个三角形荷花池,边长分别为6,8,10,现计划在荷花池上拉一座浮桥,把三角形荷花池周长、面积都平分,那么这样的设计方案有( )A.1个 B.2个 C.3个 D.4个16.为了使学生既能获得足够的营养又能保持良好的身材,艺海舞蹈学校欲为学生配制营养x y z ,,,若营养餐至少需含44000单位的维生素A及48000单位的维生素B,若考虑使成本最低,则x y z ,,的取值为( )图2 A B C D 图3A.30x =kg ,30y =kg ,40z =kgB.30x =kg ,20y =kg ,50z =kg C.20x =kg ,30y =kg ,50z =kgD.50x =kg ,20y =kg ,30z =kg三、解答题(每小题20分,共40分)17.小明和小华两位同学在做“观察水的沸腾”实验时,记录了水在不同时刻的温度值,并绘制了如图4所示的函数图象,请根据图象回答下列问题:(1)从图象可以看出小明和小华所取的水的初始温度分别是多少?在当时的条件下,水的沸点是多少?据此判断,实验时实际的大气压 (填大于、小于、或等于)1个标准大气压.(2)请分别写出小明和小华“观察水的沸腾”实验的温度12y y ,(℃)随时间x (分钟)变化的函数关系式.(3)小明做水沸腾实验的水的温度在什么时候超过小华做水沸腾实验的水的温度?(4)下列对小华“观察水的沸腾”实验图象的分析正确的是( )A.实验加热10分钟后停止加热B.沸腾温度不足100℃可能是供热不足C.AB 段水平线表明水沸腾过程吸热但不升温D.由图象可知水的实际温度与加热时间成正比18.随着人们生活水平的提高,家用汽车已渐入百姓家,某汽车集团公司顺应市场,开发了一种新型家用汽车,前期投资2000万元,每生产一辆这种新型汽车,后期其他投资还需3万元,已知每辆汽车可实现产值5万元.(1)分别求出总投资额1y (万元)和总利润2y (万元)关于新型汽车的总产量x (辆)的函数关系式;(2)当新型汽车的总产值为900辆时,该公司的盈亏情况如何?(3)请利用(1)小题中2y 与x 的函数关系式,分析该公司的盈亏情况(注:总投资=前期投资+后期其他投资,总利润=总产值-总投资).图4四、开放题(本题30分)19.若现在需要在电话中告诉你的同学如图5的图形,你将怎么说?提供两种.第四届“学用杯”全国数学知识应用竞赛九年级初赛试题(A)卷参考答案一、(每小题5分,共40分)1.13 2.不公平 3.88887654 4.出海 5.3千米/时 6.12,13 7.178.7,91,35二、(每小题5分,共40分)9.C 10.C 11.B 12.B 13.A 14.D 15.A 16.B三、(每题20分,共40分)17.(1)(5分)小明和小华所取的水的初始温度分别是70℃和80℃;98℃;小于.(2)(5分)小明实验的函数关系式为1470(07)98(7)x x y x +<⎧=⎨>⎩,,≤小华实验的函数关系式为2 1.880(010)98(10)x x y x +<⎧=⎨>⎩,.≤ (3)(5分)由12y y =>,即470 1.880x x +>+,得5011x >. 即当5011x >时,小明做水沸腾实验的水的的温度超过小华做水沸腾实验的水的温度. (4)(5分)C.18.解:(1)(5分)132000y x =+,2155(32000)22000y x y x x x =-=-+=-.(2)(5分)当总产量为900辆,即900x =时,2290020002000y =⨯-=-<.∴当总产量是900辆时,该公司会亏损,亏损额为200万元.(3)(10分)由220000x -<得1000x <,即新汽车的总产量小于1000辆时,该公司会亏损.由220000x -=,得1000x =,即汽车的总产量为1000辆时,该公司不亏损也不盈利. 由220000x ->,得1000x >,即汽车的总产量大于1000辆时,该公司会盈利.四、(30分)19.(满分30分.视方法巧妙程度、语言表达程度酌情给分)方法一:让同学画个坐标系,再依次画出以下几点(00)(90)(97)(47)(410)(010),,,,,,,,,,,,再把这些点依次相连成一个封闭4 35 7 图5图形.方法二:在平面上任画一点,从这点出发水平右画一条长为9的线段,再从刚画的线段右端点出发垂直向上画一条长为7的线段,从这线段的上端点出发水平向左画一条长为5的线段,从该线段的端点垂直向上画一条长为3的线段,从该线段的上端点水平向左画一条长为4的线段,连结该线段的左端点与一开始画的点即可.方法三:先画一个长×宽为910⨯的长方形,再在它的右上角剪去一个长×宽为53⨯的长方形,剩下的图形就是.。
第七届学用杯全国数学知识应用竞赛
第七届“学用杯”全国数学知识应用竞赛高一年级初赛(B 卷)试题一、选择题(每小题6分,共24分)1.“孤立”一词在《现代汉语词典》中解释为:同其他事物不相联系.你听说过“孤立元素”吗?如对于整数集A ,当x A ∈时,若有1x A -∉,且1x A +∉,则称x 为A 的一个“孤立元素”.已知集合{}01234S =,,,,,A 是S 的一个子集,那么所含元素全是“孤立元素”的S 的子集A 有( )A.0个 B.5个 C.12个 D.25个2.在一次科普讲座中,如果到会的只有有限个人,若每人进入会场时交给主讲人1元钱,讲座结束后,每人离开会场时拿走1元钱,结果主讲人一分钱也没有得到;如果到会的有无限个人,仍然是每人进入会场时交给主讲人1元钱,主讲人从收到的钱中拿出1万元,讲座结束后,每人离开会场时拿走1元钱,这样可以无限进行下去,最终主讲人赚到了1万元.上述情景我们可以用集合语言表述一下:设集合A 是这无限个人的集合,用{1,2,3,…}表示,集合B 是从这无限个1元钱中,拿出1万个1元钱后,剩余1元钱的集合,用{10001,10002,10003,…}表示,则( )A.集合A 的元素个数比集合B 的多B.集合A 与B 的元素个数无法比较C.集合A 与B 的元素个数相等,因为可以建立一种对应:D.集合A 的元素个数比集合B 的多10000个3.美是一种感觉,本应没有什么客观的标准,但在自然界里,物体形状的比例却提供了在匀称与协调上的一种美感的参考,在数学上,这个比例称为黄金分割.在人体躯干(由脚底至肚脐的长度)与身高的比例上,肚脐是理想的黄金分割点,也就是说,若此比值越接近0.618,就越给别人一种美的感觉.如果某女士身高为1.60m ,躯干与身高的比为0.60,为了追求美,她想利用高跟鞋达到这一效果,那么她选的高跟鞋的高度约为( ) A.2.5cm B.5.1cm C.7.5cm D.8.2cm4.煤气公司要在A B C D E ,,,,五个村庄间铺设连通各村的煤气管道,如果它们两两之间铺设的管道长度如表Ⅰ所示(单位:km ),表Ⅰ则连结管道的最短总长度为( )A.5km B.5.5km C.6kmD.7.5km二、填空题(每小题6分,共36分)5.表Ⅱ是某供应商提供给销售商的产品报价单,表Ⅱ某销售商有现金2900元,则最多可购买这种产品 件.6.由于电子技术的飞速发展,手机的成本不断降低,若每隔两年手机的价格降低13,则现在价格为8100元的某品牌的智能手机,六年后的价格降了 .7.若固定一枚一元硬币于桌上,让另一枚同样的一元硬币沿着其边缘滚动一周,那么滚动的硬币自转了 周.8.2007年世界旅游小姐大赛在河南举行,在某场比赛中,最后有六名选手(编号分为1,2,3,4,5,6)争夺一个特别奖.观众A B C D ,,,猜测如下:A 说:获特别奖的不是1号就是2号;B 说:3号不可能获得特别奖;C 说:4号、5号、6号都不可能获特别奖;D 说:获特别奖的是4号、5号、6号中的一个.比赛结果表明:四人中只有一人猜对,则猜对的观众是 ,获特别奖的 是 号选手.9.某加工厂的一个车间有n 台老化待修的机器,为了方便修理将其进行编号,编号分别为1,2,3,…,n ,为了尽快开工,该车间从外面聘请了n 名技术人员(编号分别为1,2,3,…,n )进行修理.我们定义:如果编号为i 的技术人员修理了第j 号机器,记为ij a ,此时规定1ij a =,否则0ij a =.若第8号机器由1名技术人员进行维修,则182838488n a a a a a +++++= ,若3132333432n a a a a a +++++= ,说明 .10.一款智力闯关的电脑游戏中的第一关叫“蛛丝马迹”,它给出图1所示的按一定规律排列的数阵,你认为“?”表示的数为,其中数字排列的规律为.三、解答题(每小题20分,共60分)11.“数学专页”在五月份岗位练兵活动之余组织了一次象棋比赛,其中,资源部的两名选手与编辑部的选手进行比赛,规则如下:每个选手都同其他选手比赛一次,胜得1分,和得0.5分,负得0分.资源部的两名选手共得8分,编辑部的每个选手得分相同,问编辑部有几名选手参加比赛?他们每人得几分?12.相传在古时候有个凶恶的怪兽叫夕,每到岁末便出来害人,后来,人们发现夕最怕红色和声响,于是年三十晚上,家家户户贴红春联,放鞭炮,来驱除夕兽,以求来年安宁,因此年三十晚上便称为除夕.这不,除夕夜,小张、小李、小王三家点燃了礼花炮,已知第一响和最后一响都是同时响的,在这个过程中,共听到37响,假设小张家的礼花炮每5秒响一下,小李家的礼花炮每4秒响一下,小王家的礼花炮每3秒响一下,问小张、小李、小王家的礼花炮各多少响?13.“今日说法”栏目报道,某公司利用传销手段诈骗投资人,谎称“每位投资者投资一股460元,买一件商品(价值10元),半年后,可得到540元的回报.每一期限后若继续投资,投资股数是上一期的2倍”.某退休工人开始投资1股,以后不断地追加投资,但在投资到32股时,被告知该公司破产.(1)假如该退休工人在前一期停止投资,他的投资回报率是多少?(2)事实上,传销最终要失败,试估算该退休工人损失的金额.CCTV ——联想奥运火炬手选拔活动“你就是火炬手”东北赛区比赛于8月25、26日在沈阳举行,参赛选手全二平是内蒙古自治区巴彦淖尔市乌拉特前旗偏远山区小佘太镇的邮递员,负责分散在120平方公里范围内40个自然村80多个投递点12000多名农牧民的信件投递工作,每次投递都至少要走70多公里的沙石路.他所跑的投递路线,也被巴彦淖尔市邮政局定为“爱心邮路”.下面让我们用数据来体验一下他所走过的艰辛“爱心邮路”吧!为简化计算,我们假设全二平需要投递围绕大山的10个自然村(分别用1A ,2A ,…,10A 表示),村落分布如图2所示,每次他从驻地1A 出发按照箭头方向顺次投递信件绕行一圈,最后经10A 返回1A ,请计算他一共可能的投递路线有多少条?四、开放题(本题30分)14.对竞争中的冲突进行数学分析,成为一门学问,叫做对策论,又称博弈论或策略论.对策论是由数学全才美籍匈牙利人冯·诺依曼在1927年创立的,它广泛应用于政治、商业、军事及其他各项事务,下面你也试一试吧!戏.参加者每人各一汽球,只要气球不破,便可继续参赛,优胜者属于惟一保持气球完好的参赛者.掷镖分一轮一轮进行,每一轮掷镖顺序由参赛者抽签决定,依次投掷一支飞镖.三个参赛者的投掷水平大家都清楚,阿尔5掷4中,本5掷3中,查理5掷2中.每位参赛者究竟采用怎样的策略才能获胜?通过以上分析你可以得出什么启示?“倡导积极主动、勇于探索的学习方式”是《高中数学课程标准》的基本理念之一,数学探究、研究性学习等学习活动也正逐步融进我们的课堂.图3是一个非常优美的图形,它有,,,,五个点中,每两点之一个不太被人注意的性质“五个点具有两种距离”:A B C D E间的距离不是等于正五边形的边长,就是等于正五边形的对角线长,即这五个点之间只有两种长度的距离.依此性质,请你探究平面上四个点具有两种距离的情况,并写出探究过程.。
【精品】第七届“学用杯”全国数学知识应用竞赛八年级初赛试题(AB卷)及答案
第七届“学用杯”全国数学知识应用竞赛八年级初赛试题(A B卷)及答案第七届“学用杯”全国数学知识应用竞赛八年级初赛试题(A)卷(本卷满分150分,考试时间120分钟)温馨提示:亲爱的同学们,这份试卷将记录你的自信、沉着与智慧,愿你能够放松心情,认真审题,缜密思考,细心演算,交一份满意的答卷。
一、选择题(每小题6分,共30分)1.我们知道:太阳的温度很高,其表面温度大概有6 000℃,而太阳中心的温度更是达到了惊人的19 200 000℃,其实,对于具有一定质量的恒星来说,它的核心部分的温度总是随着年龄的增长而逐渐升高的,天文学家估算,有些恒星中心温度最高可以达到太阳中心温度的312.5倍,请你用科学记数法表示出这些恒星中心的温度为()A.6.0×810℃B.6.0×910℃C.6.0×1010℃D.6.1×910℃2.岩岩家住在人民广场附近,她经常看到有好多人把自行车存到广场旁边.有一次她问看自行车的老大爷,得知当天的存车量为6 882辆次,其中普通自行车的存车费是每辆次0.2元,电动自行车的存车费是每辆次0.5元,且到19∶00以后,两种存车费都要翻倍.已知该天普通自行车19∶00之前的存车量为5 180辆次,19∶00之后的存车量为335辆次,其总收入为电动自行车的1.5倍.那么电动自行车在晚19∶00前和19∶00后的存车量各有()A.1 072辆次、294辆次B.1 174辆次、193辆次C.973辆次、394辆次D.1 173辆次、254辆次3.期中考试过后,李老师把八年级一班60名学生的成绩进行了统计,制成了如图1所示的统计图,其中60分以下的人数和90分以上的人数一样多,而其它三个分数段(60—70,70—80,80—90)的频率分别是0.15、0.35、0.30.按学校规定成绩在80分以上(含80分)为优秀,那么这次考试中成绩优秀的学生有()A.20人B.24人C.25人D.27人4.小王8∶30从家出门去参观房展,家里的闹钟也指向8∶30,房展结束,他12∶00准时回到家,发现家里的闹钟才11∶46,那么,再过几分钟此闹钟才能指到12点整()A.13分钟B.14分钟C.15分钟D.16分钟5.6月份以来,猪肉价格一路上涨.为平抑猪肉价格,某省积极组织货源,计划由A、B、C三市分别组织10辆、10辆和8辆运输车向D、E两市运送猪肉,现决定派往D、E 两地的运输车分别是18辆、10辆,已知一辆运输车从A市到D、E两市的运费分别是200元和800元,从B市到D、E 两市的运费分别是300元和700元,从C市到D、E两市的运费分别是400元和500元.若设从A、B两市都派x辆车到D市,则当这28辆运输车全部派出时,总运费W(元)的最小值和最大值分别是()A.8 000,13 200 B.9 000,10 000 C.10 000,13 200 D.13 200,15 400二、填空题(每小题6分,共30分)6.小龙乘坐商场的自动扶梯下楼,他以每步一级的速度往下走,结果走了30步就到楼下,猛然发现,由于匆忙包丢在购物处了,接着他又以下楼时速度的3倍冲上楼梯,结果走了90步才到楼上,当电梯停下时,露在外面的电梯一共有级.7.如图2,是一玻璃盛水容器,高度为45厘米,现容器中水面高度为15厘米,如图2(1)所示,现将容器口密封并倒置此容器后,如图2(2)所示,这时水面高度为25厘米,已知,此容器最多可盛水700毫升,那么此时容器中水的体积为毫升.8.“爱心”教育基金会资助某山村学校13 440元,其中七、八年级的学生平均每人60元,七、八年级的每位学生都接受了资助;九年级每个学生100元,但九年级学生有40%因家庭条件好而未接受资助.则该学校一共有名学生.9.如图3所示的徽标,是我国古代弦图的变形,该图是由其中的一个Rt△ABC绕中心点O顺时针连续旋转3次,每次旋转90°得到的,如果中间小正方形的面积为1cm2,这个图形的总面积为113cm2,且AD=2cm,请问徽标的外围周长为cm.10.你看过机器人大赛吗?在美国旧金山举办的世界机器人大赛中,机器人踢足球可谓是独占鳌头.如图4,∠=,45cm90AOBOB=,一机器人在点B处看见一OA=,15cm个小球从点A出发沿着AO方向匀速前进向点O滚动,机器人立即从点B出发,沿直线匀速前进截小球,在点C处截住了小球,如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC= cm.三、解答题(本大题共60分)11.(本题10分)去年在德国举行的“世界杯”足球赛吸引了世界各国球迷的目光,不知道你对足球比赛的积分规则了解多少呢?最为常用的足球比赛的积分规则为:胜一场得3分,平一场得1分,输一场得0分.现在知道,有一支足球队在某个赛季共需比赛16场,现已比赛了9场,输了2场,得19分.请问:(1)前9场比赛中,这支球队共胜了多少场?(2)这支球队打满16场比赛,最高能得多少分?(3)通过对比赛情况的分析,这支球队打满16场比赛,得分不低于34分,就可以达到预期的目标.请你分析一下,在后面的7场比赛中,这支球队至少要胜几场,才能达到预期目标?12.(本题15分)2008年北京奥运会的主会场——鸟巢年底就要竣工了,也许你也知道它全都是利用优质钢筋焊接而成的.也许你会为它骄傲,为它自豪.可是你是否知道为了节约钢筋,还有许多科学道理呢?如图5就是从长为40cm,宽为30cm的矩形钢板的左上角剪下一块长为20cm、宽为10cm的矩形后剩下的一块脚料,工人师傅为了节约,要将它做适当的切割,重新拼接后焊成一个面积与原下脚料的面积相等,接缝尽可能短的正方形工件再重新使用.(1)请根据上述要求,设计出将这块下脚料适当分割成三块或三块以上的两种不同的拼接方案(在图5(2)和图5(3)中分别画出切割时所沿的虚线,以及拼接后所得的正方形,保留拼接的痕迹);(2)比较(1)中的两种方案,哪种更好些?说说你的看法和理由.也为建设节约型社会做出一点贡献!13.(本题15分)台风是一种自然灾害,它以台风中心为圆心,在周围数十千米范围内形成气旋风暴,有极强的破坏力.今年首个超强台风“圣帕”第0709号超强台风(圣帕)于8月13日在北纬21.3度,东经123.3度的太平洋上生成,其中心气压925百帕,近中心最大风速55米/秒,生成时还是热带风暴的“圣帕”,在连跳两级后,15日晚8时已“变身”为超强台风.向台湾东部沿海逼近并登陆台湾岛,之后于19日上午将在福建中南部沿海福州一带再次登陆.在这之前,台风中心在我国台湾海峡的B 处,在沿海城市福州A的正南方向240千米,其中心风力为12级,每远离台风中心25千米,台风就会减弱一级,如图6所示,该台风中心正以20千米/时的速度沿北偏东30°方向向C移动,且台风中心的风力不变,若城市所受风力达到或超过4级,则称受台风影响.试问:(1)该城市是否会受到台风影响?请说明理由.(2)若会受到台风影响,那么台风影响该城市的持续时间有多长?(3)该城市受到台风影响的最大风力为几级?14.(本题20分)如图7是一测力器,在不受力的自然状态下,测力器弹簧MN为40cm(如图7(1));当被测试者将手掌放在点P处,然后尽力向前推,测力器弹簧MN 的长度会随着受力大小的不同而发生变化,此时测力器的刻度表的指针所指的数字就是测试者的作用力;图7(2)是测力器在最大受力极限状态时,测力器弹簧MN的最小长度为8cm;图7(3)、图7(4)是两次测试时,测力器所展现的数据状态;已知测力器弹簧MN的长度y (cm)与受力x(N)之间存在一次函数关系.(1)求y与x之间的函数解析式;(2)当指针指向300时,MN的长是多少?(3)求该测力器在设计时所能承受的最大作用力是多少?三、开放题(本题30分)15.材料一:19世纪俄国伟大作家托尔斯泰的一句名言是这么说的“一个人就好像一个分数,他的实际才能好比分子,而他对自己的估计好比分母.分母越大,则分数的值越小.”材料二:一天小聪向班长反映一个问题:成绩不好的张凯同学失学了.班长说:“唉,分母变小了,分数值增大了”.请你针对上述两个材料就“分子与分母”这个话题,结合你身边的实例,谈谈你对分母变大,分数值变小的理解.第七届“学用杯”全国数学知识应用竞赛八年级初赛试题(A )卷参考答案一、选择题(每小题6分,共30分)1.B2.B3.B4.C (提示:从8∶30到12∶00共三个半小时,在这三个半小时内闹钟共慢了14分钟,平均每小时慢4分钟,所以慢钟与正常钟走时之比为604146015-=,慢的闹钟从11点46分走到12点整,按慢钟来计要走14分钟,因此若按准时的钟来计就要15分钟了.)5.C (提示:由题设可知A 、B 、C 三市派往D 市的运输车的辆数分别是x 、x 、(182x -)辆,派往E 市的运输车的辆数为10x -,10x -,210x -,则总运费200300400(182)800(10)700(10)500(210)W x x x x x x =++-+-+-+-80017 200x =-+.依题意有01001828x x ⎧⎨-⎩≤≤,≤≤,解之,得59x ≤≤,当5x =时,13 200W =最大元,当9x =时,10 000W =最小元.故选C .)二、填空题(每小题6分,共30分)6.60(提示:设往下走时,人走一步电梯往下走x 级,则有903030903x x +=-,解得1x =,所以电梯的级数为303060+=(级).)7.300(提示:由图可知,瓶中水的体积和空的部分之比为153204=.又知此容器的容积为700毫升,所以水的体积为300毫升.)8.224(提示:资助九年级学生每人100元,但有40%的学生没有接受资助,这样九年级所有学生的平均钱数也是每人60元,而七、八年级每人60元,即整个学校每个学生平均能得到60元,所以该校学生总人数为13 44060224÷=(人).)9.52(提示:设Rt ABC △的较长直角边为a ,短直角边为b ,斜边为c ,依题意有3a b -=,1113124ab -=.又由勾股定理得22222()23112121c a b a b ab =+=-+=+=,所以11cm c =,故徽标的外围周长4(112)52(cm)=⨯+=.)10.25(提示:因为BC AC =,所以可设BC x =,则45OC OA AC x =-=-,在Rt BOC △中,根据勾股定理可得:222(45)15x x -+=,解得25x =.即机器人行走的路程为25cm ).三、解答题(每小题15分,共60分)11.解:(1)设这个球队胜x 场,则平了(92x --)场. 根据题意,得3(92)19x x +--=.解之,得6x =.所以前9场比赛中,这个球队共胜了6场.(2)打满16场比赛最高能得19(169)340+-⨯=(分).(3)由题意知,以后的7场比赛中,只要分不低于15分即可.所以胜不少于5场,一定达到预期目标,而胜4场、平3场,正好达到预期目标.所以在以后的比赛中这个球队至少要胜4场.12.(1)图1和图2即为所作图.(2)图1中第一种分割方案较好,因为分割的块数较少.但焊接处和图2中第二种方案一样长.13.解:(1)该城市会受到台风影响.理由:如图3,过点A 作AD BC ⊥于D 点,则AD 即为该城市距离台风中心的最短距离.在Rt ABD △中,因为30240B AB ∠==,.∴1124012022AD AB ==⨯=(千米). 由题可知,距台风中心在(124)25200-⨯=(千米)以内时,则会受到台风影响.因为120<200,因此该城市将会受到“圣帕”影响.(2)依题(1)可知,当点A 距台风中心不超过200千米时,会受台风影响,故在BC 上作200AE AF ==;台风中心从点E 移动到点F 处时,该城市会处在台风影响范围之内.(如图4) 由勾股定理得,2222200120160DE AE AD =-=-=(千米). 所以2160320EF =⨯=(千米).又知“圣帕”中心以20千米/时的速度移动.所以台风影响该城市3202016÷=(小时).(3)该城市受台风影响最大风力7.2级.14.(1)设函数解析式为y kx b =+,由于图象过点(200,30)(100,35).所以2003010035k b k b +=⎧⎨+=⎩,. 解之得12040k b ⎧=-⎪⎨⎪=⎩,.. ∴14020y x =-+. (2)当300x =时,代入解析式得25y =.∴当指针指向300时, MN 的长是25cm .(3)当8y =时,代入解析式得640x =.∴该测力器所能承受的最大作用力是640N .四、开放题(本题30分)15.略.第七届“学用杯”全国数学知识应用竞赛八年级初赛B.卷试题一、选择题(每小题6分,共30分)1.图1是石家庄市中华大街与二环路交叉口的转盘示意图.在周日某时段车流高峰期,单位时间内进出路口A,B,C,D的机动车数量如图1所示,请你计算该高峰期单位时间内通过路段AB BC CD DA,,,(假设单位时间内,在上述路段中,同一路口驶入与驶出的车辆数固定)车辆最多的是()A.ABB.BCC.CDD.DA2.手工课上,小明用螺栓将两端打有孔的5根长度相等的木条,首尾连接制作了一个五角星,他发现五角星的形状不稳定,稍微一动五角星就变形了.于是他想在木条交叉点处再加上若干个螺栓,使其稳定不再变形,他至少需要添加的螺栓数为()A.1个B.2个 C.3个D.4个 3.骑电动自行车出行是很多人的选择,电动自行车比脚踏自行车省力,比摩托车环保, 可谓好处多多,当然价格居高不下也是因为这些好处.受市场影响,某品牌同种价位的电动车在三个商场都进行了两次提价(第二次提价的百分比是以第一次提价后的价格为基础的),A 商场第一次提价的百分比为x ,第二次提价的百分比为y ;B 商场两次提价的百分比都是2x y +;C 商场第一次提价的百分比为y ,第二次提价的百分比为x ,如果0x y >>,则提价最多的商场是 ( )A.A 商场B.B 商场 C.C 商场 D.无法确定4.小张和小李听说某商场在“十·一”期间举行特价优惠活动,两人约好前去购物,当他们到的时候,只剩两种商品还在搞特价,每件商品单价分别是8元和9元,于是他们各自选购了这两种商品数件,已知两人购买商品的件数相同,且两人购买商品一共花了172元,请问两人共购买了几件商品 ( )A.18件B.19件 C.20件D.21件5.师范大学学生张丽、王云、李玲三人一起去银行柜员机取钱,张丽取款一次,王云取款两次,李玲取款三次,假设每取款一次所用时间相同,请问她们三人按什么样的顺序取款,才能使三人所花总时间最少(包括等待时间)()A.张丽,王云,李玲B.李玲,张丽,王云C.张丽,李玲,王云D.王云,李玲,张丽二、填空题(每小题6分,共30分)6.如图3,有一楼梯每一阶的长度、宽度与增加的高度都一样.有一工人在此楼梯的一侧贴上大小相同的正方形磁砖,第一阶贴了4块,第二阶贴了8块,……,依此规律共贴了144块磁砖后,刚好贴完楼梯的一侧.则此楼梯共有阶.7.华云中学在20周年校庆时,有100位老同学聚会,他们中有73人家住河北省内,有78人住在城市里,有68人购买了住房,95人有笔记本电脑,假设至少有x人和不超过y人住在河北省的城市里,且有自己的住房和笔记本电脑,则x=,y=.8.小李家有一块四边形菜地ABCD,这块菜地里有一口井O,从O向四边的中点挖了四条水渠,分别是OE,OF,OG,OH,把四边形菜地分成四块(如图4所示),已知四边形AEOH的面积等于302m,四边形EOFB的面积为402m,四边形OFCG的面积为502m,那么请你算一算四边形DGOH的面积是2m.9.学校田径运动会快要举行了,小刚用自己平时积攒的零花钱买了一双运动鞋,他发现鞋码与脚的大小不是1:1的关系,爱动脑筋的他就想研究一下,到底鞋码与脚的大小是怎样一种关系,于是小刚回家量了量妈妈36码的鞋子,内长是23cm,量了量爸爸42码的鞋子,内长是26cm,又量了量自己刚买的鞋子内长是24.5cm,他认真思考,觉得鞋子内长x与鞋子号码y之间隐约存在一种一次函数关系,你能帮助小刚求出这个一次函数关系式吗?,并说出小刚刚买的鞋是码.10.长期以来,地域偏远、交通不便一直是制约经济发展的重要因素,“要想富,先修路”,某地政府为实施辖区内偏远地区的开发,把一条原有铁路延伸了一段,并在沿途建立了一些新车站,因此铁路局要印制46种新车票,这段铁路线上新老车站加起来不超过20个.请问该地一共新建了个车站,原有个车站.三、解答题(每小题15分,共60分)11.如图5(1),某住宅小区有一三角形空地(三角形ABC),周长为2 500m,现规划成休闲广场且周围铺上宽为3m的草坪,求草坪面积.(精确到12m)由题意知,四边形AEFB,BGHC,CMNA是3个矩形,其面积为2 500×32m,而3个扇形EAN,FBG,HCM的面积和为π×322m,于是可求出草坪的面积为7 500+9π≈7528(2m).(1)若空地呈四边形ABCD,如图5(2),其他条件不变,你能求草坪面积吗?若能,请你求出来;若不能,请说明理由;(2)若空地呈五边形ABCDE,如图5(3),其他条件不变,还能求出草坪面积吗?若能,请你求出来;若不能,请说明理由;(3)若空地呈(3)n n≥边形,其他条件不变,这时你还能求出草坪面积吗?若能,请你求出来.12.集体供暖有燃料的利用率高、供暖效果好和环保等明显特点,被越来越多的人们所接受, 2007年11月,市统计部门随机抽查100户家庭供暖方式,以及集体供暖用户对供热的认可情况.制成统计图如图6(1),图6(2),试回答下列问题.(1)在被抽查的100户中,采用其他供暖方式的用户有户.(2)补充完整条形统计图.(3)如果该城市大约有12万户,请你估计大约有多少集体供暖用户对供热认可为基本满意或满意.(4)请你对市政府或热力公司提出一条合理化建议.13.2007年8月22日,中国人民银行再次上调存款基准利率,这是央行本年内第4次加息,根据决定,一年期存款基准利率上调0.27个百分点,由现行的3.33%提高到3.60%,活期存款不变,仍是以前上调后的基准,利率为0.81%.(1)李红现有5000元,若在8月22日存入银行,按活期存入,一年后本息共多少?按一年期存入,一年后本息又是多少元?(2)王明曾在2007年5月29日调息时存入20000元一年期定期存款,为获得更大的利息收益,在8月22日,是否有必要转存为调整后的一年期定期存款?(提示:2007年8月15日之前利息税率为20%,8月15日利息税率改为5%,若转存,转存前的天数的利息按活期利率计算,且一年存款按365天计算).14.奥威汽车俱乐部举行沙漠拉力训练,每组两辆车,两辆车从同一地点出发,沿同一个方向直线行驶,每车最多只能携带30桶汽油,每桶汽油可以使一辆汽车行进80km,两车都必须返回出发点,但可以先后返回,且两车可以相互赠用双方的汽油,为了使其中一辆车尽可能的远离出发点,请问另一辆车应在离出发点多远处返回?远行的那辆车往返最多能行驶多少千米?四、开放题(本题30分)15.著名数学家华罗庚先生说:“数形结合百般好,隔离分家万事休”.事实上,有些代数问题,通过构造图形来解,常使人茅塞顿开,突破常规思维,进入新的境界;还有三国时期数学家赵爽创制了一幅“勾股圆方图”,用数形结合的方法,给出了勾股定理的详细证明——他用几何图形的截、割、拼、补来证明代数式之间的恒等关系,既具严密性,又具直观性,由此可见,“数形结合思想”在解决数学问题中占有重要地位,请你根据所学的数学知识自己编写一道用数形结合思想解决的实际问题,说明解题思路,给出解答过程.同学们展开你的想象力,试试吧!第七届“学用杯”全国数学知识应用竞赛八年级初赛(B )卷试题参考答案一、1.C .(理由:假设该高峰期AB 路段上行驶的车辆数为x .则BC 上行驶的车辆数为x -20+30=x +10.CD 上行驶的车辆数为x +10-45+60=x +25.DA 上行驶的车辆数为x +25-35+30=x +20. 据此判断可得此时CD 上行驶的车辆数最多.)2.A3.B (取特殊值代入验证即可得出答案)4.C (设每人购买了n 件商品,两人共购买了单价为8元的商品x 件,单价为9元的商品y 件.则289172x y n x y +=⎧⎨+=⎩,.解得1817217216x n y n =-⎧⎨=-⎩,. 因为x ≥0,y ≥0,所以597≤n ≤3104,n 取整数,故n =10,所以共购买了20件.)5.A二、6.8.7.14,68.(提示:根据已知解得,有27人不住在河北省,22人不住在城市,32人没有自己的住房,5人没有笔记本电脑,这个总数是86.他们在四项中至少缺一项,所以至少有14人具有四项中的每一项.因为仅有68人拥有自己的住房,而拥有其他项的人数都大于68,所以具有四项条件的人数最多为68人.)8.409.y =2x -10,39.10.2,11(提示:设原有车站x 个,新车站有y 个.则每个新车站需要印制的车票有(x +y -1)种,y 个新车站要印(x +y -1)y 种,对于x 个老车站,要印xy 种.根据题意,有(x +y -1)y +xy =46,即y (2x +y -1)=46.由于46=1×46=2×23,因为x ,y 必须取正整数,加之新车站合起来不超过20个,则有21232x y y +-==⎧⎨⎩,.符合题意,解得112x y =⎧⎨=⎩,.即新建2个,原有11个.)三、11.解:(1)如图5(2),空地呈四边形ABCD 时,其草坪面积为:S 草=S 矩形ABFE +S 矩形BGHC +S 矩形CMND +S 矩形DPQA +4个小扇形的面积的和.∵4 个小扇形可以组成一个圆.∴S草地=2 500×3+9π≈7 528(m2).(2)∵空地呈五边形时,5个小扇形可以组成一个圆.∴S草地=2 500×3+9π≈7 528(m2).(3)∵空地呈n边形时,n个小扇形也可以组成一个圆.∴S草地=2 500×3+9π≈7 528(m2).答:不论空地呈三角形、四边形还是五边形,…,还是n(n ≥3)边形,其面积都是 7 528m2.12.解:(1)15;(2)略;(3)9.69万户;(4)不惟一,示例:对市政府可以是继续进行热力改造,扩大集体供暖用户的数量;对热力公司改进服务质量,提高老百姓的认可率.13.解:(1)按活期存入,一年后的本息和为:5 000×(1+0.81%×95%)=5 038.475(元);按一年期存入,一年后的本息和为:5 000×(1+3.60%×95%)=5 171(元).(2)王明若从5月29日起存入20 000元,一年期定期存款不转存,则可以得到利息为:20 000×3.33%×78365×0.8+20 000×3.33%×287365×0.95≈611.35(元).若在8月22日转存,王明从5月29日起一年后获得的利息为: 20 000×78365×0.81%×0.8+20 000×7365×0.81%×0.95+20 000×36585365-×3.60%×0.95≈555.36(元). 由于611.35>555.36,所以王明没有必要转存自己于5月29日的存款.14.解:设两车中,甲车应在离出发点x km 处即返回,乙车最远能离出发点y km ,因而甲车能赠给乙车的汽油为(30-280x )桶,由题意可得 230303080802230308080x x y x ⎧⎛⎫⎛⎫-+- ⎪ ⎪⎪⎪⎝⎭⎝⎭⎨⎛⎫⎪=+- ⎪⎪⎝⎭⎩≤, ①, ② 解不等式①,得800x ≥.由方程②,得(2 400)y x =-.要使y 最大,则需x 取最小值.故当x =800时,1600y =最大.因而往返全程最多为22 1 600 3 200(km)y =⨯=.即甲车行驶至800km 处应返回,乙车往返最多可行驶3 200km .四、15.答案不惟一.略.刻苦学习“书山有路勤为径,学海无涯苦作舟”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七届“学用杯”全国数学知识应用竞赛九年级初赛试题(A)卷(本卷满分150分,考试时间120分钟)温馨提示:亲爱的同学们,这份试卷将记录你的自信、沉着与智慧.愿你能够放松心情,认真审题,缜密思考,细心演算,交一份满意的答卷.一、选择题(每小题6分,共30分)1.校园内一个半径为10米的圆形草坪,如图1,一部分学生为走“捷径”,走出了一条小路AB.通过计算可知,这些学生踩坏了花草,其实仅仅少走了(假设2步为1米,结果保留整数)()A.4步B.5步C.6步D.7步2.小红的妈妈做了一个矩形枕套(长、宽不等),又在枕套四周镶上了相同宽度的花边,如图2所示,关于两个矩形,下列说法正确的是()A.两个矩形相似B.两个矩形不一定相似C.两个矩形一定不相似D.无法判断两个矩形是否相似3.如图3,方台村为了抽取水库的水来浇灌山上的果木树,准备在山坡上建一个抽水泵站.已知山坡上有A、P、Q三处可供选择,且测得A到水库C的距离为50m,P到C的距离为40m,Q到C的距离为35m,山坡的坡角∠ACB=15°.由于大气压的影响,此种水泵的实际吸水扬程AB不能超过10m,否则无法抽取水库的水,则水泵站应建在(sin15°=0.258 8,cos15°=0.965 9,tan15°=0.267 9)()A.A处B.P处C.Q处D.A、P、Q均可4.宏光学校有一面积为100米2的正方形展厅,计划铺满统一大小的正方形地板砖,现市场上有大、小两种规格产品:大地板砖对角线长为50cm,每块0.8元;小地板砖对角线长为40cm,每块0.6元,甲公司的优惠办法是:凡购买大地板砖700块以上者给予9折优惠,凡购买小地板砖1 000块以上者给予7折优惠;乙公司的优惠办法是:凡购买700元以上者,不管购买大块还是小块均按8折优惠.在质量、服务条件相同的情况下,为使学校支付的费用最少,请你为该校选择最佳购买方案()A.到甲公司购买大块地板砖B.到乙公司购买大块地板砖C.到甲公司购买小块地板砖D.到乙公司购买小块地板砖5.如图4,在某条公路上,从里程数8m开始到4 000m止,每隔8m将树与灯按图中的规则设立:在里程数8m处种一棵树,在16m处立一盏灯,在24m处种一棵树(相邻的树与树、树与灯之间的距离都是8米)……,且每两盏灯之间的距离相等.依此规则,下列里程数800m~824m之间树与灯的排列顺序中正确的是()二、填空题(每小题6分,共30分)6.王强毕业于农业技术职业学校,毕业后采用大棚栽培技术种植了一亩地的良种西瓜,第一年这亩地产西瓜625个,为了估计这亩地的收成,王强在西瓜大批上市前随机摘下10个成熟的西瓜,称重如下:西瓜质量(单位:千克)西瓜个数(单位:个) 1 2 3 2 1 1根据以上信息可以估计这亩地的西瓜质量约是千克.7.你是否用电脑进行过图案设计?图5(1)是小明在电脑上设计的小房子,然后他又进行变化,得到图5(2);小亮也在电脑上设计了一个图案,如图5(3),如果小亮也按小明变化图形时的规律对图5(3)进行变化,得到的图案是(画出简图).8.某希望小学刚刚建起,田径场还没建好,秋季运动会时,临时设置简易跑道如图6所示,两端由两个半圆组成,一周约250米,在一次400米跑比赛中,第一道从起点A要跑一圈半到终点C.第二道终点不变,且中途不准抢道(每道宽1米).为公平起见,第二跑道起点B应比第一跑道向前移动.9.自行车轮胎安装在前轮上行驶6 000千米后报废,若安装在后轮上只能行驶4 000千米.为了行驶尽可能远的路程,如果采用当自行车行驶一定路程后将前、后轮胎调换使用的方法,那么安装在自行车上的一对新轮胎最多可行驶千米.10.已知,如图7,斜坡PQ坡度为41:3i ,坡脚Q旁的点N处有一棵大树MN.近中午的某个时刻,太阳光线正好与斜坡PQ垂直,光线将树顶M的影子照射在斜坡PQ上的点A处.如果AQ=4米,NQ=1米,则大树MN的高度为.三、解答题(本大题共60分)11.(本题10分)判断决策:三个无线电厂家在广告中都声称,它们的半导体收音机产品在正常情况下,产品的平均寿命是8年,商品检验部门为了检查他们宣传的真实性,对三个厂家出售的半导体收音机寿命进行了抽样统计,结果如下(单位:年):甲厂:3、4、5、5、5、7、9、10、12、13、15;乙厂:3、3、4、5、5、6、8、8、8、10、11;丙厂:3、3、4、4、4、8、9、10、11、12、13;请你利用所学统计知识,对上述数据进行分析并回答以下问题:(1)这三个厂家的广告,分别利用了哪一种反映数据集中趋势的特征数?(2)如果你是顾客,应选购哪个厂家的产品?为什么?12.(本题15分)方案设计:东风汽车租赁公司共有30辆出租汽车,其中甲型汽车20辆,乙型汽车10辆.现将这30辆汽车租赁给A、B两地的旅游公司,其中20辆派往A地,10辆派往B地,两地旅游公司与汽车租赁公司商定每天价格如下表:(1)设派往A地的乙型汽车x辆,租赁公司这30辆汽车一天共获得的租金为y(元),求y与x之间的函数解析式,并写出自变量x的取值X围;(2)若要使租赁公司这30辆汽车一天所获得的租金总额不低于26 800元,请你说明有多少种分派方案,并将各种方案设计出来;(3)如果要使这30辆汽车每天获得的租金最多,请你为租赁公司提出合理的分派方案.13.(本题15分)实践应用:下承式混凝土连续拱圈梁组合桥,其桥面上有三对抛物线形拱圈.图8(1)是其中一个拱圈的实物照片,据有关资料记载此拱圈高AB为(含拱圈厚度和拉杆长度),横向分跨CD为.(1)试在示意图(图8(2))中建立适当的直角坐标系,求出拱圈外沿抛物线的解析式;(2)在桥面M(BC的中点)处装有一盏路灯(P点),为了保障安全,规定路灯距拱圈的距离PN不得少于1.1m,试求路灯支柱PM的最低高度.(结果精确到0.1m)14.(本题20分)归纳猜想:同学们,让我们一起进行一次研究性学习:(1)如图9,已知正三角形ABC的中心为O,半径为R,将其沿直线l向右翻滚,当正三角形翻滚一周时,其中心O经过的路程是多少?(2)如图10,将半径为R的正方形沿直线l向右翻滚,当正方形翻滚一周时,其中心O经过的路程是多少?(3)猜想:把正多边形翻滚一周,其中心O所经过的路程是多少(R为正多边形的半径,可参看图11)?请说明理由.(4)进一步猜想:任何多边形都有一个外接圆,若将任意圆内接多边形翻滚一周时,其外心所经过的路程是否是一个定值(R为多边形外接圆的半径)?为什么?请以任意三角形为例说明(如图12).通过以上猜想你可得到什么样的结论?请写出来.四、开放题(本题30分)15.杨子晚报报道《你家用“峰谷电”合不合算?》:“峰谷电”的含义是这样的,每天8∶00到22∶00用电每千瓦时是0.56元(峰电);22∶00至次日8∶00每千瓦时是0.28元(谷电).注:平时居民用电每千瓦时是0.52元.(1)根据你家的平时用电情况,算一算,你家用这样的“峰谷电”合算吗?(2)请根据“峰谷电”的使用,编拟一道数学实际应用问题,并给出解题过程,注明用的什么数学知识.第七届“学用杯”全国数学知识应用竞赛九年级初赛试题(A)卷参考答案一、选择题(每小题5分,共30分)1.B 2.C 3.C 4.C 5.D二、填空题(每小题5分,共30分)6.3 1257.8.2π米9.4 80010.8米三、解答题(每小题15分,共60分)11.解:(1)因为甲厂的收音机寿命的平均数是8年,众数是5年,中位数是7年;乙厂的收音机寿命的平均数约是6.45年,众数是8年,中位数是6年;丙厂的收音机寿命的平均数约是7.36年,众数是4年,中位数是8年. ················ 6分 所以,甲厂选用平均数,乙厂选用众数,丙厂选用中位数; ··········· 8分(2)因为甲厂收音机的平均寿命比乙厂、丙厂的都高,因此,顾客应选购甲厂的产品.··········· 10分12.解:(1) 1 000(20)900800600(10)26 000100(010)y x x x x x x =-+++-=+≤≤;·········· 6分(2)依题意,得26 00010026 800x +≥,又因为010x ≤≤,∴810x ≤≤.因为x 是整数,∴x =8,9,10,方案有3种. ················ 9分 方案1:A 地派甲型车12辆,乙型车8辆;B 地派甲型车8辆,乙型车2辆;方案2:A 地派甲型车11辆,乙型车9辆;B 地派甲型车9辆,乙型车1辆;方案3:A 地派甲型车10辆,乙型车10辆;B 地派甲型车10辆. ········ 12分(3)∵26 000100y x =+是一次函数,且1000k =>,∴y 随x 的增大而增大. ∴当10x =时,这30辆车每天获得的租金最多.∴合理的分配方案是A 地派甲型车10辆,乙型车10辆;B 地派甲型车10辆. ··· 15分13.(1)如右图,以A 为坐标原点,BA 所在直线为y 轴建立直角坐标系xAy ,因拱圈外沿所在的抛物线过原点,且以y 轴为对称轴,故可设抛物线解析式为:2y ax =, ··············· 4分由题意抛物线过点(2010)D -,,代入得140a =-,故拱圈外沿抛物线的解析式为: 2140y x =-. ······························· 8分 (2)设(10)N k -,,则:21(10) 2.5(m)40k =-⨯-=-,∴107.5(m)MN k =+=, ························· 12分 ∴7.5 1.18.6PM MN PN =++=≥(m ),即路灯支柱PM 的最低高度为.(其余解法可类似给分). ············ 15分14.解:(1)当正三角形ABC 向右翻滚一周时,其中心O 经过的路线是三条等弧,所以其中心O 经过的路程为:120π32π180R R ⨯=. ·················· 3分 (2)中心O 经过的路程为90π42π180R R ⨯=. ················· 6分 (3)当n 边形向右翻滚一周时,其中心O 经过的路线是n 条等弧,这些弧的半径为R ,所对的圆心角为360n ,所以中心O 经过的路程为360π2π180R n n R ⨯=. ······· 10分 (4)是定值2πR ,理由如下:在△ABC 中,设A B C αβγ∠=∠=∠=,,,△ABC 的外接圆⊙O 的半径为R ,把△ABC 沿直线l 向右翻滚一周时,其外心O 经过的路线是三条弧,当AC 边与直线l 重合时,C 与C '重合,A 与A '重合,B 与B '重合,连接CO 、C O '',则ACO A C O '''∠=∠,所以180OCO ACA γ''∠=∠=-,所以(180)π180R l γ-=,同理,另两条弧长分别为:(180)π180R α-,(180)π180R β-,所以外心O 所经过的路程为2πR . ········ 16分 通过以上猜想可得结论为:把圆内接多边形翻滚一周时,多边形的外心所经过的路程是一个定值. ······························· 20分四、开放题(本题30分)15.(1)答案不惟一,可选择自己家每月(或平均每天)的用电情况,计算说明.只要合理即可得分.(本小问10分);(2)答案不惟一,本小问共20分,编写题目合理可得10分,再写出解题过程,并说明所用数学知识可得20分,以下题目可参考.题1:(用一元一次方程知识编拟)某户居民今年二月份起使用“峰谷电”,三月份经记录这两个月使用“谷电”150千瓦时,已知两月共付电费112元.问该居民使用“峰谷电”多少千瓦时?费用比原来节约了多少?(“峰谷电”中,“峰电”是8∶00到22∶00用电,“谷电”是22∶00到次日8∶00,下同)题2:(用二元一次方程知识编拟)某户居民今年三月份使用“峰谷电”,付电费112元,比原来节约了60.8元,问该户居民使用“峰电”,“谷电”各多少千瓦时?题3:(用不等式知识编拟)某户居民今年三月份使用电量300千瓦时,当“峰电”占总电量的多少时,使用“峰谷电”才合算?题4:(用函数知识编拟)某户居民今年三月份起使用“峰谷电”,平均每天使用“峰电”8千瓦时,写出三月份(31天)该户居民的电费(y元)与每天“谷电”的用电量x(千瓦时)之间的函数关系式.。