江苏专转本考试高等数学真题 含解析

合集下载

江苏专转本高等数学真题(附答案)

江苏专转本高等数学真题(附答案)

江苏专转本高等数学真题(附答案)2009年江苏省普通高校“专转本”统一考试高等数学一、单项选择题(本大题共6小题,每小题4分,满分24分)1、已知32lim 22=-++→x b ax x x ,则常数b a ,的取值分别为()A 、2,1-=-=b aB 、0,2=-=b aC 、0,1=-=b aD 、1,2-=-=b a 2、已知函数423)(22-+-=x x x x f ,则2=x 为)(x f 的 A 、跳跃间断点B 、可去间断点C 、无穷间断点D 、震荡间断点 3、设函数??>≤=0,1sin 0,0)(x x x x x f α在点0=x 处可导,则常数α的取值范围为()A 、10<<αB 、10≤<αC 、1>αD 、1≥α 4、曲线2)1(12-+=x x y 的渐近线的条数为()A 、1B 、2C 、3D 、45、设)13ln()(+=x x F 是函数)(x f 的一个原函数,则=+?dx x f )12(' ()A 、C x ++461 B 、C x ++463 C 、C x ++8121 D 、C x ++8123 6、设α为非零常数,则数项级数∑∞=+12n n n α()A 、条件收敛B 、绝对收敛C 、发散D 、敛散性与α有关二、填空题(本大题共6小题,每小题4分,满分24分)7、已知2)(lim =-∞→x x Cx x ,则常数=C . 8、设函数dt te x x t ?=20)(?,则)('x ?= . 9、已知向量)1,0,1(-=→a ,)1,2,1(-=→b ,则→→+b a 与→a 的夹角为 .10、设函数),(y x z z =由方程12=+yz xz 所确定,则x z ??= . 11、若幂函数)0(12>∑∞=a x na n n n 的收敛半径为21,则常数=a . 12、微分方程0)2()1(2=--+xdy y ydx x 的通解为 . 三、计算题(本大题共8小题,每小题8分,满分64分)13、求极限:xx x x sin lim 30-→ 14、设函数)(x y y =由参数方程-+=+=32)1ln(2t t y t x 所确定,,求22,dx y d dx dy . 15、求不定积分:?+dx x 12sin . 16、求定积分:?-10222dx x x .17、求通过直线12213-=-=z y x 且垂直于平面02=+++z y x 的平面方程. 18、计算二重积分??Dyd σ,其中}2,2,20),{(22≥+≤≤≤≤=y x y x x y x D . 19、设函数),(sin xy x f z =,其中)(x f 具有二阶连续偏导数,求yx z 2. 20、求微分方程x y y =-''的通解.。

2005—2010年江苏专转本高等数学真题(附答案)

2005—2010年江苏专转本高等数学真题(附答案)

2005年江苏省普通高校“专转本”统一考试高等数学一、选择题(本大题共6小题,每小题4分,满分24分)1、0=x 是xx x f 1sin )(=的 ( ) A 、可去间断点B 、跳跃间断点C 、第二类间断点D 、连续点2、若2=x 是函数)21ln(ax x y +-=的可导极值点,则常数=a ( ) A 、1- B 、21 C 、21- D 、13、若⎰+=C x F dx x f )()(,则⎰=dx x xf )(cos sin ( )A 、C x F +)(sinB 、C x F +-)(sin C 、C F +(cos)D 、C x F +-)(cos4、设区域D 是xoy 平面上以点)1,1(A 、)1,1(-B 、)1,1(--C 为顶点的三角形区域,区域1D 是D 在第一象限的部分,则:=+⎰⎰dxdy y x xy D)sin cos ( ( )A 、⎰⎰1)sin (cos 2D dxdy y xB 、⎰⎰12D xydxdyC 、⎰⎰+1)sin cos (4D dxdy y x xyD 、05、设yx y x u arctan),(=,22ln ),(y x y x v +=,则下列等式成立的是 ( ) A 、y v x u ∂∂=∂∂ B 、xvx u ∂∂=∂∂ C 、x v y u ∂∂=∂∂ D 、y v y u ∂∂=∂∂ 6、正项级数(1)∑∞=1n nu、(2)∑∞=13n nu,则下列说法正确的是 ( )A 、若(1)发散、则(2)必发散B 、若(2)收敛、则(1)必收敛C 、若(1)发散、则(2)可能发散也可能收敛D 、(1)、(2)敛散性相同二、填空题(本大题共6小题,每小题4分,满分24分)7、=----→xx xe e x x x sin 2lim0 ; 8、函数x x f ln )(=在区间[]e ,1上满足拉格郎日中值定理的=ξ ; 9、=++⎰-11211x x π ;10、设向量{}2,4,3-=α、{}k ,1,2=β;α、β互相垂直,则=k ; 11、交换二次积分的次序=⎰⎰-+-dy y x f dx x x 2111),( ;12、幂级数∑∞=-1)12(n nxn 的收敛区间为 ;三、解答题(本大题共8小题,每小题8分,满分64分)13、设函数⎪⎩⎪⎨⎧+=a xx x f x F sin 2)()( 00=≠x x 在R 内连续,并满足:0)0(=f 、6)0('=f ,求a .14、设函数)(x y y =由方程⎩⎨⎧-==t t t y t x cos sin cos 所确定,求dx dy 、22dx yd .15、计算⎰xdx x sec tan 3.16、计算⎰1arctan xdx17、已知函数),(sin 2y x f z =,其中),(v u f 有二阶连续偏导数,求x z ∂∂、yx z∂∂∂218、求过点)2,1,3(-A 且通过直线12354:zy x L =+=-的平面方程.19、把函数222)(xx x x f --=展开为x 的幂级数,并写出它的收敛区间.20、求微分方程0'=-+xe y xy 满足e y x ==1的特解.四、证明题(本题8分)21、证明方程:0133=+-x x 在[]1,1-上有且仅有一根.五、综合题(本大题共4小题,每小题10分,满分30分)22、设函数)(x f y =的图形上有一拐点)4,2(P ,在拐点处的切线斜率为3-,又知该函数的二阶导数a x y +=6'',求)(x f .23、已知曲边三角形由x y 22=、0=x 、1=y 所围成,求: (1)、曲边三角形的面积;(2)、曲边三角形饶X 轴旋转一周的旋转体体积.24、设)(x f 为连续函数,且1)2(=f ,dx x f dy u F uyu⎰⎰=)()(1,)1(>u(1)、交换)(u F 的积分次序; (2)、求)2('F .2006年江苏省普通高校“专转本”统一考试高等数学一、选择题(本大题共6小题,每小题4分,满分24分)1、若21)2(lim0=→x xf x ,则=→)3(lim 0x f x x ( ) A 、21B 、2C 、3D 、312、函数⎪⎩⎪⎨⎧=≠=001sin)(2x x xx x f 在0=x 处 ( )A 、连续但不可导B 、连续且可导C 、不连续也不可导D 、可导但不连续3、下列函数在[]1,1-上满足罗尔定理条件的是 ( )A 、xe y = B 、x y +=1 C 、21x y -= D 、xy 11-= 4、已知C e dx x f x +=⎰2)(,则=-⎰dx x f )(' ( )A 、C ex+-22B 、C e x +-221 C 、C e x +--22D 、C e x +--2215、设∑∞=1n nu为正项级数,如下说法正确的是 ( )A 、如果0lim 0=→n n u ,则∑∞=1n n u 必收敛 B 、如果l u u nn n =+∞→1lim )0(∞≤≤l ,则∑∞=1n n u 必收敛C 、如果∑∞=1n nu收敛,则∑∞=12n nu必定收敛 D 、如果∑∞=-1)1(n n nu 收敛,则∑∞=1n n u 必定收敛6、设对一切x 有),(),(y x f y x f -=-,}0,1|),{(22≥≤+=y y x y x D ,=1D }0,0,1|),{(22≥≥≤+y x y x y x ,则⎰⎰=Ddxdy y x f ),( ( )A 、0B 、⎰⎰1),(D dxdy y x f C 、2⎰⎰1),(D dxdy y x f D 、4⎰⎰1),(D dxdy y x f二、填空题(本大题共6小题,每小题4分,满分24分)7、已知0→x 时,)cos 1(x a -与x x sin 是等级无穷小,则=a8、若A x f x x =→)(lim 0,且)(x f 在0x x =处有定义,则当=A 时,)(x f 在0x x =处连续.9、设)(x f 在[]1,0上有连续的导数且2)1(=f ,⎰=103)(dx x f ,则⎰=1')(dx x xf101=,b a ⊥,则=+⋅)(b a a11、设x e u xysin =,=∂∂xu12、=⎰⎰Ddxdy . 其中D 为以点)0,0(O 、)0,1(A 、)2,0(B 为顶点的三角形区域.三、解答题(本大题共8小题,每小题8分,满分64分)13、计算11lim 31--→x x x .14、若函数)(x y y =是由参数方程⎩⎨⎧-=+=tt y t x arctan )1ln(2所确定,求dx dy 、22dx yd .15、计算⎰+dx xxln 1.16、计算dx x x ⎰202cos π.17、求微分方程2'2y xy y x -=的通解.18、将函数)1ln()(x x x f +=展开为x 的幂函数(要求指出收敛区间).19、求过点)2,1,3(-M 且与二平面07=-+-z y x 、0634=-+-z y x 都平行的直线方程.20、设),(2xy x xf z =其中),(v u f 的二阶偏导数存在,求y z ∂∂、xy z∂∂∂2.四、证明题(本题满分8分). 21、证明:当2≤x 时,233≤-x x .五、综合题(本大题共3小题,每小题10分,满分30分)22、已知曲线)(x f y =过原点且在点),(y x 处的切线斜率等于y x +2,求此曲线方程.23、已知一平面图形由抛物线2x y =、82+-=x y 围成. (1)求此平面图形的面积;(2)求此平面图形绕y 轴旋转一周所得的旋转体的体积.24、设⎪⎩⎪⎨⎧=≠=⎰⎰00)(1)(t a t dxdy x f t t g tD ,其中t D 是由t x =、t y =以及坐标轴围成的正方形区域,函数)(x f 连续.(1)求a 的值使得)(t g 连续; (2)求)('t g .2007年江苏省普通高校“专转本”统一考试高等数学一、单项选择题(本大题共6小题,每小题4分,满分24分)1、若2)2(lim 0=→x x f x ,则=∞→)21(lim xxf x ( )A 、41 B 、21 C 、2 D 、42、已知当0→x 时,)1ln(22x x +是x n sin 的高阶无穷小,而x nsin 又是x cos 1-的高阶无穷小,则正整数=n ( ) A 、1B 、2C 、3D 、43、设函数)3)(2)(1()(---=x x x x x f ,则方程0)('=x f 的实根个数为 ( ) A 、1B 、2C 、3D 、44、设函数)(x f 的一个原函数为x 2sin ,则=⎰dx x f)2('( ) A 、C x +4cos B 、C x +4cos 21C 、C x +4cos 2D 、C x +4sin5、设dt t x f x ⎰=212sin )(,则=)('x f ( )A 、4sin x B 、2sin 2x x C 、2cos 2x x D 、4sin 2x x 6、下列级数收敛的是 ( )A 、∑∞=122n nnB 、∑∞=+11n n n C 、∑∞=-+1)1(1n nnD 、∑∞=-1)1(n nn二、填空题(本大题共6小题,每小题4分,满分24分)7、设函数⎪⎩⎪⎨⎧=≠+=020)1()(1x x kx x f x ,在点0=x 处连续,则常数=k8、若直线m x y +=5是曲线232++=x x y 的一条切线,则常数=m9、定积分dx x x x )cos 1(43222+-⎰-的值为10、已知→a ,→b 均为单位向量,且21=⋅→→b a ,则以向量→→⋅b a 为邻边的平行四边形的面积为11、设yxz =,则全微分=dz 12、设x xe C eC y 3221+=为某二阶常系数齐次线性微分方程的通解,则该微分方程为三、解答题(本大题共8小题,每小题8分,满分64分)13、求极限xx x e x x tan 1lim 0--→.14、设函数)(x y y =由方程xy e e yx=-确定,求0=x dx dy 、022=x dx yd .15、求不定积分dx e x x ⎰-2.16、计算定积分dx x x ⎰-122221.17、设),32(xy y x f z +=其中f 具有二阶连续偏导数,求yx z∂∂∂2.18、求微分方程2'2007x y xy =-满足初始条件20081==x y 的特解.19、求过点)3,2,1(且垂直于直线⎩⎨⎧=++-=+++01202z y x z y x 的平面方程.20、计算二重积分dxdy y x D⎰⎰+22,其中{}0,2|),(22≥≤+=y x y x y x D .四、综合题(本大题共2小题,每小题10分,满分20分) 21、设平面图形由曲线21x y -=(0≥x )及两坐标轴围成.(1)求该平面图形绕x 轴旋转所形成的旋转体的体积;(2)求常数a 的值,使直线a y =将该平面图形分成面积相等的两部分.22、设函数9)(23-++=cx bx ax x f 具有如下性质: (1)在点1-=x 的左侧临近单调减少; (2)在点1-=x 的右侧临近单调增加; (3)其图形在点)2,1(的两侧凹凸性发生改变. 试确定a ,b ,c 的值.五、证明题(本大题共2小题,每小题9分,满分18分)23、设0>>a b ,证明:dx x f e e dx ex f dy baa x xb yyx ba⎰⎰⎰++-=)()()(232.24、求证:当0>x 时,22)1(ln )1(-≥-x x x .2008年江苏省普通高校“专转本”统一考试高等数学一、单项选择题(本大题共6小题,每小题4分,满分24分)1、设函数)(x f 在),(+∞-∞上有定义,下列函数中必为奇函数的是 ( ) A 、)(x f y -= B 、)(43x f x y = C 、)(x f y --=D 、)()(x f x f y -+=2、设函数)(x f 可导,则下列式子中正确的是 ( )A 、)0()()0(lim'0f xx f f x -=-→B 、)()()2(lim0'00x f x x f x x f x =-+→C 、)()()(lim 0'000x f xx x f x x f x =∆∆--∆+→∆D 、)(2)()(lim 0'000x f xx x f x x f x =∆∆+-∆-→∆3、设函数)(x f ⎰=122sin xdt t t ,则)('x f 等于 ( ) A 、x x 2sin 42B 、x x 2sin 82C 、x x 2sin 42-D 、x x 2sin 82-4、设向量)3,2,1(=→a ,)4,2,3(=→b ,则→→⨯b a 等于 ( ) A 、(2,5,4) B 、(2,-5,-4)C 、(2,5,-4)D 、(-2,-5,4)5、函数xyz ln=在点(2,2)处的全微分dz 为 ( ) A 、dy dx 2121+- B 、dy dx 2121+ C 、dy dx 2121- D 、dy dx 2121--6、微分方程123'''=++y y y 的通解为 ( ) A 、1221++=--x xe c ec yB 、21221++=--x xe c ec y C 、1221++=-xxec e c yD 、21221++=-xxec e c y 二、填空题(本大题共6小题,每小题4分,满分24分)7、设函数)1(1)(2--=x x x x f ,则其第一类间断点为 .8、设函数{=)(x f ,0,3tan ,0,<≥+x xxx x a 在点0=x 处连续,则a = .9、已知曲线543223++-=x x x y ,则其拐点为 . 10、设函数)(x f 的导数为x cos ,且21)0(=f ,则不定积分⎰dx x f )(= . 11、定积分dx x x⎰-++1121sin 2的值为 .12、幂函数∑∞=⋅12n nnn x 的收敛域为 . 三、计算题(本大题共8小题,每小题8分,满分64分) 13、求极限:xx xx 3)2(lim -∞→ 14、设函数)(x y y =由参数方程Z n n t t y t t x ∈≠⎩⎨⎧-=-=,2,cos 1,sin π所决定,求22,dx yd dx dy15、求不定积分:⎰+dx x x 13. 16、求定积分:⎰10dx e x .17、设平面π经过点A (2,0,0),B (0,3,0),C (0,0,5),求经过点P (1,2,1)且与平面π垂直的直线方程.18、设函数),(x y y x f z +=,其中)(x f 具有二阶连续偏导数,求yx z ∂∂∂2.19、计算二重积分⎰⎰Ddxdy x 2,其中D 是由曲线xy 1=,直线2,==x x y 及0=y 所围成的平面区域.20、求微分方程2'2x y xy +=的通解.四、综合题(本大题共2小题,每小题10分,满分20分) 21、求曲线)0(1>=x xy 的切线,使其在两坐标轴上的截距之和最小,并求此最小值.22、设平面图形由曲线2x y =,22x y =与直线1=x 所围成.(1)求该平面图形绕x 轴旋转一周所得的旋转体的体积.(2)求常数a ,使直线a x =将该平面图形分成面积相等的两部分.五、证明题(本大题共2小题,每小题9分,满分18分)23、设函数)(x f 在闭区间[]a 2,0)0(>a 上连续,且)()2()0(a f a f f ≠=,证明:在开区间),0(a 上至少存在一点ξ,使得)()(a f f +=ξξ.24、对任意实数x ,证明不等式:1)1(≤-xe x .2009年江苏省普通高校“专转本”统一考试高等数学一、单项选择题(本大题共6小题,每小题4分,满分24分)1、已知32lim 22=-++→x bax x x ,则常数b a ,的取值分别为 ( )A 、2,1-=-=b aB 、0,2=-=b aC 、0,1=-=b aD 、1,2-=-=b a2、已知函数423)(22-+-=x x x x f ,则2=x 为)(x f 的A 、跳跃间断点B 、可去间断点C 、无穷间断点D 、震荡间断点3、设函数⎪⎩⎪⎨⎧>≤=0,1sin 0,0)(x x x x x f α在点0=x 处可导,则常数α的取值范围为 ( )A 、10<<αB 、10≤<αC 、1>αD 、1≥α4、曲线2)1(12-+=x x y 的渐近线的条数为 ( ) A 、1B 、2C 、3D 、45、设)13ln()(+=x x F 是函数)(x f 的一个原函数,则=+⎰dx x f )12(' ( )A 、C x ++461B 、C x ++463C 、C x ++8121D 、C x ++81236、设α为非零常数,则数项级数∑∞=+12n n n α( ) A 、条件收敛B 、绝对收敛C 、发散D 、敛散性与α有关二、填空题(本大题共6小题,每小题4分,满分24分) 7、已知2)(lim =-∞→xx Cx x ,则常数=C . 8、设函数dt te x x t ⎰=20)(ϕ,则)('x ϕ= .9、已知向量)1,0,1(-=→a ,)1,2,1(-=→b ,则→→+b a 与→a 的夹角为 .10、设函数),(y x z z =由方程12=+yz xz 所确定,则xz∂∂= . 11、若幂函数)0(12>∑∞=a x na nn n 的收敛半径为21,则常数=a .12、微分方程0)2()1(2=--+xdy y ydx x 的通解为 .三、计算题(本大题共8小题,每小题8分,满分64分)13、求极限:xx x x sin lim 30-→14、设函数)(x y y =由参数方程⎩⎨⎧-+=+=32)1ln(2t t y t x 所确定,,求22,dx yd dx dy .15、求不定积分:⎰+dx x 12sin .16、求定积分:⎰-10222dx xx .17、求通过直线12213-=-=z y x 且垂直于平面02=+++z y x 的平面方程.18、计算二重积分⎰⎰Dyd σ,其中}2,2,20),{(22≥+≤≤≤≤=y xy x x y x D .19、设函数),(sin xy x f z =,其中)(x f 具有二阶连续偏导数,求yx z∂∂∂2.20、求微分方程x y y =-''的通解.四、综合题(本大题共2小题,每小题10分,满分20分)21、已知函数13)(3+-=x x x f ,试求: (1)函数)(x f 的单调区间与极值; (2)曲线)(x f y =的凹凸区间与拐点;(3)函数)(x f 在闭区间]3,2[-上的最大值与最小值.22、设1D 是由抛物线22x y =和直线0,==y a x 所围成的平面区域,2D 是由抛物线22x y =和直线2,==x a x 及0=y 所围成的平面区域,其中20<<a .试求:(1)1D 绕y 轴旋转所成的旋转体的体积1V ,以及2D 绕x 轴旋转所成的旋转体的体积2V . (2)求常数a 的值,使得1D 的面积与2D 的面积相等.五、证明题(本大题共2小题,每小题9分,满分18分)23、已知函数⎩⎨⎧≥+<=-0,10,)(x x x e x f x ,证明函数)(x f 在点0=x 处连续但不可导.24、证明:当21<<x 时,32ln 42-+>x x x x .2010年江苏省普通高校“专转本”统一考试高等数学一、单项选择题(本大题共6小题,每小题4分,满分24分)1.设当0x →时,函数()sin f x x x =-与()ng x ax =是等价无穷小,则常数,a n 的值为 ( ) A. 1,36a n == B. 1,33a n == C. 1,412a n == D. 1,46a n == 2.曲线223456x x y x x -+=-+的渐近线共有 ( )A. 1条B. 2条C. 3条D. 4条 3.设函数22()cos t xx e tdt Φ=⎰,则函数()x Φ的导数()x 'Φ等于 ( ) A. 222cos x xe x B. 222cos x xe x - C. 2cos xxe x - D. 22cos x e x -4.下列级数收敛的是 ( )A. 11n nn ∞=+∑ B.2121n n n n∞=++∑C. nn ∞= D. 212nn n ∞=∑ 5.二次积分111(,)y dy f x y dx +⎰⎰交换积分次序后得 ( )A. 111(,)x dx f x y dy +⎰⎰B. 2110(,)x dx f x y dy -⎰⎰C.2111(,)x dx f x y dy -⎰⎰D.2111(,)x dx f x y dy -⎰⎰6.设3()3f x x x =-,则在区间(0,1)内 ( ) A. 函数()f x 单调增加且其图形是凹的 B. 函数()f x 单调增加且其图形是凸的 C. 函数()f x 单调减少且其图形是凹的 D. 函数()f x 单调减少且其图形是凸的 二、填空题(本大题共6小题,每小题4分,满分24分)7. 1lim()1xx x x →∞+=-8. 若(0)1f '=,则0()()limx f x f x x→--=9. 定积分312111x dx x -++⎰的值为 10. 设(1,2,3),(2,5,)a b k ==,若a 与b 垂直,则常数k = 11.设函数z =,则10x y dz===12. 幂级数0(1)n nn x n ∞=-∑的收敛域为三、计算题(本大题共8小题,每小题8分,满分64分) 13、求极限2011lim()tan x x x x→-14、设函数()y y x =由方程2x yy e x ++=所确定,求22,dy d ydx dx15、求不定积分arctan x xdx ⎰16、计算定积分4⎰17、求通过点(1,1,1),且与直线23253x t y t z t =+⎧⎪=+⎨⎪=+⎩垂直,又与平面250x z --=平行的直线的方程。

江苏省专转本(高等数学)模拟试卷44(题后含答案及解析)

江苏省专转本(高等数学)模拟试卷44(题后含答案及解析)

江苏省专转本(高等数学)模拟试卷44(题后含答案及解析) 题型有:1. 选择题 2. 填空题 4. 解答题 5. 综合题 6. 证明题选择题在每小题给出的四个选项中,只有一项是符合要求的。

1.已知连续函数f(x)满足f(x)=x2+x∫01f(x)dx,则f(x)=( ).A.f(x)=x2+xB.f(x)=x2一xC.D.正确答案:C解析:用代入法可得出正确答案为C2.函数在x=0处( ).A.连续但不可导B.连续且可导C.不连续也不可导D.可导但不连续正确答案:B解析:3.关于的间断点说法正确的是( ).A.为可去间断点B.x=0为可去间断点C.x=kπ为第二类无穷间断点D.以上说法都正确正确答案:D解析:的间断点为为可去间断点.对于x=kx,当k=0,即x=0时,x=0为可去间断点.当k≠0时,为第二类无穷间断点.4.设D:x2+y2≤R2,则=( ).A.B.∫0 2πdθ∫0Rrdr=πR2C.D.∫02πdθ∫0RR2dr=2πR正确答案:C解析:在极坐标中,0≤r≤,R,0≤θ≤2π,5.抛物面在点M0(1,2,3)处的切平面是( ).A.6x+3y一2z一18=0B.6x+3y+2z一18=0C.6x+3y+2z+18=0D.6x一3y+2z一18=0正确答案:B解析:6.幂级数的收敛半径是( ).A.0B.1C.2D.+∞正确答案:B解析:填空题7.则a=________,b=________.正确答案:一4;3解析:并且x2+ax+b=0,所以a=一4,b=3.8.u=f(xy,x2+2y2),其中f为可微函数,则=________。

正确答案:yf1+2xf’2解析:令w=xy,v=x2+y2,则u=f(w,v),9.已知函数f(x)=alnx+bx2+x在x=1与x=2处有极值,则a=____________,b=_______________.正确答案:解析:由题意可知:10.a,b为两个非零矢量,λ为非零常数,若向量a+λb垂直于向量b,则λ等于___________.正确答案:解析:a+λb垂直于向量b→(a+λb).b=0.11.已知f(cosx)=sin2x,则∫f(x一1)dx=___________.正确答案:解析:12.已知f(x)=ex2,f[φ(x)]=1一x,且φ(x)≥0,则φ(x)的定义域为_____________.正确答案:x≤0解析:解答题解答时应写出推理、演算步骤。

江苏省专转本(高等数学)模拟试卷60(题后含答案及解析)

江苏省专转本(高等数学)模拟试卷60(题后含答案及解析)

江苏省专转本(高等数学)模拟试卷60(题后含答案及解析) 题型有:1. 选择题 2. 填空题 4. 解答题 5. 综合题 6. 证明题选择题在每小题给出的四个选项中,只有一项是符合要求的。

1.已知f(0)=0,f′(0)=1,则=( )。

A.1B.0C.一1D.不存在正确答案:A解析:该式利用洛必达法则,===1,所以选A项。

2.若f(x)dx=ln(x+)+C,则f′(x)等于( )。

A.B.C.D.正确答案:C解析:对等式两边求导得:f(x)=,则f′(x)=。

3.当x>0时,—为x的( )。

A.高阶无穷小量B.低阶无穷小量C.同阶,但不等价无穷小量D.等价无穷小量解析:===1。

根据等价无穷小量的定义,故选D项。

4.方程x2+y2=4x在空间直角坐标系中表示( )。

A.圆柱面B.点C.圆D.旋转抛物面正确答案:A解析:x2+y2=4x x2一4x+4+y2=4(x一2)2+y2=22,在平面坐标系中,这表示一个圆,而在空间坐标系中,这表示母线平行于z轴的圆柱面,所以选A 项。

5.若广义积分dx收敛,则P应满足( )。

A.0&lt;p&lt;1B.P&gt;1C.P&lt;一1D.P&lt;0正确答案:B解析:当p>1时,收敛;当p≤1时,发散。

6.设对一切x有f(—x,y)=—f(x,y),D={(x,y)|x2+y2≤1,y≥0},D1={(x,y)|x2+y2≤1,x≥0,y≥0},则f(x,y)dxdy=( )。

A.0B.f(x,y)dxdyC.2f(x,y)dxdyD.4f(x,y)dxdy解析:如图,根据题中条件画出积分域,积分域关于y轴对称,又f(一x,y)=一f(x,y),即被积函数是关于x的奇函数,由积分对称性原因f(x,y)dxdy=0。

填空题7.设函数f(x)=在点x=0处连续,则常数k=________。

正确答案:ln2解析:由连续的定义,=ek=f(0)=2,所以k=ln2。

江苏省专转本(高等数学)模拟试卷2(题后含答案及解析)

江苏省专转本(高等数学)模拟试卷2(题后含答案及解析)

江苏省专转本(高等数学)模拟试卷2(题后含答案及解析)题型有:1. 选择题 2. 填空题 4. 解答题 5. 综合题 6. 证明题选择题在每小题给出的四个选项中,只有一项是符合要求的。

1.已知连续函数f(x)满足f(x)=x2+x∫01f(x)dx,则f(x)=( )。

A.f(x)=x2+xB.f(x)=x2-xC.f(x)=x2+D.f(x)=x2+正确答案:C解析:用代入法可得出正确答案为C。

2.函数在x=0处( )。

A.连续但不可导B.连续且可导C.不连续也不可导D.可导但不连续正确答案:B解析:3.关于的间断点说法正确的是( )。

A.x=kπ+为可去间断点B.x=0为可去间断点C.x=kπ为第二类无穷间断点D.以上说法都正确正确答案:D解析:对于x=kπ,当k=0,即x=0时,,x=0为可去间断点。

当k≠0时,,x=kπ为第二类无穷间断点。

4.设D:x2+y2≤R2,则=( )。

A.=πR3B.∫02πdθ∫0Rrdr=πR2C.∫02πdθ∫0Rr2dr=πR3D.∫02πdθ∫0RR2dr=2πR3正确答案:C解析:在极坐标中,0≤r≤R,0≤θ≤2π,。

5.抛物面在点M0(1,2,3)处的切平面是( )。

A.6x+3y-2z-18=0B.6x+3y+2z-18=0C.6x+3y+2z+18=0D.6x-3y+2z-18=0正确答案:B解析:设切平面方程为6x+3y+2z-18=0。

6.幂级数的收敛半径是( )。

A.0B.1C.2D.+∞正确答案:B解析:,收敛半径。

填空题7.,则a=______,b=______。

正确答案:-4,3解析:并且x2+ax+b=0,所以a=-4,b=3。

8.u=f(xy,x2+2y2),其中f为可微函数,则=______。

正确答案:yf’1+2xf’2解析:令w=xy,v=x2+y2,则u=f(w,v),=f’w(w,v)·y+f’v(w,v)·2x。

江苏省专转本(数学)模拟试题及参考答案(一)

江苏省专转本(数学)模拟试题及参考答案(一)

江苏省普通高校专转本模拟试题及参考答案高等数学 试题卷一、单项选择题(本大题共 8 小题,每小题 4 分,共 32 分.在下列每小题中选出一个正确答 案,请在答题卡上将所选项的字母标号涂黑)1. 要使函数21()(2)xx f x x −−=−在区间(0,2) 内连续,则应补充定义 f (1) =( )A. 2eB. 1e −C. eD. 2e − 2. 函数2sin ()(1)xf x x x =−的第一类间断点的个数为( )A. 0B. 2C. 3D. 1 3. 设'()1f x =,则0(22)(22)limh f h f h h→−−+=( )A. 2−B. 2C. 4D. 4−4.设()F x 是函数()f x 的一个原函数,且()f x 可导,则下列等式正确的是( ) A. ()()dF x f x c =+∫ B. ()()df x F x c =+∫ C.()()F x dx f x c =+∫ D.()()f x dx F x c =+∫5. 设2Dxdxdy =∫∫,其中222{(,)|,0}D x y x y R x =+≤>,则R 的值为( )A. 1B.D.6.下列级数中发散的是( )A 21sin n nn∞=∑. B. 11sin n n ∞=∑C. 1(1)nn ∞=−∑ D.211(1)sinnn n ∞=−∑ 7.若矩阵11312102A a −−= 的秩为2,则常数a 的值为( )A. 0B. 1C. 1−D. 28. 设1100001111111234D =−−,其中ij M 是D 中元素ij a 的余子式,则3132M M +=( ) A. 2− B. 2 C. 0 D. 1 二、填空题(本大题共6小题,每小题4分,满分24分) 9. 1lim sinn n n→∞=____________________________.10.设函数2sin ,0()10,0xx f x x x ≠ =+ =,则'(0)f =______________________________________.11.设函数()cos 2f x x =, 则(2023)(0)f =__________________________________________. 12.若21ax e dx −∞=∫,则常数a =___________________________________.13. 若幂级数1nnn a x +∞=∑的收敛半径为2,则幂级数11(1)nn n x a +∞=−∑的收敛区间为__________________. 14.若向量组1(1,0,2,0)α=,2(1,0,0,2)α=,3(0,1,1,1)α=,4(2,1,,2)k α=线性相关,则k =_____________________________________.三、计算题(本大题共8小题,每小题8分,满分64分) 15. 求极限22sin lim(cos 1)x x t tdtx x →−∫;16.求不定积分22x x e dx ∫;17.求定积分21sin 2x dx π−∫; 18.设函数(,)z z x y =由方程cos y x e xy yz xz =+++所确定的函数,求全微分dz . 19.求微分方程''4'5x y y y xe −−−=的通解; 20.求二重积分Bxydxdy ∫∫,其中D 为由曲线2(0)y x x ≥及直线2x y +=和y 轴所围成的平面闭区域;21.设矩阵A 与B 满足关系是2AB A B =+,其中301110014A= ,求矩阵B .22.求方程组12341234123436536222x x x x x x x x x x x x ++−=−++=− −+−= 的通解; 四、证明题(本大题10分)23.证明:当04x π−<<时,0sin xt e tdt x <∫.五、综合题(本大题共2小题,每小题10分,满分20分)24.求曲线x =及直线2y =与y 轴所围成的平面图形的面积并计算该图形绕y 轴旋转一周所得的旋转体的体积..25.设定义在(,)−∞+∞上的函数()f x 满足方程'()()f x f x x −=,且(0)0f =,求: (1)函数()f x 的解析式;(2)曲线()y f x =的单调区间和极值点.参考答案一、单项选择题1. B2. D3. D4. D5. B6. B7. A8. B9. C 二、填空题9. 1 10. 1 11. 0 12. 1ln 2213. (1,3)− 14. 4三、计算题15. 2232022250022sin sin 2sin()4lim lim 4lim (1cos )63()2x x x x x t tdt t tdt x x x x x x x →→→===−∫∫; 16. 2222222222222222222224x x x x x x x xxe e x e e e x e e e x e dx x x dx x dx x c =−=−+=−++∫∫∫;17.26206111sin (sin )(sin )22212x dx x dx x dx πππππ−=−+−−∫∫∫; 18. 因为sin sin ,,z zz x y zx y yz x x x x y x ∂∂∂−−−−=+++=∂∂∂+ 且0,y yz zz e x z e x z y x y yy y x∂∂∂−−−=++++=∂∂∂+ 所以可得sin y x y z e x zdzdx dy y x y x−−−−−−=+++. 19. 解:因为特征方程为2450r r −−=,特征值为125,1r r ==−,所以齐次微分方程''4'50y y y −−=的通解为5112x x y c e c e −=+; 设''4'5x y y y xe −−−=的一个特解为*()x y x ax b e −=+,可得11*()1236x y x x e −=−+,所以原方程的通解为:511211*()1236x x x y y y c e c e x x e −−=+=+−+.20. 由22y x x y =+= 可得交点坐标(11),, 可得21116xBxydxdydx xydy ==∫∫∫∫; 21. 因为2AB A B =+,所以可得(2)A E B A −=,从而可得:1(2)B A E A −=−;又因1211(2)221111A E −−−−=−−− ,所以可得1522(2)432223B A E A −−− =−=−− − ; 22.求方程组12341234123436536222x x x x x x x x x x x x ++−=−++=− −+−= 的通解; 解:111361113611136101241513601012010120101212212031240011200112100120101200112−−−−−−→−→−→− −−−−−−− →− − 一个特解为2220 ,齐次线性方程组12341234123430530220x x x x x x x x x x x x ++−=−++= −+−= 的一组基础解系为:11111η= ,所以原方程组的通解为:123412121210x x c x x=+. 四、证明题 23.证明:当04x π−<<时,0sin xt e tdt x <∫.证明:令0()sin xt f x x e tdt =−∫,则有'()1sin x f x e x =−,令:''()sin cos 0x x f x e x e x =−−=,可得4x π=−,当04x π−<<,''()0f x <,所以当04x π−<<时,'()1sin x f x e x =−为递减函数,可得'()1sin '(0)1x f x e x f =−>=,所以当04x π−<<时,0()sin xt f x x e tdt =−∫为递增函数,因此可得:0()sin (0)0xt f x x e tdt f =−>=∫,从而可证得:0sin x t e tdt x <∫; 五、综合题 24.求曲线x =及直线2y =与y 轴所围成的平面图形的面积并计算该图形绕y 轴旋转一周所得的旋转体的体积..解:x x y = ⇒ =,则图形面积为:20Aydx dx = 旋转体的体积:2222200022y V x dy ydy ππππ====∫∫; 25.设定义在(,)−∞+∞上的函数()f x 满足方程'()()f x f x x −=,且(0)0f =,求: (1)函数()f x 的解析式;(2)曲线()y f x =的单调区间和极值点. 解:(1)()()()1dxdxx x x f x e xe dx c e xe dx c x ce −−−−−∫∫=+=+=−++∫∫,又因为(0)0f =,所以可得:1c =−,即:()1x f x x e −=−+−; (2)令'()10x f x e −=−+=,可得0x =; x(,0)−∞ 0 (0,)+∞ '()f x −+因此可知:(,0)−∞为函数()1x f x x e −=−+−的递减区间,(0,)+∞为函数()1x f x x e −=−+−的递增区间,点(0,0)为函数()1x f x x e −=−+−的极小值点.。

江苏省“专转本”《高等数学》试卷分类解析不定积分.

江苏省“专转本”《高等数学》试卷分类解析不定积分.

同方专转本高等数学核心教程第三章不定积分本章主要知识点:● 不定积分的意义,基本公式● 不定积分的三种基本方法● 杂例历年考试真题1.(2001)不定积分=( D )A.B. +CC. arcsinxD. arcsinx+C解析: 利用不定积分的定义.2001)计算⎰e2x2. (1+exdx。

解: ⎰e2xe2x+ex-exx1+exdx=⎰1+exdx=e-ln(1+ex)+C3. (2002)设f(x)有连续的导函数,且a≠0,1,则下列命题正确的是(A. ⎰f'(ax)dx=1af(ax)+C B. ⎰f'(ax)dx=f(ax)+CC. (⎰f'(ax)dx)'=af(ax)D. ⎰f'(ax)dx=f(x)+C解析: 由⎰f'(x)dx=f(x)+C⎰f'(ax)dx=1a⎰f'(ax)dax=1af(ax)+C4. (2002)求积分2解: 14arcsin2x2+C5. (2003)若F'(x)=f(x),f(x)连续,则下列说法正确的是( C ) - 78 - A )第三章不定积分A.C. ⎰F(x)dx=f(x)+c B. ⎰⎰dF(x)dx=f(x)dx dx⎰dF(x)dx=f(x) f(x)dx=F(x)+c D. dx⎰解析: 不定积分的定义 6. (2003)xlnxdxx2x2x2=lnx-⎰dlnx 解: 设u=lnx,dv=xdx,则⎰xlnxdx=⎰lnxd222x21=lnx-⎰xdx22 11=x2(lnx-)+C227. (2004)求不定积分3=1arcsin4x+C 4解析: 31dx=⎰arcsin3xdarcsinx=arcsin4x+C 4ex8. (2004)设f(x)的一个原函数为,计算⎰xf'(2x)dx xexex(x-1)ex解: 因为f(x)的一个原函数为,所以f(x)=()'=, xx2x1111⎰xf'(2x)dx=⎰xf'(2x)d(2x)=⎰xdf(2x)=xf(2x)-⎰f(2x)dx 222211x(2x-1)e2xx-12x-+C=e+C =xf(2x)-⎰f(2x)d(2x)=248x28x4x9. (2005)若⎰f(x)dx=F(x)+C,则⎰sinxf(cosx)dx=( D )A. F(sinx)+CB. -F(sinx)+CC. F(cosx)+CD. -F(cosx)+C解析: ⎰sinxf(cosx)dx=-⎰f(cosx)dcosx=-F(cosx)+C⎰310. (2005)计算tanxsecxdx2 解:原式=tanxtanxsecxdx=⎰⎰(secx-1)d- 79 - 22secx=⎰secxdsecx-secx同方专转本高等数学核心教程=secx-secx+C11.(2006)已知A.2e-2x133⎰f(x)dx=e2x+C,则⎰f'(-x)dx=( C ). 11+CB.e-2x+CC. -2e-2x+CD. -e-2x+C 22解析: 由题意f(x)=2e2x,∴f'(x)=4e2x,f'(-x)=4e-2x所以⎰f'(-x)dx=⎰4e-2x-2xdx=⎰-2e-2xd(-2x)=-2e+C12.(2006)计算⎰dx x解:原式=32(1+lnx)=(1+lnx)2+C 313. (2007) 设函数f(x)的一个原函数为sin2x,则⎰f'(2x)dx=( A )1cos4x+C 2C. 2cos4x+CD. sin4x+C A. cos4x+C B.解析: f(x)=2cos2x,所以f'(x)=4sin2x,⎰f'(2x)dx=⎰4sin4xdx=⎰sin4xd(4x)=cos4x+C2-x14. (2007)求不定积分xedx.⎰2-x2-x 解:xedx=-xd(e) ⎰⎰2-x-x2-x-x =-xe+2xedx=-xe-2xd(e) ⎰⎰2-x-x-x =-xe-2xe+2edx ⎰=-xe单元练习题3 2-x-2xe-x-2e-x+C1.dcos2x=- 80 - ⎰第三章不定积分2.已知f(cosx)=sin2x,则⎰f(x-1)dx=。

2001—2010年江苏专转本高等数学真题(附答案)

2001—2010年江苏专转本高等数学真题(附答案)

2001年江苏省普通高校“专转本”统一考试高等数学一、选择题(本大题共5小题,每小题3分,共15分)1、下列各极限正确的是 ( ) A 、e xxx =+→)11(lim 0B 、e xx x =+∞→1)11(lim C 、11sinlim =∞→xx x D 、11sinlim 0=→xx x2、不定积分=-⎰dx x211 ( )A 、211x- B 、c x+-211 C 、x arcsin D 、c x +arcsin3、若)()(x f x f -=,且在[)+∞,0内0)('>x f 、0)(''>x f ,则在)0,(-∞内必有 ( ) A 、0)('<x f ,0)(''<x f B 、0)('<x f ,0)(''>x f C 、0)('>x f ,0)(''<x fD 、0)('>x f ,0)(''>x f4、=-⎰dx x 21 ( )A 、0B 、2C 、-1D 、15、方程x y x 422=+在空间直角坐标系中表示 ( ) A 、圆柱面B 、点C 、圆D 、旋转抛物面二、填空题(本大题共5小题,每小题3分,共15分) 6、设⎩⎨⎧+==22t t y te x t ,则==0t dx dy7、0136'''=+-y y y 的通解为 8、交换积分次序=⎰⎰dy y x f dx x x220),(9、函数yx z =的全微分=dz10、设)(x f 为连续函数,则=+-+⎰-dx x x x f x f 311])()([三、计算题(本大题共10小题,每小题4分,共40分) 11、已知5cos)21ln(arctanπ+++=xx y ,求dy .12、计算xx dte x x tx sin lim22⎰-→.13、求)1(sin )1()(2--=x x x x x f 的间断点,并说明其类型.14、已知xy x y ln 2+=,求1,1==y x dxdy .15、计算dx eexx⎰+12.16、已知⎰∞-=+02211dx xk ,求k 的值.17、求x x y y sec tan '=-满足00==x y 的特解.18、计算⎰⎰Ddxdy y 2sin ,D 是1=x 、2=y 、1-=x y 围成的区域.19、已知)(x f y =过坐标原点,并且在原点处的切线平行于直线032=-+y x ,若b axx f +=2'3)(,且)(x f 在1=x 处取得极值,试确定a 、b 的值,并求出)(x f y =的表达式.20、设),(2yx x f z =,其中f 具有二阶连续偏导数,求xz ∂∂、yx z ∂∂∂2.四、综合题(本大题共4小题,第21小题10分,第22小题8分,第23、24小题各6分,共30分) 21、过)0,1(P 作抛物线2-=x y 的切线,求(1)切线方程; (2)由2-=x y ,切线及x 轴围成的平面图形面积;(3)该平面图形分别绕x 轴、y 轴旋转一周的体积。

江苏省专转本(高等数学)模拟试卷36(题后含答案及解析)

江苏省专转本(高等数学)模拟试卷36(题后含答案及解析)

江苏省专转本(高等数学)模拟试卷36(题后含答案及解析)题型有:1. 选择题 2. 填空题 4. 解答题 5. 综合题 6. 证明题选择题在每小题给出的四个选项中,只有一项是符合要求的。

1.函数f(x)=xsin在点x=0处( ).A.有定义但无极限B.无定义但有极限值0C.无定义但有极限值1D.既无定义又无极限值正确答案:B解析:无定义是显然的,因为极限=0(无穷小乘以有界量仍是无穷小)2.若f(x)在x=a处可导,则=( ).A.mf’(a)B.nf’(a)C.(m+n)f’(a)D.f’(a)正确答案:C解析:=(n+m)f’(a),在这里函数值由f(a-mh)变为f(a+nh),自变量改变了(a+nh)-(a-mh)=(n+m)h,因此,相应地在分母的位置上构造出相同的自变量的改变量.3.设f(x)的导函数连续,且是f(x)的一个原函数,则∫xf’(x)dx=( ).A.B.C.D.正确答案:D解析:因为是f(x)的一个原函数,所以有f(x)=所以∫xf’(x)dx=∫xdf(x)=xf(x)-∫f(x)dx=x+C.4.若f(x)在[-a,a]连续,则∫-aax[f(x)+f(-x)]dx=( ).A.2∫0axf(x)dxB.2∫0axf(-x)dxC.0D.2∫0ax[f(x)+f(-x)]dx正确答案:C解析:本题利用函数的对称性和奇偶性化简定积分计算,因为x[f(x)+f(-x)]为奇函数,所以结果为0.5.向量a=(1,-4,1)与b=(2,-2,-1)的夹角β为( ).A.π/4B.0C.π/3D.π/2正确答案:A解析:因为cosθ=所以θ=π/4.6.已知当x→0时,x2ln(1+x2)是sinnx的高阶无穷小,而sinnx又是1-cosx 的高阶无穷小,则正整数n=( ).A.1B.2C.3D.4正确答案:C解析:由已知,=0,则n<4;又sinnx是1-cosx的高阶无穷小,则=0,则n>2,所以n=3,选C项.填空题7.正确答案:1解析:8.yy”-(y’)2=0的通解为_______.正确答案:y=C2解析:令y’=p,则y”=p-p=0,所以p(y-p)=0.当p≠0时,则y p=C1y即y’=C1y p=0,那么y=C,方程通解为y=C29.曲线y=x2(x-3)的拐点坐标是_______.正确答案:(1,-2)解析:y=x2(x-3)=x3-3x2y”=6x-6当y”=6x-6=0时x=1,y=-2.10.设z=ln(x+|(1,0)=_______.正确答案:1解析:z=ln(x+)则所以|(1,0)=1.11.-1)xn的收敛区间是_______.正确答案:[-1,1)解析:R==1,当x=1时,-1)条件收敛,所以其收敛域为[-1,1).12.设y=C2e2x+C2e3x为某二阶常系数齐次线性微分方程的通解,则该微分方程为_______.正确答案:y”-5y’+6y=0解析:由二阶常系数齐次线性微分方程通解y=C1e2x+C2e3x,可知特征根为λ1=,λ2=3,对应特征方程为:(λ-2)(λ-3)=0,即λ2-5λ+6=0,所以对应微分方程为y”-5y’+6y=0.解答题解答时应写出推理、演算步骤。

2001—2018年江苏专转本高等数学真题(及答案)

2001—2018年江苏专转本高等数学真题(及答案)

B、偶函数
C、非奇 非偶函数
D、不能确定奇偶性
4
8、设 I 1 x 4 dx ,则 I 的范围是
0 1 x
A、 0 I 2 2
B、 I 1
9、若广义积分
1
1 xp
dx
收敛,则
p
应满足
A、 0 p 1
B、 p 1
1
10、若
f (x)
1 2e x 1
f
' (x0 )

2 ,则 lim h0
f
(x0

h) h
f
(x0
h)

()
A、2
B、4
C、0
D、 2
2、若已知 F ' (x) f (x) ,且 f (x) 连续,则下列表达式正确的是
A、 F (x)dx f (x) c C、 f (x)dx F (x) c
B、 a b 1 2
D、 a b 1
二、填空题(本大题共 4 小题,每小题 3 分,共 12 分)
9、设函数 y y(x) 由方程 ln(x y) ) x3 3x 2 x 9 的凹区间为
11、 1 x 2 (3 x sin x)dx 1
(2)求 g ' (x) .
23、设 f (x) 在 0, c上具有严格单调递减的导数 f ' (x) 且 f (0) 0 ;试证明:
对于满足不等式 0 a b a b c 的 a 、 b 有 f (a) f (b) f (a b) .
24、一租赁公司有 40 套设备,若定金每月每套 200 元时可全租出,当租金每月每套增加 10 元 时,租出设备就会减少一套,对于租出的设备每套每月需花 20 元的维护费。问每月一套的定金 多少时公司可获得最大利润?

江苏省专转本(高等数学)模拟试卷3(题后含答案及解析)

江苏省专转本(高等数学)模拟试卷3(题后含答案及解析)

江苏省专转本(高等数学)模拟试卷3(题后含答案及解析)题型有:1. 选择题 2. 填空题 4. 解答题 5. 综合题 6. 证明题选择题在每小题给出的四个选项中,只有一项是符合要求的。

1.已知∫f(x)dx=e2x+C,则∫f’(-x)dx=( )。

A.2e-2x+CB.e-2x+CC.-2e-2x+CD.e-2x+C正确答案:C解析:原式两边分别求导得,f(x)=2e2x,再两边求导,得f’(x)=4e2x,则f’(-x)=4e-2t。

∫f’(-x)dx=∫4e-2xdx=-2∫e2xd(-2x)=-2e-2x+C。

故选C项。

2.在下列极限求解中,正确的是( )。

A.B.C.D.正确答案:D解析:3.下列级数中条件收敛的是( )。

A.B.C.D.正确答案:C解析:4.曲线y=x3-3x在开区间(0,1)内为( )。

A.单调上升,且上凹B.单调下降,且下凹C.单调上升,且下凹D.单调下降,且上凹正确答案:D解析:当00。

曲线单调下降,且上凹,故选D项。

5.若直线l与Ox平行,且与曲线y=x-ex相切,则切点坐标为( )。

A.(1,1)B.(-1,1)C.(0,-1)D.(0,1)正确答案:C解析:根据题意得:y’=(1-ex)’=0x=0,代入得y=-1。

6.且f(x)在x=0处连续,则a的值为( )。

A.1B.0C.D.正确答案:C解析:使用洛必达法则可知:,根据f(x)在x=0处连续,可知a=。

填空题7.x+y=tany确定y=y(x),则dy=______。

正确答案:(coty)2解析:两边对x求导y’=1/(x+y)2·(1+y’) 整理得y’=1/(x+y)2=(coty)28.函数,y”(0)=______。

正确答案:9.设u=exysinx,=______。

正确答案:exy(ysinx+cosx)解析:=exy·ysinx+exy·cosx=exy(ysinx+cosx)。

江苏专升本高等数学真题(附答案)

江苏专升本高等数学真题(附答案)

江苏专转本高数考纲及重点总结一、函数、极限和连续(一)函数(1)理解函数的概念:函数的定义,函数的表示法,分段函数。

(2)理解和把握函数的简单性质:单调性,奇偶性,有界性,周期性。

(3)了解反函数:反函数的定义,反函数的图象。

(4)把握函数的四则运算与复合运算。

(5)理解和把握基本初等函数:幂函数,指数函数,对数函数,三角函数,反三角函数。

(6)了解初等函数的概念。

重点:函数的单调性、周期性、奇偶性,分段函数和隐函数(二)极限(1)理解数列极限的概念:数列,数列极限的定义,能根据极限概念分析函数的变化趋势。

会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。

(2)了解数列极限的性质:唯一性,有界性,四则运算定理,夹逼定理,单调有界数列,极限存在定理,把握极限的四则运算法则。

(3)理解函数极限的概念:函数在一点处极限的定义,左、右极限及其与极限的关系,x趋于无穷(x→∞,x→+∞,x→-∞)时函数的极限。

(4)把握函数极限的定理:唯一性定理,夹逼定理,四则运算定理。

(5)理解无穷小量和无穷大量:无穷小量与无穷大量的定义,无穷小量与无穷大量的关系,无穷小量与无穷大量的性质,两个无穷小量阶的比较。

(6)熟练把握用两个重要极限求极限的方法。

重点:会用左、右极限求解分段函数的极限,把握极限的四则运算法则、利用两个重要极限求极限以及利用等价无穷小求解极限。

(三)连续(1)理解函数连续的概念:函数在一点连续的定义,左连续和右连续,函数在一点连续的充分必要条件,函数的中断点及其分类。

(2)把握函数在一点处连续的性质:连续函数的四则运算,复合函数的连续性,反函数的连续性,会求函数的中断点及确定其类型。

(3)把握闭区间上连续函数的性质:有界性定理,最大值和最小值定理,介值定理(包括零点定理),会运用介值定理推证一些简单命题。

(4)理解初等函数在其定义区间上连续,并会利用连续性求极限。

重点:理解函数(左、右连续)性的概念,会判别函数的中断点。

江苏专转本高等数学真题 (附答案)

江苏专转本高等数学真题 (附答案)

2001年江苏省普通高校“专转本”统一考试 ___________________________________________ 12002年江苏省普通高校“专转本”统一考试 ___________________________________________ 62003年江苏省普通高校“专转本”统一考试 __________________________________________ 10 2004年江苏省普通高校“专转本”统一考试 __________________________________________ 14 2005年江苏省普通高校“专转本”统一考试 __________________________________________ 182006年江苏省普通高校“专转本”统一考试 __________________________________________ 212007年江苏省普通高校“专转本”统一考试 __________________________________________ 24 2008年江苏省普通高校“专转本”统一考试 __________________________________________ 28 2009年江苏省普通高校“专转本”统一考试 __________________________________________ 31 2010年江苏省普通高校“专转本”统一考试 __________________________________________ 342001年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 37 2002年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 38 2003年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 40 2004年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 41 2005年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 432006年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 45 2007年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 47 2008年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 49 2009年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 51 2010年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 532001年江苏省普通高校“专转本”统一考试高等数学一、选择题(本大题共5小题,每小题3分,共15分)1、下列各极限正确的是 ( )A 、e xxx =+→)11(lim 0B 、e xx x =+∞→1)11(limC 、11sinlim =∞→x x x D 、11sin lim 0=→xx x2、不定积分=-⎰dx x211 ( )A 、211x-B 、c x+-211 C 、x arcsin D 、c x +arcsin3、若)()(x f x f -=,且在[)+∞,0内0)('>x f 、0)(''>x f ,则在)0,(-∞内必有 ( )A 、0)('<x f ,0)(''<x f B 、0)('<x f ,0)(''>x f C 、0)('>x f ,0)(''<x f D 、0)('>x f ,0)(''>x f4、=-⎰dx x 21 ( )A 、0B 、2C 、-1D 、15、方程x y x 422=+在空间直角坐标系中表示 ( ) A 、圆柱面B 、点C 、圆D 、旋转抛物面二、填空题(本大题共5小题,每小题3分,共15分)6、设⎩⎨⎧+==22tt y te x t ,则==0t dx dy7、0136'''=+-y y y 的通解为 8、交换积分次序=⎰⎰dy y x f dx xx22),(9、函数yx z =的全微分=dz 10、设)(x f 为连续函数,则+-+⎰-dx x x x f x f 311])()([三、计算题(本大题共10小题,每小题4分,共40分) 11、已知5cos )21ln(arctan π+++=xx y ,求dy .12、计算xx dte x xt x sin lim 22⎰-→.13、求)1(sin )1()(2--=x x xx x f 的间断点,并说明其类型.14、已知x y x y ln 2+=,求1,1==y x dxdy.15、计算dx ee xx⎰+12.16、已知⎰∞-=+02211dx x k ,求k 的值.17、求x x y y sec tan '=-满足00==x y 的特解.18、计算⎰⎰Ddxdy y 2sin ,D 是1=x 、2=y 、1-=x y 围成的区域.19、已知)(x f y =过坐标原点,并且在原点处的切线平行于直线032=-+y x ,若b ax x f +=2'3)(,且)(x f 在1=x 处取得极值,试确定a 、b 的值,并求出)(x f y =的表达式.20、设),(2y x x f z =,其中f 具有二阶连续偏导数,求x z ∂∂、yx z∂∂∂2.四、综合题(本大题共4小题,第21小题10分,第22小题8分,第23、24小题各6分,共30分) 21、过)0,1(P 作抛物线2-=x y 的切线,求(1)切线方程;(2)由2-=x y ,切线及x 轴围成的平面图形面积;(3)该平面图形分别绕x 轴、y 轴旋转一周的体积。

江苏专升本考试真题及答案高等数学

江苏专升本考试真题及答案高等数学

江苏专升本考试真题及答案高等数学选择题若函数f(x)在x=a处连续,且lim_(x→a) (f(x) - f(a)) / (x - a) = 2,则f'(a)等于:A. 0B. 1C. 2D. 不确定下列函数中,在其定义域内既是奇函数又是增函数的是:A. y = x^3B. y = 1/xC. y = sin(x)D. y = e^x已知函数y = ln(x + 1)在点x = 0处的切线斜率为k,则k的值为:A. 0B. 1C. eD. 1/e微分方程y' + 2y = e^(-x)的通解为:A. y = C * e^(-2x) + e^(-x)B. y = C * e^(2x) + e^(-x)C. y = C * e^(-x) + e^(2x)D. y = C + e^(-2x)设A是3阶矩阵,且|A| = 2,则|2A|等于:A. 2B. 4C. 6D. 8下列关于向量组的线性相关性的说法中,正确的是:A. 任何两个非零向量都线性相关B. 若向量组a₁, a₂, ..., aₙ线性无关,则增加分量后仍线性无关C. 若向量组a₁, a₂, ..., aₙ线性相关,则其中至少有一个向量可用其余向量线性表示D. 零向量与任何向量都线性无关若二元函数z = f(x, y)在点(x₀, y₀)处可微,则函数在该点处:A. 必连续B. 必不连续C. 可能连续,也可能不连续D. 与连续性无关曲线y = x^3 - 3x在点(1, -2)处的法线方程为:A. y = x - 4B. y = -xC. y = x + 4D. y = 2x - 4答案CABADCAB请注意,这些题目和答案是为了帮助您理解高等数学的概念而生成的,它们不代表任何真实的考试题目或答案。

在准备专升本考试时,请参考官方提供的真题和资料。

江苏省“专转本”《高等数学》试卷分类解析不定积分.

江苏省“专转本”《高等数学》试卷分类解析不定积分.

同方专转本高等数学核心教程第三章不定积分本章主要知识点:● 不定积分的意义,基本公式● 不定积分的三种基本方法● 杂例历年考试真题1.(2001)不定积分=( D )A.B. +CC. arcsinxD. arcsinx+C解析: 利用不定积分的定义.2001)计算⎰e2x2. (1+exdx。

解: ⎰e2xe2x+ex-exx1+exdx=⎰1+exdx=e-ln(1+ex)+C3. (2002)设f(x)有连续的导函数,且a≠0,1,则下列命题正确的是(A. ⎰f'(ax)dx=1af(ax)+C B. ⎰f'(ax)dx=f(ax)+CC. (⎰f'(ax)dx)'=af(ax)D. ⎰f'(ax)dx=f(x)+C解析: 由⎰f'(x)dx=f(x)+C⎰f'(ax)dx=1a⎰f'(ax)dax=1af(ax)+C4. (2002)求积分2解: 14arcsin2x2+C5. (2003)若F'(x)=f(x),f(x)连续,则下列说法正确的是( C ) - 78 - A )第三章不定积分A.C. ⎰F(x)dx=f(x)+c B. ⎰⎰dF(x)dx=f(x)dx dx⎰dF(x)dx=f(x) f(x)dx=F(x)+c D. dx⎰解析: 不定积分的定义 6. (2003)xlnxdxx2x2x2=lnx-⎰dlnx 解: 设u=lnx,dv=xdx,则⎰xlnxdx=⎰lnxd222x21=lnx-⎰xdx22 11=x2(lnx-)+C227. (2004)求不定积分3=1arcsin4x+C 4解析: 31dx=⎰arcsin3xdarcsinx=arcsin4x+C 4ex8. (2004)设f(x)的一个原函数为,计算⎰xf'(2x)dx xexex(x-1)ex解: 因为f(x)的一个原函数为,所以f(x)=()'=, xx2x1111⎰xf'(2x)dx=⎰xf'(2x)d(2x)=⎰xdf(2x)=xf(2x)-⎰f(2x)dx 222211x(2x-1)e2xx-12x-+C=e+C =xf(2x)-⎰f(2x)d(2x)=248x28x4x9. (2005)若⎰f(x)dx=F(x)+C,则⎰sinxf(cosx)dx=( D )A. F(sinx)+CB. -F(sinx)+CC. F(cosx)+CD. -F(cosx)+C解析: ⎰sinxf(cosx)dx=-⎰f(cosx)dcosx=-F(cosx)+C⎰310. (2005)计算tanxsecxdx2 解:原式=tanxtanxsecxdx=⎰⎰(secx-1)d- 79 - 22secx=⎰secxdsecx-secx同方专转本高等数学核心教程=secx-secx+C11.(2006)已知A.2e-2x133⎰f(x)dx=e2x+C,则⎰f'(-x)dx=( C ). 11+CB.e-2x+CC. -2e-2x+CD. -e-2x+C 22解析: 由题意f(x)=2e2x,∴f'(x)=4e2x,f'(-x)=4e-2x所以⎰f'(-x)dx=⎰4e-2x-2xdx=⎰-2e-2xd(-2x)=-2e+C12.(2006)计算⎰dx x解:原式=32(1+lnx)=(1+lnx)2+C 313. (2007) 设函数f(x)的一个原函数为sin2x,则⎰f'(2x)dx=( A )1cos4x+C 2C. 2cos4x+CD. sin4x+C A. cos4x+C B.解析: f(x)=2cos2x,所以f'(x)=4sin2x,⎰f'(2x)dx=⎰4sin4xdx=⎰sin4xd(4x)=cos4x+C2-x14. (2007)求不定积分xedx.⎰2-x2-x 解:xedx=-xd(e) ⎰⎰2-x-x2-x-x =-xe+2xedx=-xe-2xd(e) ⎰⎰2-x-x-x =-xe-2xe+2edx ⎰=-xe单元练习题3 2-x-2xe-x-2e-x+C1.dcos2x=- 80 - ⎰第三章不定积分2.已知f(cosx)=sin2x,则⎰f(x-1)dx=。

江苏省专转本(高等数学)模拟试卷63(题后含答案及解析)

江苏省专转本(高等数学)模拟试卷63(题后含答案及解析)

江苏省专转本(高等数学)模拟试卷63(题后含答案及解析)题型有:1. 选择题 2. 填空题 4. 解答题 5. 综合题 6. 证明题选择题在每小题给出的四个选项中,只有一项是符合要求的。

1.下列极限求解正确的是( )。

A.=1B.=1C.=eD.sin(2x+1)=0正确答案:D解析:xlnx==0,=e—1,当x→0时,为有界函数,x为无穷小量,故其乘积也为无穷小。

=0,=0,而sin(2x+1)有界,所以sin(2x+1)=0,故选D项。

2.函数y=的单调减少区间为( )。

A.(一∞,+∞)B.(一∞,一1)U(一1,+∞)C.(0,+∞)D.(一∞,0)正确答案:B解析:y′==1。

4.设L为正向圆周x2+y2=2在第一象限中的部分,则曲线部分∫Lxdy一2ydx的值为( )。

A.B.C.D.正确答案:B解析:正向圆周x2+y2=2在第一象限中的部分,可表示为于是∫Lxdy—2ydx=dθ=π+= 5.下列结论正确的是( )。

A.收敛B.收敛C.收敛D.收敛正确答案:A解析:∵n→∞时,,即=1,又收敛,由比较判别法可知收敛。

∵=1,而调和级数发散,所以发散。

=2≠0,原式发散。

不存在,原式发散。

6.设f(x)=,则f′(x)=( )。

A.sinx4B.2xsinx2C.2xcosx2D.2xsinx4正确答案:D解析:利用变上限积分求导法则,f′(x)=sinx4(x2)′=2xsinx4。

填空题7.=_________。

正确答案:e6解析:8.设f(x)=在x=0处连续,则a=_________。

正确答案:一1解析:f(x)=f(0)=a a= —19.y=+1的水平渐近线是_________。

正确答案:y=1解析:=110.已知=1,则k的值为_________。

正确答案:解析:11.设曲线y=x2+x+2上点M处的斜率为一3,则点M的坐标是_________。

正确答案:(一2,4)解析:y′=2x+1= 一3x= 一2,代入到原方程得y=4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省 2017 年普通高校专转本选拔考试
高数 试题卷
一、单项选择题(本大题共 6 小题,没小题 4 分,共 24 分。

在下列每小题中选出一个正确答案,请在答题卡上将所选项的字母标号涂黑)
1.设)(x f 为连续函数,则0)(0='x f 是)(x f 在点0x 处取得极值的( )
A.充分条件
B.必要条件
C.充分必要条件
D.非充分非必要条件
2.当0→x 时,下列无穷小中与x 等价的是( )
A.x x sin tan -
B.x x --+11
C.11-+x
D.x cos 1-
3.0=x 为函数)(x f =0
00
,1sin ,
2,1>=<⎪⎪⎩

⎪⎨⎧-x x x x x e x
的( )
A.可去间断点
B.跳跃间断点
C.无穷间断点
D.连续点
4.曲线x
x x x y 48
62
2++-=的渐近线共有( )
条 条 条 条
5.设函数)(x f 在 点0=x 处可导,则有( ) A.)0(')()(lim
f x x f x f x =--→ B.)0(')
3()2(lim 0f x x f x f x =-→
C.)0(')0()(lim
f x f x f x =--→ D.)0(')
()2(lim 0f x
x f x f x =-→
6.若级数∑∞
-1
-n n
1p
n )
(条件收敛,则常数P 的取值范围( )
A. [)∞+,
1?? B.()∞+,1?? C.(]1,0 D.()1,0
二、填空题(本大题共 6 小题,每小题 4 分,共 24 分) 7.设dx e x
x a x x
x ⎰∞-∞
→=-)1(
lim ,则常数a= .
8.设函数)(x f y =的微分为dx e dy x
2=,则='')(x f .
9.设)(x f y =是由参数方程 {
13sin 13++=+=t t x t
y 确定的函数,则
)
1,1(dx
dy = .
10.设x x cos )(F =是函数)(x f 的一个原函数,则⎰
dx x xf )(= .
11.设 →
a 与 →
b 均为单位向量, →
a 与→
b 的夹角为3
π
,则→a +→b = .
12.幂级数 的收敛半径为 .
三、计算题(本大题共 8 小题,每小题 8 分,共 64 分)
13.求极限x
x dt
e x
t x --⎰
→tan )1(lim
2
.
14.设),(y x z z =是由方程0ln =-+xy z z 确定的二元函数,求22z
x
∂∂ .
n n
x ∑∞
1-n 4
n
15.求不定积分
dx x x ⎰
+3
2
.
16.计算定积分⎰
210
arcsin xdx x .
17.设),(2
xy y yf z =,其中函数f 具有二阶连续偏导数,求y
x ∂∂∂z
2
18.求通过点(1,1,1)且与直线1
1
2111-+=
-=-+z y x 及直线{
12z 3y 4x 0
5=+++=-+-z y x 都垂直的直线方程.
19.求微分方程x y y y 332=+'-''是通解.
20.计算二重积分
dxdy y x
⎰⎰D 2,其中 D 是由曲线 1-=y x 与两直线1,3==+y y x 围
成的平面闭区域.
四.证明题(本大题共 2 小题,每小题 9 分,共 18 分)
21.证明:当π≤<x 0时,2cos 2sin <+x x x .
22.设函数)(x f 在闭区间[]a a ,-上连续,且)(x f 为奇函数,证明:
(1)

⎰--=0
)()(a
a
dx x f dx x f
(2)

-=a
a
dx x f 0)(
五、综合题(本大题共 2 题,每小题 10 分,共 20 分)
23.设平面图形 D 由曲线 x
e y = 与其过原点的切线及 y 轴所围成,试求;
(1)平面图形D 的面积;
(2)平面图形 D 绕 x 轴旋转一周所形成的旋转体的体积.
24.已知曲线)(x f y =通过点(-1,5),且)(x f 满足方程3
5
12)(8)(3x x f x f x =-',试求:
(1)函数)(x f 的表达式;
(2)曲线)(x f y =的凹凸区间与拐点.
江苏省 2017 年普通高校专转本选拔考试
高数 试题卷答案
一、单项选择题 1-6 DBACD 解析: 二、填空题 7.-1 8.x
e 22
9.
3
1 10.c x x x +-sin cos 11.3 12.4
三、计算题
14.3
2
)
1(z zy + 15.C x x x ++++-+39)3(25
)3(·235
16.
48
33π
-
17.222
21
2222f xy f y f y ''+''+' 18.
2
1
3141-=
-=-z y x 19.3
2
)2sin 2cos (21+++=x x c x c e y x
20.2
11ln 102
-
四、证明题
21.证:令2cos 1sin )(-+=x x x x f
则x x x x x f sin 2cos sin )(-+='
x x x x x x f cos 2sin cos cos )(--+='' x x sin -= 因为 π≤<x 0 所以 0)(<''x f
因为 ↓')(x f 所以 0)0()(='<'f x f
所以 ↓)(x f
因为 0)0()(=<f x f 所以得出
22.证(1)
⎰⎰
--=--0
)()()(a
a
dt t f t d t f
⎰-
=a
dt t f 0
)( ⎰
-
=a
dx x f 0
)(
(2)
dx x f dx x f dx x f a
a
a
a
⎰⎰
⎰+=--0
)()()(
⎰⎰
+-
=a
dx x f dx x f 0
a
)()(
t x -=
= 0
五、综合题
23.(1)⎰⎰⎰-=-=1021
0102)(S x e e dx ex e x x (2)ππ2
1612-e 24.(1)3538
4)(x x x f -=
(2)
拐点:(0,0)(1,3)
凹 :(-∞,0),(1,+∞) 凸 :(0,1)。

相关文档
最新文档