实数_知识点+题型归纳
实数知识点及典型例题
(4 )《实数》知识点总结及典型例题练习题第一节.平方根1.平方根与算数平方根的含义平方根:如果一个数的平方等于4,那么数X 就叫做d 的平方根。
即X —,记作X 二土長算数平方根:如果一个正数X 的平方等于a,那么正数x 叫做a 的篡:术士方投,即X 2=a,记作x 二需。
2 .平方根的性质与表示⑴表示:正数d 的平方根用土丽表示,亦叫做正平方根,也称为算术平方根,-百叫做a 的负 平方根。
⑵一个正数有两个平方根:土亦(根指数2省略) 0有一个平方根,为0,记作"=0负数没有平方根⑶平方与开平方互为逆运算开平方:求一个数。
的平方根的运算。
(y[a =6/ ( a >0 )⑷長的双重非负性:a>0且亦n0 (应用较广)例:Jx-4 +j4-x = y 得知 x = 4,y = 0⑸如果正数的小数点向右或者向左移动两位,它的正的平方根的小数点就相应地向右或向左移动 一位。
区分:4的平方根为 _____ 的平方根为 _________ 品=—4开平方后,得 ___________ (6)若 a > b > 0 ,则 yfa > y/b (7)y[a x y[b = 4ab(ci > O,b > 0)典型习题:(1) 求算数平方根与平方根 1:求下列数的平方根 36 0.09 (-4) 2 0 1(2) 解简单的二次方程3:81X 2-25 = O(3) 被开方数的意义5:若a 为实数,下列代数式中,一定是负数的是() A. -a 2 B. -( d+l)2 C.-倚D.-(|-«| + l)爷弋心/?>0)4 :4(X +1)2=8u>0 a <06:实数a在数轴上的位置如图所示,化简:-1| + yj(a-2)2二 * o 1 ~' 2 才(4):有关x的取值范围目前中考的所有考点例题:求使得下列各式成立的x的取值范围7:』3x-58:当加____________ 时,丁3 —加有意义;当加 ____________ 时,"加一3有意义io.等式= 成立的条件是( ).A、xllB、x>-\C、-1 <x< 1D、x<-ls£> 1(5)非负性知识点:总结:若儿个非负数的和为零,则每个非负数都为零,这个性质在代数式求值中经常被使用.10.已知a,b是实数,且有h_V5 + l| + (b + Q2=o,求的值.11 :.已知实数a、b、c 满足,2 a-1 + J” + c + (c-丄)?二0,,求a+b+c 的值.213•若y = Jx-l + Jl-x -1,求x, y 的值。
实数知识点大题总结归纳
实数知识点大题总结归纳一、实数概念实数是数学中的一个重要概念,是指包括有理数和无理数在内的数的集合。
实数是所有数的集合,包括正数、负数、零以及所有的小数和分数。
实数的概念是数学分析和代数学的基础,它涉及到数轴上所有点的集合,实数的概念在数学分析和代数学的研究中有广泛的应用。
实数可以用来表示现实生活中的各种量和计算过程,比如长度、时间、温度、速度等等。
实数是一种用来比较、计算和度量现实生活中各种量的数学工具。
在数学的各个分支中,实数都有着重要的作用,比如在代数、几何、微积分、概率论等方面都有着广泛的应用。
实数的概念是从有理数的概念推广而来的,有理数是整数和分数的集合,而实数则包括了有理数以及无理数。
实数的概念比有理数更加广泛,它包括了所有可以用数轴上的点表示出来的数。
数轴是表示实数的一种图形工具,可以用来比较和计算各种实数的大小和关系。
实数的运算规则和性质是数学中的重要内容,实数的加减乘除运算和各种性质都是数学教育的重点。
实数的运算规则和性质是代数学的基础,它们是解决各种数学问题和证明数学定理的基础。
实数的运算规则和性质可以帮助人们更深刻地理解和使用实数,它们是数学分析和代数学的重要内容。
二、实数的分类实数根据其表示形式和特点可以分成不同的种类,比如有理数和无理数。
有理数是可以表示为两个整数的比值的数,它包括整数、分数和各种有限小数。
有理数是数学中比较容易理解和使用的一类数,它们有着严格的运算规则和性质,可以进行加减乘除等各种运算。
无理数是不能表示为两个整数的比值的数,它们是一些特殊的数,比如根号2、圆周率π等。
无理数在数轴上的位置很难准确表示出来,因为它们不能用整数比值的形式表示。
无理数是实数中比较独特和特殊的一类数,它们在数学研究和应用中有着独特的地位。
实数还可以根据其大小和性质进行分类,比如正数、负数、零等。
正数是大于零的实数,负数是小于零的实数,零是一个特殊的实数。
正数、负数和零是实数中的基本分类,它们有着严格的定义和性质,可以用来表示各种计量和度量。
初二(下)实数的知识点与练习题
第十三章 实数知识要点一: 1.实数的性质(1)实数范围内仍然适用在有理数范围内定义的一些概念(如倒数,相反数);(2)两实数的大小关系:正数大于0,0大于负数;两个正实数,绝对值大的实数大;两个负实数,绝对值大的实数反而小;(3)在实数范围内,加、减、乘、除(除数不为零)、乘方五种运算是畅通无阻的,但是开方运算要注意,正实数和零总能进行开方运算,而负实数只能开奇次方,不能开偶次方;(4)有理数范围内的运算律和运算顺序在实数范围内仍然相同. 2.实数与数轴的关系每一个实数都可以用数轴上的一个点表示;反之,数轴上每一个点都表示一个实数,即数轴上的点与实数是一一对应关系.3.实数的分类(1)按实数的定义分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 (2)按实数的正负分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧负无理数负分数负整数负有理数负实数负数)零(既不是正数也不是正无理数正分数正整数正有理数正实数实数4.实数的大小比较两实数的大小关系如下:正实数都大于0,负实数都小于0,正数大于一切负数;两个正实数,绝对值大的实数较大;两个负实数,绝对值大的实数反而小.实数和数轴上的点一一对应,在数轴上表示的两个实数,右边的数总大于左边的数.【典型例题】2-1C B A 例1若a 为实数,下列代数式中,一定是负数的是( ) A. -a 2 B. -( a +1)2 C.-2a D.-(a -+1)分析:本题主要考查负数和非负数的概念,同时涉及考查字母表示数这个知识点.由于a 为实数, a 2、( a +1)2、2a 均为非负数,∴-a 2≤0,-( a +1)2≤0,-2a ≤0.而0既不是正数也不是负数,是介于正数与负数之间的中性数.因此,A 、B 、C 不一定是负数.又依据绝对值的概念及性质知-(a -+1)﹤0.故选D例2 实数a 在数轴上的位置如图所示, 化简:2)2(1-+-a a =分析:这里考查了数形结合的数学思想,要去掉绝对值符号,必须清楚绝对值符号内的数是正还是负.由数轴可知:1﹤a ﹤2,于是,22)2(,112a a a a a -=-=--=-所以, 2)2(1-+-a a =a -1+2-a =1.例3 如图所示,数轴上A 、B 两点分别表示实数1,5,点B 关于点A 的对称点为C ,则点C 所表示的实数为( ) A. 5-2 B. 2-5 C.5-3 D.3-5分析:这道题也考查了数形结合的数学思想,同时又考查了对称的性质.B 、C 两点关于点A 对称,因而B 、C 两点到点A 的距离是相同的,点B 到点A 的距离是5-1,所以点C 到点A 的距离也是5-1,设点C 到点O 的距离为a ,所以a +1=5-1,即a =5-2.又因为点C 所表示的实数为负数,所以点C 所表示的实数为2-5.例4 已知a 、b 是有理数,且满足(a -2)2+3-b =0,则a b 的值为分析:因为(a -2)2+3-b =0,所以a -2=0,b -3=0。
实数知识点及例题
实数习题集【知识要点】1.实数分类:2.相反数:b a ,互为相反数 0=+b a4.倒数:b a ,互为倒数0;1=ab 没有倒数.5.平方根,立方根:==x ,a x a x 记作的平方根叫做数则数若,2±a . 若a x ,a x a x 33,==记作的立方根叫做数则数6.数轴的概念与画法.实数与数轴上的点一一对应;利用数形结合的思想及数轴比较实数大小的方法.实数易错题分类汇总典型例题一:计算1.计算()2010200902211-⨯⎪⎭⎫ ⎝⎛-的结果是【答案】-1 2. ()()212321-+-+⎪⎭⎫ ⎝⎛--π的值为【答案】13.下列计算中,正确的是( )A .020= B .2a a a =+C3=±D .623)(a a =【答案】D4.下列运算正确的是( )A .1331-÷= Ba = C .3.14 3.14ππ-=- D .326211()24a b a b =典型例题二:估算 1.82cm 接近于( )实数有理数无理数 整数(包括正整数,零,负整数) 分数(包括正分数,负整数)正无理数 负无理数)0(>a 3.绝对值: =aa 0 a -)0(=a )0(<aA .珠穆朗玛峰的高度B .三层楼的高度C .姚明的身高D .一张纸的厚度 【答案】C2.如图,数轴上A 、B 两点分别对应实数a 、b ,则下列结论正确的是( )A .0>abB .0>-b aC .0>+b aD .0||||>-b a【答案】D典型例题三:应用题1.有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中,平均一个人传染的人数为( ) A .8人 B .9人 C .10人 D .11人【答案】B.2.一种商品原来的销售利润率是47%.现在由于进价提高了5%,而售价没变,所以该商品的销售利润率变成了 【注:销售利润率=(售价—进价)÷进价】 【答案】40%典型例题四:信息与推断题1.观察下列算式,用你所发现的规律得出20102的末位数字是( )21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,… A .2 B .4 C .6 D .8 【答案】B 2.观察下列算式:,65613,21873,7293,2433,813,273,93,1387654321========,通过观察,用你所发现的规律确定20023的个位数字是( )A.3B.9C.7D.1 【答案】B 3.观察下列各式:()1121230123⨯=⨯⨯-⨯⨯ ()1232341233⨯=⨯⨯-⨯⨯ ()1343452343⨯=⨯⨯-⨯⨯……计算:3×(1×2+2×3+3×4+…+99×100)=( )A .97×98×99B .98×99×100C .99×100×101D .100×101×102 【答案】C4.已知:3212323=⨯⨯=C ,1032134535=⨯⨯⨯⨯=C ,154321345646=⨯⨯⨯⨯⨯⨯=C ,…,观察上面的计算过程,寻找规律并计算=610C . 【答案】210典型例题五:比较大小10 -1 a b B A1. 31.0与1.02.331与213. 215--与-2 4. 2003-2002与2002-2001作业:设2的整数部分为a ,小数部分为b ,则1+2a b -2b =第三讲 平移、旋转与对称专题例题精讲1. 正方形ABCD 在坐标系中的位置如图所示,将正方形ABCD绕D 点顺时针方向旋转90后,B 点的坐标为( )A .(22)-,B .(41),C .(31), D .(40),随堂练习1下列四张扑克牌图案,属于中心对称的是( ).2.观察下列银行标志,从图案看既是轴对称图形又是中心对称图形的有( )A .1个B .2个C .3个D .4个例题精讲2将图(六)的正方形色纸沿其中一条对角线对折后,再沿原正方形的另 一条对角线对折,如图(七)所示。
实数知识点归纳
启东教育 a )2=a(a≥0),与
a2 = a
6.非负数的重要性质:若几个非负数之和等于 0,则每一个非负数都为 0(此性质应用很广,务必 掌握)。 综合演练 一、填空题 1、 (-0.7)2 的平方根是 2、若 a 2 =25, b =3,则 a+b= 3、已知一个正数的两个平方根分别是 2a﹣2 和 a﹣4,则 a 的值是 4、 3 4 = ____________ 5、若 m、n 互为相反数,则 m 5 n =_________ 6、若
( 7 ) 2 7
49 7
)
49 7
) B、 9 的平方根是 3
C、 9 的算术平方根是 3 D、 9 的算术平方根是 3 9.下列说法:(1) 3 是 9 的平方根;(2)9 的平方根是 3 ;(3)3 是 9 的平方根;(4)9 的平方根是 3,其中正确的有( A.3 个 10.下列语句中正确的是( A、任意算术平方根是正数 B、只有正数才有算术平方根 C、∵3 的平方是 9,∴9 的平方根是 3 D、 1 是 1 的平方根 三、利用平方根解下列方程. (1) (2x-1)2-169=0; ) D.4 个 ) B.2 个 C.1 个
1
___,x=___
__。
13、当 x _______ 时, 1 x 有意义。
x 1 14、当 x ________ 时,式子 x 2 有意义。
15、若 4a 1 有意义,则 a 能取的最小整数为 二、选择题 1. 9 的算术平方根是( ) A.-3 B.3 C.±3 )
( 9) 2 81 =9
2、每一个正数都有两个互为相反数的平方根,其中正的那个是算术平方根;任何一个数都有唯一 一个立方根,这个立方根的符号与原数相同。 3、 a 本身为非负数,有非负性,即 a ≥0; a 有意义的条件是 a≥0。 4、公式:⑴( a )2=a(a≥0) ;⑵ 3 a = 3 a (a 取任何数) 。
实数知识点归纳及典型例题
第十三章实数----知识点总结一、算术平方根1.算术平方根的定义:一般地,如果的等于a ,即,那么这个正数x 叫做a 的算术平方根.a 的算术平方根记为,读作“根号a ”,a 叫做.规定:0的算术平方根是0.也就是,在等式a x =2(x ≥0)中,规定a x =。
理解:a x =2(x ≥0)a x =a 是x 的平方x 的平方是ax 是a 的算术平方根a 的算术平方根是x 2.a 的结果有两种情况:当a 是完全平方数时,a 是一个有限数;当a 不是一个完全平方数时,a 是一个无限不循环小数。
3.当被开方数扩大(或缩小)时,它的算术平方根也扩大(或缩小);4.夹值法及估计一个(无理)数的大小(方法:)二、平方根1.平方根的定义:如果的平方等于a ,那么这个数x 就叫做a 的.即:如果,那么x 叫做a 的. 理解:a x =2<—>a x ±=a 是x 的平方x 的平方是ax 是a 的平方根a 的平方根是x2.开平方的定义:求一个数的的运算,叫做.开平方运算的被开方数必须是才有意义。
3.平方与开平方:±3的平方等于9,9的平方根是±34.一个正数有平方根,即正数进行开平方运算有两个结果;一个负数平方根,即负数不能进行开平方运算5.符号:正数a 的正的平方根可用a 表示,a 也是a 的算术平方根;正数a 的负的平方根可用-a 表示.6.平方根和算术平方根两者既有区别又有联系:区别在于正数的平方根有两个,而它的算术平方根只有一个; 联系在于正数的正平方根就是它的算术平方根,而正数的负平方根是它的算术平方根的相反数。
三、立方根1.立方根的定义:如果的等于a ,这个数叫做a 的(也叫做),即如果,那么x 叫做a 的立方根。
2.一个数a “三次根号a ”,其中a 叫被开方数,3叫根指数,不能省略,若省略表示平方。
理解:a x =3<—>3a x =a 是x 的立方x 的立方是ax 是a 的立方根a 的立方根是x3.一个正数有一个正的立方根;0有一个立方根,是它本身;一个负数有一个负的立方根;任何数都有唯一的立方根。
(完整版)第六章实数知识点总结
第六章实数知识网络:考点一、实数的概念及分类1、实数的分类2、无理数在理解无理数时,要抓住“无限不循环”这一点,归纳起来有四类(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等;(3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o 等(这类在初三会出现)判断一个数是否是无理数,不能只看形式,要看运算结果,如0,16π是有理数,而不是无理数。
3、有理数与无理数的区别(1)有理数指的是有限小数和无限循环小数,而无理数则是无限不循环小数;(2)所有的有理数都能写成分数的形式(整数可以看成是分母为1的分数),而无理数则不能写成分数形式。
考点二、平方根、算术平方根、立方根1、概念、定义(1)如果一个正数x的平方等于a,即,那么这个正数x叫做a的算术平方根。
(2)如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟)。
如果,那么x叫做a的平方根。
(3)如果一个数的立方等于a,那么这个数就叫做a 的立方根(或a 的三次方根)。
如果,那么x叫做a的立方根。
2、运算名称(1)求一个正数a的平方根的运算,叫做开平方。
平方与开平方互为逆运算。
(2)求一个数的立方根的运算,叫做开立方。
开立方和立方互为逆运算。
3、运算符号(1)正数a的算术平方根,记作“a”。
(2)a(a≥0)的平方根的符号表达为。
(3)一个数a的立方根,用表示,其中a是被开方数,3是根指数。
4、运算公式4、开方规律小结(1)若a≥0,则a的平方根是a a a它们互为相反数,其中正的那个叫它的算术平方根;0的平方根和算术平方根都是0;负数没有平方根。
实数都有立方根,一个数的立方根有且只有一个,并且它的符号与被开方数的符号相同。
正数的立方根是正数,负数的立方根是负数,0的立方根是0。
(2)若a<0,则a 没有平方根和算术平方根;若a 为任意实数,则a 的立方根是。
实数知识点总结
第六章实数知识网络:考点一、实数的概念及分类1、实数的分类2、无理数在理解无理数时,要抓住“无限不循环”这一点,归纳起来有四类(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等;(3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o 等(这类在初三会出现)判断一个数是否是无理数,不能只看形式,要看运算结果,如0,16是有理数,而不是无理数。
3、有理数与无理数的区别(1)有理数指的是有限小数和无限循环小数,而无理数则是无限不循环小数;(2)所有的有理数都能写成分数的形式(整数可以看成是分母为1的分数),而无理数则不能写成分数形式。
考点二、平方根、算术平方根、立方根1、概念、定义(1)如果一个正数x的平方等于a,即,那么这个正数x叫做a的算术平方根。
(2)如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟)。
如果,那么x叫做a的平方根。
(3)如果一个数的立方等于a,那么这个数就叫做a 的立方根(或a 的三次方根)。
如果,那么x叫做a的立方根。
2、运算名称(1)求一个正数a的平方根的运算,叫做开平方。
平方与开平方互为逆运算。
(2)求一个数的立方根的运算,叫做开立方。
开立方和立方互为逆运算。
3、运算符号(1)正数a的算术平方根,记作“a”。
(2)a(a≥0)的平方根的符号表达为。
(3)一个数a的立方根,用表示,其中a是被开方数,3是根指数。
4、运算公式4、开方规律小结(1)若a ≥0,则a 的平方根是a ±,a 的算术平方根a ;正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;0的平方根和算术平方根都是0;负数没有平方根。
实数都有立方根,一个数的立方根有且只有一个,并且它的符号与被开方数的符号相同。
正数的立方根是正数,负数的立方根是负数,0的立方根是0。
(2)若a<0,则a 没有平方根和算术平方根;若a 为任意实数,则a 的立方根是。
北师版八年级数学上册 第二章 实数 知识归纳与题型突破(二十一类题型清单)
第二章实数知识归纳与题型突破(二十一类题型清单)01思维导图02知识速记一、平方根和立方根类型平方根立方根项目被开方数非负数任意实数符号表示a±3a性质一个正数有两个平方根,且互为相反数;零的平方根为零;负数没有平方根;一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零;重要结论⎩⎨⎧<-≥==≥=)0()0()()(22a a aa a a a a a 333333)(aa a a aa -=-==二、无理数与实数有理数和无理数统称为实数.1.实数的分类实数⎧⎧⎫⎪⎪⎪⎨⎬⎪⎪⎪⎪⎨⎩⎭⎪⎧⎫⎪⎨⎬⎪⎩⎭⎩正有理数有理数零有限小数或无限循环小数负有理数正无理数无理数无限不循环小数负无理数要点:(1)所有的实数分成三类:有限小数,无限循环小数,无限不循环小数.其中有限小数和无限循环小数统称有理数,无限不循环小数叫做无理数.,等;②有特殊意义的数,如π;③有特定结构的数,如0.1010010001…(3)凡能写成无限不循环小数的数都是无理数,并且无理数不能写成分数形式.2.实数与数轴上的点一一对应数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应.4.实数的运算数a 的相反数是-a ;一个正实数的绝对值是它本身;一个负实数的绝对值是它相反数;0的绝对值是0.有理数的运算法则和运算律在实数范围内仍然成立.实数混合运算的运算顺序:先乘方、开方、再乘除,最后算加减.同级运算按从左到右顺序进行,有括号先算括号里.5.实数的大小的比较有理数大小的比较法则在实数范围内仍然成立.法则1.实数和数轴上的点一一对应,在数轴上表示的两个数,右边的数总比左边的数大;法则2.正数大于0,0大于负数,正数大于一切负数,两个负数比较,绝对值大的反而小;法则3.两个数比较大小常见的方法有:求差法,求商法,倒数法,估算法,平方法.三、二次根式的相关概念和性质1.二次根式0)a ≥等式子,都叫做二次根式.要点:有意义的条件是0a ≥,即只有被开方数0a ≥义.2.二次根式的性质(1);(2);(3).3.最简二次根式(1)被开方数是整数或整式;(2)被开方数中不含能开方的因数或因式.等都是最简二次根式.要点:最简二次根式有两个要求:(1)被开方数不含分母(2)被开方数中每个因式的指数都小于根指数2.4.同类二次根式几个二次根式化成最简二次根式后,被开方数相同,这几个二次根式就叫同类二次根式.要点:判断是否是同类二次根式,一定要化简到最简二次根式后,看被开方数是否相同,再判断.四、二次根式的运算1.乘除法(1)乘除法法则:类型法则逆用法则二次根式的乘法0,0)a b=≥≥积的算术平方根化简公式:0,0)a b=≥≥二次根式的除法)a b=≥00,>商的算术平方根化简公式:0,0)a b=≥>要点:(1)当二次根式的前面有系数时,可类比单项式与单项式相乘(或相除)的法则,如=.(2)被开方数a b、≠.2.加减法将二次根式化为最简二次根式后,将同类二次根式的系数相加减,被开方数和根指数不变,即合并同类二次根式.要点:二次根式相加减时,要先将各个二次根式化成最简二次根式,再找出同类二次根式,最后合并(13+=+-03题型归纳题型一实数的概念与分类例题1.在下列各数:3.14159260.2、1π、13111中,无理数的个数()A .2B .3C .4D .5巩固训练2.在实数22,1,37π-- ,(每隔一个1增加一个0)中,无理数有()A .2个B .3个C .4个D .5个3.下列说法正确的是()A .两个无理数的和一定是无理数B .无限小数都是无理数C .实数可以用数轴上的点来表示D .分数可能是无理数4.把下列各数填人相应的集合内:143.10.8080080008...39π-,,,,(相邻两个8之间0的个数逐步甲1),158,-142整数集合{…}负分数集合{…}有理数集合{…}无理数集合{…}题型二平方根与算术平方根例题5.下列说法正确的是()A .8-的立方根是2±B .2(4)-的算术平方根是4-C 4±D .0的平方根与算术平方根都是0巩固训练6.下列计算正确的是()A .23=B .1=C 4=±D 3=-7.一个正数的两个平方根分别为42m -与1--m ,则这个正数为()A .1B .2C .3625D .48.下列说法中错误的是()A .12是0.25的一个平方根B .正数a 的两个平方根的和为0C .916的平方根是34±D .当0x ≠时,2x -有平方根9)A .4B .4±C .2D .2±题型三平方根、立方根的解方程问题例题10.解方程:(1)()21x -=(2)()312x -=-7巩固训练11.求出下列x 的值.(1)24490x -=;(2)()327164x +=-.题型四算术平方根的非负性例题12.已知a 、b 20b -=,则23a b -的值为()A .12-B .5-C .910D .13巩固训练13.已知x y ,()2320y +=,则x y -的值为()A .3B .3-C .1D .1-14.已知2a b +(1)求a 、b 的值.(2)求23a b -的平方根.15.已知一个正方形的边长为a ,面积为S ,则()A .S =B .S 的平方根是aC .a是S 的算术平方根D .a =题型五立方根例题16)A .表示8-的立方根B .结果等于2-C .与D .没有意义巩固训练17.下列说法正确的是()A .任意实数都有平方根B .任意实数都有立方根C .任意实数都有平方根和立方根D .正数的平方根和立方根都只有一个18=.19=,=.202=-)A .2±B .2C .3±D .3题型六立方根的性质及应用例题21,则x 和y 的关系是()A .x=y=0B .x 和y 互为相反数C .不能确定D .x 和y 相等巩固训练22x =.23.21a -的平方根为3±,31a b -+的立方根为2的值为()A .3-B .3C .3±D .不确定题型七平方根与立方根综合问题例题24.若一个数的算术平方根与它的立方根相同,则这个数是()A .1B .0或1C .0D .非负数巩固训练25.已知21a -的平方根是3±,1b -的立方根是2,则=a ,b =,b a -的算术平方根是.26.如果2a A -=为+3a b 的算术平方根,2a B -=为21a -的立方根,则+A B 的平方根为.题型八算术平方根、立方根的实际应用例题27.依次连结22⨯方格四条边的中点得到一个阴影正方形,设每一方格的边长为1,阴影正方形的边长是()A .2B CD .2.5巩固训练28.如图在长方形ABCD 内,两个小正方形的面积分别为1和2,则图中阴影部分的面积为()A .12B .1C D 129.已知一个正方体的体积是31000cm ,现在要在它的8个角上分别截去1个大小相同的小正方体,截去后余下部分的体积为3936cm ,则截去的每个小正方体的棱长是cm .题型九算术平方根、立方根小数点移动问题例题30. 1.333≈ 2.872≈≈.巩固训练31a =)A .0.1aB .aC .1.1aD .10.1a32.1.166≈≈≈≈聪明的同学你能不用计算器得出(1)≈.(2≈.题型十用计算器开方例题33.利用教材中的计算器依次按键如下:则计算器显示的结果与下列各数中最接近的一个是()A .0.5B .0.6C .0.8D .0.9巩固训练34.在使用DY-570型号的计算器时,小明输入一个数据后,按照以下步骤操作,依次按照从第一步到第三步循环按键:若一开始输入的数据为5,那么第2022步之后,显示的结果是()A .5B .15C .125D .2535.若用我们数学课本上采用的科学计算器进行计算,其按键顺序为:则输出结果为()A .8B .4C .18D .14题型十一整数部分、小数部分问题例题36m,则m 的算术平方根的值最接近整数()A .2B .3C .4D .5巩固训练37.已知4a ,4b ,则()2023a b +=.38.已知正数x 的两个不等的平方根分别是214a -和2a +,1b +的立方根为3-;ca m n +=,其中m 为整数,01n <<,则()()36n m +-=.39.在学习《实数》内容时,我们通过“逐步逼近”的近似值,得出1.4 1.5<<.利用“逐步逼近”法,请回答问题:a和b ,且a b <,那么=a ,b =;(2)ab ,求a b +的值;(3)已知:10x y ++,其中x是整数,且01y <<,求y x -的值.题型十二实数的大小比较例题40.在实数1,0,中,最小的是.巩固训练41(填写“>”或“<”或“=”).42313(选填“>”,“<”或“=”)题型十三实数与数轴例题43.如图,实数1在数轴上的对应点可能是()A .A 点B .B 点C .C 点D .D 点巩固训练44.下列说法正确的是()A .有理数与数轴上的点一一对应B 2C .两个整数相除,如果永远都除不尽,那么结果一定是一个无理数D .任意一个无理数的绝对值都是正数45.观察下图,每个小正方形的边长均为1.(1)图中阴影部分(正方形)的面积是___________,边长是___________;(2)作图:在数轴上作出边长的对应点P (要求保留作图痕迹);(3)在(2)题的数轴上表示1的点记为M ,点N 也在这条数轴上且MN MP =,直接写出点N 表示的数.题型十四无理数的估算例题46.估计262的值应在()A .1和2之间B .2和3之间C .3和4之间D .4和5之间巩固训练47.已知5a b <<,a ,b 是连续的正整数,则a b +的值为()A .4B .5C .6D .748.m n 、是连续的两个整数,若6m n <,则m n +的值为.49107的近似数的过程:∵面积为107107,且1010711<<,10x =+,其中01x <<,画出如图示意图,∵图中2210210S x x =+⨯+正方形,107S =正方形.∴2210210107x x +⨯+=,当2x 较小时,省略2x ,得20100107x +≈,得到0.35x ≈10.35≈.______;(2)的近似值.(画出示意图,标明数据,并写出求解过程,精确到...0.1...)(3)结合上述具体实例,已知非负整数a 、b 、m ,若1a a <<+,且2m a b =+≈______.(用a 、b 的代数式表示)题型十五程序框图例题50.在信息技术课上,好学的小明制作了一个关于实数(||20)x x <的运算程序如图所示,若输出的y 时,则输入的实数x 可取的负整数值是.巩固训练51.如图,有一个数值转换器,流程如下图所示,当输入x 的值为64时,则输出y 的值是.52.如图是一个数值转换器示意图:(1)当输入的x 为36时,输出的y 的值是_______;(2)若输入x 值后,始终输不出y 的值,则满足题意的x 值是_______;(3)若输出的2y >,则x 的最小整数值是_______.题型十六材料信息题例题53.观察上表中的数据信息:则下列结论: 2.2801 1.51=;23409231041=;③只有3个正整数a 满足15.215.3a << 2.31 1.510<.其中正确的是.(填写序号)a 1515.115.215.315.4…a 2225228.01231.04234.09237.16…巩固训练54.对于任何实数a ,我们规定:用符号[]a 表示不超过a 的最大整数,例如:[]22=,31⎡=⎣,[]2.53-=-.现对72进行如下操作:,这样对72只需进行3次操作后变为1.类似地,只需进行3次操作后变为1的所有正整数中,最大的是.题型十七二次根式的概念、有意义的条件、求值例题55.下列式子属于二次根式的是()A 37B .12C 3D 7-巩固训练5614x-在实数范围内有意义,则x 的取值范围是.57()22a a a a --a 的取值范围是.58.已知n 51n +n 的最小值为.59.已知x 、y 为实数,且994y x x =--,则x 、y 的值分别为()A .9、4B .2、3C .4、9D .3、4题型十八二次根式的化简例题60=巩固训练61.若0xy <)A .B .C .-D .-62.实数m )A .29m -B .5-C .5D .92m-633x =-,那么x 的取值范围是()A .3x <B .3x ≤C .3x >D .3x ≥题型十九最简二次根式等有关概念例题64.下列二次根式中,是最简二次根式的是()AB C D 巩固训练65.下列根式中,是最简二次根式的是()A BC D66.下列各组二次根式中,能合并的是()AB C D67.若最简二次根式是同类二次根式,则2xy =.68x 的值为()A .12-B .34C .2D .5题型二十二次根式的运算例题69.下列运算正确的是()A 2=±B .(2=C=D.(÷巩固训练70.下列运算正确的是()A+=B=C.=D.5= 71.计算:;1).72.计算:+(2)-;(4)21)2)-+.7.例题74.李老师家装修,长方形电视背景墙BC,宽AB,中间要镶一个长为,的长方形大理石图案(图中阴影部分).(1)背景墙的周长是多少?(结果化为最简二次根式)(2)除去大理石图案部分,其它部分贴壁纸,若壁纸造价为2元/2m,大理石造价为200元/2m,则整个电视背景墙需要花费多少元?(结果化为最简二次根式)巩固训练75.快递公司为顾客的快递提供纸箱包装服务,现有三款长方体包装纸箱的高相同,底面规格如表:型号长宽小号20cm 18cm 中号25cm 20cm 大号30cm25cm已知甲、乙两件长方体礼品底面都是正方形,底面积分别为280cm ,2180cm ,两件礼品的高都小于包装纸箱的高.若要将它们合在一个包装箱中寄出,底面摆放方式如图,从节约材料的角度考虑,应选择哪种底面型号的纸箱76.我国南宋时期数学家秦九韶,古希腊的几何学家海伦都给出了三角形面积计算公式,这两个公式实质相同,我们称之为“海伦—秦九韶公式”.即如果一个三角形的三边长分别为a ,b ,c ,记1()2p a b c =++,那么三角形的面积为S =.根据上述知识,解决下列问题.(1)如图,ABC 中,7BC a ==,6AC b ==,5AB c ==,请利用上述公式求ABC 的面积;(2)在(1)的条件下,作BD AC ⊥于点D ,求BD ,CD 的长.第二章实数知识归纳与题型突破(二十一类题型清单)01思维导图02知识速记一、平方根和立方根类型平方根立方根项目被开方数非负数任意实数符号表示a±3a性质一个正数有两个平方根,且互为相反数;零的平方根为零;负数没有平方根;一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零;重要结论⎩⎨⎧<-≥==≥=)0()0()()(22a a aa a a a a a 333333)(aa a a aa -=-==二、无理数与实数有理数和无理数统称为实数.1.实数的分类实数⎧⎧⎫⎪⎪⎪⎨⎬⎪⎪⎪⎪⎨⎩⎭⎪⎧⎫⎪⎨⎬⎪⎩⎭⎩正有理数有理数零有限小数或无限循环小数负有理数正无理数无理数无限不循环小数负无理数要点:(1)所有的实数分成三类:有限小数,无限循环小数,无限不循环小数.其中有限小数和无限循环小数统称有理数,无限不循环小数叫做无理数.,等;②有特殊意义的数,如π;③有特定结构的数,如0.1010010001…(3)凡能写成无限不循环小数的数都是无理数,并且无理数不能写成分数形式.2.实数与数轴上的点一一对应数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应.4.实数的运算数a 的相反数是-a ;一个正实数的绝对值是它本身;一个负实数的绝对值是它相反数;0的绝对值是0.有理数的运算法则和运算律在实数范围内仍然成立.实数混合运算的运算顺序:先乘方、开方、再乘除,最后算加减.同级运算按从左到右顺序进行,有括号先算括号里.5.实数的大小的比较有理数大小的比较法则在实数范围内仍然成立.法则1.实数和数轴上的点一一对应,在数轴上表示的两个数,右边的数总比左边的数大;法则2.正数大于0,0大于负数,正数大于一切负数,两个负数比较,绝对值大的反而小;法则3.两个数比较大小常见的方法有:求差法,求商法,倒数法,估算法,平方法.三、二次根式的相关概念和性质1.二次根式0)a ≥的式子叫做二次根式,如等式子,都叫做二次根式.要点:有意义的条件是0a ≥,即只有被开方数0a ≥时,式子义.2.二次根式的性质(1);(2);(3).3.最简二次根式(1)被开方数是整数或整式;(2)被开方数中不含能开方的因数或因式.等都是最简二次根式.要点:最简二次根式有两个要求:(1)被开方数不含分母(2)被开方数中每个因式的指数都小于根指数2.4.同类二次根式几个二次根式化成最简二次根式后,被开方数相同,这几个二次根式就叫同类二次根式.要点:判断是否是同类二次根式,一定要化简到最简二次根式后,看被开方数是否相同,再判断.四、二次根式的运算1.乘除法(1)乘除法法则:类型法则逆用法则二次根式的乘法0,0)a b=≥≥积的算术平方根化简公式:0,0)a b=≥≥二次根式的除法)a b=≥00,>商的算术平方根化简公式:0,0)a b=≥>要点:(1)当二次根式的前面有系数时,可类比单项式与单项式相乘(或相除)的法则,如=.(2)被开方数a b、≠.2.加减法将二次根式化为最简二次根式后,将同类二次根式的系数相加减,被开方数和根指数不变,即合并同类二次根式.要点:二次根式相加减时,要先将各个二次根式化成最简二次根式,再找出同类二次根式,最后合并(13+=+-03题型归纳题型一实数的概念与分类例题1.在下列各数:3.14159260.2、1π、13111中,无理数的个数()A .2B .3C .4D .52.在实数22,1,37π-- ,(每隔一个1增加一个0)中,无理数有()A .2个B .3个C .4个D .5个3.下列说法正确的是()A .两个无理数的和一定是无理数B .无限小数都是无理数C .实数可以用数轴上的点来表示D .分数可能是无理数B.无理数是无限不循环小数,无限小数不一定是无理数,故本选项说法错误,不符合题意;C.实数可以用数轴上的点来表示,说法正确,符合题意;D.分数是有理数,故本选项说法错误,不符合题意.故选:C .【点睛】本题主要考查了实数的有关概念和实数与数轴的关系,熟练掌握实数的基本概念是解题的关键.4.把下列各数填人相应的集合内:143.10.8080080008...39π-,,,,(相邻两个8之间0的个数逐步甲1),158,-142整数集合{…}负分数集合{…}有理数集合{…}无理数集合{…}例题5.下列说法正确的是()A .8-的立方根是2±B .2(4)-的算术平方根是4-C 4±D .0的平方根与算术平方根都是0【答案】D【分析】利用平方根、算术平方根、立方根的定义逐项进行判断即可.【解析】解:A .8-的立方根是2-,故此选项不符合题意;B .2(4)-的算术平方根是4,故此选项不符合题意;6.下列计算正确的是()A .23=B .1=C 4=±D 3=-7.一个正数的两个平方根分别为42m -与1--m ,则这个正数为()A .1B .2C .3625D .4【答案】D【分析】本题考查平方根,解一元一次方程,熟练掌握相关的知识点是解题的关键.根据平方根的定义可知()4210m m -+--=,解方程即可.【解析】解:由题意得:()4210m m -+--=,解得:1m =,∴这个正数为()2424m -=,故选:D .8.下列说法中错误的是()A .12是0.25的一个平方根B .正数a 的两个平方根的和为0C.916的平方根是34±D.当0x≠时,2x-有平方根9)A.4B.4±C.2D.2±例题10.解方程:(1)()21x-=(2)()312x-=-711.求出下列x 的值.(1)24490x -=;(2)()327164x +=-.题型四算术平方根的非负性例题12.已知a 、b 20b -=,则23a b -的值为()A .12-B .5-C .910D .1313.已知x y ,()2320y +=,则x y -的值为()A .3B .3-C .1D .1-14.已知2a b +(1)求a 、b 的值.(2)求23a b -的平方根.15.已知一个正方形的边长为a ,面积为S ,则()A .S =B .S 的平方根是aC .a是S 的算术平方根D .a =例题16)A .表示8-的立方根B .结果等于2-C .与D .没有意义17.下列说法正确的是()A.任意实数都有平方根B.任意实数都有立方根C.任意实数都有平方根和立方根D.正数的平方根和立方根都只有一个【答案】B【分析】根据平方根和立方根的性质逐项判断即可得.【解析】解:A、因为负数没有平方根,所以此项错误,不符合题意;B、任意实数都有立方根,则此项正确,符合题意;C、因为负数没有平方根,所以此项错误,不符合题意;D、因为正数的平方根有两个,所以此项错误,不符合题意;故选:B.【点睛】本题考查了平方根和立方根,熟练掌握平方根和立方根的性质是解题关键.18=.202=-)A .2±B .2C .3±D .3例题21,则x 和y 的关系是()A .x=y=0B .x 和y 互为相反数C .不能确定D .x 和y 相等22x =.【答案】6【分析】直接利用相反数的定义得出x 的值,进而代入计算得出答案.【解析】解:由题意可知:12370x x -+-=,解得:6x =.故答案为:6.【点睛】此题主要考查了实数的性质,正确得出x 的值是解题关键.23.21a -的平方根为3±,31a b -+的立方根为2的值为()A .3-B .3C .3±D .不确定例题24.若一个数的算术平方根与它的立方根相同,则这个数是()A .1B .0或1C .0D .非负数【答案】B【分析】根据算术平方根及立方根定义,结合四个选项中的数逐项验证即可得到答案.【解析】解:0的算术平方根为0;0的立方根为0;1的算术平方根为1;1的立方根为1;∴若一个数的算术平方根与它的立方根相同,则这个数是0或1,故选:B .【点睛】本题考查算术平方根及立方根定义,理解题意,弄清楚一个数的算术平方根与它的立方根相同的含义是解决问题的关键.巩固训练25.已知21a -的平方根是3±,1b -的立方根是2,则=a ,b =,b a -的算术平方根是.26.如果2a A -=为+3a b 的算术平方根,2a B -=为21a -的立方根,则+A B 的平方根为.例题27.依次连结22⨯方格四条边的中点得到一个阴影正方形,设每一方格的边长为1,阴影正方形的边长是()A.2B CD.2.528.如图在长方形ABCD内,两个小正方形的面积分别为1和2,则图中阴影部分的面积为()A.12B.1C D129.已知一个正方体的体积是31000cm ,现在要在它的8个角上分别截去1个大小相同的小正方体,截去后余下部分的体积为3936cm ,则截去的每个小正方体的棱长是cm .【答案】2【分析】本题考查了立方根的应用,设截去的每个小正方体的棱长是cm x ,由题意得出310008936x -=,整理得38x =,再利用立方根的定义解方程即可得出答案.【解析】解:设截去的每个小正方体的棱长是cm x ,由题意得:310008936x -=,整理得:38x =,解得:2x =,∴截去的每个小正方体的棱长是2cm ,故答案为:2.题型九算术平方根、立方根小数点移动问题例题301.333≈2.872≈≈.31a =)A.0.1a B.a C.1.1a D.10.1a32.1.166≈≈≈≈聪明的同学你能不用计算器得出(1)≈.(2≈.例题33.利用教材中的计算器依次按键如下:则计算器显示的结果与下列各数中最接近的一个是()A.0.5B.0.6C.0.8D.0.934.在使用DY-570型号的计算器时,小明输入一个数据后,按照以下步骤操作,依次按照从第一步到第三步循环按键:若一开始输入的数据为5,那么第2022步之后,显示的结果是()A .5B .15C .125D .25题关键.35.若用我们数学课本上采用的科学计算器进行计算,其按键顺序为:则输出结果为()A .8B .4C .18D .14例题36m ,则m 的算术平方根的值最接近整数()A .2B .3C .4D .5巩固训练37.已知4a ,4b ,则()2023a b +=.38.已知正数x 的两个不等的平方根分别是214a -和2a +,1b +的立方根为3-;ca m n +=,其中m 为整数,01n <<,则()()36n m +-=.39.在学习《实数》内容时,我们通过“逐步逼近”的近似值,得出1.4 1.5<<.利用“逐步逼近”法,请回答问题:a和b ,且a b <,那么=a ,b =;(2)ab ,求a b +的值;(3)已知:10x y ++,其中x是整数,且01y <<,求y x -的值.例题40.在实数1,0,中,最小的是.例题43.如图,实数1在数轴上的对应点可能是()A.A点B.B点C.C点D.D点44.下列说法正确的是()A.有理数与数轴上的点一一对应BC.两个整数相除,如果永远都除不尽,那么结果一定是一个无理数D.任意一个无理数的绝对值都是正数45.观察下图,每个小正方形的边长均为1.(1)图中阴影部分(正方形)的面积是___________,边长是___________;(2)作图:在数轴上作出边长的对应点P(要求保留作图痕迹);(3)在(2)题的数轴上表示1的点记为M,点N也在这条数轴上且MN MP=,直接写出点N表示的数.(3)解:如图,设点N表示的数为x,由题意得:1171-=-,x解得217x=-,所以点N表示的数为217-.【点睛】本题考查了勾股定理、实数与数轴,熟练掌握实数与数轴的关系是解题关键.题型十四无理数的估算例题46.估计262-的值应在()A .1和2之间B .2和3之间C .3和4之间D .4和5之间47.已知a b <<,a,b 是连续的正整数,则a b +的值为()A .4B .5C .6D .748.m n 、是连续的两个整数,若m n <,则m n +的值为.∵2,3是连续的两个整数,∴2,3m n ==,∴235m n +=+=,故答案为:5.【点睛】本题主要考查无理数的估算,掌握无理数估算的方法是解题的关键.49的近似数的过程:∵面积为107,且1011<<,10x =+,其中01x <<,画出如图示意图,∵图中2210210S x x =+⨯+正方形,107S =正方形.∴2210210107x x +⨯+=,当2x 较小时,省略2x ,得20100107x +≈,得到0.35x ≈10.35≈.______;(2)的近似值.(画出示意图,标明数据,并写出求解过程,精确到...0.1...)(3)结合上述具体实例,已知非负整数a 、b 、m ,若1a a <<+,且2m a b =+≈______.(用a 、b 的代数式表示)∵图中22816S x x =++正方形∴2281674x x ++=,当2x 较小时,省略2x ,得16得到0.625x ≈,即748.6≈(3)如图,设m a x =+,正方形的面积为:22a ax ++当2x 较小时,省略2x ,得a例题50.在信息技术课上,好学的小明制作了一个关于实数(||20)x x <的运算程序如图所示,若输出的y 时,则输入的实数x 可取的负整数值是.51.如图,有一个数值转换器,流程如下图所示,当输入x 的值为64时,则输出y 的值是.【答案】32【分析】本题主要考查的是立方根、算术平方根的定义,有理数、无理数的定义,熟练掌握相关知识是解题的关键.依据运算程序进行计算即可.【解析】解:根据步骤,输入64,先有3644=,是有理数,42=是有理数,返回到第一步,取2的立方根是32,是无理数,最后输出32故答案为:32.52.如图是一个数值转换器示意图:(1)当输入的x为36时,输出的y的值是_______;(2)若输入x值后,始终输不出y的值,则满足题意的x值是_______;y>,则x的最小整数值是_______.(3)若输出的2【答案】(1)6(2)0和1(3)5【分析】本题考查了算术平方根的计算和无理数的判断,(1)根据运算规则即可求解;(2)根据0的算术平方根是0,1的算术平方根是1即可判断;x,,再根据运算法则,进行逆运算即可求解.(3)先得出输入的>4例题53.观察上表中的数据信息:则下列结论: 1.51=;1=;③只有3个正整数a满足15.215.3<.其中正确的是.(填写序号)<< 1.510a1515.115.215.315.4…a2225228.01231.04234.09237.16…54.对于任何实数a ,我们规定:用符号[]a表示不超过a 的最大整数,例如:[]22=,1=,[]2.53-=-.现对72进行如下操作:,这样对72只需进行3次操作后变为1.类似地,只需进行3次操作后变为1的所有正整数中,最大的是.故答案为:255.【点睛】本题考查了实数大小比较,算术平方根,熟练掌握算术平方根的意义是解题的关键.题型十七二次根式的概念、有意义的条件、求值例题55.下列式子属于二次根式的是()C DA B.157a的取值范围是.a≥【答案】2【分析】根据二次根式有意义的条件,列不等式求解即可得到答案.58.已知n n 的最小值为.【答案】13【分析】根据当51n +是最小的完全平方数时,n 最小,从而得出答案.【解析】解:∵27=49,28=64,∴51=64n +,∴13n =.故答案为:13.【点睛】本题考查了二次根式,掌握算术平方根与平方的关系是解题的关键.59.已知x 、y 为实数,且4y =,则x 、y 的值分别为()A .9、4B .2、3C .4、9D .3、4例题60=61.若0xy <)A .B .C .-D .-62.实数m )A .29m -B .5-C .5D .92m-633x =-,那么x 的取值范围是()A .3x <B .3x ≤C .3x >D .3x ≥64.下列二次根式中,是最简二次根式的是()例题65.下列根式中,是最简二次根式的是()A BC D。
第六章实数知识点总结
第六章实数知识网络:考点一、实数的概念及分类1、实数的分类2、无理数在理解无理数时,要抓住“无限不循环”这一点,归纳起来有四类(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等;(3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o 等(这类在初三会出现)判断一个数是否是无理数,不能只看形式,要看运算结果,如0,16π是有理数,而不是无理数。
3、有理数与无理数的区别(1)有理数指的是有限小数和无限循环小数,而无理数则是无限不循环小数;(2)所有的有理数都能写成分数的形式(整数可以看成是分母为1的分数),而无理数则不能写成分数形式。
考点二、平方根、算术平方根、立方根1、概念、定义(1)如果一个正数x的平方等于a,即,那么这个正数x叫做a的算术平方根。
(2)如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟)。
如果,那么x叫做a的平方根。
(3)如果一个数的立方等于a,那么这个数就叫做a 的立方根(或a 的三次方根)。
如果,那么x叫做a的立方根。
2、运算名称(1)求一个正数a的平方根的运算,叫做开平方。
平方与开平方互为逆运算。
(2)求一个数的立方根的运算,叫做开立方。
开立方和立方互为逆运算。
3、运算符号(1)正数a的算术平方根,记作“a”。
(2)a(a≥0)的平方根的符号表达为。
(3)一个数a的立方根,用表示,其中a是被开方数,3是根指数。
4、运算公式4、开方规律小结(1)若a≥0,则a的平方根是a a a它们互为相反数,其中正的那个叫它的算术平方根;0的平方根和算术平方根都是0;负数没有平方根。
实数都有立方根,一个数的立方根有且只有一个,并且它的符号与被开方数的符号相同。
正数的立方根是正数,负数的立方根是负数,0的立方根是0。
(2)若a<0,则a 没有平方根和算术平方根;若a 为任意实数,则a 的立方根是。
七年级实数知识点归纳整理
七年级实数知识点归纳整理一、实数的定义实数是可以用数轴上的点表示的数,包括有理数和无理数两部分。
有理数是可以写成两个整数之比的数,而无理数则不能用有限的小数或分数表示。
实数范围包括正数、负数和零。
二、实数的四则运算法则1.实数的加法和减法运算:实数加法运算遵循交换律、结合律和分配律,减法运算可以转化为加法运算。
2.实数的乘法和除法运算:实数乘法运算遵循交换律、结合律和分配律,除法运算可以转化为乘法运算。
三、实数的比较大小1.同号实数的比较大小:同号实数绝对值越大,数值越大。
2.异号实数的比较大小:如果两个实数各为正数或负数,则绝对值大的数较小,反之则绝对值小的数较小。
四、实数的绝对值实数a的绝对值表示为|a|,表示a到原点的距离。
当a为正数时,|a|=a,当a为负数时,|a|=-a。
五、开方运算1.正实数的开方:对一个正实数a开方,结果是一个正实数x,即x²=a。
2.负实数的开方:不存在实数的平方等于负数,但可以引入虚数单位i,表示√-1,即i²=-1。
因此,负实数的开方可以用虚数单位表示,如√-4=2i。
六、实数的进一法和舍一法1.进一法:如果一个数x的小数部分大于等于0.5,则x取整后加1,即进一法。
2.舍一法:如果一个数x的小数部分小于0.5,则x取整后不变,即舍一法。
七、实数的科学计数法科学计数法可以将一个实数表示成a×10ⁿ的形式,其中a是一个在1和10之间的数,n为整数。
例如,1234可以表示为1.234×10³。
八、实数的表示方式1.小数表示法:直接将实数表示为小数形式,如1.5、-0.75等。
2.分数表示法:将实数表示为两个整数的比,如¾、-2/3等。
3.百分数表示法:将实数乘以100,以百分号表示,如25%、-50%等。
九、实数的应用实数在日常生活和数学科学中有广泛的应用,如货币、温度、长度、面积、体积等均为实数,实数也是数学中许多重要概念的基础,如不等式、函数、导数等。
《实数》知识点及典型例题
6
3
)
C、 -9=-3
D、
1 1 16 =4 9 3 ) ) )
5、一个数的平方根和它的立方根相等,则这个数是 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ( A、1 B、0 C、1 或 0 D、1 或 0 或-1 6、已知 x+10+ y-13=0,则 x+y 的值是 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ( A、13 B、3 C、-3 D、23 7、两个连续自然数,前一个数的算术平方根是 x,则后一个数的算术平方根是 · · · · · · · · · ( A、x+1 2 A、 3
· 1 24、在- ,π ,0, 2,-22,2.121121112„(两个 2 之间依次多一个 1),0. 3 。 3
(1)是有理数的有: (2)是无理数的有: (3)是整数的有: (4)是分数的有:
; ; ; 。
5
25、跳伞运动员跳离飞机,在未打开降落伞前,下降的高度 d(米)与下降的时间 t(秒)之间有关系式:t= (不计空气阻力) (1)填表: 下降高度 d(米) 下降时间 t(秒) (2)若共下降 2000 米,则前 500 米与后 1500 米所用的时间分别是多少? 20 80 245 320
考点六、实数非负性的应用 1.已知:
3a b | a 49 | a7
2
0 ,求实数 a,b 的值。
2.已知(x-6) +
实数知识点总复习
A.1<a<2B.2<a<3C.3<a<4D.4<a<5
【答案】B
【解析】
【分析】
应先找到所求的无理数在哪两个和它接近的整数之间,然后判断出所求的无理数的范围即可求解.
【详解】
∵25<30<36,
∴5< <6,
∴5−3< −3<6−3,
即2< −3<3,
A.0B.1C.2D.3
【答案】D
【解析】
【分析】
直接利用数轴结合 点位置进而得出答案.
【详解】
解:∵数轴的单位长度为1,如果点 表示的数是-1,
∴点 表示的数是:2
故选:D.
【点睛】
此题主要考查了实数轴,正确应用数形结合分析是解题关键.
17.实数 的大小关系是()
A. B.
C. D.
【答案】D
【解析】
A. B. C. D.
【答案】D
【解析】
【分析】
根据算术平方根的定义求解即可.
【详解】
∵ = ,
∴ 的算术平方根是 ,
故选:D.
【点睛】
本题考查了算术平方根的定义,熟记概念是解题的关键.
19.如图,表示 的点在数轴上表示时,所在哪两个字母之间( )
A.C与DB.A与BC.A与CD.B与C
【答案】A
【解析】
【点睛】
此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…等有这样规律的数.
14.实数a,b,c,d在数轴上的对应点的位置如图所示,则下列结论正确的是()
A.|a|>|b|B.a>﹣3C.a>﹣dD.
【答案】A
【解析】
实数知识点梳理
考点卡片1.相反数(1)相反数的概念:只有符号不同的两个数叫做互为相反数.(2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等.(3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正.(4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号.2.绝对值(1)概念:数轴上某个数与原点的距离叫做这个数的绝对值.①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.③有理数的绝对值都是非负数.(2)如果用字母a表示有理数,则数a绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.即|a|={a(a>0)0(a=0)﹣a(a<0)3.倒数(1)倒数:乘积是1的两数互为倒数.一般地,a•=1(a≠0),就说a(a≠0)的倒数是.(2)方法指引:①倒数是除法运算与乘法运算转化的“桥梁”和“渡船”.正像减法转化为加法及相反数一样,非常重要.倒数是伴随着除法运算而产生的.②正数的倒数是正数,负数的倒数是负数,而0没有倒数,这与相反数不同.【规律方法】求相反数、倒数的方法求一个数的相反求一个数的相反数时,只需在这个数前面加上“﹣”即可数求一个数的倒数求一个整数的倒数,就是写成这个整数分之一求一个分数的倒数,就是调换分子和分母的位置注意:0没有倒数.4.平方根(1)定义:如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.(2)求一个数a的平方根的运算,叫做开平方.一个正数a的正的平方根表示为“a”,负的平方根表示为“﹣a”.正数a的正的平方根,叫做a的算术平方根,记作a.零的算术平方根仍旧是零.平方根和立方根的性质1.平方根的性质:正数a有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.立方根的性质:一个数的立方根只有一个,正数的立方根是正数,负数的立方根是负数,0的立方根是0.5.算术平方根(1)算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.记为a.(2)非负数a的算术平方根a有双重非负性:①被开方数a是非负数;②算术平方根a本身是非负数.(3)求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.6.非负数的性质:算术平方根(1)非负数的性质:算术平方根具有非负性.(2)利用算术平方根的非负性求值的问题,主要是根据被开方数是非负数,开方的结果也是非负数列出不等式求解.非负数之和等于0时,各项都等于0利用此性质列方程解决求值问题.7.立方根(1)定义:如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.这就是说,如果x3=a,那么x叫做a的立方根.记作:a3.(2)正数的立方根是正数,0的立方根是0,负数的立方根是负数.即任意数都有立方根.(3)求一个数a的立方根的运算叫开立方,其中a叫做被开方数.注意:符号a3中的根指数“3”不能省略;对于立方根,被开方数没有限制,正数、零、负数都有唯一一个立方根.【规律方法】平方根和立方根的性质1.平方根的性质:正数a有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.立方根的性质:一个数的立方根只有一个,正数的立方根是正数,负数的立方根是负数,0的立方根是0.8.无理数(1)、定义:无限不循环小数叫做无理数.说明:无理数是实数中不能精确地表示为两个整数之比的数,即无限不循环小数.如圆周率、2的平方根等.(2)、无理数与有理数的区别:①把有理数和无理数都写成小数形式时,有理数能写成有限小数和无限循环小数,比如4=4.0,13=0.33333…而无理数只能写成无限不循环小数,比如2=1.414213562.②所有的有理数都可以写成两个整数之比;而无理数不能.(3)学习要求:会判断无理数,了解它的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,如分数π2是无理数,因为π是无理数.无理数常见的三种类型(1)开不尽的方根,如等.(2)特定结构的无限不循环小数,如0.303003000300003…(两个3之间依次多一个0).(3)含有π的绝大部分数,如2π.注意:判断一个数是否为无理数,不能只看形式,要看化简结果.如是有理数,而不是无理数.9.实数的性质(1)在实数范围内绝对值的概念与在有理数范围内一样.实数a的绝对值就是在数轴上这个数对应的点与原点的距离.(2)实数的绝对值:正实数a的绝对值是它本身,负实数的绝对值是它的相反数,0的绝对值是0.(3)实数a的绝对值可表示为|a|={a(a≥0)﹣a(a<0),就是说实数a的绝对值一定是一个非负数,即|a|≥0.并且有若|x|=a(a≥0),则x=±a.实数的倒数乘积为1的两个实数互为倒数,即若a与b互为倒数,则ab=1;反之,若ab=1,则a与b互为倒数,这里应特别注意的是0没有倒数.10.实数与数轴(1)实数与数轴上的点是一一对应关系.任意一个实数都可以用数轴上的点表示;反之,数轴上的任意一个点都表示一个实数.数轴上的任一点表示的数,不是有理数,就是无理数.(2)在数轴上,表示相反数的两个点在原点的两旁,并且两点到原点的距离相等,实数a的绝对值就是在数轴上这个数对应的点与原点的距离.(3)利用数轴可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.11.估算无理数的大小估算无理数大小要用逼近法.思维方法:用有理数逼近无理数,求无理数的近似值.12.实数的运算(1)实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.(2)在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到有的顺序进行.另外,有理数的运算律在实数范围内仍然适用.【规律方法】实数运算的“三个关键”1.运算法则:乘方和开方运算、幂的运算、指数(特别是负整数指数,0指数)运算、根式运算、特殊三角函数值的计算以及绝对值的化简等.2.运算顺序:先乘方,再乘除,后加减,有括号的先算括号里面的,在同一级运算中要从左到右依次运算,无论何种运算,都要注意先定符号后运算.3.运算律的使用:使用运算律可以简化运算,提高运算速度和准确度.13.代数式求值(1)代数式的:用数值代替代数式里的字母,计算后所得的结果叫做代数式的值.(2)代数式的求值:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.。
实数的相关知识点总结
实数的相关知识点总结一、实数的分类根据数轴上的位置,实数可以分为正数、负数和零。
1. 正数:指大于零的实数,通常用正号(+)表示。
2. 负数:指小于零的实数,通常用负号(-)表示。
3. 零:指等于零的实数。
根据是否可以用分数表示,实数可以分为有理数和无理数。
1. 有理数:指可以表示为两个整数的比值的实数,包括整数和分数。
有理数的特点是其小数部分是有限的或者循环的。
2. 无理数:指不能表示为两个整数的比值的实数,其小数部分是无限不循环的。
常见的无理数有π、e和根号2等。
实数还可以分为代数数和超越数。
1. 代数数:指可以是方程的根的实数,即代数方程的解。
例如,整数、分数、无理数都是代数数。
2. 超越数:指不能是任何代数方程的解的实数,即不能用代数表达式表示的实数。
π和e都是超越数的例子。
二、实数的性质1. 实数的比较性质:对于任意两个不相等的实数a和b,要么a>b,要么a<b。
2. 实数的加法性质:对于任意三个实数a、b、c,有加法交换律a+b=b+a和加法结合律(a+b)+c=a+(b+c)。
3. 实数的乘法性质:对于任意三个实数a、b、c,有乘法交换律a×b=b×a和乘法结合律(a×b)×c=a×(b×c)。
4. 实数的分配律:对于任意三个实数a、b、c,有乘法对加法的分配律a×(b+c)=a×b+a×c。
5. 实数的零元素:存在一个实数0,使得对于任意实数a,有a+0=a。
6. 实数的负元素:对于任意实数a,存在一个实数-b,使得a+(-b)=0。
7. 实数的乘法单位元素:存在一个实数1,使得对于任意实数a,有a×1=a。
8. 实数的除法单位元素:对于任意非零实数a,存在一个实数1/a,使得a×(1/a)=1。
9. 实数的绝对值:对于任意实数a,有其绝对值|a|≥0,当a≠0时,|a|就是a的绝对值。
实数知识点总结及典型例题练习
实数知识点总结考点一、实数的概念及分类(3分)1、实数的分类{正有理数r有理数零有限小数和无限循环小数负有理数实数{正无理数}无理数无限不循环小数负无理数Y 整数包括正整数、零、负整数。
匚正整数又叫自然数。
正整数、零、负整数、正分数、负分数统称为有理数。
2、无理数在理解无理数时,要抓住“无限不循环”这一点,归纳起来有四类:(1)开方开不尽的数,如万,迈等;(2)有特定意义的数,如圆周率心或化简后含有7T的数,如扌+8 等;(3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin6()“等(这类在初三会出现)考点二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0, a二b,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|A0。
零的绝对值是它本身,若|a|=a,则Q0;若|a|二a,则a<0。
正数大于零, 负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数如果a与b互为倒数,则有ab=l,反之亦成立。
倒数等于本身的数是1和・1。
零没有倒数。
考点三、平方根、算数平方根和立方根1、平方根如果一个数的平方等于心那么这个数就叫做巾的平方根(或二次方跟)。
一个数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。
正数a的平方根记做“土蘇”。
2、算术平方根正数a的正的平方根叫做a的算术平方根,记作“亦”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a ( a >0) > 0、庐=|询=_ -a ( a <0) ;注意需的双重非负性Ya >03、立方根如果一个数的立方等于a,那么这个数就叫做a的立方根(或a的三次方根)。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章实数知识讲解+题型归纳知识讲解一、实数的组成1、实数又可分为正实数,零,负实数2.数轴:数轴的三要素——原点、正方向和单位长度。
数轴上的点与实数一一对应二、相反数、绝对值、倒数1. 相反数:只有符号不同的两个数互为相反数。
数a的相反数是-a。
正数的相反数是负数,负数的相反数是正数,零的相反数是零. 性质:互为相反数的两个数之和为0。
2.绝对值:表示点到原点的距离,数a 的绝对值为3.倒数:乘积为1的两个数互为倒数。
非0实数a的倒数为1a. 0没有倒数。
4.相反数是它本身的数只有0;绝对值是它本身的数是非负数(0和正数);倒数是它本身的数是±1.三、平方根与立方根1.平方根:如果一个数的平方等于a,这个数叫做a的平方根。
数a的平方根记作(a>=0)特性:一个正数有两个平方根,它们互为相反数,零的平方根还是零。
负数没有平方根。
正数a的正的平方根也叫做a的算术平方根,零的算术平方根还是零。
开平方:求一个数的平方根的运算,叫做开平方。
2.立方根:如果一个数的立方等于a,则称这个数为a立方根。
数a的立方根用3a表示。
任何数都有立方根,一个正数有一个正的立方根;一个负数有一个负的立方根,零的立方根是零。
开立方:求一个数的立方根(三次方根)的运算,叫做开立方。
四、实数的运算有理数的加法法则:a)同号两数相加,取相同的符号,并把绝对值相加;b)异号两数相加。
绝对值相等时和为0;绝对值不相等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值. 任何数与零相加等于原数。
2.有理数的减法法则:减去一个数等于加上这个数的相反数。
3.乘法法则:a)两数相乘,同号得正,异号得负,并把绝对值相乘;零乘以任何数都得零.a| |ab)几个不为0的有理数相乘,积的符号由负因数的个数决定,当负因数的个数为奇数时,积为负,为偶数,积为正c)几个数相乘,只要有一个因数为0,积就为04.有理数除法法则:a)两个有理数相除(除数不为0)同号得正,异号得负,并把绝对值相除。
0除以任何非0实数都得0。
b)除以一个数等于乘以这个数的倒数。
5.有理数的乘方:在a n中,a叫底数,n叫指数a)正数的任何次幂都是正数;负数的偶次幂是正数,奇次幂是负数;0的任何次幂都是0b)a0=1(a不等于0)6.有理数的运算顺序:a)同级运算,先左后右b)混合运算,先算括号内的,再乘方、开方,接着算乘除,最后是加减。
五·实数大小比较的方法1)数轴法:数轴上右边的点表示的数总大于左边的点表示的数2)比差法:若a-b>0则a>b;若a-b<0则a<b;若a-b=0则a=b3)比商法:A.两个数均为正数时,a/b>1则a>b;a/b<1则a<bB.两个数均为负数时,a/b>1则a<b;a/b<1则a>bC.一正一负时,正数>负数4)平方法:a、b均为正数时,若a2>b2,则有a>b;均为负数时相反5)倒数法:两个实数,倒数大的反而小(不论正负)●题型归纳●经典例题●类型一.有关概念的识别●1.下面几个数:0.23…,,3π,,,其中,无理数的个数有()●A、1 B、2C、3D、4●…,3π,是无理数●故选C●举一反三:●【变式1】下列说法中正确的是()●A 、的平方根是±3B、1的立方根是±1 C 、=±1 D 、是5的平方根的相反数●【答案】本题主要考察平方根、算术平方根、立方根的概念,●∵=9,9的平方根是±3,∴A正确.●∵1的立方根是1,=1,是5的平方根,∴B、C、D都不正确.●●【变式2】如图,以数轴的单位长线段为边做一个正方形,以数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A,则点A表示的数是()●●A、1 B、1.4C 、D 、●【答案】本题考察了数轴上的点与全体实数的一一对应的关系.∵正方形的边长为1,对角线为,由圆的定义知|AO|=,∴A表示数为,故选C.●●【变式3】●【答案】∵π= 3.1415…,∴9<3π<10●因此3π-9>0,3π-10<0● ∴●● 类型二.计算类型题 ●2.设,则下列结论正确的是( ) ● A.B.● C. D.●解析:(估算)因为,所以选B● 举一反三:● 【变式1】1)1.25的算术平方根是__________;平方根是__________.2) -27立方根是__________. 3)___________,___________,___________.● 【答案】1);.2)-3. 3),,●● 【变式2】求下列各式中的● (1)(2)(3)● 【答案】(1)(2)x=4或x=-2(3)x=-4 ●● 类型三.数形结合 ●3. 点A 在数轴上表示的数为,点B 在数轴上表示的数为,则A ,B 两点的距离为______●解析:在数轴上找到A、B两点,●举一反三:●【变式1】如图,数轴上表示1,的对应点分别为A,B,点B关于点A的对称点为C,则点C表示的数是().●●A .-1 B.1-C.2- D .-2●【答案】选C●●[变式2]已知实数、、在数轴上的位置如图所示:●●化简●【答案】:●●类型四.实数绝对值的应用●4.化简下列各式:●(1) |-1.4| (2)|π-3.142|●(3) |-| (4)|x-|x-3|| (x≤3)●(5) |x2+6x+10|●分析:要正确去掉绝对值符号,就要弄清绝对值符号内的数是正数、负数还是零,然后根据绝对值的定义正确去掉绝对值。
●解:(1) ∵=1.414…<1.4●∴|-1.4|=1.4-●(2) ∵π=3.14159…<3.142●∴|π-3.142|=3.142-π●(3) ∵<, ∴|-|=-●(4) ∵x≤3, ∴x-3≤0,●∴|x-|x-3||=|x-(3-x)|●=|2x-3| =●说明:这里对|2x-3|的结果采取了分类讨论的方法,我们对这个绝对值的基本概念要有清楚的认识,并能灵活运用。
(5)|x2+6x+10|=|x2+6x+9+1|=|(x+3)2 +1|∵(x+3)2≥0, ∴(x+3)2+1>0∴|x2+6x+10|= x2+6x+10 举一反三:【变式1】化简:【答案】=+-=类型五.实数非负性的应用5.已知:=0,求实数a, b 的值。
分析:已知等式左边分母不能为0,只能有>0,则要求a+7>0,分子+|a 2-49|=0,由非负数的和的性质知:3a-b=0且a 2-49=0,由此得不等式组从而求出a, b的值。
解:由题意得由(2)得 a 2=49 ∴a=±7 由(3)得 a>-7,∴a=-7不合题意舍去。
∴只取a=7 把a=7代入(1)得b=3a=21∴a=7, b=21为所求。
举一反三:【变式1】已知(x-6)2++|y+2z|=0,求(x-y)3-z 3的值。
解:∵(x-6)2++|y+2z|=0且(x-6)2≥0, ≥0, |y+2z|≥0,几个非负数的和等于零,则必有每个加数都为0。
∴ 解这个方程组得∴(x-y)3-z 3=(6-2)3-(-1)3=64+1=65【变式2】已知那么a+b-c的值为___________【答案】初中阶段的三个非负数:,a=2,b=-5,c=-1; a+b-c=-2类型六.实数应用题6.有一个边长为11cm 的正方形和一个长为13cm ,宽为8cm 的矩形,要作一个面积为这两个图形的面积之和的正方形,问边长应为多少cm 。
解:设新正方形边长为xcm , 根据题意得 x 2=112+13×8∴x 2=225 ∴x=±15∵边长为正,∴x=-15不合题意舍去,∴只取x=15(cm) 答:新的正方形边长应取15cm 。
举一反三:【变式1】拼一拼,画一画:请你用4个长为a ,宽为b 的矩形拼成一个大正方形,并且正中间留下的空白区域恰好是一个小正方形。
(4个长方形拼图时不重叠)(1)计算中间的小正方形的面积,聪明的你能发现什么? (2)当拼成的这个大正方形边长比中间小正方形边长多3cm 时,大正方形的面积就比小正方形的面积多24cm2,求中间小正方形的边长.解析:(1)如图,中间小正方形的边长是:,所以面积为=大正方形的面积=,一个长方形的面积=。
所以,答:中间的小正方形的面积,发现的规律是:(或)(2) 大正方形的边长:,小正方形的边长:,即,又大正方形的面积比小正方形的面积多24 cm2所以有,化简得:将代入,得:cm答:中间小正方形的边长2.5 cm。
类型七.易错题7.判断下列说法是否正确(1)的算术平方根是-3;(2)的平方根是±15.(3)当x=0或2时,(4)是分数解析:(1)错在对算术平方根的理解有误,算术平方根是非负数.故(2)表示225的算术平方根,即=15.实际上,本题是求15的平方根,故的平方根是.(3)注意到,当x=0时,=,显然此式无意义,发生错误的原因是忽视了“负数没有平方根”,故x≠0,所以当x=2时,x=0.(4)错在对实数的概念理解不清. 形如分数,但不是分数,它是无理数.类型八.引申提高8.(1)已知的整数部分为a,小数部分为b,求a2-b2的值.(2)把下列无限循环小数化成分数:①②③(1)分析:确定算术平方根的整数部分与小数部分,首先判断这个算术平方根在哪两个整数之间,那么较小的整数即为算术平方根的整数部分,算术平方根减去整数部分的差即为小数部分.解:由得的整数部分a=5,的小数部分,∴(2)解:(1) 设x=①则②②-①得9x=6∴.(2) 设①则②②-①,得99x=23∴.(3) 设①则②②-①,得999x=107,∴.。