磁路的基本定律
电机学中的基本电磁定理
i2
i3
l
其中 H: 磁场强度,安/米(A/m)
dl
注:若i与l符合右手螺旋关系, 取正号,否则取 负号 。其中大拇指所指为i的方向,四指为l方向。 如图示为: ∑ i = i1 + i2 - i3
当气隙长度δ远远小于两侧 的铁心截面的边长时, 铁心和 气隙中为均匀磁场,则
F Ni H FelFe H
其中 F=Ni:磁路的磁动势 HFelFe:铁心上的磁压降 Hδ δ :气隙上的磁压降
带气隙的铁心磁路
注:i 与 l 符合右手螺旋关系,电机学中习惯大拇指所 指为 l 的方向,四指为多匝线圈中 i 方向。
设有向回路 l 与圆 环的中心圆重合,则沿 着回线 l 磁场强度 H 处 处相等且其方向处处与 回线切线方向相同(称 为均匀磁场),同时闭 合回线所包围的总电流 由通有电流 i 的 N 匝线 圈提供,则:
e blv
运动电势的方向习惯用右手定则确定,如图所示。
2.3. 电磁力定律
载流导体在磁场中要受到电磁力,在导体与磁场 垂直的情况下,若导体中电流为i,导体长度为l,导 体所在处的磁通密度为b,则电磁力为:
f bli
注:电磁力方向由左手定则决定
电机的基本作用原理
三个定律,一个定理 1)安培环路定律(全电流定律):电流在任一导 体中流通,则该导体周围将有磁场产生。 2)电磁感应定律:任一线圈中键链的磁通发生变 化,则在该线圈中将有感应电势产生。
3)电磁力定律:任一载流导体在磁场中将受力的 作用。
4)能量守恒定理:输入能量 = 输出能量 + 损耗能 量
电机的可逆运行原理
机械功率
发电机 电动机
第一章 磁路
第一章磁路电机是一种机电能量转换装置,变压器是一种电能传递装置,它们的工作原理都以电磁感应原理为基础,且以电场或磁场作为其耦合场。
在通常情况下,由于磁场在空气中的储能密度比电场大很多,所以绝大多数电机均以磁场作为耦合扬。
磁场的强弱和分布,不仅关系到电机的性能,而且还将决定电机的体积和重量;所以磁场的分析扣计箅,对于认识电机是十分重要的。
由于电机的结构比校复杂,加上铁磁材料的非线性性质,很难用麦克斯韦方程直接解析求解;因此在实际工作中.常把磁场问题简化成磁路问题来处理。
从工程观点来说,准确度已经足够。
本章先说明磁路的基本定律,然后介绍常用铁磁材料及其性能,最后说明磁路的计算方法。
1-1 磁路的基本定律一、磁路的概念磁通所通过的路径称为磁路。
图1—1表示两种常见的磁路,其中图a为变压器的磁路,图b为两极直流电机的磁路。
在电机和变压器里,常把线圈套装在铁心上。
当线圈内通有电流时、在线圈周围的空间(包括铁心内、外)就会形成磁场。
由于铁心的导磁性能比空气要好得多,所以绝大部分磁通将在铁心内通过,并在能量传递或转换过程中起耦合场的作用,这部分磁通称为主磁通。
围绕裁流线圈、部分铁心和铁心周围的空间,还存在少量分散的磁通,这部分磁通称为漏磁通。
主磁通和漏磁通所通过的路径分别构成主磁路和漏磁路,图1—l中示意地表出了这两种磁路。
用以激励磁路中磁通的载流线圈称为励磁线圈(或称励磁绕组),励磁线圈中的电流称为励磁电流(或激磁电流)。
若励磁电流为直流,磁路中的磁通是恒定的,不随时间而变化,这种磁路称为直流磁路;直流电机的磁路就属于这一类。
若励磁电流为交流(为把交、直流激励区分开,本书中对文流情况以后称为激磁电流),磁路中的磁通随时间交变变化,这种磁路称为交流磁路;交流铁心线圈、变压器和感应电机的磁路都属于这一类。
二、磁路的基本定律进行磁路分析和计算时,往往要用到以下几条定律。
安培环路定律 沿着任何一条闭合回线L ,磁场强度H 的线积分值dlH L∙⎰ 恰好等于该闭合回线所包围的总电流值∑i ,(代数和).这就是安培环路定律(图l —2)。
电机学讲义-磁路
i F / N 47.7 A 9.54102 A 500
3、磁路的基尔霍夫定律
(1)磁路的基尔霍夫电流定律(磁通
是连续的) 1 2 3 0
或
0
(2)磁路的基尔霍夫电压定律(实质 是安培环路定律)
3
Ni H klk H1l1 H 2l2 H 1Rm1 2Rm2 Rm k 1
磁滞回线——当H在Hm和- Hm之间反复变化时,呈现磁
滞现象的B-H闭合曲线,称
为磁滞回线。磁滞回线是逆 时针旋转的,要消耗能量。
3、基本磁化曲线
对同一铁磁材料,选择不同的Hm反复磁化,得到不同的 磁滞回线。将各条回线的顶点连接起来,所得曲线称为基 本磁化曲线。
总结:熟悉三 种磁化曲线的 图形。剩磁Br, 矫顽力Hc。
[补]电机的铁心为什么常常用硅钢板叠成?
【补】两个电感的尺寸、形状和线圈匝数均相同,一 个是铝心,一个是铁心,当它们并联接在同一个交流 电源上时,电流是否相同?
第三节 直流磁路的计算
磁路计算正问题——给定磁通量,计算所需的励磁磁动势 磁路计算逆问题——给定励磁磁势,计算磁路内的磁通量
磁路计算正问题的步骤: 1)将磁路按材料性质和不同截面尺寸分段; 2)计算各段磁路的有效截面积Ak和平均长度lk; 3)计算各段磁路的平均磁通密度Bk ,Bk=Φk/Ak; 4)根据Bk求出对应的Hk; 5)计算各段磁位降Hklk,最后求出 F=∑ Hklk。
有关交流磁路和铁心线圈的计算,将在变压器一章讨论。
第五节 电机的绝缘材料
绝缘纸、塑料薄膜、无纺布、云母、绝缘漆等。
电机的绝缘等级按照所用绝缘材料的耐热性能来划分:
AE B
F
H
C
105 120 130 155 180 大于200
第一部分-磁路基本定律
❖ 1.1 概述 ❖ 1.2 电机发展简史 ❖ 1.3 电机中的基本电磁定律 ❖ 1.4 铁磁材料特性 ❖ 1.5 磁路基本定律及计算方法
2
❖ 广义: ▪ 实施电能生产、传输、使用和电能特性 变换的机械和装置。
❖ 狭义: ▪ 电机是基于电磁感应定律、电磁力定律 (能进行电磁感应),由电路和磁路所 构成,能进行机电能量转换或信号变换 的电磁机械装置。
❖ 3、力结构材料铸钢、铸铁、钢板等
8
❖ 电能生产——由同步发电机生产; ❖ 高压输电——由升压变压器将发电机发出的电压升高
到输电电压再输送; ❖ 降压用电——由降压变压器将输来的高压电降为所需
低电压,供给用电设备; ❖ 生产机械的拖动——由各种电动机实现; ❖ 控制系统中的信号转换——由各种控制电机完成。
13
1. 全电流定律—安培环路定律
LH dl I
i1 i2 i3 dl
式中,若电流的正方
向与闭合回线L的环行方 向符合右手螺旋关系时,
H
L
i取正号,否则取负号。
L H • dl i1 i2 i3
14
❖ l和l’,两积分路径结果相同:
15
❖ 闭合回路中的磁通量随时间发生变化,该线圈中必然 有感应电势产生,称这种现象为电磁感应。
29
❖ 磁化曲线定义:将一块尚未磁化的铁磁材料进行磁化, 当磁场强度H由零逐渐增大时,磁通密度B将随之增大, 得到曲线B=f(H)。
t
Nv
x
eT
ev
e Blv
感应电动势的方向_右手定则
22
❖ 载流导体在磁场中要受到力的作用——电磁力。 ❖ 左手定则
F Bli
2020年6月29日星期一
23
第一章 磁路基础知识
l1 l2 3l 15 10 2 m 两边磁路长度:
气隙磁位降: B 1.211 2H 2 2 2.5 10 3 A 4818 A 0 4π 10 7
1.211 (2 0.25) 2 B T 1.533T 中间铁心磁位降: 3 4 A 4 10
磁路基础知识
1.2.3涡流与涡流损耗 1、涡流 2、涡流损耗:涡流在铁心中引起的损耗 3、注意:为减小涡流损耗,电机和变压器的铁心都用 含硅量较高的薄硅钢片叠成。 4、铁心损耗:磁滞损耗+涡流损耗
2 pFe f 1.3 BmG
南通大学《电机学》
磁路基础知识
1.3直流磁路的计算
磁路计算正问题——给定磁通量,计算所需的励磁磁动势 磁路计算逆问题——给定励磁磁势,计算磁路内的磁通量 磁路计算正问题的步骤: 1)将磁路按材料性质和不同截面尺寸分段; 2)计算各段磁路的有效截面积Ak和平均长度lk; 3)计算各段磁路的平均磁通密度Ak ,Bk=Φk/Ak; 4)根据Bk求出对应的Hk;
Φ
RmFe
N
F
Rm
i
Φ
串联磁路 南通大学《电机学》 磁路基础知识
模拟电路图
解:铁心内磁通密度为 BFe 0.0009 T 1T
AFe 0.0009
从铸钢磁化曲线查得:与BFe对应的HFe=9×102A/m
H FelFe 9 10 2 0.3A 270 A 铁心段的磁位降:
查磁化曲线:H1 H 2 215 A/m
H1l1 H 2l2 215 15 10 2 A 32.25A
总磁动势和励磁电流为:
Ni 2H H l
3 3
H 1l1
电机学 第一章磁路
起始磁化曲线
oa段
ab段
bc段
cd段
膝点
饱和
铁磁材料 图1-7.
µ Fe = f ( H ) 磁化曲线见示意
� 应用: 设计电机和变压器时,为使主磁路内得 到较大的磁通量而又不过分增大励磁磁动势, 通常把铁心内的工作磁通密度选择在膝。 剩磁:去掉外磁场之后,铁磁材料内仍然保留的 磁通密度 B r 。 矫顽力:要使B值从减小到零,必须加上相应的反 向外磁场,此反向磁场强度Hc称为矫顽力。 磁滞:铁磁材料所具有的这种磁通密度B的变化滞 后于磁场强度H变化的现象。 磁滞现象是铁磁材料的另一个特性。
2.硬磁(永磁)材料 定义:磁滞回线宽、剩磁和矫顽力都很大的铁磁材 料称为硬磁材料,又称为永磁材料。 附图1-11b 磁性能指标 剩磁 矫顽力 最大磁能积
铸造型 铝镍钴
种类示意图
粉末型 铝镍钴
永磁材料 种类
铁氧体
稀土钴
钕铁硼
四、铁心损耗 1.磁滞损耗 定义: 铁磁材料置于交变磁场中时,磁畴相 互间不停地摩擦、消耗能量、造成损耗,这种 损耗称为磁滞损耗。 n 公式: p = C fB V
Hδ lδ = 385A
F = H FelFe + H δ lδ = 432.6 A
返回
2.简单并联磁路 定义:指考虑漏磁影响,或磁回路有两个以上分 支的磁路。 点击书本进入例题1-3
例 题
� [例1—3] 图1—14a所示并联磁路,铁心所 用材料为DR530硅钢片,铁心柱和铁轭的截面 积均为 A = 2 × 2 × 10 −4 m 2 ,磁路段的平均长 −3 度l = 5 ×10−2 m ,气隙长度 δ1 =δ2 = 2.5×10 m 励磁线圈匝数 N 1 = N 2 = 1000 匝。不计漏磁通,试求在气隙内产生 B δ =1.211T的磁通密度时,所需的励磁电流i。
电机学第1章磁路
涡流损耗
铁芯是有阻值的,当磁通交变时,铁芯中就会感应交变的电 势,进而在铁心内引起环流。这些环流通作涡流状流动,称 为涡流涡流引起的损耗,称为涡流损耗。
pw k w f B
2
2 m
思考:如何尽量减小涡流损耗?
• 为减小涡流损耗, 电机和变压器的铁 心都用含硅量较高 的薄硅钢片叠成。
后于磁场强度变化,通常在电机内也可理解为磁通落后于 激磁电流的现象,称为磁滞现象)。
磁滞回线:磁场强度H缓慢地循环变化,B-H曲线封 闭曲线 • 磁滞现象是铁磁材料的另一个特性。
B
Bm
b
a
Br
Hc
c f e
Hc
H
Hm
Hm
d
Bm
图1-7 铁磁材料的磁滞回线
基本磁化曲线:
对同一铁磁材料,选择不同的磁场强度进行反复 磁化,可得一系列大小不同的磁滞回线,再将各 磁滞回线的顶点联接起来,所得的曲线。
2.磁化曲线和磁滞回线
磁化曲线:将一块尚未磁化的铁磁材料进行磁化,当磁 场强度H由零逐渐增大时,磁通密度B将随之增大, 得到曲线B=f(H)。 特性:①具有高的导磁性能;②磁化曲线呈非线性(饱 和特性)它的磁化曲线具有饱和性,磁导率μFe不 是常数,且随H的变化而变化。 磁滞回线在oa段:当H增大→B增大,但B增大速度较慢 在ab段:当H增大→B增大,B增大速度快; 在bc段:B随H增大的速度又较慢; 在cd段:为磁饱和区(又呈直线段)。其中拐弯点b称 为膝点;c点为饱和点。 • 过了饱和点c,铁磁材料的磁导率趋近μ0。
R
k
mk
Fm
• 磁路和电路的比拟仅是一种数学形式上的类似、 而不是物理本质的相似。
第五章磁路与变压器
A*
A*
X
X
a* x
a x*
i
F1
A •
Xi a
• x
F2
A •
X a•
x
i
F1
A •
Xi a
x 同名端
•
F2
A •
X a
x•
同名端
二、线圈的接法 电器使用时两种电压(220V/110V)的切换:
1
*
3
*
2
4
220V: 联结 2 -3
110V: 联结 1 -3,2 -4
两种接法下线圈工作情况的分析
220V:联结 2 -3
i
1 10 *
N
3
U 220
*
2
N
4
励磁
i10
2
N
Φ m
U220 4.44 f (2N )Φm
Φ m
U 220
4.44 f 2N
220V:联结 2 -3
Φ m
U 220
4.44 f 2N
110V:联结 1 -3,2 -4
i10 1
*
1,3
3
U 110
*
2
2,4
4
U110 4.44 f (N )Φm
按绕组数分: 双绕组、多绕组及自耦变压器。
二. 构造
变压器铁心: 硅钢片叠压而成。 变压器绕组: 高强度漆包线绕制而成。 其它部件: 油箱、冷却装置、保护装置等。
线圈 铁心
铁心
壳式变压器
线圈 心式变压器
单相变压器的基本结构
i1 Φ
u1
铁芯
i2
u2 RL
原边 绕组
副边 绕组
电机学第一章 磁路
H
随着磁场强度H的增大,饱和程度增加,μFe减 小,Rm增大,导磁性能降低.
B
c b
B = f ( H)
d
μFe = f ( H )
a
B = μ0 H
H
设计电机和变压器时,为使主磁路内得到较大的 磁通量而又不过分增大励磁磁动势.通常把铁心 内的工作磁通密度选择在膝点附近
B
c b
膝点 饱和点
B = f ( H)
四、铁心损耗
1.磁滞损耗
定义: 铁磁材料置于交变磁场中时,磁畴相 互间不停地摩擦、消耗能量、造成损耗,这种 损耗称为磁滞损耗。 公式: n h h m
p = C fB V
应用:由于硅钢片磁滞回线的面积较 小,故电机和变压器的铁心常用硅钢片叠成。
2.涡流损耗
¾涡流:铁磁材料在交变磁场将 有围绕磁通呈蜗旋状的感应电动 势和电流产生,简称涡流。 ¾涡流损耗:涡流在其流通路径 上的等效电阻中产生的I2R损耗 称为涡流损耗。 ¾涡流损耗与磁场交变频率f, 厚度d和最大磁感应强度Bm的平 方成正比,与材料的电阻率成反 比。 ¾要减小涡流损耗,首先应减小 厚度,其次是增加涡流回路中的 电阻。电工硅钢片中加入适量的 硅,制成硅钢片,显著提高电阻 率
表1.1 磁路和电路对比表 序 号 1 2 3 4 5 6 7 8 9 电 基本物理量 或基本定律 电 流 电 压 电 阻 电 导 电流密度 电导率 基尔霍夫 第一定律 基尔霍夫 第二定律 欧姆定律 路 符号或 定义 I U R=l/(γA) G=1/R J=I/A 单位 A V Ω S A/m2 S/m 磁 路 单 位 Wb A 1/H H Wb/m2(T) H/m 基本物理量或 符号或 基本定律 定义 磁 通 φ F 磁动势 磁 阻 磁 导 磁通密度 磁导率 磁通连续性 原理 Rm=l/(μA)
磁路及交流铁心线圈
1.磁路的欧姆定律
式中
为磁阻,
2.磁路基尔霍夫第一定律
3.磁路基尔霍夫第二定律
为磁导。
二、交流铁芯线圈
励磁电流为直流时,称为直流铁心线圈(如直流电磁铁、 直流继电器的线圈),当励磁电流为交流时,称为交流铁心线 圈(如交流电机、变压器的线圈)。
i
+
– e
u –
e+–+
N
主磁通 :通过铁心闭合的 磁通。 与i不是线性关系。
O
到饱和值,这种现象称为磁 饱和性。从图中还可看出B 和H不成正比,所以磁性材 料的μ不是常数。
H
磁性材料的磁化曲线
(3)磁滞特性 若将磁性材料进行周期性磁化,磁感应强度 B随磁场强
度H 变化的曲线称为磁滞回线,如图所示。
从图中可见,当 H 已减到零 时, B 并未回到零值,而等于 Br 。这种磁感应强度滞后于磁场
磁路及交流铁心线圈
一、磁路及其基本定律
(一)磁路的概念 磁力线所通过的路径称为磁路。磁路主要由具有良好导 磁性能的磁性材料构成,如:硅钢片,铸铁等。
i1
u1 e1Βιβλιοθήκη N1N2e2
当线圈(通常被称为励磁线圈或励磁绕组)中通入电 流(通常被称为励磁电流)时,在线圈周围会形成磁场, 由于铁心的导磁性能比空气要好得多,所以绝大部分的磁 通将在铁心内通过,我们称它为主磁通或工作磁通;同时 有少量磁通会通过空气交链,我们称它为漏磁通,工程中 通常忽略不计。主磁通和漏磁通所通过的路径分别称为主 磁路和漏磁路。
或
3. 磁场强度H 磁场强度是计算磁场时所用的一个物理量,它也是个 矢量,根据安培环环路定理,沿任意闭合路径,磁场强度 的线积分等于该回路所包围的导体电流的代数和。
电机学:磁路
2.硬磁(永磁)材料
定义:磁滞回线宽、 Br和Hc都大的铁磁材料称
为硬磁材料 。
附图1-11b。
剩磁 矫顽力 最大磁能积
磁性能指标
铁磁材料 Ferromagnetic Materials
铸铁、铸钢 硅钢片
永磁材料
软磁材料的磁滞回线
硬磁材料的磁滞回线
种 类 示 意 图
常见的硬磁(永磁)材料
铁 氧 体
电机的常用材料 铁磁物质的磁化 磁化曲线与磁滞回线 铁磁材料 铁心损耗
电机常用的四大类材料
1. 导电材料(Electric Materials)
引导电流的电路,要求电导率大
2. 导磁材料(Magnetic Materials)
引导磁通的磁路,要求磁导率大
3. 绝缘材料(Insulating Materials)
Φ2 Rm2 Φδ
磁路和电路对比表
电
序 号 1 2 3 4 5 6 7 8 9
路
符号 或定义
I U=El R=l/(gA) G=1/R J=I/A 单位 A V Ω S A/m2 S/m
磁
基本物理量 或基本定律
磁 通 磁动势 磁 阻 磁 导 磁通密度 磁导率
路
符号 或定义
单 位
基本物理量 或基本定律
N
磁路的欧姆定律
作用在磁路上的磁动势等于磁路内的磁通量乘以磁阻。
定理说明图1-3a。
公式: 式中:
F F F Rm l Rm A
与电路中的欧姆定律的相似性,附相应的模拟磁路图1-3b。
铁磁材料的磁导率不是一个常数,由铁磁材料构成的磁路,其磁 阻不是常数,而是随着磁路中磁通密度的大小而变化,这种情况称 为非线性。
磁路的基本概念和基本定律
磁路的基本概念和基本定律在很多电工设备(象变压器、电机、电磁铁等)中,不仅有电路的问题,同时还有磁路的问题,这一章,我们就学习磁的相关知识。
一、磁铁及其性质:人们把物体能够吸引铁、钴等金属及其合金的性质叫做磁性,把具有磁性的物体叫做磁体(磁铁)。
磁体两端磁性最强的区域叫磁极。
任何磁体都具有两个磁极,而且无论把磁体怎样分割总保持有两个异性磁极,也就是说,N极和S极总是成对出现的。
与电荷间的相互作用力相似,磁极间也存在相互的作用力,且同极性相互排斥,异极性相互吸引。
1.1磁场与磁感应线磁铁周围和电流周围都存在磁场。
磁场具有力和能的特征。
磁感应线能形象地描述磁场。
它们是互不交叉的闭合曲线,在磁体外部有N极指向S极,在磁体内部由S极指向N极,磁感应线上某点的切线方向表示该点的磁场方向,其疏密程度表示磁场的强弱。
1.2描述磁场的物理量:磁感应强度B:在磁场中垂直于磁场方向的通电导线所受电磁力F与电流I和导线有效长度L的乘积IL的比值即为该处的磁感应强度,即B=F/IL,单位:特斯拉。
磁感应强度是表示磁场中某点磁场强弱和方向的物理量,它是一个矢量,它与电流之间的方向关系可用右手螺旋定则来确定。
磁通∮:磁感应强度B和与它垂直方向的某一截面积S的乘积,称为通过该面积的磁通,即∮=BS,由上式可知,磁感应强度在数值上可以看作与磁场方向相垂直的单位面积所通过的磁通,故又称为磁通密度,单位是伏.秒,通常称为“韦”。
磁通∮是描述磁场在空间分布的物理量。
磁导率u是说明媒体介质导磁性能的物理量。
1.3定则电流与其产生磁场的方向可用安培定则(又称右手螺旋法则)来判断。
安培定则既适用于判断电流产生的磁场方向,也可用于在已知磁场方向时判断电流的方向。
1.直线电流产生的磁场,以右手拇指的指向表示电流方向,弯曲四指的指向即为磁场方向。
2.环形电流产生的磁场:以右手弯曲的四指表示电流方向,拇指所指的方向即为磁场方向。
3.通电导体在磁场内的受力方向,用左手定则来判断。
磁路基础知识
基尔霍夫第二定律
NI= Hl ΦRm
电路旳基本物理量及公式
电动势E 电 流I 电 阻R 电 导G 欧姆定律
I E/R
基尔霍夫第一定律
i=0
基尔霍夫第二定律
e=iR
南通大学《电机学》
磁路基础知识
1.2铁磁材料及其特征
1.2.1铁磁材料旳高导磁性 1.铁磁物质旳磁化
将铁、镍、钴等铁磁物质放入磁场后,铁磁物质 呈现很强旳磁性,这种现象,称为铁磁物质旳磁化。
磁畴:在铁磁物质内部存在着许多很小旳天然磁化区。
南通大学《电机学》
磁路基础知识
2.起始磁化曲线
将一块还未磁化旳铁磁材料进行磁化,当磁场 强度H由零逐渐增大时,磁通密度B也将随之增大, 曲线B=f(H)就称为起始磁化曲线
B
c
d
B f (H)
b
a
0
南通大学《电机学》
磁路基础知识
B 0H
H
3.磁滞回线
相应旳模拟电路图
南通大学《电机学》
磁路基础知识
1.1.5磁路旳基尔霍夫定律 1、磁路旳基尔霍夫第一定律
闭合面A显然有:
-Φ1+Φ2+Φ3=0
Φ=0
穿出(或进入)任一闭合面旳总磁通量恒等于零( 或者说,进入任一闭合面旳磁通量恒等于穿出该闭 合面旳磁通量)
南通大学《电机学》
磁路基础知识
2、磁路旳基尔霍夫第二定律
Φ
RmFe
F
Rm
磁路基础知识
模拟电路图
解:铁心内磁通密度为
0.0009
BFe
AFe
T 1T 0.0009
从铸钢磁化曲线查得:与BFe相应旳HFe=9×102A/m
铁心段旳磁位降: H l Fe Fe 9 102 0.3A 270A
电机及拖动基础知识要点复习
电机及拖动基础知识要点复习电机复提纲第一章:概念:主磁通、漏磁通、磁滞损耗、涡流损耗。
磁路的基本定律:安培环路定律:XXX。
磁路的欧姆定律:作用在磁路上的磁动势F等于磁路内的磁通量Φ乘以磁阻Rm。
磁路与电路的类比:与电路中的欧姆定律在形式上十分相似。
E=IR。
磁路的基尔霍夫定律:1)磁路的基尔霍夫电流定律:穿出或进入任何一闭合面的总磁通恒等于零。
2)磁路的基尔霍夫电压定律:沿任何闭合磁路的总磁动势恒等于各段磁路磁位差的代数和。
第二节常用铁磁材料及其特性铁磁材料:1、软磁材料:磁滞回线较窄。
剩磁和矫顽力都小的材料。
软磁材料磁导率较高,可用来制造电机、变压器的铁心。
2、硬磁材料:磁滞回线较宽。
剩磁和矫顽力都大的铁磁材料称为硬磁材料,可用来制成永久磁铁。
铁心损耗:1、磁滞损耗——材料被交流磁场反复磁化,磁畴相互摩擦而消耗的能量。
2、涡流损耗——铁心内部由于涡流在铁心电阻上产生的热能损耗。
3、铁心损耗——磁滞损耗和涡流损耗之和。
第二章:一、换向:尽管电枢在转动,但处于同一磁极下的线圈边中电流方向应始终不变,即进行所谓的“换向”。
二、直流电机的应用:作为电动机运行——在直流电机的两电刷端上加上直流电压,电枢旋转,拖动生产机械旋转,输出机械能;作为发动机运行——用原动机拖动直流电机的电枢,电刷端引出直流电动势,作为直流电源,输出电能。
三、直流电机的主要结构:定子的主要作用是产生磁场,转子又称为“电枢”,作用是产生电磁转矩和感应电动势。
要实现机电能量转换,电路和磁路之间必须在相对运动,所以旋转电机必须具备静止的和转动的两大部分,且静止和转动部分之间要有一定的间隙(称为:气隙)。
四、直流电机的铭牌数据:直流电机的额定值有:1、额定功率PN(kW);2、额定电压UN(V);3、额定电流IN(A);4、额定转速nN(r/min);5、额定励磁电压UfN(V)。
五、直流电机电枢绕组的基本形式:直流电机电枢绕组的基本形式有两种:一种叫单叠绕组,另一种叫单波绕组。
电机学:第一章 磁路2
主要内容:磁路基本定律,铁磁材料及交、直流磁路。
1-1磁路的基本定理
一、磁路的概念 同电流流过的路径称为电路一样,磁通经过的路径为磁路。 利用导磁性能良好的铁磁物质构成磁路。例如在电机、变压
器等设备中,应用铁磁物质制成一定的形状的磁路,使磁场主要 在这部分空间内分布。如图分别为变压器和直流电机的磁路。
用直流励磁 用交流励磁
磁路中磁通恒定 磁路中磁通交变
直流磁路 直流电机 交流磁路 变压器、感应电机
二、磁路的基本定律
磁路的基本定律有 安培环路定律,磁路的欧姆定律,磁路的基尔霍 夫第一定律,磁路的基尔霍夫第二定律。 1、安培环路定理(或称全电流定理)
在磁路中沿任一闭合路径L,磁场H的线积分等于该闭合回路所包围 的总电流,即:
基尔霍夫第二定律
Ni Hl Rm
电动势 E=IR 电流 I 电阻 R=L/σA =ρL/A 电导 G=1/R
电导率
欧姆定律 I= E R
基尔霍夫第一定律 i 0
基尔霍夫第二定律
e iR
电路与磁路的不同点:
1、电路中有电流就有功率损耗。磁路中恒定磁通下没有功率损耗。 2、电流全部在导体中流动,而在磁路中没有绝对的磁绝缘体,除
范围内。所以电机和变压器的铁心用导磁率较高的铁磁材料组成。
一、铁磁物质的磁化
1 、铁磁物质
铁磁物质的磁导率都很大,一般是
的几千倍。
0
铁磁物质
金属
铁、钴、镍: B高,居里温度高。缺点是电阻率 低,涡流耗严重。
非金属 铁氧体: 电阻率高,涡流损耗小,抗锈防腐。
2、铁磁物质的磁化
缺点是B低,温度稳定性差。
I
Rm R F E
注:由于铁磁材料的磁导率不是常数,所以Rm一般不是常数。 3、磁路的基尔霍夫第一定律
0磁性材料和磁路及磁路基本定律
在开关电源中的应用
在开关电源中,为减少直流滤波电感的体 积,有时用永磁-硬磁材料产生恒定磁 场抵消直流偏置。
磁性材料
18
软磁性材料(magnetically soft material) 剩磁弱、矫顽力小、初始磁导率高
软磁材料是指那些插入通电绕组中,材料被磁化, 使绕组周围的磁场大大加强,而一旦去掉外部磁化 电流,材料本身的磁性就非常小。
39
请家长和孩子自由交流
25
骨架
磁性材料
26
电感和变压器设计
Low profile transformer on PCB(平面变压器)
磁性材料
27
电感和变压器设计
DC/DC Converter with Integrated PCB Magnetics
磁性材料
28
磁性材料
常见软磁铁氧体的功率处理能力
功率 GU 14 GU 18 GU 22 GU 26 GU 30 GU 42 E I 35
3.铁镍合金
分坡莫合金(含镍量34%--80%)和波明伐合金(镍45%, 铁30%, 钴25%),
4. 软磁铁氧体
MO.Fe2O3, M代表Cu, Mn, Ni, Mg, Zn, Co等二价金属原子.
5. 非晶态和微晶态材料 分铁基和钴基两种.
磁性材料
21
常见软磁材料型材
POT CORE(罐形)
RM CORE
B=0 的磁场强度(magnetic field strength)称为矫顽力Hc (coercive force). 矫顽力是划分软磁, 永磁, 半硬磁材料的一个依 据.
磁性材料
软磁性材料 Hc < 1 — 10 Oe 永磁性材料 Hc = 102 — 104 Oe 半硬磁材料 Hc = 20 — 300 Oe
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
磁路的基本定律
磁路的基本定律
磁路是指由铁芯和线圈组成的电器元件,在电机、变压器、电磁铁等
电气设备中广泛应用。
学习磁路的基本定律对于理解和分析这些设备
的工作原理具有重要意义。
一、磁通量
1.1 磁通量的定义
磁通量是指通过一个闭合曲面内部的总磁场线数,通常用字母Φ表示,单位为韦伯(Wb)。
1.2 磁通量的计算公式
根据高斯定理,一个闭合曲面内部的总磁场线数等于该曲面上法向量
方向上的磁感应强度积分。
因此,可以用以下公式计算:
Φ = ∫B·dS
其中,B为磁感应强度(单位为特斯拉),dS为曲面微元(单位为平
方米),积分范围为该闭合曲面内部。
二、安培环路定理
2.1 安培环路定理的定义
安培环路定理是指在一个闭合回路上,沿着任意一条路径积分得到的
电流总和相等。
即:
∮H·dl = I
其中,H为磁场强度(单位为安培/米),dl为路径微元(单位为米),I为该回路内的电流(单位为安培)。
2.2 安培环路定理的应用
安培环路定理可以用于分析磁路中的磁通量和磁场强度之间的关系。
例如,在一个闭合回路上,如果有一段铁芯,那么根据安培环路定理,该铁芯内部的磁场强度H应该等于该回路内部电流I所产生的磁通量
Φ与铁芯长度l之比。
即:
H = Φ / l
三、法拉第电磁感应定律
3.1 法拉第电磁感应定律的定义
法拉第电磁感应定律是指当一个闭合线圈中的磁通量发生变化时,会在线圈中产生感应电动势。
即:
ε = -dΦ/dt
其中,ε为感应电动势(单位为伏特),Φ为线圈内部的磁通量,t为时间。
3.2 法拉第电磁感应定律的应用
法拉第电磁感应定律可以用于分析变压器、发电机等设备中的工作原理。
例如,在一个变压器中,当一侧线圈中的交流电流产生变化时,会在另一侧线圈中产生感应电动势,从而实现电能的传输和变换。
四、磁化曲线
4.1 磁化曲线的定义
磁化曲线是指在给定条件下,磁通量Φ和磁场强度H之间的关系。
通常用图表或曲线表示。
4.2 磁化曲线的特点
磁化曲线的形态取决于铁芯材料的性质和工作状态。
一般来说,磁化曲线可以分为四个阶段:
(1)剩磁区:当外部磁场强度H为零时,铁芯内部仍然存在一定的磁通量Φ,称为剩磁。
(2)线性区:当外部磁场强度H逐渐增加时,铁芯内部的磁通量Φ随之增加,并呈现出一个近似于直线的增长趋势。
(3)饱和区:当外部磁场强度H继续增加时,铁芯内部的磁通量Φ将不再随之增加,并趋于饱和。
(4)过饱和区:当外部磁场强度H进一步增加时,铁芯内部的磁通量Φ反而会减少,称为过饱和。
五、总结
磁路的基本定律包括磁通量、安培环路定理、法拉第电磁感应定律和
磁化曲线。
这些定律在电机、变压器、电磁铁等设备中都有广泛应用。
通过学习这些基本定律,可以更好地理解和分析这些设备的工作原理,为工程设计和实际应用提供参考。