七年级有理数运算法则汇总
有理数加减法法则口诀初一
有理数加减法法则口诀初一
一、有理数加法法则口诀及解释
1. 同号相加一边倒
- 解释:如果两个有理数是同号(同为正数或同为负数),那么就把它们的绝对值相加,结果的符号与原来加数的符号相同。
- 例如:3 + 5,两个数都是正数,先计算|3|+|5| = 3+5 = 8,结果为正数8;再如-3+(-5),两个数都是负数,先计算| - 3|+| - 5|=3 + 5=8,结果为-8。
2. 异号相加“大”减“小”,符号跟着“大”的跑
- 解释:当两个有理数是异号(一正一负)时,用较大的绝对值减去较小的绝对值,结果的符号与绝对值较大的那个数的符号相同。
- 例如:3+( - 5),| - 5| = 5大于|3| = 3,计算| - 5|-|3|=5 - 3 = 2,结果为-2(因为-5的绝对值大,-5是负数,所以结果为负);又如-3+5,|5| = 5大于| - 3| = 3,计算|5|-| - 3|=5 - 3 = 2,结果为2(因为5的绝对值大,5是正数,所以结果为正)。
3. 相反数相加得0了
- 解释:互为相反数的两个数相加和为0。
例如3+( - 3)=0。
二、有理数减法法则口诀及解释
1. 减正等于加负,减负等于加正
- 解释:有理数的减法可以转化为加法来进行。
减去一个正数等于加上这个正数的相反数;减去一个负数等于加上这个负数的相反数。
- 例如:5-3 = 5+( - 3)=2;5-( - 3)=5+3 = 8。
有理数的运算法则
有理数的运算法则⑴加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。
⑵减法法则:减去一个数,等于加上这个数的相反数。
⑶乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。
⑷除法法则:除以一个数等于乘上这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0。
初一数学公式大全1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理 1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称初一语文文言文一字多义注解与:1 与斗卮酒。
有理数乘除法知识点总结
七年级数学有理数乘除法知识点总结
有理数的乘法法则:
(1)两数相乘,同号得正,异号两数相乘得负。
(2)任何数与0相乘,积为0.
(3)若干个数相乘,有一个因数为0.积为0;各个因数不全为0.积的正负号由各个因数的符号决定。
(4)乘积是两数的倍数的关系,可以利用它比较大小。
有理数的除法法则:
(1)除以一个不等于0的数,等于乘这个数的倒数。
(2)两数相除,同号得正,异号两数相除得负。
(3)0除以任何一个不等于0的数,都得0.
重难点解析:
1、掌握有理数的乘除法法则,能够进行有理数的乘除法运算。
2、理解乘积是两数的倍数的关系,可以利用它比较大小。
3、掌握有理数的乘方运算,理解指数、底数、幂的概念,能够进行有理数的乘方运算。
4、难点在于理解有理数的乘除法法则,特别是对于一些特殊情况的处理,例如0作为除数的情况。
同时,有理数的乘方运算也是一个难点,需要理解其概念和运算方法。
总之,学生需要熟练掌握有理数的乘除法法则和乘方运算,理解其算理,能够在实际问题中灵活运用。
同时,还需要理解乘积是两数
的倍数的关系,能够利用它比较大小。
对于难点问题,需要通过多练习来加深理解。
有理数加减乘除乘方混合运算相关法则知识整理汇总
有理数加减乘除乘方混合运算相关法则知识整理一、知识整理填空答案符号计算绝对值加法同号取相同的符号绝对值相加异号取绝对值大的符号绝对值相减减法减去一个数等于加上这个数的相反数乘法同号取正绝对值相乘异号取负除法同号取正绝对值相除异号取负除以一个数等于乘以这个数的倒数二、一个运算中,含有有理数的加、减、乘、除、乘方等多种运算,称为有理数的混合运算.三、运算法则1、有理数的加法法则:1)同号两数的相加,取相同的符号,并把绝对值相加;2)异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;3)一个数同0相加仍得这个数.2、有理数的减法法则: 减去一个数,等于加上这个数的相反数.3、有理数的乘法法则:1)两数相乘同号得正,异号得负,并把绝对值相乘;2)任何数与0相乘,积仍为0.4、有理数的除法法则: 1)除以一个数就是乘以这个数的倒数;2)两数相除同号得正,异号得负;并把绝对值相除;3)零除以任何非零的数得为零.注:0不能作除数5、有理数的乘方符号法则:1)正数的任何次幂都是正数;2)负数的奇次幂为负,偶次幂为正.四、有理数的运算律1、加法交换律:a+b=b+a2、加法结合律:(a+b)+c=a+(b+c)3、乘法交换律:ab=ba4、乘法结合律:(ab)c=a(bc)5、乘法分配律:a(b+c)=ab+ac五、有理数混合运算的法则:(1)先算乘方,再算乘除,最后算加减。
(2)如有括号,先进行括号里的运算。
1.先算乘方,再算乘除,最后算加减。
2.同级运算依照从左到右的顺序运算;3.若有括号,先小括号,再中括号,最后大括号,依次运算;。
初一数学有理数的四则运算
初一数学有理数的四则运算有理数是指可以用分数的形式表示出来的数,包括正整数、负整数、0和分数。
在初一数学中,学生首次接触到有理数的概念和四则运算。
有理数的四则运算包括加法、减法、乘法和除法。
本文将为大家介绍有关初一数学中有理数的四则运算的相关知识。
一、加法和减法有理数的加法可分为相同符号的加法和不同符号的加法。
相同符号的两个有理数相加,只需将它们的绝对值相加,并保持符号不变。
例如,5+3=8,-6+(-2)=-8。
不同符号的两个有理数相加,需要进行减法运算。
将绝对值较大的数减去绝对值较小的数,并取绝对值较大的数的符号作为结果的符号。
例如,6+(-3)=3,-4+5=1。
有理数的减法可以转化为加法来进行计算。
例如,7-3可以转化为7+(-3),然后按照加法的规则进行计算。
同样地,减法的规则也适用于不同符号的有理数。
例如,-4-(-2)可以转化为-4+2,然后进行加法运算。
二、乘法和除法有理数的乘法可根据符号的不同分为三种情况。
1. 两个正数相乘,结果仍为正数。
例如,2乘以3等于6。
2. 两个负数相乘,结果也为正数。
例如,-2乘以-3等于6。
3. 一个正数和一个负数相乘,结果为负数。
例如,2乘以-3等于-6。
有理数的除法也可根据符号的不同分为三种情况。
1. 正数除以正数,结果仍为正数。
例如,6除以2等于3。
2. 负数除以负数,结果也为正数。
例如,-6除以-2等于3。
3. 正数除以负数或负数除以正数,结果为负数。
例如,6除以-2等于-3。
需要注意的是,除数不能为0。
任何数除以0都是没有意义的。
三、运算顺序在有理数的四则运算中,我们需要遵循一定的运算顺序。
根据数学的运算律,我们先进行括号内的运算,然后进行乘法和除法运算,最后进行加法和减法运算。
例如,计算5+2×3,我们先进行乘法运算,得出的结果再与5相加。
即5+2×3=5+6=11。
同样地,计算(3+4)×2-5,首先进行括号内的运算得到7×2-5,然后依次进行乘法、减法运算,得到14-5=9。
七年级初一数学2.6有理数的乘法与除法知识点解读有理数的除法
知识点解读:有理数的除法一、关于有理数的除法知识点一:有理数的除法法则(掌握)有理数的除法法则:(1)法则1:除以一个数等于乘以这个数的倒数.用字母表示为:a ÷b =a × 1b(b ≠0). (2)法则2:两数相除,同号得正,异号得负,并把绝对值相除;0除以任何不等于0的数都得0 . 温馨提示:对于除法的两个法则,在计算时可根据具体情况选用,一般在不能整除的情况下选用第二法则较简便;而在能整除的情况下则通常选用第一法则.例1 计算:(1)()()644-÷-; (2)37521446⎛⎫⎛⎫⎛⎫÷-÷-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 析解:两个数的除法运算,应先确定商的符号,然后把被除数和除数的绝对值相除;多个有理数的除法运算,应先转化为乘法运算.解:(1)原式=()644+÷=16;(2)原式=14462375⎛⎫⎛⎫⎛⎫⨯-⨯-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=14462375⎛⎫-⨯⨯⨯ ⎪⎝⎭=325-.知识点二:倒数的概念(理解)倒数的概念:与小学学过的互为倒数的概念一样,即乘积为1的两个数互为倒数,如:3和13,5-和15-,56-和65-分别互为倒数.一般的,当0a ≠时,a 与1a互为倒数. 对倒数的概念的理解还应注意以下几点:(1)零没有倒数;(2)正数的倒数仍是正数,负数的倒数仍是负数;(3)倒数等于本身的数是1和-1;(4)求分数的倒数,只要把这个分数的分子、分母颠倒位置即可,求一个小数的倒数,要先把小数转化为分数后再求其倒数,求一个带分数的倒数,要先把带分数化为假分数再求.知识点三:有理数的混合运算(拓展)二、关于有理数的混合运算对于乘除混合运算问题,我们可以按从左到右的顺序依次进行计算,也可以直接把除法转化为乘法来计算,若有括号的应先做括号里面的.例2 计算(-81)÷214×49÷(-15).分析:将除法先统一成乘法,再利用约分来简化计算.解:(-81)÷214×49÷(-15)=81×49×49×115=1115.说明:有理数的乘除混合运算必须按从左到右的顺序依次进行计算,像(-81)÷214×49=-81÷94×49=-81,这样计算是错误的.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列命题中,正确的是()A.若ac2<bc2,则a<b B.若ab<c,则a<b cC.若a﹣b>a,则b>0 D.若ab>0,则a>0,b>0 【答案】A【解析】利用不等式的性质分别判断后即可确定正确的选项.【详解】解:A、若ac2<bc2,则a<b,正确;B、若ab<c,则a<bc,错误;C、若a﹣b>a,则b<0,故错误;D、若ab>0,则a>0,b>0或a<0,b<0,故错误,故选:A.【点睛】考查了命题与定理的知识,解题的关键是了解不等式的性质,难度不大.2.下列每组数分别是三根木棒的长度,能用它们摆成三角形的是()A.3cm,4cm,8cm B.8cm,7cm,15cm C.5cm,5cm,11cm D.13cm,12cm,20cm【答案】D【解析】根据三角形的三边关系,两边之和大于第三边,即两短边的和大于最长的边,即可作出判断.【详解】解:A、3+4<8,故以这三根木棒不可以构成三角形,不符合题意;B、8+7=15,故以这三根木棒不能构成三角形,不符合题意;C、5+5<11,故以这三根木棒不能构成三角形,不符合题意;D、12+13>20,故以这三根木棒能构成三角形,符合题意.故选:D.【点睛】本题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边.3.如果点M(a+3,a+1)在直角坐标系的x轴上,那么点M的坐标为()A.(0,-2)B.(2,0)C.(4,0)D.(0,-4)【答案】B【解析】∵点M(a+3,a+1)在直角坐标系的x轴上,∴a+1=0,解得a=−1,所以,a+3=−1+3=2,点M的坐标为(2,0).故选B.4.等腰三角形的两边长分别为5和11,则它的周长为()A.21 B.21或27 C.27 D.25【答案】C【解析】试题分析:分类讨论:当腰取5,则底边为11,但5+5<11,不符合三角形三边的关系;当腰取11,则底边为5,根据等腰三角形的性质得到另外一边为11,然后计算周长.解:当腰取5,则底边为11,但5+5<11,不符合三角形三边的关系,所以这种情况不存在;当腰取11,则底边为5,则三角形的周长=11+11+5=1.故选C.考点:等腰三角形的性质;三角形三边关系.5.港珠澳大桥2018年10月24日正式通车,整个大桥造价超过720亿元人民币,720亿用科学记数法表示为()A.72×109B.7.2×109C.7.2×1010D.0.72×1011【答案】C【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:720亿用科学记数法表示为7.2×1010故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.如图是一个运算程序的示意图,若开始输入x的值为81,则第2019次输出的结果为()A.3 B.27 C.9 D.1【答案】A【解析】根据运算程序进行计算,然后得到规律从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3,然后解答即可.【详解】第1次,12×81=27, 第2次,12×27=9, 第3次,12×9=3, 第4次,12×3=1, 第5次,1+2=3,第6次,12×3=1, …,依此类推,偶数次运算输出的结果是1,奇数次运算输出的结果是3,∵2019是奇数,∴第2019次输出的结果为3,故选:A .【点睛】本题考查了代数式求值,根据运算程序计算出从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3是解题的关键.7.已知方程组35223x y k x y k +=+⎧⎨+=⎩的解满足x + y = 2 ,则k 的值为( ) A .4B .- 4C .2D .- 2 【答案】A【解析】方程组中两方程相减消去k 得到关于x 与y 的方程,与x+y=2联立求出解,即可确定出k 的值.【详解】35223x y k x y k ++⎧⎨+⎩=①=②, ①-②得:x+2y=2,222x y x y +⎧⎨+⎩== , 解得20x y ⎧⎨⎩==, 则k=2x+3y=4,故选A .【点睛】考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.8.下列调查活动中适合使用全面调查的是( )A .某种品牌手机的使用寿命B .全国植树节中栽植树苗的成活率C .了解某班同学课外阅读经典情况D .调查“厉害了,我的国”大型电视记录片的收视率【答案】C【解析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,进行一一判断解答.【详解】A. 某种品牌手机的使用寿命,适合抽样调查,故A 选项错误;B.全国植树节中栽植树苗的成活率,适合抽样调查,故B 选项错误;C.了解某班同学的课外阅读经典情况,适合使用全面调查,故C 选项正确;D.调查“厉害了,我的国”大型记录电影在线收视率,适于抽样调查,故D 选项错误.故选C .【点睛】本题考查抽样调查和全面调查的区别,难度不大 9.若关于x 的不等式组030x a x -≥⎧⎨-<⎩有3个整数解,则a 的值可以是( ) A .-2B .-1C .0D .1【答案】C 【解析】试题解析:解不等式组030x a x -≥⎧⎨-<⎩, 得 3x a x ≥⎧⎨<⎩,所以解集为3a x ≤<; 又因为不等式组030x a x -≥⎧⎨-<⎩,有3个整数解,则只能是2,1,0, 故a 的值是0.故选C.10.如图,所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家,其中x 表示时间,y 表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是( )A .体育场离张强家3.5千米B .张强在体育场锻炼了15分钟C .体育场离早餐店1.5千米D .张强从早餐店回家的平均速度是3千米/小时【答案】C 【解析】试题分析:A 、由函数图象可知,体育场离张强家2.5千米,故A 选项正确;B 、由图象可得出张强在体育场锻炼30-15=15(分钟),故B 选项正确;C 、体育场离张强家2.5千米,体育场离早餐店2.5-1.5=1(千米),故C 选项错误;D 、∵张强从早餐店回家所用时间为95-65=30(分钟),距离为1.5km ,∴张强从早餐店回家的平均速度1.5÷0.5=3(千米/时),故D 选项正确.故选C .考点:函数的图象.二、填空题题11.若长度分别是4、6、x 的三条线段为边能组成一个三角形,则x 的取值范围是__.【答案】2<x<10【解析】试题解析:6446,x -<<+210.x ∴<<故答案为:210.x <<点睛:三角形的三边关系:任意两边之和大于第三边.12.现有2张大正方形纸片A ,2张小正方形纸片B ,5张小长方形纸片C ,这9张纸片恰好拼成如图所示的大长方形,已知大长方形的周长为42,面积为107,则1张小长方形纸片C 的面积为____________.【答案】9【解析】设小长方形纸片C 的的长为x ,宽为y ,根据大长方形的周长为42,面积为107列方程组求解即可.【详解】设小长方形纸片C 的的长为x ,宽为y ,有题意得()()()2224222107x y x y x y x y ⎧+++=⎪⎨++=⎪⎩, 解之得79x y xy +=⎧⎨=⎩, 故答案为:9.【点睛】本题考查了二元一次方程组的应用,仔细审题,找出题目的已知量和未知量,设两个未知数,并找出两个能代表题目数量关系的等量关系,然后列出方程组求解即可.13.观察下列各式:(x+5)(x+6)=x 2+11x+30;(x ﹣5)(x ﹣6)=x 2﹣11x+30;(x ﹣5)(x+6)=x 2+x ﹣30;(x+5)(x ﹣6)=x 2﹣x ﹣30;其中的规律用公式表示为_____.【答案】(x+m )(x+n )=x 2+(m+n )x+mn【解析】根据规律乘积中的一次项系数是两因式中常数项的和,乘积中的常数项是常数项的积,即可得出答案,【详解】观察下列各式:(x+5)(x+6)=x 2+11x+30;(x ﹣5)(x ﹣6)=x 2﹣11x+30;(x ﹣5)(x+6)=x 2+x ﹣30;(x+5)(x ﹣6)=x 2﹣x ﹣30;其中的规律用公式表示为(x+m )(x+n )=x 2+(m+n )x+mn ,故答案为:(x+m )(x+n )=x 2+(m+n )x+mn【点睛】本题考查多项式乘多项式,熟练掌握计算法则是解题关键.14.已知435x y -=,用x 表示y ,得y _____________. 【答案】453x y -= 【解析】把x 看做已知数求出y 即可. 【详解】 435x y -=453x y -∴= 故答案为453x y -=【点睛】本题考查解一元二次方程,熟练掌握计算法则是解题关键.15.若关于x 的不等式组0721x m x -<⎧⎨-≤-⎩只有4个正整数解,则m 的取值范围为__________. 【答案】78m <≤【解析】首先解两个不等式,根据不等式有4个正整数解即可得到一个关于m 的不等式组,从而求得m 的范围.【详解】0721x m x -<⎧⎨-≤-⎩①②解不等式①得:x<m解不等式②得:x≥4∵原不等式组只有4个正整数解,故4个正整数解为;4、5、6、7∴78m <≤故答案为:78m <≤【点睛】本题主要考查了不等式组的正整数解,正确求解不等式组,并得到关于m 的不等式组是解题的关键. 16.如图所示,把ABC △的三边BA 、CB 和AC 分别向外延长一倍,将得到的点A '、B '、C '顺次连接成A B C ''',若ABC △的面积是5,则A B C '''的面积是________.【答案】1【解析】连接AB '、BC '、CA ',由题意得:AB AA =',BC BB =',AC CC =',由三角形的中线性质得出△AA B ''的面积ABB =∆'的面积ABC =∆的面积BCC =∆'的面积AAC =∆的面积=△BB C '的面积=△A C C ''的面积5=,即可得出△A B C '''的面积.【详解】解:连接AB '、BC '、CA ',如图所示:由题意得:AB AA =',BC BB =',AC CC =',∴△AA B ''的面积ABB =∆'的面积ABC =∆的面积BCC =∆'的面积=△AA C '的面积=△BB C ''的面积=△A C C ''的面积5=,∴△A B C '''的面积5735=⨯=;故答案为:1.【点睛】本题考查了三角形的中线性质、三角形的面积;熟记三角形的中线把三角形的面积分成相等的两部分是解题的关键.17.若216x mx ++是一个完全平方式,则m=________【答案】±1 【解析】利用完全平方公式的结构特征可确定出m 的值.【详解】解:∵多项式222164x mx x mx ++=++是一个完全平方式,∴m =±2×1×4,即m =±1, 故答案为:±1. 【点睛】此题考查了完全平方式,熟练掌握完全平方公式的结构特征是解本题的关键.三、解答题18.4月23日是“世界读书日”,学校开展“让书香溢满校园”读书活动,以提升青少年的阅读兴趣,九年级(1)班数学活动小组对本年级600名学生每天阅读时间进行了统计,根据所得数据绘制了如图所示的两幅不完整的统计图(每组包括最小值不包括最大值).九年级(1)班每天阅读时间在0.5 h 以内的学生占全班人数的8%,根据统计图解答下列问题:(1)九年级(1)班有________名学生.(2)补全频数分布直方图.(3)除九年级(1)班外,九年级其他班级每天阅读时间为1~1.5 h的学生有165人,请你补全扇形统计图.(4)求该年级每天阅读时间不少于1 h的学生有多少人.【答案】 (1)50;(2)见解析;(3)见解析;(3)246人.【解析】试题分析:(1)根据统计图可知0~0.5小时的人数和百分比,用除法可求解;(2)根据总人数和已知各时间段的人数,求出九年级(1)班学生每天阅读时间在0.5~1 h的人数,画图即可;(3)根据除九年级(1)班外,九年级其他班级每天阅读时间为1~1.5 h的学生有165人,除以总人数得到百分比,即可画扇形图;(4)根据扇形统计图求出其它班符合条件的人数,再加上九年级(1)班符合条件的人数即可.试题解析:(1)4÷8%=50(2)九年级(1)班学生每天阅读时间在0.5~1 h的有50-4-18-8=20(人),补全频数分布直方图如图所示.(3)因为除九年级(1)班外,九年级其他班级每天阅读时间在1~1.5 h的学生有165人,所以1~1.5 h在扇形统计图中所占的百分比为165÷(600-50)×100%=30%,故0.5~1 h在扇形统计图中所占的百分比为1-30%-10%-12%=48%,补全扇形统计图如图所示.(4)该年级每天阅读时间不少于1 h的学生有(600-50)×(30%+10%)+18+8=246(人).19.进入六月以来,西瓜出现热卖.佳佳水果超市用760元购进甲、乙两个品种的西瓜,销售完共获利360元,其进价和售价如表:甲品种乙品种进价(元/千克) 1.6 1.4售价(元/千克) 2.4 2(1)求佳佳水果超市购进甲、乙两个品种的西瓜各多少千克?(2)由于销售较好,该超市决定,按进价再购进甲,乙两个品种西瓜,购进乙品种西瓜的重量不变,购进甲品种西瓜的重量是原来的2倍,甲品种西瓜按原价销售,乙品种西瓜让利销售.若两个品种的西瓜售完获利不少于560元,问乙品种西瓜最低售价为多少元?【答案】(1)300千克,200千克;(2)1.1元/千克.【解析】(1)设佳佳水果超市购进甲品种西瓜x千克,购进乙品种西瓜y千克,根据总价=单价×数量结合总利润=每千克的利润×数量,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设乙品种西瓜的售价为m元/千克,根据总利润=每千克的利润×数量结合售完获利不少于560元,即可得出关于m的一元一次不等式,解之取其中的最小值即可得出结论.【详解】解:(1)设佳佳水果超市购进甲品种西瓜x千克,购进乙品种西瓜y千克,依题意,得:1.6 1.4760(2.4 1.6)(2 1.4)360x yx y+=⎧⎨-+-=⎩,解得:300200 xy=⎧⎨=⎩.答:佳佳水果超市购进甲品种西瓜300千克,购进乙品种西瓜200千克.(2)设乙品种西瓜的售价为m元/千克,依题意,得:300×2×(2.4﹣1.6)+200×(m﹣1.4)≥560,解得:m≥1.1.答:乙品种西瓜最低售价为1.1元/千克.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.20.如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD的两条边AB与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC.(1)试在图中标出点D,并画出该四边形的另两条边;(2)将四边形ABCD向下平移5个单位长度,画出平移后得到的四边形A′B′C′D′.【答案】(1)详见解析;(2)详见解析.【解析】(1)画出点B 关于直线AC 的对称点D 即可解决问题.(2)将四边形ABCD 各个点向下平移5个单位即可得到四边形A′B′C′D′.【详解】(1)点D 及四边形ABCD 的另两条边如图所示.(2)得到的四边形A′B′C′D′如图所示.【点睛】本题考查平移变换、轴对称的性质,解题的关键是理解轴对称的意义,图形的平移实际是点在平移. 21.如图,已知四边形ABCD ,//AD BC ,点P 在直线CD 上运动(点P 和点C ,D 不重合,点P ,A ,B 不在同一条直线上),若记DAP ∠,APB ∠,PBC ∠分别为α∠,β∠,γ∠.图1 图2 图3(1)如图1,当点P 在线段CD 上运动时,写出α∠,β∠,γ∠之间的关系,并说出理由;(2)如图2,如果点P 在线段CD 的延长线上运动,探究α∠,β∠,γ∠之间的关系,并说明理由.(3)如图3,BI 平分PBC ∠,AI 交BI 于点I ,交BP 于点K ,且:5:1PAI DAI ∠∠=,20APB ︒∠=,30I ︒∠=,求PAI ∠的度数.【答案】(1)βαγ∠=∠+∠;(2)见解析;(3)50°.【解析】(1)过点P 作//PE AD ,根据平行线的性质即可求解;(2)根据题意分当点P 运动到直线AB 左侧时和当点P 运动到直线AB 右侧时,根据平行线的性质及外角定理即可求解;(3)根据BI 平分ABC ∠,可设PBI CBI x ∠=∠=,则2CBP x ∠=,由//AD BC ,得到2DHP CBP x ∠=∠=,又BKI AKP ∠=∠,得到3020PAI x ︒︒∠=+-10x ︒=+,再根据:5:1PAI DAI ∠∠=,得到11255DAI PAI x ︒∠=∠=+,由DHF ∠是APH ∆的外角,可得DHP PAH APB ∠=∠+∠,即12210205x x x ︒︒︒=++++,故可求出x 即可求解.【详解】(1) βαγ∠=∠+∠.图1理由如下:过点P 作//PE AD ,如图1 ,//PE AD ,APE α∴∠=∠,//AD BC ,//PE BC ∴,BPE γ∴∠=∠,APE BPE βαγ∴∠=∠+∠=∠+∠;(2)当点P 运动到直线AB 右侧时,//AD BC ,1PBC ∴∠=∠,而1PAD APB ∠=∠+∠,APB PBC PAD ∴∠=∠-∠,即βγα∠=∠-∠.当点P 运动到直线AB 左侧时,//AD BC ,2PBC ∴∠=∠,而2PAD APB ∠=∠+∠,APB PAD PBC ∴∠=∠-∠,即βαγ∠=∠-∠.(3)如图,点P 在50PAI ∠=. BI 平分ABC ∠,可设PBI CBI x ∠=∠=,则2CBP x ∠=,//AD BC ,2DHP CBP x ∴∠=∠=,20APB ︒∠=,30I ︒∠=,BKI AKP ∠=∠,3020PAI x ︒︒∴∠=+-10x ︒=+,又:5:1PAI DAI ∠∠=, 11255DAI PAI x ︒∴∠=∠=+,DHF ∠是APH ∆的外角,DHP PAH APB ∴∠=∠+∠,即12210205x x x ︒︒︒=++++,解得40x =,401050PAI ︒︒︒∴∠=+=.【点睛】此题主要考查平行线的性质与三角形的角度求解,解题的关键是熟知平行线的性质及三角形的外角定理与内角和定理.22.如图,在ABC ∆中,CD 垂直AB ,垂足为D ,ABC ∠的平分线BP 交CD 于点P .(1)若20BCD ∠=︒,求PBC ∠的度数;(2)若BCD α∠=,求BPD ∠的度数.【答案】(1)35PBC ∠=︒;(2)1452BPD α∠=︒+. 【解析】(1)由CD 垂直AB ,可得直角,由BP 平分ABC ∠,可得PBC PBD ∠∠=,依据三角形内角和定理可求ABC ∠,进而求出PBC ∠;(2)方法同(1),只是角度用α表示,最后由三角形的外角等于与它不相邻的两个内角的和,表示BPD ∠即可.【详解】解:(1)CD AB ⊥,CDB CDA 90∠∠∴==︒,BCD 20∠=︒,ABC 902070∠∴=︒-︒=︒,又BP 平分ABC ∠,1PBC PBD ABC 352∠∠∠∴===︒, 答:PBC 35∠=︒;(2)CD AB ⊥,CDB CDA 90∠∠∴==︒,BCD α∠=,ABC 90α∠∴=︒-,又BP 平分ABC ∠,()11PBC PBD ABC 90α22∠∠∠∴===︒-, ()11BPD PBC PCB 90αα45α22∠∠∠∴=+=︒-+=︒+,答:1BPD 45α2∠=︒+.【点睛】考查三角形内角和定理、角平分线意义、垂直的意义等知识,三角形的内角和定理的推论,即三角形的任何一个外角等于与它不相邻的两个内角的和,在解决问题时也经常用到,注意掌握.23.某镇道路改造工程,由甲、乙两工程队合作完成.甲工程队单独施工比乙工程队单独施工多用30天完成此项工程,甲工程队30天完成的工程与甲、乙两工程队10天完成的工程相等.(1)求甲、乙两工程队单独完成此项工程各需要多少天?(2)如果甲工程队施工每天需付施工费1万元,乙工程队施工每天需付施工费2.5万元,甲工程队至少要单独施工多少天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过64万元?【答案】(1)甲、乙两工程队单独完成此项工程各需要60天和30天;(2)甲工程队至少单独施工36天.【解析】(1)设乙工程队单独完成此项工程各需要的天数为x ,则甲单独完成需要(x+30)天,根据题意即可列出分式方程进行求解;(2)设甲单独施工y 天,根据题意列出不等式进行求解. 【详解】(1)设乙工程队单独完成此项工程各需要的天数为x ,则甲单独完成需要(x+30)天, 根据题意得301110()3030x x x =⋅+++, 解得x=30,经检验,x=30是原方程的解,故甲、乙两工程队单独完成此项工程各需要60天和30天;(2)设甲单独施工y 天,根据题意得6011603011 3.564y y -⨯+⨯≤+ 解得y ≥36,故甲工程队至少单独施工36天.【点睛】此题主要考查分式方程与不等式的应用,解题的关键是根据题意找到等量关系或不等关系进行求解.24.解不等式组5178(1)1062x xxx-<-⎧⎪⎨--≤⎪⎩①②并写出它的解集在数轴上表示出来.【答案】-3<x≤2,图见解析【解析】根据不等式的基本性质分别求出两个不等式的解集,然后取公共解集,最后把它的解集在数轴上表示出来即可.【详解】解:解不等式①,得:x>-3,解不等式②,得:x≤2,所以不等式组的解集是-3<x≤2,则不等式组的解集如图所示:【点睛】此题考查的是解一元一次不等式组,掌握一元一次不等式组的解法和公共解集的取法是解决此题的关键.25.已知23x y-=,222413x xy y-+=.求下列各式的值:(1)xy.(2)222x y xy-.【答案】(1)2 (2)6【解析】(1)首先将23x y-=两边平方,即可得22449x y xy+-=,再减去222413x xy y-+=可得xy的值.(2)首先将222x y xy-因式分解,提取xy,则可得(2)xy x y-在进行计算即可.【详解】(1)23x y-=∴22449x y xy+-=22224492413x y xyx xy y⎧+-=∴⎨-+=⎩两式相减可得:2xy =(2)222x y xy -=(2)xy x y -=236⨯=【点睛】本题主要考查因式分解,关键在于凑的思想应用.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,在△ABC中,∠C=78°,沿图中虚线截去∠C,则∠1+∠2=()A.282°B.180°C.360°D.258°【答案】D【解析】根据三角形内角和定理求出∠3+∠4,根据邻补角的概念计算即可.【详解】如图:∵∠C=78°,∴∠3+∠4=180°﹣78°=102°,∴∠1+∠2=360°﹣(∠3+∠4)=258°,故选D.【点睛】本题考查的是三角形内角和定理,掌握三角形内角和等于180°是解题的关键.2.在“幻方拓展课程”探索中,小明在如图的3×3方格内填入了一些表示数的代数式,若图中各行、各x y=()列及对角线上的三个数之和都相等,则2A .2B .4C .6D .8【答案】B 【解析】根据题意得出方程组,求出方程组的解,代入2x y 计算即可.【详解】由题意得 26022002y y y x y y -++=++⎧⎨-+=++⎩, 解之得82x y =⎧⎨=⎩, ∴x-2y=8-4=4.故选B.【点睛】本题考查了二元一次方程组的应用及求代数式的值,能根据题意列出方程组是解此题的关键. 3.如图,在矩形ABCD 中放入6个全等的小矩形,所标尺寸如图所示,设小矩形的长为a ,宽为b ,则可得方程组( )A .3164a b a b +=⎧⎨-=⎩B .31624a b a b +=⎧⎨-=⎩C .2164a b a b +=⎧⎨-=⎩D .21624a b a b +=⎧⎨-=⎩【答案】A 【解析】设小矩形的长为a ,宽为b ,根据矩形的性质列出方程组即可.【详解】解:设小矩形的长为a ,宽为b ,则可得方程组3164a b a b +=⎧⎨-=⎩故选:A .【点睛】本题考查由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.4.如果点P(m﹣1,4﹣2m)在第四象限,那么m的取值范围是()A.m>1 B.m>2 C.2>m>1 D.m<2【答案】B【解析】根据第四象限内点的横坐标是正数,纵坐标是负数列出不等式组,然后求解即可.【详解】解:∵点P(m﹣1,4﹣1m)在第四象限,∴10420mm-⎧⎨-⎩>①<②,解不等式①得,m>1,解不等式②得,m>1,所以不等式组的解集是:m>1,所以m的取值范围是:m>1.故选:B.【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).5.若点A(-2,n)在x轴上,则点B(n-1,n+1)在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】根据x轴上的坐标特点求出n,再判断点B所在象限.【详解】∵点A(-2,n)在x轴上,∴n=0,∴B(-1,1),在第二象限,故选B.【点睛】此题主要考查直角坐标系中点的坐标特点,解题的关键是熟知坐标轴上的点的坐标特点.6.若多边形的内角和大于900°,则该多边形的边数最小为()A.9 B.8 C.7 D.6【答案】B【解析】根据多边形的内角和公式(n﹣2)×120°列出不等式,然后求解即可.【详解】解:设这个多边形的边数是n,根据题意得(n﹣2)×120°>900°,解得n>1.该多边形的边数最小为2.故选:B.【点睛】本题考查了多边形的内角和公式,熟记公式并列出不等式是解题的关键.7.如果a>b,那么下列结论一定正确的是()A.ac>bc B.5﹣a<5﹣b C.a﹣5<b﹣5 D.a2>b2【答案】B【解析】根据不等式的性质求解即可.【详解】解:A、当c<0时,ac<bc,故A不符合题意;B、两边都乘﹣1,不等号的方向改变,﹣a<﹣b,两边都加5,不等号的方向不变,5﹣a<5﹣b,故B符合题意;C、两边都减5,不等号的方向不变,故C不符合题意;D、当﹣1>a>b时,a2<b2,故D错误,故选:B.【点睛】本题考查了不等式的性质,不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.8.下列调查中,最适合采用全面调查(普查)方式的是()A.对华为某型号手机电池待机时间的调查B.对全国中学生观看电影《流浪地球》情况的调查C.对中央电视台2019年春节联欢晚会满意度的调查D.对“长征五号B”运载火箭零部件安全性的调查【答案】D【解析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A.对华为某型号手机电池待机时间的调查,适合抽样调查;B.对全国中学生观看电影《流浪地球》情况的调查,适合抽样调查;C.对中央电视台2019年春节联欢晚会满意度的调查,适合抽样调查;D.对“长征五号B”运载火箭零部件安全性的调查,需要进行全面调查;故选:D.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.9.已知: 表示不超过的最大整数,例: ,令关于的函数(是正整数),例:=1,则下列结论错误..的是()A.B.C.D.或1【答案】C【解析】根据新定义的运算逐项进行计算即可做出判断.【详解】A. ==0-0=0,故A选项正确,不符合题意;B. ===,=,所以,故B选项正确,不符合题意;C. =,= ,当k=3时,==0,= =1,此时,故C选项错误,符合题意;D.设n为正整数,当k=4n时,==n-n=0,当k=4n+1时,==n-n=0,当k=4n+2时,==n-n=0,当k=4n+3时,==n+1-n=1, 所以或1,故D 选项正确,不符合题意,故选C.【点睛】 本题考查了新定义运算,明确运算的法则,运用分类讨论思想是解题的关键.10.小亮解方程组2317x y x y +=⎧⎨-=⎩●的解为5*x y =⎧⎨=⎩,则于不小心滴上两滴墨水,刚好遮住了两个数●和*,则这两个数分别为( )A .4和6-B .6和4C .2-和8D .8和2-【答案】D【解析】将5x =代入方程组第二个方程求出y 的值,即可确定出●和*表示的数.【详解】将5x =代入317x y -=中得:2y =-,将5x =,2y =-入得:21028x y +=-=,则●和*分别为8和2-.故选:D .【点睛】此题考查了二元一次方程组的解,解题关键在于方程组的解即为能使方程组中两方程成立的未知数的值.二、填空题题11.若长度分别是4、6、x 的三条线段为边能组成一个三角形,则x 的取值范围是__.【答案】2<x<10【解析】试题解析:6446,x -<<+ 210.x ∴<<故答案为:210.x <<点睛:三角形的三边关系:任意两边之和大于第三边.12.如图,直线AB ∥CD ,BC 平分∠ABD ,∠1=55°,图中∠2=_____【答案】70°【解析】由两直线平行判断同位角相等和同旁内角互补,由角平分线的定义和对顶角相等,得到结论.【详解】∵AB∥CD,∴∠ABC=∠1=55°,∠ABD+∠BDC=180°,∵BC平分∠ABD,∴∠ABD=2∠ABC=110°,∴∠BDC=180°-∠ABD=70°,∴∠2=∠BDC=70°.故答案是:70°.【点睛】本题考查了平行线的性质和角平分线定义等知识点,解此题的关键是求出∠ABD的度数.13.中午12点15分时,钟表上的时针和分针所成的角的度数为_____________【答案】82.5°【解析】根据时钟12时15分时,时针在12与1之间,分针在3上,可以得出分针与时针相隔234个大格,每一大格之间的夹角为30°,可得出结果.【详解】∵钟表上从1到12一共有12格,每个大格30°,∴时钟12时15分时,时针在12与1之间,分针在3上,∴分针与时针的夹角是234×30°=82.5°.故答案为:82.5°.【点睛】此题主要考查了钟面角的有关知识,得出钟表上从1到12一共有12格,每个大格30°,是解决问题的关键.14.平面直角坐标系内x轴上有两点A(-3,0),B(2,0),点C在y轴上,如果△ABC的面积为15,则点C的坐标是_______.。
人教版初一数学上册知识点:有理数法则及运算规律
人教版初一数学上册知识点:有理数法则及运算规律学好数学的关键就在于要适时适量地进行总结归类,接下来小编就为大家整理了这篇人教版初一数学上册知识点:有理数法则及运算规律,希望可以对大家有所帮助。
(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.2.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).3.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).4.有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.5.有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac .6.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数, .要练说,得练听。
听是说的前提,听得准确,才有条件正确模仿,才能不断地掌握高一级水平的语言。
我在教学中,注意听说结合,训练幼儿听的能力,课堂上,我特别重视教师的语言,我对幼儿说话,注意声音清楚,高低起伏,抑扬有致,富有吸引力,这样能引起幼儿的注意。
当我发现有的幼儿不专心听别人发言时,就随时表扬那些静听的幼儿,或是让他重复别人说过的内容,抓住教育时机,要求他们专心听,用心记。
平时我还通过各种趣味活动,培养幼儿边听边记,边听边想,边听边说的能力,如听词对词,听词句说意思,听句子辩正误,听故事讲述故事,听谜语猜谜底,听智力故事,动脑筋,出主意,听儿歌上句,接儿歌下句等,这样幼儿学得生动活泼,轻松愉快,既训练了听的能力,强化了记忆,又发展了思维,为说打下了基础。
7.有理数乘方的法则:(1)正数的任何次幂都是正数;一般说来,“教师”概念之形成经历了十分漫长的历史。
七年级有理数的运算技巧
七年级有理数的运算技巧在七年级数学学习中,有理数的运算技巧是一个非常重要的内容。
有理数包括整数和分数,掌握有理数的运算技巧不仅可以帮助我们解决实际问题,还可以在后续的数学学习中打下坚实的基础。
本文将介绍七年级有理数的四则运算技巧以及有理数的约分与化简技巧。
一、有理数的加法和减法运算技巧在进行有理数的加法和减法运算时,首先需要判断两个数的符号,然后按照符号的不同进行相应的运算。
1. 同号数相加(减):将两个数的绝对值相加(减),并保持符号不变。
例如:计算-3 + (-5)的结果,首先将绝对值3和5相加,得到8,然后保持符号为负,最终结果为-8。
2. 异号数相加(减):将两个数的绝对值相减,然后保持绝对值较大的数的符号。
例如:计算-4 + 7的结果,首先将绝对值7减去4,得到3,然后保持绝对值较大的数7的符号,最终结果为3。
二、有理数的乘法和除法运算技巧有理数的乘法和除法运算相对于加法和减法而言,稍微复杂一些。
下面将介绍有理数的乘法和除法运算技巧。
1. 有理数的乘法:将两个数的绝对值相乘,然后根据乘积的符号确定最终结果的符号。
例如:计算-2 × (-3)的结果,首先将绝对值2和3相乘,得到6,然后根据乘积的符号确定结果的符号为正,最终结果为6。
2. 有理数的除法:将除数和被除数的绝对值相除,然后根据除法的规律确定最终结果的符号。
例如:计算-8 ÷ 4的结果,首先将绝对值8和4相除,得到2,然后根据除法的规律确定结果的符号为负,最终结果为-2。
三、有理数的约分与化简技巧约分是指将分数的分子和分母同时除以它们的公约数,使得分数的值保持不变但表达更简洁。
例如:将分数8/12约分为最简形式。
首先找出8和12的公约数,可以得到公约数4,然后将8和12同时除以4,得到分数2/3,即为所求的最简形式。
化简是指将一个复杂的数式经过一系列计算得出一个更简单且与原数式等价的结果。
例如:将数式(3+5)×2/4化简。
(完整版)初一有理数的运算法则
一、有理数的运算顺序:有理数的混合运算法则即先算乘方或开方,再算乘法或除法,后算加法或减法。
有括号时、先算小括号里面的运算,再算中括号,然后算大括号。
在遇到相同类型的运算时,应从左往右运算二、有理数的运算:1)有理数加减法:1、同号相加和取相同的符号,并把绝对值相加例如:+2+3=5 (-2)+(-3)=-52、异号相加和取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值例如:+2+(-3)=-1 (-2)+3=1一个数与零相加仍得这个数,两个互为相反数相加和为零3、减去一个数等于加上这个数的相反数例如:+2-(+3)=2+(-3)=-1 (-2)-(-3)=-2+3=14、异号相减可理解为同号相加例如:+2-(-3)=2+3=5 (-2)-(+3)=-2-3=-5 补充:去括号与添括号:去括号法则:括号前是“+”号时,将括号连同它前边的“+”号去掉,括号内各项都不变;+(4+5+6)=4+5+6 +(4-5+6)=4-5+6括号前是“-”号时,将括号连同它前边的“-”去掉,括号内各项都要变号。
-(4+5+6)=-4-5-6 -(4-5+6)=-4+5-6添括号法则:在“+”号后边添括号,括到括号内的各项都不变;4+5+6=4+(5+6) 4-5+6-7=(4-5+6)-7=(4-5)+6-7在“-”号后边添括号,括到括号内的各项都要变号。
4-5+6=4-(5-6) 4-5+6-7=4-(5-6+7)2)有理数乘法法则:1、两数相乘,同号得正,异号得负,并把绝对值相乘例如:(+2)×(+3)=6 (-2)×(-3)=6 (+2)×(-3)=-6 (-2)×(+3)=-62、任何数与零相乘都得零3、几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个数,积为负;当负因数的个数为偶数个时,积为正;4、几个有理数相乘,若其中有一个为零,积就为零。
七年级有理数混合运算法则大全
一、有理数的运算顺序:有理数的混合运算法则:先算乘方或开方,再算乘法或除法,后算加法或减法。
有括号时、先算小括号里面的运算,再算中括号,然后算大括号。
在遇到相同类型的运算时,应从左往右运算二、有理数的运算:1)有理数加减法:1、同号相加和取相同的符号,并把绝对值相加2、例如:+2+3=5 (-2)+(-3)=-53、异号相加和取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值4、例如:+2+(-3)=-1 (-2)+3=1一个数与零相加仍得这个数,两个互为相反数相加和为零5、减去一个数等于加上这个数的相反数6、例如:+2-(+3)=2+(-3)=-1 (-2)-(-3)=-2+3=17、异号相减可理解为同号相加8、例如:+2-(-3)=2+3=5 (-2)-(+3)=-2-3=-5补充:去括号与添括号:去括号法则:括号前是“+”号时,将括号连同它前边的“+”号去掉,括号内各项都不变;例如:+(4+5+6)=4+5+6 +(4-5+6)=4-5+6括号前是“-”号时,将括号连同它前边的“-”去掉,括号内各项都要变号。
例如:-(4+5+6)=-4-5-6 -(4-5+6)=-4+5-6添括号法则:在“+”号后边添括号,括到括号内的各项都不变;例如:4+5+6=4+(5+6) 4-5+6-7=(4-5+6)-7=(4-5)+6-7在“-”号后边添括号,括到括号内的各项都要变号。
例如:4-5+6=4-(5-6) 4-5+6-7=4-(5-6+7)2)有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘例如:(+2)×(+3)=6 (-2)×(-3)=6(+2)×(-3)=-6 (-2)×(+3)=-62、任何数与零相乘都得零3、几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个数,积为负;当负因数的个数为偶数个时,积为正;4、几个有理数相乘,若其中有一个为零,积就为零。
七年级数学培优辅导四——有理数的运算一
第四讲 有理数的运算一※ 知识回顾一、有理数的加法1、有理数的加法法则(1)同号两数相加,取相同的正负号,并把绝对值相加;即:a >0,b >0时,b a +=)(b a ++;a <0,b <0时,b a +=)(b a +-.(2)绝对值不相等的异号两数相加,取绝对值较大的加数的正负号,并用较大的绝对值减去较小的绝对值;即:a >0,b <0,且a >b 时,b a +=)(b a -+;a <0,b >0,且a >b 时,b a +=)(b a --.(3)互为相反数的两个数相加得零;即:0)(=-+a a .(4)一个数同零相加,仍得这个数.即:a a =+0.注意:(1)进行加法运算时,要根据两个加数的符号和绝对值的情况,先确定和的符号,再确定和的绝对值.(2)关键是掌握绝对值不相等的异号两数相加.(3)进行加法运算时,一定要仔细、仔细、再仔细,随时关注符号,尤其是“-”号.2、有理数的加法运算律(1)加法交换律:a b b a +=+;(2)加法结合律:)()(c b a c b a ++=++注意:(1)多个有理数相加,可以任意交换加数的位置,把其中几个先相加,使计算简化.(2)主要方法:①同号结合法;②凑整结合法;③相反数结合法;④同分母结合法.二、有理数的减法1、有理数的减法是有理数加法的逆运算;2、有理数的减法法则:减去一个数,等于加上这个数的相反数.注意:(1) 减法运算按法则分两步进行,先转化为加法,再做加法运算;(2) 加法转化为减法时要改变两个地方的符号,一个是运算符号“-”变为“+”,另一个是将减数变为它的相反数.(3) 注意检查:小数减大数是负数,大数减小数是正数.三、有理数的加减混合运算1、代数和:几个正数或负数的和叫做代数和.有理数加减混合运算,可以通过有理数减法法则转化成加法,统一成只有加法运算的和式.2、代数和的写法:在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省略加号的和的形式.3、代数和的读法:(1)按式子表示的意义来读;(2)按运算意义来读.4、“-”的双重意义:减号、负号. 注意:一号只能一用,如果一个“-”定义为某种含义后,就不能再具备另一种含义,不能一号两用.5、有理数的加减混合运算的方法与步骤:(1)将有理数的加减法统一成加法,然后写成省略加号的和的形式;(2)运用加法法则、加法运算律进行简便运算.注意:(1)把一个有理数的加减混合运算的式子写成“两省略”的形式,也可以直接运用“多重符号化的化简”的方法进行.(2)有理数的加法运算律包括加法交换律和加法结合律;(3)运用加法运算律时要把式子写成和式,并仔细观察数据之间的特点和关系,选择合适的方法计算.(4)对于带分数的处理:A :化成假分数后进行运算;B :把它拆分成整数部分和真分数部分,但一定要注意,拆分后的两部分的符号必须和原符号完全相同.(5)如果有括号,通常要先算括号里面的,再算括号外面的,特殊情况下可以先去括号,然后再计算,但去括号时要注意符号的变化.※典例剖析【例1】计算(1))217(75.2)413()5.0(+-+---; (2)1853432877431---+-;(3){})]8()3()7[()5()2(4---+------- (4)2164118214837--+--+-【例2】列式计算(1)25.2-减去85-与83-的差,所得的结果 (2)212-、+3、-1.2的和比它们绝对值的和 是多少? 小多少?【例3】计算(1)50002399929619-+- (2)6059)60585958()602524232()601413121(++++++++++++※培优训练1、有理数b a ,在数轴上表示的点的位置如图所示,则有( ).A 、b b a >+B 、0>-a bC 、0>-b aD 、a a b <- a 0 b2、若||3a =,||2b =,且)(b a b a +-=+,则b a +的值是 .3、计算:25611281641321161814121+++++++ 4、计算:)211(434000)321999(652000-+++--※能力拓展题组一:1、计算:)327(75.2)324(523--+----; 2、计算:⎭⎬⎫⎩⎨⎧--+---)]6141(31[)21(1题组二:认真阅读材料,并解答下列问题. 计算:3121⨯= 3121-= 4131⨯= 4131-= 5141⨯= 5141-= …… 发现:3121⨯ 3121-; 4131⨯ 4131-; 5141⨯ 5141- ; …… 概括:=+)1(1n n (n 为正整数). 运用你得到的规律计算下列各题:(1)+⨯+⨯+⨯431321211……200720061⨯+ (2)+⨯+⨯+⨯751531311……200720051⨯+(3)+⨯+⨯+⨯161111161611……201120061⨯+题组三:1、计算:100321132112111++++++++++;2、计算:20066426100864261006642610046426 +++++++++++++++++++。
有理数的运算法则和运算顺序
加法:同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;一个数同零相加,仍得这个数。
减法:减去一个数等于加上这个数的相反数。
乘法:两数相乘,同号得正,异号得负,并把绝对值相乘,任何数同零相乘都得零。
几个不为零的有理数相乘,负因数有偶数个时积为正,负因数有奇数个时积为负,如果有一个因数为零,积就为零。
除法:除以一个不为零的数,等于乘以这个数的倒数;两数相除,同号得正,异号为负;零除以任意非零的数都得零。
在数学的学习中,你肯定会学到一个概念,这就是有理数。
有理数是整数和分数的统称,要想熟练地对有理数进行运算,这就需要我们学会有理数的运算法则。
有理数的加法法则:⑴同号两数相加,取相同的符号,并把绝对值相加。
⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。
⑶一个数和0 相加,仍然得这个数。
两个数相加,交换加数的位置,和不变。
有理数减法法则:减去一个数,等于加这个数的相反数。
如a-b=a+-b 有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0 相乘,都得0。
乘积是1 的两个数互为倒数。
几个不是0 的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数。
两个数相乘,交换因数的位置,积不变。
如ab=ba。
三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变。
如(ab)c=a(bc)一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
如a(b+c)=ab+ac 用字母x 表示任意一个有理数,3 与x 的乘积记为3x,4 与x 的乘积记为4x,则式子3x+4x 是3x 与4x 的和,3x 与4x 叫做这个式子的项,3和4分别是着两项的系数。
通常,合并含有相同字母因数的式子时,只需将它们的系数合并,所得结果作为系数,再乘字母因数,如ax +bx=(a+b)x 上式中x 是字母因数,a 与b 分别是ax 与bx 这两项的系数。
有理数的运算定律
有理数的运算定律有理数是我们在数学学习中的一个重要部分,它包括整数和分数。
有理数的运算基于一些基本定律,这些定律在数学中非常常用。
本文将详细介绍有理数的运算定律,包括加法交换律、加法结合律、乘法交换律、乘法结合律、分配律、减法的逆运算和除法的逆运算。
1. 加法交换律加法交换律是数学中的一个基本运算定律。
它的定义是,对于任意两个有理数a和b,我们可以交换它们的加法顺序,即a + b = b + a。
这个定律非常重要,因为它确保了加法运算的交换性质。
这个定律与乘法交换律有密切关系。
事实上,如果a和b都是正数或都是负数,那么a + b和b + a可以看作是a和b的平均数,因此它们的值相等。
但如果a和b是相反数,即a + b = 0,那么a + b和b + a也相等,因为它们的结果都是0。
2. 加法结合律加法结合律是另一个基本的运算定律。
它的定义是,对于任意三个有理数a、b和c,我们可以改变加法的顺序,即(a + b) + c = a + (b +c)。
这个定律确保了加法运算的结合性质。
类似地,加法结合律与乘法结合律之间也有密切关系。
对于任意三个正数或负数a、b和c,我们可以将(a + b) + c看作是(a + b)与c的平均数,而a + (b + c)则是a与(b + c)的平均数。
因此,如果a、b和c 都是正数或都是负数,那么(a + b) + c和a + (b + c)的值相等。
但如果a、b和c中有一个是0,那么(a + b) + c和a + (b + c)也相等,因为它们的结果都是0。
3. 乘法交换律乘法交换律是关于两个有理数相乘的运算定律。
它的定义是,对于任意两个有理数a和b,我们可以交换它们的乘法顺序,即ab = ba。
这个定律确保了乘法运算的交换性质。
乘法交换律与除法结合律之间也有密切关系。
如果a和b都是正数或都是负数,那么ab和ba的值相等。
但如果a和b是相反数,即ab = 0,那么ab和ba也相等,因为它们的结果都是0。
初一数学有理数公式大全
初一数学有理数公式大全以下是初一数学有理数的一些公式:
1.加法和减法:
-两个有理数的加法:a + b = b + a
-两个有理数的减法:a - b ≠ b - a
2.乘法和除法:
-两个有理数的乘法:a × b = b × a
-两个有理数的除法:a ÷ b ≠ b ÷ a
3.乘方和开方:
-正有理数的乘方:a^m × a^n = a^(m + n)
-正有理数的除法:a^m ÷ a^n = a^(m - n)
-正有理数的开方:√(a × a) = a
4.分数运算:
-分数的乘法:a/b × c/d = (a × c)/(b × d)
-分数的除法:a/b ÷ c/d = (a/b) × (d/c) = (a × d)/(b × c)
-分数的加法:a/b + c/d = (a × d + b × c)/(b × d)
-分数的减法:a/b - c/d = (a × d - b × c)/(b × d)
5.绝对值:
-有理数的绝对值:|a| = a,如果a ≥ 0; |a| = -a,如果a < 0 这些是初一数学中有理数的一些基本公式。
如果需要进一步拓展,可以学习有理数的整数部分和小数部分、有理数的比较大小等概念。
初一数学有理数四则运算法则详解
初一数学有理数四则运算法则详解有理数是指可表示为两个整数的比值的数,包括整数、分数等。
四则运算是数学中最基本的运算,包括加法、减法、乘法和除法。
在初一的数学学习中,有理数的四则运算是一个重要的内容。
本文将详细介绍初一数学有理数四则运算法则。
一、加法法则在初一数学中,有理数的加法法则可总结为以下几个要点:1. 同号数相加,保留同号,将绝对值相加,并在结果前加上相同的符号。
例如,正数加正数,负数加负数。
例如:(+4) + (+6) = +10;(-3) + (-8) = -11。
2. 异号数相加,先求绝对值的和,再在结果前加上符号。
具体来说,绝对值较大的数决定结果的符号。
例如:(+4) + (-6) = -2;(-3) + (+8) = +5。
3. 加数与被加数之和等于和与加数之和,即(a + b) + c = a + (b + c)。
这是加法的结合律。
二、减法法则有理数的减法法则与加法相似,可以归纳为以下几点:1. 减去一个数相当于加上它的相反数。
即a - b = a + (-b)。
例如:(+4) - (+6) = (+4) + (-6) = -2;(-3) - (-8) = (-3) + (+8) = +5。
2. 式子(a - b) - c = a - (b + c),这是减法的结合律。
三、乘法法则在初一数学中,有理数的乘法法则可总结为以下几个要点:1. 同号相乘,积为正数;异号相乘,积为负数。
例如:(+2) × (+3) = +6;(-2) × (+3) = -6。
2. 任何数与0相乘,积为0,即a × 0 = 0。
例如:(+5) × 0 = 0;(-7) × 0 = 0。
3. 乘法满足交换律,即a × b = b × a。
4. 乘法满足结合律,即(a × b) × c = a × (b × c)。
初一上册有理数运算法则知识点必备
初一上册有理数运算法则知识点必备有理数是数学中的一个常考点,专门多同学在做题的时候经常会遇见,在那个地点把七年级上册有理数运算法则知识点告诉大伙儿,以备同学们在遇到的时候参考一下。
(1)有理数的加法法则:1. 同号两数相加,和取相同的符号,并把绝对值相加;2. 绝对值不等的异号两数相加,和取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;3. 一个数与零相加仍得那个数;4. 两个互为相反数相加和为零。
⑵有理数的减法法则:减去一个数等于加上那个数的相反数。
补充:去括号与添括号:去括号法则:括号前是“+”号时,将括号连同它前边的“+”号去掉,括号内各项都不变;括号前是“-”号时,将括号连同它前边的“-”去掉,括号内各项都要变号。
添括号法则:在“+”号后边添括号,括到括号内的各项都不变;在“-”号后边添括号,括到括号内的各项都要变号。
⑶有理数的乘法法则:①两数相乘,同号得正,异号得负,并把绝对值相乘;②任何数与零相乘都得零;③几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个数,积为负;当负因数的个数为偶数个时,积为正;④几个有理数相乘,若其中有一个为零,积就为零。
⑷有理数的除法法则:法则一:两个有理数相除,同号得正,异号得负,并把绝对值相除;法则二:除以一个数等于乘以那个数的倒数。
⑸有理数的乘方:求n个相同因数的积的运算,叫做乘方,乘方的给果叫做幂。
正数的任何次幂差不多上正数;负数的奇次幂是负数,负数的偶次幂是正数。
⑹有理数的运算顺序:有理数的混合运算法则即先算乘方或开方,再算乘法或除法,后算加法或减法。
有括号时、先算小括号里面的运算,再算中括号,然后算大括号。
[5*(4-5+5)]÷5=(5*4)÷5=4⑺运算律:①加法的交换律:a+b=b+a;②加法的结合律:(a+b)+c=a+(b+c);课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也专门难做到恰如其分。
有理数运算规律总结
有理数运算规律总结1、有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)异号两数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
(3)一个数与0相加,仍得这个数。
2、有理数减法法则:减去一个数,等于加上这个数的相反数。
3、有理数乘法法则:(1)两数相乘,同号得正,异号两数相乘得负。
(2)任何数与0相乘都得0.(3)几个因式都不为0的积为0;各个因式都不为0的积为正数;几个因式中有一个为0的积为负数;几个因式中有几个因式的值为0.积为0.在其余因式中乘以的数如果是正数的积为正数,如果是负数的积为负数。
4、有理数除法法则:除以一个不为0的数,等于乘以这个数的倒数。
5、有理数乘方法则:积的乘方等于乘方的积。
6、有理数的运算顺序:先算乘方,再算乘除,最后算加减;如果有括号要先算括号里面的。
重难点精析:1、有理数的意义和运算法则是有理数运算的基础,必须牢固掌握。
在运算时,先确定符号,再计算绝对值。
2、有理数的混合运算是按照先乘方、开方,再乘除,最后加减的顺序进行的。
注意根据实际选择运用交换律和结合律简化运算。
3、对有理数的运算有整体观念和简化意识。
如有理数的四则混合运算对于两个乘数的和或差可以利用分配律及逆用运算律得到两个积的和或差;三个或三个以上的有理数的和或差的分配律不适用,只能按运算顺序计算;如果有括号应先算括号内的运算,有乘方应先进行乘方运算;遇到能开方的因数应开方运算;能凑整的先凑整等。
4、灵活运用运算律简化运算。
熟练运用运算律简化运算是学习有理数混合运算的关键。
特别要注意:乘法分配律不能写成两数之和乘以两数的积的形式;在乘法交换律中可以连续多次使用;在乘法结合律中几个数相乘分别在括号里与不分别放在括号里作用不同;如果做题时没有根据要求或题目指定方法而盲目地套用某种运算律会使计算更加复杂化,因此应特别注意按要求或题目要求进行计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级有理数运算法则汇总
相反数
定义:只有符号不同的两个数叫做互为相反数,如2和-2,3.5和-3.5在数轴上互为相反数的两个点到原点的距离相等,如2和-2这两个数,到原点的距离都是2.
表示方法:数a的相反数是-a,其中a表示任意的有理数。
绝对值
一个数在坐标轴上所对应点到原点的距离叫做这个数的绝对值,绝对值用"丨丨"来表示。
数a的绝对值记作丨a丨,读作:a的绝对值,如丨2丨=2,丨-2丨=2.
一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0;
有理数加法法则:
①同号两数相加,取相同的符号,并把绝对值相加。
②绝对值不等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数两数相加得0。
③一个数同零相加仍得这个数
有理数减法法则:
有理数减法法则:减去一个数,等于加上这个数的相反数。
用公式表示为:a-b=a+(-b)
有理数乘法法则
1、有理数乘法法则即两数相乘,同号得正,异号得负,并把绝对值相乘。
任何一个数与0相乘,积仍为0。
2、乘积是1的两个数互为倒数。
3、多个有理数相乘
几个不是0的数相乘负因数的个数是偶数时,积为正数;负因数的个数是奇数时,积为负数。
有理数除法法则
法则一:除以一个不等于0的数等于乘以这个数的倒数。
(注意:0没有倒数)。
法则二:两数相除,同号得正,异号得负,并把绝对值相除。
(0除以任何一个非0的数,都得0)。