一次函数易错题汇编及解析
初中一次函数涉及的12个易错点剖析
初中一次函数涉及的12个易错点剖析【知识点1】一、函数的概念在某一变化过程中有两个变量x和y,如果对于x的每一个值,y总有唯一的值与它对应,我们就说x是自变量,y是因变量,y是x的函数。
二、函数的三种表示法:(1)图像法(“形”);(2)列表法(“数”);(3)公式法(“式”).【易错点1】对函数概念理解不清例题1 下列等式:y=|x|,|y|=x,5x2-y=0,x2-y2=0,其中表示y是x的函数的个数有()A.0个B.1个C.2个D.4个【错解】D【错因】一个等式是不是函数,必须同时满足两个要求。
一是有两个变量;二是在两个变量x与y的对应关系中,x每确定一个值,y必须只有唯一的值与之对应.本题错解中没有正确地理解函数的概念,错误地认为|y|=x和x2-y2=0也是函数。
事实上,这两个等式中,对于x每取一个值,y并不与之唯一对应,所以在|y|=x和x2-y2=0中,y不是x的函数。
【正解】C巩固1 下列各选项中,不是函数的是()【错解】A或B或D【正解】C.巩固2 有下列关系:①长方形的长一定时,其面积y 与宽x ;②高速公路上匀速行驶的汽车,其行驶的路程y 与行驶的时间x ;③y 2=x ;④y =x 2.其中,y 是x 的函数关系的有 (填序号).【错解】①②③④ 【正解】①②④【小结】由函数的概念可知,判断y 是x 的函数的关键是对于自变量x 取的每一个值,都有唯一的y 值与之对应。
【易错点2】考虑问题不全面,求自变量的取值范围时出错例题2 求函数y =【错解】依题意,得10210x x -≥⎧⎨->⎩ ,解之得x ≥1,所以自变量的取值范围是x ≥1【错因】错解中思考问题不全面,被开方数1021x x -≥-时有两种情况,即10210x x -≥⎧⎨->⎩或10210x x -≤⎧⎨-<⎩,错解漏掉了第二种情况。
【正解】依题意,得1021x x -≥-,∴(I )10210x x -≥⎧⎨->⎩或(II )10210x x -≤⎧⎨-<⎩解不等式组(I ),得x ≥1 等式组(I ),得12x <∴解不自变量的取值范围是x ≥1或12x <巩固3 函数y =x 的取值范围为 . 【错解】x ≥-1。
(易错题精选)初中数学一次函数经典测试题含答案解析
(易错题精选)初中数学一次函数经典测试题含答案解析一、选择题1.一次函数 y = mx +1m -的图像过点(0,2),且 y 随 x 的增大而增大,则 m 的值为( )A .-1B .3C .1D .- 1 或 3【答案】B【解析】【分析】先根据函数的增减性判断出m 的符号,再把点(0,2)代入求出m 的值即可.【详解】∵一次函数y=mx+|m-1|中y 随x 的增大而增大,∴m >0.∵一次函数y=mx+|m-1|的图象过点(0,2),∴当x=0时,|m-1|=2,解得m 1=3,m 2=-1<0(舍去).故选B .【点睛】本题考查的是一次函数图象上点的坐标特点及一次函数的性质,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.2.如图,函数4y x =-和y kx b =+的图象相交于点()8A m-,,则关于x 的不等式()40k x b ++>的解集为( )A .2x >B .02x <<C .8x >-D .2x <【答案】A【解析】【分析】 直接利用函数图象上点的坐标特征得出m 的值,再利用函数图象得出答案即可.【详解】解:∵函数y =−4x 和y =kx +b 的图象相交于点A (m ,−8),∴−8=−4m ,解得:m =2,故A 点坐标为(2,−8),∵kx +b >−4x 时,(k +4)x +b >0,则关于x 的不等式(k +4)x +b >0的解集为:x >2.故选:A .【点睛】此题主要考查了一次函数与一元一次不等式,正确利用函数图象分析是解题关键.3.如图,已知一次函数22y x =-+的图象与坐标轴分别交于A 、B 两点,⊙O 的半径为1,P 是线段AB 上的一个点,过点P 作⊙O 的切线PM ,切点为M ,则PM 的最小值为( )A .2B 2C 5D 3【答案】D 【解析】【分析】【详解】 解:连结OM 、OP ,作OH ⊥AB 于H ,如图,先利用坐标轴上点的坐标特征:当x=0时,y=﹣22,则A (0,2),当y=0时,﹣2=0,解得2,则B (2,0),所以△OAB 为等腰直角三角形,则2OA=4,OH=12AB=2, 根据切线的性质由PM 为切线,得到OM ⊥PM ,利用勾股定理得到22OP OM -21OP -当OP 的长最小时,PM 的长最小,而OP=OH=2时,OP 的长最小,所以PM 的最小值为2213-=故选D .【点睛】本题考查切线的性质;一次函数图象上点的坐标特征.4.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0【答案】C【解析】【分析】根据一次函数的图象与系数的关系进行解答即可.【详解】∵一次函数y=kx+b的图象经过一、二、四象限,∴k<0,b>0,故选C.【点睛】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k <0,b>0时图象在一、二、四象限.5.已知正比例函数y=kx(k≠0)经过第二、四象限,点(k﹣1,3k+5)是其图象上的点,则k的值为()A.3 B.5 C.﹣1 D.﹣3【答案】C【解析】【分析】把x=k﹣1,y=3k+5代入正比例函数y=kx解答即可.【详解】把x=k﹣1,y=3k+5代入正比例函数的y=kx,可得:3k+5=k(k﹣1),解得:k1=﹣1,k2=5,因为正比例函数的y=kx(k≠0)的图象经过二,四象限,所以k<0,所以k=﹣1,故选C .【点睛】本题考查了待定系数法求正比例函数的解析式,掌握正比例函数图象上的点的坐标都满足正比例函数的解析式是解题的关键.6.如图,把 Rt ABC ∆放在直角坐标系内,其中 90CAB ∠=o ,5BC =,点 A 、B 的坐标分别为(1,0)、(4,0),将ABC ∆沿x 轴向右平移,当点 C 落在直线26y x =-上是,线段BC 扫过的面积为( )A .4B .8C .16D .8【答案】C【解析】【分析】 根据题目提供的点的坐标求得点C 的坐标,当向右平移时,点C 的纵坐标不变,代入直线求得点C 的横坐标,进而求得其平移的距离,计算平行四边形的面积即可.【详解】∵点A 、B 的坐标分别为(1,0)、(4,0),∴AB =3,BC =5,∵∠CAB =90°,∴AC =4,∴点C 的坐标为(1,4),当点C 落在直线y =2x -6上时,∴令y=4,得到4=2x-6,解得x=5,∴平移的距离为5-1=4,∴线段BC扫过的面积为4×4=16,故选C.【点睛】本题考查了一次函数与几何知识的应用,解题关键是题中运用圆与直线的关系以及直角三角形等知识求出线段的长.7.一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图所示,下列叙述正确的是()A.甲乙两地相距1200千米B.快车的速度是80千米∕小时C.慢车的速度是60千米∕小时D.快车到达甲地时,慢车距离乙地100千米【答案】C【解析】【分析】(1)由图象容易得出甲乙两地相距600千米;(2)由题意得出慢车速度为60010=60(千米/小时);设快车速度为x千米/小时,由图象得出方程60×4+4x=600,解方程即可;(3)求出快车到达的时间和慢车行驶的路程,即可得出答案.【详解】解:(1)由图象得:甲乙两地相距600千米,故选项A错;(2)由题意得:慢车总用时10小时,∴慢车速度为:60010=60(千米/小时);设快车速度为x千米/小时,由图象得:60×4+4x=600,解得:x=90,∴快车速度为90千米/小时,慢车速度为60千米/小时;选项B错误,选项C正确;(3)快车到达甲地所用时间:60020903小时,慢车所走路程:60×203=400千米,此时慢车距离乙地距离:600-400=200千米,故选项D错误.故选C【点睛】本题考核知识点:函数图象. 解题关键点:从图象获取信息,由行程问题基本关系列出算式.8.如图,在平面直角坐标系中,OABC 的顶点A 在x 轴上,定点B 的坐标为(6,4),若直线经过定点(1,0),且将平行四边形OABC 分割成面积相等的两部分,则直线的表达式( )A .+1y x =B .4455y x =-C .1y x =-D .33y x =-【答案】C【解析】【分析】 根据过平行四边形的中心的直线把平行四边形分成面积相等的两部分,先求出平行四边形中心的坐标,再利用待定系数法求一次函数解析式解答即可.【详解】∵点B 的坐标为(6,4),∴平行四边形的中心坐标为(3,2),设直线l 的函数解析式为y kx b =+,则320k b k b +=⎧⎨+=⎩,解得11k b =⎧⎨=-⎩,所以直线l 的解析式为1y x =-. 故选:C .【点睛】本题考查了待定系数法求一次函数解析式,平行四边形的性质,熟练掌握过平行四边形的中心的直线把平行四边形分成面积相等的两部分是解题的关键.9.一次函数y=ax+b 与反比例函数a b y x-=,其中ab <0,a 、b 为常数,它们在同一坐标系中的图象可以是( )A.B.C.D.【答案】C【解析】【分析】根据一次函数的位置确定a、b的大小,看是否符合ab<0,计算a-b确定符号,确定双曲线的位置.【详解】A. 由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,满足ab<0,∴a−b>0,∴反比例函数y=a bx-的图象过一、三象限,所以此选项不正确;B. 由一次函数图象过二、四象限,得a<0,交y轴正半轴,则b>0,满足ab<0,∴a−b<0,∴反比例函数y=a bx-的图象过二、四象限,所以此选项不正确;C. 由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,满足ab<0,∴a−b>0,∴反比例函数y=a bx-的图象过一、三象限,所以此选项正确;D. 由一次函数图象过二、四象限,得a<0,交y 轴负半轴,则b<0,满足ab>0,与已知相矛盾所以此选项不正确;故选C.【点睛】此题考查反比例函数的图象,一次函数的图象,解题关键在于确定a 、b 的大小10.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )A .24y x =-B .24y x =+C .22y x =+D .22y x =- 【答案】A【解析】【分析】直接根据“上加下减”、“左加右减”的原则进行解答即可.【详解】由“左加右减”的原则可知,将直线y=2x-3向右平移2个单位后所得函数解析式为y=2(x-2)-3=2x-7,由“上加下减”原则可知,将直线y=2x-7向上平移3个单位后所得函数解析式为y=2x-7+3=2x-4,故选A.【点睛】本题考查了一次函数的平移,熟知函数图象平移的法则是解答此题的关键.11.下列各点在一次函数y=2x ﹣3的图象上的是( )A .( 2,3)B .(2,1)C .(0,3)D .(3,0【答案】B【解析】【分析】把各点分别代入一次函数y=2x ﹣3进行检验即可.【详解】A 、2×2﹣3=1≠3,原式不成立,故本选项错误;B 、2×2﹣3=1,原式成立,故本选项正确;C 、2×0﹣3=﹣3≠3,原式不成立,故本选项错误;D 、2×3﹣3=3≠0,原式不成立,故本选项错误,故选B .【点睛】本题考查了一次函数图象上点的坐标特征,熟知一次函数图象上的点的坐标满足一次函数的解析式是解题的关键.解答时只要把四个选项一一代入进行检验即可.12.若A (x 1,y 1)、B (x 2,y 2)是一次函数y=ax+x-2图像上的不同的两点,记()()1212m x x y y =--,则当m <0时,a 的取值范围是( )A .a <0B .a >0C .a <-1D .a >-1【答案】C【解析】【分析】【详解】∵A (x 1,y 1)、B (x 2,y 2)是一次函数2(1)2y ax x a x =+-=+-图象上的不同的两点,()()12120m x x y y =--<,∴该函数图象是y 随x 的增大而减小,∴a+1<0,解得a<-1,故选C.【点睛】此题考查了一次函数图象上点的坐标特征,要根据函数的增减性进行推理,是一道基础题.13.如图1,在Rt △ABC 中,∠ACB=90°,点P 以每秒1cm 的速度从点A 出发,沿折线AC -CB 运动,到点B 停止.过点P 作PD ⊥AB ,垂足为D ,PD 的长y (cm )与点P 的运动时间x (秒)的函数图象如图2所示.当点P 运动5秒时,PD 的长是( )A .1.5cmB .1.2cmC .1.8cmD .2cm【答案】B【解析】【分析】【详解】 由图2知,点P 在AC 、CB 上的运动时间时间分别是3秒和4秒,∵点P 的运动速度是每秒1cm ,∴AC=3,BC=4.∵在Rt △ABC 中,∠ACB=90°,∴根据勾股定理得:AB=5.如图,过点C 作CH ⊥AB 于点H ,则易得△ABC ∽△ACH .∴CH AC BC AB =,即AC BC 3412CH CH AB 55⋅⨯=⇒==. ∴如图,点E (3,125),F (7,0). 设直线EF 的解析式为y kx b =+,则 123k b {507k b=+=+,解得:3k 5{21b 5=-=. ∴直线EF 的解析式为321y x 55=-+. ∴当x 5=时,()3216PD y 5 1.2cm 555==-⨯+==. 故选B .14.在平面直角坐标系中,已知直线与轴、轴分别交于、两点,点是轴上一动点,要使点关于直线的对称点刚好落在轴上,则此时点的坐标是( ) A . B . C . D .【答案】B【解析】【分析】过C 作CD ⊥AB 于D ,先求出A ,B 的坐标,分别为(4,0),(0,3),得到AB 的长,再根据折叠的性质得到AC 平分∠OAB ,得到CD=CO=n ,DA=OA=4,则DB=5-4=1,BC=3-n ,在Rt △BCD 中,利用勾股定理得到n 的方程,解方程求出n 即可.【详解】过C 作CD ⊥AB 于D ,如图,对于直线,当x=0,得y=3; 当y=0,x=4,∴A (4,0),B (0,3),即OA=4,OB=3, ∴AB=5,又∵坐标平面沿直线AC 折叠,使点B 刚好落在x 轴上, ∴AC 平分∠OAB , ∴CD=CO=n ,则BC=3-n , ∴DA=OA=4, ∴DB=5-4=1,在Rt △BCD 中,DC 2+BD 2=BC 2, ∴n 2+12=(3-n )2,解得n=, ∴点C 的坐标为(0,). 故选B. 【点睛】本题考查了一次函数图象与几何变换:直线y=kx+b ,(k≠0,且k ,b 为常数),关于x 轴对称,横坐标不变,纵坐标是原来的相反数;关于y 轴对称,纵坐标不变,横坐标是原来的相反数;关于原点轴对称,横、纵坐标都变为原来的相反数.也考查了折叠的性质和勾股定理.15.在平面直角坐标系中,直线:1m y x =+与y 轴交于点A ,如图所示,依次正方形1M ,正方形2M ,……,正方形n M ,且正方形的一条边在直线m 上,一个顶点x 轴上,则正方形n M 的面积是( )A .222n -B .212n -C .22nD .212n +【答案】B 【解析】 【分析】由一次函数1y x =+,得出点A 的坐标为(0,1),求出正方形M 1的边长,即可求出正方形M 1的面积,同理求出正方形M 2的面积,即可推出正方形n M 的面积. 【详解】一次函数1y x =+,令x=0,则y=1, ∴点A 的坐标为(0,1), ∴OA=1,∴正方形M 1的边长为22112+=,∴正方形M 1的面积=222⨯=, ∴正方形M 1的对角线为()()22222⨯=,∴正方形M 2的边长为222222+=, ∴正方形M 2的面积=3222282⨯==, 同理可得正方形M 3的面积=5322=, 则正方形n M 的面积是212n -,故选B. 【点睛】本题考查一次函数图象上点的坐标特征、规律型,解答本题的关键是明确题意,发现题目中面积之间的关系,运用数形结合思想解答.16.如图,平面直角坐标系中,ABC ∆的顶点坐标分别是A(1,1),B(3,1),C(2,2),当直线12y x b =+与ABC ∆有交点时,b 的取值范围是( )A .11b -≤≤B .112b -≤≤ C .1122b -≤≤D .112b -≤≤【答案】B 【解析】 【分析】将A (1,1),B (3,1),C (2,2)的坐标分别代入直线y =12x+b 中求得b 的值,再根据一次函数的增减性即可得到b 的取值范围. 【详解】 解:直线y=12x+b 经过点B 时,将B (3,1)代入直线y =12x+b 中,可得32+b=1,解得b=-12; 直线y=12x+b 经过点A 时:将A (1,1)代入直线y =12x+b 中,可得12+b=1,解得b=12; 直线y=12x+b 经过点C 时:将C (2,2)代入直线y =12x+b 中,可得1+b=2,解得b=1. 故b 的取值范围是-12≤b≤1.故选B . 【点睛】考查了一次函数的性质:k >0,y 随x 的增大而增大,函数从左到右上升;k <0,y 随x 的增大而减小,函数从左到右下降.17.在平面直角坐标系中,函数2(0)y kx k =≠的图象如图所示,则函数232y kx k =-+的图象大致是()A .B .C .D .【答案】C 【解析】 【分析】根据函数图象易知k 0<,可得32k 0-+<,所以函数图象沿y 轴向下平移可得. 【详解】解:根据函数图象易知k 0<, ∴32k 0-+<, 故选:C . 【点睛】此题主要考查一次函数的性质与图象,正确理解一次函数的性质与图象是解题关键.18.如图在平面直角坐标系中,等边三角形OAB 的边长为4,点A 在第二象限内,将OAB ∆沿射线AO 平移,平移后点A '的横坐标为43,则点B '的坐标为( )A .(3,2)-B .(63,3)-C .(6,2)-D .(63,2)-【答案】D 【解析】 【分析】先根据已知条件求出点A 、B 的坐标,再求出直线OA 的解析式,继而得出点A '的纵坐标,找出点A 平移至点A '的规律,即可求出点B '的坐标. 【详解】解:∵三角形OAB 是等边三角形,且边长为4∴(23,2),(0,4)A B -设直线OA 的解析式为y kx =,将点A 坐标代入,解得:3k = 即直线OA 的解析式为:3y x = 将点A '的横坐标为34y =- 即点A '的坐标为(43,4)-∵点A 向右平移636个单位得到点A ' ∴B '的坐标为(063,46)(63,2)+-=-. 故选:D . 【点睛】本题考查的知识点是坐标与图形变化-平移,熟练掌握坐标平面图形平移的规律是解决本题的关键.19.一次函数y 1=kx+1﹣2k (k≠0)的图象记作G 1,一次函数y 2=2x+3(﹣1<x <2)的图象记作G2,对于这两个图象,有以下几种说法:①当G1与G2有公共点时,y1随x增大而减小;②当G1与G2没有公共点时,y1随x增大而增大;③当k=2时,G1与G2平行,且平行线之间的距离为.下列选项中,描述准确的是()A.①②正确,③错误B.①③正确,②错误C.②③正确,①错误D.①②③都正确【答案】D【解析】【分析】画图,找出G2的临界点,以及G1的临界直线,分析出G1过定点,根据k的正负与函数增减变化的关系,结合函数图象逐个选项分析即可解答.【详解】解:一次函数y2=2x+3(﹣1<x<2)的函数值随x的增大而增大,如图所示,N(﹣1,2),Q(2,7)为G2的两个临界点,易知一次函数y1=kx+1﹣2k(k≠0)的图象过定点M(2,1),直线MN与直线MQ为G1与G2有公共点的两条临界直线,从而当G1与G2有公共点时,y1随x增大而减小;故①正确;当G1与G2没有公共点时,分三种情况:一是直线MN,但此时k=0,不符合要求;二是直线MQ,但此时k不存在,与一次函数定义不符,故MQ不符合题意;三是当k>0时,此时y1随x增大而增大,符合题意,故②正确;当k=2时,G1与G2平行正确,过点M作MP⊥NQ,则MN=3,由y2=2x+3,且MN∥x 轴,可知,tan∠PNM=2,∴PM=2PN,由勾股定理得:PN2+PM2=MN2∴(2PN)2+(PN)2=9,∴PN =, ∴PM =.故③正确. 综上,故选:D . 【点睛】本题是一次函数中两条直线相交或平行的综合问题,需要数形结合,结合一次函数的性质逐条分析解答,难度较大.20.超市有A ,B 两种型号的瓶子,其容量和价格如表,小张买瓶子用来分装15升油(瓶子都装满,且无剩油);当日促销活动:购买A 型瓶3个或以上,一次性返还现金5元,设购买A 型瓶x (个),所需总费用为y (元),则下列说法不一定成立的是( ) 型号A B 单个盒子容量(升) 2 3 单价(元)56A .购买B 型瓶的个数是253x ⎛⎫-⎪⎝⎭为正整数时的值 B .购买A 型瓶最多为6个C .y 与x 之间的函数关系式为30y x =+D .小张买瓶子的最少费用是28元【答案】C 【解析】 【分析】设购买A 型瓶x 个,B(253x -)个,由题意列出算式解出个选项即可判断. 【详解】设购买A 型瓶x 个,∵买瓶子用来分装15升油,瓶子都装满,且无剩油, ∴购买B 型瓶的个数是1522533x x -=-, ∵瓶子的个数为自然数, ∴x=0时, 253x -=5; x=3时, 253x -=3; x=6时, 253x -=1; ∴购买B 型瓶的个数是(253x -)为正整数时的值,故A 成立; 由上可知,购买A 型瓶的个数为0个或3个或6个,所以购买A 型瓶的个数最多为6,故B成立;设购买A型瓶x个,所需总费用为y元,则购买B型瓶的个数是(253x-)个,④当0≤x<3时,y=5x+6×(253x-)=x+30,∴k=1>0,∴y随x的增大而增大,∴当x=0时,y有最小值,最小值为30元;②当x≥3时,y=5x+6×(253x-)-5=x+25,∵.k=1>0随x的增大而增大,∴当x=3时,y有最小值,最小值为28元;综合①②可得,购买盒子所需要最少费用为28元.故C不成立,D成立故选:C.【点睛】本题考查一次函数的应用,关键在于读懂题意找出关系式.。
(易错题精选)初中数学一次函数经典测试题及解析
【详解】
∵
∴
∵过点 作 轴的垂线,交直线 于点
∴
∵
∴
∵过点 作 轴的垂线,交直线 于点
∴
∵点 与点 关于直线 对称
∴
以此类推便可求得点An的坐标为 ,点Bn的坐标为
故答案为:B.
【点睛】
本题考查了坐标点的规律题,掌握坐标点的规律、轴对称的性质是解题的关键.
故选B.
【点睛】
考查了一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.
15.下列命题中哪一个是假命题( )
A.8的立方根是2
B.在函数y=3x的图象中,y随x增大而增大
C.菱形的对角线相等且平分
D.在同圆中,相等的圆心角所对的弧相等
【答案】C
④y=3x,当x>1时,函数值y随自变量x增大而增大,故此选项符合题意;
故选:B.
【点睛】
此题考查一次函数、正比例函数、反比例函数,正确把握相关性质是解题关键.
10.在一条笔直的公路上有 、 两地,甲乙两人同时出发,甲骑自行车从 地到 地,乙骑自行车从 地到 地,到达 地后立即按原路返回 地.如图是甲、乙两人离 地的距离 与行驶时间 之间的函数图象,下列说法中① 、 两地相距30千米;②甲的速度为15千米/时;③点 的坐标为( ,20);④当甲、乙两人相距10千米时,他们的行驶时间是 小时或 小时.正确的个数为( )
2.已知过点 的直线 不经过第一象限.设 ,则s的取值范围是()
A. B. C. D.
【答案】B
【解析】
试题分析:∵过点 的直线 不经过第一象限,
专题 08 一次函数(5大易错点分析)(解析版)-备战2024年中考数学考试易错题(广东专用)
2、一般地,一次函数y=kx+b图象上任意一点的坐标都是二元一次方程kx-y+b=0
的一个解;
3、以二元一次方程kx-y+b=0的解为坐标的点都在一次函数y=kx+b的图象上,
4、一般地,如果两个一次函数的图象有一个交点,那么交点的坐标就是相应的二元 次方程组的解
学以 致 用
1.(2023·海珠区校级二模)已知一次函数y=ax+2的图象与x轴的交点坐
O D.
【分析】先根据正比例函数的增减性判断出k的符号,再由一次函数的图
象与系数的关系即可得出结论.
【解答】解:∵正比例函数y=kx,且y随x的增大而减少,
∴k<0.
在直线y=2x+k中, ∵2>0,k<0,
∴函数图象经过一三四象限,
故选:D.
x<壹 5.(2021·广州模拟)已知:函数yi=2x-1,yz=-x+3,若
小,则直线 y= -2x+k的图象是()
y
yA
y'
yl
0X
0x
A.
B.
C.
Ox 0 x
D.
【分析】先根据正比例函数的增减性判断出k的符号,再由一次函数的图
象与系数的关系即可得出结论.
【解答】解:∵正比例函数y=kx,且y随x的增大而减小,
∴k<0,
在直线 y=-2x+k中,
-2<0,k<0,
∴函数图象经过二、三、四象限.
2.函数性质的理解:一次函数具有一些特殊的性质,如增减性、连续性等。学生容易
忽视这些性质,或者在应用这些性质时出错。 3.函数斜率和截距的理解:在一次函数y=ax+b中,a 是函数的斜率,b 是函数的 截距。学生容易混淆斜率和截距的概念,或者不理解它们对函数图像的影响。 易错提醒:1、一次函数y=kx+b(k≠O)的增减性:
一次函数易错问题剖析.doc
一次函数易错问题剖析一次函数是初小数学的重要内容z —,利用一次函数的有关知识解题时,由于忽略限制 条件、考虑问题不全而或受思维定势的影响会出现这样那样的错误,下而给岀归类剖析,供 同学们在学习时参考。
一、 忽略定义式屮的限制条件R H0出错。
例1、已知函数y = (〃 + 3)J"卜2是一次函数,IjjiJ n= _ o错解:因为y = (n + 3)X H_2是一次函数,所以|/?|-2 = 1 解得:H = 3或« = -3剖析:一次函数的定义式为:一般地,形如y = kx + b (k,b 是常数,£工0)的函数, 叫做一次函数,本题正是因为忽略了R 工0这一限制条件而出错。
正解:因为y = O + 3)f 是一次函数,[1/1 —2 = 1S = ±3所以。
解得{所以71 = 3» + 3工0[心-3二、 忽略坐标系屮表示线段的长时要取点的坐标的绝对值。
例2、已知一次函数的图象经过点A (0, 2)且与处标轴围成的直角三角形而积为4, 则这个一次函数的解析式为 ________________ 。
错解:设一次函数的解析式为y = kx + b,因为函数的图彖经过点A (0, 2),所以b=2,所以两数的解析式为y = kx + 2,求这个函数图象与x 轴的交点,即解方程组?y = 0即图象与x 轴交点坐标为(-二,0)由三角形 kI 9]的面积公式得严飞)x2 = 4解得: 「 所以这个-次函数的解析式为 y = -—x + 222 剖析:在表示三角形的而积时,用的是三角形的边长,是线段的长度,不要忽略-一要 k取绝对值才能表示线段的长度,否则就会漏掉一个解,本题正是因为忽略了这点而出了错。
正解:设一次函数的解析式为 y = kx + b,因为函数的图象经过点A (0, 2),所以 b=2,所以函数的解析式为y = kx + 2,求这个函数图彖与x 轴的交点,即解方程纽y = 0 y = kx +22解得——k2y = 0即图彖与x 轴交点坐标为(-一,0)由三角形 k三、考虑问题不全血出错。
期末复习 《一次函数》常考题与易错题精选(50题)(解析版)
期末复习- 《一次函数》常考题与易错题精选(52题)一.常量与变量(共2小题)1.在圆锥体积公式中(其中,r表示圆锥底面半径,h表示圆锥的高),常量与变量分别是( )A.常量是,变量是V,hB.常量是,变量是h,rC.常量是,变量是V,h,rD.常量是,变量是V,h,π,r【分析】根据圆锥体积公式中(其中,r表示圆锥底面半径,h表示圆锥的高),即可得常量与变量.【解答】解:由圆锥体积公式中(其中,r表示圆锥底面半径,h表示圆锥的高),可知:常量是,变量是V,h,r.故选:C.【点评】本题考查了常量与变量、认识立体图形,解决本题的关键是掌握常量与变量的概念.2.小李驾车以70km/h的速度行驶时,他所走的路程s(km)与时间t(h)之间可用公式s=70t来表示,则下列说法正确的是( )A.数70和s,t都是变量B.s是常量,数70和t是变量C.数70是常量,s和t是变量D.t是常量,数70和s是变量【分析】根据常量与变量的定义判断.【解答】解:由题意得:70是常数,其值恒定不变,是常量,行驶过程中时间不断增加,t的值不断变化,是变量,路程随时间t的不合而变化,s也是变量,∴A,B,D均不合题意,C合题意.故选:C.【点评】本题考查常量与变量,理解题意,搞清变与不变是求解本题的关键.二.函数的概念(共2小题)3.下列各图象中,不能表示y是x的函数的是( )A.B.C.D.【分析】根据函数的概念:对于自变量x的每一个值,因变量y都有唯一的值与它对应,逐一判断即可解答.【解答】解:A、对于自变量x的每一个值,因变量y都有唯一的值与它对应,所以能表示y是x的函数,故A不符合题意;B、对于自变量x的每一个值,因变量y都有唯一的值与它对应,所以能表示y是x的函数,故B不符合题意;C、对于自变量x的每一个值,因变量y不是都有唯一的值与它对应,所以不能表示y是x的函数,故C符合题意;D、对于自变量x的每一个值,因变量y都有唯一的值与它对应,所以能表示y是x的函数,故D不符合题意;故选:C.【点评】本题考查了函数的概念,熟练掌握函数的概念是解题的关键.4.下列说法正确的是( )A.变量x,y满足,则y是x的函数B.变量x,y满足y2=x,则y是x的函数C.变量x,y满足|y|=x,则y是x的函数D.在中,常量是,r是自变量,V是r的函数【分析】根据函数的概念,对于自变量x的每一个值,y都有唯一的值与它对应,即可解答.【解答】解:A、变量x,y满足,对于自变量x的每一个值,y都有唯一的值与它对应,则y 是x的函数,故A符合题意;B、变量x,y满足y2=x,对于自变量x的每一个值,y都有两个值与它对应,则y不是x的函数,故B不符合题意;C、变量x,y满足|y|=x,对于自变量x的每一个值,y都有两个值与它对应,则y不是x的函数,故C不符合题意;D、在中,π是常量,r是自变量,对于自变量r的每一个值,V都有唯一的值与它对应,则V是r的函数,故D不符合题意,故选:A.【点评】本题考查了函数的概念,常量与变量,熟练掌握函数的概念是解题的关键.三.函数关系式(共3小题)5.物理学告诉我们,液体的压强只与液体的密度和深度有关,其公式为p=ρgh.已知水的密度为ρ=1×103kg/m3,g=9.8N/kg,水的压强p随水的深度h的变化而变化,则p与h之间满足的关系式为 p=9.8×103h .【分析】根据已知条件求出一次函数的系数,确定一次函数的解析式.【解答】解:∵ρ=1×103kg/m3,g=9.8N/kg,∴ρ×g=1×103×9.8=9.8×103,p=9.8×103h;故答案为:p=9.8×103h.【点评】考查一次函数解析式,关键掌握待定系数法求函数解析式.6.一艘轮船装载2800吨货物,写出平均卸货速度v(单位:吨/天)与卸货天数t之间的关系式为 v= .【分析】根据题中等量关系直接列出函数关系式.【解答】解:由题意得:2800=vt.∴v=.故答案为:v=.【点评】本题考查求函数关系式,理解题意,找到等量关系是求解本题的关键.7.如图,在矩形中截取两个相同的圆作为圆柱的上、下底面,剩余的矩形作为圆柱的侧面,刚好能组合成圆柱.设矩形的长和宽分别为y和x,求y关于x的函数解析式 y=x .【分析】根据组成圆柱后,底面圆的周长等于剩余长方形的长列出方程,再化成函数关系式即可.【解答】解:由题意得:=y﹣,∴y=,即y=x,故答案为:y=x.【点评】本题考查了函数关系式,展开图折叠成几何体,根据题目的已知条件并结合图形找到等量关系是解题的关键.四.函数自变量的取值范围(共3小题)8.函数y=﹣(x+1)0中自变量x的取值范围是( )A.x≥﹣2B.x>﹣2C.x>﹣2且x≠﹣1D.x≥﹣2且x≠﹣1【分析】根据二次根式(a≥0),以及a0=1(a≠0)可得x+2≥0且x+1≠0,然后进行计算即可解答.【解答】解:由题意得:x+2≥0且x+1≠0,∴x≥﹣2且x≠﹣1,故选:D.【点评】本题考查了函数自变量的取值范围,零指数幂,熟练掌握二次根式(a≥0),以及a0=1(a≠0)是解题的关键.9.在函数中,自变量x的取值范围是( )A.x≥﹣3B.x>﹣3C.x≥﹣3且x≠0D.x≠0且x≠﹣3【分析】根据分式有意义的条件和二次根式有意义的条件,可得,然后进行计算即可解答.【解答】解:根据题意可得:,解得:x≥﹣3且x≠0,故选:C.【点评】本题考查了函数自变量的取值范围,熟练掌握分式有意义的条件和二次根式有意义的条件是解题的关键.10.函数的自变量x的取值范围是( )A.x≥﹣3B.x>﹣3C.x≠0且x≠﹣3D.x≥﹣3且x≠0【分析】根据二次根式(a≥0)且分母不为0,可得x+3≥0且x≠0,然后进行计算即可解答.【解答】解:由题意得:x+3≥0且x≠0,解得:x≥﹣3且x≠0,故选:D.【点评】本题考查了函数自变量的取值范围,熟练掌握二次根式(a≥0)且分母不为0是解题的关键.五.函数值(共3小题)11.根据如图所示的程序计算函数y的值,若输入x的值是3,则输出y的值是﹣3.若输入x的值是﹣5,则输出y的值是( )A.5B.7C.13D.16【分析】根据题意把x=3,y=﹣3代入y=中,从而求出b的值,然后再把x=﹣5,b=﹣3代入y=﹣2x+b中,进行计算即可解答.【解答】解:由题意得:把x=3,y=﹣3代入y=中可得:﹣3=,解得:b=﹣3,把x=﹣5,b=﹣3代入y=﹣2x+b中可得:y=﹣2×(﹣5)+(﹣3)=10﹣3=7,故选:B.【点评】本题考查了函数值,根据题意把x=3,y=﹣3代入y=中求出b值是解题的关键.12.当x=﹣1时,函数y=的值是( )A.1B.﹣1C.D.【分析】把x=﹣1代入函数解析式求得相应的y值即可.【解答】解:当x=﹣1时,y===.故选:D.【点评】本题主要考查了函数值的求解,把自变量的值代入函数解析式计算即可,是基础题,比较简单.13.有下列四个函数:①y=x;②y=﹣x﹣5;③y=;④y=x2+4x﹣1.当自变量满足﹣4≤x≤﹣1时,函数值满足﹣4≤y≤﹣1的函数有( )A.①②B.①②③C.①③④D.①②③④【分析】根据一次函数的增减性,反比例函数的增减性以及二次函数的增减性分别作出判断即可得解.【解答】解:①y=x,x=﹣4时y取最小值﹣4,x=﹣1时,y取最大值﹣1,符合,②y=﹣x﹣5,x=﹣4时y取最大值﹣1,x=﹣1时y取最小值﹣4,符合,③y=,x=﹣4时y取最大值﹣1,x=﹣1时y取最小值﹣4,符合,④y=x2+4x﹣1=(x+2)2﹣5,对称轴是直线x=﹣2,x=﹣4时,y取最大值﹣1,x=﹣2时y取最小值﹣5,x=﹣1时y=﹣4,不是最小值,不符合.综上所述,符合条件的函数有①②③共3个.故选:B.【点评】本题考查了二次函数的性质,一次函数的性质,反比例函数的性质,熟练掌握各函数的增减性是解题的关键.六.函数的图象(共6小题)14.晚饭后彤彤和妈妈散步到小区旁边的公园,在公园中央的休息区聊了会天,然后一起跑步回家,下面能反映彤彤和妈妈离家的距离y与时间x的函数关系的大致图象是( )A.B.C.D.【分析】根据在每段中,离家的距离随时间的变化情况即可进行判断.【解答】解:图象应分三个阶段,第一阶段:散步到离家较远的公园,在这个阶段,离家的距离随时间的增大而增大;第二阶段:在公园中央的休息区聊了会天,这一阶段离家的距离不随时间的变化而改变.故D错误;第三阶段:跑步回家,这一阶段,离家的距离随时间的增大而减小,故A错误,并且这段的速度大于第一阶段的速度,则B错误.故选:C.【点评】本题考查了函数的图象,解题的关键是理解路程y的含义,理解直线的倾斜程度与速度的关系,属于中考常考题型.15.将一圆柱形小水杯固定在大圆柱形容器底面中央,小水杯中有部分水,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯水面的高度h(cm)与注水时间t(min)的函数图象大致是( )A.B.C.D.【分析】根据将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,现用一注水管沿大容器内壁匀速注水,即可求出小水杯内水面的高度h(cm)与注水时间t(min)的函数图象.【解答】解:将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,小玻璃杯内的水原来的高度一定大于0,则可以判断A、D一定错误,用一注水管沿大容器内壁匀速注水,水开始时不会流入小玻璃杯,因而这段时间h不变,当大杯中的水面与小杯水平时,开始向小杯中流水,h随t的增大而增大,当水注满小杯后,小杯内水面的高度h不再变化.故选:B.【点评】本题考查了函数的图象.正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.16.如图,图中折线表示张师傅在某天上班途中的情景:骑车离家行了一段路,由于车子出现故障,于是停下修车,修好车子后继续骑行,按时赶到单位.下列关于图中信息的说法中,错误的是( )A.张师傅修车用了15分钟B.张师傅的单位距他家2000米C.张师傅从家到单位共用了20分钟D.修车后的骑行速度是修车前的2倍【分析】根据题意和函数图象中的数据可以判断各个选项中的结论是否正确,从而可以解答本题.【解答】解:由图可得,张师傅修车用了15﹣10=5(分钟),故选项A符合题意;张师傅上班处距他家2000米,故选项B不合题意;张师傅路上耗时20分钟,故选项C不合题意,修车后张师傅骑车速度是修车前的:=2(倍),故选项D不合题意,故选:A.【点评】本题考查函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.17.某自行车厂甲、乙两名工人组装自行车,2小时后,甲的机器出现故障进行维修,乙加速组装.他们每人组装自行车y(辆)与生产时间t(小时)的关系如图所示.根据图象回答:(1)2小时后,乙每小时组装几辆自行车?当t为多少小时,乙组装自行车25辆?(2)甲维修好机器后,每小时组装几辆自行车?(3)甲维修好机器后,t的值为多少时,甲与乙组装的车辆一样多?【分析】(1)根据图象,用车辆数÷时间可得出每小时组装车辆;再根据车辆总数÷速度可得出时间;(2)根据图象,用车辆数÷时间可得出每小时组装车辆;(3)根据函数图象和图象中的数据可以求得甲乙对应的函数解析式,从而可以解答本题.【解答】解:(1)由图象可知:2小时后,乙每小时组装(40﹣4)÷(8﹣2)=6(辆)自行车,(25﹣4)÷6=3.5,∴t=3.5+2=5.5(小时).(2)甲维修好机器后,每小时组装(40﹣10)÷(7﹣5)=15辆.(3)设甲维修好机器后,经过x小时,甲与乙组装的车辆一样多.由题意可知,10+15x=4+6(3+x),10+15x=6x+22;解得:.此时,.【点评】本题考查一次函数的应用、函数图象,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.18.为迎接体质监测,小明和小军进行了1000米跑练习.如图是两人的路程s(米)与时间t(分钟)之间关系的图象,根据图象解答下列问题:(1)2分钟时,谁跑在前面?(2)谁先跑到终点?(3)小军的平均速度是多少?(4)起跑后两人第一次相遇时距离终点多少米?【分析】(1)由图象可直接得出结论.(2)根据图象可知,小明用的时间小,所以小明先跑到终点.(3)利用速度=路程÷时间,可得出小军的速度.(4)利用总路程﹣走过的路程=剩下的路程可得出结论.【解答】解:(1)由图象可知,2分钟时,小军跑在前面.(2)由图象可知,小明用时3.8分钟,小军用时4分钟,∴小明先跑到终点.(3)小军的平均速度为:1000÷4=250(米/分钟).∴小军的平均速度为:250米/分钟.(4)起跑后两人第一次相遇时距离终点:1000﹣250×3.4=150(米).∴起跑后两人第一次相遇时距离终点150米.【点评】本题考查函数图象的应用,借助函数图象表达题目中的信息,读懂图象是关键.注意图中的时间﹣路程的函数图象意义.19.甲、乙两人在笔直的公路AB上从起点A地以不同的速度匀速跑向终点B地,先到B地的人原地休息,已知A、B两地相距1500米,且甲比乙早出发,甲、乙两人之间的距离y(米)与甲出发的时间x(秒)的关系如图所示.(1)甲早出发 30 秒,乙出发时两人距离 75 米;(2)甲的速度是 2.5 米/秒,甲从A地跑到B地共需 600 秒;(3)乙出发 150 秒时追上了甲;(4)甲出发 420或552 秒时,两人相距120米.【分析】(1)根据图象解答即可;(2)根据题意和图象中的数据即可求出甲的速度,进而求出甲从A地跑到B地共需要的时间;(3)根据题意可知,当y=0时,乙追上甲,由图象可得出结果;(4)根据题意列方程解答即可.【解答】解:(1)由图象可知,甲早出发30秒,乙出发时两人距离75米;故答案为:30;75.(2)根据题意得,甲的速度为:75÷30=2.5米/秒,1500÷2.5=600(秒).即甲从A地跑到B地共需600秒.故答案为:2.5;600.(3)180﹣30=150(秒),∴乙出发150秒时追上了甲.故答案为:150;(4)设甲出发x秒时,两人相距120米,根据题意得:3(x﹣30)﹣2.5x=120或2.5x=1500﹣120,解得x=420或552.即甲出发420秒或552秒时,两人相距120米.故答案为:420或552.【点评】本题考查函数图象的应用,解答本题的关键是明确题意,利用数形结合的思想和时间﹣距离图象进行解答.七.动点问题的函数图象(共3小题)20.小明在一个半圆形的花园的周边散步,如图1,小明从圆心O出发,按图中箭头所示的方向,依次匀速走完下列三条线路:(1)线段OA;(2)半圆弧AB;(3)线段BO后,回到出发点.小明离出发点的距离S(小明所在位置与O点之间线段的长度)与时间t之间的图象如图2所示,请据图回答下列问题(圆周率π的值取3):(1)请直接写出:花园的半径是 100 米,小明的速度是 50 米/分,a= 8 ;(2)若沿途只有一处小明遇到了一位同学停下来交谈了2分钟,并且小明在遇到同学的前后,始终保持速度不变,请你求出:①小明遇到同学的地方离出发点的距离;②小明返回起点O的时间.【分析】(1)由t在2﹣a变化时,S不变可知,半径为100米,速度为50米/分,再求出在半圆上的运动时间即可;(2)①由(1)根据图象,第11分时,小明继续行走,则小明之前行走9分,可求出已经行走路北,用全程路程减去已走路程即可;②可求全程时间为500用时10分钟,再加上停留2分钟即可.【解答】解:(1)由图象可知,花园半径为100米,小明速度为100÷2=50米/分,半圆弧长为100π=300米,则a=2+=8故答案为:100,50,8.(2)①由已知,第11分时小明继续前进,则行进时间为9分钟,路程为450米全程长100+300+100=500米,则小明离出发点距离为50米;②小明返回起点O的时间为分【点评】本题为动点问题的函数图象探究题,考查了通过函数图象探究图象代表的实际意义,运用数形结合的数学思想.21.如图①所示,在△ABC中,AD是三角形的高,且AD=6cm,E是一个动点,由B向C移动,其速度与时间的变化关系如图②所示,已知BC=8cm(1)由图②,E点运动的时间为 2 s,速度为 3 cm/s(2)求当E点在运动过程中△ABE的面积y与运动时间x之间的关系式;(3)当E点停止后,求△ABE的面积.【分析】(1)根据图象解答即可;(2)根据三角形的面积公式,可得答案;(3)根据三角形的面积公式,可得答案.【解答】解:(1)根据题意和图象,可得E点运动的时间为2s,速度为3cm/s.故答案为:2;3;(2)根据题意得y=×BE×AD==9x,即y=9x(0<x≤2);(3)当x=2时,y=9×2=18.故△ABE的面积为18cm2.【点评】本题主要考查了动点问题的函数图象,涉及求函数解析式,求函数值问题,能读懂函数图象是解决问题的关键.22.已知动点P以2cm/s的速度沿图1所示的边框从B﹣C﹣D﹣E﹣F﹣A的路径运动,记△ABP的面积为S (cm2),S与运动时间t(s)的关系如图2所示,若AB=6cm,请回答下列问题:(1)图1中BC= 8 cm,CD= 4 cm,DE= 6 cm(2)求出图1中边框所围成图形的面积;(3)求图2中m、n的值;(4)分别求出当点P在线段BC和DE上运动时S与t的关系式,并写出t的取值范围.【分析】(1)因为点P速度为2,所以根据右侧的时间可以求出线段BC,CD和DE的长度.(2)对多边形采取切割的方法求面积,将多边形切割为两个长方形即可.(3)m代表的是点P在C时对应图形面积,n代表的是点P运动到A时对应的时间,由图象都可以求出.(4)表示出点P到AB的水平距离作为高,以AB为底求出面积.【解答】解:(1)由右侧图象可知,点P在BC线段运动4秒,BC=8,点P在CD线段运动2秒,CD =4cm,点P在DE线段运动3秒,DE=6cm,(2)∵AB=6cm,CD=4cm,∴EF=2cm,∴图形的面积可以看作是两个长方形面积之和6×8+6×2=60(cm2)(3)当点P到C时,△ABP的面积为24(cm2)∴m=24BC+CD+DE+EF+AF=34cm∴n=34×=17cm(4)当点P在BC上运动时0≤t≤4S==6t(cm2)当点P在DE上运动时6≤t≤9S==6t﹣12(cm2)【点评】本题考查了数形结合的数学思维,通过图象找出对应图形的线段长度,很好的考查了学生分析问题和看图的能力.八.一次函数的定义(共2小题)23.已知函数y=(m+1)x2﹣|m|+4,y是x的一次函数,则m的值是( )A.1B.﹣1C.1或﹣1D.任意实数【分析】根据一次函数的定义:形如y=kx+b(k,b为常数且k≠0),可得2﹣|m|=1且m+1≠0,然后进行计算即可解答.【解答】解:由题意得:2﹣|m|=1且m+1≠0,∴m=±1且m≠﹣1,∴m=1,故选:A.【点评】本题考查了一次函数的定义,熟练掌握一次函数的定义是解题的关键.24.已知函数y=(m﹣2)+1是一次函数,则m的值为( )A.±B.C.±2D.﹣2【分析】根据一次函数的定义,自变量的次数为1列方程求出m的值,再根据比例系数k≠0求解得到m ≠2,从而得解.【解答】解:由题意得,m2﹣3=1且m﹣2≠0,解得m=±2且m≠2,所以m=﹣2.故选:D.【点评】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.九.正比例函数的定义(共2小题)25.若y关于x的函数y=(a﹣2)x+b是正比例函数,则a,b应满足的条件是( )A.a≠2B.b=0C.a=2且b=0D.a≠2且b=0【分析】直接利用正比例函数的定义分析求出答案.【解答】解:∵y=(a﹣2)x+b是y关于x的正比例函数,∴b=0,a﹣2≠0,解得:b=0,a≠2.故选:D.【点评】此题主要考查了正比例函数的定义,正确把握正比例函数一般形式是解题关键.26.若函数y=(k﹣2)x+2k+1是正比例函数,则k的值是( )A.k≠2B.k=2C.k=﹣D.k=﹣2【分析】根据正比例函数的定义得出k﹣2≠0且2k+1=0,再求出k即可.【解答】解:∵函数y=(k﹣2)x+2k+1是正比例函数,∴k﹣2≠0且2k+1=0,解得:k=﹣,故选:C.【点评】本题考查了正比例函数的定义,能熟记正比例函数的定义是解此题的关键,注意:形如y=kx+b (k、b为常数,k≠0)的函数,叫一次函数,当b=0时,函数y=kx+b叫正比例函数.一十.一次函数的图象(共3小题)27.在平面直角坐标系中,已知m为常数,且m≠2,m≠3,则关于x的一次函数y=(m﹣3)x+4﹣2m 与y=(4﹣2m)x+m﹣3的图象可能是( )A.B.C.D.【分析】根据一次函数的图象和性质判断即可.【解答】解:当m﹣3>0,4﹣2m<0时,一次函数y=(m﹣3)x+4﹣2m图象都过第一、三、四象限,y=(4﹣2m)x+m﹣3的图象过第一、二、四象限,无选项符合题意;当m﹣3<0,4﹣2m<0时,一次函数y=(m﹣3)x+4﹣2m与y=(4﹣2m)x+m﹣3的图象都过第二、三、四象限,选项D符合题意;当m﹣3<0,4﹣2m>0时,一次函数y=(m﹣3)x+4﹣2m图象都过第一、二、四象限,y=(4﹣2m)x+m﹣3的图象过第一、三、四象限,无选项符合题意.故选:D.【点评】本题考查了一次函数图象:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).28.在同一平面直角坐标系中,一次函数y=kx+b(k≠0)与y=bx﹣k(b≠0)的大致图象可以是( )A.B.C.D.【分析】根据一次函数经过的象限与系数的关系进行求解即可.【解答】解;当k>0,b>0时,一次函数y=kx+b经过第一、二、三象限,一次函数y=bx﹣k经过第一、三、四象限;当k>0,b<0时,一次函数y=kx+b经过第一、三、四象限,一次函数y=bx﹣k经过第二、三、四象限;当k<0,b>0时,一次函数y=kx+b经过第一、二、四象限,一次函数y=bx﹣k经过第一、二、三象限;当k<0,b<0时,一次函数y=kx+b经过第二、三、四象限,一次函数y=bx﹣k经过第一、二、四象限;∴四个选项只有C符合题意.故选:C.【点评】本题主要考查了一次函数图象与系数的关系,熟知对于一次函数y=kx+b,当k>0,b>0时,一次函数y=kx+b经过第一、二、三象限,当k>0,b<0时,一次函数y=kx+b经过第一、三、四象限,当k<0,b>0时,一次函数y=kx+b经过第一、二、四象限,当k<0,b<0时,一次函数y=kx+b经过第二、三、四象限是解题的关键.29.在同一平面直角坐标系中,一次函数y=ax+a2与y=a2x+a的图象可能是( )A.B.C.D.【分析】利用一次函数的性质进行判断.【解答】解:∵y=ax+a2与y=a2x+a,∴x=1时,两函数的值都是a2+a,∴两直线的交点的横坐标为1,若a>0,则一次函数y=ax+a2与y=a2x+a都是增函数,且都交y轴的正半轴,图象都经过第一、二、三象限;若a<0,则一次函数y=ax+a2经过第一、二、四象限,y=a2x+a经过第一、三、四象限,且两直线的交点的横坐标为1;故选:D.【点评】此题主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y=kx+b的图象有四种情况:①当k>0,b>0时,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0时,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.一十一.一次函数的性质(共4小题)30.若一次函数y=(a﹣2)x﹣b的图象中y值随x值的增大而增大,则a的值可以是( )A.4B.2C.﹣2D.﹣6【分析】由一次函数y=(a﹣2)x﹣b的图象中y值随x值的增大而增大,可得出a﹣2>0,解之即可得出a的取值范围,再对照四个选项即可得出结论.【解答】解:∵一次函数y=(a﹣2)x﹣b的图象中y值随x值的增大而增大,∴a﹣2>0,∴a>2.故选:A.【点评】本题考查了一次函数的性质,牢记“k>0,y随x的增大而增大;k<0,y随x的增大而减小”是解题的关键.31.若点A(﹣3,a)和点B(4,b)都在直线y=﹣2x+m上,则a与b的大小关系是( )A.a>b B.a<bC.a=b D.与m的值有关【分析】由k=﹣2<0,利用一次函数的性质可得出y随x的增大而减小,结合﹣3<4,即可求出a>b.【解答】解:∵k=﹣2<0,∴y随x的增大而减小,又∵点A(﹣3,a)和点B(4,b)都在直线y=﹣2x+m上,且﹣3<4,∴a>b.故选:A.【点评】本题考查了一次函数的性质,牢记“k>0,y随x的增大而增大;k<0,y随x的增大而减小”是解题的关键.32.直线y=﹣3x+2图象不经过下列哪个象限( )A.第一象限B.第二象限C.第三象限D.第四象限【分析】先根据一次函数的解析式判断出k、b的符号,再根据一次函数的性质进行解答即可.【解答】解:∵解析式y=﹣3x+2中,k=﹣3<0,b=2>0,∴图象过第一、二、四象限,∴图象不经过第三象限.故选:C.【点评】本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k<0时,函数图象经过第二、四象限,当b>0时,函数图象与y轴相交于正半轴.33.若a、b为实数,且,则直线y=ax+b不经过的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限【分析】依据,即可得到a=,b=﹣5,进而得到直线y=x﹣5不经过的象限.【解答】解:∵,∴,解得a=,∴b=﹣5,∴直线y=x﹣5经过第一,三,四象限,∴不经过的象限是第二象限,故选:B.【点评】本题主要考查了一次函数的性质,解决问题的关键是掌握二次根式中被开方数的取值范围:二次根式中的被开方数是非负数.一十二.一次函数图象与系数的关系(共2小题)34.已知正比例函数y=(2m+1)x,y随x的增大而减小,则m的取值范围是( )A.m>﹣B.m C.m D.m【分析】根据正比例函数图象与系数的关系列出关于m的不等式2m+1<0,然后解不等式即可.【解答】解:∵正比例函数y=(2m+1)x中,y的值随自变量x的值增大而减小,∴2m+1<0,解得m<﹣,故选:B.【点评】本题主要考查正比例函数图象在坐标平面内的位置与k的关系.解答本题注意理解:直线y=kx 所在的位置与k的符号有直接的关系.k>0时,直线必经过一、三象限,y随x的增大而增大;k<0时,直线必经过二、四象限,y随x的增大而减小.35.两条直线y=ax+b与y=bx+a在同一直角坐标系中的图象位置可能是( )A.B.C.D.【分析】根据一次函数的图象与系数的关系,逐一判断即可解答.【解答】解:A、当经过第一、二、三象限的直线为y=ax+b,则a>0,b>0,∴直线y=bx+a应该经过第一、二、三象限,故A不符合题意;B、当经过第一、三、四象限的直线为y=ax+b,则a>0,b<0,∴直线y=bx+a应该经过第一、二、四象限,故B符合题意;C、当经过第一、二、三象限的直线为y=ax+b,则a>0,b>0,∴直线y=bx+a应该经过第一、二、三象限,故C不符合题意;D、当经过第一、三、四象限的直线为y=ax+b,则a>0,b<0,∴直线y=bx+a应该经过第一、二、四象限,故D不符合题意;故选:B.【点评】本题考查了一次函数的图象与系数,熟练掌握一次函数的图象与系数的关系是解题的关键.一十三.一次函数图象上点的坐标特征(共2小题)36.一次函数y=2x+3的图象与y轴的交点是( )A.(2,3)B.(0,2)C.(0,3)D.(﹣,0)【分析】代入x=0,求出y值,进而可得出一次函数y=2x+3的图象与y轴的交点坐标.【解答】解:当x=0时,y=2×0+3=3,∴一次函数y=2x+3的图象与y轴的交点是(0,3).故选:C.【点评】本题考查了一次函数图象上点的坐标特征,牢记“直线上任意一点的坐标都满足函数关系式y=kx+b”是解题的关键.37.若点(﹣3,y1)、(2,y2)都在函数y=﹣4x+b的图象上,则y1与y2的大小关系( )。
初中数学一次函数易错题汇编含答案解析
初中数学一次函数易错题汇编含答案解析一、选择题1.如图,已知一次函数2y kx =+的图象与x 轴,y 轴分别交于点,A B ,与正比例函数13y x =交于点C ,已知点C 的横坐标为2,下列结论:①关于x 的方程20kx +=的解为3x =;②对于直线2y kx =+,当3x <时,0y >;③直线2y kx =+中,2k =-;④方程组302y x y kx -=⎧⎨-=⎩的解为223x y =⎧⎪⎨=⎪⎩.其中正确的有( )个 A .1B .2C .3D .4【答案】C【解析】【分析】 把正比例函数与一次函数的交点坐标求出,根据正比例函数与一次函数的交点先把一次函数的解析式求解出来,再分别验证即可得到答案.【详解】解:∵一次函数2y kx =+与正比例函数13y x =交于点C ,且C 的横坐标为2, ∴纵坐标:1122333y x ==⨯=, ∴把C 点左边代入一次函数得到:2223k =⨯+, ∴23k =-,22,3C ⎛⎫ ⎪⎝⎭①∵23k =-, ∴22023kx x +==-+, ∴3x =,故正确; ②∵23k =-, ∴直线223y x =-+,当3x <时,0y >,故正确;③直线2y kx =+中,23k =-,故错误; ④30223y x y x -=⎧⎪⎨⎛⎫--= ⎪⎪⎝⎭⎩, 解得223x y =⎧⎪⎨=⎪⎩,故正确; 故有①②④三个正确;故答案为C.【点睛】本题主要考查了一次函数与正比例函数的综合应用,能正确用待定系数法求解未知量是解题的关键,再解题的过程中,要利用好已知信息,比如函数图像,很多时候都可以方便解题;2.一次函数y x 1=-+的图象不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【解析】【分析】先根据一次函数y x 1=-+中k 1=-,b 1=判断出函数图象经过的象限,进而可得出结论.【详解】解:Q 一次函数y x 1=-+中k 10=-<,b 10=>, ∴此函数的图象经过一、二、四象限,不经过第三象限.故答案选:C .【点睛】本题考查的是一次函数的性质,即一次函数()y kx b k 0=+≠中,当k 0<,b 0>时,函数图象经过一、二、四象限.3.若一次函数32y x =-+的图象与x 轴交于点A ,与y 轴交于点,B 则AOB V (O 为坐标原点)的面积为( )A .32B .2C .23D .3【答案】C【解析】【分析】根据直线解析式求出OA 、OB 的长度,根据面积公式计算即可.【详解】当32y x =-+中y=0时,解得x=23,当x=0时,解得y=2, ∴A(23,0),B(0,2), ∴OA=23,OB=2, ∴1122223AOB S OA OB =⋅=⨯⨯=V 23, 故选:C.【点睛】此题考查一次函数图象与坐标轴的交点坐标,正确理解交点坐标的计算方法是解题的关键.4.如图,一次函数y =﹣x +4的图象与两坐标轴分别交于A 、B 两点,点C 是线段AB 上一动点(不与点A 、B 重合),过点C 分别作CD 、CE 垂直于x 轴、y 轴于点D 、E ,当点C 从点A 出发向点B 运动时,矩形CDOE 的周长( )A .逐渐变大B .不变C .逐渐变小D .先变小后变大【答案】B【解析】【分析】 根据一次函数图象上点的坐标特征可设出点C 的坐标为(m ,-m+4)(0<m<4),根据矩形的周长公式即可得出C 矩形CDOE =8,此题得解.【详解】解:设点C 的坐标为(m ,-m+4)(0<m <4),则CE=m ,CD=-m+4,∴C 矩形CDOE =2(CE+CD)=8.故选B .【点睛】本题考查了一次函数图象上点的坐标特征以及矩形的性质,根据一次函数图象上点的坐标特征设出点C 的坐标是解题的关键.5.下列函数(1)y=x(2)y=2x﹣1 (3)y=1x(4)y=2﹣3x(5)y=x2﹣1中,是一次函数的有()A.4个B.3个C.2个D.1个【答案】B【解析】【分析】分别利用一次函数、二次函数和反比例函数的定义分析得出即可.【详解】解:(1)y=x是一次函数,符合题意;(2)y=2x﹣1是一次函数,符合题意;(3)y=1x是反比例函数,不符合题意;(4)y=2﹣3x是一次函数,符合题意;(5)y=x2﹣1是二次函数,不符合题意;故是一次函数的有3个.故选:B.【点睛】此题考查一次函数、二次函数和反比例函数的定义,正确把握相关定义是解题关键.6.如图:图中的两条射线分别表示甲、乙两名同学运动的一次函数图象,图中s和t分别表示运动路程和时间,已知甲的速度比乙快,下列说法:①射线AB表示甲的路程与时间的函数关系;②甲的速度比乙快1.5米/秒;③甲让乙先跑了12米;④8秒钟后,甲超过了乙其中正确的说法是()A.①②B.②③④C.②③D.①③④【答案】B【解析】【分析】根据函数图象上特殊点的坐标和实际意义即可作出判断.【详解】根据函数图象的意义,①已知甲的速度比乙快,故射线OB 表示甲的路程与时间的函数关系;错误;②甲的速度为:64÷8=8米/秒,乙的速度为:52÷8=6.5米/秒,故甲的速度比乙快1.5米/秒,正确;③甲让乙先跑了12米,正确;④8秒钟后,甲超过了乙,正确;故选B .【点睛】正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到随着自变量的增大,知道函数值是增大还是减小,通过图象得到函数是随自变量的增大或减小的快慢.7.如图,函数y=2x 和y=ax+4的图象相交于A(m ,3),则不等式2x ax+4<的解集为( )A .3x 2>B .x 3>C .3x 2<D .x 3<【答案】C 【解析】【分析】【详解】 解:∵函数y=2x 和y=ax+4的图象相交于点A (m ,3),∴3=2m ,解得m=32. ∴点A 的坐标是(32,3). ∵当3x 2<时,y=2x 的图象在y=ax+4的图象的下方, ∴不等式2x <ax+4的解集为3x 2<. 故选C .8.已知直线4y x =-+与2y x =+的图象如图,则方程组y x 4y x 2=-+⎧⎨=+⎩的解为( )A .31x y ==,B .13x y ==,C .04x y ==,D .40x y ==,【答案】B【解析】【分析】 二元一次方程组的解就是组成二元一次方程组的两个方程的公共解,即两条直线的交点坐标.【详解】解:根据题意知,二元一次方程组y x 4y x 2=-+⎧⎨=+⎩的解就是直线y =−x +4与y =x +2的交点坐标,又∵交点坐标为(1,3),∴原方程组的解是:13x y ==,. 故选:B .【点睛】本题考查了一次函数与二元一次方程组.二元一次方程组的解就是组成该方程组的两条直线的图象的交点.9.函数k y x=与y kx k =-(0k ≠)在同一平面直角坐标系中的大致图象是( ) A . B . C . D .【答案】C【解析】【分析】分k>0和k<0两种情况确定正确的选项即可.【详解】当k:>0时,反比例函数的图象位于第一、三象限,一次函数的图象交 y 轴于负半轴,y 随着x 的增大而增大,A 选项错误,C 选项符合;当k<0时,反比例函数的图象位于第二、四象限,一次函数的图象交y 轴于正半轴,y 随着x 的增大而增减小,B. D 均错误,故选:C.【点睛】此题考查反比例函数的图象,一次函数的图象,熟记函数的性质是解题的关键.10.一次函数y mx n =-+的图象经过第二、三、四象限,则化简22()m n n -+所得的结果是( )A .mB .m -C .2m n -D .2m n -【答案】D【解析】【分析】根据题意可得﹣m <0,n <0,再进行化简即可.【详解】∵一次函数y =﹣mx +n 的图象经过第二、三、四象限,∴﹣m <0,n <0,即m >0,n <0,∴22()m n n -+=|m ﹣n |+|n |=m ﹣n ﹣n=m ﹣2n ,故选D .【点睛】本题考查了二次根式的性质与化简以及一次函数的图象与系数的关系,熟练掌握一次函数的图象与性质是解题的关键.11.如图,平面直角坐标系中,ABC ∆的顶点坐标分别是A(1,1),B(3,1),C(2,2),当直线12y x b =+与ABC ∆有交点时,b 的取值范围是( )A .11b -≤≤B .112b -≤≤C.1122b-≤≤D.112b-≤≤【答案】B 【解析】【分析】将A(1,1),B(3,1),C(2,2)的坐标分别代入直线y=12x+b中求得b的值,再根据一次函数的增减性即可得到b的取值范围.【详解】解:直线y=12x+b经过点B时,将B(3,1)代入直线y=12x+b中,可得32+b=1,解得b=-12;直线y=12x+b经过点A时:将A(1,1)代入直线y=12x+b中,可得12+b=1,解得b=12;直线y=12x+b经过点C时:将C(2,2)代入直线y=12x+b中,可得1+b=2,解得b=1.故b的取值范围是-12≤b≤1.故选B.【点睛】考查了一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.12.若正比例函数y=kx的图象经过第二、四象限,且过点A(2m,1)和B(2,m),则k的值为()A.﹣12B.﹣2 C.﹣1 D.1【答案】A【解析】【分析】根据函数图象经过第二、四象限,可得k<0,再根据待定系数法求出k的值即可.【详解】解:∵正比例函数y=kx的图象经过第二、四象限,∴k<0.∵正比例函数y=kx的图象过点A(2m,1)和B(2,m),∴2km1 2k m=⎧⎨=⎩,解得:m11 k2 =-⎧⎪⎨=-⎪⎩或m11k2=⎧⎪⎨=⎪⎩(舍去).故选:A.【点睛】本题考查了正比例函数的系数问题,掌握正比例函数的性质、待定系数法是解题的关键.13.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂重物的质量x(kg)有下面的关系,那么弹簧总长y(cm)与所挂重物x(kg)之间的关系式为()x(kg)0123456y(cm)1212.51313.51414.515A.y=0.5x+12 B.y=x+10.5 C.y=0.5x+10 D.y=x+12【答案】A【解析】分析:由上表可知12.5-12=0.5,13-12.5=0.5,13.5-13=0.5,14-13.5=0.5,14.5-14=0.5,15-14.5=0.5,0.5为常量,12也为常量.故弹簧总长y(cm)与所挂重物x(㎏)之间的函数关系式.详解:由表可知:常量为0.5;所以,弹簧总长y(cm)与所挂重物x(㎏)之间的函数关系式为y=0.5x+12.故选A.点睛:本题考查了函数关系,关键在于根据图表信息列出等式,然后变形为函数的形式.14.如图,已知正比例函数y1=ax与一次函数y2=12x+b的图象交于点P.下面有四个结论:①a<0;②b<0;③当x>0时,y1>0;④当x<﹣2时,y1>y2.其中正确的是()A .①②B .②③C .①③D .①④【答案】D【解析】【分析】 根据正比例函数和一次函数的性质判断即可.【详解】因为正比例函数y 1=ax 经过二、四象限,所以a <0,①正确; 一次函数212y x b =+ \过一、二、三象限,所以b >0,②错误; 由图象可得:当x >0时,y 1<0,③错误;当x <−2时,y 1>y 2,④正确;故选D.【点睛】 考查一次函数的图象与系数的关系,一次函数与不等式,熟练掌握和灵活运用相关知识是解题的关键.15.生物活动小组的同学们观察某植物生长,得到该植物高度y (单位:cm )与观察时间x (单位:天)的关系,并画出如图所示的图象(//CD x 轴),该植物最高的高度是( )A .50cmB .20cmC .16cmD .12cm【答案】C【解析】【分析】 设直线AC 的解析式为()0y kx b k =+≠,然后利用待定系数法求出直线AC 的解析式,再把50x =代入进行计算即可得解.【详解】解:设直线AC 的解析式为()0y kx b k =+≠∵()0,6A ,()30,12B∴61230b k b =⎧⎨=+⎩∴156k b ⎧=⎪⎨⎪=⎩ ∴165y x =+ ∴当50x =时,16y =∴该植物最高的高度是16cm .故选:C【点睛】本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,已知自变量求函数值,仔细观察图象,准确获取信息是解题的关键.16.如图1,在Rt △ABC 中,∠ACB=90°,点P 以每秒1cm 的速度从点A 出发,沿折线AC -CB 运动,到点B 停止.过点P 作PD ⊥AB ,垂足为D ,PD 的长y (cm )与点P 的运动时间x (秒)的函数图象如图2所示.当点P 运动5秒时,PD 的长是( )A .1.5cmB .1.2cmC .1.8cmD .2cm【答案】B【解析】【分析】【详解】 由图2知,点P 在AC 、CB 上的运动时间时间分别是3秒和4秒,∵点P 的运动速度是每秒1cm ,∴AC=3,BC=4.∵在Rt △ABC 中,∠ACB=90°,∴根据勾股定理得:AB=5.如图,过点C 作CH ⊥AB 于点H ,则易得△ABC ∽△ACH .∴CH AC BC AB =,即AC BC 3412CH CH AB 55⋅⨯=⇒==. ∴如图,点E (3,125),F (7,0). 设直线EF 的解析式为y kx b =+,则 123k b {507k b=+=+, 解得:3k 5{21b 5=-=. ∴直线EF 的解析式为321y x 55=-+. ∴当x 5=时,()3216PD y 5 1.2cm 555==-⨯+==. 故选B .17.关于一次函数y=3x+m ﹣2的图象与性质,下列说法中不正确的是( )A .y 随x 的增大而增大B .当m≠2时,该图象与函数y=3x 的图象是两条平行线C .若图象不经过第四象限,则m >2D .不论m 取何值,图象都经过第一、三象限【答案】C【解析】【分析】根据一次函数的增减性判断A ;根据两条直线平行时,k 值相同而b 值不相同判断B ;根据一次函数图象与系数的关系判断C 、D .【详解】A 、一次函数y=3x+m ﹣2中,∵k=3>0,∴y 随x 的增大而增大,故本选项正确;B 、当m≠2时,m ﹣2≠0,一次函数y=3x+m ﹣2与y=3x 的图象是两条平行线,故本选项正确;C 、若图象不经过第四象限,则经过第一、三象限或第一、二、三象限,所以m ﹣2≥0,即m≥2,故本选项错误;D 、一次函数y=3x+m ﹣2中,∵k=3>0,∴不论m 取何值,图象都经过第一、三象限,故本选项正确.故选:C .【点睛】本题考查了两条直线的平行问题:若直线y 1=k 1x+b 1与直线y 2=k 2x+b 2平行,那么k 1=k 2,b 1≠b 2.也考查了一次函数的增减性以及一次函数图象与系数的关系.18.若一次函数y=(k-3)x-1的图像不经过第一象限,则A .k<3B .k>3C .k>0D .k<0【答案】A【解析】【分析】根据图象在坐标平面内的位置关系确定k ,b 的取值范围,从而求解.【详解】解:∵一次函数y=(k-3)x-1的图象不经过第一象限,且b=-1,∴一次函数y=(k-3)x-1的图象经过第二、三、四象限,∴k-3<0,解得k <3.故选A .【点睛】本题主要考查一次函数图象在坐标平面内的位置与k 、b 的关系.解答本题注意理解:直线y=kx+b 所在的位置与k 、b 的符号有直接的关系.k >0时,直线必经过一、三象限.k <0时,直线必经过二、四象限.b >0时,直线与y 轴正半轴相交.b=0时,直线过原点;b <0时,直线与y 轴负半轴相交.19.如图,已知一次函数3y x b =+与3y ax =-交于点P (-2,-5),则关于x 的不等式33x b ax +>-的解集在数轴上表示正确的是( )A .B .C .D .【答案】C【解析】【分析】 直接根据两函数图象的交点求出不等式的解集,再在数轴上表示出来即可.【详解】解:∵由函数图象可知,当x >−2时,一次函数y =3x +b 的图象在函数y =ax−3的图象的上方,∴不等式3x +b >ax−3的解集为x >−2, 在数轴上表示为:.故选:C .【点睛】本题考查的是一次函数与一元一次不等式,能利用函数图象求出不等式的解集是解答此题的关键.20.如图,矩形ABOC 的顶点坐标为()4,5-,D 是OB 的中点,E 为OC 上的一点,当ADE ∆的周长最小时,点E 的坐标是( )A .40,3⎛⎫ ⎪⎝⎭B .50,3⎛⎫ ⎪⎝⎭C .()0,2D .100,3⎛⎫ ⎪⎝⎭ 【答案】B【解析】【分析】 作点A 关于y 轴的对称点A',连接A'D ,此时△ADE 的周长最小值为AD+DA'的长;E 点坐标即为直线A'D 与y 轴的交点.【详解】解:作点A 关于y 轴的对称点A',连接A'D ,此时△ADE 的周长最小值为AD+DA'的长;∵A 的坐标为(-4,5),D 是OB 的中点,∴D (-2,0),由对称可知A'(4,5),设A'D 的直线解析式为y=kx+b ,5402k b k b =+⎧∴⎨=-+⎩5653k b ⎧=⎪⎪∴⎨⎪=⎪⎩ 5563y x ∴=+ 当x=0时,y=53 50,3E ⎛⎫∴ ⎪⎝⎭故选:B【点睛】本题考查矩形的性质,线段的最短距离;能够利用轴对称求线段的最短距离,将AE+DE 的最短距离转化为线段A'D 的长是解题的关键.。
一次函数易错题集(含详解)
《一次函数》易错题集一次函数的应用选择题1.(2005•荆门)参加保险公司的医疗保险,住院治疗的病人享受分段报销,保险公司制定的报销细则如下表.某人住院治疗后得到保险公司报销金额是1000元,那么此人住院的医疗费大约是()A.2879元B.2889元C.2899元D.2909元2.(2004•荆门)如图,是甲、乙两家商店销售同一种产品的销售价y(元)与销售量x(件)之间的函数图象.下列说法:①售2件时甲、乙两家售价一样;②买1件时买乙家的合算;③买3件时买甲家的合算;④买乙家的1件售价约为3元,其中正确的说法是()A.①②B.②③④C.②③D.①②③3.巫溪某中学组织初一初二学生举行“四城同创”宣传活动,从学校坐车出发,先上坡到达A地后,宣传8分钟;然后下坡到B地宣传8分钟返回,行程情况如图.若返回时,上、下坡速度仍保持不变,在A地仍要宣传8分钟,那么他们从B地返回学校用的时间是()A.45.2分钟B.48分钟C.46分钟D.33分钟4.(2001•苏州)如图,L甲、L乙分别是甲、乙两弹簧的长ycm与所挂物体质量xkg之间函数关系的图象,设甲弹簧每挂1kg物体伸长的长度为k甲cm,乙弹簧每挂1kg物体伸长的长度为k乙cm,则k甲与k乙的关系是()A.k甲>k乙B.k甲=k乙C.k甲<k乙D.不能确定填空题5.(2008•株洲)利民商店中有3种糖果,单价及重量如下表,若商店将以上糖果配成什锦糖,则这种什锦糖果的6.直线y=x﹣2与坐标轴交于A、B两点,点C在坐标轴上,△ABC为等腰三角形,则满足条件的点C最多有_________个.7.如图,在平面直角坐标系中,直线交x轴于A点,交y轴于B点,点C是线段AB的中点,连接OC,然后将直线OC绕点C顺时针旋转30°交x轴于点D,再过D点作直线DC1∥OC,交AB与点C1,然后过C1点继续作直线D1C1∥OC,交x轴于点D1,并不断重复以上步骤,记△OCD的面积为S1,△DC1D1的面积为S2,依次类推,后面的三角形面积分别是S3,S4…,那么S1=_________,若S=S1+S2+S3+…+S n,当n无限大时,S 的值无限接近于_________.《一次函数》易错题集一次函数的应用参考答案与试题解析选择题1.(2005•荆门)参加保险公司的医疗保险,住院治疗的病人享受分段报销,保险公司制定的报销细则如下表.某人住院治疗后得到保险公司报销金额是1000元,那么此人住院的医疗费大约是()A.2879元B.2889元C.2899元D.2909元考点:一次函数的应用。
一次函数易错题整理
ቤተ መጻሕፍቲ ባይዱ点击一次函数易错题
江苏
一、忽视限制条件 例 1 已知关于 x 的一次函数 y = (m − 2) x m
1 以 A(6,0) ,所以 k = − . 3 1 错解在没有分类探究 k 的可能取值. 实际上, 当点 A 的横坐标大于 0 时, 可得 k = − ; 析: 3 1 可求得 OA = 6 . 所 OA OB = 6 , 2
也可能点 A 的横坐标小于 0, 当点 A 的横坐标小于 0 时, A −6 , ) 此时, 则 ( 0 , 可求得 k = 正: k =
1 1 或− . 3 3
1 , 3
五、混淆点的坐标和距离之间的关系 例 5 函数 y = −4 x + 3 的图象上存在点 P,点 P 到 x 轴的距离等于 4,求点 P 的坐标.
1 1 4 误:根据题意,得 y = 4 ,即 −4 x + 3 = 4 ,所以 x = − ,所以 P − , . 4 4 析:错解在将距离 4 当作点 P 的纵坐标,混淆了坐标和距离之间的关系. ,则 | y |= 4 ,即 y = ±4 ,当 y = −4 时,则 −4 x + 3 = −4 ,可 正:设点 P 的坐标为(x,y)
2
唐耀庭
−3
+ m + 1 是一次函数,则 m 的值为_____.
误:由已知,得 m 2 − 3 = 1 ,所以 m = ±2 . 析:本题将 m 的值隐含在一次函数的表达式中,既要考虑函数有意义,又得保证 x 的 指数为 1,而错解只考虑指数等于 1,而忽视了函数有意义的条件是 m − 2 ≠ 0 ,即 m ≠ 2 . 正:答案为 m = −2 . 二、考虑问题不周 例 2 当 m_______时,函数 y = (m + 2)x + 4 x − 5 是一次函数. 误:由已知,得 m + 2 ≠ 0 ,所以当 m ≠ −2 时, y = (m + 2)x + 4 x − 5 是关于 x 的一次函数. 析:错误的原因是考虑问题不周,只考虑 m + 2 ≠ 0 ,实际上当 m + 2 = 0 ,即 m = −2 时, y = 4 x − 5 也是一次函数. 正: m ≠ −6 时, y = (m + 2)x + 4 x − 5 是关于 x 的一次函数. 三、忽视特殊情况 例 3 若直线 y = −3x + k 不经过第三象限,则 k 的取值范围是_____. 误:由已知得当 k > 0 时,直线 y = −3x + k 不经过第三象限. 析:直线 y = −3x + k 不经过第三象限,则可能过第一、二、四象限,此时 k > 0 ;也可 能只过第二、四和原点,此时 k = 0 . 正: k ≥ 0 . 四、忽视分类 例 4 若直线 y = kx + 2 与两坐标轴围成的三角形的面积是 6 个平方单位,则 k = ____. 误: 设直线与 x 轴, 轴交于 A, 两点, B y B 则 (0, , 2) 有
专题12 一次函数(归纳与讲解)(解析版)
专题12 一次函数【专题目录】技巧1:一次函数常见的四类易错题技巧2:一次函数的两种常见应用技巧3:一次函数与二元一次方程(组)的四种常见应用【题型】一、正比例函数的定义【题型】二、正比例函数的图像与性质【题型】三、一次函数的定义求参数【题型】四、一次函数的图像【题型】五、一次函数的性质【题型】六、求一次函数解析式【题型】七、一次函数与一元一次方程【题型】八、一次函数与一元一次不等式【题型】九、一次函数与二元一次方程(组)【题型】十、一次函数的实际应用【考纲要求】1、理解一次函数的概念,会画一次函数的图象,掌握一次函数的基本性质.2、会求一次函数解析式,并能用一次函数解决实际问题.【考点总结】一、一次函数和正比例函数的定义【考点总结】二、一次函数的图象与性质【注意】1、确定一次函数表达式用待定系数法求一次函数表达式的一般步骤:(1)由题意设出函数的关系式;(2)根据图象所过的已知点或函数满足的自变量与因变量的对应值列出关于待定系数的方程组;(3)解关于待定系数的方程或方程组,求出待定系数的值;(4)将求出的待定系数代回到原来设的函数关系式中即可求出.2、y=kx+b与kx+b=0直线y=kx+b与x轴交点的横坐标是方程kx+b=0的解,方程kx+b=0的解是直线y=kx+b与x 轴交点的横坐标.3、y=kx+b与不等式kx+b>0从函数值的角度看,不等式kx+b>0的解集为使函数值大于零(即kx+b>0)的x的取值范围;从图象的角度看,由于一次函数的图象在x轴上方时,y>0,因此kx+b>0的解集为一次函数在x 轴上方的图象所对应的x的取值范围.4、一次函数与方程组两个一次函数图象的交点坐标就是它们的解析式所组成的二元一次方程组的解;以二元一次方程组的解为坐标的点是两个二元一次方程所对应的一次函数图象的交点. 【技巧归纳】技巧1:一次函数常见的四类易错题【类型】一、忽视函数定义中的隐含条件而致错1.已知关于x 的函数y =(m +3)x |m +2|是正比例函数,求m 的值. 2.已知关于x 的函数y =kx-2k +3-x +5是一次函数,求k 的值.【类型】二、忽视分类或分类不全而致错3.已知一次函数y =kx +4的图像与两坐标轴围成的三角形的面积为16,求这个一次函数的表达式. 4.一次函数y =kx +b ,当-3≤x≤1时,对应的函数值的取值范围为1≤y≤9,求k +b 的值. 5.在平面直角坐标系中,点P(2,a)到x 轴的距离为4,且点P 在直线y =-x +m 上,求m 的值. 【类型】三、忽视自变量的取值范围而致错6.若等腰三角形的周长是80 cm ,则能反映这个等腰三角形的腰长y(cm )与底边长x(cm )的函数关系的图像是( )7.若函数y =⎩⎪⎨⎪⎧x 2+6(x≤3),5x (x>3),则当y =20时,自变量x 的值是( )A .±14B .4C .±14或4D .4或-148.现有450本图书供给学生阅读,每人9本,求余下的图书本数y(本)与学生人数x(人)之间的函数表达式,并求自变量x 的取值范围. 【类型】四、忽视一次函数的性质而致错9.若正比例函数y =(2-m)x 的函数值y 随x 的增大而减小,则m 的取值范围是( )A .m<0B .m>0C .m<2D .m>210.下列各图中,表示一次函数y =mx +n 与正比例函数y =mnx(m ,n 是常数,且mn≠0)的大致图像的是( )11.若一次函数y =kx +b 的图像不经过第三象限,则k ,b 的取值范围分别为k________0,b________0. 参考答案1.解:因为关于x 的函数y =(m +3)x |m +2|是正比例函数,所以m +3≠0且|m +2|=1, 解得m =-1.2.解:若关于x 的函数y =kx-2k +3-x +5是一次函数,则有以下三种情况:①-2k +3=1,解得k =1, 当k =1时,函数y =kx -2k +3-x +5可化简为y =5,不是一次函数.②x-2k +3的系数为0,即k =0,则原函数化简为y =-x +5,是一次函数,所以k =0.③-2k +3=0,解得k =32,原函数化简为y =-x +132,是一次函数,所以k =32.综上可知,k 的值为0或32.3.解:设函数y =kx +4的图像与x 轴、y 轴的交点分别为A ,B ,坐标原点为O.当x =0时,y =4,所以点B 的坐标为(0,4).所以OB =4.因为S △AOB =12OA·OB =16,所以OA =8.所以点A 的坐标为(8,0)或(-8,0).把(8,0)代入y =kx +4,得0=8k +4,解得k =-12.把(-8,0)代入y =kx +4,得0=-8k +4,解得k =12.所以这个一次函数的表达式为y =-12x +4或y =12x +4.4.解:①若k>0,则y 随x 的增大而增大,则当x =1时y =9,即k +b =9. ②若k<0,则y 随x 的增大而减小, 则当x =1时y =1,即k +b =1. 综上可知,k +b 的值为9或1. 5.解:因为点P 到x 轴的距离为4,所以|a|=4,所以a =±4,当a =4时,P(2,4), 此时4=-2+m ,解得m =6. 当a =-4时,同理可得m =-2. 综上可知,m 的值为-2或6.6.D 7.D8.解:余下的图书本数y(本)与学生人数x(人)之间的函数表达式为y =450-9x ,自变量x 的取值范围是0≤x≤50,且x 为整数. 9.D 10.A 11.<;≥技巧2:一次函数的两种常见应用 【类型】一、利用一次函数解决实际问题 题型1:行程问题1.甲、乙两车从A 城出发匀速行驶至B 城,在整个行驶过程中,甲、乙两车离开A 城的距离y(km )与甲车行驶的时间t(h )之间的函数关系如图所示,则下列结论:①A ,B 两城相距300 km ;②乙车比甲车晚出发1 h ,却早到1 h ; ③乙车出发后2.5 h 追上甲车;④当甲、乙两车相距50 km 时,t =54或154.其中正确的结论有( )A .1个B .2个C .3个D .4个2.甲、乙两地相距300 km ,一辆货车和一辆轿车先后从甲地出发驶向乙地.如图,线段OA 表示货车离甲地的距离y(km )与时间x(h )之间的函数关系,折线BCDE 表示轿车离甲地的距离y(km )与时间x(h )之间的函数关系,根据图像,解答下列问题:(1)线段CD 表示轿车在途中停留了________h ; (2)求线段DE 对应的函数表达式;(3)求轿车从甲地出发后经过多长时间追上货车.题型2:工程问题3.甲、乙两组工人同时加工某种零件,乙组在工作中有一段时间停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(h )之间的函数图像如图所示.(1)求甲组加工零件的数量y与时间x之间的函数表达式.(2)求乙组加工零件总量a的值.(3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,经过多长时间恰好装满第1箱?再经过多长时间恰好装满第2箱?题型3:实际问题中的分段函数4.某种铂金饰品在甲、乙两个商场销售.甲标价为477元/g,按标价出售,不优惠;乙标价为530元/g,但若买的铂金饰品质量超过3 g,则超出部分可打八折.(1)分别写出到甲、乙两个商场购买该种铂金饰品所需费用y(元)和质量x(g)之间的函数表达式;(2)李阿姨要买一个质量不少于4 g且不超过10 g的此种铂金饰品,到哪个商场购买合算?5.我国是世界上严重缺水的国家之一.为了增强居民的节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一个月用水10 t以内(包括10 t)的用户,每吨收水费a元;一个月用水超过10 t的用户,10 t水仍按每吨a元收费,超过10 t的部分,按每吨b(b>a)元收费.设一户居民月用水x t,应交水费y元,y与x之间的函数关系如图所示.(1)求a的值;某户居民上月用水8 t,应交水费多少元?(2)求b的值,并写出当x>10时,y与x之间的函数表达式.【类型】二、利用一次函数解决几何问题题型4:利用图像解几何问题6.如图①所示,正方形ABCD的边长为6 cm,动点P从点A出发,在正方形的边上沿A→B→C→D 运动,设运动的时间为t(s),△APD的面积为S(cm2),S与t的函数图像如图②所示,请回答下列问题:(1)点P在AB上运动的时间为________s,在CD上运动的速度为________cm/s,△APD的面积S的最大值为________cm2;(2)求出点P 在CD 上运动时S 与t 之间的函数表达式; (3)当t 为何值时,△APD 的面积为10 cm 2?题型5:利用分段函数解几何问题(分类讨论思想、数形结合思想)7.在长方形ABCD 中,AB =3,BC =4,动点P 从点A 开始按A→B→C→D 的方向运动到点D.如图,设动点P 所经过的路程为x ,△APD 的面积为y.(当点P 与点A 或D 重合时,y =0)(1)写出y 与x 之间的函数表达式; (2)画出此函数的图像.参考答案 1.B 2.解:(1)0.5(2)设线段DE 对应的函数表达式为y =kx +b(2.5≤x≤4.5).将D(2.5,80),E(4.5,300)的坐标分别代入y =kx +b 可得⎩⎪⎨⎪⎧80=2.5k +b ,300=4.5k +b.解得⎩⎪⎨⎪⎧k =110,b =-195.所以y =110x -195(2.5≤x≤4.5).(3)设线段OA 对应的函数表达式为y =k 1x(0≤x≤5). 将A(5,300)的坐标代入y =k 1x 可得300=5k 1, 解得k 1=60.所以y =60x(0≤x≤5). 令60x =110x -195,解得x =3.9.故轿车从甲地出发后经过3.9-1=2.9(h )追上货车.3.解:(1)设甲组加工零件的数量y 与时间x 之间的函数表达式为y =kx ,因为当x =6时,y =360,所以k =60,即甲组加工零件的数量y 与时间x 之间的函数表达式为y =60x(0≤x≤6). (2)a =100+100÷2×2×(4.8-2.8)=300.(3)当工作2.8 h 时共加工零件100+60×2.8=268(件), 所以装满第1箱的时刻在2.8 h 后. 设经过x 1 h 恰好装满第1箱.则60x 1+100÷2×2(x 1-2.8)+100=300,解得x 1=3.从x =3到x =4.8这一时间段内,甲、乙两组共加工零件(4.8-3)×(100+60)=288(件), 所以x>4.8时,才能装满第2箱,此时只有甲组继续加工. 设装满第1箱后再经过x 2 h 装满第2箱. 则60x 2+(4.8-3)×100÷2×2=300,解得x 2=2.故经过3 h 恰好装满第1箱,再经过2 h 恰好装满第2箱. 4.解:(1)y 甲=477x ,y 乙=⎩⎪⎨⎪⎧530x (0≤x≤3),424x +318(x >3).(2)当477x =424x +318时, 解得x =6,即当x =6时,到甲、乙两个商场购买所需费用相同; 当477x<424x +318时,解得x<6,又x≥4,于是当4≤x <6时,到甲商场购买合算; 当477x>424x +318时,解得x>6,又x≤10,于是当6<x≤10时,到乙商场购买合算.5.解:(1)当x≤10时,由题意知y =ax.将x =10,y =15代入,得15=10a ,所以a =1.5.故当x≤10时,y =1.5x.当x =8时,y =1.5×8=12. 故应交水费12元.(2)当x >10时,由题意知y =b(x -10)+15.将x =20,y =35代入,得35=10b +15,所以b =2.故当x >10时,y 与x 之间的函数表达式为y =2x -5.点拨:本题解题的关键是从图像中找出有用的信息,用待定系数法求出表达式,再解决问题. 6.解:(1)6;2;18(2)PD =6-2(t -12)=30-2t ,S =12AD·PD =12×6×(30-2t)=90-6t ,即点P 在CD 上运动时S 与t 之间的函数表达式为S =90-6t(12≤t≤15).(3)当0≤t≤6时易求得S =3t ,将S =10代入,得3t =10,解得t =103;当12≤t≤15时,S =90-6t ,将S =10代入,得90-6t =10,解得t =403.所以当t 为103或403时,△APD 的面积为10 cm 2.7.解:(1)点P 在边AB ,BC ,CD 上运动时所对应的y 与x 之间的函数表达式不相同,故应分段求出相应的函数表达式.①当点P 在边AB 上运动,即0≤x <3时, y =12×4x =2x ; ②当点P 在边BC 上运动,即3≤x <7时, y =12×4×3=6; ③当点P 在边CD 上运动,即7≤x≤10时, y =12×4(10-x)=-2x +20. 所以y 与x 之间的函数表达式为 y =⎩⎪⎨⎪⎧2x (0≤x <3),6 (3≤x <7),-2x +20 (7≤x≤10). (2)函数图像如图所示.点拨:本题考查了分段函数在动态几何中的运用,体现了数学中的分类讨论思想和数形结合思想.根据点P 在边AB ,BC ,CD 上运动时所对应的y 与x 之间的函数表达式不相同,分段求出相应的函数表达式,再画出相应的函数图像.技巧3:一次函数与二元一次方程(组)的四种常见应用 【类型】一、利用两直线的交点坐标确定方程组的解1.已知直线y =-x +4与y =x +2如图所示,则方程组⎩⎪⎨⎪⎧y =-x +4,y =x +2的解为( )A .⎩⎪⎨⎪⎧x =3y =1B .⎩⎪⎨⎪⎧x =1y =3C .⎩⎪⎨⎪⎧x =0y =4D .⎩⎪⎨⎪⎧x =4y =02.已知直线y =2x 与y =-x +b 的交点坐标为(1,a),试确定方程组⎩⎪⎨⎪⎧2x -y =0,x +y -b =0的解和a ,b 的值.3.在平面直角坐标系中,一次函数y =-x +4的图像如图所示.(1)在同一坐标系中,作出一次函数y =2x -5的图像;(2)用作图像的方法解方程组⎩⎪⎨⎪⎧x +y =4,2x -y =5;(3)求一次函数y =-x +4与y =2x -5的图像与x 轴所围成的三角形的面积.【类型】二、利用方程(组)的解求两直线的交点坐标4.已知方程组⎩⎪⎨⎪⎧-mx +y =n ,ex +y =f 的解为⎩⎪⎨⎪⎧x =4,y =6,则直线y =mx +n 与y =-ex +f 的交点坐标为( ) A .(4,6) B .(-4,6) C .(4,-6) D .(-4,-6)5.已知⎩⎪⎨⎪⎧x =3,y =-2和⎩⎪⎨⎪⎧x =2,y =1是二元一次方程ax +by =-3的两组解,则一次函数y =a x +b 的图像与y轴的交点坐标是( )A .(0,-7)B .(0,4)C .⎝⎛⎭⎫0,-37D .⎝⎛⎭⎫-37,0 【类型】三、方程组的解与两个一次函数图像位置的关系6.若方程组⎩⎪⎨⎪⎧x +y =2,2x +2y =3没有解,则一次函数y =2-x 与y =32-x 的图像必定( )A .重合B .平行C .相交D .无法确定7.直线y =-a 1x +b 1与直线y =a 2x +b 2有唯一交点,则二元一次方程组⎩⎪⎨⎪⎧a 1x +y =b 1,a 2x -y =-b 2的解的情况是( )A .无解B .有唯一解C .有两个解D .有无数解 【类型】四、利用二元一次方程组求一次函数的表达式8.已知一次函数y =kx +b 的图像经过点A(1,-1)和B(-1,3),求这个一次函数的表达式. 9.已知一次函数y =kx +b 的图像经过点A(3,-3),且与直线y =4x -3的交点B 在x 轴上.(1)求直线AB 对应的函数表达式;(2)求直线AB 与坐标轴所围成的△BOC(O 为坐标原点,C 为直线AB 与y 轴的交点)的面积.参考答案 1.B2.解:将(1,a)代入y =2x ,得a =2.所以直线y =2x 与y =-x +b 的交点坐标为(1,2),所以方程组⎩⎪⎨⎪⎧2x -y =0,x +y -b =0的解是⎩⎪⎨⎪⎧x =1,y =2.将(1,2)代入y =-x +b ,得2=-1+b ,解得b =3. 3.解:(1)画函数y =2x -5的图像如图所示.(2)由图像看出两直线的交点坐标为(3,1),所以方程组的解为⎩⎪⎨⎪⎧x =3,y =1.(3)直线y =-x +4与x 轴的交点坐标为(4,0),直线y =2x -5与x 轴的交点坐标为⎝⎛⎭⎫52,0,又由(2)知,两直线的交点坐标为(3,1),所以三角形的面积为12×⎝⎛⎭⎫4-52×1=34. 4.A5.C6.B7.B8.解:依题意将A(1,-1)与B(-1,3)的坐标分别代入y =kx +b 中,得⎩⎪⎨⎪⎧k +b =-1,-k +b =3,解得⎩⎪⎨⎪⎧k =-2,b =1.所以这个一次函数的表达式为y =-2x +1.9.解:(1)因为一次函数y =kx +b 的图像与直线y =4x -3的交点B 在x 轴上,所以将y =0代入y =4x -3中,得x =34,所以B ⎝⎛⎭⎫34,0, 把A(3,-3),B ⎝⎛⎭⎫34,0的坐标分别代入y =kx +b 中,得⎩⎪⎨⎪⎧3k +b =-3,34k +b =0,解得⎩⎪⎨⎪⎧k =-43,b =1. 则直线AB 对应的函数表达式为y =-43x +1.(2)由(1)知直线AB 对应的函数表达式为y =-43x +1,所以直线AB 与y 轴的交点C 的坐标为(0,1), 所以OC =1,又B ⎝⎛⎭⎫34,0,所以OB =34.所以S △BOC =12OB·OC =12×34×1=38.即直线AB 与坐标轴所围成的△BOC 的面积为38.【题型讲解】【题型】一、正比例函数的定义例1、若一次函数y=(m ﹣3)x+m 2﹣9是正比例函数,则m 的值为_______. 【答案】m=﹣3 【解析】∵y=(m ﹣3)x+m 2﹣9是正比例函数, ∵29030m m -⎧⎨-≠⎩=解得m=-3. 故答案是:-3.【题型】二、正比例函数的图像与性质 例2、若正比例函数12y x =经过两点(1,1y )和(2,2y ),则1y 和2y 的大小关系为( ) A .12y y < B .12y y >C .12y y =D .无法确定【答案】A【分析】分别把点(1,1y ),点(2,2y )代入函数12y x =,求出点1y ,2y 的值,并比较出其大小即可.【详解】∵点(1,1y ),点(2,2y )是函数12y x =图象上的点, ∵112y =,21y =, ∵112<, ∵12y y <. 故选:A .【题型】三、一次函数的定义求参数例3、已知一次函数3y kx =+的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( ) A .()1,2-B .()1,2-C .()2,3D .()3,4【答案】B【分析】先根据一次函数的增减性判断出k 的符号,再将各项坐标代入解析式进行逐一判断即可. 【详解】∵一次函数3y kx =+的函数值y 随x 的增大而减小, ∵k ﹤0,A .当x=-1,y=2时,-k+3=2,解得k=1﹥0,此选项不符合题意;B .当x=1,y=-2时,k+3=-2,解得k=-5﹤0,此选项符合题意;C .当x=2,y=3时,2k+3=3,解得k=0,此选项不符合题意;D .当x=3,y=4时,3k+3=4,解得k=13﹥0,此选项不符合题意, 故选:B .【题型】四、一次函数的图像例4、若m <﹣2,则一次函数()11y m x m =++-的图象可能是( )A .B .C .D .【答案】D【分析】由m <﹣2得出m +1<0,1﹣m >0,进而利用一次函数的性质解答即可. 【详解】解:∵m <﹣2, ∵m +1<0,1﹣m >0,所以一次函数()11y m x m =++-的图象经过一,二,四象限, 故选:D .【题型】五、一次函数的性质例5、设k 0<,关于x 的一次函数2y kx =+,当12x ≤≤时的最大值是( ) A .2k + B .22k +C .22k -D .2k -【答案】A【分析】利用一次函数的性质可得当x=1时,y 最大,然后可得答案. 【详解】∵一次函数2y kx =+中0k <, ∵y 随x 的增大而减小, ∵12x ≤≤,∵当1x =时,122y k k =⨯+=+最大, 故选:A .【题型】六、求一次函数解析式例6、直线y kx b =+在平面直角坐标系中的位置如图所示,则不等式2kx b +≤的解集是( )A .2x -≤B .4x ≤-C .2x ≥-D .4x ≥-【答案】C【分析】先根据图像求出直线解析式,然后根据图像可得出解集. 【详解】解:根据图像得出直线y kx b =+经过(0,1),(2,0)两点,将这两点代入y kx b =+得120b k b =⎧⎨+=⎩,解得112b k =⎧⎪⎨=-⎪⎩,∵直线解析式为:112y x =-+, 将y=2代入得1212x =-+,解得x=-2,∵不等式2kx b +≤的解集是2x ≥-, 故选:C .【题型】七、一次函数与一元一次方程例7、一次函数3y kx =+(k 为常数且0k ≠)的图像经过点(-2,0),则关于x 的方程()530k x -+=的解为( ) A .5x =- B .3x =-C .3x =D .5x =【答案】C【分析】根据一次函数图象的平移即可得到答案.【详解】解:∵()53y k x =-+是由3y kx =+的图像向右平移5个单位得到的,∵将一次函数3y kx =+的图像上的点(-2,0)向右平移5个单位得到的点的坐标为(3,0) ∵当y=0时,方程()530k x -+=的解为x=3, 故选:C .【题型】八、一次函数与一元一次不等式例8、如图,直线(0)y kx b k =+<经过点(1,1)P ,当kx b x +≥时,则x 的取值范围为( )A .1x ≤B .1≥xC .1x <D .1x >【答案】A【分析】将(1,1)P 代入(0)y kx b k =+<,可得1k b -=-,再将kx b x +≥变形整理,得0bx b -+≥,求解即可.【详解】解:由题意将(1,1)P 代入(0)y kx b k =+<,可得1k b +=,即1k b -=-, 整理kx b x +≥得,()10k x b -+≥, ∵0bx b -+≥, 由图像可知0b >, ∵10x -≤, ∵1x ≤, 故选:A .【题型】九、一次函数与二元一次方程(组)例9、在平面直角坐标系中,O 为坐标原点.若直线y =x +3分别与x 轴、直线y =﹣2x 交于点A 、B ,则∵AOB 的面积为( ) A .2 B .3C .4D .6【答案】B 【分析】根据方程或方程组得到A(﹣3,0),B(﹣1,2),根据三角形的面积公式即可得到结论.【详解】解:在y=x+3中,令y=0,得x=﹣3,解32y xy x=+⎧⎨=-⎩得,12xy=-⎧⎨=⎩,∵A(﹣3,0),B(﹣1,2),∵∵AOB的面积=12⨯3×2=3,故选:B.【题型】十、一次函数的实际应用例10、A,B两地相距200千米.早上8:00货车甲从A地出发将一批物资运往B地,行驶一段路程后出现故障,即刻停车与B地联系.B地收到消息后立即派货车乙从B地出发去接运甲车上的物资.货车乙遇到甲后,用了18分钟将物资从货车甲搬运到货车乙上,随后开往B地.两辆货车离开各自出发地的路程y(千米)与时间x(小时)的函数关系如图所示.(通话等其他时间忽略不计)(1)求货车乙在遇到货车甲前,它离开出发地的路程y关于x的函数表达式.(2)因实际需要,要求货车乙到达B地的时间比货车甲按原来的速度正常到达B地的时间最多晚1个小时,问货车乙返回B地的速度至少为每小时多少千米?【答案】(1)y=80x﹣128(1.6≤x≤3.1);(2)货车乙返回B地的车速至少为75千米/小时【分析】(1)先设出函数关系式y=kx+b(k≠0),观察图象,经过两点(1.6,0),(2.6,80),代入求解即可得到函数关系式;(2)先求出货车甲正常到达B地的时间,再求出货车乙出发回B地时距离货车甲比正常到达B地晚1个小时的时间以及故障地点距B地的距离,然后设货车乙返回B地的车速为v千米/小时,最后列出不等式并求解即可.【详解】解:(1)设函数表达式为y=kx+b(k≠0),把(1.6,0),(2.6,80)代入y =kx+b ,得 0 1.680 2.6k bk b =+⎧⎨=+⎩,解得: 80128k b =⎧⎨=-⎩,∵y 关于x 的函数表达式为y =80x ﹣128(1.6≤x≤3.1); (2)根据图象可知:货车甲的速度是80÷1.6=50(km/h ) ∵货车甲正常到达B 地的时间为200÷50=4(小时), 18÷60=0.3(小时),4+1=5(小时), 当y =200﹣80=120 时, 120=80x ﹣128, 解得x =3.1,5﹣3.1﹣0.3=1.6(小时),设货车乙返回B 地的车速为v 千米/小时, ∵1.6v≥120, 解得v≥75.答:货车乙返回B 地的车速至少为75千米/小时.一次函数(达标训练)一、单选题1.已知一次函数4y kx =+经过()11,y ,()22,y ,且12y y <,它的图象可能是( )A .B .C .D .【答案】B【分析】根据一次函数的增减性,可知它的图象可能为B 、C 选项,结合一次函数y=kx +4的图象经过点(0,4),即可得到答案.【详解】∵一次函数y=kx +4经过(1,y 1),(2,y 2)且y 1<y 2, ∵y 随x 的增大而增大,又∵一次函数y =kx +4的图象经过点(0,4), ∵它的图象可能是B 选项, 故选B .【点睛】本题主要考查一次函数的系数与函数图象之间的关系,掌握一次函数系数的几何意义,是解题的关键.2.已知一次函数1y kx =-经过()11,A y -,()22,B y 两点,且12y y >,则k 的取值范围是( ) A .0k > B .0k = C .0k < D .不能确定【答案】C【分析】根据一次函数的增减性可得出结论. 【详解】∵1212,y y -<>, ∵函数y 随x 的增大而减小. ∵k <0, 故选:C .【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数的性质是解答此题的关键. 3.一次函数2y x m =-+的图象经过第一、二、四象限,则m 可能的取值为( ) A.-1 B .34C .0D .1【答案】B【分析】根据一次函数的图象和性质,即可求解.【详解】解:∵一次函数2y x m =-+的图象经过第一、二、四象限, ∵0m >,∵m 可能的取值为34.故选:B【点睛】本题主要考查了一次函数的图象,熟练掌握一次函数()0y kx b k =+≠,当0,0k b >>时,一次函数图象经过第一、二、三象限;当0,0k b ><时,一次函数图象经过第一、三、四象限;当0,0k b <>时,一次函数图象经过第一、二、四象限;当0,0k b <<时,一次函数图象经过第二、三、四象限是解题的关键.4.一次函数31y x =-+的图象经过( )A .一、二、四象限B .一、三、四象限C .一、二、三象限D .二、三、四象限【答案】A【分析】根据一次函数关系中系数符号k <0,b >0解答即可. 【详解】解:∵31y x =-+中0k <, ∵一次函数图象经过第二、四象, ∵ 0b >,∵ 一次函数图象经过一、二、四象限. 故选:A .【点睛】此题考查了一次函数的图象,根据k 和b 的符号进行判断是解题的关键. 5.若23y x b =+-,y 是x 的正比例函数,则b 的值是( ) A .0 B .23-C .23D .32【答案】C【分析】根据y 是x 的正比例函数,可知23=0b -,即可求得b 值. 【详解】解:∵y 是x 的正比例函数, ∵23=0b -, 解得:23b =, 故选:C .【点睛】本题主要考查的是正比例函数的定义,掌握其定义是解题的关键.二、填空题6.请写出一个图象经过点()2,0A 的函数的解析式:______. 【答案】24y x =-(答案不唯一)【分析】写出一个经过点(2,0)的一次函数即可.【详解】解:经过点()2,0A 的函数的解析式可以为24y x =-, 故答案为:24y x =-(答案不唯一).【点睛】本题主要考查了函数图象上点的坐标特征,熟知函数图象上的点一定满足其函数解析式是解题的关键.7.将直线y =2x -1向下平移3个单位后得到的直线表达式为________. 【答案】24y x =-【分析】根据一次函数平移的规律解答.【详解】解:直线y =2x -1向下平移3个单位后得到的直线表达式为y =2x -1-3=2x -4, 即y =2x -4, 故答案为y =2x -4.【点睛】此题考查了一次函数平移的规律:左加右减,上加下减,熟记平移的规律是解题的关键.三、解答题8.某中学积极响应“双减”政策,为了丰富学生的课外活动,激发学生参加体育活动的兴趣,准备购买一批新的羽毛球拍.已知甲、乙两商店销售同一种羽毛球拍,但两个商店的原价和销售方式均不同.在甲商店,无论一次性购买多少支羽毛球拍,一律按原价出售;在乙商店,一次性购买羽毛球拍的数量不超过20支,按原价销售,若一次性购买球拍数量超过20支,超出的部分打八折.设该学校购买了x 支羽毛球拍,在甲商店购买所需的费用为1y 元,在乙商店购买所需的费用为2y 元,1y ,2y 关于x 的函数图像如图所示.(1)分别求出1y ,2y 关于x 的函数解析式. (2)请求出m 的值,并说明m 的实际意义.(3)若该学校一次性购买羽毛球拍的数量超过80支,但不超过120支,到哪家商店购买更优惠? 【答案】(1)142y x =;()()2500204020020x x y x x ⎧≤≤⎪=⎨+>⎪⎩(2)m =100,m 的实际意义是当一次性购买羽毛球球拍的数量100支时,甲、乙商店所需费用相同,都为4200元(3)当80<x <100时,选择甲商店更合算;当x =100时,两家商店所需费用相同;当100<x ≤120时,选择乙商店更合算【分析】(1)根据函数图像设出表达式,利用待定系数法解得即可;(2)根据图像交点,当x >20时,令12y y =,解得x ,y 的值即可;(3)由m 的意义,结合图像,谁的图像靠下谁更合算.(1)由题意,甲商店设11y k x =, ∵184020k =, ∵142k =, ∵1142y x =;乙商店:当0<x≤20时,设22y k x =, ∵2100020k =, ∵250k =, ∵250y x =,当x >20时,()2100020500.84020y x x =+-⨯⨯=+, ∵()()2500204020020x x y x x ⎧≤≤⎪=⎨+>⎪⎩;(2)当x>20时,令12y y =,即4020042x x +=, ∵x =100,y =4200, ∵m =100,∵m 的实际意义是当一次购买羽毛球球拍的数量100支时,甲、乙商店所需费用相同,都为4200元; (3)由m 的意义,结合图像可知,谁的图像在下谁更合算,当80<x <100时,选择甲商店更合算;当x =100时,两家商店所需费用相同;当100<x ≤120时,选择乙商店更合算.【点睛】本题考查了一次函数的实际应用,解题的关键是掌握一次函数图像的性质.一次函数(提升测评)一、单选题1.一次函数()32y k x k =++-的图象如图所示,()01k -有意义的k 的值可能为( )A .-3B .-1C .-2D .2【答案】B【分析】通过一次函数图象可以得出:3020k k +>⎧⎨->⎩,解得:32k -<<()01k -有意义的条件为:1010k k +≥⎧⎨-≠⎩,解得:1k ≥-且0k ≠.将两个关于k 的解集综合,得到k 的范围是:12k -≤<且0k ≠.根据所求范围即可得出答案选B .【详解】解:由图象得:3020k k +>⎧⎨->⎩,解得:32k -<<()01k -有意义,则1010k k +≥⎧⎨-≠⎩,解得:1k ≥-且1k ≠∴综上所述,k 的取值范围是:12k -≤<且0k ≠.A 、-3不在k 的取值范围内,不符合题意;B 、-1在k 的取值范围内,符合题意;C 、-2不在k 的取值范围内,不符合题意;D 、2不在k 的取值范围内,不符合题意. 故选B .【点睛】本题主要考查知识点为,一次函数图象与一次函数系数的关系、使二次根式有意义的条件,零指数幂中底数的范围.熟练掌握以上知识点,是解决此题的关键.2.已知直线1:24l y x =+与x 轴、y 轴分别交于A ,B 两点,若将直线1l 向右平移m (m >0)个单位得到直线2l ,直线2l 与x 轴交于C 点,若∵ABC 的面积为6,则m 的值为( ) A .1 B .2C .3D .4【答案】C【分析】先求出点B (0,4),可得OB =4,再根据平移的性质,可得AC =m ,再根据∵ABC 的面积为6,即可求解.【详解】解:∵直线1:24l y x =+与x 轴、y 轴分别交于A ,B 两点, 当x =0时,y =4, ∵点B (0,4), ∵OB =4,∵将直线1l 向右平移m (m >0)个单位得到直线2l ,直线2l 与x 轴交于C 点, ∵AC =m ,∵∵ABC 的面积为6, ∵1462m , 解得:m =3. 故选:C .【点睛】本题主要考查了一次函数的性质,一次函数的平移问题,熟练掌握一次函数的图象和性质是解题的关键.3.已知一次函数y =-kx +k ,y 随x 的增大而减小,则在直角坐标系内大致图象是( )A .B .C .D .【答案】C【分析】由于一次函数y =-kx +k (k ≠0),y 随x 的增大而减小,可得-k <0,然后,判断一次函数y =-kx +k 的图象经过的象限即可.【详解】解:∵一次函数y =-kx +k (k ≠0),y 随x 的增大而减小, ∵-k <0,即k >0,∵一次函数y =-kx +k 的图象经过一、二、四象限. 故选:C .【点睛】本题主要考查了一次函数的图象,掌握一次函数y =kx +b 的图象性质: ∵当k >0,b >0时,图象过一、二、三象限; ∵当k >0,b <0时,图象过一、三、四象限; ∵当k <0,b >0时,图象过一、二、四象限; ∵当k <0,b <0时,图象过二、三、四象限.4.在平而直角坐标系中,一次函数32y x m =-+的图像关于直线1y =对称后经过坐标原点,则m 的值为( ) A .1 B .2C .1-D .2-【答案】A【分析】由题意一次函数32y x m =-+与y 轴的交点为(0,2m ),根据点(0,2m )与原点关于直线1y =对称,即可求出答案.【详解】解:根据题意,在一次函数32y x m =-+中, 令0x =,则2y m =,∵一次函数32y x m =-+与y 轴的交点为(0,2m ), ∵点(0,2m )与原点关于直线1y =对称, ∵22m =, ∵1m =; 故选:A .【点睛】本题考查了一次函数的性质,轴对称的性质,解题的关键是掌握一次函数的性质进行解题. 5.甲、乙两自行车运动爱好者从A 地出发前往B 地,匀速骑行.甲、乙两人离A 地的距离y (单位:km )与乙骑行时间x (单位:h )之间的关系如图所示.下列说法正确的是( )A .乙骑行1h 时两人相遇B .甲的速度比乙的速度慢C .3h 时,甲、乙两人相距15kmD .2h 时,甲离A 地的距离为40km 【答案】C【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题. 【详解】解:由图象可知,甲乙骑行1.5h 时两人相遇,故选项A 不合题意; 甲的速度比乙的速度快,故选项B 不合题意;甲的速度为:30÷(1.5-1)=30(km/h ),乙的速度为:30÷1.5=20(km/h ), 3h 时,甲、乙两人相距:30×(3-0.5)-20×3=15(km ),故选项C 符合题意;。
一次函数易错题汇编及答案
一次函数易错题汇编及答案一、选择题1.已知直线3y mx =+经过点(2,0),则关于x 的不等式 30mx +>的解集是( ) A .2x >B .2x <C .2x ≥D .2x ≤【答案】B【解析】【分析】求出m 的值,可得该一次函数y 随x 增大而减小,再根据与x 轴的交点坐标可得不等式解集.【详解】解:把(2,0)代入3y mx =+得:023m =+, 解得:32m =-, ∴一次函数3y mx =+中y 随x 增大而减小, ∵一次函数3y mx =+与x 轴的交点为(2,0),∴不等式 30mx +>的解集是:2x <,故选:B .【点睛】本题考查了待定系数法的应用,一次函数与不等式的关系,判断出函数的增减性是解题的关键.2.随着“互联网+”时代的到来,一种新型的打车方式受到大众欢迎.打车总费用y(单位:元)与行驶里程x(单位:千米)的函数关系如图所示.如果小明某次打车行驶里程为22千米,则他的打车费用为( )A .33元B .36元C .40元D .42元【答案】C【解析】 分析:待定系数法求出当x≥12时y 关于x 的函数解析式,再求出x=22时y 的值即可. 详解:当行驶里程x ⩾12时,设y=kx+b ,将(8,12)、(11,18)代入,得:8121118k b k b +=⎧⎨+=⎩ , 解得:24k b =⎧⎨=-⎩ , ∴y=2x −4,当x=22时,y=2×22−4=40,∴当小明某次打车行驶里程为22千米,则他的打车费用为40元.故选C.点睛:本题考查一次函数图象和实际应用. 认真分析图象,并利用待定系数法求一次函数的解析式是解题的关键.3.给出下列函数:①y =﹣3x +2:②y =3x ;③y =﹣5x:④y =3x ,上述函数中符合条件“当x >1时,函数值y 随自变量x 增大而增大”的是( )A .①③B .③④C .②④D .②③【答案】B【解析】【分析】分别利用一次函数、正比例函数、反比例函数的增减性分析得出答案.【详解】 解:①y =﹣3x +2,当x >1时,函数值y 随自变量x 增大而减小,故此选项不符合题意; ②y =3x,当x >1时,函数值y 随自变量x 增大而减小,故此选项不符合题意; ③y =﹣5x,当x >1时,函数值y 随自变量x 增大而增大,故此选项符合题意; ④y =3x ,当x >1时,函数值y 随自变量x 增大而增大,故此选项符合题意;故选:B .【点睛】此题考查一次函数、正比例函数、反比例函数,正确把握相关性质是解题关键. 4.已知过点()2?3,-的直线()0y ax b a =+≠不经过第一象限.设s a 2b =+,则s 的取值范围是( )A .352s -≤≤-B .362s -<≤-C .362s -≤≤-D .372s -<≤- 【答案】B【解析】 试题分析:∵过点()2?3,-的直线()0y ax b a =+≠不经过第一象限,∴0{023a b a b <≤+=-.∴23b a =--. ∵s a 2b =+,∴4636s a a a =--=--.由230b a =--≤得399333662222a a a ≥-⇒-≤⇒--≤-=-,即32s ≤-. 由0a <得3036066a a ->⇒-->-=-,即6s >-. ∴s 的取值范围是362s -<≤-. 故选B.考点:1.一次函数图象与系数的关系;2.直线上点的坐标与方程的关系;3.不等式的性质.5.如图,已知一次函数22y x =-+的图象与坐标轴分别交于A 、B 两点,⊙O 的半径为1,P 是线段AB 上的一个点,过点P 作⊙O 的切线PM ,切点为M ,则PM 的最小值为( )A .2B 2C 5D 3【答案】D【解析】【分析】【详解】 解:连结OM 、OP ,作OH ⊥AB 于H ,如图,先利用坐标轴上点的坐标特征: 当x=0时,y=﹣22,则A (0,2),当y=0时,﹣2=0,解得2,则B (2,0),所以△OAB 为等腰直角三角形,则2OA=4,OH=12AB=2, 根据切线的性质由PM 为切线,得到OM ⊥PM ,利用勾股定理得到22OP OM -21OP -当OP 的长最小时,PM 的长最小,而OP=OH=2时,OP 的长最小,所以PM 的最小值为2213-=故选D .【点睛】本题考查切线的性质;一次函数图象上点的坐标特征.6.函数k y x=与y kx k =-(0k ≠)在同一平面直角坐标系中的大致图象是( ) A . B . C . D .【答案】C【解析】【分析】分k>0和k<0两种情况确定正确的选项即可.【详解】当k:>0时,反比例函数的图象位于第一、三象限,一次函数的图象交 y 轴于负半轴,y 随着x 的增大而增大,A 选项错误,C 选项符合;当k<0时,反比例函数的图象位于第二、四象限,一次函数的图象交y 轴于正半轴,y 随着x 的增大而增减小,B. D 均错误,故选:C.【点睛】此题考查反比例函数的图象,一次函数的图象,熟记函数的性质是解题的关键.7.一次函数y x 1=-+的图象不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【解析】【分析】先根据一次函数y x 1=-+中k 1=-,b 1=判断出函数图象经过的象限,进而可得出结论.【详解】解:一次函数y x 1=-+中k 10=-<,b 10=>,∴此函数的图象经过一、二、四象限,不经过第三象限.故答案选:C .【点睛】本题考查的是一次函数的性质,即一次函数()y kx b k 0=+≠中,当k 0<,b 0>时,函数图象经过一、二、四象限.8.若一次函数32y x =-+的图象与x 轴交于点A ,与y 轴交于点,B 则AOB (O 为坐标原点)的面积为( )A .32B .2C .23D .3【答案】C【解析】【分析】根据直线解析式求出OA 、OB 的长度,根据面积公式计算即可.【详解】当32y x =-+中y=0时,解得x=23,当x=0时,解得y=2, ∴A(23,0),B(0,2), ∴OA=23,OB=2, ∴1122223AOB S OA OB =⋅=⨯⨯=23, 故选:C.【点睛】此题考查一次函数图象与坐标轴的交点坐标,正确理解交点坐标的计算方法是解题的关键.9.将直线21y x =+向下平移n 个单位长度得到新直线21y x =-,则n 的值为( ) A .2-B .1-C .1D .2【答案】D【解析】【分析】直接根据“上加下减”的原则进行解答即可.【详解】解:由“上加下减”的原则可知:直线y=2x+1向下平移n 个单位长度,得到新的直线的解析式是y=2x+1-n ,则1-n=-1,解得n=2.故选:D .【点睛】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.10.如图,点,A B 在数轴上分别表示数23,1a -+,则一次函数(1)2y a x a =-+-的图像一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A【解析】【分析】根据数轴得出0<﹣2a +3<1,求出1<a <1.5,进而可判断1﹣a 和a ﹣2的正负性,从而得到答案.【详解】解:根据数轴可知:0<﹣2a +3<1,解得:1<a <1.5,∴1﹣a <0,a ﹣2<0,∴一次函数(1)2y a x a =-+-的图像经过第二、三、四象限,不可能经过第一限. 故选:A .【点睛】本题考查了利用数轴比较大小和一元一次不等式的解法以及一次函数图象与系数的关系.熟练掌握不等式的解法及一次函数的图象性质是解决本题的关键.11.下列各点在一次函数y=2x ﹣3的图象上的是( )A .( 2,3)B .(2,1)C .(0,3)D .(3,0【答案】B【解析】【分析】把各点分别代入一次函数y=2x ﹣3进行检验即可.【详解】A 、2×2﹣3=1≠3,原式不成立,故本选项错误;B 、2×2﹣3=1,原式成立,故本选项正确;C 、2×0﹣3=﹣3≠3,原式不成立,故本选项错误;D 、2×3﹣3=3≠0,原式不成立,故本选项错误,故选B .【点睛】本题考查了一次函数图象上点的坐标特征,熟知一次函数图象上的点的坐标满足一次函数的解析式是解题的关键.解答时只要把四个选项一一代入进行检验即可.12.一次函数y mx n =-+的结果是( )A .mB .m -C .2m n -D .2m n -【答案】D【解析】【分析】根据题意可得﹣m <0,n <0,再进行化简即可.【详解】∵一次函数y =﹣mx +n 的图象经过第二、三、四象限,∴﹣m <0,n <0,即m >0,n <0,=|m ﹣n |+|n |=m ﹣n ﹣n=m ﹣2n ,故选D .【点睛】本题考查了二次根式的性质与化简以及一次函数的图象与系数的关系,熟练掌握一次函数的图象与性质是解题的关键.13.在一条笔直的公路上有A 、B 两地,甲乙两人同时出发,甲骑自行车从A 地到B 地,乙骑自行车从B 地到A 地,到达A 地后立即按原路返回B 地.如图是甲、乙两人离B 地的距离(km)y 与行驶时间(h)x 之间的函数图象,下列说法中①A 、B 两地相距30千米;②甲的速度为15千米/时;③点M 的坐标为(23,20);④当甲、乙两人相距10千米时,他们的行驶时间是49小时或89小时. 正确的个数为( )A.1个B.2个C.3个D.4个【答案】C【解析】【分析】根据题意,确定①-③正确,当两人相距10千米时,应有3种可能性.【详解】解:根据题意可以列出甲、乙两人离B地的距离y(km)与行驶时间x(h)之间的函数关系得:y甲=-15x+30y乙=()() 3001306012x xx x⎧≤≤⎪⎨-+≤≤⎪⎩由此可知,①②正确.当15x+30=30x时,解得x=2 , 3则M坐标为(23,20),故③正确.当两人相遇前相距10km时,30x+15x=30-10x=49,当两人相遇后,相距10km时,30x+15x=30+10,解得x=8 915x-(30x-30)=10得x=4 3∴④错误.选C.【点睛】本题为一次函数应用问题,考查学生对于图象分析能力,解答时要注意根据两人运动状态分析图象得到相应的数据,从而解答问题.14.如图,在平面直角坐标系中,函数y =2x 和y =﹣x 的图象分别为直线l 1,l 2,过点(1,0)作x 轴的垂线交l 1于点A 1,过点A 1作y 轴的垂线交l 2于点A 2,过点A 2作x 轴的垂线交l 1于点A 3,过点A 3作y 轴的垂线交l 2于点A 4,…,依次进行下去,则点A 2019的坐标为( )A .(21009,21010)B .(﹣21009,21010)C .(21009,﹣21010)D .(﹣21009,﹣21010)【答案】D【解析】【分析】 写出一部分点的坐标,探索得到规律A 2n +1[(﹣2)n ,2×(﹣2)n ](n 是自然数),即可求解;【详解】A 1(1,2),A 2(﹣2,2),A 3(﹣2,﹣4),A 4(4,﹣4),A 5(4,8),… 由此发现规律:A 2n +1[(﹣2)n ,2×(﹣2)n ](n 是自然数),2019=2×1009+1,∴A 2019[(﹣2)1009,2×(﹣2)1009],∴A 2019(﹣21009,﹣21010),故选D .【点睛】本题考查一次函数图象上点的特点;能够根据作图特点,发现坐标的规律是解题的关键.15.如图,已知一次函数2y kx =+的图象与x 轴,y 轴分别交于点,A B ,与正比例函数13y x =交于点C ,已知点C 的横坐标为2,下列结论:①关于x 的方程20kx +=的解为3x =;②对于直线2y kx =+,当3x <时,0y >;③直线2y kx =+中,2k =-;④方程组302y x y kx -=⎧⎨-=⎩的解为223x y =⎧⎪⎨=⎪⎩.其中正确的有( )个A .1B .2C .3D .4【答案】C【解析】【分析】 把正比例函数与一次函数的交点坐标求出,根据正比例函数与一次函数的交点先把一次函数的解析式求解出来,再分别验证即可得到答案.【详解】解:∵一次函数2y kx =+与正比例函数13y x =交于点C ,且C 的横坐标为2, ∴纵坐标:1122333y x ==⨯=, ∴把C 点左边代入一次函数得到:2223k =⨯+, ∴23k =-,22,3C ⎛⎫ ⎪⎝⎭①∵23k =-, ∴22023kx x +==-+, ∴3x =,故正确; ②∵23k =-, ∴直线223y x =-+, 当3x <时,0y >,故正确; ③直线2y kx =+中,23k =-,故错误; ④30223y x y x -=⎧⎪⎨⎛⎫--= ⎪⎪⎝⎭⎩, 解得223x y =⎧⎪⎨=⎪⎩,故正确;故有①②④三个正确;故答案为C.【点睛】本题主要考查了一次函数与正比例函数的综合应用,能正确用待定系数法求解未知量是解题的关键,再解题的过程中,要利用好已知信息,比如函数图像,很多时候都可以方便解题;16.如图,已知直线1y x b =+与21y kx =-相交于点P ,点P 的横坐标为1-,则关于x 的不等式1x b kx +≤-的解集在数轴上表示正确的是( ).A .B .C .D .【答案】D【解析】试题解析:当x >-1时,x+b >kx-1,即不等式x+b >kx-1的解集为x >-1.故选A .考点:一次函数与一元一次不等式.17.函数()312y m x =+-中,y 随x 的增大而增大,则直线()12y m x =---经过() A .第一、三、四象限 B .第二、三、四象限C .第一、二、四象限D .第一、二、三象限【答案】B【解析】【分析】根据一次函数的增减性,可得310m +>;从而可得10m --<,据此判断直线()12y m x =---经过的象限.【详解】解:函数()312y m x =+-中,y 随x 的增大而增大,310m ∴+>,则13m >- 10m ∴--<,∴直线()12y m x =---经过第二、三、四象限.故选:B .【点睛】本题考查了一次函数的性质,正确掌握一次函数图象与系数的关系是解题的关键.即一次函数y=kx+b (k≠0)中,当k >0时,y 随x 的增大而增大,图象经过一、三象限;当k <0时,y 随x 的增大而减小,图象经过二、四象限;当b >0时,此函数图象交y 轴于正半轴;当b <0时,此函数图象交y 轴于负半轴.18.如图在平面直角坐标系中,等边三角形OAB 的边长为4,点A 在第二象限内,将OAB ∆沿射线AO 平移,平移后点A '的横坐标为43,则点B '的坐标为( )A .(3,2)-B .(63,3)-C .(6,2)-D .(63,2)-【答案】D【解析】【分析】 先根据已知条件求出点A 、B 的坐标,再求出直线OA 的解析式,继而得出点A '的纵坐标,找出点A 平移至点A '的规律,即可求出点B '的坐标.【详解】解:∵三角形OAB 是等边三角形,且边长为4∴(23,2),(0,4)A B -设直线OA 的解析式为y kx =,将点A 坐标代入,解得:33k =-即直线OA 的解析式为:33y x =- 将点A '的横坐标为34y =-即点A '的坐标为(43,4)-∵点A 向右平移636个单位得到点A '+-=-.∴B'的坐标为(046)2)故选:D.【点睛】本题考查的知识点是坐标与图形变化-平移,熟练掌握坐标平面图形平移的规律是解决本题的关键.19.若一次函数y=kx+b的图象经过一、二、四象限,则一次函数y=-bx+k的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】【分析】根据一次函数y=kx+b图象在坐标平面内的位置关系先确定k,b的取值范围,再根据k,b 的取值范围确定一次函数y=-bx+k图象在坐标平面内的位置关系,从而求解.【详解】解:一次函数y=kx+b过一、二、四象限,则函数值y随x的增大而减小,因而k<0;图象与y轴的正半轴相交则b>0,因而一次函数y=-bx+k的一次项系数-b<0,y随x的增大而减小,经过二四象限,常数项k<0,则函数与y轴负半轴相交,因而一定经过二三四象限,因而函数不经过第一象限.故选:A.【点睛】本题考查了一次函数的图象与系数的关系.函数值y随x的增大而减小⇔k<0;函数值y 随x的增大而增大⇔k>0;一次函数y=kx+b图象与y轴的正半轴相交⇔b>0,一次函数y=kx+b图象与y轴的负半轴相交⇔b<0,一次函数y=kx+b图象过原点⇔b=0.20.若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m的值为()A.2 B.8 C.﹣2 D.﹣8【答案】A【解析】试题分析:设正比例函数解析式为:y=kx,将点A(3,﹣6)代入可得:3k=﹣6,解得:k=﹣2,∴函数解析式为:y=﹣2x,将B(m,﹣4)代入可得:﹣2m=﹣4,解得m=2,故选A.考点:一次函数图象上点的坐标特征.。
(易错题精选)初中数学一次函数易错题汇编及答案解析
A.y随x的增大而增大
B.当m≠2时,该图象与函数y=3x的图象是两条平行线
C.若图象不经过第四象限,则m>2
D.不论m取何值,图象都经过第一、三象限
【答案】C
【解析】
【分析】
根据一次函数的增减性判断A;根据两条直线平行时,k值相同而b值不相同判断B;根据一次函数图象与系数的关系判断C、D.
A. B. C. D.
【答案】C
【解析】
【分析】
根据一次函数的位置确定a、b的大小,看是否符合ab<0,计算a-b确定符号,确定双曲线的位置.
【详解】
A.由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,
满足ab<0,
∴a−b>0,
∴反比例函数y= 的图象过一、三象限,
所以此选项不正确;
A.a<0B.a>0C.a<-1D.a>-1
【答案】C
【解析】
【分】
【详解】
∵A(x1,y1)、B(x2,y2)是一次函数 图象上的不同的两点, ,
∴该函数图象是y随x的增大而减小,
∴a+1<0,
解得a<-1,
故选C.
【点睛】
此题考查了一次函数图象上点的坐标特征,要根据函数的增减性进行推理,是一道基础题.
故选:C.
【点睛】
本题考查了两条直线的平行问题:若直线y1=k1x+b1与直线y2=k2x+b2平行,那么k1=k2,b1≠b2.也考查了一次函数的增减性以及一次函数图象与系数的关系.
17.如图所示,已知 为反比例函数 图象上的两点,动点 在 轴正半轴上运动,当 的值最大时,连结 , 的面积是()
部编数学八年级下册专题22一次函数中的常见易错题(解析版)含答案
专题22 一次函数中的常见易错题(解析版)第一部分专题典例剖析类型一忽视定义的限制条件(隐含条件)1.(2022•南京模拟)已知关于x的函数y=(m﹣2)x m2―1+m+1是一次函数,则m= .思路引领:由此函数的定义可知:m﹣2≠0,且m2﹣1=1,然后解得m的值即可.解:∵y=(m﹣2)x m2―1+m+1是一次函数,∴m﹣2≠0,且m2﹣1=1,解得:m=±故答案为:总结提升:本题主要考查的是一次函数的定义,根据一次函数的定义列出关于m的不等式组是解题的关键.2.已知正比例函数y=(k﹣1)x k2―k―1的图象经过第二、第四象限,则k的值是 .思路引领:根据正比例函数图象的性质,得k﹣1<0,k2﹣k﹣1=1.解:∵函数图象经过第二、四象限,∴k﹣1<0,k2﹣k﹣1=1.解得:k=﹣1,k=2(舍去)故答案为:﹣1总结提升:掌握正比例函数图象的性质:k<0,图象经过二、四象限.若一点在图象上,则其坐标满足直线解析式.类型二已知距离,已知面积求系数或解析式时忽视分类讨论3.若直线y=ax+b与x轴的交点到y轴的距离为1,则关于x的一元一次方程ax+b=0的解为 .思路引领:根据直线与x轴的交点的求法得出交点坐标(―ba,0),根据题意得出―ba=±1,从而得出答案.解:∵直线与x轴的交点的求法得出交点坐标(―ba,0),且交点到y轴的距离为1,∴―ba=±1∴关于x的一元一次方程ax+b=0的解为x=±1,故答案为±1.总结提升:本题考查了一次函数与一元一次方程的关系,掌握一次函数的性质是解题的关键.4.已知一次函数y=kx+b的图象与正比例函数y=﹣3x的图象平行,与两坐标轴围成的三角形的面积为2.求这个一次函数的解析式.思路引领:根据两条直线平行k相同,得到k=﹣3,然后求出函数图象与两坐标轴的交点坐标,再根据三角形的面积公式求解即可.解:∵一次函数y=kx+b的图象与正比例函数y=﹣3x的图象平行,∴k=﹣3,当x=0时,y=b,当y=0时,x=b 3,∴直线y=﹣3x+b与坐标轴的交点为(0,b)、(b3,0),∵直线y=﹣3x+b与坐标轴围成的三角形的面积为2,∴12⋅|b|⋅|b3|=2,∴b=±∴一次函数为y=﹣3X Y=﹣3X﹣总结提升:本题考查了待定系数法求函数的解析式、两条直线平行k相同等知识,正确利用点的坐标表示三角形的面积是关键.5.(2021春•爱辉区期末)已知一次函数y=kx+4的图象与坐标轴围成的三角形的面积为8,求此函数表达式.思路引领:分别求出直线与坐标轴交点A,B,通过直角三角形面积求k.解:设直线y=kx+4与x、y轴相交于A(a,0)B(0,b)把B点代入y=kx+4得b=4,把A点代入y=kx+4得a=―4 k .∵图象与坐标轴围成三角形的面积为8,∴12OA⋅OB=12×4|―4k|=8,解得k=±1∴此函数表达式为y=﹣x+4或y=x+4.总结提升:本题考查一次函数与三角形的结合问题,通过直线与坐标轴交点坐标及三角形面积公式求解,解题关键是注意k有正负两种情况.类型三在k的正负不明确时,忽视分类讨论6.已知一次函数y=kx+b,当﹣3≤x≤1时,对应y的值为1≤y≤9,则k+b的值为 .思路引领:本题分情况讨论:①x=﹣3时对应y=1,x=1时对应y=9;②x=﹣3时对应y=9,x=1时对应y=1;将每种情况的两组数代入即可得出答案.解:①当x=﹣3时,y=1;当x=1时,y=9,则1=―3k+b 9=k+b解得:k=2 b=7所以k+b=9;②当x=﹣3时,y=9;当x=1时,y=1,则―3k+b=9 k+b=1解得:k=―2 b=3,所以k+b=1.故答案为9或1.总结提升:本题考查待定系数法求函数解析式,注意本题需分两种情况,不要漏解.类型四搞不清一次函数的性质与图像分布7.已知一次函数y=kx+b的图象不经过第三象限,也不经过原点,则下列结论正确的是( )A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0思路引领:直接根据一次函数的图象与系数的关系进行解答即可.解:∵一次函数y=kx+b的图象不经过第三象限,也不经过原点,∴k<0,b>0.故选:C.总结提升:本题考查的是一次函数的图象与系数的关系,熟知一次函数y=kx+b(k≠0)中,当k<0,b >0时,函数图象经过一、二、四象限是解答此题的关键.8.(2021秋•海曙区期末)一次函数y=mx+n与正比例函数y=mnx(m,n为常数,且mn≠0)在同一平面直角坐标系中的图象可能是( )A.B.C.D.思路引领:根据“两数相乘,同号得正,异号得负”分两种情况讨论mn的符号,然后根据m、n同正时,同负时,一正一负或一负一正时,利用一次函数的性质进行判断.解:①当mn>0,m,n同号,同正时y=mx+n过第一,二,三象限,同负时过二,三,四象限,y=mnx 过原点,一、三象限;②当mn<0时,m,n异号,则y=mx+n过一,三,四象限或一,二,四象限,y=mnx过原点,二、四象限.解法二:本题还可用矛盾分析法来解决A、一次函数m>0,n>0;正比例mn<0,与一次矛盾.B、一次m>0,n<O;正比例mn>0,与一次矛盾.C、一次m>0,n<0,正比例mn<0,成立.D、一次m<0,n>0,正比例mn>0,矛盾.故选:C.总结提升:此题主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.9.(2022春•静安区校级期中)已知直线y=(1﹣3m)x+(2m﹣1)经过第二、三、四象限,则m的取值范围为 .思路引领:由直线y=(1﹣3m)x+(2m﹣1)经过第二、三、四象限,可得出1―3m<02m―1<0,解之可得出结论.解:∵直线y=(1﹣3m)x+(2m﹣1)经过第二、三、四象限,∴1―3m <02m ―1<0,解得:13<m <12.故答案为:13<m <12.总结提升:本题考查了一次函数图象与系数的关系,牢记“k <0,b <0⇔y =kx +b 的图象在二、三、四象限”是解题的关键.类型五 不能准确获取函数图象的信息10.(2018•镇江)甲、乙两地相距80km ,一辆汽车上午9:00从甲地出发驶往乙地,匀速行驶了一半的路程后将速度提高了20km /h ,并继续匀速行驶至乙地,汽车行驶的路程y (km )与时间x (h )之间的函数关系如图所示,该车到达乙地的时间是当天上午( )A .10:35B .10:40C .10:45D .10:50思路引领:根据速度之间的关系和函数图象解答即可.解:因为匀速行驶了一半的路程后将速度提高了20km /h ,所以1小时后的路程为40km ,速度为40km /h ,所以以后的速度为20+40=60km /h ,时间为4060×60=40分钟,故该车到达乙地的时间是当天上午10:40;故选:B .总结提升:此题主要考查了函数的图象值,根据速度之间的关系和函数图象解答是解题关键.第二部分 专题提优训练一.试题(共10小题)1.若关于x 的函数y =(n +1)x m ﹣1是一次函数,则m = ,n .思路引领:一次函数的系数n +1≠0,自变量x 的次数m ﹣1=1,据此解答m 、n 的值.解:一次函数y =kx +b 的定义条件是:k 、b 为常数,k ≠0,自变量次数为1,∴根据题意,知n+1≠0 m―1=1,解得,n≠―1 m=2,故答案是2、≠﹣1.总结提升:本题主要考查了一次函数的定义:一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.2.(上海期中)函数y=(k2﹣4)x2+(k+1)x是正比例函数,且y随x的增大而减小.则k= .思路引领:根据正比例函数的定义和函数的性质可得出关于k的方程,解出即可.解:根据题意得:k2﹣4=0且k+1<0,解得:k=±2且k<﹣1,∴k=﹣2.故填﹣2.总结提升:本题主要考查正比例函数的定义和性质,熟练记忆定义和性质是解本题的关键.3.(2012•大丰市模拟)如图,已知直线y=ax﹣b,则关于x的方程ax﹣1=b的解x= .思路引领:观察图形可直接得出答案.解:根据图形知,当y=1时,x=4,即ax﹣b=1时,x=4.故方程ax﹣1=b的解x=4.故答案为:4.总结提升:此题考查一次函数与一元一次方程的联系,渗透数形结合的解题思想方法.4.(2016秋•雁塔区校级期末)如图,在平面直角坐标系中,O为坐标原点,直线l1:y=12x与直线l2:y=﹣x+6交于点A,l2与x轴交于B,与y轴交于点C.(1)求△OAC的面积;(2)如点M在直线l2上,且使得△OAM的面积是△OAC面积的34,求点M的坐标.思路引领:(1)先根据直线解析式,求得C(0,6),再根据方程组的解,得出A(4,2),进而得到△OAC的面积;(2)分两种情况进行讨论:①点M1在射线AC上,②点M2在射线AB上,分别根据点M的横坐标,求得其纵坐标即可.解:(1)在y=﹣x+6中,令x=0,解得y=6,∴C(0,6),即CO=6,解方程组y=12xy=―x+6,可得x=4y=2,∴A(4,2),∴S△OAC =12×6×4=12;(2)分两种情况:①如图所示,当点M1在射线AC上时,过M1作M1D⊥CO于D,∵△OAM的面积是△OAC面积的3 4,∴△OCM的面积是△OAC面积的14,即12×OC×|x M|=14×12,∴12×6×|x M|=14×12,解得x M=1,即点M1的横坐标为1,在直线y=﹣x+6中,当x=1时,y=5,∴M1(1,5);②如图所示,当点M2在射线AB上时,过M2作M2E⊥CO于E,∵△OAM的面积是△OAC面积的3 4,∴△OCM的面积是△OAC面积的74,即12×OC×|x M|=74×12,∴12×6×|x M|=74×12,解得x M=7,即点M2的横坐标为7,在直线y=﹣x+6中,当x=7时,y=﹣1,∴M2(7,﹣1).综上所述,点M的坐标为(1,5)或(7,﹣1).总结提升:本题主要考查了两直线相交的问题,解决问题的关键是掌握两直线交点的坐标的计算方法,解题时注意:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.5.如图,在平面直角坐标系xOy中,多边形OABCDE的顶点分别为O(0,0),A(0,6),B(4,6),C (4,4),D(6,4),E(6,0).已知直线l经过点M,分别与OA、DE相交,且将多边形OABCDE分成面积相等的两部分.(1)若点M(72,52),求直线l的函数表达式;(2)若点M(3,83),试说明有无数条直线l将多边形OABCDE分成面积相等的两部分.思路引领:(1)延长BC,交x轴于点F,连接OB、AF交于点P,连接CE、DF交于点Q.由B(4,6),D(6,4)可得P(2,3),Q(5,2)分别为矩形OFBA、矩形FEDC的中心,用待定系数法求得直线PQ的解析式,再根据矩形的性质进行分析即可.(2)另取过点M (3,83)的直线分别与OA 、DE 相交于点G '、H ',则S △MGG '=S △MHH '⇒S 四边形OG 'H 'E =S 多边形AG 'H 'DCB ,由直线G 'H '的任意性可得答案.解:(1)如图,延长BC ,交x 轴于点F ,连接OB 、AF 交于点P ,连接CE 、DF 交于点Q .∵B (4,6),D (6,4),∴P (2,3),Q (5,2)分别为矩形OFBA 、矩形FEDC 的中心,故过点P 的直线将矩形OFBA 分成面积相等的两部分,过点Q 的直线将矩形FEDC 的面积分成相等的两部分.设PQ 分别与OA 、DE 相交于点G 、H ,于是直线PQ 将多边形OABCDE 分成面积相等的两部分.设PQ 解析式为y =kx +b ,将P (2,3),Q (5,2)代入得:3=2k +b 2=5k +b ,解得:k =―13b =113∴直线PQ 的函数表达式为y =―13x +113,经验证,点M (72,52)在y =―13x +113上.∴直线l 的函数表达式为y =―13x +113.(2)另取过点M (3,83)的直线分别与OA 、DE 相交于点G '、H ',注意到,直线G 'H '的中点为M (3,83).则S △MGG '=S △MHH '⇒S 四边形OG 'H 'E =S 多边形AG 'H 'DCB故直线G 'H '也是满足条件的直线.由直线G 'H '的任意性知,满足条件的直线有无数条.总结提升:本题考查了待定系数法求一次函数的解析式及矩形的性质在面积等分问题中的应用,数形结合并明确矩形的相关性质是解题的关键.6.(2020•浙江自主招生)对于一次函数y =kx +b ,当1≤x ≤4时,3≤y ≤6,则一次函数的解析式为 .思路引领:由一次函数的单调性即可得知点(1,3)、(4,6)在一次函数y =kx +b 的图象上或点(1,6)、(4,3)在一次函数y =kx +b 的图象上,根据点的坐标利用待定系数法即可求出一次函数的解析式,此题得解.解:∵对于一次函数y =kx +b ,当1≤x ≤4时,3≤y ≤6,∴点(1,3)、(4,6)在一次函数y =kx +b 的图象上或点(1,6)、(4,3)在一次函数y =kx +b 的图象上.当点(1,3)、(4,6)在一次函数y =kx +b 的图象上时,k +b =34k +b =6,解得:k =1b =2,∴此时一次函数的解析式为y =x +2;当(1,6)、(4,3)在一次函数y =kx +b 的图象上时,k +b =64k +b =3,解得:k =―1b =7,此时一次函数的解析式为y =﹣x +7.故答案为:y =x +2或y =﹣x +7.总结提升:本题考查了一次函数的性质以及待定系数法求一次函数解析式,根据点的坐标利用待定系数法求出一次函数解析式是解题的关键.7.(2020秋•瑶海区校级期中)在平面直角坐标系中,横坐标和纵坐标都是整数的点叫做整点,已知直线y =tx +2t +2(t >0)与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,则t 的取值范围是( )A .12<t ≤1B .1<t ≤2C .12≤t ≤2D .12≤t ≤2且t ≠1思路引领:由y =tx +2t +2=t (x +2)+2(t >0),得出直线y =tx +2t +2(t >0)经过点(﹣2,2),如图,当直线经过(0,3)或(0,6)时,直线y =tx +2t +2(t >0)与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,当直线经过(0,4)时,直线y =tx +2t +2(t >0)与两坐标轴围成的三角形区域(不含边界)中有且只有三个整点,分别求得这三种情况下的t的值,结合图象即可得到结论.解:∵y=tx+2t+2=t(x+2)+2(t>0),∴直线y=tx+2t+2(t>0)经过点(﹣2,2),如图,当直线经过(0,3)时,直线y=tx+2t+2(t>0)与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,则3=2t+2,解得t=1 2;当直线经过(0,6)时,直线y=tx+2t+2(t>0)与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,则6=2t+2,解得t=2;当直线经过(0,4)时,直线y=tx+2t+2(t>0)与两坐标轴围成的三角形区域(不含边界)中有且只有三个整点,则4=2t+2,解得t=1;∴直线y=tx+2t+2(t>0)与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,则t的取值范围是12≤t≤2且t≠1,故选:D.总结提升:本题考查一次函数图象和性质,区域整数点;能够根据函数解析式求得直线恒经过的点,并能画出图象,结合图象解题是关键.8.(2020秋•西城区校级月考)下列图形能表示一次函数y=nx+m与正比例函数y=mnx(m,n为常数,且mn≠0)图象的是( )A.B.C.D.思路引领:根据“两数相乘,同号得正,异号得负”分两种情况讨论mn的符号,然后根据m、n同正时,同负时,一正一负或一负一正时,利用一次函数的性质进行判断.解:①当mn>0,m,n同号,正比例函数y=mnx过一、三象限,同正时一次函数y=nx+m过一,二,三象限,同负时一次函数y=nx+m过二,三,四象限;②当mn<0时,m,n异号,则正比例函数y=mnx过二、四象限,一次函数=nx+m过一,三,四象限或一、二、四象限.故选:A.总结提升:主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.9.(2021春•曹县期末)若一次函数y=(2m+1)x+3﹣m的图象不经过第三象限,则m的取值范围是 .思路引领:根据一次函数y=(2m+1)x+3﹣m的图象不经过第三象限,可知2m+1<03―m≥0,然后求解即可.解:∵一次函数y=(2m+1)x+3﹣m的图象不经过第三象限,∴2m+1<0 3―m≥0,解得m<―1 2,故答案为:m<―1 2.总结提升:本题考查一次函数图象与系数的关系,解答本题的关键是明确一次函数的性质,列出相应的不等式组,求出m的取值范围.10.(2022•治多县模拟)2022年2月15日电影“长津湖”在青海大剧院演出,小锋从家出发驾车前往观看,离开家后不久便发现把票遗忘在家里了,于是以相同的速度返回去取,到家几分钟后才找到票,为了准时进场观看、他加快速度驾车前往.则小锋离青海大剧院的距离y与时间t之间的函数关系的大致图象( )A.B.C.D.思路引领:根据已知条件,确定出每一步的函数图形,再把图象结合起来即可求出结果.解:∵小锋从家出发驾车前往观看,∴随着时间的增加离剧院的距离越来越近,∵离开家后不久便发现把票遗忘在家里了,于是以相同的速度返回去取,∴随着时间的增加离剧院的距离越来越远,又∵到家几分钟后才找到票,∴他离剧院的距离不变,∵为了准时进场观看,他加快速度驾车前往.∴他离剧院的越来越小,∴小锋离青海大剧院的距离y与时间t之间的函数关系的大致图象是B.故选:B.总结提升:本题主要考查了函数的图象问题,在解题时要根据实际情况确定出函数的图象是解题的关键.。
(易错题精选)初中数学一次函数易错题汇编含答案
设一次函数关系式为 ,
∵图象经过点 ,
;
∵y随x增大而减小,
∴ ,
A.2>0,故该选项不符合题意,
B.-2<0,-2+4=2,故该选项符合题意,
C.3>0,故该选项不符合题意,
D.∵ ,
∴y=-3x+1,
-3+1=-2,故该选项不符合题意,
故选:B.
【点睛】
本题考查一次函数的性质及一次函数图象上的点的坐标特征,对于一次函数y=kx+b(k≠0),当k>0时,图象经过一、三、象限,y随x的增大而增大;当k<0时,图象经过二、四、象限,y随x的增大而减小;熟练掌握一次函数的性质是解题关键.
【答案】A
【解析】
【分析】求不等式kx+b>4的解集就是求函数值大于4时,自变量的取值范围,观察图象即可得.
【详解】由图象可以看出,直线y=4上方函数图象所对应自变量的取值为x>-2,
∴不式kx+b>4的解集是x>-2,
故选A.
【点睛】本题考查了一次函数与一元一次不等式;观察函数图象,比较函数图象的高低(即比较函数值的大小),确定对应的自变量的取值范围.也考查了数形结合的思想.
故选:C.
【点睛】
本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和数形结合的思想解答.
11.在平面直角坐标系中,函数 的图象如图所示,则函数 的图象大致是()
A. B.
C. D.
【答案】C
【解析】
【分析】
根据函数图象易知 ,可得 ,所以函数图象沿y轴向下平移可得.
B.根据图象即可得出甲比乙早出发0.5小时,故B错误;
C.设 对应的函数解析式为 ,
(易错题精选)初中数学一次函数全集汇编含答案解析
(易错题精选)初中数学一次函数全集汇编含答案解析一、选择题1.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂重物的质量x(kg)有下面的关系,那么弹簧总长y(cm)与所挂重物x(kg)之间的关系式为()x0123456(kg)y1212.51313.51414.515(cm)A.y=0.5x+12 B.y=x+10.5 C.y=0.5x+10 D.y=x+12【答案】A【解析】分析:由上表可知12.5-12=0.5,13-12.5=0.5,13.5-13=0.5,14-13.5=0.5,14.5-14=0.5,15-14.5=0.5,0.5为常量,12也为常量.故弹簧总长y(cm)与所挂重物x(㎏)之间的函数关系式.详解:由表可知:常量为0.5;所以,弹簧总长y(cm)与所挂重物x(㎏)之间的函数关系式为y=0.5x+12.故选A.点睛:本题考查了函数关系,关键在于根据图表信息列出等式,然后变形为函数的形式.2.一次函数y=kx+b(k<0,b>0)的图象可能是()A. B. C.D.【答案】C【解析】【分析】根据k、b的符号来求确定一次函数y=kx+b的图象所经过的象限.【详解】∵k<0,∴一次函数y=kx+b的图象经过第二、四象限.又∵b>0时,∴一次函数y=kx+b的图象与y轴交与正半轴.综上所述,该一次函数图象经过第一象限.故答案为:C.【点睛】考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b 所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.3.一列动车从甲地开往乙地,一列普通列车从乙地开往甲地,两车均匀速行驶并同时出发,设普通列车行驶的时间为x (小时),两车之间的距离为y (千米),如图中的折线表示y与x之间的函数关系,下列说法:①动车的速度是270千米/小时;②点B的实际意义是两车出发后3小时相遇;③甲、乙两地相距1000千米;④普通列车从乙地到达甲地时间是9小时,其中不正确的有( )A.1个B.2个C.3个D.4个【答案】B【解析】【分析】由x=0时y=1000可判断③;由运动过程和函数图像关系可判断②;求出普通列车速度,设动车的速度为x千米/小时,根据“动车3小时行驶的路程+普通列车3小时行驶的路程=1000”列方程求解可判断①;根据x=12时的实际意义可判断④.【详解】解:③由x=0时,y=1000知,甲地和乙地相距1000千米,正确;②如图,出发后3小时,两车之间的距离为0,可知点B的实际意义是两车出发后3小时相遇,正确;①普通列车的速度是100012=2503千米/小时,设动车的速度为x千米/小时,根据题意,得:3x+3×2503=1000, 解得:x=250, 动车的速度为250千米/小时,错误;④由图象知x=t 时,动车到达乙地,∴x=12时,普通列车到达甲地,即普通列车到达终点共需12小时,错误;故选B.【点睛】本题主要考查一次函数的应用,根据题意弄懂函数图象中各拐点坐标的实际意义及行程问题中蕴含的相等关系是解题的关键.4.下列函数(1)y =x (2)y =2x ﹣1 (3)y =1x(4)y =2﹣3x (5)y =x 2﹣1中,是一次函数的有( )A .4个B .3个C .2个D .1个 【答案】B【解析】【分析】分别利用一次函数、二次函数和反比例函数的定义分析得出即可.【详解】解:(1)y =x 是一次函数,符合题意;(2)y =2x ﹣1是一次函数,符合题意; (3)y =1x是反比例函数,不符合题意; (4)y =2﹣3x 是一次函数,符合题意;(5)y =x 2﹣1是二次函数,不符合题意;故是一次函数的有3个.故选:B .【点睛】 此题考查一次函数、二次函数和反比例函数的定义,正确把握相关定义是解题关键.5.一次函数y kx b =的图象与正比例函数6y x =﹣的图象平行且经过点A (1,-3),则这个一次函数的图象一定经过( )A .第一、二、三象限B .第一、三、四象限C .第一、二、四象限D .第二、三、四象限【答案】C【解析】【分析】由一次函数y kx b +=的图象与正比例函数6y x =﹣的图象平行可得k=-6,把点A 坐标代入y=-6x+b 可求出b 值,即可得出一次函数解析式,根据一次函数的性质即可得答案.【详解】∵一次函数y kx b +=的图象与正比例函数6y x =﹣的图象平行, ∴k=-6,∵一次函数6y x b =-+经过点A (1,-3),∴-3=-6+b ,解得:b=3,∴一次函数的解析式为y=-6x+3,∵-6<0,3>0,∴一次函数图象经过二、四象限,与y 轴交于正半轴,∴这个一次函数的图象一定经过一、二、四象限,故选:C .【点睛】本题考查了两条直线平行问题及一次函数的性质:若直线y=k 1x+b 1与直线y=k 2x+b 2平行,则k 1=k 2;当k >0时,图象经过一、三象限,y 随x 的增大而增大;当k <0时,图象经过二、四象限,y 随x 的增大而减小;当b >0时,图象与y 轴交于正半轴;当b <0时,图象与y 轴交于负半轴.6.已知直线4y x =-+与2y x =+的图象如图,则方程组y x 4y x 2=-+⎧⎨=+⎩的解为( )A .31x y ==,B .13x y ==,C .04x y ==,D .40x y ==,【答案】B【解析】【分析】 二元一次方程组的解就是组成二元一次方程组的两个方程的公共解,即两条直线的交点坐标.【详解】解:根据题意知,二元一次方程组y x 4y x 2=-+⎧⎨=+⎩的解就是直线y =−x +4与y =x +2的交点坐标,又∵交点坐标为(1,3),∴原方程组的解是:13x y ==,. 故选:B .【点睛】本题考查了一次函数与二元一次方程组.二元一次方程组的解就是组成该方程组的两条直线的图象的交点.7.已知直线y=2x-1与y=x-k 的交点在第四象限,则k 的取值范围是( )A .12<k <1 B .13<k <1 C .k >12 D .k >13 【答案】A【解析】【分析】 由直线y=2x-1与y=x-k 可列方程组求交点坐标,再通过交点在第四象限可求k 的取值范围.【详解】 解:设交点坐标为(x ,y )根据题意可得 21y x y x k =-⎧⎨=-⎩解得 112x k y k =-⎧⎨=-⎩∴交点坐标()112k,k --∵交点在第四象限,∴10120k k -⎧⎨-⎩>< ∴112k <<故选:D .【点睛】本题考查了两条直线相交坐标问题,掌握平面直角坐标系内点的坐标特点是解题的关键.8.一次函数y mx n =-+结果是( )A .mB .m -C .2m n -D .2m n -【答案】D【解析】【分析】根据题意可得﹣m <0,n <0,再进行化简即可.【详解】∵一次函数y =﹣mx +n 的图象经过第二、三、四象限,∴﹣m <0,n <0,即m >0,n <0, ∴22()m n n -+=|m ﹣n |+|n |=m ﹣n ﹣n=m ﹣2n ,故选D .【点睛】本题考查了二次根式的性质与化简以及一次函数的图象与系数的关系,熟练掌握一次函数的图象与性质是解题的关键.9.如图1,点F 从菱形ABCD 的顶点A 出发,沿A→D→B 以1cm/s 的速度匀速运动到点B ,图2是点F 运动时,△FBC 的面积y (cm 2)随时间x (s )变化的关系图象,则a 的值为( )A 5B .2C .52D .5【答案】C【解析】【分析】 通过分析图象,点F 从点A 到D 用as ,此时,△FBC 的面积为a ,依此可求菱形的高DE ,再由图象可知,5BE 和a .【详解】过点D 作DE ⊥BC 于点E.由图象可知,点F 由点A 到点D 用时为as ,△FBC 的面积为acm 2..∴AD=a. ∴12DE •AD =a . ∴DE=2. 当点F 从D 到B 时,用5s.∴BD=5.Rt △DBE 中,BE=()2222=521BD DE --=,∵四边形ABCD 是菱形,∴EC=a-1,DC=a ,Rt △DEC 中,a 2=22+(a-1)2.解得a=52. 故选C .【点睛】 本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.10.如图,在平面直角坐标系中,函数y =2x 和y =﹣x 的图象分别为直线l 1,l 2,过点(1,0)作x 轴的垂线交l 1于点A 1,过点A 1作y 轴的垂线交l 2于点A 2,过点A 2作x 轴的垂线交l 1于点A 3,过点A 3作y 轴的垂线交l 2于点A 4,…,依次进行下去,则点A 2019的坐标为( )A .(21009,21010)B .(﹣21009,21010)C .(21009,﹣21010)D .(﹣21009,﹣21010)【答案】D【解析】【分析】写出一部分点的坐标,探索得到规律A2n+1[(﹣2)n,2×(﹣2)n](n是自然数),即可求解;【详解】A1(1,2),A2(﹣2,2),A3(﹣2,﹣4),A4(4,﹣4),A5(4,8),…由此发现规律:A2n+1[(﹣2)n,2×(﹣2)n](n是自然数),2019=2×1009+1,∴A2019[(﹣2)1009,2×(﹣2)1009],∴A2019(﹣21009,﹣21010),故选D.【点睛】本题考查一次函数图象上点的特点;能够根据作图特点,发现坐标的规律是解题的关键.11.下列命题是假命题的是()A.三角形的外心到三角形的三个顶点的距离相等B.如果等腰三角形的两边长分别是5和6,那么这个等腰三角形的周长为16C.将一次函数y=3x-1的图象向上平移3个单位,所得直线不经过第四象限D.若关于x的一元一次不等式组213x mx-≤⎧⎨+>⎩无解,则m的取值范围是1m£【答案】B【解析】【分析】利用三角形外心的性质、等腰三角形的性质和三角形三边关系定理、一次函数图象的平移规律、解一元一次不等式组分别判断后即可确定正确的选项.【详解】A. 三角形的外心到三角形的三个顶点的距离相等,正确,是真命题;B. 如果等腰三角形的两边长分别是5和6,那么这个等腰三角形的周长为16或17,错误,是假命题;C. 将一次函数y=3x-1的图象向上平移3个单位,所得直线不经过第四象限,正确,是真命题;D. 若关于x的一元一次不等式组213x mx-≤⎧⎨+>⎩无解,则m的取值范围是1m£,正确,是真命题;故答案为:B【点睛】本题考查了命题与定理的知识,解题的关键是了解三角形外心的性质、等腰三角形的性质和三角形三边关系定理、一次函数图象的平移规律、解一元一次不等式组.12.已知直线y1=kx+1(k<0)与直线y2=mx(m>0)的交点坐标为(12,12m),则不等式组mx﹣2<kx+1<mx的解集为()A.x>12B.12<x<32C.x<32D.0<x<32【答案】B 【解析】【分析】由mx﹣2<(m﹣2)x+1,即可得到x<32;由(m﹣2)x+1<mx,即可得到x>12,进而得出不等式组mx﹣2<kx+1<mx的解集为12<x<32.【详解】把(12,12m)代入y1=kx+1,可得1 2m=12k+1,解得k=m﹣2,∴y1=(m﹣2)x+1,令y3=mx﹣2,则当y3<y1时,mx﹣2<(m﹣2)x+1,解得x<32;当kx+1<mx时,(m﹣2)x+1<mx,解得x>12,∴不等式组mx﹣2<kx+1<mx的解集为12<x<32,故选B.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.13.一辆慢车和一辆快车沿相同的路线从A地到B地,所行驶的路程与时间的函数图形如图所示,下列说法正确的有()①快车追上慢车需6小时;②慢车比快车早出发2小时;③快车速度为46km/h;④慢车速度为46km/h;⑤A、B两地相距828km;⑥快车从A地出发到B地用了14小时A.2个B.3个C.4个D.5个【答案】B【解析】【分析】根据图形给出的信息求出两车的出发时间,速度等即可解答.【详解】解:①两车在276km处相遇,此时快车行驶了4个小时,故错误.②慢车0时出发,快车2时出发,故正确.③快车4个小时走了276km,可求出速度为69km/h,错误.④慢车6个小时走了276km,可求出速度为46km/h,正确.⑤慢车走了18个小时,速度为46km/h,可得A,B距离为828km,正确.⑥快车2时出发,14时到达,用了12小时,错误.故答案选B.【点睛】本题考查了看图手机信息的能力,注意快车并非0时刻出发是解题关键.14.若一次函数y=(k-3)x-1的图像不经过第一象限,则A.k<3 B.k>3 C.k>0 D.k<0【答案】A【解析】【分析】根据图象在坐标平面内的位置关系确定k,b的取值范围,从而求解.【详解】解:∵一次函数y=(k-3)x-1的图象不经过第一象限,且b=-1,∴一次函数y=(k-3)x-1的图象经过第二、三、四象限,∴k-3<0,解得k<3.故选A .【点睛】本题主要考查一次函数图象在坐标平面内的位置与k 、b 的关系.解答本题注意理解:直线y=kx+b 所在的位置与k 、b 的符号有直接的关系.k >0时,直线必经过一、三象限.k <0时,直线必经过二、四象限.b >0时,直线与y 轴正半轴相交.b=0时,直线过原点;b <0时,直线与y 轴负半轴相交.15.如图,已知直线1y x b =+与21y kx =-相交于点P ,点P 的横坐标为1-,则关于x 的不等式1x b kx +≤-的解集在数轴上表示正确的是( ).A .B .C .D .【答案】D【解析】 试题解析:当x >-1时,x+b >kx-1,即不等式x+b >kx-1的解集为x >-1.故选A .考点:一次函数与一元一次不等式.16.已知直线11:l y k x b =+与直线22:l y k x =在同一平面直角坐标系中的图象如图所示,则关于不等式12k x b k x +>的解集为( )A .1x <B .1x >C .2x >D .0x <【答案】A【解析】【分析】 根据函数图象可知直线l 1:y=k 1x+b 与直线l 2:y=k 2x 的交点是(1,2),从而可以求得不等式12k x b k x +>的解集.【详解】由图象可得,12k x b k x +>的解集为x <1,故选:A .【点睛】此题考查一次函数与一元一次不等式的关系,解题的关键是明确题意,利用数形结合的思想解答问题.17.如图,平面直角坐标系中,ABC ∆的顶点坐标分别是A(1,1),B(3,1),C(2,2),当直线12y x b =+与ABC ∆有交点时,b 的取值范围是( )A .11b -≤≤B .112b -≤≤ C .1122b -≤≤ D .112b -≤≤【答案】B【解析】【分析】 将A (1,1),B (3,1),C (2,2)的坐标分别代入直线y =12x+b 中求得b 的值,再根据一次函数的增减性即可得到b 的取值范围.【详解】解:直线y=12x+b 经过点B 时,将B (3,1)代入直线y =12x+b 中,可得32+b=1,解得b=-12;直线y=12x+b 经过点A 时:将A (1,1)代入直线y =12x+b 中,可得12+b=1,解得b=12; 直线y=12x+b 经过点C 时:将C (2,2)代入直线y =12x+b 中,可得1+b=2,解得b=1. 故b 的取值范围是-12≤b≤1. 故选B .【点睛】 考查了一次函数的性质:k >0,y 随x 的增大而增大,函数从左到右上升;k <0,y 随x 的增大而减小,函数从左到右下降.18.若关于x 的一元二次方程2210x x kb -++=有两个不相等的实数根,则一次函数 y kx b =+的图象可能是:A .B .C .D .【答案】B【解析】【分析】【详解】由方程2210x x kb ++=-有两个不相等的实数根,可得()4410kb =-+V>, 解得0kb <,即k b 、异号,当00k b >,<时,一次函数y kx b =+的图象过一三四象限,当00k b <,>时,一次函数y kx b =+的图象过一二四象限,故答案选B.19.一次函数y 1=kx+1﹣2k (k≠0)的图象记作G 1,一次函数y 2=2x+3(﹣1<x <2)的图象记作G 2,对于这两个图象,有以下几种说法:①当G 1与G 2有公共点时,y 1随x 增大而减小;②当G 1与G 2没有公共点时,y 1随x 增大而增大;③当k=2时,G1与G2平行,且平行线之间的距离为.下列选项中,描述准确的是()A.①②正确,③错误B.①③正确,②错误C.②③正确,①错误D.①②③都正确【答案】D【解析】【分析】画图,找出G2的临界点,以及G1的临界直线,分析出G1过定点,根据k的正负与函数增减变化的关系,结合函数图象逐个选项分析即可解答.【详解】解:一次函数y2=2x+3(﹣1<x<2)的函数值随x的增大而增大,如图所示,N(﹣1,2),Q(2,7)为G2的两个临界点,易知一次函数y1=kx+1﹣2k(k≠0)的图象过定点M(2,1),直线MN与直线MQ为G1与G2有公共点的两条临界直线,从而当G1与G2有公共点时,y1随x增大而减小;故①正确;当G1与G2没有公共点时,分三种情况:一是直线MN,但此时k=0,不符合要求;二是直线MQ,但此时k不存在,与一次函数定义不符,故MQ不符合题意;三是当k>0时,此时y1随x增大而增大,符合题意,故②正确;当k=2时,G1与G2平行正确,过点M作MP⊥NQ,则MN=3,由y2=2x+3,且MN∥x 轴,可知,tan∠PNM=2,∴PM=2PN,由勾股定理得:PN2+PM2=MN2∴(2PN)2+(PN)2=9,∴PN=,∴PM =.故③正确.综上,故选:D .【点睛】本题是一次函数中两条直线相交或平行的综合问题,需要数形结合,结合一次函数的性质逐条分析解答,难度较大.20.已知正比例函数0()y mx m =≠中,y 随x 的增大而减小,那么一次函数y mx m =-的图象大致是如图中的( )A .B .C .D .【答案】D【解析】【分析】由y 随x 的增大而减小即可得出m <0,再由m <0、−m >0即可得出一次函数y mx m =-的图象经过第一、二、四象限,对照四个选项即可得出结论.【详解】解:∵正比例函数y =mx (m≠0)中,y 随x 的增大而减小,∴m <0,∴−m >0,∴一次函数y =mx−m 的图象经过第一、二、四象限.故选:D .【点睛】本题考查了一次函数的图象、正比例函数的性质以及一次函数图象与系数的关系,熟练掌握“k <0,b >0⇔y =kx +b 的图象在一、二、四象限”是解题的关键.。
一次函数易错题汇编含答案解析
一次函数易错题汇编含答案解析一、选择题1.已知点(k,b)为第二象限内的点,则一次函数y kx b=-+的图象大致是( ) A.B.C.D.【答案】D【解析】【分析】根据已知条件“点(k,b)为第二象限内的点”推知k、b的符号,由它们的符号可以得到一次函数y=-kx+b的图象所经过的象限.【详解】解:∵点(k,b)为第二象限内的点,∴k<0,b>0,∴-k>0.∴一次函数y=-kx+b的图象经过第一、二、三象限,观察选项,D选项符合题意.故选:D.【点睛】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b <0时,直线与y轴负半轴相交.2.给出下列函数:①y=﹣3x+2:②y=3x;③y=﹣5x:④y=3x,上述函数中符合条件“当x>1时,函数值y随自变量x增大而增大”的是()A.①③B.③④C.②④D.②③【答案】B【解析】【分析】分别利用一次函数、正比例函数、反比例函数的增减性分析得出答案.【详解】解:①y=﹣3x+2,当x>1时,函数值y随自变量x增大而减小,故此选项不符合题意;②y=3x,当x>1时,函数值y随自变量x增大而减小,故此选项不符合题意;③y=﹣5x,当x>1时,函数值y随自变量x增大而增大,故此选项符合题意;④y =3x ,当x >1时,函数值y 随自变量x 增大而增大,故此选项符合题意; 故选:B . 【点睛】此题考查一次函数、正比例函数、反比例函数,正确把握相关性质是解题关键.3.一次函数y kx b =+是(,k b 是常数,0k ≠)的图像如图所示,则不等式0kx b +<的解集是( )A .0x >B .0x <C .2x >D .2x <【答案】C 【解析】 【分析】根据一次函数的图象看出:一次函数y=kx+b (k ,b 是常数,k≠0)的图象与x 轴的交点是(2,0),得到当x >2时,y<0,即可得到答案. 【详解】解:一次函数y=kx+b (k ,b 是常数,k≠0)的图象与x 轴的交点是(2,0), 当x >2时,y<0. 故答案为:x >2. 故选:C. 【点睛】本题主要考查对一次函数的图象,一次函数与一元一次不等式等知识点的理解和掌握,能观察图象得到正确结论是解此题的关键.4.已知过点()2?3,-的直线()0y ax b a =+≠不经过第一象限.设s a 2b =+,则s 的取值范围是( ) A .352s -≤≤- B .362s -<≤-C .362s -≤≤-D .372s -<≤-【答案】B 【解析】试题分析:∵过点()2?3,-的直线()0y ax b a =+≠不经过第一象限, ∴0{023a b a b <≤+=-.∴23b a =--. ∵s a 2b =+,∴4636s a a a =--=--.由230b a =--≤得399333662222a a a ≥-⇒-≤⇒--≤-=-,即32s ≤-. 由0a <得3036066a a ->⇒-->-=-,即6s >-. ∴s 的取值范围是362s -<≤-. 故选B.考点:1.一次函数图象与系数的关系;2.直线上点的坐标与方程的关系;3.不等式的性质.5.一次函数y=kx+b(k<0,b>0)的图象可能是( )A .B .C .D .【答案】C 【解析】 【分析】根据k 、b 的符号来求确定一次函数y=kx+b 的图象所经过的象限. 【详解】 ∵k<0,∴一次函数y=kx+b 的图象经过第二、四象限. 又∵b >0时,∴一次函数y=kx+b 的图象与y 轴交与正半轴. 综上所述,该一次函数图象经过第一象限. 故答案为:C. 【点睛】考查一次函数图象在坐标平面内的位置与k 、b 的关系.解答本题注意理解:直线y=kx+b 所在的位置与k 、b 的符号有直接的关系.k >0时,直线必经过一、三象限.k <0时,直线必经过二、四象限.b >0时,直线与y 轴正半轴相交.b=0时,直线过原点;b <0时,直线与y 轴负半轴相交.6.平面直角坐标系中,点(0,0)O 、(2,0)A 、(,2)B b b -+,当45ABO ∠<︒时,b 的取值范围为( )A .0b <B .2b <C .02b <<D .0b <或2b >【答案】D 【解析】 【分析】根据点B 的坐标特征得到点B 在直线y=-x+2上,由于直线y=-x+2与y 轴的交点Q 的坐标为(0,2),连结AQ ,以AQ 为直径作⊙P ,如图,易得∠AQO=45°,⊙P 与直线y=-x+2只有一个交点,根据圆外角的性质得到点B 在直线y=-x+2上(除Q 点外),有∠ABO 小于45°,所以b <0或b >2. 【详解】解∵B 点坐标为(b ,-b+2), ∴点B 在直线y=-x+2上,直线y=-x+2与y 轴的交点Q 的坐标为(0,2),连结AQ ,以AQ 为直径作⊙P ,如图, ∵A (2,0), ∴∠AQO=45°,∴点B 在直线y=-x+2上(除Q 点外),有∠ABO 小于45°, ∴b 的取值范围为b <0或b >2. 故选D .【点睛】本题考查了一函数图象上点的坐标特征:一次函数y=kx+b ,(k≠0,且k ,b 为常数)的图象是一条直线.它与x 轴的交点坐标是(bk-,0);与y 轴的交点坐标是(0,b ).直线上任意一点的坐标都满足函数关系式y=kx+b .7.若一次函数32y x =-+的图象与x 轴交于点A ,与y 轴交于点,B 则AOB V (O 为坐标原点)的面积为( ) A .32B .2C .23D .3【答案】C【解析】 【分析】根据直线解析式求出OA 、OB 的长度,根据面积公式计算即可. 【详解】当32y x =-+中y=0时,解得x=23,当x=0时,解得y=2, ∴A(23,0),B(0,2), ∴OA=23,OB=2, ∴1122223AOB S OA OB =⋅=⨯⨯=V 23, 故选:C. 【点睛】此题考查一次函数图象与坐标轴的交点坐标,正确理解交点坐标的计算方法是解题的关键.8.下列函数中,y 随x 的增大而增大的函数是( ) A .2y x =- B .21y x =-+C .2y x =-D .2y x =--【答案】C 【解析】 【分析】根据一次函数的性质对各选项进行逐一分析即可. 【详解】∵y=-2x 中k=-2<0,∴y 随x 的增大而减小,故A 选项错误; ∵y=-2x+1中k=-2<0,∴y 随x 的增大而减小,故B 选项错误; ∵y=x-2中k=1>0,∴y 随x 的增大而增大,故C 选项正确; ∵y=-x-2中k=-1<0,∴y 随x 的增大而减小,故D 选项错误. 故选C . 【点睛】本题考查的是一次函数的性质,一次函数y=kx+b (k≠0)中,当k >0时y 随x 的增大而增大;k<0时y 随x 的增大而减小;熟练掌握一次函数的性质是解答此题的关键.9.随着“互联网+”时代的到来,一种新型的打车方式受到大众欢迎.打车总费用y(单位:元)与行驶里程x(单位:千米)的函数关系如图所示.如果小明某次打车行驶里程为22千米,则他的打车费用为( )A.33元B.36元C.40元D.42元【答案】C【解析】分析:待定系数法求出当x≥12时y关于x的函数解析式,再求出x=22时y的值即可.详解:当行驶里程x⩾12时,设y=kx+b,将(8,12)、(11,18)代入,得:812 1118k bk b+=⎧⎨+=⎩,解得:24kb=⎧⎨=-⎩,∴y=2x−4,当x=22时,y=2×22−4=40,∴当小明某次打车行驶里程为22千米,则他的打车费用为40元.故选C.点睛:本题考查一次函数图象和实际应用. 认真分析图象,并利用待定系数法求一次函数的解析式是解题的关键.10.若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m的值为()A.2 B.8 C.﹣2 D.﹣8【答案】A【解析】试题分析:设正比例函数解析式为:y=kx,将点A(3,﹣6)代入可得:3k=﹣6,解得:k=﹣2,∴函数解析式为:y=﹣2x,将B(m,﹣4)代入可得:﹣2m=﹣4,解得m=2,故选A.考点:一次函数图象上点的坐标特征.11.若一次函数y=kx+b的图象经过一、二、四象限,则一次函数y=-bx+k的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【解析】 【分析】根据一次函数y=kx+b 图象在坐标平面内的位置关系先确定k ,b 的取值范围,再根据k ,b 的取值范围确定一次函数y=-bx+k 图象在坐标平面内的位置关系,从而求解. 【详解】解:一次函数y=kx+b 过一、二、四象限, 则函数值y 随x 的增大而减小,因而k <0; 图象与y 轴的正半轴相交则b >0, 因而一次函数y=-bx+k 的一次项系数-b <0, y 随x 的增大而减小,经过二四象限, 常数项k <0,则函数与y 轴负半轴相交, 因而一定经过二三四象限, 因而函数不经过第一象限. 故选:A . 【点睛】本题考查了一次函数的图象与系数的关系.函数值y 随x 的增大而减小⇔k <0;函数值y 随x 的增大而增大⇔k >0;一次函数y=kx+b 图象与y 轴的正半轴相交⇔b >0,一次函数y=kx+b 图象与y 轴的负半轴相交⇔b <0,一次函数y=kx+b 图象过原点⇔b=0.12.如图,点,A B 在数轴上分别表示数23,1a -+,则一次函数(1)2y a x a =-+-的图像一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A 【解析】 【分析】根据数轴得出0<﹣2a +3<1,求出1<a <1.5,进而可判断1﹣a 和a ﹣2的正负性,从而得到答案. 【详解】解:根据数轴可知:0<﹣2a +3<1, 解得:1<a <1.5, ∴1﹣a <0,a ﹣2<0,∴一次函数(1)2y a x a =-+-的图像经过第二、三、四象限,不可能经过第一限. 故选:A .本题考查了利用数轴比较大小和一元一次不等式的解法以及一次函数图象与系数的关系.熟练掌握不等式的解法及一次函数的图象性质是解决本题的关键.13.在一条笔直的公路上有A 、B 两地,甲乙两人同时出发,甲骑自行车从A 地到B 地,乙骑自行车从B 地到A 地,到达A 地后立即按原路返回B 地.如图是甲、乙两人离B 地的距离(km)y 与行驶时间(h)x 之间的函数图象,下列说法中①A 、B 两地相距30千米;②甲的速度为15千米/时;③点M 的坐标为(23,20);④当甲、乙两人相距10千米时,他们的行驶时间是49小时或89小时. 正确的个数为( )A .1个B .2个C .3个D .4个【答案】C 【解析】 【分析】根据题意,确定①-③正确,当两人相距10千米时,应有3种可能性. 【详解】解:根据题意可以列出甲、乙两人离B 地的距离y (km )与行驶时间x (h )之间的函数关系得: y 甲=-15x+30y 乙=()()3001306012x x x x ⎧≤≤⎪⎨-+≤≤⎪⎩由此可知,①②正确. 当15x+30=30x 时, 解得x=2,3则M 坐标为(23,20),故③正确. 当两人相遇前相距10km 时, 30x+15x=30-10 x=49, 当两人相遇后,相距10km 时,30x+15x=30+10, 解得x=8915x-(30x-30)=10得x=43∴④错误.选C . 【点睛】本题为一次函数应用问题,考查学生对于图象分析能力,解答时要注意根据两人运动状态分析图象得到相应的数据,从而解答问题.14.已知正比例函数0()y mx m =≠中,y 随x 的增大而减小,那么一次函数y mx m =-的图象大致是如图中的( )A .B .C .D .【答案】D 【解析】 【分析】由y 随x 的增大而减小即可得出m <0,再由m <0、−m >0即可得出一次函数y mx m =-的图象经过第一、二、四象限,对照四个选项即可得出结论. 【详解】解:∵正比例函数y =mx (m≠0)中,y 随x 的增大而减小, ∴m <0, ∴−m >0,∴一次函数y =mx−m 的图象经过第一、二、四象限. 故选:D . 【点睛】本题考查了一次函数的图象、正比例函数的性质以及一次函数图象与系数的关系,熟练掌握“k <0,b >0⇔y =kx +b 的图象在一、二、四象限”是解题的关键.15.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则( ) A .2k < B .2k >C .0k >D .k 0<【答案】B 【解析】【分析】根据一次函数图象的增减性来确定(k-2)的符号,从而求得k 的取值范围. 【详解】∵在一次函数y=(k-2)x+1中,y 随x 的增大而增大, ∴k-2>0, ∴k >2, 故选B.【点睛】本题考查了一次函数图象与系数的关系.在直线y=kx+b (k≠0)中,当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小.16.某班同学在研究弹簧的长度跟外力的变化关系时,实验记录得到相应的数据如下表: 砝码的质量x/g 0 50 100 150 200 250 300 400 500 指针位置y/cm2 345677.57.57.5则下列图象中,能表示y 与x 的函数关系的图象大致是( )A .B .C .D .【答案】B 【解析】 【分析】通过(0,2)和(100,4)利用待定系数法求出一次函数的解析式,再对比图象中的折点即可选出答案. 【详解】解:由题干内容可得,一次函数过点(0,2)和(100,4).设一次函数解析式为y=k x +b ,代入点(0,2)和点(100,4)可解得,k=0.02,b=2.则一次函数解析式为y=0.02x +2.显然当y=7.5时,x =275,故选B.【点睛】此题主要考查函数的图象和性质,利用待定系数法求一次函数解析式.17.函数12y x =-与23y ax =+的图像相交于点(),2A m ,则( )A .1a =B .2a =C .1a =-D .2a =-【答案】A【解析】【分析】将点(),2A m 代入12y x =-,求出m ,得到A 点坐标,再把A 点坐标代入23y ax =+,即可求出a 的值.【详解】解:Q 函数12y x =-过点(),2A m , 22m ∴-=,解得:1m =-,()1,2A ∴-,Q 函数23y ax =+的图象过点A ,32a ∴-+=,解得:1a =.故选:A .【点睛】本题考查了两条直线的交点问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.也考查了一次函数图象上点的坐标特征.18.已知直线11:l y k x b =+与直线22:l y k x =在同一平面直角坐标系中的图象如图所示,则关于不等式12k x b k x +>的解集为( )A .1x <B .1x >C .2x >D .0x <【答案】A【解析】【分析】根据函数图象可知直线l 1:y=k 1x+b 与直线l 2:y=k 2x 的交点是(1,2),从而可以求得不等式12k x b k x +>的解集.【详解】由图象可得,12k x b k x +>的解集为x <1,故选:A .【点睛】此题考查一次函数与一元一次不等式的关系,解题的关键是明确题意,利用数形结合的思想解答问题.19.已知一次函数y =kx+k ,其在直角坐标系中的图象大体是( )A .B .C .D .【答案】A【解析】【分析】函数的解析式可化为y =k (x +1),易得其图象与x 轴的交点为(﹣1,0),观察图形即可得出答案.【详解】函数的解析式可化为y =k (x +1),即函数图象与x 轴的交点为(﹣1,0),观察四个选项可得:A 符合.故选A .【点睛】本题考查了一次函数的图象,要求学生掌握通过解析判断其图象与坐标轴的交点位置、坐标.20.在同一平面直角坐标系中的图像如图所示,则关于21k x k x b <+的不等式的解为( ).A .1x >-B .2x <-C .1x <-D .无法确定【答案】C【解析】【分析】 求关于x 的不等式12k x b k x +>的解集就是求:能使函数1y k x b =+的图象在函数2y k x =的上边的自变量的取值范围.【详解】解:能使函数1y k x b =+的图象在函数2y k x =的上边时的自变量的取值范围是1x <-. 故关于x 的不等式12k x b k x +>的解集为:1x <-.故选:C .【点睛】本题考查了一次函数与一元一次不等式的关系,从函数的角度看,就是寻求使一次函数y ax b =+的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y kx b =+在x 轴上(或下)方部分所有的点的横坐标所构成的集合.利用数形结合是解题的关键.。
一次函数的易错题
一次函数的易错题一.选择题(共10小题)1.对于圆的周长公式C=2πR,下列说法中,正确的是()A.2π是变量B.2πR是常量C.C是R的函数D.该函数没有定义域2.下列函数关系中,属于正比例函数关系的是()A.圆的面积S与它的半径rB.面积是常数S时,长方形的长y与宽xC.路程是常数s时,行驶的速度v与时间tD.三角形的底边是常数a时,它的面积S与这条边上的高h3.已知两个变量x和y,它们之间的3组对应值如表所示,则y与x之间的函数关系式可能是()x﹣113y﹣331A.y=x﹣2 B.y=2x+1 C.y=x2+x﹣6 D.y=4.正比例函数y=x的大致图象是()A.B.C.D.5.图中由线段OA、AB组成的折线表示的是小明步行所走的路程和时间之间的关系,其中x轴表示步行的时间,y轴表示步行的路程.他在5分至8分这一时间段步行的速度是()A.120米/分B.108米/分C.90米/分 D.88米/分6.下列四个图象分别给出了x与y的对应关系,其中y是x的函数的是()A.B.C.D.7.在函数y=中,自变量x的取值范围是()A.x≥﹣2且x≠0 B.x>﹣2 且x≠0 C.x>0D.x≤﹣28.下列函数中,是一次函数的有()①y=;②y=3x+1;③y=;④y=kx﹣2.A.1个 B.2个 C.3个 D.4个9.函数y1=|x|,.当y1>y2时,x的范围是()A.x<﹣1 B.﹣1<x<2 C.x<﹣1或x>2 D.x>210.关于函数y=﹣x﹣2的图象,有如下说法:①图象过(0,﹣2)点;②图象与x轴交点是(﹣2,0);③从图象知y随x增大而增大;④图象不过第一象限;⑤图象是与y=﹣x平行的直线.其中正确说法有()A.2种 B.3种 C.4种 D.5种二.填空题(共10小题)11.使函数有意义的x的取值范围是.12.某市居民用电价格是0.53元/千瓦时,居民生活用电x(千瓦时)与应付电费y(元)之间满足y=0.53x,则其中的常量为,变量是.13.在下列4个等式中:①y=x+1;②y=﹣2x;③y2=x;④y=x2,y是x的函数的是.14.某工厂年产值为150万元,如果每增加100万元的投资,一年可增加产值250万元,设总产值为y万元,新增加的投资为x万元,则x,y的关系式为(写成用含x的代数式表示y的形式.)15.已知函数y=3x﹣5,当x=2时,y=.16.已知函数y=(k﹣1)x+k2﹣1,当k时,它是一次函数,当k=时,它是正比例函数.17.已知函数y=﹣n+2,当n=时,它是正比例函数.18.已知正比例函数y=kx(k≠0),请选取一个k的值,使y随x的增大而增大,k=.19.若一次函数y=ax+1﹣a中,y随x的增大而增大,且它的图象与y轴交于正半轴,则|a﹣1|+=.20.在一条直线上依次有A、B、C三个港口,甲、乙两船同时分别从A、B港口出发,沿直线匀速驶向C港,最终达到C港.设甲、乙两船行驶x(h)后,与B港的距离分别为y1、y2(km),y1、y2与x的函数关系如图所示.若两船的距离为10km时,甲行驶了小时.一次函数的易错题参考答案与试题解析一.选择题(共10小题)1.对于圆的周长公式C=2πR,下列说法中,正确的是()A.2π是变量B.2πR是常量C.C是R的函数D.该函数没有定义域【解答】解:A、2π是一个常数,是常量,故选项错误;B、2π是一个常数,是常量,R是变量,故选项错误;C、正确;D、定义域是:R>0,故选项错误.故选C.2.下列函数关系中,属于正比例函数关系的是()A.圆的面积S与它的半径rB.面积是常数S时,长方形的长y与宽xC.路程是常数s时,行驶的速度v与时间tD.三角形的底边是常数a时,它的面积S与这条边上的高h【解答】解:A.s=πr2,s是r的二次函数,B.y=,y是x的反比例函数,C.v=,v是t的反比例函数,D.s=ah,s是h的正比例函数.故选:D.3.已知两个变量x和y,它们之间的3组对应值如表所示,则y与x之间的函数关系式可能是()x﹣113y﹣331A.y=x﹣2 B.y=2x+1 C.y=x2+x﹣6 D.y=【解答】解:A.将表格对应数据代入,不符合方程y=x﹣2,故A选项错误;B.将表格对应数据代入,不符合方程y=2x+1,故B选项错误;C.将表格对应数据代入,不符合方程y=x2+x﹣6,故C选项错误;D.将表格对应数据代入,符合方程,故D选项正确.故选:D.4.正比例函数y=x的大致图象是()A.B.C.D.【解答】解:因为正比例函数的图象是一条经过原点的直线,且当k>0时,经过一、三象限.故正比例函数y=x的大致图象是C.故选:C.5.图中由线段OA、AB组成的折线表示的是小明步行所走的路程和时间之间的关系,其中x轴表示步行的时间,y轴表示步行的路程.他在5分至8分这一时间段步行的速度是()A.120米/分B.108米/分C.90米/分 D.88米/分【解答】解:5分至8分在图象上为AB段,小明在6分至8分内的速度即为线段AB的斜率.=88即:小明在6分至8分内步行速度为88米/分.故选:D.6.下列四个图象分别给出了x与y的对应关系,其中y是x的函数的是()A.B.C.D.【解答】解:在图象A,B,C中,每给x一个值,y都有2个值与它对应,所以A,B,C中y不是x的函数,在D中,给x一个正值,y有一个值与之对应,所以y是x的函数.故选:D.7.在函数y=中,自变量x的取值范围是()A.x≥﹣2且x≠0 B.x>﹣2 且x≠0 C.x>0D.x≤﹣2【解答】解:x+2≥0;x≠0,解得x≥﹣2,且x≠0.故选:A.8.下列函数中,是一次函数的有()①y=;②y=3x+1;③y=;④y=kx﹣2.A.1个 B.2个 C.3个 D.4个【解答】解;①y=是一次函数,故①符合题意;②y=3x+1是一次函数,故②符合题意;③y=是反比例函数,故③不符合题意;④y=kx﹣2,k不是常数,故④不符合题意;故选;B.9.函数y1=|x|,.当y1>y2时,x的范围是()A.x<﹣1 B.﹣1<x<2 C.x<﹣1或x>2 D.x>2【解答】解:由图象可知:在(﹣1,1)左边,(2,2)的右边,y1>y2,∴x<﹣1或x>2.故选C.10.关于函数y=﹣x﹣2的图象,有如下说法:①图象过(0,﹣2)点;②图象与x轴交点是(﹣2,0);③从图象知y随x增大而增大;④图象不过第一象限;⑤图象是与y=﹣x平行的直线.其中正确说法有()A.2种 B.3种 C.4种 D.5种【解答】解:①将(0,﹣2)代入解析式得,左边=﹣2,右边=﹣2,故图象过(0,﹣2)点,正确;②当y=0时,y=﹣x﹣2中,x=﹣2,故图象过(﹣2,0),正确;③因为k=﹣1<0,所以y随x增大而减小,错误;④因为k=﹣1<0,b=﹣2<0,所以图象过二、三、四象限,正确;⑤因为y=﹣x﹣2与y=﹣x的k值(斜率)相同,故两图象平行,正确.故选C.二.填空题(共10小题)11.使函数有意义的x的取值范围是x≥﹣2且x≠2 .【解答】解:由题意得,x+2≥0且x﹣2≠0,解得x≥﹣2且x≠2.故答案为:x≥﹣2且x≠2.12.某市居民用电价格是0.53元/千瓦时,居民生活用电x(千瓦时)与应付电费y(元)之间满足y=0.53x,则其中的常量为0.53 ,变量是x,y .【解答】解:某市居民用电价格是0.53元/千瓦时,居民生活用电x(千瓦时)与应付电费y(元)之间满足y=0.53x,则其中的常量为0.53,变量是x,y,故答案为:0.53,x,y.13.在下列4个等式中:①y=x+1;②y=﹣2x;③y2=x;④y=x2,y是x的函数的是①②④.【解答】解:∵对于x的每一个取值,y都有唯一确定的值,∴①y=x+1,②y=﹣2x,④y=x2;当x取值时,y有唯一的值对应;故答案为:①②④.14.某工厂年产值为150万元,如果每增加100万元的投资,一年可增加产值250万元,设总产值为y万元,新增加的投资为x万元,则x,y的关系式为y=2.5x+150 (写成用含x的代数式表示y的形式.)【解答】解:设总投资为y万元,新增加的投资额x万元,则增加产值万元.由题意,得x,y应满足的方程为:y=2.5x+150.故答案是:y=2.5x+150.15.已知函数y=3x﹣5,当x=2时,y= 1 .【解答】解:当x=2时,y=3×2﹣5=1.故答案为:1.16.已知函数y=(k﹣1)x+k2﹣1,当k≠1 时,它是一次函数,当k= ﹣1 时,它是正比例函数.【解答】解:∵函数y=(k﹣1)x+k2﹣1是一次函数,∴k﹣1≠0,即k≠1;函数y=(k﹣1)x+k2﹣1是正比例函数,则k﹣1≠0,k2﹣1=0,∴k=﹣1.故答案为:≠1,﹣1.17.已知函数y=﹣n+2,当n= 2 时,它是正比例函数.【解答】解:∵函数y=﹣n+2,它是正比例函数,∴n2﹣3=1,﹣n+2=0,解得;n=2.故答案为:2.18.已知正比例函数y=kx(k≠0),请选取一个k的值,使y随x的增大而增大,k= 1 .【解答】解:k=1.故答案为:1(答案不唯一,k>0即可).19.若一次函数y=ax+1﹣a中,y随x的增大而增大,且它的图象与y轴交于正半轴,则|a﹣1|+= 1 .【解答】解:∵一次函数y=ax+1﹣a中,y随x的增大而增大,∴a>0,∵它的图象与y轴交于正半轴,∴1﹣a>0,即a<1,故0<a<1;∴原式=1﹣a+a=1.故填空答案:1.20.在一条直线上依次有A、B、C三个港口,甲、乙两船同时分别从A、B港口出发,沿直线匀速驶向C港,最终达到C港.设甲、乙两船行驶x(h)后,与B港的距离分别为y1、y2(km),y1、y2与x的函数关系如图所示.若两船的距离为10km时,甲行驶了或或小时.【解答】解:由函数图象可知,乙船的速度为:=30km/小时,①甲在乙后10km,设行驶时间为x,甲从A行驶了60xkm,乙从B行驶了30xkm,甲在B港后(30﹣60x)Km,乙在B港前30x Km,甲乙相距10Km.由(30﹣60x)+30x=10,得x=;②甲超过乙后,甲在乙前10Km,设行驶时间为x,甲从A行驶了60xKm(已超过了B港),乙从B行驶了30xkm,乙在B港前30xkm,甲在乙前10km处.由60x﹣30﹣30x=10,解得x=(小时).③甲船已经到了而乙船正在行驶,∵90﹣30x=10,解得x=(小时),故答案为:或或.。
专题01一次函数(考题猜想,常考易错7个考点40题专练) 解析版
专题01一次函数(考题猜想,常考易错7个考点40题专练)易错点1忽略正比例函数是特殊的一次函数易错点2解决实际问题时忽视自变量的取值范围易错点3忽略对一次函数中参数符号的讨论易错点4对一次函数的图象与性质理解不透彻易错点5不善于从图象中获取信息易错点6对自变量或函数值代表的实际意义理解不准确而造成错误一次函数的性质一次函数图象与系数的关系 一次函数图象上点的坐标特征 一次函数图象与几何变换 待定系数法求一次函数解析式 一次函数与一元一次不等式一次函数的应用一.一次函数的性质(共7小题)1.(2023春•普陀区期末)直线21y x =-+一定经过的象限是()A .一、二、三象限B .一、二、四象限C .二、三、四象限D .一、三、四象限.【分析】根据k 、b 的符号确定直线21y x =-+所经过的象限即可.【解答】解:20k =-< ,10b =>,∴直线21y x =-+经过第一、二、四象限,故选:B .【点评】本题考查了一次函数图象的性质,熟知:对于直线(y kx b k =+、b 为常数,0)k ≠,当0k >,0b >时,直线y kx b =+经过第一、二、三象限;当0k >,0b <时,直线y kx b =+经过第一、三、四象限;当0k <,0b >时,直线y kx b =+经过第一、二、四象限;当0k <,0b <时,直线y kx b =+经过第二、三、四象限.2.(2023春•松江区期末)一次函数25y x =-的图象不经过的象限是()A .第一象限B .第二象限C .第三象限D .第四象限【分析】由直线的解析式得到0k >,0b <,利用一次函数的性质即可确定直线经过的象限.【解答】解:25y x =- ,0k ∴>,0b <,故直线经过第一、三、四象限.不经过第二象限.故选:B .【点评】此题主要考查一次函数的图象和性质,它的图象经过的象限由k ,b 的符号来确定.3.(2023春•浦东新区校级期末)关于函数21y x =-+,下列结论正确的是()A .图象必经过点(2,1)-B .图象经过第一、二、三象限C .当12x >时,0y <D .y 随x 的增大而增大【分析】根据凡是函数图象经过的点比能使解析式左右相等,故A 错误;根据k 、b 的值进行分析可得B 错误;根据解析式21y x =-+可得12y x -=-,再由12x >可得1122y -->,再解不等式即可得到C 正确;根据一次函数的性质可得D 错误.【解答】解:A 、当2x =-时,2(2)151y =-⨯-+=≠,故图象不经过点(2,1)-,故此选项错误;B 、20k =-<,1b =经过第一、二、四象限,故此选项错误;C 、由21y x =-+可得12y x -=-,当12x >时,0y <,故此选项正确;D 、y 随x 的增大而减小,故此选项错误;故选:C .【点评】此题主要考查了一次函数的性质,以及一次函数图象上点的坐标特点,关键是掌握一次函数的性质:0k >,y 随x 的增大而增大,函数从左到右上升;0k <,y 随x 的增大而减小,函数从左到右下降.由于y kx b =+与y 轴交于(0,)b ,当0b >时,(0,)b 在y 轴的正半轴上,直线与y 轴交于正半轴;当0b <时,(0,)b 在y 轴的负半轴,直线与y 轴交于负半轴.4.(2022春•静安区校级期中)已知一次函数1(12)3y a x a =-+-如果函数值y 随着自变量x 的增大而减小,那么在平面直角坐标系中,这个函数图象与y 轴的交点M 位于y 轴的正半轴.(填正或负)【分析】根据函数值y 随着自变量x 的增大而减小,可得120a -<,求出a 的取值范围,可确定13a -的符号,即可解答.【解答】解: 函数值y 随着自变量x 的增大而减小,120a ∴-<,解得12a >,103a ∴->,∴函数图象与y 轴的交点M 位于y 轴的正半轴,故答案为:正.【点评】本题考查了一次函数的性质,熟练掌握一次函数的性质以及一次函数图象上点的坐标特征是解题的关键.5.(2022春•上海期中)若点1(7,)A y 、点2(5,)B y 是直线1(3y x b b =-为常数)上的点,则1y ,2y 大小关系是12y y >.【分析】根据一次函数的增减性判断即可.【解答】解: 13y x b =-中,103k =>,y ∴随x 的增大而增大,75∴>时,12y y >,故答案为:12y y >.【点评】本题考查一次函数的性质——增减性,解题关键是掌握一次函数的增减性由k 决定.6.(2022春•徐汇区校级期中)当m4时,函数(1)4y m x m =-+-的图象不经过第四象限.【分析】根据题意,分两种情况:①10m ->且40m -,②10m -=,且40m -,分别求解即可.【解答】解:(1)4y m x m =-+- 的图象不经过第四象限,①10m ->且40m -,解得4m ,②10m -=,且40m -,m ∴无解,综上所述,4m ,故答案为:4.【点评】本题考查了一次函数的图象,熟练掌握一次函数的图象与系数的关系是解题的关键.7.(2023春•徐汇区期中)已知函数314y x =-,如果函数值2y >,那么相应的自变量x 的取值范围是4x >.【分析】令3124y x =->,解关于x 的不等式求出x 的取值范围即可.【解答】解: 在函数314y x =-中,函数值2y >,∴3124x ->,4x ∴>.故答案为4x >.【点评】本题主要考查了一次函数的性质,解答本题的关键是令2y >得出x 的不等式,解不等式求出x 的取值范围.二.一次函数图象与系数的关系(共3小题)8.(2022春•奉贤区校级月考)若一次函数2y x b =+的图象不经过第二象限,则b 的取值范围为()A .0b <B .0b C .0b D .0b >【分析】根据题意可知:图象经过一三象限或一三四象限,可得0b =或0b <,再解不等式可得答案.【解答】解:一次函数2y x b =+的图象不经过第二象限,则可能是经过一三象限或一三四象限,经过一三象限时,0b =;经过一三四象限时,0b <.故0b ,故选:B .【点评】此题主要考查了一次函数图象在坐标平面内的位置与k 、b 的关系.解答本题注意理解:直线y kx b =+所在的位置与k 、b 的符号有直接的关系.0k >时,直线必经过一、三象限;0k <时,直线必经过二、四象限;0b >时,直线与y 轴正半轴相交;0b =时,直线过原点;0b <时,直线与y 轴负半轴相交.9.(2023春•徐汇区期中)已知直线3y x m =-+图象经过第一、三、四象限,则m 的取值范围是3m >.【分析】根据一次函数的性质求解.【解答】解: 一次函数3y x m =-+的图象经过第一、三、四象限,30m ∴-+<,解得:3m >,故答案为3m >.【点评】本题考查了一次函数的图象与系数的关系,一次函数y kx b =+经过第一、三、四象限0k >,0b <.10.(2022春•徐汇区校级期中)已知一次函数(2)3y a x =-+的函数值y 随着自变量x 的值增大而减小,那么实数a 的取值范围是2a <.【分析】根据一次函数(0)y kx b k =+≠的增减性来确定k 的符号.【解答】解: 关于x 的一次函数(2)3y a x =-+,y 随着x 的增大而减小,20a ∴-<,解得,2a <.故答案为:2a <.【点评】本题考查一次函数图象与系数的关系.解答本题注意理解:直线y kx b =+所在的位置与k 、b 的符号有直接的关系.0k >时,直线必经过一、三象限.0k <时,直线必经过二、四象限.0b >时,直线与y 轴正半轴相交.0b =时,直线过原点;0b <时,直线与y 轴负半轴相交.三.一次函数图象上点的坐标特征(共10小题)11.(2022春•杨浦区校级期中)下列结论正确的个数是()(1)直线y kx k =-一定经过点(1,0);(2)若直线y kx b =+不经过第四象限,则0k >,0b >;(3)若11(P x ,1)y ,22(P x ,2)y 在直线(0)y kx b k =+<上,且12x x >,则12y y >;(4)若一次函数2(1)2y m x m =-++的图象交y 轴于点(0,3)A ,则1m =±.A .1B .2C .3D .4【分析】(1)代入1x =求出y 值,进而可得出直线y kx k =-一定经过点(1,0);(2)分0k =及0k ≠两种情况考虑,当0k =时,由直线y kx b =+不经过第四象限可得出0b ;当0k ≠时,由直线y kx b =+不经过第四象限,利用一次函数图象与系数的关系可得出0k >,0b ,综上可得出结论(2)不正确;(3)利用一次函数的性质可得出y 随x 的增大而减小,结合12x x >,可得出12y y <,结论(3)不正确;(4)利用一次函数的定义及一次函数图象上点的坐标特征可得出关于m 的一元一次不等式及一元二次方程,解之即可得出m 的值,进而可得出结论(4)不正确.【解答】解:(1)当1x =时,10y k k =⨯-,∴直线y kx k =-一定经过点(1,0),结论(1)正确;(2)当0k =时, 直线y kx b =+不经过第四象限,0b ∴;当0k ≠时, 直线y kx b =+不经过第四象限,∴直线y kx b =+经过第一、三象限或直线y kx b =+经过第一、二、三象限.当直线y kx b =+经过第一、三象限时,0k >,0b =;当直线y kx b =+经过第一、二、三象限时,0k >,0b >,∴若直线y kx b =+不经过第四象限,则0k ,0b ,结论(2)不正确;(3)0k < ,y ∴随x 的增大而减小,又 若11(P x ,1)y ,22(P x ,2)y 在直线(0)y kx b k =+<上,且12x x >,12y y ∴<,结论(3)不正确;(4) 一次函数2(1)2y m x m =-++的图象交y 轴于点(0,3)A ,∴21023m m -≠⎧⎨+=⎩,解得:1m =-,结论(4)不正确.∴正确的结论只有1个.故选:A .【点评】本题考查了一次函数图象上点的坐标特征、一次函数图象与系数的关系、一次函数的性质以及一次函数的定义,逐一分析各个结论的正误是解题的关键.12.(2022春•樊城区期末)当k =1±时,函数3y kx =+的图象与x 轴、y 轴围成等腰直角三角形.【分析】设函数3y kx =+的图象与x 轴、y 轴分别交于A ,B ,得到3OA OB ==,求得(3,0)A ±,代入3y kx =+即可得到结论.【解答】解:设函数3y kx =+的图象与x 轴、y 轴分别交于A ,B , 函数3y kx =+的图象与x 轴、y 轴围成等腰直角三角形,3OA OB ∴==,(3,0)A ∴±,代入3y kx =+得1k ±,故答案为:1±.【点评】本题考查了一次函数图象上点的坐标特征,等腰直角三角形的性质,正确的理解题意是解题的关键.13.(2022春•杨浦区校级期中)一次函数53y x =--与x 轴的交点是3(5-,0).【分析】代入0y =求出x 的值,进而可得出一次函数53y x =--的图象与x 轴的交点坐标.【解答】解:当0y =时,530x --=,解得:35x =-,∴一次函数53y x =--的图象与x 轴的交点坐标是3(5-,0).故答案为:3(5-,0).【点评】本题考查了一次函数图象上点的坐标特征,代入0y =求出x 的值是解题的关键.14.(2022春•奉贤区校级月考)已知一次函数图象与y 轴交于负半轴,图象上的点1(A x ,1)-、2(B x ,2)-,且12x x <,请写出一个符合上述条件的一次函数解析式为2y x =--.【分析】先根据一次函数图象与y 轴交于负半轴,可知b 为负数,再根据一次函数的增减性可知0k <,即可得出解析式.【解答】解: 一次函数图象与y 轴交于负半轴,∴可选2b =-,点1(A x ,1)-、2(B x ,2)-,且12x x <,y ∴随着x 增大而减小,可选1k =-,∴一次函数解析式:2y x =--.故答案为:2y x =--.【点评】本题考查了一次函数得图象与性质,熟练掌握一次函数图象上点的坐标特征与函数增减性是解题的关键.15.(2022春•徐汇区校级期中)如图,一次函数y kx b =+,当函数值2y 时,x 的取值范围是0x .【分析】根据图象得出一次函数y kx b =+交y 轴于点(0,2),y 随x 的增大而增大,根据一次函数与一元一次不等式的关系即可求出答案.【解答】解:根据图象可知:一次函数y kx b =+交y 轴于点(0,2),y 随x 的增大而增大,∴当函数值2y 时,x 的取值范围是:0x .故答案为:0x .【点评】本题考查了一次函数和一元一次不等式的关系的应用,解此题的关键是能根据图象理解一次函数与一元一次不等式的关系,题型较好,是一道容易出错的题目.16.(2022春•杨浦区校级期中)规定:[k ,]b 是一次函数(y kx b k =+、b 为实数,0)k ≠的“特征数”.若“特征数”是[4,5]m -的一次函数是正比例函数,则直线y mx m =+与y 轴的交点坐标是(0,5).【分析】根据正比例函数的定义求出m 的值,然后求出直线y mx m =+与y 轴的交点坐标即可.【解答】解:由题意得:“特征数”是[4,5]m -的一次函数是正比例函数,50m ∴-=,5m ∴=,55y mx m x ∴=+=+,∴直线y mx m =+与y 轴的交点坐标是(0,5),故答案为:(0,5).【点评】本题考查了一次函数图象上点的坐标特征,正比例函数的定义,熟练掌握正比例函数的定义是解题的关键.17.(2022春•虹口区校级月考)点(2,)A m -在一次函数312y x =+的图象上,一次函数与x 轴相交于点B ,B 、C 两点关于y 轴对称.将ACB ∠沿x 轴左右平移到AC B ''∠,在平移过程中,将该角绕点C '旋转,使它的一边始终经过点A ,另一边与直线AB 交于点B '.若△AC B ''为等腰直角三角形,且90A ∠=︒,则点B '的坐标为(8,12)--或(4,24).【分析】根据题意90B AC ''∠=,AB AC ''=,当B 在A 下方时,通过证得△B MA ANC ''≅∆,求得M 的坐标,把M 的横坐标代入直线解析式即可求得B '的坐标;当B 在A 上方时,根据B ''与B '关于A 点对称,即可求得B ''的坐标.【解答】解: 点(2,)A m -在一次函数312y x =+的图象上,3(2)126m ∴=⨯-+=,(2,6)A ∴-,令0y =,则4x =-,(4,0)B ∴-,B 、C 两点关于y 轴对称,(4,0)C ∴,△AC B ''为等腰直角三角形,且90A ∠=︒,45ACB AC B ''∴∠=︒=∠,90B AC ''∴∠=,AB AC ''=,Ⅰ.当B 在A 下方时,作B M x '⊥轴,C N x '⊥轴,与过A 点,且平行与x 轴的直线交于M 、N ,90B AM C AN AB M B AM ∠'+∠'=︒=∠'+∠' ,AB M C AN ∴∠'=∠',在△B MA '和ANC '∆中90AB M C AN AMB C NA AB C A ∠'=∠'⎧⎪∠'=∠'=︒⎨⎪'='⎩,∴△()B MA ANC AAS ''≅∆,||6A C N y AM '∴===,(8,6)M ∴-,将8x =-代入312y x =+,得12y =-,(8,12)B '∴--;Ⅱ.当B 在A 上方时,此时,B ''与B '关于A 点对称,(4,24)B ∴''.故答案为:(8,12)--或(4,24).【点评】本题考查了一次函数图象上点的坐标特征,等腰直角三角形的性质,三角形全等的判定和性质,求得M 点的坐标是解题的关键.18.(2022春•嘉定区校级期中)已知,一次函数y kx b =+的图象经过点(2,1)A (如图所示),当1y 时,x 的取值范围是2x .【分析】直接根据一次函数的图象即可得出结论.【解答】解: 一次函数y kx b =+的图象经过点(2,1)A ,∴当1y 时,2x .故答案为:2x .【点评】本题考查的是一次函数图象上点的坐标特点,能利用函数图象直接得出不等式的解集是解答此题的关键.19.(2022春•黄浦区校级期中)已知直线1y =+与x 轴、y 轴分别交于点A 、点B ,在坐标轴上有一个点C (不与原点O 重合),使得ABC ∆是直角三角形,那么点C 的坐标为,0)或(0,3)-.【分析】先求出A ,B 点坐标,根据勾股定理可得AB 的值,可知30BAO ∠=︒,ABC ∆是直角三角形,分三种情况:①90ACB ∠=︒,②90ABC ∠=︒,③90BAC ∠=︒,根据直角三角形,30︒所对的直角边是斜边的一半,分解求解即可.【解答】解:当0x =时,11y =+=,(0,1)B ∴,当10y =+=时,x =(A ∴,0),OA ∴=,1OB =,在AOB ∆中,根据勾股定理,得2AB =,30BAO ∴∠=︒,60ABO ∠=︒,当ABC ∆是直角三角形时,分三种情况:①90ACB ∠=︒,此时C 点与原点重合,不符合题意;②90ABC ∠=︒时,如图所示:30OBC ∴∠=︒,设OC x =,则2BC x =,30BAO ∠=︒ ,24AC BC x ∴==,4x x +=,解得x =3(3C ∴,0),③当90BAC ∠=︒时,此时30ACB ∠=︒,3OC ∴==,(0,3)C ∴-,综上,C 点坐标为(3,0)或(0,3)-,故答案为:(3,0)或(0,3)-.【点评】本题考查了一次函数与直角三角形的综合,熟练掌握30︒直角三角形的性质以及分类讨论思想是关键.20.(2023春•静安区校级期中)已知:直线1322y x =-+与x 轴交于点M ,与y 轴交于点N ,将MON ∆绕着坐标原点逆时针旋转90︒,与x 轴交于点A ,与y 轴交于点B .(1)求A 、B 两点的坐标;(2)过B 点作直线BP 与x 轴交于点P ,且使2OP OA =,求ABP ∆的面积.【分析】(1)先求出OM 、ON 的长,进而利用旋转的性质即可得解;(2)由32OA =,2OP OA =,求出点P 的坐标,进而即可求得ABP ∆的面积.【解答】解:(1)对于直线1322y x =-+,令0y =得13022x =-+,解得3x =,令0x =,得32y =,∴直线1322y x =-+与x 轴交于点M ,与y 轴交于点N ,3OM ∴=,32ON =, 将MON ∆绕着坐标原点逆时针旋转90︒,与x 轴交于点A ,与y 轴交于点B ,32OA ON ∴==,3OB OM ==,∴3(,0)2A -,(0,3)B ;(2)32OA =,2OP OA =,3OP ∴=, 过B 点作直线BP 与x 轴交于点P ,(3,0)P ∴-或(3,0)P ,3OB = ,∴当(3,0)P -时,1139|3|32224ABP S AP OB ∆=⨯⨯=⨯-⨯=;当(3,0)P 时,11327|3|32224ABP S AP OB ∆=⨯⨯=⨯+⨯=.【点评】本题主要考查了一次函数的图象与性质,坐标与图象以及旋转图形的性质,熟练掌握一次函数的性质时解题的关键.四.一次函数图象与几何变换(共4小题)21.(2022春•杨浦区校级期中)将一次函数24y x =-的图象向上平移4个单位后,图象经过原点.【分析】根据直线y kx b =+向上平移(0)m m >个单位所得直线解析式为y kx b m =++求解.【解答】解:因为一次函数24y x =-的图象向上平移4个单位后,得到直线2442y x x =-+=,图象经过原点,故答案为:4.【点评】此题主要考查了一次函数图象与几何变换,求直线y kx b =+平移后的解析式时要注意直线平移时k 的值不变,只有b 的值发生变化.解析式变化的规律是:左加右减,上加下减.22.(2022春•宝山区校级期中)将直线32y x =+沿y 轴向下平移4个单位,那么平移后直线的表达式是32y x =-.【分析】由平移的规律可直接求得答案.【解答】解:直线32y x =+沿y 轴向下平移4个单位长度后的函数解析式是32432y x x =+-=-,故答案为:32y x =-.【点评】本题主要考查图象的平移,掌握平移的规律是解题的关键,即“左加右减,上加下减”.23.(2022春•长宁区校级期中)如图,在平面直角坐标系xOy 中,直线443y x =-+与x 轴、y 轴分别交于点A 、点B ,点D 在y 轴的负半轴上,若将DAB ∆沿直线AD 折叠,点B 恰好落在x 轴正半轴上的点C 处.(1)求AB 的长;(2)求点C 和点D 的坐标;(3)y 轴上是否存在一点P ,使得12PAB OCD S S ∆∆=?若存在,直接写出点P 的坐标;若不存在,请说明理由.【分析】(1)先求得点A 和点B 的坐标,则可得到OA 、OB 的长,然后依据勾股定理可求得AB 的长,(2)依据翻折的性质可得到AC 的长,于是可求得OC 的长,从而可得到点C 的坐标;设OD x =,则4CD DB x ==+.,Rt OCD ∆中,依据勾股定理可求得x 的值,从而可得到点(0,6)D -.(3)先求得PAB S ∆的值,然后依据三角形的面积公式可求得BP 的长,从而可得到点P 的坐标.【解答】解:(1)令0x =得:4y =,(0,4)B ∴.4OB ∴=令0y =得:4043x =-+,解得:3x =,(3,0)A ∴.3OA ∴=.在Rt OAB ∆中,5AB =.(2)5AC AB == ,358OC OA AC ∴=+=+=,(8,0)C ∴.设OD x =,则4CD DB x ==+.在Rt OCD ∆中,222DC OD OC =+,即222(4)8x x +=+,解得:6x =,(0,6)D ∴-.(3)存在,理由如下:12PAB OCD S S ∆∆= ,11681222PAB S ∆∴=⨯⨯⨯=. 点P 在y 轴上,12PAB S ∆=,∴1122BP OA = ,即13122BP ⨯=,解得:8BP =,P ∴点的坐标为(0,12)或(0,4)-.【点评】本题主要考查的是一次函数的综合应用,解答本题主要应用了翻折的性质、勾股定理、待定系数法求函数解析式、三角形的面积公式,依据勾股定理列出关于x 的方程是解题的关键.24.(2022春•静安区校级期中)已知:如图所示,直线443y x =-+的与x 轴、y 轴分别交于点B 和点A ,将这条直线平移后与x 轴、y 轴分别交于点C 和点D ,且BA CB =.(1)求点C 的坐标;(2)求CD 所在直线的函数解析式.【分析】(1)由直线AB 的解析式即可求得A 、B 的坐标,然后根据勾股定理求得AB ,由BA CB =即可得出点C 的坐标为(2,0)-或(8,0);(2)根据平行直线的解析式的k 值相等设出直线CD 的表达式,然后把C 点的坐标代入求解即可.【解答】解:(1) 直线443y x =-+的与x 轴、y 轴分别交于点B 和点A ,(0,4)A ∴,(3,0)B ,4OA ∴=,3OB =,5AB ∴==,将这条直线平移后与x 轴、y 轴分别交于点C 和点D ,且BA CB =,∴点C 的坐标为(2,0)-或(8,0);(2)设直线CD 的解析式为43y x c =-+,当点C 的坐标为(2,0)-时,40(2)3c =-⨯-+,解得83c =-,当点C 的坐标为(8,0)时,4083c =-⨯+,解得323c =,∴直线CD 的解析式为4833y x =--或43233y x =-+.【点评】本题考查了一次函数图象与几何变换,一次函数图象上点的坐标特征,勾股定理的应用,重点是求得C 点的坐标,难点在于利用平行直线的解析式的k 值相等设出直线CD 的表达式.五.待定系数法求一次函数解析式(共5小题)25.(2022春•浦东新区校级期中)已知一次函数图象经过点(2,2)A --、(0,4)B -.(1)求k 、b 的值;(2)求这个一次函数与两坐标轴所围成的面积.【分析】(1)设所求一次函数的解析式为y kx b =+,(2,2)A --、(0,4)B -代入,可得出函数解析式;(2)先根据函数解析式求出与坐标轴的交点,再根据面积1||||2x y =得出与坐标轴围成的面积.【解答】解:(1)设(0)y kx b k =+≠.把(2,2)A --,(0,4)B -代入,224k b b -+=-⎧⎨=-⎩,解得14k b =-⎧⎨=-⎩.4y x ∴=--;(2)4y x =-- ,∴与x 轴的交点坐标为(4,0)-,与y 轴的交点坐标为(0,4)-,14482S ∴=⨯⨯=.【点评】本题考查待定系数法求一次函数解析式,注意掌握一次函数与坐标轴围成三角形的面积为1||||2x y =.26.(2022春•长宁区校级期中)已知一次函数的图象经过点(2,4)A -、(1,2)B ,求这个一次函数的解析式.【分析】设一次函数解析式为(0)y kx b k =+≠.把(2,4)A -,(1,2)B 分别代入该解析式,列出关于系数k 、b 的方程组,通过解方程组即可求得它们的值.【解答】解:设一次函数解析式为y kx b =+.把(2,4)A -,(1,2)B 分别代入(0)y kx b k =+≠中得:242k b k b +=-⎧⎨+=⎩,解得68k b =-⎧⎨=⎩,故所求一次函数解析式为68y x =-+.【点评】本题考查了待定系数法求一次函数解析式.用待定系数法求函数的解析式.先根据条件列出关于字母系数的方程,解方程求解即可得到函数解析式.27.(2022春•黄浦区校级期中)如图,在平面直角坐标系中(O 为坐标原点),已知直线y kx b =+与x 轴y 轴分别交于点(2,0)A -、点(0,1)B -,点C 的坐标是(0,2).(1)求直线AB 的表达式.(2)设点D 为直线AB 上一点,且CD BD =.求点D 的坐标.【分析】(1)用待定系数法求解析式;(2)根据等腰三角形三线合一,求出D 点纵坐标,代入直线解析式求出D 点横坐标即可.【解答】解:(1) 直线y kx b =+与x 轴、y 轴分别交于点(2,0)A -、点(0,1)B -,∴201k b b -+=⎧⎨=-⎩,解得121k b ⎧=-⎪⎨⎪=-⎩,∴直线AB 的表达式为:112y x =--.(2)过点D 作DH BC ⊥,垂足为H,如图所示:CD BD = ,12HC HB BC ∴==,3BC = ,32CH ∴=,2OC = ,12OH ∴=,∴把12y =代入直线112y x =--,得11122x =--,解得3x =-D ∴点坐标为1(3,2-.【点评】本题考查了一次函数与等腰三角形的综合,利用等腰三角形的性质求解D 点坐标是解决本题的关键.28.(2021春•松江区月考)如图,在平面直角坐标系xOy 中,一次函数的图象经过点(3,0)A -与点(0,4)B .(1)求这个一次函数的表达式;(2)若点M 为此一次函数图象上一点,且MOB ∆的面积为12,求点M 的坐标;(3)点P 为x 轴上一动点,且ABP ∆是等腰三角形,请直接写出点P的坐标.【分析】(1)设一次函数的表达式为y kx b =+,把点A 和点B 的坐标代入求出k ,b 的值即可;(2)点M 的坐标为4(,4)3a a +,根据MOB ∆的面积为12,列出关于a 的等式,解之即可;(3)分三种情形讨论即可①当AB AP =时,②当BA BP =时,③当PA PB =时.【解答】解:(1)设一次函数的表达式为y kx b =+,把点(3,0)A -与点(0,4)B 代入得:304k b b -+=⎧⎨=⎩,解得:434k b ⎧=⎪⎨⎪=⎩,此一次函数的表达式为:443y x =+;(2)设点M 的坐标为4(,4)3a a +,(0,4)B ,4OB ∴=,又MOB ∆ 的面积为12,∴1||4122a ⨯⨯=,||6a ∴=,6a ∴=±,∴点M 的坐标为(6,12)或(6,4)--;(3) 点(3,0)A -,点(0,4)B .3OA ∴=,4OB =,5AB ∴===,当PA AB =时,P 的坐标为(8,0)-或(2,0);当PB AB =时,P 的坐标为(3,0);当PA PB =时,设P 为(,0)m ,则222(3)4m m +=+,解得76m =,P ∴的坐标为7(6,0);综上,P 点的坐标为(8,0)-或(2,0)或(3,0)或7(6,0).【点评】本题考查一次函数综合题、待定系数法、等腰三角形的判定和性质、三角形面积等知识,解题的关键是灵活运用所学知识,学会用转化的思想思考问题,属于中考常考题型.29.(2021春•浦东新区月考)已知,如图,一次函数的图象经过点(6,4)P 和(0,4)B -,与x 轴交于点A .(1)求一次函数的解析式;(2)在y 轴上存在一点M ,且ABM ∆的面积为152,求点M 的坐标.【分析】(1)通过待定系数法求解.(2)通过三角形的面积求出BM的长度,再求出点M的坐标.【解答】解:(1)设一次函数的解析式为y kx b=+,把点(6,4)P和(0,4)B-代入y kx b=+得644k bb+=⎧⎨=-⎩,解得434kb⎧=⎪⎨⎪=-⎩,所以一次函数解析式为443y x=-;(2)当0y=时,4403x-=,解得3x=,则(3,0)A,在y轴上存在一点M,且ABM∆的面积为15 2,∴11522ABM AS BM x∆=⋅=,即115322BM⨯=.5BM∴=,(0,4)B-,(0,1)M∴或(0,9)-.【点评】本题考查待定系数法及函数与三角形的结合应用,解题关键是熟练掌握待定系数法及注意图形题的多解情况.六.一次函数与一元一次不等式(共4小题)30.(2023春•静安区校级期中)如图,直线y kx b=+交坐标轴于(3,0)A-、(0,5)B两点,则不等式0kx b--<的解集为()A.3x>-B.3x<-C.3x>D.3x<【分析】首先根据不等式的性质知,不等式0+>的解集,然后由一次函kx b--<的解集即为不等式0kx b数的图象可知,直线y kx b=+落在x轴上方的部分所对应的x的取值,即为不等式0+>的解集,从而kx b得出结果.【解答】解:观察图象可知,当3=+落在x轴的上方,x>-时,直线y kx b即不等式0x>-,kx b+>的解集为3--<kx bkx b∴+>,x>-.∴--<解集为3kx b故选:A.【点评】本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.31.(2023春•宝山区校级期中)如图,已知一次函数y kx bB-,那么关于xA与(0,4)=+的图象经过点(5,0)的不等式0x<.kx b+<的解集是5【分析】首先利用图象可找到图象在x轴下方时5+<的解集是5x<.x<,进而得到关于x的不等式0kx b【解答】解:由题意可得:一次函数y kx b=+中,0y<时,图象在x轴下方,5x<,则关于x的不等式0x<,+<的解集是5kx b故答案为:5x<.【点评】此题主要考查了一次函数与一元一次不等式,关键是掌握数形结合思想.认真体会一次函数与一元一次不等式之间的内在联系.32.(2023春•浦东新区校级期末)已知直线(0)-和(0,2)-,那=+≠与x轴和y轴的交点分别是(1,0)y kx b k么关于x的不等式0x>-.kx b+<的解集是1【分析】直接根据函数图象的性质解不等式0+<即可.kx b【解答】解: 直线(0)-,-和(0,2)y kx b k=+≠与x轴和y轴的交点分别是(1,0)所以0x>-.+<的解集1kx b故答案为:1x>-.【点评】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y kx b =+的值大于(或小于)0的自变量x 的取值范围.33.(2023春•松江区期末)如图:点(2,3)-在直线(0)y kx b k =+≠上,则不等式3kx b +关于x 的解集是2x -.【分析】不等式3kx b +的解集就是图象在2x -的部分,据此即可求解.【解答】解:由函数图象知:不等式3kx b +关于x 的解集是2x -.故答案为:2x -.【点评】本题考查了一次函数与一元一次不等式的知识,解题的关键是根据函数的图象解答,难度不大.七.一次函数的应用(共7小题)34.(2022春•杨浦区校级期中)上海浦东某瓜果合作社有一批黄金瓜需要装入某一规格的纸箱投入市场.这种特定的纸箱有两种方案可供选择:方案一:从纸箱厂购买这种纸箱,每个纸箱价格为4元;方案二:由瓜果合作社租赁机器自己加工制作这种纸箱,机器租赁费按生产纸箱数收取,工厂需要一次性投入机器安装等费用16000元,每加工一个纸箱还需成本费2.4元;(1)若需要这种规格的纸箱x 个,请分别写出从纸箱厂购买纸箱的费用1y (元)和瓜果合作社自己加工制作纸箱的费用2y (元)关于x (个)的函数关系式;(2)假设你是决策者,你认为应该选择哪种方案?并说明理由.【分析】(1)由已知条件可以得出两个方案的解析式14y x =,2 2.416000y x =+.(2)使21y y -得,16000 1.60x -=,解得10000x =,讨论x 的取值范围来比较来比较两个方案的优缺点.【解答】解:(1)从纸箱厂定制购买纸箱费用:14y x =,瓜果合作社自己加工纸箱费用:2 2.416000y x =+;(2)21 2.416000416000 1.6y y x x x -=+-=-,由12y y =得,16000 1.60x -=,解得10000x =,∴当10000x <时,12y y <,选择方案一,从纸箱厂定制购买纸箱所需的费用低.当10000x >时,12y y >,选择方案二,加工厂自己加工制作纸箱所需的费用低.当10000x =时,12y y =,选择两个方案的费用相同.【点评】本题考查一次函数的应用,关键是列出函数解析式.35.(2022春•闵行区校级期中)一果农带了若干千克自产的苹果进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又半价售完剩下的苹果.售出苹果千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)果农自带的零钱是多少?(2)降价前他每千克苹果出售的价格是多少?(3)降价售完剩余苹果后,这时他手中的钱(含备用零钱)是1120元,问果农一共带了多少千克苹果?【分析】(1)根据函数图象可以得到果农自带的零钱是多少;(2)根据函数图象中的数据可以得到降价前他每千克苹果出售的价格是多少;(3)根据(2)中的结果可以得到降价后的售价,再根据图象中的数据即可解答本题.【解答】解:(1)由图可知,果农自带的零钱是40元;(2)由图象可得,(100040)8012-÷=(元/千克),答:降价前他每千克苹果出售的价格是12元/千克;(3)后来又按半价出售,则降价后的售价是1226÷=元/千克,(11201000)620-÷=(千克),8020100+=(千克),答:果农一共带了100千克苹果.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【答案】C
【解析】
【分析】
【详解】
∵A(x1,y1)、B(x2,y2)是一次函数 图象上的不同的两点, ,
∴该函数图象是y随x的增大而减小,
∴a+1<0,
解得a<-1,
故选C.
【点睛】
此题考查了一次函数图象上点的坐标特征,要根据函数的增减性进行推理,是一道基础题.
5.如图,已知一次函数 的图象与坐标轴分别交于A、B两点,⊙O的半径为1,P是线段AB上的一个点,过点P作⊙O的切线PM,切点为M,则PM的最小值为()
A.2 B. C. D.
【答案】D
【解析】
【分析】
【详解】
解:连结OM、OP,作OH⊥AB于H,如图,先利用坐标轴上点的坐标特征:
当x=0时,y=﹣x+2 =2 ,则A(0,2 ),
④y=3x,当x>1时,函数值y随自变量x增大而增大,故此选项符合题意;
故选:B.
【点睛】
此题考查一次函数、正比例函数、反比例函数,正确把握相关性质是解题关键.
4.如图,函数 和 的图象相交于点 ,则关于 的不等式 的解集为()
A. B. C. D.
【答案】A
【解析】
【分析】
直接利用函数图象上点的坐标特征得出m的值,再利用函数图象得出答案即可.
【详解】
解:∵函数y=−4x和y=kx+b的图象相交于点A(m,−8),
∴−8=−4m,
解得:m=2,
故A点坐标为(2,−8),
∵kx+b>−4x时,(k+4)x+b>0,
则关于x的不等式(k+4)x+b>0的解集为:x>2.
故选:A.
【点睛】
此题主要考查了一次函数与一元一次不等式,正确利用函数图象分析是解题关键.
A. B.2C. D.2
【答案】C
【解析】
【分析】
通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD= ,应用两次勾股定理分别求BE和a.
【详解】
过点D作DE⊥BC于点E
.
由图象可知,点F由点A到点D用时为as,△FBC的面积为acm2..
∴AD=a.
本题考查切线的性质;一次函数图象上点的坐标特征.
6.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是( )
A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0
【答案】C
【解析】
【分析】根据一次函数的图象与系数的关系进行解答即可.
【详解】∵一次函数y=kx+b的图象经过一、二、四象限,
8.在同一平面直角坐标系中的图像如图所示,则关于 的不等式的解为().
A. B. C. D.无法确定
【答案】C
【解析】
【分析】
求关于 的不等式 的解集就是求:能使函数 的图象在函数 的上边的自变量的取值范围.
【详解】
解:能使函数 的图象在函数 的上边时的自变量的取值范围是 .
故关于 的不等式 的解集为: .
当x=50时, ,
即第50天,该植物的高度为16厘米;
故④的说法错误.
综上所述,正确的是①②③.
故选:A.
【点睛】
本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,已知自变量求函数值,仔细观察图象,准确获取信息是解题的关键.
11.下列各点在一次函数y=2x﹣3的图象上的是( )
A.(2,3)B.(2,1)C.(0,3)D.(3,0
C. 与 之间的函数关系式为 D.小张买瓶子的最少费用是28元
【答案】C
【解析】
【分析】
设购买A型瓶x个,B( )个,由题意列出算式解出个选项即可判断.
【详解】
设购买A型瓶x个,
∵买瓶子用来分装15升油,瓶子都装满,且无剩油,
∴购买B型瓶的个数是 ,
∵瓶子的个数为自然数,
∴x=0时, =5; x=3时, =3; x=6时, =1;
【详解】
解:∵CD∥x轴,
∴从第50天开始植物的高度不变,
故①的说法正确;
设直线AC的解析式为y=kx+b(k≠0),
∵经过点A(0,6),B(30,12),
∴ ,
解得: ,
∴直线AC的解析式为 (0≤x≤50),
故②的结论正确;
当x=40时, ,
即第40天,该植物的高度为14厘米;
故③的说法正确;
当y=0时,﹣x+2 =0,解得x=2 ,则B(2 ,0),
所以△OAB为等腰直角三角形,则AB= OA=4,OH= AB=2,
根据切线的性质由PM为切线,得到OM⊥PM,利用勾股定理得到PM= = ,
当OP的长最小时,PM的长最小,而OP=OH=2时,OP的长最小,所以PM的最小值为 .
故选D.
【点睛】
【答案】C
【解析】
【分析】
根据题意结合图象即可得出甲的速度;根据图象即可得出甲比乙早出发0.5小时;根据两条线段的交点即可得出相遇的时间;根据图形即可得出乙出发3h时到达A地.
【详解】
解:A.甲的速度为:60÷2=30,故A错误;
B.根据图象即可得出甲比乙早出发0.5小时,故B错误;
C.设 对应的函数解析式为 ,
故选: .
【点睛】
本题考查了一次函数与一元一次不等式的关系,从函数的角度看,就是寻求使一次函数 的值大于(或小于)0的自变量 的取值范围;从函数图象的角度看,就是确定直线 在 轴上(或下)方部分所有的点的横坐标所构成的集合.利用数形结合是解题的关键.
9.如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为( )
所以: ,解得
即 对应的函数解析式为 ;
设 对应的函数解析式为 ,
所以: ,解得
即 对应的函数解析式为 ,
所以: ,解得
∴点A的实际意义是在甲出发1.4小时时,甲乙两车相遇,故本选项符合题意;
D.根据图形即可得出乙出发3h时到达A地,故D错误.
故选:C.
【点睛】
本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和数形结合的思想解答.
∴ DE•AD=a.
∴DE=2.
当点F从D到B时,用 s.
∴BD= .
Rt△DBE中,
BE= ,
∵四边形ABCD是菱形,
∴EC=a-1,DC=a,
Rt△DEC中,
a2=22+(a-1)2.
解得a= .
故选C.
【点睛】
本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.
A.1个B.2个C.3个D.4个
【答案】C
【解析】
【分析】
根据题意,确定①-③正确,当两人相距10千米时,应有3种可能性.
【详解】
解:根据题意可以列出甲、乙两人离B地的距离y(km)与行驶时间x(h)之间的函数关系得:
y甲=-15x+30
y乙=
由此可知,①②正确.
当15x+30=30x时,
解得x=
则M坐标为( ,20),故③正确.
10.某生物小组观察一植物生长,得到的植物高度y(单位:厘米)与观察时间x(单位:天)的关系,并画出如图所示的图象(AC是线段,直线CD平行于x轴).下列说法正确的是().
①从开始观察时起,50天后该植物停止长高;
②直线AC的函数表达式为 ;
③第40天,该植物的高度为14厘米;
④该植物最高为15厘米.
【答案】B
【解析】
【分析】
把各点分别代入一次函数y=2x﹣3进行检验即可.
【详解】
A、2×2﹣3=1≠3,原式不成立,故本选项错误;
B、2×2﹣3=1,原式成立,故本选项正确;
C、2×0﹣3=﹣3≠3,原式不成立,故本选项错误;
D、2×3﹣3=3≠0,原式不成立,故本选项错误,
故选B.
【点睛】
本题考查了一次函数图象上点的坐标特征,熟知一次函数图象上的点的坐标满足一次函数的解析式是解题的关键.解答时只要把四个选项一一代入进行检验即可.
当两人相遇前相距10km时,
30x+15x=30-10
x= ,
当两人相遇后,相距10km时,
30x+15x=30+10,
解得x=
15x-(30x-30)=10
得x=
∴④错误.
选C.
【点睛】
本题为一次函数应用问题,考查学生对于图象分析能力,解答时要注意根据两人运动状态分析图象得到相应的数据,从而解答问题.
一次函数易错题汇编及解析
一、选择题
1.如图1所示,A,B两地相距60km,甲、乙分别从A,B两地出发,相向而行,图2中的 , 分别表示甲、乙离B地的距离y(km)与甲出发后所用的时间x(h)的函数关系.以下结论正确的是( )
A.甲的速度为20km/h
B.甲和乙同时出发
C.甲出发1.4h时与乙相遇
D.乙出发3.5h时到达A地
12.在一条笔直的公路上有 、 两地,甲乙两人同时出发,甲骑自行车从 地到 地,乙骑自行车从 地到 地,到达 地后立即按原路返回 地.如图是甲、乙两人离 地的距离 与行驶时间 之间的函数图象,下列说法中① 、 两地相距30千米;②甲的速度为15千米/时;③点 的坐标为( ,20);④当甲、乙两人相距10千米时,他们的行驶时间是 小时或 小时.正确的个数为( )
【详解】
根据图象知:
A、k<0,﹣k<0.解集没有公共部分,所以不可能;