铝电解电容器的特性及计算公式

合集下载

铝电解电容器寿命的计算方法

铝电解电容器寿命的计算方法

铝电解电容器寿命的计算方法作者:iC921栏目:模拟技术铝电解电容器寿命的计算方法铝电解电容器寿命的计算方法偶然碰到这篇小文章,考虑到最近不时有人提问有关此类问题,也觉得有一定的意义,故而整理一下,帖出来供大家参考。

只是个别地方译不出来,有点遗憾。

这次赶巧了,今天还知道有位小老乡赶上今天生日,说好了算作今天偶给她的小礼物,愿她能及早看到。

September 5,2001RUBYCON CORPORATIONENGINEERING DIVISIONTO: ACBEL POLYTECH INC.LIFETIME CALCULATION FORMULA OF ALUMINUM ELECTROLYTIC CAPACITORS铝电解电容的寿命的计算公式1. Lifetime Calculation Formula 寿命计算公式L : Life expectancy at the time of actualuse.实际使用平均寿命Lb : Basic life at maximum operating 最大工作温度下的基本寿命ΔTj : Internal temperature rise when actual ripple current is applied. 加入实际波纹电流后,电容内部的温升忽略纹波电流时的寿命推算一般而言,铝电解电容器的寿命与周围的环境温度有很大的关系,其寿命可以由以下公式计算。

其中,L:温度T时的寿命L0:温度T0时的寿命与温度比较,降压使用对电容器的寿命影响很小,可忽略不计。

考虑纹波电流时寿命的推算叠加纹波电流,由于内部等效串连电阻(ESR)引起发热,从而影响电容器的使用寿命,产生的热量可由下式计算I:纹波电流(Arms)R:等效串联电阻(Ω)由于发热引起的温升其中,△T: 电容器中心的温升(℃)I: 纹波电流 (Arms)R: ESR (Ω)A: 电容器的表面积(cm2)H: 散热系数( 1.5~2.0x10-3W/cm2x℃)上面公式(3)显示电容器的温度上升与纹波电流的平方以及等效串联电阻ESR成正比,与电容器的表面积成反比,因此,纹波电流的大小决定着产生热量的大小,且影响其使用寿命,电容器的类型以及使用条件影响着△T值的大小,般情况下,△T<5℃。

铝质电解电容器简介

铝质电解电容器简介

LCR Meter
7. 信賴性測試
TEAPO
Electrolytic capacitors reliability test procedures and Requirement
A: This is a summary of reliability test procedures and requirements for TEAPO electrolytic capacitors. No Item Standard Conditions of test
3.含浸時間及真空度確認
5.電解電容器製程 素子裝配工程 洗滌工程
1.
封口束腰長度
1. 2. 3.
2.
3. 4.
X-Ray 確認(內部結構)
T-C Short Test 裝備機台維護保養
第一道加溫清洗(1% 中性清 潔劑洗滌) 85℃ / 1 hours to dry 針對PET套管為保證烘乾增 加了時間
2.電 容 器 特 性
TEAPO
Capacitance:靜電容量
電解電容器的靜電容量是依據JIS的規定,在120Hz的 交流紋波電流所測之值,也是表示該電容器能儲存電能的 能力,其計算公式: Q(庫倫)=C(法拉)*V(伏特) 在長時間使用中,有漸增及漸減兩種現象;漸增是氧 化皮膜被電解質溶解而減少厚度之現象;漸減則是電解質 中的水份蒸發後,電解質的粘度及電阻增加而發生的一種 現象:靜電容量在溫度低時,電容量會減少,高時會增加, 而在頻率高的時候,容值是呈減少現象。
3.電 容 器 材 料 介 紹
b. 負極鋁箔:即有極性電解電容器用的負極鋁箔,原箔經腐 蝕處理後的負極箔均可當作負極用,其負箔的 純度較正箔低且比正極箔薄。
c. 化成處理(Forming):化成的目的是在原箔或腐蝕箔的 利用化學藥品表面,與直流電源 起電解作用使附著一層氧化皮膜。

铝电解电容寿命计算

铝电解电容寿命计算

铝电解电容器寿命计算公式一、考虑实际施加纹波电流的计算方法正常情况下,影响电容器寿命的因素主要有三个,分别为环境温度、纹波电流、实际施加的电压。

电容器实际使用寿命的推算可用下面的公式表示:L X=L0〃K T〃K V〃K R其中L X:电容器实际使用寿命L0:电容器在额定条件下的寿命K T:电容器温度系数K V:电容器电压系数K R:电容器纹波电流系数1、K T 铝电解电容器的使用遵循10℃原则,即使用温度每降低10℃,寿命延长一倍。

K T的计算如下:K T=2(T0-T)/10其中T0:额定温度T:电容器实际工作温度2、K V 对于表面安装、引线、轴向式的铝电解电容器来说,降压使用不会对电容器的使用寿命造成影响。

因此,对于这些产品来说,K V=1。

但对于特大型产品,电容器在使用过程中,电压的大小影响其寿命,一般有如下关系:K V=(U1/U2)n其中U1:额定工作电压U2:实际工作电压n:系数,当1≤U1/U2≤1.25 n=51.25≤U1/U2≤2 n=3U1/U2>2 n=13、K R 实际的工作情况下,电容器纹波电流的系数由下式确定:K R=2A〃ΔT0/10其中A=﹛1-﹝I/I0﹞2﹜I:额定纹波电流(同频率)I0:实际纹波电流(同频率)ΔT0:额定温度下,铝电解电容器中心允许温升二、利用电容器温升的计算方法我们也可以通过测试电容器在实际使用过程中的温度升高来推算电容器的使用寿命,具体的计算方法如下:L x=L0〃2(T1-T2)/10 〃(U1/U2)2.5其中L0:电容器在额定条件下的寿命L2:电容器实际使用寿命T1:电容器中心允许承受的最高温度T2:电容器工作时的中心实际温度U1:电容器的额定电压U2:电容器的实际工作电压注: 电容器允许承受的最高温度一般是在额定温度上加5度或10度。

对于85度电解, 允许承受的最高温度是95度;对于105度电解, 允许承受的最高温度是110度。

常用电容器主要参数与特点

常用电容器主要参数与特点

常用电容器主要参数与特点1、标称电容量和允许偏差标称电容量是标志在电容器上的电容量。

电解电容器的容值,取决于在交流电压下工作时所呈现的阻抗。

因此容值,也就是交流电容值,随着工作频率、电压以及测量方法的变化而变化。

在标准JISC 5102 规定:铝电解电容的电容量的测量条件是在频率为 120Hz,最大交流电压为(Voltage Root Mean Square,通常指交流电压的有效值),DC bias (直流偏压直流偏置直流偏移直流偏磁)电压为~的条件下进行。

可以断言,铝电解电容器的容量随频率的增加而减小。

电容器中存储的能量E = CV^2/2电容器的线性充电量I = C (dV/dt)电容的总阻抗(欧姆)Z = √ [ RS^2 + (XC – XL)^2 ]容性电抗(欧姆)XC = 1/(2πfC)电容器实际电容量与标称电容量的偏差称误差,在允许的偏差范围称精度。

精度等级与允许误差对应关系:00(01)-±1%、0(02)-±2%、Ⅰ-±5%、Ⅱ-±10%、Ⅲ-±20%、Ⅳ-(+20%-10%)、Ⅴ-(+50%-20%)、Ⅵ-(+50%-30%)一般电容器常用Ⅰ、Ⅱ、Ⅲ级,电解电容器用Ⅳ、Ⅴ、Ⅵ级,根据用途选取。

2、额定电压在最低环境温度和额定环境温度下可连续加在电容器的最高直流电压有效值,一般直接标注在电容器外壳上,如果工作电压超过电容器的耐压,电容器击穿,造成不可修复的永久损坏。

3、绝缘电阻直流电压加在电容上,并产生漏电电流,两者之比称为绝缘电阻。

当电容较小时,主要取决于电容的表面状态,容量〉时,主要取决于介质的性能,绝缘电阻越大越好。

电容的时间常数:为恰当的评价大容量电容的绝缘情况而引入了时间常数,他等于电容的绝缘电阻与容量的乘积。

4、损耗电容在电场作用下,在单位时间内因发热所消耗的能量叫做损耗。

各类电容都规定了其在某频率范围内的损耗允许值,电容的损耗主要由介质损耗,电导损耗和电容所有金属部分的电阻所引起的。

电解电容寿命计算公式 说明(1)

电解电容寿命计算公式 说明(1)
△T=(IX÷I0)2×△T0
代号
I0 IX
4、关于其他的寿命原因:
代号表示内容说明 最高使用温度下正常周波数的额定纹波电流(Arms)
实际使用中的纹波电流(Arms)
铝电解电容由于电解液通过封口部扩散到外部而导致磨耗故障,加速其现象的要因除上述周围温度与
纹波电流外有以下要因:
●过电压的情况
连续印加定格电压的过电压时,急速增大制品的漏电流量,这种漏电流引起发热产生气体,并导致内压
铝电解电容器的使用寿命计算公式
1、周围温度与寿命
温度对寿命的影响有静电容量的减少,损失角正接的增大,导致电解液通过封口部扩散到外部,电气
特性随时间的变化值与周围温度间成立试验公式,其关系式类似于温度增加,化学反应速度成指数倍 增加之化学反应规律式,称之为温度与铝电解电容寿命10℃法则。
LX=L0×B
W=IR2×R+VIL
代号
代号表示内容说明
W
内部的消费电力
IR
直流电流
R
内部阻抗等效串联电阻 ESR
V
印加电压
IL
漏电流
漏电流 LC最高使用温度增加到20℃的 5-10倍程度,由于 I R远大于IL,可成立如下公式:
W=IR2×R
◆ 内部发热与放热达到平衡温度的条件公式如下:
IR2×R=βA△T
代号
T0 - TX 10
代号
代号表示内容说明
L0
最高温度条件下,印加定格电压或重迭额定纹波电流时的保证寿命(hrs)
LX
实际使用中的寿命(hrs)
T0
制品的最高使用温度(℃)
Tx
实际使用时的周围温度(℃)
B:温度加速系数 温度加速系数 B,如果是最高使用温度以下时,可以用 B≈2来计算,升温 10℃,约 2倍的加速率; 设定较低的使用时的周围温度 T X,能保证长期的寿命。 2、印加电压与寿命 使用在线路板上的 RADIAL型、SNAP-IN型铝电解电容,若在最高使用温度及额定工作电压以下的情况 使用时,印加电压的影响比周围温度及直流电流的影响小,对于铝电解电容来说,实际计算可以不考虑 降压使用对寿命计算之影响。 3、纹波电流重迭时的寿命 铝电解电容比其他类的电容损失角大,会因纹波电流而内部发出热量。由于施加的纹波电压发出的热量 会导致温度上升,对寿命有很大影响,印加电流电压时的发热情况如下公式来计算:

铝电解电容寿命计算方法

铝电解电容寿命计算方法

2013年11月日本贵弥功株式会社香港嘉美工有限公司UC343011铝电解电容器寿命计算说明资料【目次】1.关于铝电解电容器的经时恶化2.铝电解电容器寿命计算公式3.纹波电流发热取得办法4.周围温度取得办法5.纹波电流计算办法6.寿命计算例7.参考资料(关于补正系数)关于铝电解电容器的经时恶化2阳极箔阴极箔R AL KL A封口橡胶电解液在铝电解电容器的电气特性上起着至关重要的作用。

温度特性的概念静电容量变化率(%)温度E S R (Ω)温度特性图表流动容易高低电解液的状态UPUP流动不容易箔厚100μm箔断面图蚀刻部扩大照片电解纸扩大图像DownDown离子电解纸纤维4寿命(特性恶化)的概念静电容量变化率(%)初期电解液沸腾电解液减少时间加快电解液减少E S R (Ω)电解电容器的断面图耐久性图表UP素子封口橡胶Down6铝电解电容器寿命计算公式9L;复合条件的推定寿命纹波电流发热温度取得办法182225.4 1.35 1.4 1003.1周围温度取得办法24纹波电流计算办法(带Active-PFC电路)26取得示波器读出的电流RMS作为后续公式中的In计算使用,此处的In为混合频率信号,计算纹波电流发热部分时需要将混合频率结果为电源实测数据由该公式可计算出在高频部分的电流值I High,继而可以得到在低频时的电流值I Low =I high x K T(NCC调查结果如上表, K T=0.2~0.3,实际状况下K T会随着拓扑方式的不同而改变) *我们将继续研究PFC电路的纹波电流。

寿命计算例31参考资料关于补正系数34。

铝电解寿命推算方法

铝电解寿命推算方法
• ΔT0:额定温度下,铝电解电容器中心允
许温升
二、 温升测试法
通过测试电容器中心或表面温升来推算产品 寿命。具体公式如下:
LX=L0·2(T1-T2)/10 ·KV
0.6W.V.≤V’≤ W.V. 2:实际使用时中心温度 L0:额定使用寿命 LX:推算使用寿命
则电容器底部温升=(65-50)=15 ℃, 电容器中心温升=15*1.6=24 ℃, 因此就能推算出电容器中心温度=50+24=74 ℃, 用一个公式表示即为: 电容器中心温度=环境温度+表面温升*系数
=50+15*1.6 =50+24 =74 ℃
图二
三、两种方法相互推导
我们设定L0:电容器在额定条件下的寿命 LX:电容器实际使用寿命 T1:电容器中中心允许承受的最高温度
又因为电容器的发热温升与纹波电流有如下 关系:
ΔT=ΔT0(I/I0)2
其中: I:额定纹波电流(同频率) I0:实际 纹波电流(同频率)
代入上式
=L1·2(T0- T)/10 ·2(ΔT0-ΔT0(I/I0)2)/10·KV =L1·2(T0- T)/10 ·2(1-(I/I0)2)ΔT0/10·KV
• LX=L0·KT·KV·KR • 其中LX:电容器推算的使用寿命 • L0:电容器在额定条件下的寿命 • KT:电容器温度系数 • KV:电容器电压系数 • KR:电容器纹波电流系数
• KT 铝电解电容器的使用遵循10℃原则,
即使用温度每降低10℃,寿命延长一倍。 KT的计算如下:
• KT=2(T0-T)/10 • 其中T0:额定温度 • T:电容器实际工作温度
1、中心温升测试法 对电容器施加直流和纹波电压,电容器
处于工作状态,利用热电偶温度计直接插入 电容器芯包卷绕针孔内测中心最高温度。 (见示意图一)

AL电解电容常见问题解答

AL电解电容常见问题解答

铝电解电容常见应用问题解答 1.铝电解电容对开关电源的影响?性能上影响的主要是滤波效果,包括低频纹波和高频峰峰值。

另外,假设设备的每一个元器件都合理应用的话,那么设备的寿命便很大程度上由铝电解电容元件决定了(当然风扇的寿命也要重点考虑)。

因为铝电解电容是一种耗损性器件,到了一定的时间就“寿终正寝”了。

例如:新干线的一个编制16节车厢里,使用DC450V,5000uF大型铝电解电容器1760只,为了保障安全,规定三年更换一次。

半导体器件则不同,如果是正确使用,并且在器件制造过程中又没有什么潜在缺陷的话,其使用寿命是相当的长的,在设计时可以不考虑寿命问题。

2.开关电源对铝电解电容的要求?开关电源引入开关工作方式,提高工作频率,可以提高效率,减小体积。

但也带来了新的矛盾。

就电解电容来说,主要反映在:∙要求电容的耐纹波电流能力要提高。

因为频率提高,电容的交流阻抗下降了,流过电容的电流更大了。

∙小体积。

开关电源一个主要特点就是体积小,尽管提高频率后所需变压器和电容的体积自然会减小,但它还是希望电容能够越小越好,因为即使如此,电容仍然在开关电源中占去了不小的空间(尤其是AC/DC中的输入滤波)。

∙高频低阻抗。

在低频下,滤波效果主要由电容值大小决定,在高频下,电解电容中的E SR在整个阻抗中逐步上升到主要地位,因此高频滤波效果主要就由ESR决定了。

(当然更高的频率,例如大于1MHZ,则主要由ESL决定了阻抗大小,不过目前我们的产品中尚未出现此情况。

)。

鉴于此,开关电源要求电容的ESR值要做得很小。

另外,从电解电容本身来说,减小ESR也可以减小损耗,减小发热量,提高电容的耐纹波电流能力。

∙可靠性要高。

正常工作起来不爆炸或失效的概率极低是理所当然的要求。

另外尽管属有效寿命器件,当然也希望它寿命越长越好。

∙安全性问题。

越来越成为关注的焦点,及异常情况下爆炸时也不要起火燃烧。

尽管众多厂家努力开发阻燃的电解电容,但因为导电电解液属于有机物质,目前并没有取得理想的效果。

铝电解电容寿命计算方法

铝电解电容寿命计算方法

铝电解电容寿命计算方法1.液体电解电容寿命计算方法:液体电解电容的寿命通常由电解液的电导率、厚度以及电解液中氧化铝颗粒的电导率等因素决定。

根据经验公式可计算如下:寿命(小时)=1.440×10^15×(C/V)^n×Z/T其中,C为电容值(μF),V为工作电压(V),n为电压系数(可参考铝电解电容厂商提供的数据),Z为电解液电导率(S/cm),T为工作温度(℃),常温下Z一般取0.1-2 S/cm之间。

2.固体电解电容寿命计算方法:固体电解电容的寿命通常由陶瓷介质的电导率、电容值和工作电压等因素决定。

根据经验公式可计算如下:寿命(小时)=0.1×10^6×[(C×V)/(I×T)]^(1/3)其中,C为电容值(μF),V为工作电压(V),I为等效串联电阻(Ω),T为工作温度(℃),I值可通过测试或参考铝电解电容厂商提供的数据得到。

3.等效串联电阻计算方法:等效串联电阻是指电容器在工作状态下所表现出的电阻,其值与寿命成正相关。

可以通过测试或参考铝电解电容厂商提供的数据得到。

需要注意的是,上述计算方法是根据经验公式得出的估算值,在实际应用中可能存在误差。

因此,工程师在设计电路时,应综合考虑电容器的额定参数、使用环境和寿命要求等因素,选择合适的铝电解电容器,并进行合理的设计和布局,以确保电路的可靠性和稳定性。

此外,还需要注意以下几点:1.工作电压不应超过电容器的额定电压,以避免击穿和损坏电容器。

2.工作温度应在电容器能够承受的范围内,过高的温度会加速电容器老化,缩短寿命。

3.合理选择电解液类型和固体介质,不同的材料具有不同的寿命和性能特点,需根据具体需求进行选择。

综上所述,铝电解电容寿命的计算方法主要是根据电容器的工作参数和材料特性进行估算,具体的计算公式和方法可根据实际情况和厂商提供的数据进行合理选择和应用。

铝电解电容器简介

铝电解电容器简介

铝电解电容器(ALUMINUM ELECTROLYTIC CAPACITOR)之定议:以高纯度之铝金属为阳极, 于其表面使用阳极氧化所形成的氧化薄膜(oxide film) 作为电介质(dielectric medium), 使液体之电解质密接于氧化薄膜, 另与阴极铝箔所构成之有极性电容器. 但也可将两个阳极组合起来, 而构成无极性电解电容器或交流用之电解电容器.铝电解电容器之优点与用途因铝电解电容器具备了体积小, 容量大且价格低廉等优点,故被广泛的使用于电子机器的旁路(by-pass), 耦合回路(coupling), 喇叭系统的纲路(net-work), 闪光灯, 马达起动, 连续交流等回路. 尤其近来主要材料的质量提升, 制造技朮的进步及完美的质量管理. 铝电解电容器更广泛的使用于民生电器用品及各种产业用电器. 以目前铝电解电容器使用最多的产品分别为主机板, 监视器, 电源供应器, CD, VCD, DVD音响, 电视机, 无线通讯, 录像机, 电话机, 数据机等产业.铝电解电容器之前途及发展趋势由于铝箔电蚀与化成技朮的突飞猛进, 加以铝电解电容器具有体积小, 容量大及价格低的优点, 近十年来铝电解电容器的需求量成长快速惊人, 往后的成长也必定不差.铝电解电容器的未来发展将走向小型化大容量, 长使用寿命及高苹低阻抗耐高纹波(ripple current)化.铝电解电容器的基本构造铝电解电容器的基本构造如下图:铝电解电容器所构成的组件如下:电容器素子(capacitor element)将已铆钉导线端子的阳极铝箔(正箔)与阴极铝箔(负箔) 中间夹入两张宽度比铝箔稍宽之隔离纸, 且卷绕在一起, 并于末端以浆糊或粘着胶带粘住之制品. 最初先在滚动条上卷绕数层隔离纸, 然后再分别夹入正箔与负箔并一起卷绕至需要长度为止. 素子的最外层是隔离纸,再而是负箔, 隔离纸,正箔.素子的构成组件1.阳极铝箔(Anode Foil)又称正箔, 铝纯度在99.9%以上, 厚度大约为40~105um, 皆需于电蚀后以化成处理使表面生成一层氧化膜.2.阴极铝箔(Cathode Foil)又称负箔, 铝纯度在99.4%以上, 厚度大约为15~60um 除特殊用途外一般都不施行化成处理, 但却施行安定化处理, 以表面也有一层薄膜存在.3.电解纸或称隔离纸(Separator Paper)介于电解电容器阳极与阴极之间, 保持电解液充分之量, 防止两极发生短路等为其目的所用之纸张.就电解电容器构成原理而言, 只要有阳极,阴极及其中间之电解液即可. 但是在实际生产制造场合务需使阳极与阴极尽量靠近配置才行, 其主要理由仍为两电极间的距离如果太远, 则其间的电阻将使电容器成品之损失显著增大, 同时两极间如果仅注满电解液, 则外壳就必须为完全水密性, 而完全的水密性是极端困难的构造. 所以就有开发了在两极夹入含浸过电解液之多孔质电解纸的电容器2此种方法, 不仅能使两极在不发生短路情况下尽量接近, 而且电解纸可以充分吸收稍有粘度的电解液, 电容器外壳的水密性就不必过分严苛电解纸之制造用材料主要为植物纤维, 植物纤维中以牛皮纸(Kraft )和马尼拉麻(Manika Hemp)之使用量最大. 牛皮纸非常强韧而便宜, 然因其纤维比较扁平, 以致电解液含浸后之电流通路较长, 电阻大仍为其缺点. 马尼拉麻之纤维形状比牛皮纸稍接近园形, 以致电流通路较短, 电阻较小, 但价格较高, 另外牛皮纸与马尼拉麻之混抄之电解纸也广泛被采用. 一般电解电容器均依其规格规定中之电容量, 电压与电阻之要求来选用上述电解纸.4.导线端子或称导针(Lead Wire)橡胶封口构造之电解电容器均使用导线端子为做外部端子-----将铝线与CP 线以高周波焊接后再将铝线的一端压扁后完成.(1)CP线结构系钢心, 铜皮镀锡后完成.(2)铝线系采用高纯度的铝线制作, 纯度越高的铝线所制成的导线端子, 由于其延展性佳, 与铝箔嵌钉后其开出来的花瓣完整, 阻抗效果佳.铝线的纯度分类如下:G1:纯度90%以上G2:纯度99%以上G3:纯度99.9%以上G4:纯度99.99%以上一般导线端子所使用的铝线应是G3级●电解液(Electrolyte)电解电容器系由阳极, 阴极及介于两者中间的电解液所构成. 电解液从基本动作原理而言, 系指由溶剂与溶于该溶剂之后能供给离子之电解质所构成.基本上电解液由如下数项特性之成分所组成.1.化成性优良之弱酸;2.能够与酸中和至适当PH值(一般PH值于6-7之间微酸性), 且能降低电阻系数之碱;3.能够溶解酸与碱获致适当粘度, 以提高其安定度,并改善其温度效果之溶剂;4.能够与上述溶剂互溶, 使电解质产生大量离子之少量水分;5.某种特性改善用添加物.以上第3. 4两项称为溶剂, 目前最广泛被使用的溶剂是乙二醇(Ethylene Glycol 简称EG).使用乙二醇为溶剂之电解液称为乙二醇(或EG)系列电解液. 以上其余1.2.5项称为溶质.一般电解液的规范中均有述明酸碱值(PH Value), 火花电压(SparkTehsion),导电度(Conductivity)之电化等特性及适用工作电压范围与适用使用温度等数据供选择使用.●封口橡胶(Rubber Bung)使用封口橡胶之目的:1.保持端子相互间及端子与外壳间之绝缘;2.可藉机械方式将端子确实压紧;3.电容器素子与外界隔离及防止电解液漏出与蒸发.为了能够达到上述要求以配合电容器之极限使用温度起见, 封口橡胶必须具备之性质如下:(1)不受电解液腐蚀, 且不会与电解液作用或析出氯化物等杂质.(2)长时间使用于电容器之极限使用最高温度与最低温度状态下都不变质;(3)电气绝缘性及气密性良好;(4)具有适当弹性与硬度. 封口后在相当压力下电解液不会漏出, 蒸汽也不会逸出, 且与外壳能够密切结合不会发生松动.同时, 除了需能完全满足上述要求之外, 尚需价格适当而低廉才行.●铝壳(Aluminum Sase)普通电解电容用外壳皆以AL99%纯度之铝板冲压而成, 主要特点是价格柢,加工性良好, 不受电解液腐蚀, 不污染电解液, 能承受颇高的内压力且厚度重量皆小以及热传导性良好, 便于散热. 为安全起见, 电容器直径在8Ø(含8Ø) 以上者, 其铝壳一律加设铝壳防爆孔.●外壳套管(Sleeve)基于规格识别及外壳绝缘的理由, 一般用途之电容器几乎都包有胶膜套管, 普通电容器用氯乙稀胶膜套管(Polyving chloride Tube , PVC Tube)都能随温度之升降而收缩.PVC材料之套管耐热性较差, 很容易劣化, 所以不可视为完全绝缘体, 因而如果厂商有特别强调绝缘特性时, 应与厂商协调使用更可靠的材料.铝质电解电容器之生产制造流程:铝质电解电容器系利用铝箔, 经与导针钉接后再与电解纸卷绕成为素子,再经过电解液的含浸后与封口橡胶, 铝壳组立并外加胶管后完成电容器的本体, 再经老化充电选别后完成成品.制造流程图如下:51. 电极铝箔及电解纸之裁切电极铝箔及电解纸通常首先依设计决定之尺寸整卷裁切成需要宽度并重新卷绕在一起以备钉卷后工程之用. 电极铝箔整箱的宽度是500mm, 但由于两边箔边无法使用, 故各切除10mm, 故实际可用宽度是480mm再依照所需宽度安排裁切刀后进行裁切.使用设备: 分切机(Slitter)2. 电极铝箔与导线端子之钉接裁切完成之电极铝箔通常都先以设计决定之电极长度分别在正负极铝箔钉接机上依次加以钉接导线端子后重新卷绕在一起, 再将钉接的导线端子之卷筒铝箔放入卷绕机中制造素子.电极铝箔与导线端子的钉接在电容器的制造上是一项非常重要的工序, 其钉接连接部分简单构成原理如下:[铝片与铝片之电气上确实连接务需在两金属片之接触而相互之间形成金相结合]电极铝箔与导线端子之铝扁部(一般称为导线端子之A部) 之连接一般皆施以嵌钉法. 系将拟连接之两金属片重搭之后, 以浮花钢冲穿孔, 再将生成之孔边毛头弯曲挤压成花瓣的方式形成确实的连接部. 此种方式只冲的形状适当就可形成小型的冷焊部达到上述金相结合的目的.此种连接部分部形成的优良与否可以量测电极铝箔与导线端子的接触电阻的大小来判定.一般电极铝箔与导线端子的嵌钉处有2~5处, 通常视铝箔的宽度来决定.使用设备: 正负极铝箔钉接机(Stitching Machine)3. 素子之卷绕将已铆钉导线端子的阳极铝箔(正箔)与阴极铝箔(负箔)中间夹入两张宽度比铝箔稍宽之电解纸且卷绕在一起, 并于末端以浆糊或粘着胶带粘住. 最初先在滚动条上卷绕数层电解纸然后再分别夹入正箔与负箔并一起卷绕至需要长度为止. 素子的最外层是电解纸, 再而是负箔,电解纸, 正箔.素子的卷绕首先需注意正箔与负箔必需正确对准, 整齐卷绕. 如果正负极铝箔卷绕不齐则两极铝箔的合成容量会降低, 损失会增大. 再者电解纸必需完全将正, 负极铝箔隔离以避免短路.使用设备: 素子卷绕机(Winding Machine)4.素子含浸为了避免造成电解纸中之水分增加而导致不良结果, 在素子含浸前需将素子以高温烘干.含浸是将烘干后的素子浸渍于电解液中, 利用真空及加空气压力使电解液有完全浸湿渗透到素6子内部, 让电解纸吸收使电解液能均匀附着于铝箔表面, 因而含浸须达到下列两项条件:(1)电解液将铝箔之细小孔穴及电解纸完全浸入并浸湿. 如果含浸不完全,则制成之电容器会因此而使容量降低, 损失增大,且会因为含浸不良以致使用中容易造成特性变化.(2)素子含有电解液量不可过多, 因电解液量愈多, 漏液之可能性愈大,故一般素子含浸后须经脱水过程, 以防素子含有之电解液量过多的现象.目前最常使用的含浸方法有下列两种:(1)真空含浸法: 系将素子放入含浸的容器内然后抽真空再注入电解液将素子盖满, 然后恢后容器内之大气压力, 则因大气压力的关系, 可使电解液由上下迅速浸入素子内., 以达到含浸的效果. 然因电解液之蒸汽压过高, 使蒸汽进入素子内, 导致中央部份无法含浸到电解液的情形, 此为真空含浸的缺点. 故针对大型电容器和中高压电容器均以下列之真空加压含浸予以克服.(2)真空加压含浸法: 系于大气压强制含浸后. (即真空含浸的过程)将容器密闭再以空气压缩提高容器内的压力, 当容器内之压力达到数大气压后, 素子将会继续显示出强制含浸的效果, 而使得中央因蒸汽之进入而未含浸部分缩小或消除, 以达到完全含浸的目的,因而真空加压含浸法较适合大型电容器及中高压电容器的含浸作业方式.使用设备:素子干燥机真空含浸机真空加压含浸机5.组立,封口组立是将已含浸完成的素子, 从导线端子引线部套入封口橡胶再放入铝壳的作业过程. 如下图:素子经含浸后到组立完成之间时距愈短愈好, 因为已含浸的素子, 如暴露在空气中时间太长时, 会吸收空气中的水分, 因而对电容器在使用上的特性会有不良的影响. 且在组立的作业7过程中, 应注意防止素子受外界的污染, 如灰尘, 手汗等, 尤其手汗带有氯元素, 对铝箔有腐蚀作用, 有加速电容器漏电流增加的倾向, 故在作业过程中应戴胶套以防止之.所谓封口系将已组立完成品铝壳开口部加以密封. 封口的目的是要将铝壳内部与外部完全隔绝.如果封口的紧密性不好时, 则铝壳内部的已含浸素子, 会受外界性况的影响, 尤其作高温负荷特性试验时, 因外界温度高, 因而内部已含浸素子之电解液很容易挥发掉, 则造成电容器的电容量减少, 损失变大等不良影响.另外在封口作业过程中, 如因作业疏忽或错误而造成封口紧密性不良时, 已封口完成之内部已含浸素子之电解液会往外流, 而造成漏液现象, 亦是影响电容器质量的严重缺点.使用设备:自动组立机6.清洗组立封口后的电容器应经清洗过程, 其目的是将电容器本体在组立作业时所沾染的油渍及端子引线因在含浸和组立作业时所沾染的电解液清洗干净, 尤其是端子引线镀锡部份易受电解液之侵蚀而脱落, 因而造成焊锡性不良的现象.清洗后的电容器经高温脱水干燥后完成.使用设备: 清洗机高温脱水干燥机7.套胶管套装是将已封口完成的电容器套入胶管再予加热使胶管收缩之作业过程.套装时对于印刷胶管之取用, 应依生产卡上之标明指示取用, 严防错误, 因电容器的商标(Brand), 系列(Series), 规格, 极性等全部印刷在胶管上, 故作业时严防逆指示(即极性相反)的错误与收缩不良, 偏差等现象发生.使用设备;自动套胶管机8.老化选别电容器制造时, 需先将铝箔裁切成适当的尺寸, 阳箔经裁切后, 其氧化膜因而破损, 造成极大之泄漏电流, 此时之电解液亦可当作化成液, 经加高温电压液, 可将破损的氧化膜弥补起来, 此作用即吾人所称之老化(Aging) 又称二次化成.其所加之电压称老化电压(Aging Voltage)(1)泄漏电流检测泄漏电流检测是为测出所老化完成之电容器经施加直流额定电压时,所通过的直流电8流值. 其值是愈小愈好. 在检查前应先依照额定电压作预备充电三分钟再进行测试.泄漏电流的规格值因电容器之系列, 电容量与额定电压的不同, 其允许的最高泄漏电流亦不同,一般以下列公式规定之:I< = 0.01CV or 3UA 取大值I: 泄漏电流(单位:UA)C: 额定电容量(单位:UF)V: 额定工作电压(单位:VOIT)(2)电容量与散逸因素检查电容量检查的目的是在测定其值是否在容量差范围内. 如超出范围即为不合格品, 散逸因素检查则是在测定其值是否在规格值以下,如超出此规格值即为不合格品.使用设备:自动老化选别机9.后加工依据客户的需要将制作完成这合格品进行切脚, 成型或编带.使用设备:自动切脚机自动编带机影响铝质电解电容器寿命的探讨一. 铝质电解电容器之寿命绝大部份取决于环境和电气因素, 所谓环境因素包括温度,湿度, 大气压力和掁动电气. 因素包括操作电压, 纹波电流和充放电.温度因素(环境温度和因纹波电流所产生的内温) 系影响铝质电解电容器寿命的最主要因素.二. 基于以上的解释,铝质电解电容器., 一般只依据下列公式由环境温度,施加电压与纹波电流来计算其使用寿命.Lx = Lo K Temp K voltage K Ripple在此Lx:电容器的预估使用寿命Lo: 电容器的基本寿命9K Temp:周围温度加速条件K voltage:电压加速条件K Ripple:纹波电流加速条件K TemP (周围温度对寿命的影响)铝质电解电容器实质上是一种电气化学组件, 温度的上升使电容器内部的化学反应产生气体, 持续地促使电容量渐渐降低和DF, ESR渐渐升高.下面的公式已经被广泛的使用来解释温度加速系数与电容器劣化的关系.Lx = Lo K Temp=Lo B(To-Tx) /10K Temp = B (To-Tx) /10在此Lx: 电容器的预估使用寿命(小时)Lo: 电容器的基本寿命(小时)To: 在型录上所示电容器的最高额定工作温度Tx: 电容器周围的实际环境温度B: 温度加速系数(约等于2)此公式和说明温度与化学反应率的阿瑞尼阿斯公式很类似, 所以此公式就被广泛使用在说明与计算铝电解电容器之温度与使用寿命的关系. 我们被称为铝电解电容器的阿瑞尼阿斯法则.从环境温度(Tx)在40℃至电容器的最高额定使用温度之温度加速系数大约是2. 它表示环境温度每上升10℃, 则电容器的寿命就以近似减半的法则缩短. 而环境温度(Tx)由20℃至40℃对电容器的使用寿命影响很小, 故如果环境温度低于40℃时, 一般仍以40℃当作Tx来计算电容器的使用寿命.K voltage (施加电压对寿命的影响)由于铝电解电容器均在额定工作电压内使用,故如果符合此种情况时10K voltage=1被视为合理的认定.K Ripple (纹波电流对寿命的影响)由于铝电解电容器的散逸因素(DF)比其它类型电容器来得高, 因此纹波电流会造成铝电解电容高的内部温度, 所以在使用铝电解电容器时有必要去确认型录上所示最高容许纹波电流(Maximum Permissible Ripple Current)以确保其使用寿命.K Ripple = 2 (⊿To-⊿T)/5在此⊿To: 由于施加最高容许纹波电流所产生的内部热能导致的电容器内部温升, 以日本NIPPON CHEMI-CON之低阻抗产品之标准⊿To=5.⊿T: 由于施加实际工作纹波电流所产生的内部热能导致的电容器内部温升.由于要实际测得电容器内部的温度较为困难, 故可于由下列两种方式计算大约的⊿T.(1)⊿T=Kc (Ts-Tx)在此Kc:下列之系数;Ts: 电容器铝壳的表面温度;Tx: 环境温度(2)⊿T=⊿To (Ix / Io)2在此⊿To= 5 (对最高使用温度105℃之产品)Ix = 实际施加之纹波电流Io = 额定最高容许纹波电流.11铝电解电器简介一.前言.1.铝电解电容器之定议.2.铝电解电容器之优点与用途.3.铝电解电容器之前途及发展趋势.二.铝电解电容器之基本构造.三.铝电解电容器之生产制造流程.四.影响铝电解电容器寿命的探讨。

详解铝电解电容器的参数

详解铝电解电容器的参数

详解铝电解电容器的参数铝电解电容器的参数详解之一铝电解电容器的基本参数主要有电压、电容量、最高工作温度及寿命、漏电流和损耗因数,有的铝电解电容器,如开关电源输出滤波用的铝电解电容器还有额定纹波电流、ESR等参数。

电压铝电解电容器的电压指标主要有额定DC电压、额定浪涌电压、瞬间过压和反向电压,下面将逐一介绍。

1.反向电压钽电容是有极性电容器,通常不允许工作在反向电压。

在需要的地方,可通过连接一个二极管来防止反极性。

通常,采用导通电压约为0. 8V的二极管是允许的。

在短于Vs的时间内,小于或等于1.5V的反向电压也是可以承受的,但仅仅是短时间,绝不能是连续工作状态。

2.工作电压V OP工作电压是电容器在额定温度范围内所允许的连续工作的电压。

在整个工作温度范围内,电容器既可以在满额定电压(包括叠加的交流电压)下连续工作,也可以连续工作在0V与额定电压之间任何电压值。

在短时间内,电容器也可承受幅值不高于-1. 5V的反向电压。

反向电压的危害主要是反向电压将产生减薄氧化铝膜的电化学过程,从而不可逆地损坏铝电解电容器。

3.额定DC电压VR额定DC电压VR是电容器在额定温度范围内所允许的连续工作电压,它包括在电容器两电极间的直流电压和脉动电压或连续脉冲电压之和。

通常,钽电容的额定电压在电容器表面标明。

通常额定电压≤100V为“低压”铝电解电容器,而额定电压≥150V为“高压”铝电解电容器。

额定电压的标称电压为:3V、4V、6.3V、(7.5V)、10V、16V、25V、35V、(40V)、50V、63V、80V、100V、160V、200V、250V、300V、(315V)、350V、(385V)、400V、450V、500V、(550V)。

其中括号中的电压值为我国不常见的。

4.额定浪涌电压Vs额定浪涌电压Vs是铝电解电容器在短时间内能承受的电压值,其测试条件是:电容器工作在25℃,在不超过30s,两次间隔不小于5min。

铝电解电容器的寿命计算方法

铝电解电容器的寿命计算方法

铝电解电容器的寿命计算方法寿命估算(Life Expectancy):电解电容在最高工作温度下,可持续动作的时间。

Lx=Lo*2(To-Ta)/10Lx=实际工作寿命Lo=保证寿命To=最高工作温度(85℃or105℃)Ta= 电容器实际工作周围温度Example:规范值105℃/1000Hrs65℃寿命推估:Lx=1000*2(105-65)/10实际工作寿命:16000Hrs高温负荷寿命(Load Life)将电解电容器在最高工作温度下,印加额定工作电压,经一持续规定完成时间后,须符合下列变化:Δcap:试验前之值的20%以内tanδ:初期特性规格值的200%以下LC :初期特性规格值以下高温放置寿命(Shelf Life):将电解电容器在最高工作温度下,经一持续规定完成时间后,须符合下列变化:Δcap: 试验前之值的20%以内tanδ:初期特性规格值的200%以下LC:初期特性规格值以下高温充放电试验(Charge/Discharge Test)将电解电容器在最高工作温度下,印加额定工作电压,经充电30秒后再放电330秒为一cycle,如此经1,000 cycles后,须符合下列变化:Δcap : 试验前之值的10%以内tanδ : 初期特性规格值的175%以下LC : 初期特性规格值以下涟波负荷试验(Ripple Life)将电解电容器在最高工作温度下,印加直流电压及最大涟波电流(直流电压+最大涟波电压峰值=额定工作电压),经一持续规定完成时间后,须符合下列变化:Δcap : 试验前之值的20%以内tanδ : 初期特性规格值的200%以下LC : 初期特性规格值以下常用电解电容公式容抗: XC="1/"(2πfC) 【Ω】感抗: XL="2"πfL 【Ω】阻抗: Z=√ESR2+(XL-XC)2 【Ω】涟波电流: IR=√(βA△T/ESR) 【mArms】功率: P="I2ESR" 【W】谐振频率: fo="1/"(2π√LC) 【Hz】P=(I²*R)+(IL*V)=Irms²*ESR= I rms²*DF/2╥fc (IL*V为漏电流与跨接电压的乘积---忽略不计)损耗因素DF=ESR/XC具体的计算公式好像这个论坛里有,一般都是按照经验取,好像是1uF/W吧。

铝电解电容

铝电解电容

铝电解电容铝电解电容是一种金属电容器,由铝板和涂有电解质液的碳层组成。

它具有质量轻、体积小、价格便宜、耐久性强等优点,因此被广泛用于电子产品的设计中,并被认为是高性能的电容器。

由于它的特殊结构,铝电解电容仍然是发电系统电容器中最常用的电容器。

铝电解电容结构铝电解电容由两片薄膜绝缘材料中间固定的铝片,以及两片薄膜绝缘材料包围的电解质液构成。

这种结构使得铝电解电容具有质量轻、体积小、价格便宜、耐久性强、抗干扰能力高等特点,且其他特性也表现出良好的性能。

铝电解电容的特点1、质量轻:铝电解电容的质量轻,比同等容量的陶瓷电容轻大约35-50%。

质量轻的特性,使发电系统的设计更加灵活,使得发电系统的结构变得更加紧凑和结实。

2、体积小:铝电解电容的体积小,比同等容量的陶瓷电容小大约30-50%。

体积小的特性,使得发电系统变得更加紧凑和结实,减少了系统尺寸。

3、价格便宜:铝电解电容比同等容量的陶瓷电容价格便宜,仅为陶瓷电容的1/5-1/6,使得发电系统的成本降低,更加经济实惠。

4、耐久性强:铝电解电容具有极高的耐久性,可以抗高温、腐蚀、湿度等外部环境的改变。

5、抗干扰能力高:铝电解电容具有高的抗电磁干扰能力,抗静电干扰能力和高频谐振能力也很强,从而是工业发电系统中极为理想的电容器。

6、施工方便:铝电解电容具有简洁的施工方式,可以通过焊接和粘合的方式安装,不需要钻孔,省时省力,易于施工和维护。

铝电解电容的应用铝电解电容作为金属电容器,具有质量轻、体积小、价格便宜、耐久性强等优点,广泛应用于电子产品的设计中,是高性能的电容器。

最常见的用途是用作高压变动器和滤波电路,减少电源噪声,提高元件的精确性,保护数字元件和显示器。

此外,铝电解电容还可以用于保护驱动器电路,电源供电,增强稳定性,用于启动电机,过滤控制系统,以及消除线路中的电磁干扰等。

总结铝电解电容具有质量轻、体积小、价格便宜、耐久性强、抗干扰能力高的特点,因此被广泛用于电子产品的设计中,是高性能的电容器。

电解电容的参数说明

电解电容的参数说明

铝电解电容参数电路系统性能的稳定可靠,与选用的元器件参数、等级、质量等密切相关。

设计师应针对产品应用环境以及电性能的要求,准确提出对元件参数的具体要求,包括标称值、精度和误差要求、稳定性要求、温度范围要求、安装尺寸以及与电路性能密切相关的其它要求。

因在所有的被动元件中,铝电解电容的失效率最高,所以选型尤为重要。

铝电解电容选型要点:容量,耐压,温度范围,元件封装形式与尺寸纹波电流、纹波电压漏电流、ESR、散逸因数、阻抗/频率特性电容寿命实际需要、性能和成本等综合考量电子元件技术网通过调查工程师在铝电解选型和应用中碰到的问题提出,要关注耐压、容量、温度和尺寸几个参数,也要注意铝电解电容对整个电路的稳定性问题。

铝电解电容是以经过蚀刻的高纯度铝箔作为阳极,以浸有电解液的薄纸或布做阴极构成的极性电容器。

优点:容量大、耐压高、价格便宜缺点:漏电流大、误差大、稳定性差、寿命随温度的升高下降很快数字电路中使用的铝质电解电容一般用于电源平滑滤波,除容量、耐压、容量误差、工作温度、封装尺寸等熟知的参数外,还有儿个有关电容器品质的重要参数,包括损耗角正切、漏电流、等效串联电阻ESR、允许的纹波电流、使用寿命等。

这些参数不标在成品封装外皮上,只在产品规格书中体现的,但这些参数有可能是关系电路性能的关键。

容量和额定工作电压铝电解电容本体上标有的容量和耐压,这两个参数是很重要,是选用电容最基本的内容。

在实际电容选型中,对电流变化节奏快的地方要用容量较大的电容,但并非容量越大越好,首先,容量增大,成本和体积可能会上升,另外,电容越大充电电流就越大,充电时间也会越长。

这些都是实际应用选型中要考虑的。

额定工作电压:在规定的工作温度范围内,电容长期可靠地工作,它能承受的最大直流电压。

在交流电路中,要注意所加的交流电压最大值不能超过电容的直流工作电压值。

常用的固定电容工作电压有6.3V、10V、16V、25V、50V、63V、100V、2500V、400V、500V、630V。

铝电解电容器工程技术

铝电解电容器工程技术

一、 电容器的定义1、电容器——由两个导电极板,中间放置着具有介电特征的物质所组成的分立元件。

2、电解电容器——两个极板有阳(正)极和阴(负)极之分,其中作为阳极的是采用特定的阀金属,并在该金属表面上籍助于电化学方法生成一极薄且具有单向导电性的氧化膜作为介质,而阴极通常是采用能生成和修复介质氧化膜的液状或固状的电解质,这样一种特殊结构和特殊工艺制造的电容器。

二、 电气参数铝电解电容器常用标称:电容量(C R )、损耗角正切(tg δ)、漏电流(I LC )、额定工作电压(U R )、阻抗(Z )1、电容量:是指在电容器上标明的电容量值,是设计容量的名义值。

2、损耗角正切:用于脉动电路中的铝电解电容器,实际上要消耗一小部分有功的电功率,这可用损耗角正切来表征,它是电容器电能量损耗的有功功率与无功功率之比。

对于电解电容较常采用串联等效电路,如图1-1所示,则其损耗角正切tg δ为: tg δ= = =ωC rr I图1-1 等效串联电路和电流电压矢量图3、漏电流漏电流:当对电容器施加直流电压时,将观察到充电电流的变化:开始很大,然后逐渐随时间而下降,但并不等于零,而是达到某一终值后,趋于稳定状态,这一终值称为漏电流。

漏电流I LC 是电解电容器五大电参数之一,用来表征电解电容器的绝缘质1 ωC rU C U RIr C rrU C U CI量。

与施加电压的大小、环境温度的高低和测试时间的长短都有密切关系,故在规定漏电流值时必须标明其测试时间“t”、施加电压“U”和环境温度“T”的大小。

I LC 与测试时间(即施加电压时间)、施加电压大小和环境温度之间的关系如图1-2所示。

t t 图1-2 电解电容器的漏电流与测试时间、施加电压和环境温度的关系对于铝电解电容器,漏电流通常用下式表示:I LC=KCU+M µA式中:C——电容器的标称电容量(µF);U——额定工作电压(V);K,M——常数。

电解电容器寿命计算公式

电解电容器寿命计算公式

A
T1 方波IRMS=
T √T1/T *A
0
Iip
PFC输入 Ii=Iip√ 1/3/√2
IPFC=√ (Ii/Fi)2 +(Io/Fo)
2
Iop To1
To
PFC输出 Io=Iop√ To1/3To
1.4
推测寿命LX由小时数转成年数(年)
1.153107
10-0.25*ΔTj0 (ΔTj0*I2/I02)/A
7.5 0.246876
Lx=L0*f(T)*f(I)
注意:只要在黄色栏内填上相应参数, 紫色栏内寿命会自动算出。
为了保持公式的准确性,不得随 便插入行或列。
Tα=TC-(Δ Tj0/ α)*(I/I0 )2
641
周围温度加速系数f(T)
纹波电流加速系数f(I) 电容器的推测寿命Lx(hrs) 推测寿命LX由小时数转成年数(年)
实际温升ΔTj
4.756828
1.93307 9195.281 1.04969
3.487878
10-0.25*ΔTj 温升系数C
9.12803 1.333
IRMS=√ (If1/Ff1)2+(I f2/Ff2)2+...+ Ifn/Ffn)2≈√ (IfL/FfL)2+(If H/FfH)2
铝电解电容器寿命计算
公式
A算法:
最高工作温度Tmax(℃) 额定寿命L0(hrs) 额定纹波电流I0(mA,rms) 温度系数k
85 1000 633 2.1
纹波电流温度修正值I0X(mA,rms)
1329.3
温度系数A 最大纹波电流时的内部温升ΔTj0(℃) 环境温度Tα(℃) 实际纹波电流I(mA,rms) 频率系数 纹波电流频率修正值I(mA,rms)

铝电解基本常识

铝电解基本常识

图虽然铝电解电容器非常小,但它具有相对较大的电容量,因为其通过电化学腐蚀后,电极箔的表面积被扩大了,并且它的介质氧化膜非常薄。

图1-2形象地描述了铝电解电容器的基本组成。

1-2电解电容器的等效电路电容器的等效电路图可由下图2表示R1:电极和引出端子的电阻;R2:阳极氧化膜和电解质的电阻;R3:损坏的阳极氧化膜的绝缘电阻;D1:具有单向导电性的阳极氧化膜;C1:阳极箔的容量;C2:阴极箔的容量L :电极及引线端子等所引起的等效电感量1-3电解电容器基本的电性能1-3-1 电容量电容器的由测量交流容量时所呈现的阻抗决定。

交流电容量随频率、电压以及测量方法的变化而变化。

电解电容器的容量随频率的增加而减小。

和频率一样,测量时的温度对电容器的容量有一定的影响。

随着测量温度的下降,电容量会变小。

另一方面,直流电容量,可通过施加直流电压而测量其电荷得到,在常温下容量比交流稍微的大一点,并且具有更优越的稳定特性。

1-3-2 Tan δ(损耗角正切)在等效电路中,串联等效电阻ESR同容抗1/ wC之比称之为Tan δ,其测量条件与电容量相同。

tan δ =RESR/ (1/wC)= wC RESR其中:RESR=ESR(120 Hz) w=2πf f=120Hz tan δ随着测量频率的增加而变大,随测量温度的下降而增大。

阻抗(Z):在特定的频率下,阻碍交流电通过的电阻就是所谓的阻抗(Z)。

它与容量以及电感密切相关,并且与等效串联电阻ESR也有关系。

具体表达式如下:其中:Xc=1/ wC=1/ 2πfC XL=wL=2πfL漏电流:电容器的介质对直流电具有很大的阻碍作用。

然而,由于铝氧化膜介质上浸有电解液,在施加电压时,重新形成以及修复氧化膜的时候会产生一种很小的称之为漏电流的电流,刚施加电压时,漏电流较大,随着时间的延长,漏电流会逐渐减小并最终保持稳定。

漏电流随时间变化特征图测试温度和电压对漏电流具有很大的影响。

铝电解电容器寿命的计算方式

铝电解电容器寿命的计算方式
V0:额定工作电压,单位:V
V1:实际承受的直流电压,单位:V
二、使用寿命
使用寿命是指不超过规定失效率下可达到的寿命,由于环境和负载的不同使用寿命一般要远远大于额定寿命;
三、估算寿命公式
LX=LR× × ×
LX:实际推诿使用寿命,单位:H
LR:额定寿命,单位:H
T0:允许的最高温度,单位:℃
T1:电容器使用时的环境温度,单位:℃
I0:实际纹波电流,单位:A
I1:最大纹波电流,单位:A
衡量一款铝电解电容器好坏的一个标准就是铝电解电容器的寿命

铝电解电容器的定寿命是指铝电解电容器在规定的条件下(频率、温度、纹波电流、电压)使用,达到规定失效变量所持续的寿命;市场上国内外焊针式和螺栓型的铝电解电容器一般的寿命为2000小时,BIT铝电解电容器规定为3000小时,这种厂家承诺的铝电解电容器的寿命就是额定寿命。
BIT铝电解电容器寿命的计算方法
BIT销售经理郑淋先生
铝电解电容器作为电源组件里面不可或缺的电子元器件,针对现如今牛鬼蛇神都出现的铝电解电容器市场,很多采购人员无从下手,单纯的只考虑价格因素,或者只要不出问题就可以的心态在选择铝电解电容器。相信便宜无好货,那价格便宜了成本就低了,质量肯定就会打折了,做实业,做品牌要的就是能有市场竞争力,那随着人们生活水准的不断提升,那么重品质的时代已经来临,您做好准备了吗?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Fig. 3.7 Fig. 3.4 3.5 Temperature Characteristic electrolytic 3.6 Frequency Characteristic
Characteristics of aluminum capacitor are temperature dependant.
The work W (Joule) made by the charge Q is expressed as follows:
1 W = ×V × Q 2 1 = × C ×V 2 2
3.2
Charging Current Absorption Current Leakage Current
----- 3.3
Fig. 3.3 Total current passing through capacitor reduces rapidly in the beginning with the change of Charging Current Ic determined by the capacitance C and ESR, the change of current being gradually moderate to converge into Leakage Current Il after the effect of Absorption Current Ia runs out. Leakage current of capacitor is essentially the final current, but practically the current 1 or 5 minutes after applying DC voltage to capacitor is deemed as “leakage current”, because it takes too much time to measure the true leakage current. It is said that generation of Absorption
Characteristics of aluminum electrolytic capacitor are also frequency dependant. Capacitance and ESR reduce as measuring frequency increases. The change of impedance is described in 3.4. However the rate of the change is not constant, the presumed reasons are as follows: 1) Condition of etched surface of aluminum foil 2) Property of aluminum oxide film as dielectric 3) Property of electrolyte 4) Construction of capacitor Frequency-response curves of capacitance and ESR are shown in Figs. 3.8 and 3.9 respectively. (50V 10µF, φ5x11L)
expressed with capacitive reactance “
Xc =
1 2πfC
”,
but the impedance of a practical capacitor is different and expressed as shown in the formula 3.7, considering the effects of ESR and inductive reactance “XL = 2πfL” according to the equivalent circuit shown in Fig. 3.2.
Tangent of Loss Angle (tan δ) and ESR
When a sinusoidal alternating voltage is applied to an ideal capacitor, the current advances by π/2 in phase. In the case of a practical capacitor, however, advance in phase is (π/2 - δ), which is smaller than π/2. “δ” is referred to as Loss Angle. (Refer to Fig. 3.1.) One of the reasons why loss angle arises is electric resistance of materials used in electrolytic capacitor, including the intrinsic resistance of foil, resistance of electrolyte and resistance of terminals. Another reason is time required for lining up dipoles of dielectric, which is also the time necessary to bring polarization into equilibrium. Equivalent circuit of aluminum electrolytic capacitor is schematically shown in Fig. 3.2.
“R” in above formula is referred to as Equivalent Series Resistance (ESR). 3.3 Leakage Current
When a DC voltage is applied to a capacitor with the capacitance of C through a series resistance (ESR), current I, passing through the capacitor, changes with time as shown in Fig. 3.3, which is expressed by the formula 3.5. I = Ic + I a + I l Ic: Ia : Il: -----3.5
Capacitance of a capacitor is generally expressed with the following formula: C = 8.855 X 10-8 C: ε: S: d:
εS
d
--------
Fig. 3.2 3.1 C: Ideal capacitance (F) R: Equivalent series resistance (Ω) L: Equivalent series Inductance (H)
2 1 2 Z = R + 2πfL − 2πfC
-----3.7
Fig. 3.6
Fig. 3.4 is the schematic illustration of Z, where Xc is predominant in low frequency range, ESR around the resonance point, and XL in high frequency range.
RUBYCON CORPORATION
5

风华直接授权代理/片式无源器件整合供应商 【南京南山】
TECHNICAL NOTES FOR ELECTROLYTIC CAPACITOR
Current is related to the change in polarization of dielectric with the passage of time and response time of space charge polarization would affect it. It is also said Voltage Recurrence Phenomena, such that voltage arises between terminals of capacitor even after discharge, is related with the delay in response time of above space charge polarization. 3.4 Impedance Impedance of capacitor is typically Fig. 3.5
风华直接授权代理/片式无源器件整合供应商 【南京南山】
TECHNICAL NOTES FOR ELECTROLYTIC CAPACITOR
3. PERFORMANCE OF ALUMINUM ELECTROLYTIC CAPACITOR
Aluminum electrolytic capacitor has the features that it is small in size but has high capacitance. General performances of aluminum electrolytic capacitor are described hereunder. 3.1 Capacitance and Energy Storage Fig. 3.1
Due to the property of electrolyte used for electrolytic capacitor, capacitance can remarkably reduce and ESR and the tangent of loss angle can increase in low temperature range. The reason is the increase in viscosity and resistance of electrolyte induced from reducing ionic mobility. Capacitance change over operating temperature range is shown in Fig. 3.5, the tangent of loss angle (tan δ) in Fig. 3.6 and leakage current in Fig. 3.7.
相关文档
最新文档