数图形方法总结
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数图形方法总结 Revised by Jack on December 14,2020
数数图形方法总结
一、对于一下简单的图形:
例1:数出下面图中有多少条线段。
例2:数一数下图中有多少个锐角。
例3:数一数下图中共有多少个三角形。
例4:数一数下图中共有多少个三角形。
例5:数一数下图中有多少个长方形。
以上这些简单的图形分割后的个数,通过实际的计数不难发现它们都存在同意个规律,即都可以根据如下公式计算:
1+2+3……(端点数-1),这样学生即可以简化了数的烦恼,还可快速正确的数出图形的个数。
二、下面是复杂图形的个数的计算方法:
例1:数一数下图中有多少个长方形
数长方形可以用下面的公式:
长边上的线段×短边上的线段=长方形的个数
例2:数一数,下图中有多少个正方形(每个小方格是边长为1的正方形)由相同的n×n个小方格组成的几行几列的正方形其中所含的正方形总数为:1×1+2×2+…+n×n。
例3:数一数下图中有多少个正方形(其中每个小方格都是边长为1个长度单位的正方形)
一般情况下,如果一个长方形的长被分成m等份,宽被分成n等份(长和宽的每一份都是相等的)那么正方形的总数为:mn+(m-1)(n-1)+(m-2)(n -2)+…+(m-n+1)
例5:数线段的实际应用
求下列图中线段长度的总和。(单位:厘米)
如果设线段上的点数为n,基本线段分别为a1、a2、…a(n-1)。以上各线段长度的总和为L,那么L= a1×(n-1)×1+ a2×(n-2)×2+ a3×(n-
3)×3+…+ a(n-1)×1×(n-1)。