高考专题突破四(高考中的立体几何问题)解析
2022年高考数学备考中等生百日捷进提升系列 专题04立体几何解答题(理)(综合提升篇)解析版
2021中等生百日综合提升篇专题四 立体几何解答题(理)空间向量运算与利用向量证明平行、垂直的位置关系【背一背重点学问】1.用向量证明线面平行的方法主要有:①证明直线的方向向量与平面的法向量垂直;②证明可在平面内找到一个向量与直线的方向向量是共线向量;③利用共面对量定理,即证明直线的方向向量可用平面内两个不共线向量线性表示.2.面面平行:①证明两个平面的法向量平行;②转化为线面平行,线线平行.3.用向量证明线面垂直的方法有:①证明直线的方向向量与平行的法向量平行;②利用线面垂直的判定定理,转化为线线垂直.4.面面垂直的证明发法:①两个平面的法向量垂直;②转化为线面垂直,线线垂直. 【讲一讲提高技能】 必备技能:1.用向量证明空间中的平行关系①设直线1l 和2l 的方向向量分别为1v 和2v ,则1l ∥2l (或1l 与2l 重合)⇔ 1v ∥2v .②设直线l 的方向向量为v ,与平面α共面的两个不共线向量1v 和2v ,则l ∥α或l ⊂α⇔存在两个实数,x y ,使12v xv yv =+.③设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u . ④设平面α和β的法向量分别为1u ,2u ,则α∥β⇔1u ∥2u . 2.用向量证明空间中的垂直关系①设直线l 1和l 2的方向向量分别为1v 和2v ,则l 1⊥l 2⇔1v ⊥2v ⇔1v .2v =0. ②设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v ∥u ③设平面α和β的法向量分别为1u 和2u ,则α⊥β⇔1u ⊥2u ⇔1u ·2u =0. 典型例题:例1如图,在四棱锥P ABCD -中,PD ⊥平面ABCD ,//AB CD ,090ADC ∠=,1PD AD AB ===,2DC =.(1)求证:BC ⊥平面PBD ; (2)求二面角A PB C --的大小. 【答案】(1)证明见解析;(2)56π. 【解析】例2如图,正方形CD AB 和四边形C F A E 所在平面相互垂直,C C E ⊥A ,F//C E A ,2AB =,C F 1E =E =.(1)求证:F//A 平面D B E ; (2)求证:CF ⊥平面D B E ; (3)求二面角D A-BE-的大小.【答案】(1)证明见解析;(2)证明见解析;(3)6π. 【解析】(2)证明:由于正方形CD AB 和四边形C F A E 所在的平面相互垂直,且C C E ⊥A , 所以C E ⊥平面CD AB .如图,以C 为原点,建立空间直角坐标系C xyz -. 则()C 0,0,0,)2,2,0A,()2,0B ,()D2,0,0,()0,0,1E ,22F ,22⎛⎫⎪ ⎪⎝⎭.22CF 2⎛⎫= ⎪ ⎪⎝⎭,()0,2,1BE =-,()D 2,0,1E =-.CF 0110⋅BE =-+=,CF D 1010⋅E =-++=,所以CF ⊥BE ,CF D ⊥E ,又D BE E =E ,所以CF ⊥平面D B E .(3)由(2)知,22CF ,22⎛⎫= ⎪ ⎪⎝⎭是平面D B E 的一个法向量.设平面ABE 的法向量(),,n x y z =,则0n ⋅BA =,0n ⋅BE =,即()()()(),,2,0,00,,0,2,10x y z x y z ⎧⋅=⎪⎨⋅-=⎪⎩,得0x =,且2z y =.令1y =,则2z =,()0,1,2n =.从而CF 3cos ,CF 2CFn n n ⋅==. 故二面角D A-BE-为锐角,故二面角D A-BE-的大小为6π. 【练一练提升力量】1已知在四棱锥P ABCD -中,底面ABCD 是矩形,且2AD =,1AB =,PA ⊥平面ABCD ,E 、F 分别是线段AB 、BC 的中点. (1)证明:PF FD ⊥(2)在线段PA 上是否存在点G ,使得EG ∥平面PFD ,若存在,确定点G 的位置;若不存在,说明理由. (3)若PB 与平面ABCD 所成的角为45,求二面角A PD F --的余弦值【解析】(Ⅱ)设平面PFD 的法向量为(),,n x y z =,由0n PF n DF ⎧⋅=⎪⎨⋅=⎪⎩,得00x y tz x y +-=⎧⎨-=⎩,令1z =,得:2t x y ==.∴,,122t t n ⎛⎫= ⎪⎝⎭.设G 点坐标为(0,0,)m ()0m t ≤≤,1,0,02E ⎛⎫⎪⎝⎭,则1(,0,)2EG m =-,要使EG ∥平面PFD ,只需0EG n =,即1()0102224t t tm m -⨯+⨯+⨯=-=,得14m t =,从而满足14AG AP =的点G 即为所求.2. 如图,四棱锥ABCD P -的底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,DC PD =,E 是PC 的中点. (Ⅰ)证明:PA //平面BDE ;(Ⅱ)求二面角C DE B --的平面角的余弦值;(Ⅲ)在棱PB 上是否存在点F ,使PB ⊥平面DEF ?证明你的结论.【解析】法二:(I )连接AC ,AC 交BD 于O ,连接OE .在PAC ∆中,OE 为中位线,∴OE //PAPA BDE ⊄又平面,∴PA //平面BDE .利用空间向量求空间角 【背一背重点学问】1.求两条异面直线所成的角,设b a ,分别是直线21,l l 的方向向量,则21,l l 所成角为θ,b a ,的夹角为><b a ,,则ba b a b a ⋅>=<=,cos cos θ2.求直线与平面所成的角,设直线l 的方向向量为a ,平面α的法向量为n ,直线l 与平面α所成的角为θ,ba n a n a ⋅=><=,cos sin θ.3. 设n m ,是二面角βα-l -的法向量,则n m ,的夹角大小就是二面角的平面角的大小,nm n m n m ⋅>=<=,cos cos θ,再依据平面是锐角还是钝角,最终确定二面角的平面角的大小.【讲一讲提高技能】 1.必备技能: 用法向量求角(1)用法向量求二面角如图,有两个平面α与β,分别作这两个平面的法向量1n 与2n ,则平面α与β所成的角跟法向量1n 与2n 所成的角2n 相等或互补,所以首先必需推断二面角是锐角还是钝角.(2)法向量求直线与平面所成的角要求直线a 与平面α所成的角θ,先求这个平面α的法向量n 与直线a 的夹角的余弦a n ,cos ,易知θ=a n ,或者a n ,2-π.2.典型例题:例1如图,在四棱锥P ABCD -中,底面ABCD 是菱形,且60DAB ∠=︒.点E 是棱PC 的中点,平面ABE 与棱PD 交于点F .F BD CP EA(1)求证://AB EF ;(2)若PA PD AD ==,且平面PAD ⊥平面ABCD ,求平面PAF 与平面AFE 所成的锐二面角的余弦值. 【答案】(1)详见解析;(2)1313. 【解析】试题分析:(1)首先证明//AB 面PCD ,再利用线面平行的性质即可得证;(2)建立空间直角坐标系,求得两个平面的法向量后即可求解.zyG AEP CDBF例2如图,四棱锥ABCD P -中,底面是以O 为中心的菱形,⊥PO 底面ABCD , 3,2π=∠=BAD AB ,M 为BC 上一点,且AP MP BM ⊥=,21. αβ1n(Ⅰ)求PO 的长;(Ⅱ)求二面角C PM A --的正弦值.分析:(Ⅰ)连结AC 、BD ,由于是菱形ABCD 的中心,ACBD O =,以O 为坐标原点,,,OA OB OP 的方向分别为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系,依据题设条件写出,,O A M 的坐标,并设出点P 的坐标()0,0,a ,依据空间两点间的距离公式和勾股定理列方程解出a 的值得到PO 的长;.(Ⅱ)设平面APM 的法向量为()1111,,n x y z =,平面PMC 的法向量为()2222,,n x y z =,首先利用向量的数量积列方程求出向量12,n n 的坐标,再利用向量的夹角公式求出12cos ,n n <>,进而求出二面角C PM A --的正弦值. 【解析】从而33,,044OM OB BM ⎛⎫=+=- ⎪ ⎪⎝⎭,即33,,0.44M ⎛⎫- ⎪ ⎪⎝⎭设()0,0,,0,P a a >,则()333,0,,,,.44AP a MP a ⎛⎫=-=-⎪ ⎪⎝⎭由于MP AP ⊥, 故0,MP AP ⋅=即2304a -+=,所以33,22a a ==-(舍去),即32PO =.【练一练提升力量】1. 如图,在长方体1111ABCD A B C D -中,11,2AD AA AB ===,点E 在棱AB 上移动.(Ⅰ)证明:11D E A D ⊥;(Ⅱ)当E 为AB 的中点时,求点E 到面1ACD 的距离; (Ⅲ)AE 等于何值时,二面角1D EC D --的大小为4π.【解析】2. 如图,四棱锥P —ABCD 中,PAB ∆为边长为2的正三角形,底面ABCD 为菱形,且平面PAB ⊥平面ABCD ,AB PC ⊥,E 为PD 点上一点,满足ED PE 21=(1)证明:平面ACE ⊥平面ABCD ;(2)求直线PD 与平面ACE 所成角正弦值的大小.【解析】E BACPABCDA 1B 1C 1D 1E解答题(共10题)1.如图,在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥底面ABCD ,AB AP =,E 为棱PD 的中点.(1)证明:AE CD ⊥;(2)求直线AE 与平面PBD 所成角的正弦值;(3)若F 为AB 中点,棱PC 上是否存在一点M ,使得FM AC ⊥,若存在,求出PMMC的值,若不存在,说明理由.【答案】(1)详见解析;(2)63;(3)13PM MC =.【解析】6cos ,3AE EF <>=所以,直线EF 与平面PBD 所成角的正弦值为63;(3)向量(2,2,2)CP =--,(2,2,0)AC =,(2,0,0)AB =.由点M 在棱PC 上,设(01)CM CP λλ=≤≤,故(12,22,2)FM FC CM λλλ=+=--,由FM AC ⊥,得0FM AC ⋅=, 因此(12)2(22)20λλ-⨯+-⨯=,解得34λ=,所以13PM MC =.2. 如图,在四棱柱ABCD -A 1B 1C 1D 1中,侧棱AA 1⊥底面ABCD ,AB ∥DC ,11AA =,3AB k =, 456(0)AD k BC k DC k k ===>,,.(Ⅰ)求证:CD ⊥平面ADD 1A 1;(Ⅱ)若直线AA 1与平面AB 1C 所成角的正弦值为67,求k 的值. 【解析】(Ⅱ)以D 为原点,DA ,DC ,1DD 的方向为x ,y ,z 轴的正方向建立如图所示的空间直角坐标系,3. 如图,在直三棱柱111ABC A B C -中,平面1A BC ⊥ 侧面11A ABB 且12AA AB ==.(Ⅰ)求证:AB BC ⊥;(Ⅱ)若直线AC 与平面1A BC 所成的角为6π,求锐二面角1A A C B --的大小. 【解析】(1)证明:如图,取1A B 的中点D ,连接AD ,因1AA AB =,则1AD AB ⊥ ,由平面1A BC ⊥侧面11A ABB ,且平面1A BC 侧面11A ABB 1A B =,得1AD A BC ⊥平面,又BC ⊂平面1A BC , 所以AD BC ⊥. 由于三棱柱111ABC A B C —是直三棱柱,则1AA ABC ⊥底面,所以1AA BC ⊥. 又1=AA AD A ,从而BC ⊥侧面11A ABB ,又AB ⊂侧面11A ABB ,故AB BC ⊥.解法二(向量法):由(1)知AB BC ⊥且1BB ABC ⊥底面,所以以点B 为原点,以1BC BA BB 、、所在直线分别为,,x y z 轴建立空间直角坐标系B xyz -,如图所示,且设BC a =,则(0,2,0)A ,(0,0,0)B ,(,0,0)C a ,1(0,2,2)A ,(,0,0)BC a =,1(0,2,2)BA =,(,2,0)AC a =-,1(0,0,2)AA = 设平面1A BC 的一个法向量1(,,)n x y z =,由1BC n ⊥, 11BAn ⊥ 得: 0220xa y z =⎧⎨+=⎩令1y = ,得 0,1x z ==-,则1(0,1,1)n =- 设直线AC 与1A BC 平面所成的角为θ,则6πθ=得12121sin6242AC n AC n a π-===+,解得2a =,即(2,2,0)AC =- 又设平面1A AC 的一个法向量为2n ,同理可得2(1,1,0)n =,设锐二面角1A A C B --的大小为α,则1212121cos cos ,2n n n n n n α=<>==,且(0,)2πα∈,得 3πα=∴ 锐二面角1A A C B --的大小为3π. 4. 在三棱柱111C B A ABC -中,侧面11A ABB 为矩形,2=AB ,221=AA ,D 是1AA 的中点,BD 与1AB 交于点O ,且CO ⊥平面11A ABB .(1)证明:1AB BC ⊥;(2)若OA OC =,求直线CD CD 与平面ABC 所成角的正弦值. 【答案】(1)证明见解析;(2)515. 【解析】又BC ⊂平面CBD ,∴BC AB ⊥1.5. 如图,四棱锥P -ABCD 中,PA ⊥底面ABCD ,BC =CD =2,AC =4,∠ACB =∠ACD =3π,F 为PC 的中点,AF ⊥PB.(1)求PA 的长;(2)求二面角B -AF -D 的正弦值. 【解析】(2)由(1)知()03,3,-=AD ,()03,3,=AB ,()320,,=AF .设平面FAD FAD 的法向量为()1111,z y x n =,平面FAB 的法向量为()2222,z y x n =.由0,011=⋅=⋅AF n AD n 得,⎪⎩⎪⎨⎧=+=+032033-1111z y y x 因此可取()2,3,31-=n .由0,022=⋅=⋅AF n AB n 得⎪⎩⎪⎨⎧=+=+0320332222z y y x 故可取()2,3,32-=n .从而法向量21,n n 的夹角的余弦值为81,cos 212121=⋅>=<n n n n n n .故二面角D AF B --正弦值为873. 6. 如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,60ABC ∠=E 、F 分别是PB 、CD 的中点,且4PB PC PD ===.(1)求证:PA ABCD ⊥平面;(2)求证://EF 平面PAD ; (3)求二面角A PB C --的余弦值.ADBCPE FBCADP EFN GH M【解析】(3)取AB 的中点,G 过G 作GH PB ⊥于点,H 连结,.HC GC 则,CG AB ⊥又,,CG PA PAAB A CG ⊥=∴⊥平面.PAB ,HC PB ∴⊥ GHC ∴∠是二面角A PB C --的平面角.在Rt PAB ∆中,2,4,2 3.AB PB PA ==∴= 又Rt BHG ∆∽Rt BAP ∆,3,2HG BG HG PA PB ∴=∴=.在Rt HGC ∆中,可求得153,,2GC HC =∴=5cos 5GHC ∴∠=, 故二面角A PB C --的余弦值为5.57. 直三棱柱111ABC A B C -中,11AA AB AC ===,,E F 分别是1,CC BC 的中点,11AE A B ⊥,D 为棱11A B 上的点.(1)证明:AC AB ⊥ ; (2)证明:DF AE ⊥;(3)是否存在一点D ,使得平面DEF 与平面ABC 所成锐二面角的余弦值为1414?若存在,说明点D 的位置,若不存在,说明理由.【答案】(1)证明见解析;(2)存在,点D 为11A B 中点. 【解析】试题解析:(1)证明:∵11AE A B ⊥,11//,A B AB AE AB ∴⊥,又∵11,AA AB AA AE A ⊥=∴AB ⊥面11A ACC .又∵AC ⊂面11A ACC ,∴AB AC ⊥,以A 为原点建立如图所示的空间直角坐标系A xyz -,则有()()()111110,0,0,0,1,,,,0,0,0,1,1,0,1222A E F A B ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,设()111,,,D x y z A D A B λ=且()0,1λ∈,即(),,1(1,0,0)x y z λ-=,则11(,0,1),,,122D DF λλ⎛⎫∴=--⎪⎝⎭,∵1110,1,,0222AE DF AE ⎛⎫=∴⋅=-= ⎪⎝⎭,所以DF AE ⊥;8. 如图,在底面为直角梯形的四棱锥P -ABCD 中,AD ∥BC ,∠ABC =90°,P A ⊥平面ABCD ,P A =3,AD =2,AB =23,BC =6. (1)求证:BD ⊥平面P AC ; (2)求二面角P -BD -A 的大小.【解析】9. 如图1,直角梯形ABCD 中,AD ∥,BC 90ABC ∠=,BC AB AD 21==,E 是底边BC 上的一点,且BE EC 3=.现将CDE ∆沿DE 折起到DE C 1∆的位置,得到如图2所示的四棱锥,1ABED C -且AB A C =1.ABCDE 图1BE ADMC 1图2(1)求证:⊥A C 1平面ABED ;(2)若M 是棱E C 1的中点,求直线BM 与平面DE C 1所成角的正弦值. 【答案】(1)见解析;(2)49. 【解析】(2)由(1)知:⊥A C 1平面ABED 且AD AB ⊥,分别以1AC AD AB 、、为x 轴、y 轴、z 轴的正半轴建立空间直角坐标系,如图:z xB EAD MC 1y则)0,1,0(),0,21,1(),1,0,0(),0,0,1(1D E C B10.在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,△PAD 是等边三角形,底面ABCD 是边长为2的菱形,∠BAD =60°,E 是AD 的中点,F 是PC 的中点.(1)求证:BE ⊥平面PAD ; (2)求证:EF ∥平面PAB ;(3)求直线EF 与平面PBE 所成角的余弦值. 【解析】(2)取PB 中点为H ,连接AH FH ,,则⎪⎪⎭⎫⎝⎛23,230,H ,⎪⎪⎭⎫ ⎝⎛-=23,231,EF ,()⎪⎪⎭⎫⎝⎛-=-⎪⎪⎭⎫ ⎝⎛=23,23100123,230,,,,AH , AH EF //∴, 又⊄EF 平面PAB ,⊂AH 平面PAB ,//EF ∴平面PAB .。
高考数学热点问题专题解析——立体几何中的建系设点问题
立体几何解答题的建系设点问题在如今的立体几何解答题中,有些题目可以使用空间向量解决问题,与其说是向量运算,不如说是点的坐标运算,所以第一个阶段:建系设点就显得更为重要,建立合适的直角坐标系的原则有哪些?如何正确快速写出点的坐标?这是本文要介绍的内容。
一、基础知识:(一)建立直角坐标系的原则:如何选取坐标轴 1、z 轴的选取往往是比较容易的,依据的是线面垂直,即z 轴要与坐标平面xOy 垂直,在几何体中也是很直观的,垂直底面高高向上的即是,而坐标原点即为z 轴与底面的交点2、,x y 轴的选取:此为坐标是否易于写出的关键,有这么几个原则值得参考:(1)尽可能的让底面上更多的点位于,x y 轴上 (2)找角:,x y 轴要相互垂直,所以要利用好底面中的垂直条件(3)找对称关系:寻找底面上的点能否存在轴对称特点3、常用的空间直角坐标系满足,,x y z 轴成右手系,所以在标,x y 轴时要注意。
4、同一个几何体可以有不同的建系方法,其坐标也会对应不同。
但是通过坐标所得到的结论(位置关系,角)是一致的。
5、解答题中,在建立空间直角坐标系之前,要先证明所用坐标轴为两两垂直(即一个线面垂直 底面两条线垂直),这个过程不能省略。
6、与垂直相关的定理与结论:(1)线面垂直:① 如果一条直线与一个平面上的两条相交直线垂直,则这条直线与该平面垂直 ② 两条平行线,如果其中一条与平面垂直,那么另外一条也与这个平面垂直 ③ 两个平面垂直,则其中一个平面上垂直交线的直线与另一个平面垂直 ④ 直棱柱:侧棱与底面垂直 (2)线线垂直(相交垂直): ① 正方形,矩形,直角梯形② 等腰三角形底边上的中线与底边垂直(三线合一) ③ 菱形的对角线相互垂直④ 勾股定理逆定理:若222AB AC BC +=,则AB AC ⊥(二)坐标的书写:建系之后要能够快速准确的写出点的坐标,按照特点可以分为3类1、能够直接写出坐标的点(1) 坐标轴上的点,例如在正方体(长度为1)中的,,'A C D 点,坐标特点如下:x 轴:(),0,0x y 轴:()0,,0y z 轴:()0,0,z规律:在哪个轴上,那个位置就有坐标,其余均为0(2)底面上的点:坐标均为(),,0x y ,即竖坐标0z =,由于底面在作立体图时往往失真,所以要快速正确写出坐标,强烈建议在旁边作出底面的平面图进行参考:以上图为例:则可快速写出,H I 点的坐标,位置关系清晰明了111,,0,,1,022H I ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭2、空间中在底面投影为特殊位置的点:如果()'11,,A x y z 在底面的投影为()22,,0A x y ,那么1212,x x y y ==(即点与投影点的横纵坐标相同)由这条规律出发,在写空间中的点时,可看下在底面的投影点,坐标是否好写。
高考数学考点解读及专项突破:立体几何
立体几何
一、高考动向:
考查思维能力和空间想象能力,特别是使用向量代数方法解决立体几何几何问题的能力, 以顺应几何的改革方向,高考命题侧重于直线与平面之间的各种位置关系的考查,从川卷来 看,一般是三小一大,估计 26 分左右。客观题仍是侧重于点线面位置关系及空间角,有可能 涉及求表面积和体积问题,难度不会太大,主观题估计向新课标靠拢。
12×(1+ 1+ 2)× 2= 2+ 2.
2.(1) [2011 ·安徽卷 ] 一个空间几何体的三视图如图 12-4 所示,则该几何体的表面积为 ()
图 12- 4
A . 48
B. 32+ 8 17
C. 48+ 8 17
D. 80
(2)[2011 湖·南卷 ] 设图 12- 5 是某几何体的三视图,则该几何体的体积为 ( )
5. (辽宁理 8)。如图,四棱锥 S—ABCD的底面为正方形, SD 底面 ABCD,则下列结论中不 正确的是
( A) AC⊥ SB ( B)AB∥平面 SCD
( C) SA与平面 SBD所成的角等于 SC与平面 SBD 所成的角 ( D)AB 与 SC所成的角等于 DC 与 SA所成的角
【答案】 D
所以
VS-ABC
=
1 3
S△
ABD
·SC=
1 3
×
1× 2
(
3)2·sin60 ×°4=
3,所以选
C.
【点评】 本题考查空间想象能力、逻辑推理能力和运算能力.本题的难点在于对三棱
锥 S- ABC 的结构特征的分析判断,其中的体积分割法是求解体积问题时经常使用的技巧.
4. 设 m,n 是平面 α内的两条不同直线; l 1,l2 是平面 β内的两条相交直线,则 α∥ β的一 个充分而不必要条件是 ( )
高考数学专题四立体几何 微专题29 立体几何中的动态问题
√C.若点N到直线BB1与直线DC的距离相等,则点N的轨迹为抛物线 √D.若D1N与AB所成的角为 π3,则点N的轨迹为双曲线
如图所示,对于A, 根据正方体的性质可知,MD⊥平面ABCD, 所以∠MND为MN与平面ABCD所成的角, 所以∠MND=4π,所以 DN=DM=12DD1=12×4=2, 所以点N的轨迹是以D为圆心,2为半径的圆,故A正确;
思维导图
内容索引
典型例题
热点突破
PART ONE
典型例题
考点一 动点的轨迹
典例1 (1)(多选)已知正方体ABCD-A1B1C1D1 的棱长为4,M为DD1的中点,N为四边形ABCD 所在平面上一动点,则下列命题正确的是
√A.若MN与平面ABCD所成的角为 π4,则点N的
轨迹为圆
B.若MN=4,则MN的中点P的轨迹所围成图
当 B 是 AC 的中点时,AB=BC= 6,
此时△SAB为等腰三角形,△ABC为等腰直角三角形,
将△SAB,△ABC沿AB展开至同一个平面,得到如
图2所示的平面图形,
取AB的中点D,连接SC,SD,CD,
则 SD=
22-
262=
210,
所以 sin ∠ABS=SSDB= 410, 所以 cos∠CBS=cos(90°+∠ABS)=-sin∠ABS=- 410,
此时点B与点Q重合,点P与点O1重合,故C正确;
对于D,当点P与点B1,点Q与点A重合时,
AP+PQ+QB1 的值为 3AP=3 12+22=3 5>2 3+ 5,故 D 错误.
考点二 折叠、展开问题
典例2 (多选)如图,在矩形ABCD中,M为BC的中点,将△ABM沿直线 AM翻折成△AB1M,连接B1D,N为B1D的中点,则在翻折过程中,下列 说法正确的是 A.存在某个位置,使得CN⊥AB1
高考数学:立体几何需熟透四公理八定理
⾼考数学:⽴体⼏何需熟透四公理⼋定理 海南华侨中学⾼三数学备课组长邓建书为⽹友解疑答惑。
(南海⽹记者陈望摄) 南海⽹海⼝4⽉17⽇消息(南海⽹记者刘嘉珮)⾼考数学中⼏何是难点重点,有什么复习技巧?每次能听懂,但是轮到⾃⼰答题时却发蒙该怎么办?遇上难题该如何化解恐惧⼼理?4⽉17⽇,海南华侨中学⾼三数学备课组长邓建书参加南海⽹“2012⾼考名校名师全媒体辅导”时⼀⼀为⽹友们进⾏解答。
⽴体⼏何需熟透四公理⼋定理 针对⽹友提出⼏何复习办法的疑问,邓建书⽼师表⽰,⼏何分为⽴体⼏何和解析⼏何。
⽴体⼏何⼜分为四个公理⼋个定理,考⽣⾸先需要把这⽅⾯的教材都通读⼀遍,如果还不能理解的话,就拿出笔和纸把这些定理公理都抄下来,再把相应的图形画出来,必须记住这些内容,能做到脱⼝⽽出,只有熟悉基础知识,做题才能找到思路。
⽴体⼏何是基本的概念,解析⼏何则是最原始的定义,⾼考时做解析⼏何却让很多考⽣头痛不已,邓建书对解析⼏何计算的技巧给出了⾃⼰的建议。
“在计算这⽅⾯我们最⾸要的是相信⾃⼰,很多同学拿铅笔做题就是还不相信⾃⼰。
我认为在做题的时候可以先把⾃⼰知道的都在卷⾯上写下来,然后再在稿纸上算⼀下,算⼀步写⼀步。
免得这道题⽬不会做,在稿纸上算很久都没有算出来,⼜没有时间写在试卷上。
先在试卷上把知道的写下来这样能节省很多时间,即使没有做出来前⾯步骤分还在。
” 做不来题还是基础知识不牢固 有⽹友表⽰,学习数学时⽼师讲的时候⼤家很清楚,⾃⼰做的时候感觉却很难,邓建书⽼师认为这个同学还是基础知识不牢固。
“学习分为⼏个层次,第⼀个叫做⽣中成熟,第⼆熟中⽣巧,第三巧中⽣变,我觉得这个实际上就是知识熟练的过程,题⽬更多的就是考知识点,知识点不熟悉,题就做不好。
”他建议这位同学对⾼中的教材再进⾏梳理⼀遍,这样知识点可以慢慢熟悉起来,也可以找两、三位同学在⼀块互相提问,拿着书⼀本⼀本问,这个⽅法⽐较好。
时间不够,是很多考⽣都会遇到的苦恼,该如何保证考试正确率的同时⼜能提⾼速度?邓建书表⽰,如果⼤题没有时间做,肯定是因为考⽣在选择题和填空题上消耗了太多时间。
高三数学一轮专题4 高考中的立体几何问题(含解析)北师
专题四 高考中的立体几何问题1.如图,四棱锥P -ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,点E 在线段AD 上,且CE ∥AB .(1)求证:CE ⊥平面PAD ;(2)若PA =AB =1,AD =3,CD =2,∠CDA =45°,求四棱锥P -ABCD 的体积.[解析] (1)∵PA ⊥底面ABCD ,CE 平面ABCD∴CE ⊥PA ,又∵AB ⊥AD ,CE ∥AB .∴CE ⊥AD .又∵PA ∩AD =A ,∴CE ⊥平面PAD .(2)由(1)可知CE ⊥AD .在Rt △ECD 中,DE =CD·cos45°=1,CE =CD·sin45°=1.又∵AB =CE =1,AB ∥CE ,所以四边形ABCE 为矩形.∴S 四边形ABCD =S 矩形ABCE +S △CDE =AB·AE +12CE·DE=1×2+12×1×1=52.又PA ⊥底面ABCD ,PA =1所以V 四棱锥p -ABCD =13S 四边形ABCD×PA =13×52×1=56.2.(2015·潍坊模拟)如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,AB =AD ,∠BAD =60°,E 、F 分别是AP 、AD 的中点.求证:(1)直线EF ∥平面PCD ;(2)平面BEF ⊥平面PAD .[证明] (1)在△PAD 中,因为E 、F 分别为AP 、AD 的中点,所以EF ∥PD .又因为E F ⃘平面PCD ,PD 平面PCD .所以直线EF ∥平面PCD .(2)连结BD .因为AB =AD ,∠BAD =60°,所以△ABD 为正三角形.因为F 是AD 的中点,所以BF ⊥AD .因为平面PAD ⊥平面ABCD ,BF平面ABCD,平面PAD∩平面ABCD=AD,所以BF⊥平面PAD.又因为BF平面BEF,所以平面BEF⊥平面PAD.3.如图,在四棱锥P-ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD,E和F分别是CD、PC的中点,求证:(1)PA⊥底面ABCD;(2)BE∥平面PAD;(3)平面BEF⊥平面PCD.[解析](1)因为平面PAD⊥底面ABCD,且PA垂直于这两个平面的交线AD,所以PA⊥底面ABCD.(2)因为AB∥CD,CD=2AB,E为CD的中点,所以AB∥DE,且AB=DE.所以四边形ABED为平行四边形.所以BE∥AD.又因为B E⃘平面PAD,AD平面PAD,所以BE ∥平面PAD .(3)因为AB ⊥AD ,而且四边形ABED 为平行四边形,所以BE ⊥CD ,AD ⊥CD .由(1)知PA ⊥底面ABCD .所以PA ⊥CD .所以CD ⊥平面PAD .所以CD ⊥PD .因为E 和F 分别是CD 和PC 的中点,所以PD ∥EF.所以CD ⊥EF ,又因为CD ⊥BE ,BE ∩EF =E ,所以CD ⊥平面BEF.所以平面BEF ⊥平面PCD .4.如图,在几何体P -ABCD 中,四边形ABCD 为矩形,PA ⊥平面ABCD ,AB =PA =2.(1)当AD =2时,求证:平面PBD ⊥平面PAC ;(2)若PC 与AD 所成的角为45°,求几何求P -ABCD 的体积.[解析] (1)证明:当AD =2时,四边形ABCD 是正方形,则BD ⊥AC .∵PA ⊥平面ABCD ,BD 平面ABCD ,∴PA ⊥BD .又∵PA ∩AC =A ,∴BD ⊥平面PAC .∵BD 平面PBD ,∴平面PBD ⊥平面PAC .(2)解:PC 与AD 成45°角,AD ∥BC ,则∠PCB =45°.∵BC ⊥AB ,BC ⊥PA ,AB ∩PA =A ,∴BC ⊥平面PAB ,PB 平面PAB .∴BC ⊥PB .∴∠CPB =90°-45°=45°.∴BC =PB =2 2.∴几何体P -ABCD 的体积为13×(2×22)×2=823.1.(2014·四川高考)在如图所示的多面体中,四边形ABB1A1和ACC1A1都为矩形.(1)若AC ⊥BC ,证明:直线BC ⊥平面ACC1A1;(2)设D ,E 分别是线段BC ,CC1的中点,在线段AB 上是否存在一点M ,使直线DE ∥平面A1MC ?请证明你的结论.[解析] (1)因为四边形ABB1A1和ACC1A1都是矩形,所以AA1⊥AB ,AA1⊥AC .因为AB ,AC 为平面ABC 内两条相交直线,所以AA1⊥平面ABC .因为直线BC 平面ABC ,所以AA1⊥BC .又由已知,AC ⊥BC ,AA1,AC 为平面ACC1A1内两条相交直线,所以BC ⊥平面ACC1A1.(2)取线段AB 的中点M ,连接A1M ,MC ,A1C ,AC1,设O 为A1C ,AC1的交点. 由已知,O 为AC1的中点.连接MD ,OE ,则MD ,OE 分别为△ABC ,△ACC1的中位线,所以,MD 綊12AC ,OE 綊12AC ,因此MD綊OE.连接OM,从而四边形MDEO为平行四边形,则DE∥MO.因为直线D E⃘平面A1MC,MO平面A1MC.所以直线DE∥平面A1MC.即线段AB上存在一点M(线段AB的中点),使直线DE∥平面A1MC.2.如图,在四棱台ABCD-A1B1C1D1中,D1D⊥平面ABCD,底面ABCD是平行四边形,AB=2AD,AD=A1B1,∠BAD=60°.(1)证明:AA1⊥BD;(2)证明:CC1∥平面A1BD.[解析](1)∵DD1⊥平面ABCD,BD平面ABCD∴DD1⊥BD,又∵AB=2AD且∠BAD=60°∴由余弦定理得BD2=AB2+AD2-2AB·ADcos∠BAD即BD=3AD,∴AD2+BD2=AB2,∴BD⊥AD又∵AD∩DD1=D∴BD⊥平面ADD1A1,又∵AA1平面ADD1A1,∴BD⊥AA1(2)连接AC,交BD于M,连接A1M,A1C1,∵底面ABCD 是平行四边形,∴AM =CM =12AC又∵AB =2AD =2A1B1∴A1G 綊CM ,即四边形A1MCC1是平行四边形;∴CC1∥AM1,又∵CC 1⃘平面A1BD ,A1M 平面A1BD∴CC1∥平面A1BD .3.(文)(2015·临沂模拟)如图,在边长为3的正三角形ABC 中,G ,F 为边AC 的三等分点,E ,P 分别是AB ,BC 边上的点,满足AE =CP =1,今将△BEP ,△CFP 分别沿EP ,FP 向上折起,使边BP 与边CP 所在的直线重合,B ,C 折后的对应点分别记为B1,C1.(1)求证:C1F ∥平面B1GE ;(2)求证:PF ⊥平面B1EF.[解析] (1)取EP 的中点D ,连接FD ,C1D .因为BC =3,CP =1,所以折起后C1为B1P 的中点.所以在△B1EP 中,DC1∥EB1.又因为AB =BC =AC =3,AE =CP =1,所以EP AC =EB AB ,所以EP =2且EP ∥GF.因为G ,F 为AC 的三等分点,所以GF =1.又因为ED =12EP =1,所以GF =ED ,所以四边形GEDF 为平行四边形.所以FD ∥GE.又因为DC1∩FD =D ,GE ∩B1E =E ,所以平面DFC1∥平面B1GE.又因为C1F 平面DFC1, 所以C1F ∥平面B1GE.(2)连接EF ,B1F ,由已知得∠EPF =60°,且FP =1,EP =2,由余弦定理,得EF2=12+22-2×1×2×cos60°=3,所以FP2+EF2=EP2,可得PF ⊥EF.因为B1C1=PC1=1,C1F =1,得FC1=B1C1=PC1,所以△PB1F 的中线C1F =12PB1,可得△PB1F 是直角三角形,即B1F ⊥PF.因为EF ∩B1F =F ,EF ,B1F 平面B1EF ,所以PF ⊥平面B1EF.(理)(2014·浙江高考)如图,在四棱锥A -BCDE 中,平面ABC ⊥平面BCDE ,∠CDE =∠BED =90°,AB =CD =2,DE =BE =1,AC = 2.(1)证明:DE ⊥平面ACD ;(2)求二面角B -AD -E 的大小.[解析] (1)在平面四边形BCDE 中,BC =2,在三角形ABC 中,AB=2,BC =2,AC = 2.根据勾股定理逆定理.∴AC ⊥BC .∵平面ABC ⊥平面BCOE ,而平面ABC ∩平面BCDE =BCAC ⊥BC ,∴AC ⊥平面BCDE ,∴AC ⊥DE ,又∵AC ⊥DE ,DE ⊥DC ,∴DE ⊥平面ACD .(2)由(1)知分别以CD →、CA →为x 轴、z 轴正方向.以过C 平行DE →为y 轴正向建立坐标系.则B(1,1,0),A(0,0,2),D(2,0,0),E(2,1,0)∴AB →=(1,1,-2),AD →=(2,0,-2),DE →=(0,1,0)设平面ABD 法向量n1=(x1,y1,z1),由n1·DE →=n1·AD →=0,解得n1=(1,1,2)设平面ADE 法向量n2=(x2,y2,z2),则n2·AE →=n2·AD →=0,解得:n2=(1,0,2)设平面ABD 与平面ADE 夹角为θ,cosθ=|cos 〈n1,n2〉|=1+0+22×3=32π∴平面ABD与平面ADE的二面角平面角为6.。
2022年高考数学重难题型突破类型四截面问题(解析版)
类型四截面问题【典例1】如图,在正方体ABCD -A 1B 1C 1D 1中,点E ,F 分别是棱B 1B ,B 1C 1的中点,点G 是棱C 1C 的中点,则过线段AG 且平行于平面A 1EF 的截面图形为( )A .矩形B .三角形C .正方形D .等腰梯形 【答案】 D【解析】 取BC 的中点H ,连接AH ,GH ,AD 1,D 1G ,由题意得GH ∥EF ,AH ∥A 1F , 又GH ⊄平面A 1EF ,EF ⊂平面A 1EF , ∴GH ∥平面A 1EF ,同理AH ∥平面1EF , 又GH ∩AH =H ,GH ,AH ⊂平面AHGD 1, ∴平面AHGD 1∥平面A 1EF ,故过线段AG 且与平面A 1EF 平行的截面图形为四边形AHGD 1,显然为等腰梯形.【典例2】已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( ) A.334 B.233 C.324 D.32【答案】 A【解析】 如图所示,在正方体ABCD -A 1B 1C 1D 1中,平面AB 1D 1与棱A 1A ,A 1B 1,A 1D 1所成的角都相等,又正方体的其余棱都分别与A 1A ,A 1B 1,A 1D 1平行,故正方体ABCD -A 1B 1C 1D 1的每条棱所在直线与平面AB 1D 1所成的角都相等.取棱AB ,BB 1,B 1C 1,C 1D 1,DD 1,AD 的中点E ,F ,G ,H ,M ,N ,则正六边形EFGHMN 所在平面与平面AB 1D 1平行且面积最大,此截面面积为S 正六边形EFGHMN=6×12×22×22sin 60°=334.故选A.【典例3】平面α过正方体ABCDA 1B 1C 1D 1的顶点A ,α∥平面CB 1D 1,α∩平面ABCD =m ,α∩平面ABB 1A 1=n ,则m ,n 所成角的正弦值为( ) A.32 B.22 C.33 D.13【答案】 A【解析】 如图所示,设平面CB 1D 1∩平面ABCD =m 1,∵α∥平面CB 1D 1,∴m 1∥m ,又∵平面ABCD ∥平面A 1B 1C 1D 1,平面CB 1D 1∩平面A 1B 1C 1D 1=B 1D 1, ∴B 1D 1∥m 1,∴B 1D 1∥m ,同理可得CD 1∥n.故m ,n 所成角的大小与B 1D 1,CD 1所成角的大小相等,即∠CD 1B 1的大小. 而B 1C =B 1D 1=CD 1(均为面对角线),∴∠CD 1B 1=π3,得sin ∠CD 1B 1=32,故选A.【典例4】如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,P 为BC 的中点,Q 为线段CC 1上的动点,过点A ,P ,Q 的平面截该正方体所得的截面记为S.则下列命题正确的是( )A .当0<CQ<12时,S 为四边形B .当CQ =12时,S 为等腰梯形C .当CQ =34时,S 与C 1D 1的交点R 满足C 1R =13D .当34<CQ<1时,S 为六边形【答案】 ABC【解析】 当Q 为中点,即CQ =12时,截面APQD 1为等腰梯形,故B 正确;当0<CQ<12时,只需在DD 1上取点M 使PQ ∥AM ,即可得截面APQM 为四边形,故A 正确;当CQ =34时,如图,延长AP 交DC 于M ,连接MQ ,并延长交C 1D 1于R ,交DD 1于N ,∵CQ =34,∴DN =34×2=32,∴D 1N =12,∴D 1N DN =13,∴d D 1R DM =13,∴D 1R =13DM =23,∴C 1R =13,故C 正确;当34<CQ<1时,在上图中只需将Q 上移,此时截面形状仍是APQRT ,为五边形,故D 不正确. 【典例5】如图,在三棱锥O -ABC 中,三条棱OA ,OB ,OC 两两垂直,且OA>OB>OC ,分别经过三条棱OA ,OB ,OC 作一个截面平分三棱锥的体积,截面面积依次为S 1,S 2,S 3,则S 1,S 2,S 3的大小关系为________.【答案】 S 3<S 2<S 1【解析】 由题意知OA ,OB ,OC 两两垂直,可将其放置在以O 为顶点的长方体中,设三边OA ,OB ,OC 分别为a ,b ,c ,且a>b>c ,利用等体积法易得S 1=14a b 2+c 2,S 2=14b a 2+c 2,S 3=14c a 2+b 2,∴S 21-S 22=116(a 2b 2+a 2c 2)-116(b 2a 2+b 2c 2)=116c 2(a 2-b 2), 又a>b ,∴S 21-S 22>0,即S 1>S 2, 同理,平方后作差可得,S 2>S 3, ∴S 3<S 2<S 1. 【方法总结】 确定截面的主要依据有 (1)平面的四个公理及推论. (2)直线和平面平行的判定和性质. (3)两个平面平行的性质. (4)球的截面的性质.【典例6】如图,将一个长方体用过相邻三条棱的中点的平面截出一个棱锥,则该棱锥的体积与剩下的几何体体积的比为________.【答案】 1∶47【解析】 设长方体的相邻三条棱长分别为a ,b ,c ,它截出棱锥的体积V 1=13×12×12a ×12b×12c =148abc ,剩下的几何体的体积V 2=abc -148abc =4748abc ,所以V 1∶V 2=1∶47. 【典例7】半径为r 的球内切于一个正三棱锥,求此正三棱锥的全面积的最小值。
22版:高考专题突破四 第2课时 空间距离及立体几何中的新定义问题(步步高)
因为 BC=4,则 DE=12BC=2, 所以 OP=OF= 3.
在 Rt△OBF 中,BF=2,OF⊥BF,所以 OB= 7.
在 Rt△OBP 中,PB= OP2+OB2= 3+7= 10,
所以 sin∠OBP=OPBP=
3= 10
1300.
12345
(2)求直线DE到平面PBC的距离.
12345
解 ∵△PAD是等边三角形,AB=2AD,平面PAD⊥平面ABCD, ∴以AD的中点O为原点,OA为x轴, 在矩形ABCD中,过点O作AB的平行线为y轴,以 OP为z轴,建立空间直角坐标系,设AD=x, ∵四棱锥 P-ABCD 的体积为 9 3, ∴13x·2x· x2-2x2=9 3, 解得x=3,
∴AE= 2 22+22-2×2 2×2×cos 45°=2,
∴AE⊥AB, ∵AB2+PA2=PB2,∴AB⊥PA, ∵AE∩PA=A,AE,PA⊂平面PAE, ∴AB⊥平面PAE,∵AB⊂平面ABCE,∴平面PAE⊥平面ABCE.
12345
(2)求点E到平面PAB的距离.
12345
解 ∵AE=2,DE=2,PA=2 2, ∴PA2=AE2+PE2,∴AE⊥PE, ∵AB⊥平面PAE,AB∥CE, ∴CE⊥平面PAE,∴EA,EC,EP两两垂直, 以E为原点,EA,EC,EP为x轴,y轴,z轴,建立 空间直角坐标系,则E(0,0,0),A(2,0,0),B(2,4,0), P(0,0,2), P→E=(0,0,-2),P→A=(2,0,-2),P→B=(2,4,-2).
第七章 高考专题突破四 高考中的立体几何问题
大一轮复习讲义
题型一 空间距离
师生共研
例1 已知边长为4的正三角形ABC,E,F分别为BC和AC的中点.PA=2, 且PA⊥平面ABC,设Q是CE的中点. (1)求证:AE∥平面PFQ;
2024年高考数学立体几何大题突破(解析版)
立体几何立体几何是高考数学的必考内容,在大题中一般分两问,第一问考查空间直线与平面的位置关系证明;第二问考查空间角、空间距离等的求解。
考题难度中等,常结合空间向量知识进行考查。
2024年高考有很大可能延续往年的出题方式。
题型一:空间异面直线夹角的求解1(2023·上海长宁·统考一模)如图,在三棱锥A-BCD中,平面ABD⊥平面BCD,AB=AD,O为BD的中点.(1)求证:AO⊥CD;(2)若BD⊥DC,BD=DC,AO=BO,求异面直线BC与AD所成的角的大小.【思路分析】(1)利用面面垂直的性质、线面垂直的性质推理即得.(2)分别取AB,AC的中点M,N,利用几何法求出异面直线BC与AD所成的角.【规范解答】(1)在三棱锥A-BCD中,由AB=AD,O为BD的中点,得AO⊥BD,而平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,AO⊂平面ABD,因此AO⊥平面BCD,又CD⊂平面BCD,所以AO⊥CD.(2)分别取AB,AC的中点M,N,连接OM,ON,MN,于是MN⎳BC,OM⎳AD,则∠OMN是异面直线BC与AD所成的角或其补角,由(1)知,AO ⊥BD ,又AO =BO ,AB =AD ,则∠ADB =∠ABD =π4,于是∠BAD =π2,令AB =AD =2,则DC =BD =22,又BD ⊥DC ,则有BC =BD 2+DC 2=4,OC =DC 2+OD 2=10,又AO ⊥平面BCD ,OC ⊂平面BCD ,则AO ⊥OC ,AO =2,AC =AO 2+OC 2=23,由M ,N 分别为AB ,AC 的中点,得MN =12BC =2,OM =12AD =1,ON =12AC =3,显然MN 2=4=OM 2+ON 2,即有∠MON =π2,cos ∠OMN =OM MN =12,则∠OMN =π3,所以异面直线BC 与AD 所成的角的大小π3.1、求异面直线所成角一般步骤:(1)平移:选择适当的点,线段的中点或端点,平移异面直线中的一条或两条成为相交直线.(2)证明:证明所作的角是异面直线所成的角.(3)寻找:在立体图形中,寻找或作出含有此角的三角形,并解之.(4)取舍:因为异面直线所成角θ的取值范围是0,π2,所以所作的角为钝角时,应取它的补角作为异面直线所成的角.2、可通过多种方法平移产生,主要有三种方法:(1)直接平移法(可利用图中已有的平行线);(2)中位线平移法;(3)补形平移法(在已知图形中,补作一个相同的几何体,以便找到平行线).3、异面直线所成角:若n 1 ,n 2分别为直线l 1,l 2的方向向量,θ为直线l 1,l 2的夹角,则cos θ=cos <n 1 ,n 2 > =n 1 ⋅n 2n 1 n 2.1(2023·江西萍乡·高三统考期中)如图,在正四棱台ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1,CD 的中点.(1)证明:EF ⎳平面AB1C 1D ;(2)若AB =2A 1B 1,且正四棱台的侧面积为9,其内切球半径为22,O 为ABCD 的中心,求异面直线OB 1与CC 1所成角的余弦值.【答案】(1)证明见解析;(2)45【分析】(1)根据中位线定理,结合线面平行判定定理以及面面平行判定定理,利用面面平行的性质,可得答案;(2)根据题意,结合正四棱台的几何性质,求得各棱长,利用线线角的定义,可得答案.【解析】(1)取CC 1中点G ,连接GE ,GF ,如下图:在梯形BB 1C 1C 中,E ,G 分别为BB 1,CC 1的中点,则EG ⎳B 1C 1,同理可得FG ⎳C 1D ,因为EG ⊄平面AB 1C 1D ,B 1C 1⊂平面AB 1C 1D ,所以EG ⎳平面AB 1C 1D ,同理可得GF ⎳平面AB 1C 1D ,因为EG ∩FG =G ,EG ,FG ⊆平面EFG ,所以平面EFG ⎳平面AB 1C 1D ,又因为EF ⊆平面EFG ,所以EF ⎳平面AB 1C 1D ;(2)连接AC ,BD ,则AC ∩BD =O ,连接A 1O ,A 1C 1,B 1O ,在平面BB 1C 1C 中,作B 1N ⊥BC 交BC 于N ,在平面BB 1D 1D 中,作B 1M ⊥BD 交BD 于M ,连接MN ,如下图:因为AB =2A 1B 1,则OC =A 1C 1,且OC ⎳A 1C 1,所以A 1C 1CO 为平行四边形,则A 1O ⎳CC 1,且A 1O =CC 1,所以∠A 1OB 1为异面直线OB 1与CC 1所成角或其补角,同理可得:B 1D 1DO 为平行四边形,则B 1O =D 1D ,在正四棱台ABCD -A 1B 1C 1D 1中,易知对角面BB 1D 1D ⊥底面ABCD ,因为平面ABCD ∩平面BB 1D 1D =BD ,且B 1M ⊥BD ,B 1M ⊂平面BB 1D 1D ,所以B 1M ⊥平面ABCD ,由内切球的半径为22,则B 1M =2,在等腰梯形BB 1C 1C 中,BC =2B 1C 1且B 1N ⊥BC ,易知BN =14BC ,同理可得BM =14BD ,在△BCD 中,BN BC=BM BD =14,则MN =14CD ,设正方形ABCD 的边长为4x x >0 ,则正方形A 1B 1C 1D 1的边长为2x ,MN =x ,由正四棱台的侧面积为9,则等腰梯形BB 1C 1C 的面积S =94,因为B 1M ⊥平面ABCD ,MN ⊂平面ABCD ,所以B 1M ⊥MN ,在Rt △B 1MN ,B 1N =B 1M 2+MN 2=2+x 2,可得S =12⋅B 1N ⋅B 1C 1+BC ,则94=12×2+x 2×4x +2x ,解得x =12,所以BC =2,B 1C 1=1,BN =14BC =12,B 1N =32,则A 1B 1=1,在Rt △BB 1N 中,BB 1=B 1N 2+BN 2=102,则CC 1=DD 1=102,所以在△A 1OB 1中,则cos ∠A 1OB 1=A 1O 2+B 1O 2-A 1B 212⋅A 1O ⋅B 1O=1022+102 2-12×102×102=45,所以异面直线OB 1与CC 1所成角的余弦值为45.2(2023·辽宁丹东·统考二模)如图,平行六面体ABCD -A 1B 1C 1D 1的所有棱长都相等,平面CDD 1C 1⊥平面ABCD ,AD ⊥DC ,二面角D 1-AD -C 的大小为120°,E 为棱C 1D 1的中点.(1)证明:CD ⊥AE ;(2)点F 在棱CC 1上,AE ⎳平面BDF ,求直线AE 与DF 所成角的余弦值.【答案】(1)证明见解析;(2)37【分析】(1)根据面面垂直可得线面垂直进而得线线垂直,由二面角定义可得∠D 1DC =120°,进而根据中点得线线垂直即可求;(2)由线面平行的性质可得线线平行,由线线角的几何法可利用三角形的边角关系求解,或者建立空间直角坐标系,利用向量的夹角即可求解.【解析】(1)因为平面CDD 1C 1⊥平面ABCD ,且两平面交线为DC ,AD ⊥DC ,AD ⊂平面ABCD , 所以AD ⊥平面CDD 1C 1,所以AD ⊥D 1D ,AD ⊥DC ,∠D 1DC 是二面角D 1-AD -C 的平面角,故∠D 1DC =120°.连接DE ,E 为棱C 1D 1的中点,则DE ⊥C 1D 1,C 1D 1⎳CD ,从而DE ⊥CD .又AD ⊥CD ,DE ∩AD =D ,DE ,AD ⊂平面AED ,所以CD ⊥平面AED ,ED ⊂平面AED ,因此CD ⊥AE .(2)解法1:设AB =2,则DE =D 1D 2-12D 1C 1 2=3,所以CE =AE =AD 2+DE 2=7.连AC 交BD 于点O ,连接CE 交DF 于点G ,连OG .因为AE ⎳平面BDF ,AE ⊂平面AEC ,平面AEC ∩平面BDF =OG ,所以AE ∥OG ,因为O 为AC 中点,所以G 为CE 中点,故OG =12AE =72.且直线OG 与DF 所成角等于直线AE 与DF 所成角.在Rt △EDC 中,DG =12CE =72,因为OD =2,所以cos ∠OGD =722+72 2-(2)22×72×72=37.因此直线AE 与DF 所成角的余弦值为37.解法2;设AB =2,则DE =D 1D 2-12D 1C 1 2=3,所以CE =AE =AD 2+DE 2=7.取DC 中点为G ,连接EG 交DF 于点H ,则EG =DD 1=2.连接AG 交BD 于点I ,连HI ,因为AE ⎳平面BDF ,AE ⊂平面AGE ,平面AGE ∩平面BDF =IH ,所以AE ∥IH .HI 与DH 所成角等于直线AE 与DF 所成角.正方形ABCD 中,GI =13AG ,DI =13DB =223,所以GH =13EG ,故HI =13AE =73.在△DHG 中,GH =13EG =23,GD =1,∠EGD =60°,由余弦定理DH =1+49-1×23=73.在△DHI 中,cos ∠DHI =732+73 2-223 22×73×73=37.因此直线AE 与DF 所成角的余弦值为37.解法3:由(1)知DE ⊥平面ABCD ,以D 为坐标原点,DA为x 轴正方向,DA为2个单位长,建立如图所示的空间直角坐标系D -xyz .由(1)知DE =3,得A 2,0,0 ,B 2,2,0 ,C 0,2,0 ,E (0,0,3),C 1(0,1,3).则CC 1=(0,-1,3),DC =(0,2,0),AE =(-2,0,3),DB =(2,2,0).由CF =tCC 1 0≤t ≤1 ,得DF =DC +CF =(0,2-t ,3t ).因为AE ⎳平面BDF ,所以存在唯一的λ,μ∈R ,使得AE =λDB +μDF=λ2,2,0 +μ(0,2-t ,3t )=2λ,2λ+2μ-tμ,3μt ,故2λ=-2,2λ+2μ-tμ=0,3μt =3,解得t =23,从而DF =0,43,233 .所以直线AE 与DF 所成角的余弦值为cos AE ,DF =AE ⋅DF|AE ||DF |=37.题型二:空间直线与平面夹角的求解2(2024·安徽合肥·统考一模)如图,三棱柱ABC -A 1B 1C 1中,四边形ACC 1A 1,BCC 1B 1均为正方形,D ,E 分别是棱AB ,A 1B 1的中点,N 为C 1E 上一点.(1)证明:BN ⎳平面A 1DC ;(2)若AB =AC ,C 1E =3C 1N,求直线DN 与平面A 1DC 所成角的正弦值.【思路分析】(1)连接BE ,BC 1,DE ,则有平面BEC 1⎳平面A 1DC ,可得BN ⎳平面A 1DC ;(2)建立空间直角坐标系,利用空间向量进行计算即可.【规范解答】(1)连接BE ,BC 1,DE .因为AB ⎳A 1B 1,且AB =A 1B 1,又D ,E 分别是棱AB ,A 1B 1的中点,所以BD ⎳A 1E ,且BD =A 1E ,所以四边形BDA 1E 为平行四边形,所以A 1D ⎳EB ,又A 1D ⊂平面A 1DC ,EB ⊄平面A 1DC ,所以EB ⎳平面A 1DC ,因为DE ⎳BB 1⎳CC 1,且DE =BB 1=CC 1,所以四边形DCC 1E 为平行四边形,所以C 1E ⎳CD ,又CD ⊂平面A 1DC ,C 1E ⊄平面A 1DC ,所以C 1E ⎳平面A 1DC ,因为C 1E ∩EB =E ,C 1E ,EB ⊂平面BEC 1,所以平面BEC 1⎳平面A 1DC ,因为BN ⊂平面BEC 1,所以BN ⎳平面A 1DC .(2)四边形ACC 1A 1,BCC 1B 1均为正方形,所以CC 1⊥AC ,CC 1⊥BC ,所以CC 1⊥平面ABC .因为DE ⎳CC 1,所以DE ⊥平面ABC ,从而DE ⊥DB ,DE ⊥DC .又AB =AC ,所以△ABC 为等边三角形.因为D 是棱AB 的中点,所以CD ⊥DB ,即DB ,DC ,DE 两两垂直.以D 为原点,DB ,DC ,DE 所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系D -xyz .设AB =23,则D 0,0,0 ,E 0,0,23 ,C 0,3,0 ,C 10,3,23 ,A 1-3,0,23 ,所以DC =0,3,0 ,DA 1=-3,0,23 .设n=x ,y ,z 为平面A 1DC 的法向量,则n ⋅DC=0n ⋅DA 1 =0,即3y =0-3x +23z =0 ,可取n=2,0,1 .因为C 1E =3C 1N ,所以N 0,2,23 ,DN =0,2,23 .设直线DN 与平面A 1DC 所成角为θ,则sin θ=|cos ‹n ,DN ›|=|n ⋅DN ||n |⋅|DN |=235×4=1510,即直线DN 与平面A 1DC 所成角正弦值为1510.1、垂线法求线面角(也称直接法):(1)先确定斜线与平面,找到线面的交点B 为斜足;找线在面外的一点A ,过点A 向平面α做垂线,确定垂足O ;(2)连结斜足与垂足为斜线AB 在面α上的投影;投影BO 与斜线AB 之间的夹角为线面角;(3)把投影BO 与斜线AB 归到一个三角形中进行求解(可能利用余弦定理或者直角三角形)。
22版:高考专题突破四 高考中的立体几何问题(步步高)
高考专题突破四 高考中的立体几何问题题型一 空间角的求法命题点1 线线角例1 如图所示,在三棱柱ABC -A 1B 1C 1中,AA 1⊥底面ABC ,AB =BC =AA 1,∠ABC =90°,点E ,F 分别是棱AB ,BB 1的中点,试求直线EF 和BC 1所成的角.解 以B 为原点,分别以直线BC ,BA ,BB 1为x ,y ,z 轴,建立空间直角坐标系(如图).设AB =1,则B (0,0,0),E ⎝⎛⎭⎫0,12,0,F ⎝⎛⎭⎫0,0,12,C 1(1,0,1), 所以EF →=⎝⎛⎭⎫0,-12,12,BC 1→=(1,0,1). 于是cos 〈BC 1→,EF →〉=BC 1→·EF →|BC 1→||EF →|=1222×2=12,所以直线EF 和BC 1所成角的大小为60°.思维升华 用向量法求异面直线所成角的一般步骤: (1)建立空间直角坐标系;(2)用坐标表示两异面直线的方向向量; (3)利用向量的夹角公式求出向量夹角的余弦值;(4)注意两异面直线所成角的范围是⎝⎛⎦⎤0,π2,即两异面直线所成角的余弦值等于两向量夹角的余弦值的绝对值.跟踪训练1 (1)如图所示,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 是棱CC 1的中点,AF →=λAD →,若异面直线D 1E 和A 1F 所成角的余弦值为3210,则λ的值为________.答案 13解析 以D 为原点,以DA ,DC ,DD 1分别为x ,y ,z 轴,建立空间直角坐标系(图略),正方体的棱长为2,则A 1(2,0,2),D 1(0,0,2),E (0,2,1),A (2,0,0),∴D 1E →=(0,2,-1),A 1F →=A 1A →+AF →=A 1A →+λAD →=(-2λ,0,-2). ∴cos 〈A 1F →,D 1E →〉=A 1F →·D 1E →|A 1F →||D 1E →|=22λ2+1×5=3210, 解得λ=13⎝⎛⎭⎫λ=-13舍. (2)如图,在棱长为1的正四面体(四个面都是正三角形)ABCD 中,M ,N 分别为BC ,AD 的中点,则直线AM 和CN 夹角的余弦值为________.答案 23解析 以{CA →,CB →,CD →}作为基底,则MA →=CA →-CM →=CA →-12CB →,CN →=12(CA →+CD →).设向量CN →与MA →的夹角为θ,则直线AM 和CN 夹角的余弦值等于|cos θ|. CN →·MA →=12(CA →+CD →)·⎝⎛⎭⎫CA →-12CB → =12CA →2-14CA →·CB →+12CD →·CA →-14CD →·CB → =12-18+14-18=12. 又△ABC 和△ACD 均为等边三角形, 所以|MA →|=|CN →|=32.所以cos θ=CN →·MA →|CN →|·|MA →|=1232×32=23.所以直线AM 和CN 夹角的余弦值为23.命题点2 线面角例2 (12分)(2020·新高考全国Ⅰ)如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面ABCD .设平面P AD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,求PB 与平面QCD 所成角的正弦值的最大值. 规范解答(1)证明 在正方形ABCD 中,AD ∥BC , 因为AD ⊄平面PBC ,BC ⊂平面PBC , 所以AD ∥平面PBC , 又因为AD ⊂平面P AD , 平面P AD ∩平面PBC =l , 所以AD ∥l ,[2分]因为在四棱锥P -ABCD 中, 底面ABCD 是正方形, 所以AD ⊥DC ,所以l ⊥DC ,且PD ⊥平面ABCD ,所以AD ⊥PD ,所以l ⊥PD , 因为DC ∩PD =D , 所以l ⊥平面PDC .[4分](2)解 以D 为坐标原点,DA →的方向为x 轴正方向, 如图建立空间直角坐标系Dxyz ,因为PD =AD =1,则有D (0,0,0),C (0,1,0),A (1,0,0),P (0,0,1),B (1,1,0),[5分] 设Q (m ,0,1),则有DC →=(0,1,0),DQ →=(m ,0,1),PB →=(1,1,-1),[6分] 设平面QCD 的一个法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧DC →·n =0,DQ →·n =0,即⎩⎪⎨⎪⎧y =0,mx +z =0,令x =1,则z =-m ,所以平面QCD 的一个法向量为n =(1,0,-m ),[9分] 则cos 〈n ,PB →〉=n ·PB →|n ||PB →|=1+0+m 3·m 2+1.[10分] 根据直线的方向向量与平面法向量所成角的余弦值的绝对值即为直线与平面所成角的正弦值,所以直线PB 与平面QCD 所成角的正弦值等于 |cos 〈n ,PB →〉|=|1+m |3·m 2+1=33·1+2m +m 2m 2+1=33·1+2m m 2+1≤33·1+2|m |m 2+1≤33·1+1=63,当且仅当m =1时取等号,所以直线PB 与平面QCD 所成角的正弦值的最大值为63.[12分]第一步:根据线面位置关系的相关定理,证明线面垂直. 第二步:建立空间直角坐标系,确定点的坐标. 第三步:求直线的方向向量和平面的法向量.第四步:计算向量夹角(或函数值),借助基本不等式确定最值. 第五步:反思解题思路,检查易错点.跟踪训练2 如图,四棱锥P ABCD 的底面ABCD 是边长为2的菱形,∠ABC =π3,P A ⊥底面ABCD ,点M 是棱PC 的中点.(1)求证:P A ∥平面BMD ;(2)当P A =3时,求直线AM 与平面PBC 所成角的正弦值.(1)证明 如图,连接AC 交BD 于点O ,易知O 为AC 的中点,连接MO . ∵M ,O 分别为PC ,AC 的中点,∴P A ∥MO . ∵P A ⊄平面BMD ,MO ⊂平面BMD , ∴P A ∥平面BMD .(2)解 如图,取线段BC 的中点H ,连接AH .∵四边形ABCD 为菱形,∠ABC =π3,∴AH ⊥AD .以A 为坐标原点,分别以AH ,AD ,AP 所在直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系.∴A (0,0,0),B (3,-1,0),C (3,1,0),P (0,0,3), M ⎝⎛⎭⎫32,12,32, ∴AM →=⎝⎛⎭⎫32,12,32,BC →=(0,2,0),PC →=(3,1,-3).设平面PBC 的法向量为m =(x ,y ,z ). 由⎩⎪⎨⎪⎧m ·BC →=0,m ·PC →=0,得⎩⎨⎧2y =0,3x +y -3z =0.取z =1,则x =1,y =0,∴m =(1,0,1). 设直线AM 与平面PBC 所成的角为θ,则sin θ=|cos 〈m ,AM →〉|=|m ·AM →||m |·|AM →|=⎪⎪⎪⎪32×1+12×0+32×12×74=427.∴直线AM 与平面PBC 所成角的正弦值为427.命题点3 二面角例3 (2020·全国Ⅰ)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE =AD .△ABC 是底面的内接正三角形,P 为DO 上一点,PO =66DO .(1)证明:P A ⊥平面PBC ; (2)求二面角B -PC -E 的余弦值.(1)证明 由题设,知△DAE 为等边三角形,设AE =1, 则DO =32,CO =BO =12AE =12, 所以PO =66DO =24,PC =PO 2+OC 2=64, 同理PB =64,P A =64, 又△ABC 为等边三角形, 则BA sin 60°=2OA ,所以BA =32, P A 2+PB 2=34=AB 2,则∠APB =90°,所以P A ⊥PB ,同理P A ⊥PC , 又PC ∩PB =P ,PC ,PB ⊂平面PBC , 所以P A ⊥平面PBC .(2)解 过O 作ON ∥BC 交AB 于点N ,因为PO ⊥平面ABC ,以O 为坐标原点,OA 所在直线为x 轴,ON 所在直线为y 轴,OD 所在直线为z 轴,建立如图所示的空间直角坐标系,则E ⎝⎛⎭⎫-12,0,0,P ⎝⎛⎭⎫0,0,24,B ⎝⎛⎭⎫-14,34,0,C ⎝⎛⎭⎫-14,-34,0, PC →=⎝⎛⎭⎫-14,-34,-24,PB →=⎝⎛⎭⎫-14,34,-24,PE →=⎝⎛⎭⎫-12,0,-24,设平面PCB 的一个法向量为n =(x 1,y 1,z 1), 由⎩⎪⎨⎪⎧n ·PC →=0,n ·PB →=0,得⎩⎨⎧-x 1-3y 1-2z 1=0,-x 1+3y 1-2z 1=0,令x 1=2,得z 1=-1,y 1=0,所以n =(2,0,-1), 设平面PCE 的一个法向量为m =(x 2,y 2,z 2), 由⎩⎪⎨⎪⎧m ·PC →=0,m ·PE →=0,得⎩⎨⎧-x 2-3y 2-2z 2=0,-2x 2-2z 2=0,令x 2=1,得z 2=-2,y 2=33, 所以m =⎝⎛⎭⎫1,33,-2,故cos 〈m ,n 〉=m ·n|m |·|n |=223×103=255, 所以二面角B -PC -E 的余弦值为255.思维升华 (1)求二面角最常用的方法就是分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.(2)利用向量法求二面角的大小的关键是确定平面的法向量,求法向量的方法主要有两种:①求平面的垂线的方向向量.②利用法向量与平面内两个不共线向量的数量积为零,列方程组求解.跟踪训练3 (2020·宜昌一中模拟)如图,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ⊥AB ,AB ∥DC ,AD =DC =AP =2,AB =1,点E 为棱PC 的中点.(1)证明:BE ⊥PD ;(2)若F 为棱PC 上一点,满足BF ⊥AC ,求二面角F -AB -D 的余弦值.解 依题意,以点A 为原点,以AB ,AD ,AP 为x 轴、y 轴、z 轴建立空间直角坐标系如图,可得B (1,0,0),C (2,2,0),D (0,2,0),P (0,0,2). 由E 为棱PC 的中点,得E (1,1,1).(1)证明 向量BE →=(0,1,1),PD →=(0,2,-2), 故BE →·PD →=0,所以BE →⊥PD →,所以BE ⊥PD .(2)解 BC →=(1,2,0),CP →=(-2,-2,2),AC →=(2,2,0),AB →=(1,0,0), 由点F 在棱PC 上,设CF →=λCP →,0≤λ≤1, 故BF →=BC →+CF →=BC →+λCP →=(1-2λ,2-2λ,2λ), 由BF ⊥AC ,得BF →·AC →=0, 所以2(1-2λ)+2(2-2λ)=0,λ=34,即BF →=⎝⎛⎭⎫-12,12,32. 设n 1=(x ,y ,z )为平面F AB 的法向量,则⎩⎪⎨⎪⎧ n 1·AB →=0,n 1·BF →=0,即⎩⎪⎨⎪⎧x =0,-12x +12y +32z =0,不妨令z =-1,可得n 1=(0,3,-1)为平面F AB 的一个法向量, 取平面ABD 的法向量n 2=(0,0,1), 则cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=-110=-1010, 又因为二面角F -AB -D 为锐二面角, 所以二面角F -AB -D 的余弦值为1010.题型二 立体几何中的探索性问题例4 (八省联考)北京大兴国际机场的显著特点之一是各种弯曲空间的运用.刻画空间的弯曲性是几何研究的重要内容.用曲率刻画空间弯曲性,规定:多面体顶点的曲率等于2π与多面体在该点的面角之和的差(多面体的面的内角叫做多面体的面角,角度用弧度制),多面体面上非顶点的曲率均为零,多面体的总曲率等于该多面体各顶点的曲率之和.例如正四面体在每个顶点有3个面角,每个面角是π3,所以正四面体在各顶点的曲率为2π-3×π3=π,故其总曲率为4π.(1)求四棱锥的总曲率;(2)若多面体满足:顶点数-棱数+面数=2,证明:这类多面体的总曲率是常数.(1)解 总曲率=2π×顶点数-所有内角和,对于四棱锥底面的内角和为2π,四个侧面的内角和为4π,从而总曲率为10π-2π-4π=4π.(2)证明 对于多面体有顶点数-棱数+面数=2, 总曲率=顶点数×2π-各面内角之和,设面数为k ,n i 为第i (i =1,2,…,k )个面的边数,各面内角之和可以表示为∑i =1k(n i -2)π,由于一个棱会出现在两个面上,所以∑i =1k(n i -2)π=棱数×2π-面数×2π,从而总曲率=2π×顶点数-棱数×2π+面数×2π=2π(顶点数-棱数+面数)=2π×2=4π. 思维升华 随着新高考改革,考试逐渐回归其本质,别致新颖的立体几何新题型不断涌现,其中新定义问题常常使考生束手无策,因此,读懂题意才能快速有效地切入新问题情景. 跟踪训练4 设P 为多面体M 的一个顶点,定义多面体M 在点P 处的离散曲率为1-12π(∠Q 1PQ 2+∠Q 2PQ 3+…+∠Q k -1PQ k +∠Q k PQ 1),其中Q i (i =1,2,…,k ,k ≥3)为多面体M 的所有与点P 相邻的顶点,且平面Q 1PQ 2,平面Q 2PQ 3,…,平面Q k -1PQ k 和平面Q k PQ 1遍历多面体M 的所有以P 为公共点的面.任取正四面体的一个顶点,在该点处的离散曲率为________;如图所示,已知长方体A 1B 1C 1D 1-ABCD ,AB =BC =1,AA 1=22,点P 为底面A 1B 1C 1D 1内的一个动点,则四棱锥P -ABCD 在点P 处的离散曲率的最小值为________.答案 12 13解析 由题意可知,正四面体的所有面都是正三角形,所以取正四面体的一个顶点,在该点处的离散曲率为1-12π⎝⎛⎭⎫π3+π3+π3=1-12=12; 已知长方体A 1B 1C 1D 1-ABCD ,点P 为底面A 1B 1C 1D 1内的一个动点,则四棱锥P -ABCD 在点P 处的离散曲率为1-12π(∠APD +∠APB +∠BPC +∠CPD ),又由AB =BC =1,AA 1=22,所以AC =BD =2,且A 1B 1C 1D 1为正方形,当∠APD =∠APB =∠BPC =∠CPD 时,即点P 为正方形A 1B 1C 1D 1的中心时,离散曲率取得最小值,此时∠APD =∠APB =∠BPC =∠CPD =π3,即1-12π⎝⎛⎭⎫π3+π3+π3+π3=1-23=13.。
专题04 立体几何-【李金柱梳理】冲刺2023年高考数学大题突破+限时集训(新高考专用)(原卷版)
专题04立体几何题型简介立体几何一般作为全国卷第20题21题.重点题型主要是1体积问题及表面积问题2线面距离及线面角问题3二面角问题4空间几何综合问题典例在线题型一:体积及表面积问题1.在如图所示的多面体ABCDE 中,⊥AE 平面ABC ,AE CD ∥,22AE CD ==,3CA CB ==,25AB =(1)证明:平面ABE ⊥平面BDE ;(2)求多面体ABCDE 的体积.变式训练1.如图①,在平面四边形ABCD 中,2AB AD ==,2BC CD ==60BAD ∠= .将BCD △沿着BD 折叠,使得点C 到达点C '的位置,且二面角A BD C '--为直二面角,如图②.已知,,P G F 分别是,,AC AD AB '的中点,E 是棱AB 上的点,且C E '与平面ABD 所成角的正233(1)证明:平面//PGF 平面C DB ';(2)求四棱锥P GFED -的体积.题型二:线面距离及线面角问题1如图,在多面体ABCDE 中,已知ABC ,ACD ,BCE 均为等边三角形,平面ACD ⊥平面ABC ,平面BCE ⊥平面ABC ,H 为AB的中点.(1)判断DE 与平面ABC 的位置关系,并加以证明;(2)求直线DH 与平面ACE 所成角的正弦值.变式训练1如图,PD 垂直于梯形ABCD 所在平面,90ADC BAD ∠=∠=,F 为PA 的中点,2PD =112AB AD CD ===,四边形PDCE 为矩形.(1)求证://AC 平面DEF ;(2)求平面ABCD 与平面BCP 的夹角的大小;(3)求点F 到平面BCP 的距离.题型三:二面角问题1如图,四棱锥P -ABCD 中,已知AD BC ∥,BC =2AD ,AD =DC ,∠BCD =60°,CD ⊥PD ,PB ⊥BD.(1)证明:PB ⊥AB ;(2)设E 是PC 的中点,直线AE 与平面ABCD 所成角等于45°,求二面角B -PC -D 的余弦值.变式训练1如图,在四棱锥S ABCD -中,底面ABCD 为梯形,AB CD ∥,2AB CD =,AD SD =,SAB △为正三角形,SC BC ⊥,CB CS =.(1)求证:平面SAB ⊥平面SBC ;(2)求二面角C SA D --的余弦值.题型四:空间几何综合问题1.如图所示,正方形ABCD 所在平面与梯形ABMN 所在平面垂直,AN BM ∥,2AN AB BC ===,4BM =,23CN =(1)证明:BM ⊥平面ABCD ;(2)在线段CM (不含端点)上是否存在一点E ,使得二面角E BN M --33若存在,求出的CEEM值;若不存在,请说明理由.变式训练1如图,在四棱锥E -ABCD 中,平面ADE ⊥平面ABCD ,O 、M 分别为线段AD 、DE 的中点,四边形BCDO 是边长为1的正方形,AE =DE ,AE ⊥DE.(1)求证:CM //平面ABE ;(2)求直线CM 与BD 所成角的余弦值;(3)点N 在直线AD 上,若平面BMN ⊥平面ABE ,求线段AN 的长.模拟尝试1.(2023·山东·潍坊一中校联考模拟预测)如图,在四棱锥P ABCD -中,PAD 为等边三角形,M 为PA 的中点,PD AB ⊥,平面PAD ⊥平面ABCD .(1)证明:平面MCD ⊥平面PAB ;(2)若//AD BC ,2AD BC =,2CD AB =,求平面MCD 与平面PBC 夹角的余弦值.2.(2023·山东·日照一中校考模拟预测)如图,直三棱柱111ABC A B C -的体积为4,1A BC 的面积为22(1)求A 到平面1A BC 的距离;(2)设D 为1AC 的中点,1AAAB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C--的正弦值.3.(2023·吉林·长春十一高校联考模拟预测)如图,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,D 为线段AB 的中点,4CB =,43AB =118AC =,三棱锥1A A DC -的体积为8.(1)证明:1A D ⊥平面11B C D ;(2)求平面1ACD 与平面1A BC 夹角的余弦值.4.(2022·江苏南京·南京师大附中校考模拟预测)如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,60ADC ∠=︒,PAD 为等边三角形,O 为线段AD 的中点,且平面PAD ⊥平面ABCD ,M 是线段PC 上的点.(1)求证:OM BC ⊥;(2)若直线AM 与平面PAB 的夹角的正弦值为1010,求四棱锥M ABCD -的体积.5.(2023·河北衡水·衡水市第二中学校考模拟预测)如图,直四棱柱1111ABCD A B C D -中,16AA =E 是1AA 的中点,底面ABCD 是平行四边形,若1A C ⊥平面1BDC.(1)若1AB AA =,证明:底面ABCD 是正方形(2)若60BAD ∠=︒,求二面角1B BE D --的余弦值6.(2022·河北衡水·河北衡水中学校考模拟预测)直四棱柱1111ABCD A B C D -被平面α所截,所得的一部分如图所示,EF DC =.(1)证明://ED 平面ACF ;(2)若1242DC AD A E ===,3ADC π∠=,平面EFCD 与平面ABCD 所成角的正切值433,求点E 到平面ACF 的距离.真题再练1.(2021·全国·统考高考真题)如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,1PD DC ==,M 为BC 的中点,且PB AM ⊥.(1)求BC ;(2)求二面角A PM B --的正弦值.2.(2021·全国·统考高考真题)已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的点.11BF A B ⊥(1)证明:BF DE ⊥;(2)当1B D 为何值时,面11BB C C 与面DFE 所成的二面角的正弦值最小?3.(2021·全国·统考高考真题)如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.4.(2022·全国·统考高考真题)如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求CF 与平面ABD 所成的角的正弦值.5.(2022·全国·统考高考真题)小明同学参加综合实践活动,设计了一个封闭的包装盒,包装盒如图所示:底面ABCD 是边长为8(单位:cm )的正方形,,,,EAB FBC GCD HDA 均为正三角形,且它们所在的平面都与平面ABCD 垂直.(1)证明://EF 平面ABCD ;(2)求该包装盒的容积(不计包装盒材料的厚度).6.(2022·全国·统考高考真题)如图,直三棱柱111ABC A B C -的体积为4,1A BC 的面积为22(1)求A 到平面1A BC 的距离;(2)设D 为1AC 的中点,1AA AB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C--的正弦值.7.(2022·全国·统考高考真题)如图,PO 是三棱锥-P ABC 的高,PA PB =,AB AC ⊥,E 是PB的中点.(1)证明://OE 平面PAC ;(2)若30ABO CBO ∠=∠=︒,3PO =,5PA =,求二面角C AE B --的正弦值.8.(2022·北京·统考高考真题)如图,在三棱柱111ABC A B C -中,侧面11BCC B 为正方形,平面11BCC B ⊥平面11ABB A ,2AB BC ==,M ,N 分别为11A B ,AC的中点.(1)求证:MN ∥平面11BCC B ;(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线AB 与平面BMN 所成角的正弦值.条件①:AB MN ⊥;条件②:BM MN =.注:如果选择条件①和条件②分别解答,按第一个解答计分.9.(2022·天津·统考高考真题)直三棱柱111ABC A B C -中,112,,AA AB AC AA AB AC AB ===⊥⊥,D为11A B 的中点,E 为1AA 的中点,F 为CD 的中点.(1)求证://EF 平面ABC ;(2)求直线BE 与平面1CC D 所成角的正弦值;(3)求平面1ACD 与平面1CC D 所成二面角的余弦值.。
专题04 立体几何-【李金柱梳理】冲刺2023年高考数学大题突破+限时集训(新高考专用)解析版1
专题04立体几何题型简介立体几何一般作为全国卷第20题21题.重点题型主要是1体积问题及表面积问题2线面距离及线面角问题3二面角问题4空间几何综合问题典例在线题型一:体积及表面积问题1.在如图所示的多面体ABCDE 中,⊥AE 平面ABC ,AE CD ∥,22AE CD ==,3CA CB ==,25AB =.(1)证明:平面ABE ⊥平面BDE ;(2)求多面体ABCDE 的体积.【答案】(1)证明见解析(2)25解(1)证明:设AB ,BE 的中点分别为F ,G ,连接CF ,FG ,DG ,则FG AE ∥,且12FG AE =,又CD AE ∥,且12CD AE =,所以FG CD ∥,且FG CD =,所以四边形CFGD 为平行四边形,所以∥CF DG .因为⊥AE 平面ABC ,CF ⊂平面ABC ,所以AE CF ⊥,所以AE DG ⊥,因为CA CB =,F 为AB 的中点,所以CF AB ⊥,所以DG AB ⊥,又AB ,AE ⊂平面ABE ,且AB AE A = ,所以DG ⊥平面ABE ,又DG ⊂平面BDE ,所以平面ABE ⊥平面BDE .(2)由(1)得CF AB ⊥,CF AE ⊥,且AB ,AE ⊂平面ABE ,AB AE A = ,所以CF ⊥平面ABE ,又因为3CA CB ==,25AB =,F 为AB 的中点,所以2CF =.因为CD AE ∥,AE ⊂平面ABE ,CD ⊄平面ABE ,所以CD ∥平面ABE ,所以点D 到平面ABE 的距离等于点C 到平面ABE 的距离CF .因为⊥AE 平面ABC ,AC ,BC ⊂平面ABC ,所以AE AC ⊥,AE BC ⊥,又CD AE ∥,所以CD AC ⊥,CD BC ⊥,又AC ,BC ⊂平面ABC ,且AC BC C = ,所以CD ⊥平面ABC ,连接AD ,多面体ABCDE 的体积V 等于三棱锥D ABC -的体积与三棱锥D ABE -的体积之和,而11252521323D ABC V -=⨯⨯⨯⨯=,11452522323D ABE V -=⨯⨯⨯⨯=,所以多面体ABCDE 的体积25452533V =+=.变式训练1.如图①,在平面四边形ABCD 中,2AB AD ==,2BC CD ==,60BAD ∠=.将BCD △沿着BD 折叠,使得点C 到达点C '的位置,且二面角A BD C '--为直二面角,如图②.已知,,P G F 分别是,,AC AD AB'的中点,E 是棱AB 上的点,且C E '与平面ABD 所成角的正切值为3.(1)证明:平面//PGF 平面C DB ';(2)求四棱锥P GFED -的体积.【答案】(1)证明见解析解(1),,P G F 分别为,,AC AD AB '的中点,//PG C D '∴,//PF BC ',,PG PF ⊄ 平面C DB ',,C D BC ''⊂平面C DB ',//PG ∴平面C DB ',//PF 平面C DB ',又PG PF P ⋂=,,PG PF ⊂平面PGF ,∴平面//PGF 平面C DB '.(2)取BD 的中点M ,连接,C M EM ',2AB AD == ,60BAD ∠= ,ABD ∴ 为等边三角形,2BD ∴=,又BC C D ''==222BC C D BD ''∴+=,C DB '∴ 为等腰直角三角形,112C M BD '∴==,C M BD '⊥; 二面角A BD C '--是直二面角,即平面C DB '⊥平面ABD ,平面C DB '⋂平面ABD BD =,C M '⊂平面C DB ',C M '∴⊥平面ABD ,C EM '∴∠即为C E '与平面ABD所成角,1tan 3C M C EM EM EM ''∴∠===,解得:2EM =;在EMB △中,由余弦定理得:2222cos60EM BM BE BM BE =+-⋅ ,即2314BE BE =+-,解得:12BE =,E ∴为线段AB 上靠近点B 的四等分点,111442ABD AGF BDE ABD ABD ABD ABDGFED S S S S S S S S ∴=--=--=四边形211222=⨯⨯⨯111113232P GFED GFED V S C M -'∴=⨯⨯=⨯=四棱锥四边形题型二:线面距离及线面角问题.如图,在多面体ABCDE 中,已知ABC ,ACD ,BCE 均为等边三角形,平面ACD ⊥平面ABC ,平面BCE ⊥平面ABC ,H 为AB的中点.(1)判断DE 与平面ABC 的位置关系,并加以证明;(2)求直线DH 与平面ACE 所成角的正弦值.【答案】(1)DE ∥平面ABC ,证明见解析;(2)155【详解】(1)DE ∥平面ABC ,理由如下:分别取,AC BC 的中点,O P ,连接,,DO EP OP ,因为AD CD =,所以DO AC ⊥,又平面ACD ⊥平面ABC ,平面ACD 平面ABC AC =,DO ⊂平面ACD ,所以DO ⊥平面ABC ,同理EP ⊥平面ABC ,所以EP DO ∥,又因为,ACD BCE 是全等的正三角形,所以EP DO =,所以四边形DOPE 是平行四边形,所以DE OP ∥,因为ED ⊄平面ABC ,OP ⊂平面ABC ,所以ED ∥平面ABC ;(2)连接BO ,则易知BO ⊥平面ACD ,以O 为坐标原点,分别以,,OD OA OB的方向为,,x y z 轴的正方向,建立如图所示的空间直角坐标系O xyz -,令2AC =.则()()())13130,0,0,0,1,0,0,1,0,3,0,0,0,,,0,,2222O A C DH P ⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,13,3,,22DE OP E ⎫=∴-⎪⎪⎭所以()33130,2,0,3,,3,2222AC AE DH ⎛=-=-= ⎭⎝⎭ ,设平面ACE 的法向量为(),,m x y z =,所以·0·0m AC m AE ⎧=⎪⎨=⎪⎩ ,所以20333022y y z -=⎧⎪⎨-+=⎪⎩则0y =,取2z =,1x ∴=-,则()1,0,2m =-,所以2315cos ,525DH m DH m DH m ===,设直线DH 与平面ACE 所成的角为θ,则15sin cos ,5DH m θ==.变式训练1如图,PD 垂直于梯形ABCD 所在平面,90ADC BAD ∠=∠=,F 为PA 的中点,2PD =112AB ADCD ===,四边形PDCE 为矩形.(1)求证://AC 平面DEF ;(2)求平面ABCD 与平面BCP 的夹角的大小;(3)求点F 到平面BCP 的距离.【答案】(1)证明见解析(2)45 (3)14【详解】(1)设CP DE G = ,连接FG,四边形PDCE 为矩形,G ∴为PC 中点,又F 为PA 中点,//AC FG ∴,又FG ⊂平面DEF ,AC ⊄平面DEF ,//AC ∴平面DEF .(2)以D 为坐标原点,,,DA DC DP正方向为,,x y z 轴,可建立如图所示空间直角坐标系,则()1,1,0B ,()0,2,0C,(P ,()1,1,0BC ∴=-,(0,CP =-,设平面BCP 的法向量(),,n x y z =,020BC n x y CP n y ⎧⋅=-+=⎪∴⎨⋅=-+=⎪⎩,令1y =,解得:1x =,z =,(n ∴=;z 轴⊥平面ABCD ,∴平面ABCD 的一个法向量()0,0,1m =,cos ,2m n m n m n⋅∴<>==⋅ ,则平面ABCD 与平面BCP的夹角为45 .(3)由(2)知:1,0,22F ⎛ ⎝⎭,(P,1,0,22PF ⎛⎫∴= ⎪ ⎪⎝⎭,由平面BCP的法向量(n =,∴点F 到平面BCP 的距离11224PF nd n⋅=== .题型三:二面角问题1如图,四棱锥P -ABCD 中,已知AD BC ∥,BC =2AD ,AD =DC ,∠BCD =60°,CD ⊥PD ,PB ⊥BD .(1)证明:PB ⊥AB ;(2)设E 是PC 的中点,直线AE 与平面ABCD 所成角等于【答案】(1)证明见解析(2)77解(1)连结BD ,在BDC 中,因为BC=2DC ,∠BCD=60°,由余弦定理()22222cos603BD DC DC DC DC +-⋅⋅︒.因为222BD CD BC +=,所以CD ⊥BD ,又CD ⊥PD ,BD PD D = ,,BD PD ⊂平面PDB ,所以CD ⊥平面PDB ,由于PB ⊂平面PDB ,所以CD ⊥PB .因为PB ⊥BD ,CD BD D =I ,,CD BD ⊂平面ABCD ,所以PB ⊥平面ABCD ,由于AB ⊂平面ABCD ,因此PB ⊥AB .(2)解法1:以B 为坐标原点,BC的方向为x 轴正方向,||DC为单位长度,建立如图所示的空间直角坐标系A-xyz ,由(1)可知y 轴在平面ABCD 内.则(0,0,0)B ,1322A ⎛⎫⎪ ⎪⎝⎭,(2,0,0)C ,3322D ⎛⎫ ⎪⎝⎭,13,22DC ⎛⎫= ⎪⎝⎭ .设(0,0,)(0)P t t >,则(2,0,)PC t =- ,1,0,2t E ⎛⎫ ⎪⎝⎭,13,222t AE ⎛⎫= ⎪⎝⎭ .因为平面ABCD 的法向量为(0,0,1)m =,所以2cos ,||||4AE m AE m AE m t 〈〉==⋅+⋅由AE 与平面ABCD 所成角等于45°,2sin 454t =+,解得t=2.设平面DPC 的法向量1(,,)n x y z =,则110,0.n PC n DC ⎧⋅=⎪⎨⋅=⎪⎩即220,130.22x z x -=⎧⎪⎨=⎪⎩所以可取1(3,1,3)n =.因为平面BPC 的法向量为2(0,1,0)n = ,于是1212127cos ,7n n n n n n 〈〉=⋅=.因为二面角B-PC-D 是锐二面角,所以其余弦值为77.解法2:取BC 中点为F ,连结EF ,AF ,则EF PB ∥,且AF=DC .由(1)可知EF ⊥平面ABCD ,∠EAF 是AE 与平面ABCD 所成角,所以∠EAF=45°,所以EF=AF=DC ,于是PB=2EF=2DC .以B 为坐标原点,BC的方向为x 轴正方向,||DC 为单位长度,建立如图所示的空间直角坐标系A-xyz ,由(1)可知y 轴在平面ABCD 内.则(0,0,0)B ,(2,0,0)C ,332D ⎛⎫ ⎪⎝⎭,(0,0,2)P ,(2,0,2)PC =-,13,22DC ⎛⎫= ⎪⎝⎭ .设平面DPC 的法向量(,,)m x y z =,则0,0.m PC m DC ⎧⋅=⎪⎨⋅=⎪⎩即可得220,130.22x z x y -=⎧⎪⎨-=⎪⎩所以可取(3,1,3)m = .因为平面BPC 的法向量(0,1,0)n = ,于是7cos ,7||||m n m n m n ⋅〈〉==⋅.因为二面角B-PC-D 是锐二面角,所以其余弦值为77.解法3:取BC 中点为F ,连结EF ,AF ,则//EF PB ,且AF=DC .由(1)可知EF ⊥平面ABCD ,∠EAF 是AE 与平面ABCD 所成角,故∠EAF=45°,因此EF=AF=DC ,于是PB=2EF=2DC=BC ,可得22PC DC =.连结BE ,则BE ⊥PC .过E 在平面PDC 内作EG ⊥PC ,交PD 于点G ,则∠BEG 是二面角B-PC-D 的平面角.因为PB ⊥BC ,所以2BE DC ,7PD DC =.因为CD ⊥PD ,由PEG PDC △∽△可得147EG =.由PC ⊥平面BEG ,BG ⊂平面BEG ,所以PC ⊥BG ,而CD ⊥BG ,,,PC CD C PC CD ⋂=⊂平面PDC ,故BG ⊥平面PDC ,由于GE Ì平面PDC ,所以BG ⊥GE ,所以由余弦定理得7cos 7GE BEG BE ∠==.因此二面角B PCD --的余弦值为77.变式训练1如图,在四棱锥S ABCD -中,底面ABCD 为梯形,AB CD ∥,2AB CD =,AD SD =,SAB △为正三角形,SC BC ⊥,CB CS =.(1)求证:平面SAB ⊥平面SBC ;(2)求二面角C SA D --的余弦值.【答案】(1)证明见解析(2)277解(1)分别取BS ,AS 的中点O ,E ,连接OE ,OC ,ED ,则//OE AB 且12OE AB =.因为//AB CD ,2AB CD =,所以//,OE CD OE CD =,所以四边形OCDE 为平行四边形,则//CO DE .因为AD SD =,故DE SA ⊥,故CO SA ⊥.因为CB CS =,故CO SB ⊥.因为SA SB S =I ,SA ,SB ⊂平面SAB ,所以CO ⊥平面SAB.因为CO ⊂平面SBC ,所以平面SAB ⊥平面SBC.(2)连接AO ,因为△SAB 为正三角形,所以AO SB ⊥,因为平面SAB ⊥平面SBC ,平面SAB 平面SBC SB =,AO ⊂面SAB ,所以AO ⊥平面SBC ,OC 、OS 在面SBC 内,又CO SB ⊥,故OA ,OS ,OC 两两垂直,故以O 为坐标原点,OC ,OS ,OA 所在直线分别为x ,y ,z 轴建立空间直角坐标系,如图所示.设2BC SC ==,则22AB SB ==,6OA =,2OC =,所以()0,0,6A ,()2,0,0C,()0,2,0S ,262,,22D ⎛⎫ ⎪ ⎪⎝⎭,(难点:点D 的坐标不易直接看出,可先求出点E 的坐标,利用CO DE =求解点D 的坐标)所以()0,2,6AS =- ,262,,22SD ⎛⎫=- ⎪ ⎪⎝⎭ ,()2,2,0CS =-.设面SAD 的法向量为()111,,m x y z =,由11111260262022m AS y z m SD x y z ⎧⋅=-=⎪⎨⋅=-+=⎪⎩,令11z =,得()0,3,1m =.设面SAC 的法向量为()222,,x n y z =,则2222260220n AS y z n CS x y ⎧⋅=-=⎪⎨⋅=-+=⎪⎩ ,令23y =,得()3,3,1n = .则427cos ,727m n m n m n ⋅===⨯⋅,显然二面角C SAD --为锐二面角,所以二面角C SA D --的余弦值为277.题型四:空间几何综合问题1.如图所示,正方形ABCD 所在平面与梯形ABMN 所在平面垂直,AN BM ∥,2AN AB BC ===,4BM =,CN =(1)证明:BM ⊥平面ABCD ;(2)在线段CM (不含端点)上是否存在一点E ,使得二面角E BN M --的余弦值为3.若存在,求出的CE EM 值;若不存在,请说明理由.【答案】(1)见解析(2)存在,12CE EM =【详解】(1)证明:正方形ABCD 中,BC AB ⊥,平面ABCD ⊥平面ABMN ,平面ABCD ⋂平面ABMN AB =,BC ⊂平面ABCD ,BC ∴⊥平面ABMN ,又BM ⊂平面ABMN ,BC ∴⊥BM ,且BC BN ⊥,又2,BC ==BN ∴=2AB AN == ,222BN AB AN ∴=+,AN AB ∴⊥,又//AN BM ,BM AB ∴⊥,又,,BC BA B BA BC =⊂ 平面ABCD ,∴BM ⊥平面ABCD ;(2)解:如图,以B 为坐标原点,,,BA BM BC 所在直线分别为,,x y z 轴建立空间直角坐标系,则()()()0,0,0,2,0,0,0,0,2B A C ,()()()2,0,2,2,2,0,0,4,0D N M ,设点(),,E a b c ,()01CE CM λλ=<<,()(),,20,4,2a b c λ∴-=-,()04,0,4,2222a b E c λλλλ=⎧⎪∴=∴-⎨⎪=-⎩,()()2,2,0,0,4,22BN BE λλ∴==-,设平面BEN 的法向量为(),,m x y z = ,()2204220BN m x y BE m y z λλ⎧⋅=+=⎪∴⎨⋅=+-=⎪⎩,令221,1,,1,1,11x y z m λλλλ⎛⎫=∴=-=∴=- ⎪--⎝⎭ ,显然,平面BMN 的法向量为()0,0,2BC =,cos ,3BC m BC m BC m⋅∴==,==,即=即23210λλ+-=,解得13λ=或1-(舍),所以存在一点E,且12CE EM =.变式训练1如图,在四棱锥E -ABCD 中,平面ADE ⊥平面ABCD ,O 、M 分别为线段AD 、DE 的中点,四边形BCDO 是边长为1的正方形,AE =DE ,AE ⊥DE.(1)求证:CM //平面ABE ;(2)求直线CM 与BD 所成角的余弦值;(3)点N 在直线AD 上,若平面BMN ⊥平面ABE ,求线段AN 的长.【答案】(1)证明见解析(2)6(3)53【详解】(1)证明:取AE 的中点P ,连接BP 、MP ,如图所示.∵M 、P 分别为ED 、AE 的中点,∴PM //AD ,且PM=12AD.又四边形BCDO 是边长为1的正方形,∴BC //OD ,且BC=OD ,又O 为AD 的中点,∴BC //AD ,且BC=12AD ,即PM //BC ,且PM=BC ,∴四边形BCMP 为平行四边形,∴CM //PB ,又CM ⊄平面ABE ,PB ⊂平面ABE ,∴CM //平面ABE.(2)(2)连接EO ,∵AE=DE ,O 为AD 中点,∴EO ⊥AD.∵EO ⊂平面ADE ,且平面ADE ⊥平面ABCD ,平面ADE∩平面ABCD=AD ,∴EO ⊥平面ABCD.又OB ⊂平面ABCD ,OD ⊂平面ABCD ,∴EO ⊥OB ,EO ⊥OD ,以O 为原点,OB 、OD 、OE 所在直线分别为x 轴,y 轴,z轴建立空间直角坐标系,如图所示,则(0A ,1-,0),C (1,1,0),B (1,0,0),D (0,1,0),(0E ,0,1),M 11(0,,22∴11(1,,),22CM BD=-- =(-1,1,0).设直线CM 与BD 所成角为θ,则cosθ=1||2||||CM BD CM BD ⋅=,∴直线CM 与BD所成角的余弦值为6.(3)设ON →=λOD →,则N (0,λ,0),∴NB →=(1,-λ,0),11(1,,)22MB =-- ,设平面BMN 的法向量为n →=(a ,b ,c),则0,0,n MB n NB ⎧⋅=⎨⋅=⎩ 即220220a b c a b λ⎧--=⎪⎨⎪-=⎩,令a=λ,则b=1,c=2λ-1,∴n →=(λ,1,2λ-1),设面ABE 的法向量为(,,)m x y z =,(1,1,0),(0,1,1)AB AE ==由00AB m x y AE m y z ⎧⋅=+=⎨⋅=+=⎩,可取(1,1,1)m =- .∵平面BMN ⊥平面ABE ,∴0m n →→⋅=,即λ-1+2λ-1=0,解得λ=23,53AN ∴=.模拟尝试一、解答题1.(2023·山东·潍坊一中校联考模拟预测)如图,在四棱锥P ABCD -中,PAD 为等边三角形,M 为PA 的中点,PD AB ⊥,平面PAD ⊥平面ABCD.(1)证明:平面MCD ⊥平面PAB ;(2)若//AD BC ,2AD BC =,2CD AB =,求平面MCD 与平面PBC 夹角的余弦值.【答案】(1)证明见解析;.【详解】(1)设AD 的中点为E ,连接PE ,因为PAD 为等边三角形,所以PE AD ⊥,又因为平面PAD ⊥平面ABCD ,平面PAD ⋂平面ABCD AD =,且PE ⊂平面PAD ,所以PE ⊥平面ABCD ,因为AB ⊂平面ABCD ,所以PE AB ⊥,又PD AB ⊥,,PD PE P PD PE =⊂ ,平面PAD ,所以AB ⊥平面PAD ,又因为MD ⊂平面PAD ,所以AB MD ⊥,因为在等边三角形PAD 中,M 为PA 的中点,所以MD AP ⊥,因为AB AP A =I ,,AB AP ⊂平面PAB ,所以MD ⊥平面PAB ,因为MD ⊂平面MCD ,所以平面MCD ⊥平面PAB ;(2)连接CE ,由(1)知,AB ⊥平面PAD ,因为AD ⊂平面PAD ,所以AB AD ⊥,因为//AD BC ,2AD BC =,2CD AB =,所以四边形ABCE 为矩形,即CE AD ⊥,BC AE DE ==,22CD AB CE ==,所以30∠=︒CDE ,设BC a =,2AD a =,tan 60PE AE =⋅︒,tan 303AB CE DE ==⋅︒=,以E 为原点,分别以EC 、ED 、EP 所在直线为x 、y 、z轴建立空间直角坐标系,所以()0,,0A a -,()P,C ⎫⎪⎪⎝⎭,,0B a ⎫-⎪⎪⎝⎭,()0,,0D a,0,2a M ⎛- ⎝⎭,所以,,322a MC ⎛⎫=- ⎪ ⎪⎝⎭,30,,22a MD ⎛⎫=- ⎪ ⎪⎝⎭,,,3PB a ⎛⎫=- ⎪ ⎪⎝⎭,,0,3PC ⎛⎫= ⎪ ⎪⎝⎭,设平面MCD 和平面PBC 的法向量分别为()1111,,n x y z =,()2222,,n x y z =,则111111102302a n MC y a n MD y ⎧⋅=+-=⎪⎪⎨⎪⋅=-=⎪⎩,222222200n PB ay n PC ⎧⋅=--=⎪⎪⎨⎪⋅=-=⎪⎩,即1111x z ⎧=⎪⎨=⎪⎩,22203y x z =⎧⎨=⎩,取11y =,21z =,则1n = ,()23,0,1n =,所以121212cos ,35n n n n n n ⋅==⋅,所以平面MCD 与平面PBC.2.(2023·山东·日照一中校考模拟预测)如图,直三棱柱111ABC A B C -的体积为4,1A BC的面积为(1)求A 到平面1A BC 的距离;(2)设D 为1AC 的中点,1AA AB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C --的正弦值.【答案】【详解】(1)在直三棱柱111ABC A B C -中,设点A 到平面1A BC 的距离为h ,则1111111111433333A A BC A A ABC A ABC A B BC C C B V S h h V S A A V ---=⋅===⋅== ,解得h =所以点A 到平面1A BC;(2)取1A B 的中点E,连接AE,如图,因为1AA AB =,所以1AE A B ⊥,又平面1A BC ⊥平面11ABB A ,平面1A BC ⋂平面111ABB A A B =,且AE ⊂平面11ABB A ,所以⊥AE 平面1A BC ,在直三棱柱111ABC A B C -中,1BB ⊥平面ABC ,由BC ⊂平面1A BC ,BC ⊂平面ABC 可得AE BC ⊥,1BB BC ⊥,又1,AE BB ⊂平面11ABB A 且相交,所以BC ⊥平面11ABB A ,所以1,,BC BA BB 两两垂直,以B 为原点,建立空间直角坐标系,如图,由(1)得2AE =,所以12AA AB ==,12A B =以2BC =,则()()()()10,2,0,0,2,2,0,0,0,2,0,0A A B C ,所以1AC 的中点()1,1,1D ,则()1,1,1BD = ,()()0,2,0,2,0,0BA BC ==,设平面ABD 的一个法向量(),,m x y z =,则020m BD x y z m BA y ⎧⋅=++=⎨⋅==⎩,可取()1,0,1m =- ,设平面BDC 的一个法向量(),,n a b c =,则20n BD a b c n BC a ⎧⋅=++=⎨⋅==⎩,可取()0,1,1n =-r,则1cos ,222m n m n m n ⋅==⨯⋅,所以二面角A BD C --213122⎛⎫-= ⎪⎝⎭3.(2023·吉林·长春十一高校联考模拟预测)如图,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,D 为线段AB 的中点,4CB =,43AB =118AC =,三棱锥1A A DC -的体积为8.(1)证明:1A D ⊥平面11B C D ;(2)求平面1ACD 与平面1A BC 夹角的余弦值.【答案】(1)见解析65555【详解】(1)证明:因为1AA ⊥平面ABC ,CB ⊂平面ABC ,所以1AA BC ⊥,在三棱柱111ABC A B C -中,四边形11AAC C 为平行四边形,则118AC AC ==,因为43AB =4CB =,所以222AB CB AC +=,所以CB AB ⊥,又因为1AB AA A ⋂=,1AA ⊂平面11ABB A ,AB ⊂平面11ABB A ,所以CB ⊥平面11ABB A ,因为11//CB C B ,所以11C B ⊥平面11ABB A ,又1A D ⊂平面11ABB A ,所以111C B A D ⊥.1832ABC S AB BC =⋅=△,D 为AB 的中点,则132ACD ABC S S ==△△因为1AA ⊥平面ABC ,1111113833A A CD A ACD ACD V V S AA AA --==⋅=⨯= ,所以123AA =11A DB △中,1126A D B D ==1143A B =2221111A D B D A B +=,所以11A D B D ⊥,1111C B BD B ⋂=,111,C B B D ⊂平面11B C D ,所以1A D ⊥平面11B C D ;(2)因为1BB ⊥平面ABC ,BC AB ⊥,以点B 为坐标原点,BA 、1BB 、BC 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则()0,0,4C 、()3,0,0D 、()143,3,0A 、()10,23,0B ,设平面1DAC 的法向量为()111,,m x y z =,()123,3,0DA = ,()23,0,4DC =-,则11111330340m DA x y m DC x z ⎧⋅=+=⎪⎨⋅=-+=⎪⎩ ,取12x =,可得(2,3m =-,设平面1A CB 的法向量为()222,,x n y z =,()13,3,0BA = ,()0,0,4BC =,则1222433040n BA x y n BC z ⎧⋅=+=⎪⎨⋅==⎪⎩ ,取21x =,可得()1,2,0n =- ,所以,6655cos ,55115m n m n m n ⋅===⋅⨯,所以平面1DAC 与平面1ACB 夹角的余弦值为65555.4.(2022·江苏南京·南京师大附中校考模拟预测)如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,60ADC ∠=︒,PAD 为等边三角形,O 为线段AD 的中点,且平面PAD ⊥平面ABCD ,M 是线段PC 上的点.(1)求证:OM BC ⊥;(2)若直线AM 与平面PAB 的夹角的正弦值为1010,求四棱锥M ABCD -的体积.【答案】(1)证明见解析;(2)43【详解】(1)因为PAD 为等边三角形,O 为线段AD 的中点,所以PO AD ⊥;因为平面PAD ⊥平面ABCD ,所以PO ⊥平面ABCD ;又BC ⊂平面ABCD ,所以PO BC ⊥;在OCD 中,1,2,60OD CD ADC ==∠=︒,由余弦定理可得OC =因为222OC OD CD +=,所以CO AD ⊥;因为//AD BC ,所以CO BC ⊥,所以BC ⊥平面POC ;因为OM ⊂平面POC ,所以OM BC ⊥.(2)由(1)得,,OP OC OD 两两垂直,以O 为坐标原点,建系如图,则()())0,1,0,0,0,,2,0,A P BC -;)(1,0,,0,1,AB PC AP =-=-=;设PM PC λ=,则)AM AP PM =+= ;设平面PAB 的一个法向量为(),,n x y z =,则00n AB n AP ⎧⋅=⎨⋅=⎩,0y y -==⎪⎩,令y =则()1n =- .因为直线AM 与平面PAB所以n AM n AM ⋅==,解得13λ=或23λ=-(舍),即有13PM PC =,M 是靠近P 的三等分点,所以四棱锥M ABCD -的高等于OP 的23.四棱锥M ABCD -的体积为114222sin 603233V ︒=⨯⨯⨯⨯⨯⨯=.5.(2023·河北衡水·衡水市第二中学校考模拟预测)如图,直四棱柱1111ABCD A B C D -中,1AA =,E 是1AA 的中点,底面ABCD 是平行四边形,若1A C ⊥平面1BDC.(1)若1AB AA =,证明:底面ABCD 是正方形(2)若60BAD ∠=︒,求二面角1B BE D --的余弦值【答案】(1)证明见解析;(2)【详解】(1)如图,连接1,AC CD ,1A C ⊥平面1BDC ,BD ⊂平面1BDC ,1C D ⊂平面1BDC ,则1AC BD ⊥,11AC C D ⊥,直棱柱中1AA ⊥底面ABCD ,BD ⊂平面ABCD ,1AA BD ⊥,111AA A C A = ,11,AA A C ⊂平面1ACA ,则BD ⊥平面1ACA ,又AC ⊂平面1ACA ,所以BD AC ⊥,所以平行四边形ABCD 是菱形,1AA AB =,则直棱柱的侧面11ABB A 是正方形,因此侧面11CDD C 也是正方形,所以11CD C D ⊥,11A C CD C = ,11,AC CD ⊂平面11ACD ,所以1C D ⊥平面11ACD ,又11A D ⊂平面11ACD ,所以111C D A D ⊥,直棱柱中易知111DD A D ⊥,而111DD CD D = ,11,DD CD ⊂平面11CC D D ,所以11A D ⊥平面11CC D D ,11C D ⊂平面11CC D D ,所以1111A D C D ⊥,因此底面1111D C B A 是矩形,即四边形ABCD是矩形,所以四边形ABCD 是正方形;(2)由(1)知底面ABCD 是菱形,因此AC BD ⊥,设AC BD O ⋂=,分别以,OA OB 为,x y 轴,过O 与1AA 平行的直线为z 轴建立空间直角坐标系,如图,设2AB a =,则3OA a =,OB a =,1(36)A a ,(3,0,0)C a -,(0,,0)B a ,1(36)C a -,1(23,0,6)AC a =-- ,1(3,6)BC a a =-- ,由(1)知211660AC BC a ⋅=-= ,1a =(负值舍去),6(3,0,2E ,(0,1,0)B ,(0,1,0)D -,16)B ,6(3,)2BE =- ,(0,2,0)DB = ,16)BB = ,设平面1B BE 的一个法向量是111(,,)m x y z =,则11111606302m BB m BE y z ⎧⋅=⎪⎨⋅=-=⎪⎩,取11x =得3,0)m = ,设平面BED 的一个法向量是222(,,)n x y z =,则2222630220n BE x y n DB y ⎧⋅=-+=⎪⎨⎪⋅==⎩,取21x =,得(1,0,2)n = ,3cos ,623m n m n m n ⋅==⨯,所以二面角1B BE D--的余弦值为366.(2022·河北衡水·河北衡水中学校考模拟预测)直四棱柱1111ABCD A B C D -被平面α所截,所得的一部分如图所示,EF DC =.(1)证明://ED 平面ACF ;(2)若1242DC AD A E ===,3ADC π∠=,平面EFCD与平面ABCD 433,求点E 到平面ACF 的距离.【答案】(1)详见解析;(2255.【详解】(1)依题:平面α与两平行平面ABCD ,1111D C B A 的交线分别为EF ,DC ,故有//EF DC ,又EF DC =,故有平行四边形EFCD ,∴//ED FC ,ED ⊄面ACF ,FC ⊂面ACF ,∴//ED 平面ACF .(2)ADC △中,由余弦定理可得3AC =得AC AD ⊥,又1AA ⊥平面ABCD ,故而1AA ,AC ,AD 两两垂直,如图建系.【法一求EH 】取AD 中点H ,由1//AH A E ,1AH A E =得平行四边形1A AHE ,∴1//AA HE ,HE ⊥平面ACD ,作HI DC ⊥,(连EI ),又HE CD ⊥,∴CD ⊥平面EHI ,得CD EI ⊥,又HI DC ⊥,∴EIH ∠为所求二面角的平面角.易求3HI =4tan 33EH EIH HI ∠==,1EH =.【法二求EH 】面ABCD 的法向量显然为()0,0,1n =,设面EFCD 的法向量为(),,k x y z = ,1,0,2E h ⎛⎫⎪⎝⎭,00k DC k DE ⎧⋅=⎨⋅=⎩,令3x =33,1,2k h ⎫=⎪⎪⎭,依题:3119n k h n k⋅=⇒= .由//ED 平面ACF ,点E 到平面ACF 的距离转化为D 到平面ACF 的距离d ,()1,0,0D ,()3,0C ,13,12DC EF F ⎛⎫=⇒- ⎪⎝⎭ ,设平面ACF 的法向量为(),,m x y z = ,00m AC m m AF ⎧⋅=⇒⎨⋅=⎩可为()2,0,1,255m AD d m⋅== .真题再练1.(2021·全国·统考高考真题)如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,1PD DC ==,M 为BC 的中点,且PB AM ⊥.(1)求BC ;(2)求二面角A PM B --的正弦值.【答案】(12(2)7014【详解】(1)[方法一]:空间坐标系+空间向量法PD ⊥ 平面ABCD ,四边形ABCD 为矩形,不妨以点D 为坐标原点,DA 、DC 、DP 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系D xyz -,设2BC a =,则()0,0,0D 、()0,0,1P 、()2,1,0B a 、(),1,0M a 、()2,0,0A a ,则()2,1,1PB a =- ,(),1,0AM a =-,PB AM ⊥ ,则2210PB AM a ⋅=-+= ,解得22a =22BC a ==[方法二]【最优解】:几何法+相似三角形法如图,连结BD .因为PD ⊥底面ABCD ,且AM ⊂底面ABCD ,所以PD AM ⊥.又因为PB AM ⊥,PB PD P = ,所以AM ⊥平面PBD .又BD ⊂平面PBD ,所以AM BD ⊥.从而90ADB DAM ∠+∠=︒.因为90∠+∠=︒MAB DAM ,所以∠=∠MAB ADB .所以 ∽ADB BAM ,于是=AD BAAB BM.所以2112BC =.所以BC =[方法三]:几何法+三角形面积法如图,联结BD 交AM 于点N.由[方法二]知⊥AM DB .在矩形ABCD 中,有 ∽DAN BMN ,所以2==AN DAMN BM,即23AN AM =.令2(0)=>BC t t ,因为M 为BC 的中点,则BM t =,=DB,=AM 由1122=⋅=⋅ DAB S DA AB DB AN,得=t 212t =,所以2==BC t (2)[方法一]【最优解】:空间坐标系+空间向量法设平面PAM 的法向量为()111,,m x y z =,则,1,02AM ⎛⎫=- ⎪ ⎪⎝⎭,()AP = ,由1111020m AM x y mAP z ⎧⋅=+=⎪⎨⎪⋅=+=⎩,取1x =)m =,设平面PBM 的法向量为()222,,n x y z =,,0,02BM ⎛⎫=- ⎪ ⎪⎝⎭,()1,1BP =- ,由222200n BM n BP y z ⎧⋅==⎪⎨⎪⋅=-+=⎩,取21y =,可得()0,1,1n =,cos ,14m n m n m n ⋅==⋅,所以,sin ,m n = 因此,二面角A PM B --14.[方法二]:构造长方体法+等体积法如图,构造长方体1111ABCD A B C D -,联结11,AB A B ,交点记为H ,由于11AB A B ⊥,1AB BC ⊥,所以AH ⊥平面11A BCD .过H 作1D M 的垂线,垂足记为G .联结AG ,由三垂线定理可知1⊥AG D M ,故AGH ∠为二面角A PM B --的平面角.易证四边形11A BCD 是边长为2的正方形,联结1D H ,HM .111111111,2D HM D HM D A H HBM MCD A BCD S D M HG S S S S S =⋅=--- 正方形,由等积法解得31010=HG .在Rt AHG 中,2310,210==AH HG ,由勾股定理求得355=AG .所以,70sin 14AH AGH AG ∠==,即二面角A PM B --的正弦值为7014.2.(2021·全国·统考高考真题)已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的点.11BF A B ⊥(1)证明:BF DE ⊥;(2)当1B D 为何值时,面11BB C C 与面DFE 所成的二面角的正弦值最小?【答案】(1)证明见解析;(2)112B D =【详解】(1)[方法一]:几何法因为1111,//BF AB AB AB ⊥,所以BF AB ⊥.又因为1AB BB ⊥,1BF BB B ⋂=,所以AB ⊥平面11BCC B .又因为2AB BC ==,构造正方体1111ABCG A B C G -,如图所示,过E 作AB 的平行线分别与AG BC ,交于其中点,M N ,连接11,AM BN ,因为E ,F 分别为AC 和1CC 的中点,所以N 是BC 的中点,易证1Rt Rt BCF B BN ≅ ,则1CBF BBN ∠=∠.又因为1190BBN BNB ∠+∠=︒,所以1190CBF BNB BF BN ∠+∠=︒⊥,.又因为111111,BF AB BN AB B ⊥= ,所以BF ⊥平面11A MNB .又因为ED ⊂平面11A MNB ,所以BF DE ⊥.[方法二]【最优解】:向量法因为三棱柱111ABC A B C -是直三棱柱,1BB ∴⊥底面ABC ,1B B AB ∴⊥11//A B AB ,11BF A B ⊥,BF AB ∴⊥,又1BB BF B ⋂=,AB ∴⊥平面11BCC B .所以1,,BA BC BB 两两垂直.以B 为坐标原点,分别以1,,BA BC BB 所在直线为,,x y z 轴建立空间直角坐标系,如图.()()()0,0,0,2,0,0,0,2,0,B AC ∴()()()1110,0,2,2,0,2,0,2,2B A C ,()()1,1,0,0,2,1E F .由题设(),0,2D a (02a ≤≤).因为()()0,2,1,1,1,2BF DE a ==--,所以()()0121120BF DE a ⋅=⨯-+⨯+⨯-=,所以BF DE ⊥.[方法三]:因为11BF A B ⊥,11//A B AB ,所以BF AB ⊥,故110BF A B ⋅= ,0BF AB ⋅=,所以()11BF ED BF EB BB B D ⋅=⋅++ ()11=BF B D BF EB BB ⋅+⋅+ 1BF EB BF BB =⋅+⋅ 11122BF BA BC BF BB ⎛⎫=--+⋅ ⎪⎝⎭11122BF BA BF BC BF BB =-⋅-⋅+⋅112BF BC BF BB =-⋅+⋅111cos cos 2BF BC FBC BF BB FBB =-⋅∠+⋅∠1=52520255-⨯⨯⨯,所以BF ED ⊥.(2)[方法一]【最优解】:向量法设平面DFE 的法向量为(),,m x y z = ,因为()()1,1,1,1,1,2EF DE a =-=--,所以00m EF m DE ⎧⋅=⎨⋅=⎩,即()0120x y z a x y z -++=⎧⎨-+-=⎩.令2z a =-,则()3,1,2m a a =+-因为平面11BCC B 的法向量为()2,0,0BA =,设平面11BCC B 与平面DEF 的二面角的平面角为θ,则cos m BA m BA θ⋅=⋅ 222214a a =⨯-+22214a a =-+当12a =时,2224a a -+取最小值为272,此时cos θ=.所以()minsin θ=,此时112B D =.[方法二]:几何法如图所示,延长EF 交11A C 的延长线于点S ,联结DS 交11B C 于点T ,则平面DFE 平面11B BCC FT =.作1BH FT ⊥,垂足为H ,因为1DB ⊥平面11BB C C ,联结DH ,则1D H B ∠为平面11BB C C 与平面DFE 所成二面角的平面角.设1,B D t =[0,2],t ∈1B T s =,过1C 作111//CG AB 交DS 于点G .由111113C S C G SA A D ==得11(2)3C G t =-.又1111B D BT C G C T=,即12(2)3t s s t =--,所以31t s t =+.又111B H BT C F FT=,即11B H =1B H =所以DH ===则11sin B D DHB DH∠===所以,当12t =时,()1min sin 3DHB ∠=.[方法三]:投影法如图,联结1,FB FN,DEF 在平面11BB C C 的投影为1BN F ,记面11BB C C 与面DFE 所成的二面角的平面角为θ,则1cos B NF DEFS S θ=.设1(02)BD t t =≤≤,在1Rt DB F中,DF ==在Rt ECF中,EF 过D 作1B N 的平行线交EN 于点Q .在Rt DEQ △中,DE ==在DEF 中,由余弦定理得222cos 2DF EF DE DFE DF EF+-∠=⋅=sin DFE ∠=1sin 2DFE S DF EF DFE =⋅∠ =13,2B NF S = 1cos B NF DFES S θ==sin θ当12t =,即112B D =,面11BBC C 与面DFE所成的二面角的正弦值最小,最小值为3.(2021·全国·统考高考真题)如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,ABAD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.【答案】(1)证明见解析;(2)6.(2)方法二:利用几何关系找到二面角的平面角,然后结合相关的几何特征计算三棱锥的体积即可.【详解】(1)因为AB AD =,O 是BD 中点,所以OA BD ⊥,因为OA ⊂平面ABD ,平面ABD ⊥平面BCD ,且平面ABD ⋂平面BCD BD =,所以OA ⊥平面BCD .因为CD ⊂平面BCD ,所以OA CD ⊥.(2)[方法一]:通性通法—坐标法如图所示,以O 为坐标原点,OA 为z 轴,OD 为y 轴,垂直OD 且过O 的直线为x 轴,建立空间直角坐标系O xyz-,则1,0),(0,1,0),(0,1,0)2C D B -,设12(0,0,),(0,,)33A m E m ,所以4233(0,,),(,0)3322EB m BC =--= ,设(),,n x y z =r为平面EBC 的法向量,则由00EB n EC n ⎧⋅=⎨⋅=⎩ 可求得平面EBC 的一个法向量为2(3,1,)n m=--.又平面BCD 的一个法向量为()0,0,OA m =,所以222cos ,244n OA m m -=⋅+,解得1m =.又点C 到平面ABD 321133213226A BCD C ABD V V --==⨯⨯⨯=所以三棱锥A BCD -36.[方法二]【最优解】:作出二面角的平面角如图所示,作EG BD ⊥,垂足为点G .作GF BC ⊥,垂足为点F ,连结EF ,则OA EG ∥.因为OA ⊥平面BCD ,所以EG ⊥平面BCD ,EFG ∠为二面角E BC D --的平面角.因为45EFG ∠=︒,所以EG FG =.由已知得1OB OD ==,故1OB OC ==.又30OBC OCB ∠=∠=︒,所以3BC =.因为24222,,,,133333GD GB FG CD EG OA ======,111122(11)13332A BCD BCD BOC V S O S OA A -==⨯⨯=⨯⨯⨯⨯⨯ .[方法三]:三面角公式考虑三面角B EDC -,记EBD ∠为α,EBC ∠为β,30DBC ∠=︒,记二面角E BC D --为θ.据题意,得45θ=︒.对β使用三面角的余弦公式,可得cos cos cos30βα=⋅︒,化简可得cos 2βα=.①使用三面角的正弦公式,可得sin sin sin αβθ=,化简可得sin βα=.②将①②两式平方后相加,可得223cos 2sin 14αα+=,由此得221sin cos 4αα=,从而可得1tan 2α=±.如图可知π(0,)2α∈,即有1tan 2α=,根据三角形相似知,点G 为OD 的三等分点,即可得43BG =,结合α的正切值,可得2,13EG OA ==从而可得三棱锥A BCD -的体积为6.4.(2022·全国·统考高考真题)如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求CF 与平面ABD 所成的角的正弦值.【答案】(1)证明过程见解析(2)CF 与平面ABD 所成的角的437【详解】(1)因为AD CD =,E 为AC 的中点,所以AC DE ⊥;在ABD △和CBD △中,因为,,B A C D CD ADB DB DB D ∠=∠==,所以ABD CBD ≌△△,所以AB CB =,又因为E 为AC 的中点,所以AC BE ⊥;又因为,DE BE ⊂平面BED ,DE BE E ⋂=,所以AC ⊥平面BED ,因为AC ⊂平面ACD ,所以平面BED ⊥平面ACD .(2)连接EF ,由(1)知,AC ⊥平面BED ,因为EF ⊂平面BED ,所以AC EF ⊥,所以1=2AFC S AC EF ⋅△,当EF BD ⊥时,EF 最小,即AFC △的面积最小.因为ABD CBD ≌△△,所以2CB AB ==,又因为60ACB ∠=︒,所以ABC 是等边三角形,因为E 为AC 的中点,所以1AE EC ==,3BE =因为AD CD ⊥,所以112DE AC ==,在DEB 中,222DE BE BD +=,所以BE DE ⊥.以E 为坐标原点建立如图所示的空间直角坐标系E xyz -,则()()()1,0,0,3,0,0,0,1A B D ,所以()()1,0,1,3,0AD AB =-=-,设平面ABD 的一个法向量为(),,n x y z =,则00n AD x z n AB x ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩,取y =()n = ,又因为()31,0,0,,4C F ⎛⎫- ⎪ ⎪⎝⎭,所以34CF ⎛⎫= ⎪ ⎪⎝⎭ ,所以cos ,7n CF n CF n CF⋅==,设CF 与平面ABD 所成的角的正弦值为02πθθ⎛⎫≤≤ ⎪⎝⎭,所以sin cos ,n CF θ== 所以CF 与平面ABD所成的角的正弦值为7.5.(2022·全国·统考高考真题)小明同学参加综合实践活动,设计了一个封闭的包装盒,包装盒如图所示:底面ABCD 是边长为8(单位:cm )的正方形,,,,EAB FBC GCD HDA 均为正三角形,且它们所在的平面都与平面ABCD垂直.(1)证明://EF 平面ABCD ;(2)求该包装盒的容积(不计包装盒材料的厚度).【答案】(1)证明见解析;【详解】(1)如图所示:分别取,AB BC 的中点,M N ,连接MN ,因为,EAB FBC为全等的正三角形,所以,EM AB FN BC ⊥⊥,EM FN =,又平面EAB ⊥平面ABCD ,平面EAB ⋂平面ABCD AB =,EM ⊂平面EAB ,所以EM ⊥平面ABCD ,同理可得FN ⊥平面ABCD ,根据线面垂直的性质定理可知//EM FN ,而EM FN =,所以四边形EMNF 为平行四边形,所以//EF MN ,又EF ⊄平面ABCD ,MN ⊂平面ABCD ,所以//EF 平面ABCD .(2)[方法一]:分割法一如图所示:分别取,AD DC 中点,K L ,由(1)知,//EF MN 且EF MN =,同理有,//,HE KM HE KM =,//,HG KL HG KL =,//,GF LN GF LN =,由平面知识可知,BD MN ⊥,MN MK ⊥,KM MN NL LK ===,所以该几何体的体积等于长方体KMNL EFGH -的体积加上四棱锥B MNFE -体积的4倍.因为MN NL LK KM ====,8sin 60EM == 点B 到平面MNFE 的距离即为点B 到直线MN 的距离d,d =(21343V =⨯+⨯⨯==.[方法二]:分割法二如图所示:连接AC,BD,交于O ,连接OE,OF,OG,OH.则该几何体的体积等于四棱锥O-EFGH 的体积加上三棱锥A-OEH 的4倍,再加上三棱锥E-OAB 的四倍.容易求得,OE=OF=OG=OH=8,取EH 的中点P ,连接AP,OP.则EH 垂直平面APO.由图可知,三角形APO,四棱锥O-EFGH 与三棱锥E-OAB 的高均为EM 的长.所以该几何体的体积(21111144444433232V =⋅+⋅⋅⋅⋅6.(2022·全国·统考高考真题)如图,直三棱柱111ABC A B C -的体积为4,1A BC的面积为(1)求A 到平面1A BC 的距离;(2)设D 为1AC 的中点,1AA AB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C --的正弦值.【答案】2.【详解】(1)在直三棱柱111ABC A B C -中,设点A 到平面1A BC 的距离为h ,则111111111143333A A BC A A ABC A ABC A B BC C C B V S h V S A A V ---=⋅===⋅==,解得h =所以点A 到平面1A BC;(2)取1A B 的中点E,连接AE,如图,因为1AA AB =,所以1AE A B ⊥,又平面1A BC ⊥平面11ABB A ,平面1A BC ⋂平面111ABB A A B =,且AE ⊂平面11ABB A ,所以⊥AE 平面1A BC ,在直三棱柱111ABC A B C -中,1BB ⊥平面ABC ,由BC ⊂平面1A BC ,BC ⊂平面ABC 可得AE BC ⊥,1BB BC ⊥,又1,AE BB ⊂平面11ABB A 且相交,所以BC ⊥平面11ABB A ,所以1,,BC BA BB 两两垂直,以B 为原点,建立空间直角坐标系,如图,由(1)得AE 12AA AB ==,1A B =以2BC =,则()()()()10,2,0,0,2,2,0,0,0,2,0,0A A B C ,所以1AC 的中点()1,1,1D ,则()1,1,1BD = ,()()0,2,0,2,0,0BA BC ==,设平面ABD 的一个法向量(),,m x y z =,则020m BD x y z m BA y ⎧⋅=++=⎨⋅==⎩,可取()1,0,1m =- ,设平面BDC 的一个法向量(),,n a b c = ,则020n BD a b c n BC a ⎧⋅=++=⎨⋅==⎩,可取()0,1,1n =-r,则1cos ,2m n m n m n ⋅==⋅,所以二面角A BD C --2=.7.(2022·全国·统考高考真题)如图,PO 是三棱锥-P ABC 的高,PA PB =,AB AC ⊥,E 是PB的中点.(1)证明://OE 平面PAC ;(2)若30ABO CBO ∠=∠=︒,3PO =,5PA =,求二面角C AE B --的正弦值.【答案】(1)证明见解析(2)1113【详解】(1)证明:连接BO 并延长交AC 于点D ,连接OA 、PD ,因为PO 是三棱锥-P ABC 的高,所以PO ⊥平面ABC ,,AO BO ⊂平面ABC ,所以PO AO ⊥、PO BO ⊥,又PA PB =,所以POA POB ≅△△,即OA OB =,所以OAB OBA ∠=∠,又AB AC ⊥,即90BAC ∠=︒,所以90OAB OAD ∠+∠=︒,90OBA ODA ∠+∠=︒,所以ODA OAD∠=∠所以AO DO =,即AO DO OB ==,所以O 为BD 的中点,又E 为PB 的中点,所以//OE PD ,又OE ⊄平面PAC ,PD ⊂平面PAC ,所以//OE 平面PAC(2)解:过点A 作//Az OP ,如图建立空间直角坐标系,因为3PO =,5AP =,所以224OA AP PO =-=,又30OBA OBC ∠=∠=︒,所以28BD OA ==,则4=AD ,43AB =所以12AC =,所以()23,2,0O ,()43,0,0B ,()23,2,3P ,()0,12,0C ,所以333,1,2E ⎛⎫ ⎪⎝⎭,则333,1,2AE ⎛⎫= ⎪⎝⎭ ,()3,0,0AB =,()0,12,0AC = ,设平面AEB 的法向量为(),,n x y z =,则33302430n AE y z n AB ⎧⋅=++=⎪⎨⎪⋅==⎩,令2z =,则=3y -,0x =,所以()0,3,2n =-;设平面AEC 的法向量为(),,m a b c =,则33302120m AE a b c m AC b ⎧⋅=++=⎪⎨⎪⋅==⎩,令a 6c =-,0b =,所以)6m =-;所以cos ,n m n m n m⋅==设二面角C AE B --的大小为θ,则cos cos ,=n m θ=所以11sin 13θ==,即二面角C AE B --的正弦值为1113.8.(2022·北京·统考高考真题)如图,在三棱柱111ABC A B C -中,侧面11BCC B 为正方形,平面11BCC B ⊥平面11ABB A ,2AB BC ==,M ,N 分别为11A B ,AC 的中点.(1)求证:MN ∥平面11BCC B ;(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线AB 与平面BMN 所成角的正弦值.条件①:AB MN ⊥;条件②:BM MN =.注:如果选择条件①和条件②分别解答,按第一个解答计分.【答案】(1)见解析(2)见解析【详解】(1)取AB 的中点为K ,连接,MK NK ,由三棱柱111ABC A B C -可得四边形11ABB A 为平行四边形,而11,B M MA BK KA ==,则1//MK BB ,而MK ⊄平面11BCC B ,1BB ⊂平面11BCC B ,故//MK 平面11BCC B ,而,CN NA BK KA ==,则//NK BC ,同理可得//NK 平面11BCC B ,而,,NK MK K NK MK =⊂ 平面MKN ,故平面//MKN 平面11BCC B ,而MN ⊂平面MKN ,故//MN 平面11BCC B ,(2)因为侧面11BCC B 为正方形,故1CB BB ⊥,而CB ⊂平面11BCC B ,平面11CBB C ⊥平面11ABB A ,平面11CBB C ⋂平面111ABB A BB =,故CB ⊥平面11ABB A ,因为//NK BC ,故NK ⊥平面11ABB A ,因为AB ⊂平面11ABB A ,故NK AB ⊥,若选①,则AB MN ⊥,而NK AB ⊥,NK MN N = ,故AB ⊥平面MNK ,而MK ⊂平面MNK ,故AB MK ⊥,所以1AB BB ⊥,而1CB BB ⊥,CB AB B ⋂=,故1BB ⊥平面ABC ,故可建立如所示的空间直角坐标系,则()()()()0,0,0,0,2,0,1,1,0,0,1,2B A N M ,故()()()0,2,0,1,1,0,0,1,2BA BN BM ===,设平面BNM 的法向量为(),,n x y z =,则00n BN n BM ⎧⋅=⎨⋅=⎩ ,从而020x y y z +=⎧⎨+=⎩,取1z =-,则()2,2,1n =--,设直线AB 与平面BNM 所成的角为θ,则42sin cos ,233n AB θ===⨯ .若选②,因为//NK BC ,故NK ⊥平面11ABB A ,而KM ⊂平面MKN ,故NK KM ⊥,而11,1B M BK NK ===,故1B M NK =,而12B B MK ==,MB MN =,故1BB M MKN ≅ ,所以190BB M MKN ∠=∠=︒,故111A B BB ⊥,而1CB BB ⊥,CB AB B ⋂=,故1BB ⊥平面ABC ,故可建立如所示的空间直角坐标系,则()()()()0,0,0,0,2,0,1,1,0,0,1,2B A N M ,故()()()0,2,0,1,1,0,0,1,2BA BN BM === ,设平面BNM 的法向量为(),,n x y z =,则00n BN n BM ⎧⋅=⎨⋅=⎩,从而020x y y z +=⎧⎨+=⎩,取1z =-,则()2,2,1n =--,设直线AB 与平面BNM 所成的角为θ,则42sin cos ,233n AB θ===⨯.9.(2022·天津·统考高考真题)直三棱柱111ABC A B C -中,112,,AA AB AC AA AB AC AB ===⊥⊥,D 为11A B 的中点,。
2021届高考数学第专题四 高考中的立体几何问题文档强练 文
专题四 高考中的立体几何问题1.(2021·广东)某四棱台的三视图如下图,那么该四棱台的体积是( ) A.4 B.143C.163D.6 答案 B 解析 由三视图知四棱台的直观图为由棱台的体积公式得:V =13(2×2+ 1×1+2×2×1×1)×2=143. 2.(2021·课标全国Ⅱ)已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l满 足l ⊥m ,l ⊥n ,l ⊄α,l ⊄β,那么( )A.α∥β且l ∥αB.α⊥β且l ⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l答案 D 解析 假设α∥β,由m ⊥平面α,n ⊥平面β,那么m ∥n ,这与已知m ,n 为异面直线矛盾,那么α与β相交,设交线为l 1,那么l 1⊥m ,l 1⊥n ,在直线m 上任取一点作n 1平行于n ,那么l 1和l 都垂直于直线m 与n 1所确信的平面,因此l 1∥l .3.如图,点O 为正方体ABCD —A ′B ′C ′D ′的中心,点E 为面B ′BCC ′的中心,点F 为B ′C ′的中点,那么空间四边形D ′OEF在该正方体的各个面上的投影不可能是( ) 答案 D解析 空间四边形D ′OEF 在正方体的面DCC ′D ′上的投影是A ;在面BCC ′B ′上的投影是B ;在面ABCD 上的投影是C ,应选D.4.在如下图的四个正方体中,能得出AB ⊥CD 的是( ) 答案 A解析 A 中,∵CD ⊥平面AMB ,∴CD ⊥AB ;B 中,AB 与CD 成60°角,C 中,AB 与CD 成45°角;D 中,AB 与CD 夹角的正切值为 2.5.如图,四棱锥P -ABCD 的底面是一直角梯形,AB ∥CD ,BA ⊥AD ,CD =2AB ,PA ⊥底面ABCD ,E 为PC 的中点,那么BE 与平面PAD的 位置关系为________.答案 平行解析 取PD 的中点F ,连接EF ,在△PCD 中,EF 綊12CD . 又∵AB ∥CD 且CD =2AB ,∴EF 綊AB ,∴四边形ABEF 是平行四边形,∴EB ∥AF .又∵EB ⊄平面PAD ,AF ⊂平面PAD ,∴BE ∥平面PAD .题型一 空间点、线、面的位置关系例1 (2021·山东)如图,四棱锥P -ABCD 中,AB ⊥AC ,AB ⊥PA ,AB ∥CD ,AB =2CD ,E , F ,G ,M ,N 别离为PB ,AB ,BC ,PD ,PC 的中点.(2)求证:平面EFG ⊥平面EMN .思维启发 (1)在平面PAD 内作直线CE 的平行线或利用平面CEF ∥平面PAD 证明;(2)MN 是平面EFG 的垂线.证明 (1)方式一 取PA 的中点H ,连接EH ,DH .又E 为PB 的中点,因此EH 綊12AB .又CD 綊12AB ,因此EH 綊CD .因此四边形DCEH 是平行四边形,因此CE ∥DH .又DH ⊂平面PAD ,CE ⊄平面PAD .因此CE ∥平面PAD .方式二 连接CF .因为F 为AB 的中点,因此AF =12AB .又CD =12AB ,因此AF =CD .又AF ∥CD ,因此四边形AFCD 为平行四边形.因此CF ∥AD ,又CF ⊄平面PAD ,因此CF ∥平面PAD .因为E ,F 别离为PB ,AB 的中点,因此EF ∥PA .又EF ⊄平面PAD ,因此EF ∥平面PAD .因为CF ∩EF =F ,故平面CEF ∥平面PAD .又CE ⊂平面CEF ,因此CE ∥平面PAD .(2)因为E 、F 别离为PB 、AB 的中点,因此EF ∥PA .又因为AB ⊥PA ,因此EF ⊥AB ,同理可证AB ⊥FG .因此AB⊥平面EFG.又因为M,N别离为PD,PC的中点,因此MN∥CD,又AB∥CD,因此MN∥AB,因此MN⊥平面EFG.又因为MN⊂平面EMN,因此平面EFG⊥平面EMN.思维升华高考对该部份的考查重点是空间的平行关系和垂直关系的证明,一样以解答题的形式显现,试题难度中等,但对空间想象能力和逻辑推理能力有必然的要求,在试卷中也可能以选择题或填空题的方式考查空间位置关系的大体定理在判定线面位置关系中的应用.如下图,直三棱柱ABC-A1B1C1中,∠ACB=90°,M,N别离为A1B,B1C1的中点.求证:(1)BC∥平面MNB1;(2)平面A1CB⊥平面ACC1A.证明(1)因为BC∥B1C1,且B1C1⊂平面MNB1,BC⊄平面MNB1,故BC∥平面MNB1.(2)因为BC⊥AC,且ABC-A1B1C1为直三棱柱,故BC⊥平面ACC1A1.因为BC⊂平面A1CB,故平面A1CB⊥平面ACC1A1.题型二平面图形的翻折问题例2如图1所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD为∠ACB的平分线,点E在线段AC 上,CE=4.如图2所示,将△BCD沿CD折起,使得平面BCD⊥平面ACD,连接AB,BE,设点F是AB的中点.(1)求证:DE⊥平面BCD;(2)假设EF∥平面BDG,其中G为直线AC与平面BDG的交点,求三棱锥B-DEG的体积.思维启发(1)翻折前后,△ACD内各元素的位置关系没有转变,易知DE⊥DC,再依照平面BCD⊥平面ACD(2)注意从条件EF ∥平面BDG 得线线平行,为求高作基础.(1)证明 ∵AC =6,BC =3,∠ABC =90°,∴∠ACB =60°.∵CD 为∠ACB 的平分线,∴∠BCD =∠ACD =30°.∴CD =2 3. ∵CE =4,∠DCE =30°, ∴DE 2=CE 2+CD 2-2CE ·CD ·cos 30°=4,∴DE =2,那么CD 2+DE 2=EC 2.∴∠CDE =90°,DE ⊥DC .又∵平面BCD ⊥平面ACD ,平面BCD ∩平面ACD =CD ,DE ⊂平面ACD ,∴DE ⊥平面BCD .(2)解 ∵EF ∥平面BDG ,EF ⊂平面ABC ,平面ABC ∩平面BDG =BG ,∴EF ∥BG .∵点E 在线段AC 上,CE =4,点F 是AB 的中点,∴AE =EG =CG =2.如图,作BH ⊥CD 于H .∵平面BCD ⊥平面ACD ,∴BH ⊥平面ACD .由条件得BH =32, S △DEG =13S △ACD =13×12AC ·CD ·sin 30°=3, ∴三棱锥B -DEG 的体积V =13S △DEG ·BH =13×3×32=32. 思维升华 平面图形的翻折问题,关键是弄清翻折前后图形中线面位置关系和气宇关系的转变情形.一样地翻折后还在同一个平面上的性质不发生转变,不在同一个平面上的性质发生转变.(2021·北京)如图(1),在Rt△ABC 中,∠C =90°,D ,E 别离为AC ,AB 的中点,点F 为线段CD 上的一点,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1F ⊥CD ,如图(2).(2)求证:A1F⊥BE.(3)线段A1B上是不是存在点Q,使A1C⊥平面DEQ?说明理由.(1)证明因为D,E别离为AC,AB的中点,因此DE∥BC.又因为DE⊄平面A1CB,因此DE∥平面A1CB.(2)证明由已知得AC⊥BC且DE∥BC,因此DE⊥AC.因此DE⊥A1D,DE⊥CD.又A1D∩CD=D,因此DE⊥平面A1DC.而A1F⊂平面A1DC,因此DE⊥A1F.又因为A1F⊥CD,因此A1F⊥平面BCDE,又因为BE⊂平面BCDE,因此A1F⊥BE.(3)解线段A1B上存在点Q,使A1C⊥平面DEQ.理由如下:如图,别离取A1C,A1B的中点P,Q,那么PQ∥BC.又因为DE∥BC,因此DE∥PQ.因此平面DEQ即为平面DEP.由(2)知,DE⊥平面A1DC,因此DE⊥A1C.又因为P是等腰三角形DA1C底边A1C的中点,因此A1C⊥DP.因此A1C⊥平面DEP.从而A1C⊥平面DEQ.题型三 线面位置关系中的存在性问题例3 如图,在矩形ABCD 中,AB =2BC ,P 、Q 别离是线段AB 、CD的 中点,EP ⊥平面ABCD .(1)求证:DP ⊥平面EPC ;(2)问在EP 上是不是存在点F ,使平面AFD ⊥平面BFC ?假设存在,求出FP AP的值;假设不存在,说明理由.思维启发 先假设EP 上存在点F 使平面AFD ⊥平面BFC ,然后推证点F 的位置.(1)证明 ∵EP ⊥平面ABCD ,∴EP ⊥DP .又ABCD 为矩形,AB =2BC ,P 、Q 别离为AB 、CD 的中点,连接PQ ,则PQ ⊥DC 且PQ =12DC . ∴DP ⊥PC .∵EP ∩PC =P ,∴DP ⊥平面EPC .(2)解 假设存在F 使平面AFD ⊥平面BFC ,∵AD ∥BC ,BC ⊂平面BFC ,AD ⊄平面BFC ,∴AD ∥平面BFC .∴AD 平行于平面AFD 与平面BFC 的交线l .∵EP ⊥平面ABCD ,∴EP ⊥AD ,而AD ⊥AB , AB ∩EP =P ,∴AD ⊥平面EAB ,∴l ⊥平面FAB .∴∠AFB 为平面AFD 与平面BFC 所成二面角的平面角.∵P 是AB 的中点,且FP ⊥AB ,∴当∠AFB =90°时,FP =AP .∴当FP =AP ,即FP AP =1时,平面AFD ⊥平面BFC .思维升华 关于线面关系中的存在性问题,第一假设存在,然后在那个假设下利用线面关系的性质进行推理论证,寻求假设知足的条件.假设条件知足那么确信假设,假设取得矛盾那么否定假设.如图,在直四棱柱ABCD-A1B1C1D1中,已知DC=DD1=2AD=2AB,AD⊥DC,AB∥DC.(1)求证:D1C⊥AC1;(2)问在棱CD上是不是存在点E,使D1E∥平面A1BD.假设存在,确信点E位置;假设不存在,说明理由.(1)证明在直四棱柱ABCD-A1B1C1D1中,连接C1D,∵DC=DD1,∴四边形DCC1D1是正方形,∴DC1⊥D1C.又AD⊥DC,AD⊥DD1,DC∩DD1=D,∴AD⊥平面DCC1D1,又D1C⊂平面DCC1D1,∴AD⊥D1C.∵AD⊂平面ADC1,DC1⊂平面ADC1,且AD∩DC1=D,∴D1C⊥平面ADC1,又AC1⊂平面ADC1,∴D1C⊥AC1.(2)解假设存在点E,使D1E∥平面A1BD.连接AD1,AE,D1E,设AD1∩A1D=M,BD∩AE=N,连接MN,∵平面AD1E∩平面A1BD=MN,要使D1E∥平面A1BD,可使MN∥D1E,又M是AD1的中点,则N是AE的中点.又易知△ABN≌△EDN,∴AB=DE.综上所述,当E 是DC 的中点时,可使D 1E ∥平面A 1BD .(时刻:80分钟)1.如下图,在边长为5+2的正方形ABCD 中,以A 为圆心画一个扇形,以O 为圆心画一个圆,M ,N ,K 为切点,以扇形为圆锥的侧面,以圆O 为圆锥底面,围成一个圆锥,求圆锥的全面积与体积.解 设圆锥的母线长为l ,底面半径为r ,高为h ,由已知条件得⎩⎪⎨⎪⎧ l +r +2r =5+2×22πrl =π2,解得r =2,l =42,S =πrl +πr 2=10π,h =l 2-r 2=30,V =13πr 2h =230π3.2.如图,在四棱台ABCD -A 1B 1C 1D 1中,D 1D ⊥平面ABCD ,底面ABCD是平行四边形,AB =2AD ,AD =A 1B 1,∠BAD =60°.(1)证明:AA 1⊥BD ;(2)证明:CC 1∥平面A 1BD .证明 (1)方式一 因为D 1D ⊥平面ABCD ,且BD ⊂平面ABCD ,因此D 1D ⊥BD .又因为AB =2AD ,∠BAD =60°,在△ABD 中,由余弦定理得BD 2=AD 2+AB 2-2AD ·AB cos 60°=3AD 2,因此AD 2+BD 2=AB 2,因此AD ⊥BD .又AD ∩D 1D =D ,因此BD ⊥平面ADD 1A 1.故AA 1⊥BD .方式二 因为D 1D ⊥平面ABCD ,且BD ⊂平面ABCD ,因此BD ⊥D 1D .如图,取AB 的中点G ,连接DG ,在△ABD 中,由AB =2AD 得AG =AD .又∠BAD =60°,因此△ADG 为等边三角形,因此GD =GB ,故∠DBG =∠GDB .又∠AGD =60°,因此∠GDB =30°,故∠ADB =∠ADG +∠GDB =60°+30°=90°,因此BD ⊥AD .又AD ∩D 1D =D ,因此BD ⊥平面ADD 1A .又AA 1⊂平面ADD 1A ,故AA 1⊥BD .(2)如图,连接AC ,A 1C 1,设AC ∩BD =E ,连接EA 1,因为四边形ABCD 为平行四边形,因此EC =12AC . 由棱台概念及AB =2AD =2A 1B 1知A 1C 1∥EC 且A 1C 1=EC ,因此四边形A 1ECC 1为平行四边形,因此CC 1∥EA .又EA 1⊂平面A 1BD ,CC 1⊄平面A 1BD ,因此CC 1∥平面A 1BD .3.如图,四棱锥P —ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,点E 在线段 AD 上,且CE ∥AB .(1)求证:CE ⊥平面PAD ;(2)假设PA =AB =1,AD =3,CD =2,∠CDA =45°,求四棱锥P —ABCD 的体积.因此PA ⊥CE .因为AB ⊥AD ,CE ∥AB ,因此CE ⊥AD .又PA ∩AD =A ,因此CE ⊥平面PAD .(2)解 由(1)可知CE ⊥AD .在Rt△ECD 中,DE =CD ·cos 45°=1,CE =CD ·sin 45°=1.又因为AB =CE =1,AB ∥CE ,因此四边形ABCE 为矩形.因此S 四边形ABCD =S 矩形ABCE +S △ECD =AB ·AE +12CE ·DE=1×2+12×1×1=52.又PA ⊥平面ABCD ,PA =1,因此V 四棱锥P —ABCD =13S 四边形ABCD ·PA =13×52×1=56.4.如图,在正方体ABCD —A 1B 1C 1D 1中,E 、F 别离是CD 、A 1D 1的中点.(1)求证:AB 1⊥BF ;(2)求证:AE ⊥BF ;(3)棱CC 1上是不是存在点P ,使BF ⊥平面AEP ?假设存在,确信点P 的位置,假设不存在,说明理由.(1)证明 连接A 1B ,那么AB 1⊥A 1B ,又∵AB 1⊥A 1F ,且A 1B ∩A 1F =A 1,∴AB 1⊥平面A 1BF .又BF ⊂平面A 1BF ,∴AB 1⊥BF .(2)证明 取AD 中点G ,连接FG ,BG ,那么FG ⊥AE ,又∵△BAG ≌△ADE ,∴∠ABG =∠DAE .∴AE ⊥BG .又∵BG ∩FG =G ,∴AE ⊥平面BFG .又BF ⊂平面BFG ,∴AE ⊥BF .(3)解 存在.取CC 1中点P ,即为所求.连接EP ,AP ,C 1D ,∵EP∥C1D,C1D∥AB1,∴EP∥AB1.由(1)知AB1⊥BF,∴BF⊥EP.又由(2)知AE⊥BF,且AE∩EP=E,∴BF⊥平面AEP.5.(2021·安徽)如图,在长方体ABCD-A1B1C1D1中,底面A1B1C1D1是正方形,O是BD的中点,E是棱AA1上任意一点.(1)证明:BD⊥EC1;(2)若是AB=2,AE=2,OE⊥EC1,求AA1的长.(1)证明连接AC,A1C1.由底面是正方形知,BD⊥AC.因为AA1⊥平面ABCD,BD⊂平面ABCD,因此AA1⊥BD.又AA1∩AC=A,因此BD⊥平面AA1C1C.因为EC1⊂平面AA1C1C知,BD⊥EC1.(2)解方式一设AA1的长为h,连接OC1.在Rt△OAE中,AE=2,AO=2,故OE2=(2)2+(2)2=4.在Rt△EA1C1中,A1E=h-2,A1C1=22,故EC21=(h-2)2+(22)2.在Rt△OCC1中,OC=2,CC1=h,OC21=h2+(2)2.因为OE⊥EC1,因此OE2+EC21=OC21,即4+(h-2)2+(22)2=h2+(2)2,解得h=32,因此AA1的长为3 2.方式二∵OE⊥EC1,∴∠AEO+∠A1EC1=90°.又∵∠A1C1E+∠A1EC1=90°,∴∠AEO=∠A1C1E.又∵∠OAE=∠C1A1E=90°,∴△OAE∽EA1C1,∴AEA1C1=AOA1E,即222=2A1E,∴A1E=22,∴AA1=AE+A1E=3 2.6.(2021·辽宁)如图,AB是圆O的直径,PA垂直圆O所在的平面,C是圆O上的点.(1)求证:BC⊥平面PAC;(2)设Q为PA的中点,G为△AOC的重心,求证:QG∥平面PBC.证明(1)由AB是圆O的直径,得AC⊥BC,由PA⊥平面ABC,BC⊂平面ABC,得PA⊥BC.又PA∩AC=A,PA⊂平面PAC,AC⊂平面PAC,因此BC⊥平面PAC.(2)连接OG并延长交AC于M,连接QM,QO,由G为△AOC的重心,得M为AC中点.由Q为PA中点,得QM∥PC,又O为AB中点,得OM∥BC.因为QM∩MO=M,QM⊂平面QMO,MO⊂平面QMO,BC∩PC=C,BC⊂平面PBC,PC⊂平面PBC.因此平面QMO∥平面PBC.因为QG⊂平面QMO,因此QG∥平面PBC.。
专题4.4 立体几何中最值问题(解析版)
一.方法综述高考试题将趋于关注那些考查学生运用运动变化观点处理问题的题目,而几何问题中的最值与范围类问题,既可以考查学生的空间想象能力,又考查运用运动变化观点处理问题的能力,因此,将是有中等难度的考题.此类问题,可以充分考查图形推理与代数推理,同时往往也需要将问题进行等价转化,比如求一些最值时,向平面几何问题转化,这些常规的降维操作需要备考时加强关注与训练.立体几何中的最值问题一般涉及到距离、面积、体积、角度等四个方面,此类问题多以规则几何体为载体,涉及到几何体的结构特征以及空间线面关系的逻辑推理、空间角与距离的求解等,题目较为综合,解决此类问题一般可从三个方面思考:一是函数法,即利用传统方法或空间向量的坐标运算,建立所求的目标函数,转化为函数的最值问题求解;二是根据几何体的结构特征,变动态为静态,直观判断在什么情况下取得最值;三是将几何体平面化,如利用展开图,在平面几何图中直观求解.二.解题策略类型一距离最值问题【例1】【河南省焦作市2019届高三三模】在棱长为4的正方体ABCD﹣A1B1C1D1中,点E、F分别在棱AA1和AB上,且C1E⊥EF,则|AF|的最大值为()A.B.1 C.D.2【答案】B【解析】以AB,AD,AA1所在直线为x,y,z轴,建立空间直角坐标系如图所示,则C1(4,4,4),设E(0,0,z),z∈[0,4],F(x,0,0),x∈[0,4],则|AF|=x.=(4,4,4﹣z),=(x,0,﹣z).因为C1E⊥EF,所以,即:z2+4x﹣4z=0,x=z﹣.当z=2时,x取得最大值为1.|AF|的最大值为1.故选:B.【指点迷津】建立空间直角坐标系,求出坐标,利用C 1E⊥EF,求出|AF|满足的关系式,然后求出最大值即可.利用向量法得到|AF|的关系式是解题的关键,故选D.【举一反三】1、【江西省吉安市2019届高三上学期期末】若某几何体的三视图如图所示,则该几何体的最长棱的棱长为A.B.C.D.【答案】A【解析】解:根据三视图知,该几何体是一个正四棱锥,画出图形如图所示;则,,底面CDEB,结合图形中的数据,求得,在中,由勾股定理得,同理求得,.故选:A .2、【河南省顶级名校2019届高三第四次联合测评】在侧棱长为的正三棱锥中,侧棱OA ,OB ,OC 两两垂直,现有一小球P 在该几何体内,则小球P 最大的半径为 A . B . C .D .【答案】B 【解析】当小球与三个侧面,,及底面都相切时,小球的体积最大此时小球的半径最大,即该小球为正三棱锥的内切球设其半径为由题可知因此本题正确选项:3、如右图所示,在棱长为2的正方体1111ABCD A B C D 中, E 为棱1CC 的中点,点,P Q 分别为面1111A B C D和线段1B C 上的动点,则PEQ ∆周长的最小值为_______.【解析】将面1111A B C D 与面11BB C C 折成一个平面,设E 关于11B C 的对称点为M ,E 关于1B C 对称点为N,则PEQ ∆周长的最小值为MN ==类型二 面积的最值问题【例2】【河南省郑州市2019年高三第二次质量检测】在长方体中,,,分别是棱的中点,是底面内一动点,若直线与平面没有公共点,则三角形面积的最小值为( )A .B .C .D .【答案】C 【解析】补全截面EFG 为截面EFGHQR 如图,其中H 、Q 、R 分别为、的中点,易证平面ACD 1∥平面EFGHQR ,∵直线D 1P 与平面EFG 不存在公共点, ∴D 1P∥面ACD 1,∴D 1P 面ACD 1,∴P ∈AC ,∴过P 作AC 的垂线,垂足为K ,则BK=,此时BP 最短,△PBB 1的面积最小,∴三角形面积的最小值为,故选:C.【指点迷津】截面问题,往往涉及线面平行,面面平行定义的应用等,考查空间想象能力、逻辑思维能力及计算求解能力.解题的关键是注意明确截面形状,确定几何量.本题由直线与平面没有公共点可知线面平行,补全所给截面后,易得两个平行截面,从而确定点P所在线段,得解.【举一反三】1、【湖南省衡阳市2019届高三二模】如图,直角三角形,,,将绕边旋转至位置,若二面角的大小为,则四面体的外接球的表面积的最小值为()A.B.C.D.【答案】B【解析】如图,,,分别为,,的中点,作面,作面,连,,易知点即为四面体的外接球心,,,.设,,则,,,.【处理一】消元化为二次函数..【处理二】柯西不等式..所以.2、如图,在正四棱柱1111D C B A ABCD -中,2,11==AA AB ,点P 是平面1111D C B A 内的一个动点,则三棱锥ABC P -的正视图与俯视图的面积之比的最大值为( )A .1B .2C .21D .41 【答案】BABC P -的正视图与俯视图的面积之比的最大值为2;故选B .3、【福建省2019届高三模拟】若某几何体的三视图如图所示,则该几何体的所有侧面和底面中,面积的最大值为( )A .2B .C .3D .【答案】C【解析】由三视图可得,该几何体的直观图如图所示,其中,为的中点,平面,,.所以,,.又因为,,所以,故,所以.故选C.类型三体积的最值问题【例3】如图,已知平面平面,,、是直线上的两点,、是平面内的两点,且,,,,,是平面上的一动点,且有,则四棱锥体积的最大值是()A. B. C. D.【答案】A【指点迷津】本题主要考查面面垂直的性质,棱锥的体积公式以及求最值问题. 求最值的常见方法有①配方法:若函数为一元二次函数,常采用配方法求函数求值域,其关键在于正确化成完全平方式,并且一定要先确定其定义域;②换元法;③不等式法;④单调性法;⑤图像法,本题首先根据线面关系将体积最值转化为函数求最值问题,然后应用方法①解答的. 【举一反三】1、已知AD 与BC 是四面体ABCD 中相互垂直的棱,若6AD BC ==,且60ABD ACD ∠=∠=,则四面体ABCD 的体积的最大值是A. B. C. 18 D. 36 【答案】A2、如图,已知平面l αβ=,A 、B 是l 上的两个点,C 、D 在平面β内,且,,DA CB αα⊥⊥4AD =,6,8AB BC ==,在平面α上有一个动点P ,使得APD BPC ∠=∠,则P ABCD -体积的最大值是( )A. B.16 C.48 D.144 【答案】C 【解析】,,DA DA βααβ⊂⊥∴⊥面.,,DA CB αα⊥⊥PAD ∴∆和PBC ∆均为直角三角形.,APD BPC PAD ∠=∠∴∆∽PBC ∆.4,8,2AD BC PB PA ==∴=.学科&网过P 作PM AB ⊥,垂足为M .则PM β⊥.令AM t =,()t R ∈.则2222PA AM PB BM -=-,即()222246PA t PA t -=--,2124,PA t PM ∴=-∴=底面四边形ABCD 为直角梯形面积为()1486362S =+⨯=.学科&网136483P ABCD V -∴=⨯=.故C 正确.3.【河南省八市重点高中联盟“领军考试”2019届高三第三次测评】已知一个高为l 的三棱锥,各侧棱长都相等,底面是边长为2的等边三角形,内有 一个体积为的球,则的最大值为( ) A . B .C .D .【答案】A 【解析】依题意,当球与三棱锥的四个面都相切时,球的体积最大, 该三棱锥侧面的斜高为,,,所以三棱锥的表面积为,设三棱锥的内切球半径为, 则三棱锥的体积,所以,所以,所以,故选A.类型四 角的最值问题【例4】如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,动点M 在线段PQ 上,E 、F 分别为AB 、BC 的中点.设异面直线EM 与AF 所成的角为θ,则θcos 的最大值为.【答案】25【解析】建立坐标系如图所示.设1AB =,则11(1,,0),(,0,0)22AF E =.设(0,,1)(01)M y y ≤≤,则1(,,1)2EM y =-,由于异面直线所成角的范围为(0,]2π,所以cos θ==.2281145y y +=-+,令81,19y t t +=≤≤,则281161814552y y t t+=≥++-,当1t =时取等号.所以2cos 5θ==≤=,当0y =时,取得最大值.C【指点迷津】空间的角的问题,只要便于建立坐标系均可建立坐标系,然后利用公式求解.解本题要注意,空间两直线所成的角是不超过90度的.几何问题还可结合图形分析何时取得最大值.当点M 在点P 处时,EM 与AF 所成角为直角,此时余弦值为0(最小),当点M 向左移动时,.EM 与AF 所成角逐渐变小,点M 到达点Q 时,角最小,余弦值最大. 【举一反三】1、矩形ABCD 中,,,将△ABC 与△ADC 沿AC 所在的直线进行随意翻折,在翻折过程中直线AD 与直线BC 成的角范围(包含初始状态)为( )A.B.C.D.【答案】C2、在正方体1111D C B A ABCD -中,O 是BD 中点,点P 在线段11D B 上,直线OP 与平面BD A 1所成的角为α,则αsin 的取值范围是( ) A .]33,32[B .]21,31[C .]33,43[D .]31,41[ 【答案】A3.【云南省昆明市云南师范大学附属中学2019届高三上学期第四次月考】如图,在正方体中,点P为AD的中点,点Q为上的动点,给出下列说法:可能与平面平行;与BC所成的最大角为;与PQ一定垂直;与所成的最大角的正切值为;.其中正确的有______写出所有正确命题的序号【答案】【解析】解:由在棱长为1的正方体中点P为AD的中点,点Q为上的动点,知:在中,当Q为的中点时,,由线面平行的判定定理可得PQ与平面平行,故正确;在中,当Q为的中点时,,,,可得,故错误;在中,由,可得平面,即有,故正确;在中,如图,点M为中点,PQ与所成的角即为PQ与所成的角,当Q与,或重合时,PQ与所成的角最大,其正切值为,故正确;在中,当Q 为的中点时,PQ 的长取得最小值,且长为,故正确.故答案为:.4、在正四面体P ABC -中,点M 是棱PC 的中点,点N 是线段AB 上一动点,且AN AB λ=,设异面直线NM 与AC 所成角为α,当1233λ≤≤时,则cos α的取值范围是__________.【答案】,3838⎡⎢⎣⎦ 【解析】设P 到平面ABC 的射影为点O ,取BC 中点D ,以O 为原点,在平面ABC 中,以过O 作DB 的平行线为x 轴,以OD 为y 轴,以OP 为z 轴,建立空间直角坐标系,如图,设正四面体P −ABC的棱长为则()()(((0,4,0,,,,A B C P M --,由AN AB λ=,得(),64,0N λ-,∴((),56,NM AC λ=--→-=-,∵异面直线NM 与AC 所成角为α, 1233λ≤≤,∴2NM AC cos NM AC α⋅==⋅,设32t λ-=,则5733t 剟∴222111124626()41t cos t t t tα==-+-⋅+,∵1313375t <剟cos α.∴cos α的取值范围是⎣⎦.三.强化训练一、选择题1、【甘肃省2019届高三第一次高考诊断】四棱锥的顶点均在一个半径为3的球面上,若正方形的边长为4,则四棱锥的体积最大值为()A.B.C.D.【答案】D【解析】设正方形的中心为,当在于球心的连线上时,四棱锥高最高,由于底面面积固定,则高最高时,四棱锥体积取得最大值.设高为,,球的半径为,故,解得.故四棱锥的体积的最大值为.故选D.2.【广东省东莞市2019届高三第二次调研】已知一个四棱锥的正主视图和俯视图如图所示,其中,则该四棱锥的高的最大值为A.B.C.4 D.2【答案】A【解析】解:如图所示,由题意知,平面平面ABCD,设点P到AD的距离为x,当x最大时,四棱锥的高最大,因为,所以点P的轨迹为一个椭圆,由椭圆的性质得,当时,x取得最大值,即该四棱锥的高的最大值为.故选:A.3.【四川省教考联盟2019届高三第三次诊断】已知四棱锥的底面四边形的外接圆半径为3,且此外接圆圆心到点距离为2,则此四棱锥体积的最大值为()A.12 B.6 C.32 D.24【答案】A【解析】由锥体的体积公式v=,可知,当s和h都最大时,体积最大.由题得顶点P到底面ABCD的距离h≤2.当点P在底面上的射影恰好为圆心O时,即PO⊥底面ABCD时,PO最大=2,即,此时,即四边形ABCD为圆内接正方形时,四边形ABCD的面积最大,所以此时四边形ABCD的面积的最大值=,所以.故选:A4.【安徽省蚌埠市2019届高三第一次检查】某三棱锥的三视图如图所示,网格纸上小正方形的边长为1,三棱锥表面上的点M在俯视图上的对应点为A,三棱锥表面上的点N在左视图上的对应点为B,则线段MN的长度的最大值为A .B .C .D .【答案】D 【解析】由三视图可知,该三棱锥的底面是直角三角形, 一条侧棱与底面垂直(平面),为几何体的直观图如图,在上,重合,当与重合时, 线段的长度的最大值为.故选D .5.如图,在矩形ABCD 中, 2,1AB AD ==,点E 为CD 的中点, F 为线段CE (端点除外)上一动点现将DAF ∆沿AF 折起,使得平面ABD ⊥平面ABC 设直线FD 与平面ABCF 所成角为θ,则sin θ的最大值为( )A.13 B. 4 C. 12 D. 23【答案】C 【解析】如图:在矩形中,过点作的垂线交于点,交于点设,6.【2019年4月2019届高三第二次全国大联考】已知正四面体的表面积为,点在内(不含边界). 若,且,则实数的取值范围为( ) A . B . C .D .【答案】A 【解析】 设正四面体的棱长为则,解得则正四面体的高为记点到平面、、的距离分别为则因为,所以,则故又,故即实数的取值范围为本题正确选项:二、填空题7.【山东省青岛市2019届高三3月一模】在四棱锥中,底面是边长为2的正方形,面,且,若在这个四棱锥内有一个球,则此球的最大表面积为__________.【答案】【解析】在这个四棱锥内有一个球,则此球的最大表面积时,对应的球应该是内切球,此时球的半径最大,设内切球的球心为O半径为R,连接球心和ABCD四个点,构成五个小棱锥,根据体积分割得到,五个小棱锥的体积之和即为大棱锥的体积,,根据AB垂直于AD,PD垂直于AB 可得到AB垂直于面PDA,故得到AB垂直于PA,同理得到BC垂直于PC,表面积为:,此时球的表面积为:.故答案为:.8.【陕西省西安地区陕师大附中、西安高级中学、高新一中、铁一中学、西工大附中等八校2019届高三3月联考】如图,已知正四棱柱和半径为的半球O,底面ABCD在半球O底面所在平面上,,,,四点均在球面上,则该正四棱柱的体积的最大值为______.【答案】4【解析】设正四棱柱的高为h,底面棱长为a,则正四棱柱的底面外接圆直径为,所以,.由勾股定理得,即,得,其中,所以,正四棱柱的体积为,其中,构造函数,其中,则,令,得.当时,;当时,.所以,函数在处取得极大值,亦即最大值,则.因此,该正四棱柱的体积的最大值为4.9.【陕西省西安地区陕师大附中、西安高级中学、高新一中、铁一中学、西工大附中等八校2019届高三3月联考】如图,已知圆柱和半径为的半球O,圆柱的下底面在半球O底面所在平面上,圆柱的上底面内接于球O,则该圆柱的体积的最大值为_____.【答案】2π【解析】解:设圆柱的底面圆半径为r,高为h;则h2+r2=R2=3;所以圆柱的体积为V=πr2h=π(3﹣h2)h=π(3h﹣h3);则V′(h)=π(3﹣3h2),令V′(h)=0,解得h=1;所以h∈(0,1)时,V′(h)>0,V(h)单调递增;h∈(1,)时,V′(h)<0,V(h)单调递减;所以h=1时,V(h)取得最大值为V(1)=2π.故答案为:2π.10.【江西省上饶市2019届高三二模】一个棱长为的正方体形状的铁盒内放置一个正四面体,且能使该正四面体在铁盒内任意转动,则该正四面体的体积的最大值是_____.【答案】【解析】由题该正四面体在铁盒内任意转动,故其能在正方体的内切球内任意转动,内切球半径为6,设正四面体棱长为a, 将此正四面体镶嵌在棱长为x的正方体内,如图所示:则x=,外接球的球心和正方体体心O重合,∴外接球的球半径为:=6,a=4又正四面体的高为∴该正四面体的体积为故答案为11.【河北省衡水市第二中学2019届高三上期中】已知体积为的正四棱锥外接球的球心为,其中在四棱锥内部.设球的半径为,球心到底面的距离为.过的中点作球的截面,则所得截面圆面积的最小值是___________.【答案】【解析】如图取底面的中心为,连接平面,且球心在上,由条件知,,连接,,则,于是底面的边长为.又,故四棱锥的高是,所以,即,从而,,于是,过的中点的最小截面圆是以点为圆心的截面圆,该截面圆的半径是,故所求面积为.12.【江西省临川第一中学等九校2019届高三3月联考】如图所示,三棱锥的顶点,,,都在同一球面上,过球心且,是边长为2等边三角形,点、分别为线段,上的动点(不含端点),且,则三棱锥体积的最大值为__________.【答案】【解析】过球心,又是边长为的等边三角形,,,三角形是等腰直角三角形,,,又因为,在平面内,由线面垂直的判定定理可得平面,即平面,设,,则三棱锥体积,当且仅当,即时取等号,故答案为.13.【安徽省蚌埠市2019届高三下学期第二次检查】正三棱锥中,,点在棱上,且.正三棱锥的外接球为球,过点作球的截面,截球所得截面面积的最小值为__________.【答案】【解析】因为,所以,所以,同理,故可把正三棱锥补成正方体(如图所示),其外接球即为球,直径为正方体的体对角线,故,设的中点为,连接,则且,所以,当平面时,平面截球的截面面积最小,此时截面为圆面,其半径为,故截面的面积为.填.14.【江西师范大学附属中学2019高三上学期期末】若一个四棱锥的底面为正方形,顶点在底面的射影为正方形的中心,且该四棱锥的体积为9,当其外接球的体积最小时,它的高为_________.【答案】【解析】设四棱锥底面边长为a,高为h,底面对角线交于O,由条件四棱锥P-ABCD为正四棱锥,其外接球的球心M在高PO上,设外接球半径为R,在直角三角形MAO中,,又该四棱锥的体积为9,所以所以,,,时,时,所以时R极小即R最小,此时体积最小.故答案为3.15.【江西省上饶市2019届高三二模】已知正方体的棱长为,平面与对角线垂直且与每个面均有交点,若截此正方体所得的截面面积为,周长为,则的最大值为______.【答案】【解析】因为平面与对角线垂直,所以平面与对角面平行,作出图象,为六边形,设则,所以,由对称性得平面过对角线中点时截面面积取最大值为,则的最大值为.16.【河南省洛阳市2019届高三第二次统考】正四面体中,是的中点,是棱上一动点,的最小值为,则该四面体内切球的体积为_____.【答案】【解析】如下图,正方体中作出一个正四面体将正三角形和正三角形沿边展开后使它们在同一平面内,如下图:要使得最小,则三点共线,即:,设正四面体的边长为,在三角形中,由余弦定理可得:,解得:,所以正方体的边长为2,正四面体的体积为:,设四正面体内切球的半径为,由等体积法可得:,整理得:,解得:,所以该四面体内切球的体积为.17.【2019届湘赣十四校高三联考第二次考试】如图,正三棱锥的高,底面边长为4,,分别在和上,且,当三棱锥体积最大时,三棱锥的内切球的半径为________.【答案】【解析】设,,当时,取得最大值,此时为中点,经过点,且,,所以可求,,因此易求,,,,又∵,∴.。
高考专题突破四 高考中的立体几何问题
高考专题突破四 高考中的立体几何问题【考点自测】1.在正三棱柱ABC -A 1B 1C 1中,D 为BC 的中点,E 为A 1C 1的中点,则DE 与平面A 1B 1BA 的位置关系为________. 答案 平行解析 如图取B 1C 1的中点为F ,连结EF ,DF ,则EF ∥A 1B 1,DF ∥B 1B , 且EF ∩DF =F ,A 1B 1∩B 1B =B 1, ∴平面EFD ∥平面A 1B 1BA , ∴DE ∥平面A 1B 1BA .2.设x ,y ,z 是空间中不同的直线或平面,对下列四种情形:①x ,y ,z 均为直线;②x ,y 是直线,z 是平面;③z 是直线,x ,y 是平面;④x ,y ,z 均为平面.其中使“x ⊥z 且y ⊥z ⇒x ∥y ”为真命题的是________.(填序号) 答案 ②③解析 由正方体模型可知①④为假命题;由线面垂直的性质定理可知②③为真命题. 3.一个六棱锥的体积为23,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为________. 答案 12解析 设六棱锥的高为h ,则V =13Sh ,所以13×34×4×6h =23,解得h =1.设六棱锥的斜高为h ′,则h 2+(3)2=h ′2,故h ′=2. 所以该六棱锥的侧面积为12×2×2×6=12.4.设α,β,γ是三个平面,a ,b 是两条不同的直线,有下列三个条件:①a ∥γ,b ⊂β;②a ∥γ,b ∥β;③b ∥β,a ⊂γ.如果命题“α∩β=a ,b ⊂γ,且________,则a∥b”为真命题,则可以在横线处填入的条件是________.(把所有正确的序号填上)答案①或③解析由线面平行的性质定理可知,①正确;当b∥β,a⊂γ时,a和b在同一平面内,且没有公共点,所以平行,③正确.故应填入的条件为①或③.5.如图,以等腰直角三角形ABC的斜边BC上的高AD为折痕,把△ABD和△ACD折成互相垂直的两个平面后,某学生得出下列四个结论:①BD⊥AC;②△BAC是等边三角形;③三棱锥D-ABC是正三棱锥;④平面ADC⊥平面ABC.其中正确的是________.(填序号)答案①②③解析由题意知,BD⊥平面ADC,故BD⊥AC,①正确;AD为等腰直角三角形斜边BC上的高,平面ABD⊥平面ACD,所以AB=AC=BC,△BAC是等边三角形,②正确;易知DA=DB=DC,又由②知③正确;由①知④错.题型一求空间几何体的表面积与体积例1 如图,在三棱柱ABC—A1B1C1中,AA1⊥平面ABC,AC⊥BC,AC=BC=CC1=2,点D为AB 的中点.(1)证明:AC1∥平面B1CD;(2)求三棱锥A1—CDB1的体积.(1)证明连结BC1交B1C于点O,连结OD.在三棱柱ABC —A 1B 1C 1中,四边形BCC 1B 1是平行四边形, ∴点O 是BC 1的中点.∵点D 为AB 的中点,∴OD ∥AC 1. 又OD ⊂平面B 1CD ,AC 1⊄平面B 1CD , ∴AC 1∥平面B 1CD .(2)解 ∵AC =BC ,AD =BD ,∴CD ⊥AB . 在三棱柱ABC —A 1B 1C 1中,由AA 1⊥平面ABC ,得平面ABB 1A 1⊥平面ABC . 又平面ABB 1A 1∩平面ABC =AB ,CD ⊂平面ABC , ∴CD ⊥平面ABB 1A 1, ∵AC ⊥BC ,AC =BC =2, ∴AB =A 1B 1=22,CD =2,1111——A CDB C A DB V V =三棱锥三棱锥=13×12×2×22×2=43. 思维升华 (1)若所给定的几何体是柱体、锥体或台体等规则几何体,则可直接利用公式进行求解.其中,等积转换法多用来求三棱锥的体积.(2)若所给定的几何体是不规则几何体,则将不规则的几何体通过分割或补形转化为规则几何体,再利用公式求解.跟踪训练1 如图,在三棱柱ABC -A 1B 1C 1中,底面是边长为a 的正三角形,AA 1与AC ,AB 所成的角均为60°,且A 1A =AB ,求该三棱柱的侧面积和体积.解 作A 1O ⊥底面ABC 于点O ,∵AA 1与AC ,AB 所成的角均为60°, 且A 1A =AB ,∴O 是△ABC 的中心, ∴AO =23×32a =33a .又A 1O =A 1A 2-AO 2=63a , S △ABC =34a 2,A 1O ⊥AD , ∴V =Sh =34a 2×63a =24a 3. 又O 是△ABC 的中心,∴AO ⊥BC ,A 1O ⊥BC , 从而BC ⊥平面A 1AO .∵A 1A ⊂平面A 1AO ,∴BC ⊥A 1A , 又A 1A ∥B 1B ,故BC ⊥B 1B , ∴侧面BCC 1B 1是矩形.11112222sin 60A ABB BCC B S S S a a ∴⨯⨯︒=+=+侧=(1+3)a 2.题型二 空间点、线、面的位置关系例2 (2017·江苏)如图,在三棱锥A-BCD 中,AB ⊥AD ,BC ⊥BD ,平面ABD ⊥平面BCD ,点E ,F (E 与A ,D 不重合)分别在棱AD ,BD 上,且EF ⊥AD .求证:(1)EF ∥平面ABC ; (2)AD ⊥AC .证明 (1)在平面ABD 内,因为AB ⊥AD ,EF ⊥AD , 则AB ∥EF .又因为EF⊄平面ABC,AB⊂平面ABC,所以EF∥平面ABC.(2)因为平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,BC⊂平面BCD,BC⊥BD,所以BC⊥平面ABD.因为AD⊂平面ABD,所以BC⊥AD.又AB⊥AD,BC∩AB=B,AB⊂平面ABC,BC⊂平面ABC,所以AD⊥平面ABC.又因为AC⊂平面ABC,所以AD⊥AC.思维升华 (1)平行问题的转化利用线线平行、线面平行、面面平行的相互转化解决平行关系的判定问题时,一般遵循从“低维”到“高维”的转化,即从“线线平行”到“线面平行”,再到“面面平行”;而应用性质定理时,其顺序正好相反.在实际的解题过程中,判定定理和性质定理一般要相互结合,灵活运用.(2)垂直问题的转化在空间垂直关系中,线面垂直是核心,已知线面垂直,既为证明线线垂直提供依据,又可为利用判定定理证明面面垂直作好铺垫.应用面面垂直的性质定理时,一般作辅助线,基本作法是过其中一个平面内一点作交线的垂线,从而把面面垂直问题转化为线面垂直问题,进而可转化为线线垂直问题.跟踪训练2 (2013·江苏)如图,在三棱锥S-ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB.过A作AF⊥SB,垂足为F,点E,G分别是棱SA,SC的中点.求证:(1)平面EFG∥平面ABC;(2)BC⊥SA.证明(1)由AS=AB,AF⊥SB知F为SB的中点,则EF∥AB,FG∥BC,又EF∩FG=F,AB∩BC=B,因此平面EFG∥平面ABC.(2)由平面SAB⊥平面SBC,平面SAB∩平面SBC=SB,AF⊂平面SAB,AF⊥SB,所以AF⊥平面SBC,则AF⊥BC.又BC⊥AB,AF∩AB=A,AF,AB⊂平面SAB,则BC⊥平面SAB,又SA⊂平面SAB,因此BC⊥SA.题型三平面图形的翻折问题例3 五边形ANB1C1C是由一个梯形ANB1B与一个矩形BB1C1C组成的,如图甲所示,B为AC的中点,AC=CC1=2AN=8.沿虚线BB1将五边形ANB1C1C折成直二面角A—BB1—C,如图乙所示.(1)求证:平面BNC⊥平面C1B1N;(2)求图乙中的多面体的体积.(1)证明四边形BB1C1C为矩形,故B1C1⊥BB1,又由于二面角A—BB1—C为直二面角,故B1C1⊥平面BB1A,又BN⊂平面BB1A,故B1C1⊥BN,由线段AC=CC1=2AN=8知,BB21=NB21+BN2,即BN⊥NB1,又B1C1∩NB1=B1,B1C1,NB1⊂平面NB1C1,所以BN⊥平面C1B1N,因为BN⊂平面BNC,所以平面BNC⊥平面C1B1N.(2)解连结CN,过N作NM⊥BB1,垂足为M,V 三棱锥C —ABN =13×BC ·S △ABN=13×4×12×4×4=323, 又B 1C 1⊥平面ABB 1N , 所以平面CBB 1C 1⊥平面ABB 1N , 且平面CBB 1C 1∩ABB 1N =BB 1,NM ⊥BB 1,NM ⊂平面ABB 1N ,所以NM ⊥平面B 1C 1CB ,1111—1·3B C CB N B C CB V NM S =⨯矩形四棱锥=13×4×4×8=1283, 则此几何体的体积11——N B C CB C ABN V V V 四棱=+锥三棱锥=323+1283=1603.思维升华 平面图形的翻折问题,关键是搞清翻折前后图形中线面位置关系和度量关系的变化情况.一般地,翻折后还在同一个平面上的性质不发生变化,不在同一个平面上的性质发生变化.跟踪训练3 为了迎接某节日,商场进行促销活动,某商场打算将进行促销活动的礼品盒重新设计.方案如下:将一块边长为10的正方形纸片ABCD 剪去四个全等的等腰三角形△SEE ′,△SFF ′,△SGG ′,△SHH ′,再将剩下的阴影部分折成一个四棱锥形状的包装盒S —EFGH ,其中A ,B ,C ,D 重合于点O ,E 与E ′重合,F 与F ′重合,G 与G ′重合,H 与H ′重合(如图所示).(1)求证:平面SEG ⊥平面SFH ;(2)已知AE =52,过O 作OM ⊥SH 交SH 于点M ,求cos ∠EMO 的值.(1)证明 ∵折后A ,B ,C ,D 重合于一点O ,∴拼接成底面EFGH 的四个直角三角形必为全等的等腰直角三角形, ∴底面EFGH 是正方形,故EG ⊥FH . 连结SO .∵在原平面图形中,△SEE ′≌△SGG ′, ∴SE =SG ,∴EG ⊥SO ,∵EG ⊥FH ,EG ⊥SO ,FH ∩SO =O ,FH ,SO ⊂平面SFH ,∴EG ⊥平面SFH , 又∵EG ⊂平面SEG , ∴平面SEG ⊥平面SFH .(2)解 由题意,当AE =52时,OE =52,Rt △SHO 中,SO =5,SH =552,∴OM =SO ·OHSH= 5. 由(1)知,EO ⊥平面SHF , 又∵OM ⊂平面SHF ,∴EO ⊥OM . 在Rt △EMO 中,EM =EO 2+OM 2=352,∴cos ∠EMO =OM EM =23.题型四 立体几何中的存在性问题例4 如图,在四棱锥P —ABCD 中,△PAD 为正三角形,平面PAD ⊥平面ABCD ,AB ∥CD ,AB ⊥AD ,CD =2AB =2AD =4.(1)求证:平面PCD ⊥平面PAD ; (2)求三棱锥P —ABC 的体积;(3)在棱PC 上是否存在点E ,使得BE ∥平面PAD ?若存在,请确定点E 的位置并证明;若不存在,请说明理由.(1)证明 因为AB ∥CD ,AB ⊥AD ,所以CD ⊥AD . 因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,CD ⊂平面ABCD , 所以CD ⊥平面PAD . 因为CD ⊂平面PCD , 所以平面PCD ⊥平面PAD . (2)解 取AD 的中点O ,连结PO . 因为△PAD 为正三角形,所以PO ⊥AD .因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,PO ⊂平面PAD , 所以PO ⊥平面ABCD , 所以PO 为三棱锥P —ABC 的高.因为△PAD 为正三角形,CD =2AB =2AD =4, 所以PO = 3.所以V 三棱锥P —ABC =13S △ABC ·PO=13×12×2×2×3=233. (3)解 在棱PC 上存在点E ,当E 为PC 的中点时,BE ∥平面PAD . 分别取CP ,CD 的中点E ,F ,连结BE ,BF ,EF , 所以EF ∥PD .因为AB ∥CD ,CD =2AB , 所以AB ∥FD ,AB =FD ,所以四边形ABFD 为平行四边形, 所以BF ∥AD .因为BF ∩EF =F ,AD ∩PD =D , 所以平面BEF ∥平面PAD . 因为BE ⊂平面BEF , 所以BE ∥平面PAD .思维升华 对于线面关系中的存在性问题,首先假设存在,然后在该假设条件下,利用线面关系的相关定理、性质进行推理论证,寻找假设满足的条件,若满足则肯定假设,若得出矛盾的结论则否定假设.跟踪训练4 (2017·江苏无锡天一中学模拟)如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 是棱DD 1的中点.(1)证明:平面ADC 1B 1⊥平面A 1BE ;(2)在棱C 1D 1上是否存在一点F ,使B 1F ∥平面A 1BE ?证明你的结论. (1)证明 如图,因为ABCD -A 1B 1C 1D 1为正方体, 所以B 1C 1⊥平面ABB 1A 1.因为A 1B ⊂平面ABB 1A 1,所以B 1C 1⊥A 1B .又因为A 1B ⊥AB 1,B 1C 1∩AB 1=B 1,AB 1,B 1C 1⊂平面ADC 1B 1,所以A 1B ⊥平面ADC 1B 1. 因为A 1B ⊂平面A 1BE , 所以平面ADC 1B 1⊥平面A 1BE .(2)解 当点F 为C 1D 1的中点时,可使B 1F ∥平面A 1BE .证明如下: 设A 1B ∩AB 1=O , 连结EO ,EF ,B 1F .易知EF ∥C 1D ,且EF =12C 1D ,B 1O ∥C 1D 且B 1O =12C 1D ,所以EF ∥B 1O 且EF =B 1O ,所以四边形B 1OEF 为平行四边形. 所以B 1F ∥OE .又因为B 1F ⊄平面A 1BE ,OE ⊂平面A 1BE . 所以B 1F ∥平面A 1BE .1.(2017·江苏新海中学期中)将斜边长为4的等腰直角三角形绕其斜边所在直线旋转一周,则所形成的几何体的体积是________. 答案16π3解析 等腰直角三角形的斜边长为4,斜边的高为2. ∴旋转后的几何体为两个大小相等的圆锥的组合体. 圆锥的底面半径为2,高为2.∴几何体的体积V =2×13×π×4×2=16π3.2.若α,β,γ是三个不同的平面,m ,n 是两条不同的直线,且α∩γ=m ,β∩γ=n .命题甲:m ∥n ;命题乙:α∥β.则甲是乙成立的________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分又不必要”) 答案 必要不充分解析 若α与β平行,则必有m ∥n ,反之,当m ∥n 时,α与β可能相交,如三棱柱中侧棱平行,侧面不平行.3.如图所示,已知平面α∩平面β=l ,α⊥β.A ,B 是直线l 上的两点,C ,D 是平面β内的两点,且AD ⊥l ,CB ⊥l ,DA =4,AB =6,CB =8.P 是平面α上的一动点,且有∠APD =∠BPC ,则四棱锥P -ABCD 体积的最大值是________.答案 48解析 由题意知,△PAD ,△PBC 是直角三角形, 又∠APD =∠BPC ,所以△PAD ∽△PBC . 因为DA =4,CB =8,所以PB =2PA . 作PM ⊥AB 于点M ,由题意知,PM ⊥平面β.令BM =t ,则AM =|6-t |,PA 2-(6-t )2=4PA 2-t 2,所以PA 2=4t -12.所以PM =-t 2+16t -48,即为四棱锥P -ABCD 的高, 又底面ABCD 为直角梯形,S =12×(4+8)×6=36,所以V =13×36×-t 2+16t -48=12-(t -8)2+16≤12×4=48.4.如图梯形ABCD 中,AD ∥BC ,∠ABC =90°,AD ∶BC ∶AB =2∶3∶4,E ,F 分别是AB ,CD 的中点,将四边形ADFE 沿直线EF 进行翻折,给出四个结论:①DF ⊥BC ; ②BD ⊥FC ;③平面DBF ⊥平面BFC ; ④平面DCF ⊥平面BFC .在翻折过程中,可能成立的结论是________.(填写结论序号) 答案 ②③解析 因为BC ∥AD ,AD 与DF 相交不垂直,所以BC 与DF 不垂直,则①错误;设点D 在平面BCF 上的射影为点P ,当BP ⊥CF 时就有BD ⊥FC ,而AD ∶BC ∶AB =2∶3∶4,可使条件满足,所以②正确;当点P 落在BF 上时,DP ⊂平面BDF ,从而平面BDF ⊥平面BCF ,所以③正确;因为点D 的投影不可能在FC 上,所以平面DCF ⊥平面BFC 不成立,即④错误. 5.下列三个命题都缺少一个条件P ,补上这个条件使其构成真命题(其中l ,m 为直线,α,β为平面),则条件P 为________.①⎭⎪⎬⎪⎫m ⊂α,l ∥m ,P ⇒l ∥α;②⎭⎪⎬⎪⎫l ∥m ,m ∥α,P⇒l ∥α;③⎭⎪⎬⎪⎫l ⊥β,α⊥β,P⇒l ∥α. 答案 l ⊄α解析 根据直线与平面平行的判定定理可得①所缺条件为l ⊄α,可推②③同样可补此条件. 6.如图,在三棱锥S —ABC 中,SA =SB ,AC =BC ,O 为AB 的中点,SO ⊥平面ABC ,AB =4,OC =2,N 是SA 的中点,CN 与SO 所成的角为α,且tan α=2.(1)证明:OC ⊥ON ; (2)求三棱锥S —ABC 的体积.(1)证明 ∵AC =BC ,O 为AB 的中点, ∴OC ⊥AB ,又SO ⊥平面ABC ,OC ⊂平面ABC , ∴OC ⊥SO ,又AB ∩SO =O ,AB ,SO ⊂平面SAB , ∴OC ⊥平面SAB ,又∵ON ⊂平面SAB , ∴OC ⊥ON .(2)解 设OA 的中点为M ,连结MN ,MC ,则MN ∥SO ,故∠CNM 即为CN 与SO 所成的角α, 又MC ⊥MN 且tan α=2, ∴MC =2MN =SO , 又MC =OC 2+OM 2=22+12=5, 即SO =5,∴三棱锥S —ABC 的体积V =13Sh =13·12·2·4·5=453. 7.如图1,在矩形ABCD 中,AB =4,AD =2,E 是CD 的中点,将△ADE 沿AE 折起,得到如图2所示的四棱锥D 1—ABCE ,其中平面D 1AE ⊥平面ABCE .(1)证明:BE ⊥平面D 1AE ;(2)设F 为CD 1的中点,在线段AB 上是否存在一点M ,使得MF ∥平面D 1AE ,若存在,求出AM AB的值;若不存在,请说明理由. (1)证明 连结BE ,∵ABCD 为矩形且AD =DE =EC =BC =2, ∴∠AEB =90°,即BE ⊥AE , 又平面D 1AE ⊥平面ABCE ,平面D 1AE ∩平面ABCE =AE ,BE ⊂平面ABCE , ∴BE ⊥平面D 1AE .(2)解 AM =14AB ,取D 1E 的中点L ,连结AL ,FL ,∵FL ∥EC ,EC ∥AB ,∴FL ∥AB 且FL =14AB ,∴M ,F ,L ,A 四点共面, 若MF ∥平面AD 1E ,则MF ∥AL .∴AMFL 为平行四边形,∴AM =FL =14AB .故线段AB 上存在满足题意的点M ,且AM AB =14.8.如图,在四棱锥P —ABCD 中,ABCD 是正方形,PD ⊥平面ABCD .PD =AB =2,E ,F ,G 分别是PC ,PD ,BC 的中点.(1)求证:平面PAB ∥平面EFG ;(2)在线段PB 上确定一点Q ,使PC ⊥平面ADQ ,并给出证明. (1)证明 ∵在△PCD 中,E ,F 分别是PC ,PD 的中点, ∴EF ∥CD ,又∵四边形ABCD 为正方形, ∴AB ∥CD ,∴EF ∥AB ,∵EF ⊄平面PAB ,AB ⊂平面PAB , ∴EF ∥平面PAB .同理EG ∥平面PAB , ∵EF ,EG 是平面EFG 内两条相交直线, ∴平面PAB ∥平面EFG .(2)解 当Q 为线段PB 的中点时,PC ⊥平面ADQ .取PB 的中点Q ,连结DE ,EQ ,AQ ,DQ , ∵EQ ∥BC ∥AD ,且AD ≠QE ,∴四边形ADEQ为梯形,由PD⊥平面ABCD,AD⊂平面ABCD,得AD⊥PD,∵AD⊥CD,PD∩CD=D,PD,CD⊂平面PCD,∴AD⊥平面PDC,又PC⊂平面PDC,∴AD⊥PC.∵△PDC为等腰直角三角形,E为斜边中点,∴DE⊥PC,∵AD,DE是平面ADQ内的两条相交直线,∴PC⊥平面ADQ.9.(2018届镇江中学检测)如图,正三棱柱A1B1C1-ABC中,点D,E分别是A1C,AB的中点.(1)求证:ED∥平面BB1C1C;(2)若AB=2BB1,求证:A1B⊥平面B1CE.证明(1)连结AC1,BC1,因为四边形AA1C1C是矩形,D是A1C的中点,所以D是AC1的中点.在△ABC1中,因为D,E分别是AC1,AB的中点,所以DE∥BC1,因为DE⊄平面BB1C1C,BC1⊂平面BB1C1C,所以ED∥平面BB1C1C.(2)因为△ABC是正三角形,E是AB的中点,所以CE⊥AB.又因为在正三棱柱A1B1C1-ABC中,平面ABC⊥平面ABB1A1,交线为AB,CE⊂平面ABC,所以CE⊥平面ABB1A1,又A1B⊂平面ABB1A1,从而CE⊥A1B.因为A 1B 1B 1B =AB B 1B =2,B 1B BE =B 1B12AB=2, 所以A 1B 1B 1B =B 1B BE, 又∠A 1B 1B =∠B 1BE =90°, 所以Rt △A 1B 1B ∽Rt △B 1BE , 所以∠A 1BB 1=∠BEB 1, 又∠BEB 1+∠BB 1E =90°, 所以∠A 1BB 1+∠BB 1E =90°, 所以A 1B ⊥B 1E ,又因为CE ,B 1E ⊂平面B 1CE ,CE ∩B 1E =E , 所以A 1B ⊥平面B 1CE .。
高中数学理科专题讲解高考大题专项(四)《立体几何》教学课件
所以ON=AF.因为BE∥AF,所以ON∥AF,所以四边形AONF是平行四边形,所以FN∥AO,且AO⊂平面MAC,所以FN∥平面MAC.因为FN∩BF=F,所以平面BFN∥平面MAC.
--
证法二:因为AD∥BC,AB=2,BC=1,AD=2,CD= ,所以AB⊥AD.因为BE∥AF,BE⊥平面ABCD,所以AF⊥平面ABCD,所以AF⊥AB,AF⊥AD,取AB所在直线为x轴,取AD所在直线为y轴,取AF所在直线为z轴,建立如图所示的空间直角坐标系,
--
--
解题心得求线面角可以用几何法,即“先找,后证,再求”,也可以通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.
--
对点训练1(2018全国2,理20)如图,在三棱锥P-ABC中,AB=BC=2 ,PA=PB=PC=AC=4,O为AC的中点.(1)证明:PO⊥平面ABC;(2)若点M在棱BC上,且二面角M-PA-C为30°,求PC与平面PAM所成角的正弦值.
--
对点训练1(2016全国3,理19)如图,四棱锥P-ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明:MN∥平面PAB;(2)求直线AN与平面PMN所成角的正弦值.
--
--
--
题型二 证明平行关系求二面角例2(2019全国1,理18)如图,直四棱柱ABCD-A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求二面角A-MA1-N的正弦值.
--
方法一:(1)证明:连接A1E,因为A1A=A1C,E是AC的中点,所以A1E⊥AC.又平面A1ACC1⊥平面ABC,A1E⊂平面A1ACC1,平面A1ACC1∩平面ABC=AC,所以,A1E⊥平面ABC,则A1E⊥BC.又因为A1F∥AB,∠ABC=90°,故BC⊥A1F.所以BC⊥平面A1EF.因此EF⊥BC.
(浙江专版)高考数学一轮复习 第7章 立体几何 热点探究课4 立体几何中的高考热点问题.教师用书-人
热点探究课(四) 立体几何中的高考热点问题[命题解读] 1.立体几何是高考的重要内容,每年基本上都是一个解答题,两个选择题或填空题.客观题主要考查空间概念,点、线、面位置关系的判定、三视图.解答题主要采用“论证与计算”相结合的模式,即首先是利用定义、定理、公理等证明空间的线线、线面、面面平行或垂直,再利用空间向量进行空间角的计算.2.立体几何重点考查学生的空间想象能力、数学运算和逻辑推理论证能力.考查的热点是以几何体为载体的平行与垂直的证明、二面角的计算,平面图形的翻折,探索存在性问题,突出了转化化归思想与数形结合的思想方法.热点1 空间点、线、面间的位置关系空间线线、线面、面面平行、垂直关系常与平面图形的有关性质及体积的计算等知识交汇考查,考查学生的空间想象能力和推理论证能力以及转化与化归思想,一般以解答题的形式出现,难度中等.如图1所示,在三棱柱ABCA1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.图1(1)求证:平面ABE⊥平面B1BCC1;(2)求证:C1F∥平面ABE;(3)求三棱锥EABC的体积.[解](1)证明:在三棱柱ABCA1B1C1中,BB1⊥底面ABC,所以BB1⊥AB.2分又因为AB⊥BC,BB1∩BC=B,所以AB⊥平面B1BCC1.又AB⊂平面ABE,所以平面ABE⊥平面B1BCC1.6分①②(2)证明:法一:如图①,取AB中点G,连接EG,FG.因为G,F分别是AB,BC的中点,所以FG ∥AC ,且FG =12AC .8分因为AC ∥A 1C 1,且AC =A 1C 1, 所以FG ∥EC 1,且FG =EC 1. 所以四边形FGEC 1为平行四边形, 所以C 1F ∥EG .又因为EG ⊂平面ABE ,C 1F ⊄平面ABE , 所以C 1F ∥平面ABE .10分法二:如图②,取AC 的中点H ,连接C 1H ,FH . 因为H ,F 分别是AC ,BC 的中点,所以HF ∥AB .8分 又因为E ,H 分别是A 1C 1,AC 的中点,所以EC 1綊AH ,所以四边形EAHC 1为平行四边形, 所以C 1H ∥AE ,又C 1H ∩HF =H ,AE ∩AB =A , 所以平面ABE ∥平面C 1HF . 又C 1F ⊂平面C 1HF , 所以C 1F ∥平面ABE .10分(3)因为AA 1=AC =2,BC =1,AB ⊥BC , 所以AB =AC 2-BC 2= 3.12分 所以三棱锥E ABC 的体积V =13S △ABC ·AA 1=13×12×3×1×2=33.15分 [规律方法] 1.(1)证明面面垂直,将“面面垂直”问题转化为“线面垂直”问题,再将“线面垂直”问题转化为“线线垂直”问题.(2)证明C 1F ∥平面ABE :①利用判定定理,关键是在平面ABE 中找(作)出直线EG ,且满足C 1F ∥EG .②利用面面平行的性质定理证明线面平行,则先要确定一个平面C 1HF 满足面面平行,实施线面平行、面面平行的转化.2.计算几何体的体积时,能直接用公式时,关键是确定几何体的高,而不能直接用公式时,注意进行体积的转化.[对点训练1] (2017·某某联考)如图2,四边形ABCD 为直角梯形,AB ∥CD ,AB ⊥BC ,△ABE 为等边三角形,且平面ABCD ⊥平面ABE ,CD =BC =12AB =1,点P 为CE 的中点.图2(1)求证:AB ⊥DE ;(2)求DE 与平面ABCD 所成角的大小;(3)求三棱锥D ABP 的体积. 【导学号:51062252】 [解] (1)证明:取AB 的中点O ,连接OD ,OE .∵△ABE 是正三角形,∴AB ⊥OE .∵四边形ABCD 是直角梯形,DC =12AB ,AB ∥CD ,∴四边形OBCD 是平行四边形,OD ∥BC .3分 又AB ⊥BC ,∴AB ⊥OD .∵OD ,OE ⊂平面ODE ,且OD ∩OE =O , ∴AB ⊥平面ODE . ∵DE ⊂平面ODE , ∴AB ⊥DE .5分(2)∵平面ABCD ⊥平面ABE ,平面ABCD ∩平面ABE =AB ,OE ⊥AB ,OE ⊂平面ABE ,∴OE ⊥平面ABCD , ∴∠ODE 即为所求,在△ODE 中,OD =1,OE =3,∠DOE =90°, ∴tan ∠ODE = 3.又∵∠ODE 为锐角,∴∠ODE =60°.10分 (3)∵P 为CE 的中点,∴V 三棱锥D ABP =V 三棱锥P ABD =12V 三棱锥E ABD .12分∵OE ⊥平面ABCD ,∴V 三棱锥E ABD =13S △ABD ·OE =13×2×12×3=33,∴V 三棱锥D ABP =V 三棱锥P ABD =12V 三棱锥E ABD =36.15分热点2 平面图形折叠成空间几何体(答题模板)将平面图形折叠成空间几何体,并以此为载体考查点、线、面间的位置关系及有关几何量的计算是近年高考的热点,考查学生的空间想象能力、知识迁移能力和转化思想.试题以解答题为主要呈现形式,中档难度.(本小题满分15分)如图3,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC=6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF的位置,OD ′=10.图3(1)证明:D ′H ⊥平面ABCD ; (2)求二面角B D ′A C 的正弦值.[思路点拨] (1)利用已知条件及翻折的性质得出D ′H ⊥EF ,利用勾股定理逆定理得出D ′H ⊥OH ,从而得出结论;(2)在第(1)问的基础上建立恰当的空间直角坐标系,从而求出两个半平面的法向量,利用向量的夹角公式求其余弦值,从而求出正弦值,最后转化为二面角的正弦值.[规X 解答] (1)证明:由已知得AC ⊥BD ,AD =CD . 又由AE =CF 得AE AD =CFCD, 故AC ∥EF .因为EF ⊥HD ,从而EF ⊥D ′H .2分由AB =5,AC =6得DO =BO =AB 2-AO 2=4. 由EF ∥AC 得OH DO =AE AD =14.所以OH =1,D ′H =DH =3.于是D ′H 2+OH 2=32+12=10=D ′O 2,故D ′H ⊥OH .5分 又D ′H ⊥EF ,而OH ∩EF =H ,所以D ′H ⊥平面ABCD .6分(2)如图,以H 为坐标原点,HF →的方向为x 轴正方向,建立空间直角坐标系H xyz ,则H (0,0,0),A (-3,-1,0),B (0,-5,0),C (3,-1,0),D ′(0,0,3),AB →=(3,-4,0),AC →=(6,0,0),AD ′→=(3,1,3).9分设m =(x 1,y 1,z 1)是平面ABD ′的法向量,则 ⎩⎪⎨⎪⎧ m ·AB →=0,m ·AD ′→=0,即⎩⎪⎨⎪⎧ 3x 1-4y 1=0,3x 1+y 1+3z 1=0,所以可取m =(4,3,-5).设n =(x 2,y 2,z 2)是平面ACD ′的法向量,则 ⎩⎪⎨⎪⎧n ·AC →=0,n ·AD ′→=0,即⎩⎪⎨⎪⎧6x 2=0,3x 2+y 2+3z 2=0,所以可取n =(0,-3,1).12分于是cos 〈m ,n 〉=m·n |m||n |=-1450×10=-7525.sin 〈m ,n 〉=29525.因此二面角B D ′A C 的正弦值是29525.15分[答题模板] 第一步:由平行线性质及题设,证明EF ⊥D ′H . 第二步:利用线面垂直的判定,得D ′H ⊥平面ABCD . 第三步:建立恰当坐标系,准确写出相关点、向量的坐标. 第四步:利用方程思想,计算两平面的法向量.第五步:由法向量的夹角,求二面角B D ′A C 的正弦值. 第六步:检验反思,查看关键点,规X 解题步骤.[温馨提示] 1.在第(1)问,易忽视D ′H ⊥OH 的论证及条件OH ∩EF =H ,导致推理不严谨而失分.2.正确的计算结果是得分的关键,本题易发生写错点的坐标,或求错两半平面的法向量导致严重失分.3.阅卷时根据得分点评分,有则得分,无则不给分,因此要抓住得分点.[对点训练2] (2017·某某调研)如图4①,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =1,AD =2,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到△A 1BE 的位置,如图4②.图4(1)证明:CD ⊥平面A 1OC ;(2)若平面A 1BE ⊥平面BCDE ,求平面A 1BC 与平面A 1CD 夹角的余弦值.【导学号:51062253】[解] (1)证明:在图①中,因为AB =BC =1,AD =2,E 是AD 的中点,∠BAD =π2,所以BE ⊥AC ,2分即在题图②中,BE ⊥OA 1,BE ⊥OC , 从而BE ⊥平面A 1OC .又CD ∥BE ,所以CD ⊥平面A 1OC .6分 (2)由已知,平面A 1BE ⊥平面BCDE ,又由(1)知,BE ⊥OA 1,BE ⊥OC , 所以∠A 1OC 为二面角A 1BE C 的平面角, 所以∠A 1OC =π2.8分如图,以O 为原点,建立空间直角坐标系, 因为A 1B =A 1E =BC =ED =1,BC ∥ED ,所以B ⎝⎛⎭⎪⎫22,0,0,E ⎝ ⎛⎭⎪⎫-22,0,0, A 1⎝⎛⎭⎪⎫0,0,22,C ⎝ ⎛⎭⎪⎫0,22,0, 得B C →=⎝⎛⎭⎪⎫-22,22,0,A 1C →=⎝⎛⎭⎪⎫0,22,-22, CD →=BE →=(-2,0,0).10分设平面A 1BC 的法向量n 1=(x 1,y 1,z 1),平面A 1CD 的法向量n 2=(x 2,y 2,z 2),平面A 1BC与平面A 1CD 的夹角为θ,则⎩⎪⎨⎪⎧n 1·BC →=0,n 1·A 1C →=0,得⎩⎪⎨⎪⎧-x 1+y 1=0,y 1-z 1=0,取n 1=(1,1,1);⎩⎪⎨⎪⎧n 2·CD →=0,n 2·A 1C →=0,得⎩⎪⎨⎪⎧x 2=0,y 2-z 2=0,取n 2=(0,1,1),从而cos θ=|cos 〈n 1,n 2〉|=23×2=63, 即平面A 1BC 与平面A 1CD 夹角的余弦值为63.15分 热点3 立体几何中的探索开放问题此类试题一般以解答题形式呈现,常涉及线面平行与垂直位置关系的探索或空间角的计算问题,是高考命题的热点,一般有两种考查形式:(1)根据条件作出判断,再进一步论证;(2)利用空间向量,先假设存在点的坐标,再根据条件判断该点的坐标是否存在.如图5,在四棱锥P ABCD 中,平面PAD ⊥平面ABCD ,PA ⊥PD ,PA =PD ,AB ⊥AD ,AB =1,AD =2,AC =CD = 5.图5(1)求证:PD ⊥平面PAB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱PA 上是否存在点M ,使得BM ∥平面PCD ?若存在,求AMAP的值;若不存在,说明理由.[解] (1)证明:因为平面PAD ⊥平面ABCD ,AB ⊥AD , 所以AB ⊥平面PAD .所以AB ⊥PD .2分 又因为PA ⊥PD , 所以PD ⊥平面PAB .4分(2)取AD 的中点O ,连接PO ,CO . 因为PA =PD ,所以PO ⊥AD .又因为PO ⊂平面PAD ,平面PAD ⊥平面ABCD , 所以PO ⊥平面ABCD .6分因为CO ⊂平面ABCD ,所以PO ⊥CO . 因为AC =CD ,所以CO ⊥AD . 如图,建立空间直角坐标系O xyz .由题意得,A (0,1,0),B (1,1,0),C (2,0,0),D (0,-1,0),P (0,0,1).6分 设平面PCD 的法向量为n =(x ,y ,z ),则 ⎩⎪⎨⎪⎧n ·PD →=0,n ·PC →=0,即⎩⎪⎨⎪⎧-y -z =0,2x -z =0.令z =2,则x =1,y =-2. 所以n =(1,-2,2).又PB →=(1,1,-1),所以cos 〈n ,PB →〉=n ·PB →|n ||PB →|=-33.所以直线PB 与平面PCD 所成角的正弦值为33.10分 (3)设M 是棱PA 上一点, 则存在λ∈[0,1]使得AM →=λAP →.因此点M (0,1-λ,λ),BM →=(-1,-λ,λ).12分因为BM ⊄平面PCD ,所以要使BM ∥平面PCD 当且仅当BM →·n =0,即(-1,-λ,λ)·(1,-2,2)=0.解得λ=14.所以在棱PA 上存在点M 使得BM ∥平面PCD ,此时AM AP =14.15分[规律方法] 1.对于存在判断型问题的求解,应先假设存在,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定X 围内的解”等.2.对于位置探究型问题,通常借助向量,引进参数,综合已知和结论列出等式,解出参数.[对点训练3] (2017·某某名校联考)如图6,在四棱锥P ABCD 中,PD ⊥平面ABCD ,AB ∥DC ,AB ⊥AD ,DC =6,AD =8,BC =10,∠PAD =45°,E 为PA 的中点.图6(1)求证:DE ∥平面BPC ;(2)线段AB 上是否存在一点F ,满足CF ⊥DB ?若存在,试求出二面角F PC D 的余弦值;若不存在,请说明理由. 【导学号:51062254】[解] (1)证明:取PB 的中点M ,连接EM 和CM ,过点C 作⊥AB ,垂足为点N .1分∵⊥AB ,DA ⊥AB ,∴∥DA ,又AB ∥CD ,∴四边形CDAN 为平行四边形, ∴=AD =8,DC =AN =6,在Rt △BNC 中,BN =BC 2-2=102-82=6,∴AB =12,而E ,M 分别为PA ,PB 的中点, ∴EM ∥AB 且EM =6,又DC ∥AB ,4分∴EM ∥CD 且EM =CD ,四边形CDEM 为平行四边形, ∴DE ∥CM .∵CM ⊂平面PBC ,DE ⊄平面PBC ,∴DE ∥平面BPC .6分(2)由题意可得DA ,DC ,DP 两两互相垂直,如图,以D 为原点,DA ,DC ,DP 分别为x ,y ,z 轴建立空间直角坐标系D xyz ,则A (8,0,0),B (8,12,0),C (0,6,0),P (0,0,8).8分 假设AB 上存在一点F 使CF ⊥BD , 设点F 坐标为(8,t,0),则CF →=(8,t -6,0),DB →=(8,12,0), 由CF →·DB →=0得t =23.10分又平面DPC 的一个法向量为m =(1,0,0), 设平面FPC 的法向量为n =(x ,y ,z ). 又PC →=(0,6,-8),FC →=⎝ ⎛⎭⎪⎫-8,163,0.12分由⎩⎪⎨⎪⎧n ·PC →=0,n ·FC →=0,得⎩⎪⎨⎪⎧6y -8z =0,-8x +163y =0,即⎩⎪⎨⎪⎧z =34y ,x =23y ,不妨令y =12,有n =(8,12,9). 则cos 〈n ,m 〉=n ·m |n ||m |=81×82+122+92=817. 又由图可知,该二面角为锐二面角, 故二面角F PC D 的余弦值为817.15分热点4 利用向量求空间角在高考中主要考查通过建立恰当的空间直角坐标系,利用空间向量的坐标运算证明空间中的线面的平行与垂直关系,计算空间角(特别是二面角),常与空间几何体的结构特征,空间线面位置关系的判定定理与性质定理等知识综合,以解答题形式出现,难度中等.如图7,在四棱锥A EFCB 中,△AEF 为等边三角形,平面AEF ⊥平面EFCB ,EF∥BC ,BC =4,EF =2a ,∠EBC =∠FCB =60°,O 为EF 的中点.图7(1)求证:AO ⊥BE ;(2)求二面角F AE B 的余弦值; (3)若BE ⊥平面AOC ,求a 的值.[解] (1)证明:因为△AEF 是等边三角形,O 为EF 的中点, 所以AO ⊥EF .1分又因为平面AEF ⊥平面EFCB ,AO ⊂平面AEF , 所以AO ⊥平面EFCB , 所以AO ⊥BE .4分(2)取BC 的中点G ,连接OG . 由题设知四边形EFCB 是等腰梯形, 所以OG ⊥EF .由(1)知AO ⊥平面EFCB , 又OG ⊂平面EFCB , 所以OA ⊥OG .6分如图建立空间直角坐标系O xyz ,则E (a,0,0),A (0,0,3a ),B (2,3(2-a ),0),EA →=(-a,0, 3a ),BE →=(a -2,3(a -2),0).设平面AEB 的一个法向量n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·EA →=0,n ·BE →=0,即⎩⎨⎧-ax +3az =0,a -2x +3a -2y =0.8分令z =1,则x =3,y =-1,于是n =(3,-1,1). 又平面AEF 的一个法向量为p =(0,1,0), 所以cos 〈n ,p 〉=n·p |n||p|=-55.由题知二面角F AE B 为钝角,所以它的余弦值为-55.10分 (3)因为BE ⊥平面AOC ,所以BE ⊥CO ,即BE →·OC →=0.因为BE →=(a -2,3(a -2),0),OC →=(-2,3(2-a ),0), 所以BE →·OC →=-2(a -2)-3(a -2)2.12分 由BE →·OC →=0及0<a <2,解得a =43.15分[规律方法] 1.本题主要考查数学推理论证能力,利用空间向量进行数学运算能力,同时考查化归转化的数学思想.2.求二面角F AE B 的余弦值,转化为求两个半平面所在平面的法向量.通过两个平面的法向量的夹角求得二面角的大小,但要注意结合实际图形判断所求角的大小.[对点训练4] 如图8,四棱锥P ABCD 中,PA ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,PA =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.图8(1)证明MN ∥平面PAB ;(2)求直线AN 与平面PMN 所成角的正弦值. [解] (1)证明:由已知得AM =23AD =2.取BP 的中点T ,连接AT ,TN ,由N 为PC 的中点知TN ∥BC ,TN =12BC =2.2分又AD ∥BC ,故TN 綊AM ,所以四边形AMNT 为平行四边形,于是MN ∥AT . 因为AT ⊂平面PAB ,MN ⊄平面PAB , 所以MN ∥平面PAB .6分 (2)取BC 的中点E ,连接AE . 由AB =AC 得AE ⊥BC ,从而AE ⊥AD , 且AE =AB 2-BE 2=AB 2-⎝ ⎛⎭⎪⎫BC 22= 5. 以A 为坐标原点,AE →的方向为x 轴正方向,建立如图所示的空间直角坐标系A xyz .9分由题意知P (0,0,4),M (0,2,0),C (5,2,0),N ⎝ ⎛⎭⎪⎫52,1,2, PM →=(0,2,-4),PN →=⎝⎛⎭⎪⎫52,1,-2,AN →=⎝ ⎛⎭⎪⎫52,1,2.12分 设n =(x ,y ,z )为平面PMN 的法向量,则⎩⎪⎨⎪⎧n ·PM →=0,n ·PN →=0,即⎩⎪⎨⎪⎧2y -4z =0,52x +y -2z =0,可取n =(0,2,1).于是|cos 〈n ,AN →〉|=|n ·AN →||n ||AN →|=8525.所以直线AN 与平面PMN 所成角的正弦值为8525.15分热点探究训练(四)立体几何中的高考热点问题1.如图9所示,已知直三棱柱ABC A 1B 1C 1中,△ABC 为等腰直角三角形,∠BAC =90°,且AB =AA 1,D ,E ,F 分别为B 1A ,C 1C ,BC 的中点.求证:图9(1)DE ∥平面ABC ;(2)B 1F ⊥平面AEF . 【导学号:51062255】[证明] (1)如图,建立空间直角坐标系A xyz ,令AB =AA 1=4, 则A (0,0,0),E (0,4,2),F (2,2,0),B (4,0,0),B 1(4,0,4). 取AB 中点为N ,连接,则N (2,0,0),C (0,4,0),D (2,0,2),3分 ∴DE →=(-2,4,0),NC →=(-2,4,0), ∴DE →=NC →,∴DE ∥NC .又∵NC ⊂平面ABC ,DE ⊄平面ABC . 故DE ∥平面ABC .6分(2)B 1F →=(-2,2,-4),EF →=(2,-2,-2),AF →=(2,2,0).B 1F →·EF →=(-2)×2+2×(-2)+(-4)×(-2)=0, B 1F →·AF →=(-2)×2+2×2+(-4)×0=0.12分∴B 1F →⊥EF →,B 1F →⊥AF →,即B 1F ⊥EF ,B 1F ⊥AF . 又∵AF ∩FE =F ,∴B 1F ⊥平面AEF .15分2.(2017·某某模拟)如图10,六面体ABCDHEFG 中,四边形ABCD 为菱形,AE ,BF ,CG ,DH 都垂直于平面ABCD .若DA =DH =DB =4,AE =CG =3.图10(1)求证:EG ⊥DF ;(2)求BE 与平面EFGH 所成角的正弦值.[解] (1)证明:连接AC ,由AE 綊CG 可得四边形AEGC 为平行四边形,所以EG ∥AC ,而AC ⊥BD ,AC ⊥BF ,所以EG ⊥BD ,EG ⊥BF ,3分因为BD ∩BF =B ,所以EG ⊥平面BDHF , 又DF ⊂平面BDHF ,所以EG ⊥DF .6分 (2)设AC ∩BD =O ,EG ∩HF =P ,由已知可得,平面ADHE ∥平面BCGF ,所以EH ∥FG , 同理可得EF ∥HG ,所以四边形EFGH 为平行四边形, 所以P 为EG 的中点,O 为AC 的中点, 所以OP 綊AE ,从而OP ⊥平面ABCD .9分 又OA ⊥OB ,所以OA ,OB ,OP 两两垂直. 由平面几何知识得BF =2.如图,建立空间直角坐标系O xyz ,则B (0,2,0),E (23,0,3),F (0,2,2),P (0,0,3),所以BE →=(23,-2,3),PE →=(23,0,0),PF →=(0,2,-1).12分 设平面EFGH 的法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧PE →·n =0,PF →·n =0,可得⎩⎪⎨⎪⎧x =0,2y -z =0,令y =1,则z =2,所以n =(0,1,2). 设BE 与平面EFGH 所成角为θ, 则sin θ=|BE →·n ||BE →||n |=4525.故直线BE 与平面EFGH 所成角的正弦值为4525.15分3.如图11,直角三角形ABC 中,∠A =60°,∠ABC =90°,AB =2,E 为线段BC 上一点,且BE =13BC ,沿AC 边上的中线BD 将△ABD 折起到△PBD 的位置.图11(1)求证:BD ⊥PE ;(2)当平面PBD ⊥平面BCD 时,求二面角C PB D 的余弦值. [解] 由已知得DC =PD =PB =BD =2,BC =2 3.1分 (1)证明:取BD 的中点O ,连接OE ,PO .∵OB =1,BE =233且∠OBE =30°,∴OE =33,∴OE ⊥BD .3分∵PB =PD ,O 为BD 的中点,∴PO ⊥BD , 又PO ∩OE =O ,∴BD ⊥平面POE ,∴BD ⊥PE .6分 (2)∵平面PBD ⊥平面BCD ,∴PO ⊥平面BCD ,∴OE ,OB ,OP 两两垂直,如图以O 为坐标原点,以OE ,OB ,OP 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,则B (0,1,0),P (0,0,3),C (3,-2,0), ∴BP →=(0,-1,3),BC →=(3,-3,0).9分 设平面PBC 的法向量为n =(x ,y ,z ),则⎩⎨⎧-y +3z =0,3x -3y =0,∴⎩⎪⎨⎪⎧z =33y ,x =3y ,不妨令y =3,得n =(3,3,1).12分又平面PBD 的一个法向量为m =(1,0,0),∴cos 〈m ,n 〉=31313,故二面角C PB D 的余弦值为31313.15分4.在如图12所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O ′的直径,FB 是圆台的—条母线.图12(1)已知G ,H 分别为EC ,FB 的中点,求证:GH ∥平面ABC ; (2)已知EF =FB =12AC =23,AB =BC ,求二面角 F BC A 的余弦值.【导学号:51062256】[解] (1)证明:设CF 的中点为I ,连接GI ,HI . 在△CEF 中,因为点G ,I 分别是CE ,CF 的中点, 所以GI ∥EF .2分 又EF ∥OB ,所以GI ∥OB .在△CFB 中,因为H ,I 分别是FB ,CF 的中点, 所以HI ∥BC . 又HI ∩GI =I ,所以平面GHI ∥平面ABC . 因为GH ⊂平面GHI , 所以GH ∥平面ABC .6分(2)法一:连接OO ′,则OO ′⊥平面ABC . 又AB =BC ,且AC 是圆O 的直径, 所以BO ⊥AC .以O 为坐标原点,建立如图所示的空间直角坐标系O xyz . 由题意得B (0,23,0),C (-23,0,0). 过点F 作FM ⊥OB 于点M ,所以FM =FB 2-BM 2=3,可得F (0,3,3).9分 故BC →=(-23,-23,0),BF →=(0,-3,3).设m =(x ,y ,z )是平面BCF 的法向量. 由⎩⎪⎨⎪⎧m ·BC →=0,m ·BF →=0,可得⎩⎨⎧-23x -23y =0,-3y +3z =0.12分可得平面BCF 的一个法向量m =⎝ ⎛⎭⎪⎫-1,1,33. 因为平面ABC 的一个法向量n =(0,0,1),所以cos 〈m ,n 〉=m ·n |m |·|n |=77,所以二面角F BC A 的余弦值为77.15分 法二:如图,连接OO ′,过点F 作FM ⊥OB 于点M ,则有FM ∥OO ′.又OO ′⊥平面ABC , 所以FM ⊥平面ABC , 可得FM =FB 2-BM 2=3.9分 过点M 作MN ⊥BC 于点N ,连接FN , 可得FN ⊥BC ,从而∠FNM 为二面角F BC A 的平面角. 又AB =BC ,AC 是圆O 的直径, 所以MN =BM sin 45°=62.12分 从而FN =422,可得cos ∠FNM =77. 所以二面角F BC A 的余弦值为77.15分 5.已知四棱锥P ABCD 的底面ABCD 是矩形,PA ⊥平面ABCD ,AD =2,AB =1,E ,F 分别是线段AB ,BC 的中点.图13(1)求证:PF ⊥FD ;(2)判断并说明PA 上是否存在点G ,使得EG ∥平面PFD ;(3)若PB 与平面ABCD 所成的角为45°,求二面角A PD F 的余弦值. [解] (1)证明:∵PA ⊥平面ABCD ,∠BAD =90°,AB =1,AD =2.建立如图所示的空间直角坐标系A xyz ,则A (0,0,0),B (1,0,0),F (1,1,0),D (0,2,0),不妨令P (0,0,t ),t >0.2分∵PF →=(1,1,-t ),DF →=(1,-1,0), ∴PF →·DF →=1×1+1×(-1)+(-t )×0=0, ∴PF ⊥FD .4分(2)设平面PFD 的法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·PF →=0,n ·DF →=0,得⎩⎪⎨⎪⎧x +y -tz =0,x -y =0,则⎩⎪⎨⎪⎧tz =2x ,y =x .取z =1,则n =⎝ ⎛⎭⎪⎫t 2,t2,1.设G (0,0,m )(0≤m ≤t ).8分∵E ⎝ ⎛⎭⎪⎫12,0,0, ∴EG →=⎝ ⎛⎭⎪⎫-12,0,m ,由题意EG →·n =0, ∴-t 4+m =0,∴m =14t ,∴当G 是线段PA 的靠近于A 的一个四等分点时,使得EG ∥平面PFD .10分 (3)∵PA ⊥平面ABCD ,∴∠PBA 就是PB 与平面ABCD 所成的角, 即∠PBA =45°,∴PA =AB =1,P (0,0,1),由(2)知平面PFD 的一个法向量为n =⎝ ⎛⎭⎪⎫12,12,1.12分易知平面PAD 的一个法向量为AB →=(1,0,0), ∴cos 〈AB →,n 〉=AB →·n|AB →||n |=1214+14+1=66.由图知,二面角A PD F 的平面角为锐角, ∴二面角A PD F 的余弦值为66.15分 6.如图14,四边形ABCD 为菱形,∠ABC =120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC .图14(1)证明:平面AEC ⊥平面AFC ;(2)求直线AE 与直线CF 所成角的余弦值.[解] (1)证明:如图,连接BD ,设BD ∩AC =G ,连接EG ,FG ,EF .在菱形ABCD 中,不妨设GB =1.由∠ABC =120°,可得AG =GC = 3.1分 由BE ⊥平面ABCD ,AB =BC ,可知AE =EC . 又AE ⊥EC ,所以EG =3,且EG ⊥AC . 在Rt△EBG 中,可得BE =2,故DF =22. 在Rt△FDG 中,可得FG =62. 在直角梯形BDFE 中,由BD =2,BE =2,DF =22,可得EF =322.4分 从而EG 2+FG 2=EF 2,所以EG ⊥FG . 又AC ∩FG =G ,所以EG ⊥平面AFC .因为EG ⊂平面AEC ,所以平面AEC ⊥平面AFC .6分(2)如图,以G 为坐标原点,分别以GB →,GC →的方向为x 轴,y 轴正方向,|GB →|为单位长度,建立空间直角坐标系G xyz .9分由(1)可得A (0,-3,0),E (1,0,2),F ⎝ ⎛⎭⎪⎫-1,0,22,C (0,3,0),word21 / 21 所以AE →=(1,3,2),CF →=⎝⎛⎭⎪⎫-1,-3,22.12分 故cos 〈AE →,CF →〉=AE →·CF →|AE →||CF →|=-33. 所以直线AE 与直线CF 所成角的余弦值为33.15分。
21版:高考专题突破四 高考中的立体几何问题(步步高)
高考专题突破四 高考中的立体几何问题空间角的求法命题点1 求线线角例1 (2019·安徽知名示范高中联合质检)若在三棱柱ABC -A 1B 1C 1中,∠A 1AC =∠BAC =60°,平面A 1ACC 1⊥平面ABC ,AA 1=AC =AB ,则异面直线AC 1与A 1B 所成角的余弦值为________. 答案24解析 方法一 令M 为AC 的中点,连接MB ,MA 1, 由题意知△ABC 是等边三角形,所以BM ⊥AC , 同理,A 1M ⊥AC ,因为平面A 1ACC 1⊥平面ABC ,平面A 1ACC 1∩平面ABC =AC ,BM ⊂平面ABC ,所以BM ⊥平面A 1ACC 1,因为A 1M ⊂平面A 1ACC 1,所以BM ⊥A 1M ,所以AC ,BM ,A 1M 两两垂直,以M 为原点,MA →,MB →,MA 1→的方向分别为x 轴,y 轴,z 轴的正方向建立如图所示的空间直角坐标系.设AA 1=AC =AB =2,则A (1,0,0),B (0,3,0),A 1(0,0,3),C 1(-2,0,3), 所以AC 1→=(-3,0,3),A 1B →=(0,3,-3), 所以cos 〈AC 1→,A 1B →〉=-323×6=-24,故异面直线AC 1与A 1B 所成角的余弦值为24. 方法二 如图,在平面ABC ,平面A 1B 1C 1中分别取点D ,D 1,连接BD ,CD ,B 1D 1,C 1D 1,使得四边形ABDC ,A 1B 1D 1C 1为平行四边形,连接DD 1,BD 1,则AB =C 1D 1,且AB ∥C 1D 1,所以AC 1∥BD 1,故∠A 1BD 1或其补角为异面直线AC 1与A 1B 所成的角.连接A 1D 1,过点A 1作A 1M ⊥AC 于点M ,连接BM ,设AA 1=2,由∠A 1AM =∠BAC =60°,得AM =1,BM =3,A 1M =3,因为平面A 1ACC 1⊥平面ABC ,平面A 1ACC 1∩平面ABC =AC ,A 1M ⊂平面A 1ACC 1, 所以A 1M ⊥平面ABC ,又BM ⊂平面ABC , 所以A 1M ⊥BM ,所以A 1B =6,在菱形A 1ACC 1中,可求得AC 1=23=BD 1, 同理,在菱形A 1B 1D 1C 1中,求得A 1D 1=23,所以cos ∠A 1BD 1=A 1B 2+BD 21-A 1D 212A 1B ·BD 1=6+12-1226×23=24,所以异面直线AC 1与A 1B 所成角的余弦值为24. 思维升华 (1)求异面直线所成角的思路: ①选好基底或建立空间直角坐标系. ②求出两直线的方向向量v 1,v 2. ③代入公式|cos 〈v 1,v 2〉|=|v 1·v 2||v 1||v 2|求解. (2)两异面直线所成角的关注点:两异面直线所成角的范围是θ∈⎝⎛⎦⎤0,π2,两向量的夹角α的范围是[0,π],当异面直线的方向向量的夹角为锐角或直角时,就是该异面直线的夹角;当异面直线的方向向量的夹角为钝角时,其补角才是异面直线的夹角.跟踪训练1 (2019·龙岩月考)若正四棱柱ABCD -A 1B 1C 1D 1的体积为3,AB =1,则直线AB 1与CD 1所成的角为( )A .30°B .45°C .60°D .90° 答案 C解析 ∵正四棱柱ABCD -A 1B 1C 1D 1的体积为3,AB =1,∴AA 1=3,以D 为原点,DA 所在直线为x 轴,DC 所在直线为y 轴,DD 1所在直线为z 轴,建立空间直角坐标系,则A (1,0,0),B 1(1,1,3),C (0,1,0),D 1(0,0,3), AB 1→=(0,1,3),CD 1→=(0,-1,3), 设直线AB 1与CD 1所成的角为θ, 则cos θ=|AB 1→·CD 1→||AB 1→|·|CD 1→|=24·4=12,又0°<θ≤90°,∴θ=60°,∴直线AB 1与CD 1所成的角为60°.故选C. 命题点2 求线面角例2 (2018·浙江)如图,已知多面体ABCA 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC =120°,A 1A =4,C 1C =1,AB =BC =B 1B =2.(1)证明:AB 1⊥平面A 1B 1C 1;(2)求直线AC 1与平面ABB 1所成的角的正弦值.方法一 (1)证明 由AB =2,AA 1=4,BB 1=2,AA 1⊥AB ,BB 1⊥AB ,得AB 1=A 1B 1=22,所以A 1B 21+AB 21=AA 21,故AB 1⊥A 1B 1.由BC =2,BB 1=2,CC 1=1,BB 1⊥BC ,CC 1⊥BC , 得B 1C 1= 5.由AB =BC =2,∠ABC =120°,得AC =2 3. 由CC 1⊥AC ,得AC 1=13,所以AB 21+B 1C 21=AC 21,故AB 1⊥B 1C 1.又因为A 1B 1∩B 1C 1=B 1,A 1B 1,B 1C 1⊂平面A 1B 1C 1, 所以AB 1⊥平面A 1B 1C 1.(2)解 如图,过点C 1作C 1D ⊥A 1B 1,交直线A 1B 1于点D ,连接AD .由AB 1⊥平面A 1B 1C 1, 得平面A 1B 1C 1⊥平面ABB 1.由C 1D ⊥A 1B 1,平面A 1B 1C 1∩平面ABB 1=A 1B 1,C 1D ⊂平面A 1B 1C 1,得C 1D ⊥平面ABB 1. 所以∠C 1AD 即为AC 1与平面ABB 1所成的角. 由B 1C 1=5,A 1B 1=22,A 1C 1=21, 得cos ∠C 1A 1B 1=427,sin ∠C 1A 1B 1=77, 所以C 1D =3,故sin ∠C 1AD =C 1D AC 1=3913.因此直线AC 1与平面ABB 1所成的角的正弦值是3913. 方法二 (1)证明 如图,以AC 的中点O 为原点,分别以射线OB ,OC 为x ,y 轴的正半轴,建立空间直角坐标系.由题意知各点坐标如下:A (0,-3,0),B (1,0,0),A 1(0,-3,4),B 1(1,0,2),C 1(0,3,1). 因此AB 1→=(1,3,2),A 1B 1——→=(1,3,-2),A 1C 1——→=(0,23,-3). 由AB 1→·A 1B 1——→=0,得AB 1⊥A 1B 1. 由AB 1→·A 1C 1——→=0,得AB 1⊥A 1C 1.又A 1B 1∩A 1C 1=A 1,A 1B 1,A 1C 1⊂平面A 1B 1C 1, 所以AB 1⊥平面A 1B 1C 1.(2)解 设直线AC 1与平面ABB 1所成的角为θ.由(1)可知AC 1→=(0,23,1),AB →=(1,3,0),BB 1→=(0,0,2). 设平面ABB 1的一个法向量为n =(x ,y ,z ). 由⎩⎪⎨⎪⎧n ·AB →=0,n ·BB 1→=0,得⎩⎨⎧x +3y =0,2z =0,可取n =(-3,1,0).所以sin θ=|cos 〈AC 1→,n 〉|=|AC 1→·n ||AC 1→||n |=3913.因此直线AC 1与平面ABB 1所成的角的正弦值是3913. 思维升华 (1)利用向量求直线与平面所成的角有两个思路:①分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角).②通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角. (2)若直线l 与平面α的夹角为θ,直线l 的方向向量l 与平面α的法向量n 的夹角为β,则θ=π2-β或θ=β-π2,故有sin θ=|cos β|=|l ·n ||l ||n |. 跟踪训练2 如图,已知三棱柱ABC -A 1B 1C 1中,平面A 1ACC 1⊥平面ABC ,∠ABC =90°,∠BAC =30°,A 1A =A 1C =AC ,E ,F 分别是AC ,A 1B 1的中点.(1)证明:EF ⊥BC ;(2)求直线EF 与平面A 1BC 所成角的余弦值.方法一 (1)证明 如图,连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC .又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1,平面A 1ACC 1∩平面ABC =AC ,所以A 1E ⊥平面ABC ,则A 1E ⊥BC .又因为A 1F ∥AB ,∠ABC =90°,故BC ⊥A 1F , 又A 1E ,A 1F ⊂平面A 1EF ,A 1E ∩A 1F =A 1,所以BC ⊥平面A 1EF .又EF ⊂平面A 1EF ,因此EF ⊥BC . (2)解 取BC 的中点G ,连接EG ,GF , 则EGF A 1是平行四边形.由于A 1E ⊥平面ABC ,故A 1E ⊥EG , 所以平行四边形EGF A 1为矩形.连接A 1G 交EF 于O ,由(1)得BC ⊥平面EGF A 1,则平面A 1BC ⊥平面EGF A 1, 所以EF 在平面A 1BC 上的射影在直线A 1G 上. 则∠EOG 是直线EF 与平面A 1BC 所成的角(或其补角). 不妨设AC =4,则在Rt △A 1EG 中,A 1E =23,EG = 3. 由于O 为A 1G 的中点,故EO =OG =A 1G 2=152,所以cos ∠EOG =EO 2+OG 2-EG 22EO ·OG =35.因此,直线EF 与平面A 1BC 所成角的余弦值是35.方法二 (1)证明 连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC .又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC ,所以A 1E ⊥平面ABC .如图,以E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系. 不妨设AC =4,则A 1(0,0,23),B (3,1,0),B 1(3,3,23),F ⎝⎛⎭⎫32,32,23,C (0,2,0). 因此,EF →=⎝⎛⎭⎫32,32,23,BC →=(-3,1,0).由EF →·BC →=0得EF ⊥BC .(2)解 设直线EF 与平面A 1BC 所成角为θ. 由(1)可得BC →=(-3,1,0),A 1C →=(0,2,-23). 设平面A 1BC 的法向量为n =(x ,y ,z ).由⎩⎪⎨⎪⎧BC →·n =0,A 1C →·n =0,得⎩⎨⎧-3x +y =0,y -3z =0.取n =(1,3,1),故sin θ=|cos 〈EF →,n 〉|=|EF →·n ||EF →|·|n |=45.因此,直线EF 与平面A 1BC 所成角的余弦值为35.命题点3 求二面角例3 如图,在四棱锥A -BCDE 中,平面BCDE ⊥平面ABC ,BE ⊥EC ,BC =2,AB =4,∠ABC =60°.(1)求证:BE ⊥平面ACE ;(2)若直线CE 与平面ABC 所成的角为45°,求二面角E -AB -C 的余弦值. (1)证明 在△ACB 中,由余弦定理得cos ∠ABC =AB 2+BC 2-AC 22AB ·BC =12,解得AC =23,所以AC 2+BC 2=AB 2,所以AC ⊥BC .又因为平面BCDE ⊥平面ABC ,平面BCDE ∩平面ABC =BC ,AC ⊂平面ABC , 所以AC ⊥平面BCDE .又BE ⊂平面BCDE ,所以AC ⊥BE .又BE ⊥EC ,AC ,CE ⊂平面ACE ,且AC ∩CE =C , 所以BE ⊥平面ACE .(2)解 方法一 因为直线CE 与平面ABC 所成的角为45°,平面BCDE ⊥平面ABC ,平面BCDE ∩平面ABC =BC ,所以∠BCE =45°,所以△EBC 为等腰直角三角形.取BC 的中点F ,连接EF ,过点F 作FG ⊥AB 于点G ,连接EG , 则∠EGF 为二面角E -AB -C 的平面角. 易得EF =BF =1,FG =32.在Rt △EFG 中,由勾股定理,得EG =EF 2+FG 2=72, 所以cos ∠EGF =FG EG =217,所以二面角E -AB -C 的余弦值为217. 方法二 因为直线CE 与平面ABC 所成的角为45°,平面BCDE ⊥平面ABC ,平面BCDE ∩平面ABC =BC ,所以∠BCE =45°,所以△EBC 为等腰直角三角形. 记BC 的中点为O ,连接OE ,则OE ⊥平面ABC ,以O 为坐标原点,分别以OB ,OE 所在直线为x 轴、z 轴,建立如图所示的空间直角坐标系, 则A (-1,23,0),B (1,0,0),E (0,0,1), 所以BA →=(-2,23,0),BE →=(-1,0,1). 设平面ABE 的法向量m =(x ,y ,z ), 则⎩⎪⎨⎪⎧BA →·m =0,BE →·m =0,即⎩⎨⎧-2x +23y =0,-x +z =0,令x =3,则m =(3,1,3)为平面ABE 的一个法向量. 易知平面ABC 的一个法向量为OE →=(0,0,1), 所以cos 〈m ,OE →〉=m ·OE →|m |·|OE →|=37=217,易知二面角E -AB -C 为锐角, 所以二面角E -AB -C 的余弦值为217. 思维升华 (1)求二面角最常用的方法就是分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.(2)利用向量法求二面角的大小的关键是确定平面的法向量,求法向量的方法主要有两种:①求平面的垂线的方向向量.②利用法向量与平面内两个不共线向量的数量积为零,列方程组求解.跟踪训练3 (2020·湖北宜昌一中模拟)如图,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ⊥AB ,AB ∥DC ,AD =DC =AP =2,AB =1,点E 为棱PC 的中点.(1)证明:BE ⊥PD ;(2)若F 为棱PC 上一点,满足BF ⊥AC ,求二面角F -AB -D 的余弦值. 解 依题意,以点A 为原点,以AB ,AD ,AP 为轴建立空间直角坐标系如图,可得B (1,0,0),C (2,2,0),D (0,2,0),P (0,0,2). 由E 为棱PC 的中点,得E (1,1,1).(1)证明 向量BE →=(0,1,1),PD →=(0,2,-2), 故BE →·PD →=0,所以BE →⊥PD →,所以BE ⊥PD .(2)解 BC →=(1,2,0),CP →=(-2,-2,2),AC →=(2,2,0),AB →=(1,0,0), 由点F 在棱PC 上,设CF →=λCP →,0≤λ≤1, 故BF →=BC →+CF →=BC →+λCP →=(1-2λ,2-2λ,2λ), 由BF ⊥AC ,得BF →·AC →=0,因此,2(1-2λ)+2(2-2λ)=0,λ=34,即BF →=⎝⎛⎭⎫-12,12,32. 设n 1=(x ,y ,z )为平面F AB 的法向量,则⎩⎪⎨⎪⎧ n 1·AB →=0,n 1·BF →=0,即⎩⎪⎨⎪⎧x =0,-12x +12y +32z =0,不妨令z =-1,可得n 1=(0,3,-1)为平面F AB 的一个法向量, 取平面ABD 的法向量n 2=(0,0,1), 则cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=-110=-1010, 又因为二面角F -AB -D 为锐二面角, 所以二面角F -AB -D 的余弦值为1010.立体几何中的探索性问题例4(2019·淄博模拟)已知正方形的边长为4,E,F分别为AD,BC的中点,以EF为棱将正方形ABCD折成如图所示的60°的二面角,点M在线段AB上.(1)若M为AB的中点,且直线MF与由A,D,E三点所确定平面的交点为O,试确定点O 的位置,并证明直线OD∥平面EMC;(2)是否存在点M,使得直线DE与平面EMC所成的角为60°;若存在,求此时二面角M-EC-F的余弦值,若不存在,说明理由.解(1)因为直线MF⊂平面ABFE,故点O在平面ABFE内也在平面ADE内,所以点O在平面ABFE与平面ADE的交线上(如图所示),因为AO∥BF,M为AB的中点,所以△OAM≌△FBM,所以OM=MF,AO=BF,所以点O在EA的延长线上,且AO=2,连接DF交EC于N,因为四边形CDEF为矩形,所以N是EC的中点,连接MN,因为MN为△DOF的中位线,所以MN∥OD,又因为MN⊂平面EMC,OD⊄平面EMC,所以直线OD∥平面EMC.(2)由已知可得,EF⊥AE,EF⊥DE,AE∩DE=E,所以EF⊥平面ADE,所以平面ABFE⊥平面ADE,取AE的中点H为坐标原点,以AH,DH所在直线分别为x轴,z轴,建立如图所示的空间直角坐标系,所以E (-1,0,0),D (0,0,3),C (0,4,3),F (-1,4,0), 所以ED →=(1,0,3),EC →=(1,4,3), 设M (1,t,0)(0≤t ≤4),则EM →=(2,t,0), 设平面EMC 的法向量m =(x ,y ,z ), 则⎩⎪⎨⎪⎧m ·EM →=0,m ·EC →=0⇒⎩⎨⎧2x +ty =0,x +4y +3z =0,取y =-2,则x =t ,z =8-t 3,所以m =⎝ ⎛⎭⎪⎫t ,-2,8-t 3,因为DE 与平面EMC 所成的角为60°, 所以82t 2+4+(8-t )23=32, 所以23t 2-4t +19=32,所以t 2-4t +3=0, 解得t =1或t =3,所以存在点M ,使得直线DE 与平面EMC 所成的角为60°, 取ED 的中点Q ,因为EF ⊥平面ADE ,AQ ⊂平面ADE , 所以AQ ⊥EF ,又因为AQ ⊥DE ,DE ∩EF =E ,DE ,EF ⊂平面CEF , 所以AQ ⊥平面CEF ,则QA →为平面CEF 的法向量, 因为Q ⎝⎛⎭⎫-12,0,32,A (1,0,0),所以QA →=⎝⎛⎭⎫32,0,-32,m =⎝ ⎛⎭⎪⎫t ,-2,8-t 3, 设二面角M -EC -F 的大小为θ, 所以|cos θ|=|QA →·m ||QA →|·|m |=|2t -4|3 t 2+4+(8-t )23=|t -2|t 2-4t +19,因为当t =2时,cos θ=0,平面EMC ⊥平面CDEF , 所以当t =1时,θ为钝角,所以cos θ=-14.当t =3时,θ为锐角,所以cos θ=14.思维升华 (1)对于线面关系中的存在性问题,首先假设存在,然后在该假设条件下,利用线面关系的相关定理、性质进行推理论证,寻找假设满足的条件,若满足则肯定假设,若得出矛盾的结论则否定假设.(2)平面图形的翻折问题,关键是搞清翻折前后图形中线面位置关系和度量关系的变化情况.一般地,翻折后还在同一个平面上的性质不发生变化,不在同一个平面上的性质发生变化. 跟踪训练4 (2019·天津市南开区南开中学月考)如图1,在边长为2的菱形ABCD 中,∠BAD =60°,DE ⊥AB 于点E ,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1D ⊥BE ,如图2.(1)求证:A 1E ⊥平面BCDE ; (2)求二面角E -A 1D -B 的余弦值;(3)在线段BD 上是否存在点P ,使平面A 1EP ⊥平面A 1BD ?若存在,求BPBD 的值;若不存在,说明理由.(1)证明 因为A 1D ⊥BE ,DE ⊥BE ,A 1D ∩DE =D , A 1D ,DE ⊂平面A 1DE ,所以BE ⊥平面A 1DE , 因为A 1E ⊂平面A 1DE , 所以A 1E ⊥BE ,又因为A 1E ⊥DE ,BE ∩DE =E ,BE ,DE ⊂平面BCDE , 所以A 1E ⊥平面BCDE .(2)解 以E 为原点,分别以EB ,ED ,EA 1所在直线为x ,y ,z 轴,建立空间直角坐标系,则B (1,0,0),D (0,3,0),A 1(0,0,1),所以BA 1→=(-1,0,1),BD →=(-1,3,0), 设平面A 1BD 的法向量n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·BA 1→=-x +z =0,n ·BD →=-x +3y =0得⎩⎨⎧x =z ,x =3y ,令y =1,得n =(3,1,3), 因为BE ⊥平面A 1DE ,所以平面A 1DE 的法向量EB →=(1,0,0),cos 〈n ,EB →〉=n ·EB →|n |·|EB →|=37=217,因为所求二面角为锐角,所以二面角E -A 1D -B 的余弦值为217. (3)解 假设在线段BD 上存在一点P ,使得平面A 1EP ⊥平面A 1BD , 设P (x ,y ,z ),BP →=λBD →(0≤λ≤1),则(x -1,y ,z )=λ(-1,3,0),所以P (1-λ,3λ,0), 所以EA 1→=(0,0,1),EP →=(1-λ,3λ,0), 设平面A 1EP 的法向量m =(x 1,y 1,z 1), 由⎩⎪⎨⎪⎧m ·EA 1→=z 1=0,m ·EP →=(1-λ)x 1+3λy 1=0,得⎩⎨⎧z 1=0,(1-λ)x 1=-3λy 1,令x 1=3λ,得m =(3λ,λ-1,0), 因为平面A 1EP ⊥平面A 1BD ,所以m ·n =3λ+λ-1=0,解得λ=14∈[0,1],所以在线段BD 上存在点P ,使得平面A 1EP ⊥平面A 1BD ,且BP BD =14.例 (12分)(2019·全国Ⅰ)如图,直四棱柱ABCD -A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ; (2)求二面角A -MA 1-N 的正弦值. (1)证明 连接B 1C ,ME .因为M ,E 分别为BB 1,BC 的中点,所以ME ∥B 1C ,且ME =12B 1C .[1分]又因为N 为A 1D 的中点,所以ND =12A 1D .[2分]由题设知A 1B 1∥DC 且A 1B 1=DC ,可得B 1C ∥A 1D 且B 1C =A 1D ,故ME ∥ND 且ME =ND ,因此四边形MNDE 为平行四边形,[3分] 所以MN ∥ED .[4分]又MN ⊄平面C 1DE ,ED ⊂平面C 1DE ,[5分] 所以MN ∥平面C 1DE .[6分](2)解 由已知可得DE ⊥DA ,以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系D -xyz ,[7分]则A (2,0,0),A 1(2,0,4),M (1,3,2),N (1,0,2),A 1A →=(0,0,-4),A 1M →=(-1,3,-2),A 1N →=(-1,0,-2),MN →=(0,-3,0).[8分] 设m =(x ,y ,z )为平面A 1MA 的一个法向量,则 ⎩⎪⎨⎪⎧m ·A 1M →=0,m ·A 1A →=0,所以⎩⎨⎧-x +3y -2z =0,-4z =0,可得m =(3,1,0).[9分]设n =(p ,q ,r )为平面A 1MN 的一个法向量,则 ⎩⎪⎨⎪⎧n ·MN →=0,n ·A 1N →=0,所以⎩⎨⎧-3q =0,-p -2r =0,可取n=(2,0,-1).[10分]于是cos〈m,n〉=m·n|m||n|=232×5=155,[11分]所以二面角A-MA1-N的正弦值为105.[12分]利用向量求空间角的步骤第一步:建立空间直角坐标系,确定点的坐标;第二步:求向量(直线的方向向量、平面的法向量)坐标;第三步:计算向量的夹角(或函数值),并转化为所求角.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(时间:70分钟)1.某四棱台的三视图如图所示,则该四棱台的体积是( )A .4 B.143 C.163 D .6答案 B解析 由三视图知四棱台的直观图为由棱台的体积公式得:V =13(2×2+1×1+2×2×1×1)×2=143.2.已知α,β是两个不同的平面,m ,n 是两条不同的直线,给出下列命题: ①若m ⊥α,m ⊂β,则α⊥β;②若m⊂α,n⊂α,m∥β,n∥β,则α∥β;③如果m⊂α,n⊄α,m、n是异面直线,那么n与α相交;④若α∩β=m,n∥m,且n⊄α,n⊄β,则n∥α且n∥β.其中正确的是()A.①②B.②③C.③④D.①④答案D解析根据面面垂直的判定定理知①正确;②若m∥n,则得不出α∥β,错误;③n与α还可能平行,错误;易知④正确.3.如图梯形ABCD中,AD∥BC,∠ABC=90°,AD∶BC∶AB=2∶3∶4,E、F分别是AB、CD的中点,将四边形ADFE沿直线EF进行翻折,给出四个结论:①DF⊥BC;②BD⊥FC;③平面DBF⊥平面BFC;④平面DCF⊥平面BFC.在翻折过程中,可能成立的结论是________.(填写结论序号)答案②③解析因为BC∥AD,AD与DF相交不垂直,所以BC与DF不垂直,则①不成立;设点D 在平面BCF上的射影为点P,当BP⊥CF时就有BD⊥FC,而AD∶BC∶AB=2∶3∶4,可使条件满足,所以②正确;当点P落在BF上时,DP⊂平面BDF,从而平面BDF⊥平面BCF,所以③正确;因为点D的射影不可能在FC上,所以平面DCF⊥平面BFC不成立,即④错误.故答案为②③.4.如图,在正方体ABCD-A1B1C1D1中,点E是棱BC的中点,点F是棱CD上的动点,当CFFD =______时,D1E⊥平面AB1F.答案1解析如图,连接A1B,则A1B是D1E在平面ABB1A1内的射影.∵AB1⊥A1B,∴D1E⊥AB1,又∵D1E⊥平面AB1F⇒D1E⊥AF.连接DE,则DE是D1E在底面ABCD内的射影,∴D1E⊥AF⇒DE⊥AF.∵ABCD是正方形,E是BC的中点,∴当且仅当F是CD的中点时,DE⊥AF,即当点F是CD的中点时,D1E⊥平面AB1F,∴CFFD=1时,D1E⊥平面AB1F.5.如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(1)证明:AB⊥A1C;(2)若平面ABC⊥平面AA1B1B,AB=CB=2,求直线A1C与平面BB1C1C所成角的正弦值.(1)证明如图,取AB的中点O,连接CO、A1O.∵CA =CB ,∴CO ⊥AB ,又∵AA 1=AB ,∴AA 1=2AO , 又∠A 1AO =60°,∴∠AOA 1=90°,即AB ⊥A 1O , ∵CO ∩A 1O =O ,∴AB ⊥平面A 1OC , ∵A 1C ⊂平面A 1OC ,∴AB ⊥A 1C .(2)解 以O 为原点,OA 所在直线为x 轴,OA 1所在直线为y 轴,OC 所在直线为z 轴,建立如图空间直角坐标系,则A (1,0,0),A 1(0,3,0),B (-1,0,0),C (0,0,3),B 1(-2,3,0),则BC →=(1,0,3),BB 1→=(-1,3,0),A 1C →=(0,-3,3),设n =(x ,y ,z )为平面BB 1C 1C 的法向量,则⎩⎪⎨⎪⎧n ·BC →=0n ·BB 1→=0,所以取n =(3,1,-1)为平面BB 1C 1C 的一个法向量,所以直线A 1C 与平面BB 1C 1C 所成角的正弦值sin θ=|cos 〈n ·A 1C →〉|=⎪⎪⎪⎪⎪⎪n ·A 1C →|n |·|A 1C →|=105. 6.(2015·浙江)如图,在三棱柱ABCA 1B 1C 1中,∠BAC =90°,AB =AC =2,A 1A =4,A 1在底面ABC 的射影为BC 的中点,D 是B 1C 1的中点. (1)证明:A 1D ⊥平面A 1BC ;(2)求二面角A 1BDB 1的平面角的余弦值.(1)证明 设E 为BC 的中点,由题意得A 1E ⊥平面ABC , 因为AE ⊂平面ABC ,所以A 1E ⊥AE . 因为AB =AC ,所以AE ⊥BC . 又A 1E ∩BC =E ,故AE ⊥平面A 1BC . 由D ,E 分别为B 1C 1,BC 的中点,得DE ∥B 1B 且DE =B 1B ,从而DE ∥A 1A 且DE =A 1A , 所以四边形A 1AED 为平行四边形.故A 1D ∥AE . 又因为AE ⊥平面A 1BC ,所以A 1D ⊥平面A 1BC .(2)解 方法一 如图所示,作A 1F ⊥BD 且A 1F ∩BD =F ,连接B 1F .由AE =EB =2,∠A 1EA =∠A 1EB =90°,得A 1B =A 1A =4. 由A 1D =B 1D ,A 1B =B 1B ,得△A 1DB 与△B 1DB 全等. 由A 1F ⊥BD ,得B 1F ⊥BD ,因此∠A 1FB 1为二面角A 1-BD -B 1的平面角. 由A 1D =2,A 1B =4,∠DA 1B =90°,得 BD =32,A 1F =B 1F =43.由余弦定理得cos ∠A 1FB 1=-18.方法二以CB 的中点E 为原点,分别以射线EA ,EB 为x ,y 轴的正半轴,建立空间直角坐标系Exyz ,如图所示.由题意知各点坐标如下:A 1(0,0,14),B (0,2,0),D (-2,0,14),B 1(-2,2,14). 因此A 1B →=(0,2,-14),BD →=(-2,-2,14), DB 1→=(0,2,0).设平面A 1BD 的法向量为m =(x 1,y 1,z 1), 平面B 1BD 的法向量为n =(x 2,y 2,z 2).由⎩⎪⎨⎪⎧m ·A 1B →=0,m ·BD →=0,即⎩⎨⎧2y 1-14z 1=0,-2x 1-2y 1+14z 1=0,可取m =(0,7,1).由⎩⎪⎨⎪⎧n ·DB 1→=0,n ·BD →=0,即⎩⎨⎧2y 2=0,-2x 2-2y 2+14z 2=0,可取n =(7,0,1). 于是|cos 〈m ,n 〉|=|m ·n ||m |·|n |=18. 由图可知,所求二面角的平面角是钝角,故二面角A 1BDB 1的平面角的余弦值为-18.7.如图,已知三棱柱ABC -A ′B ′C ′中,平面BCC ′B ′⊥底面ABC ,BB ′⊥AC ,底面ABC 是边长为2的等边三角形,AA ′=3,E ,F 分别在棱AA ′,CC ′上,且AE =C ′F =2.(1)求证:BB ′⊥底面ABC ;(2)在棱A ′B ′上找一点M ,使得C ′M ∥平面BEF ,并给出证明. (1)证明 如图,取BC 的中点O ,连接AO , ∵三角形ABC 是等边三角形,∴AO ⊥BC .∵平面BCC ′B ′⊥底面ABC ,AO ⊂平面ABC ,平面ACC ′B ′∩平面ABC =BC , ∴AO ⊥平面BCC ′B ′.又BB ′⊂平面BCC ′B ′, ∴AO ⊥BB ′.又BB ′⊥AC ,AO ∩AC =A , AO ⊂平面ABC ,AC ⊂平面ABC , ∴BB ′⊥底面ABC .(2)解 显然点M 不是点A ′,B ′,若棱A ′B ′上存在一点M ,使得C ′M ∥平面BEF , 过点M 作MN ∥AA ′交BE 于N ,连接FN ,MC ′,如图. 所以MN ∥C ′F ,即C ′M 和FN 共面,又平面MNFC ′∩平面BEF =FN ,所以C ′M ∥FN , 所以四边形C ′MNF 为平行四边形,所以MN =2, 所以MN 是梯形A ′B ′BE 的中位线,M 为A ′B ′的中点. 故当M 为A ′B ′的中点时,C ′M ∥平面BEF .8.如图所示,平面ABDE ⊥平面ABC ,△ABC 是等腰直角三角形,AC =BC =4,四边形ABDE 是直角梯形,BD ∥AE ,BD ⊥BA ,BD =12AE =2,O ,M 分别为CE ,AB 的中点.(1)求证:OD ∥平面ABC ;(2)求直线CD 和平面ODM 所成角的正弦值;(3)能否在EM 上找一点N ,使得ON ⊥平面ABDE ?若能,请指出点N 的位置,并加以证明;若不能,请说明理由.(1)证明 如图,取AC 中点F ,连接OF ,FB . ∵F 是AC 中点,O 为CE 中点, ∴OF ∥EA 且OF =12EA .又BD ∥AE 且BD =12AE ,∴OF ∥DB ,OF =DB ,∴四边形BDOF 是平行四边形,∴OD ∥FB . 又∵FB ⊂平面ABC ,OD ⊄平面ABC ,∴OD ∥平面ABC .(2)解 ∵平面ABDE ⊥平面ABC ,平面ABDE ∩平面ABC =AB ,DB ⊂平面ABDE ,且BD ⊥BA , ∴DB ⊥平面ABC .∵BD ∥AE ,∴EA ⊥平面ABC .如图所示,以C 为原点,分别以CA ,CB 所在直线为x ,y 轴,以过点C 且与平面ABC 垂直的直线为z 轴,建立空间直角坐标系.∵AC =BC =4,∴C (0,0,0),A (4,0,0),B (0,4,0),D (0,4,2),E (4,0,4),O (2,0,2),M (2,2,0), ∴CD →=(0,4,2),OD →=(-2,4,0),MD →=(-2,2,2). 设平面ODM 的法向量为n =(x ,y ,z ),则由n ⊥MD →,n ⊥OD →,可得⎩⎪⎨⎪⎧-2x +4y =0,-2x +2y +2z =0.令x =2,得y =1,z =1.∴n =(2,1,1). 设直线CD 和平面ODM 所成角为θ, 则sin θ=|n ·CD →||n ||CD →|=|(2,1,1)·(0,4,2)|22+12+12·02+42+22 =66·25=3010. ∴直线CD 和平面ODM 所成角的正弦值为3010. (3)解 当N 是EM 中点时,ON ⊥平面ABDE . 由(2)设N (a ,b ,c ),∴MN →=(a -2,b -2,c ),NE →=(4-a ,-b,4-c ). ∵点N 在ME 上,∴MN →=λNE →, 即(a -2,b -2,c )=λ(4-a ,-b,4-c ),∴⎩⎪⎨⎪⎧a -2=λ(4-a ),b -2=λ(-b ),c =λ(4-c ),解得⎩⎪⎨⎪⎧a =4λ+2λ+1,b =2λ+1,c =4λλ+1.∴N (4λ+2λ+1,2λ+1,4λλ+1).∵BD →=(0,0,2)是平面ABC 的一个法向量, ∴ON →⊥BD →,∴4λλ+1=2,解得λ=1.∴MN →=NE →,即N 是线段EM 的中点, ∴当N 是EM 的中点时,ON ⊥平面ABDE .。