与《圆的概念、圆的对称性》有关的中考题集锦

合集下载

2024年中考数学复习 圆的对称性压轴题六种模型全攻略(原卷+答案解析)

2024年中考数学复习 圆的对称性压轴题六种模型全攻略(原卷+答案解析)

圆的对称性压轴题六种模型全攻略【考点导航】目录【典型例题】1【考点一利用弧、弦、圆心角的关系求解】【考点二利用弧、弦、圆心角的关系求证】【考点三利用垂径定理求值】【考点四利用垂径定理求平行弦问题】【考点五垂径定理的推论】【考点六垂径定理的实际应用】【过关检测】15【典型例题】【考点一利用弧、弦、圆心角的关系求解】1(2023·陕西西安·西安市庆安初级中学校联考模拟预测)如图,AB是⊙O的直径,点C,D在⊙O上,AC=AD,∠AOD=70°,则∠BCO的度数是()A.30°B.35°C.40°D.55°【变式训练】1(2023·全国·九年级专题练习)如图,点A,B,C在⊙O上,∠BAC=40°,则∠BOC的度数为()A.20°B.80°C.50°D.100°2(2023春·安徽合肥·九年级校考阶段练习)下列说法:①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③过直线上两点和直线外一点,可以确定一个圆;④圆是轴对称图形,直径是它的对称轴.其中正确的个数是()A.0B.1C.2D.3【考点二利用弧、弦、圆心角的关系求证】1(2023·全国·九年级专题练习)如图,已知⊙O 的半径OA ,OB ,C 在AB �上,CD ⊥OA 于点D ,CE ⊥OB 于点E ,且CD =CE ,求证:AC=BC.【变式训练】1(2023春·广东惠州·九年级校考开学考试)已知:如图,在⊙O 中,∠ABD =∠CDB .求证:AB =CD .2(2023秋·河北秦皇岛·九年级统考期末)如图,A 、B 是⊙O 上的两点,C 是弧AB 中点.求证:∠A =∠B .【考点三利用垂径定理求值】1(2023秋·辽宁葫芦岛·九年级统考期末)如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,连接AD ,若AB =10,CD =6,则弦AD 的长为.【变式训练】1(2023秋·广东惠州·九年级校考阶段练习)已知⊙O的半径为13cm,弦AB的长为10cm,则圆心O 到AB的距离为cm.2(2023·浙江·九年级假期作业)“圆材埋壁”是我国古代数学名著《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问:径几何?”转化为现在的数学语言就是:如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,AE=1寸,CD=10寸.则直径AB的长为寸.【考点四利用垂径定理求平行弦问题】1(2023秋·天津和平·九年级校考期末)⊙O半径为5,弦AB∥CD,AB=6,CD=8,则AB与CD间的距离为()A.1B.7C.1或7D.3或4【变式训练】1(2023·全国·九年级专题练习)在半径为10的⊙O中,弦AB=12,弦CD=16,且AB∥CD,则AB 与CD之间的距离是.2(2023春·甘肃武威·九年级校联考阶段练习)⊙O的半径为13cm,AB、CD是⊙O的两条弦,AB⎳CD,AB=24cm,CD=10cm,求AB和CD之间的距离.【考点五垂径定理的推论】1(2023·新疆喀什·统考二模)某公路隧道的截面为圆弧形,设圆弧所在圆的圆心为O,测得其同一水平线上A、B两点之间的距离为12米,拱高CD为4米,则⊙O的半径为米.【变式训练】1(2023·浙江·九年级假期作业)如图是一位同学从照片上前切下来的海上日出时的画面,“图上”太阳与海平线交于A ,B 两点,他测得“图上”圆的半径为10厘米,AB =16厘米.则“图上”太阳从目前所处位置到完全跳出海平面,升起厘米.2(2023春·江苏无锡·九年级校联考期末)《九章算术》中卷九勾股篇记载:今有圆材埋于壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?转化为数学语言:如图,OD 为⊙O 的半径,弦AB ⊥OD ,垂足为C ,CD =1寸,AB =1尺(1尺=10寸),则此圆材的直径长是寸.【考点六垂径定理的实际应用】1(2023春·安徽亳州·九年级专题练习)如图,⊙O 的直径AB 与弦CD 交于点E ,CE =DE ,则下列说法错误的是()A.CB =BDB.OE =BEC.CA =DAD.AB ⊥CD【变式训练】1(2023春·九年级单元测试)下列说法正确的是()①平分弧的直径垂直平分弧所对的弦②平分弦的直径平分弦所对的弧③垂直于弦的直线必过圆心④垂直于弦的直径平分弦所对的弧A.②③B.①③C.②④D.①④2(2023·四川攀枝花·校联考二模)下列说法中正确的说法有( )个①对角线相等的四边形是矩形②在同圆或等圆中,同一条弦所对的圆周角相等③相等的圆心角所对的弧相等④平分弦的直径垂直于弦,并且平分弦所对的弧⑤到三角形三边距离相等的点是三角形三个内角平分线的交点A.1B.2C.3D.4【过关检测】一、单选题1(2023·上海普陀·统考二模)下列关于圆的说法中,正确的是()A.过三点可以作一个圆B.相等的圆心角所对的弧相等C.平分弦的直径垂直于弦D.圆的直径所在的直线是它的对称轴2(2023·浙江·模拟预测)已知弦AB把圆周分成1:3两部分,则弦AB所对圆心角的度数为()A.90°B.270°C.90°或270°D.45°或135°3(2023·全国·九年级专题练习)如图,线段CD是⊙O的直径,CD⊥AB于点E,若AB长为16,OE 长为6,则⊙O半径是()A.5B.6C.8D.104(2023秋·浙江台州·九年级统考期末)如图,CD是⊙O的直径,弦AB垂直CD于点E,连接AC,BC,AD,BD,则下列结论不一定成立的是()A.AE=BEB.CE=OEC.AC=BCD.AD=BD5(2023·浙江衢州·统考二模)一次综合实践的主题为:只用一张矩形纸条和刻度尺,如何测量一次性纸杯杯口的直径?小聪同学所在的学习小组想到了如下方法:如图,将纸条拉直紧贴杯口上,纸条的上下边沿分别与杯口相交于A,B,C,D四点,利用刻度尺量得该纸条宽为3.5cm,AB=3cm,CD=4cm.请你帮忙计算纸杯的直径为()A.4cmB.5cmC.6cmD.7cm6(2023春·九年级单元测试)AB 为⊙O 的直径,弦CD ⊥AB 于E ,且CD =6cm ,OE =4cm ,则AB =.7(2023春·北京海淀·九年级101中学校考阶段练习)如图,AB 是⊙O 的直径,BC=CD=DE,∠AOE =78°,则∠COB 的度数是.-8(2023春·九年级单元测试)半径为5的⊙O 内有一点P ,且OP =4,则过点P 的最短的弦长是,最长的弦长是.9(2023·河南南阳·校联考二模)已知半径为5的圆O 中有一条长度为8的弦AB ,分别以A ,B 为圆心,长度大于4为半径作圆弧交于点M ,N ,连接MN ,点C 为直线MN 与圆O 的交点,点D 为直线MN 与弦AB 的交点,则CD 的长度为.10(2023·浙江·九年级专题练习)图1是小文家的木马玩具,图2是木马玩具底座水平放置的示意图,点O 是AB所在圆的圆心,OA =OB ,点A ,点B 离地高度均为15cm ,水平距离AB =90cm .则OA =cm .当半径OA 转到竖直位置时,木马就有翻倒的风险,为安全起见,点B 离地高度应小于cm .三、解答题11(2023秋·河北邢台·九年级校联考期末)如图,AB 是⊙O 的直径,BC=CD,∠COD =50°,求∠AOD 的度数.12(2023·江苏·九年级假期作业)如图,OA=OB,AB交⊙O于点C,D,OE是半径,且OE⊥AB于点F.(1)求证:AC=BD.(2)若CD=8,EF=2,求⊙O的半径.13(2023春·全国·九年级专题练习)如图,⊙O的直径AB垂直于弦CD,垂足为E,AE=2,CD=8.(1)求⊙O的半径长;(2)连接BC,作OF⊥BC于点F,求OF的长.14(2023·河北衡水·校考模拟预测)图1是某种型号圆形车载手机支架,由圆形钢轨、滑动杆、支撑杆组成.图2是它的正面示意图,滑动杆AB的两端都在圆O上,A、B两端可沿圆形钢轨滑动,支撑杆CD的底端C固定在圆O上,另一端D是滑动杆AB的中点,(即当支架水平放置时直线AB平行于水平线,支撑杆CD垂直于水平线),通过滑动A、B可以调节CD的高度.当AB经过圆心O时,它的宽度达到最大值10cm,在支架水平放置的状态下:(1)当滑动杆AB的宽度从10厘米向上升高调整到6厘米时,求此时支撑杆CD的高度.(2)如图3,当某手机被支架锁住时,锁住高度与手机宽度恰好相等(AE=AB),求该手机的宽度.15(2023春·黑龙江哈尔滨·九年级哈尔滨市第十七中学校校考阶段练习)如图1,AB 是⊙O 的弦,点C 在⊙O 外,连接AC 、BC 分别交⊙O 于D 、E ,AC =BC(1)求证:CD =CE .(2)如图2,过圆心O 作PQ ∥AB ,交⊙O 于P 、Q 两点,交AC 、BC 于M 、N 两点,求证:PM =QN .(3)如图3,在(2)的条件下,连接EO 、AO ,∠EON +∠CAO =120°,若CD =112,NQ =32,求弦BE 的长.圆的对称性压轴题六种模型全攻略【考点导航】目录【典型例题】1【考点一利用弧、弦、圆心角的关系求解】【考点二利用弧、弦、圆心角的关系求证】【考点三利用垂径定理求值】【考点四利用垂径定理求平行弦问题】【考点五垂径定理的推论】【考点六垂径定理的实际应用】【过关检测】15【典型例题】【考点一利用弧、弦、圆心角的关系求解】1(2023·陕西西安·西安市庆安初级中学校联考模拟预测)如图,AB是⊙O的直径,点C,D在⊙O上,AC=AD,∠AOD=70°,则∠BCO的度数是()A.30°B.35°C.40°D.55°【答案】B【分析】首先由AC=AD,∠AOD=70°可得∠AOC=∠AOD=70°,再由OB=OC可得出∠OBC=∠AOC=35°.∠OCB=12【详解】解:∵在⊙O中,AC=AD,∠AOD=70°∴∠AOC=∠AOD=70°,∵OB=OC,∠AOC=35°,∴∠OBC=∠OCB=12故选:B.【点睛】此题考查了弧与圆心角的关系、等腰三角形的性质及三角形外角的性质,掌握数形结合思想的应用是解题的关键.【变式训练】1(2023·全国·九年级专题练习)如图,点A,B,C在⊙O上,∠BAC=40°,则∠BOC的度数为()A.20°B.80°C.50°D.100°【答案】B【分析】根据同弧所对的圆周角等于圆心角的一半即可得出答案.【详解】解:∵∠BAC =40°,∴∠BOC =2∠BAC =2×40°=80°,故选:B .【点睛】本题考查了同弧所对的圆周角与圆心角的关系,熟知同弧所对的圆周角等于圆心角的一半是解本题的关键.2(2023春·安徽合肥·九年级校考阶段练习)下列说法:①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③过直线上两点和直线外一点,可以确定一个圆;④圆是轴对称图形,直径是它的对称轴.其中正确的个数是()A.0 B.1 C.2 D.3【答案】B【分析】根据圆心角、弧、弦的关系定理判断①,根据垂径定理的推论判断②;根据不共线的三点共圆可判断③;根据轴对称图形的定义判断④.【详解】解:①同圆或等圆中,相等的圆心角所对的弧相等,故错误;②平分弦不是直径的直径垂直于弦,故错误;③过直线上两点和直线外一点,可以确定一个圆,正确;④圆是轴对称图形,直径所在的直线是它的对称轴,故错误,正确的只有1个,故选:B .【点睛】本题考查了圆心角、弧、弦的关系,垂径定理的推论,轴对称图形的对称轴,圆的性质,熟练掌握定义与性质是解题的关键.【考点二利用弧、弦、圆心角的关系求证】1(2023·全国·九年级专题练习)如图,已知⊙O 的半径OA ,OB ,C 在AB �上,CD ⊥OA 于点D ,CE ⊥OB 于点E ,且CD =CE ,求证:AC=BC.【答案】见解析【分析】根据角平分线的判定定理可得∠AOC =∠BOC ,然后根据弧、弦和圆心角的关系证明即可.【详解】证明:∵CD =CE ,CD ⊥OA ,CE ⊥OB ,∴∠AOC =∠BOC ,∴AC=BC.【点睛】本题主要考查了角平分线的判定定理以及弧、弦和圆心角的关系等知识,准确证明∠AOC =∠BOC 是解题关键.【变式训练】1(2023春·广东惠州·九年级校考开学考试)已知:如图,在⊙O 中,∠ABD =∠CDB .求证:AB =CD .【答案】见解析【分析】根据∠ABD =∠CDB ,可知AD =BC ,则有AD +AC =BC +AC ,由此可得AB =CD,进而可证AB =CD .【详解】证明:∵∠ABD =∠CDB ,∴AD=BC,∴AD +AC=BC +AC,∴AB=CD,∴AB =CD .【点睛】本题考查圆心角、弧、弦之间的关系,即在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,能够熟练掌握圆心角、弧、弦之间的关系是解决本题的关键.2(2023秋·河北秦皇岛·九年级统考期末)如图,A 、B 是⊙O 上的两点,C 是弧AB 中点.求证:∠A =∠B .【答案】见解析【分析】连接OC ,通过证明△AOC ≌△BOC (SAS )即可得结论.【详解】证明:如图,连接OC ,∵C 是AB的中点,∴AC=BC ,∴∠AOC =∠BOC ,在△AOC 和△BOC 中,OA =OB∠AOC =∠BOC OC =OC,∴△AOC ≌△BOC (SAS ),∴∠A =∠B .【点睛】本题考查弧、弦、圆心角的关系,全等三角形的判定和性质等知识,解题的关键是利用全等三角形的判定和性质解决问题,属于中考常考题型.【考点三利用垂径定理求值】1(2023秋·辽宁葫芦岛·九年级统考期末)如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,连接AD ,若AB =10,CD =6,则弦AD 的长为.【答案】310【分析】由题意易得DE =12CD =3,OD =5,根据勾股定理可求OE 的长,然后问题可求解.【详解】解:连接OD ,∵AB 是⊙O 的直径,AB =10,∴OD =OB =12AB =5,∵CD ⊥AB ,CD =6,∴DE =12CD =3,∠DEO =90°,∴OE=OD2-DE2=4,∴AE=OA+OE=5+4=9,∴AD=DE2+AE2=92+32=310,故答案为310.【点睛】本题主要考查垂径定理,熟练掌握垂径定理是解题的关键.【变式训练】1(2023秋·广东惠州·九年级校考阶段练习)已知⊙O的半径为13cm,弦AB的长为10cm,则圆心O 到AB的距离为cm.【答案】12【分析】过点O作OH⊥AB于点H,由垂径定理得到BH=12AB=5cm,在Rt△BOH中,利用勾股定理即可得到圆心O到AB的距离.【详解】解:如图,⊙O的半径为13cm,弦AB的长为10cm,过点O作OH⊥AB于点H,则BH=12AB=5cm,∠BHO=90°,∴OH=OB2-BH2=132-52=12cm,即圆心O到AB的距离为12cm,故答案为:12【点睛】此题考查了垂径定理、勾股定理等知识,熟练掌握垂径定理的内容是解题的关键.2(2023·浙江·九年级假期作业)“圆材埋壁”是我国古代数学名著《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问:径几何?”转化为现在的数学语言就是:如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,AE=1寸,CD=10寸.则直径AB的长为寸.【答案】26【分析】连接OC构成直角三角形,先根据垂径定理,由CD⊥AB得到点E为CD的中点,由CD=10可求出CE的长,再设出圆的半径OC为x,表示出OE,根据勾股定理建立关于x的方程,求解方程可得2x的值,即为圆的直径.【详解】解:连接OC,∵AB⊥CD,且CD=10寸,∴CE=DE=5寸,设圆O的半径OC的长为x,则OC=OA=x,∵AE=1,∴OE=x-1,在Rt△COE中,根据勾股定理得:x2-(x-1)2=52,化简得:x2-x2+2x-1=25,即2x=26,∴AB=26(寸).故答案为:26.【点睛】本题考查了垂径定理和勾股定理,解题的关键是正确作出辅助线构造直角三角形.【考点四利用垂径定理求平行弦问题】1(2023秋·天津和平·九年级校考期末)⊙O半径为5,弦AB∥CD,AB=6,CD=8,则AB与CD间的距离为()A.1B.7C.1或7D.3或4【答案】C【分析】过O点作OE⊥AB,E为垂足,交CD与F,连OA,OC,由AB∥CD,得到OF⊥CD,根据垂径定理得AE=3,CF=4,再在Rt△OAE中和在Rt△OCF中分别利用勾股定理求出OE,OF,然后讨论:当圆O点在AB、CD之间,AB与CD之间的距离=OE+OF;当圆O点不在AB、CD之间,AB与CD 之间的距离=OE-OF.【详解】解:过O点作OE⊥AB,E为垂足,交CD与F,连OA,OC,如图,∵AB∥CD,∴OF⊥CD,∴AE=BE,CF=DF,而AB=6,CD=8,∴AE=3,CF=4,在Rt△OAE中,OA=5,OE=OA2-AE2=52-32=4;在Rt△OCF中,OC=5,OF=OC2-CF2=52-42=3;当圆O点在AB、CD之间,AB与CD之间的距离=OE+OF=7;当圆O点不在AB、CD之间,AB与CD之间的距离=OE-OF=1;所以AB与CD之间的距离为7或1.故选:C.【点睛】本题考查了垂径定理,即垂直于弦的直径平分弦,并且平分弦所对的弧.也考查了勾股定理以及分类讨论的思想的运用.【变式训练】1(2023·全国·九年级专题练习)在半径为10的⊙O中,弦AB=12,弦CD=16,且AB∥CD,则AB 与CD之间的距离是.【答案】2或14【分析】由于弦AB与CD的具体位置不能确定,故应分两种情况进行讨论:①弦AB与CD在圆心同侧;②弦AB与CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可.【详解】解:①当弦AB与CD在圆心同侧时,如图①,过点O作OF⊥AB,垂足为F,交CD于点E,连接OA,OC,∵AB∥CD,∴OE⊥CD,∵AB=12,CD=16,∴CE=8,AF=6,∵OA=OC=10,∴由勾股定理得:EO=102-82=6,OF=102-62=8,∴EF=OF-OE=2;②当弦AB与CD在圆心异侧时,如图,过点O作OE⊥CD于点E,反向延长OE交AB于点F,连接OA,OC,同理EO=102-82=6,OF=102-62=8,EF=OF+OE=14,所以AB与CD之间的距离是2或14.故答案为:2或14.【点睛】本题考查了勾股定理和垂径定理,解答此题时要注意进行分类讨论,不要漏解.2(2023春·甘肃武威·九年级校联考阶段练习)⊙O的半径为13cm,AB、CD是⊙O的两条弦,AB⎳CD,AB=24cm,CD=10cm,求AB和CD之间的距离.【答案】7cm或17cm.【分析】分两种情况进行讨论:①弦AB和CD在圆心同侧;②弦AB和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可.【详解】解:①当弦AB和CD在圆心同侧时,如图1∵AB=24cm,CD=10cm,∴AE=12cm,CF=5cm,∵OA=OC=13cm,∴EO=5cm,OF=12cm,∴EF=12-5=7cm;②当弦AB和CD在圆心异侧时,如图2,∵AB=24cm,CD=10cm,∴AE=12cm,CF=5cm,∵OA=OC=13cm,∴EO=5cm,OF=12cm,∴EF=OF+OE=17cm.∴AB与CD之间的距离为7cm或17cm.【点睛】本题考查了勾股定理和垂径定理的应用,正确作出辅助线、灵活运用定理是解题的关键,注意掌握数形结合思想与分类讨论思想的应用.【考点五垂径定理的推论】1(2023·新疆喀什·统考二模)某公路隧道的截面为圆弧形,设圆弧所在圆的圆心为O,测得其同一水平线上A、B两点之间的距离为12米,拱高CD为4米,则⊙O的半径为米.【答案】6.5【分析】连接OA,设⊙O的半径为R,利用垂径定理以及勾股定理求解即可.【详解】解:连接OA,设⊙O的半径为R,则OC=R-4,由题意得,OD⊥AB,AB=6,∴AC=BC=12在Rt△AOC中,由勾股定理得R2=62+R-42,解得R=6.5,则⊙O的半径为6.5米.故答案为:6.5.【点睛】本题考查了垂径定理的应用,根据题意作出辅助线,由勾股定理得出方程是解题的关键.【变式训练】1(2023·浙江·九年级假期作业)如图是一位同学从照片上前切下来的海上日出时的画面,“图上”太阳与海平线交于A,B两点,他测得“图上”圆的半径为10厘米,AB=16厘米.则“图上”太阳从目前所处位置到完全跳出海平面,升起厘米.【答案】16【分析】连接OB,作OD⊥AB于点D,交优弧于点C,利用垂径定理求得AD=BD=8厘米.在Rt△OBD中,利用勾股定理求得OD的长,据此求解即可.【详解】解:连接OB,作OD⊥AB于点D,交优弧于点C,则AD=BD=8厘米.由题意得OB=OC=10厘米,在Rt△OBD中,OD=OB2-BD2=6厘米,∴CD=OD+OC=16厘米,则“图上”太阳从目前所处位置到完全跳出海平面,升起16厘米.故答案为:16.【点睛】本题考查了垂径定理的应用,利用垂径定理构造直角三角形是解题的关键.2(2023春·江苏无锡·九年级校联考期末)《九章算术》中卷九勾股篇记载:今有圆材埋于壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?转化为数学语言:如图,OD为⊙O的半径,弦AB⊥OD,垂足为C,CD=1寸,AB=1尺(1尺=10寸),则此圆材的直径长是寸.【答案】26【分析】连接AO,依题意,得出AC=5,设半径为r,则AO=r,在Rt△AOC中,AO2=AC2+CO2,解方程即可求解.【详解】解:如图所示,连接AO,∵CD=1,AB=10,AB⊥OD,OD为⊙O的半径,∴AC=5,设半径为r ,则AO =r ,在Rt △AOC 中,AO 2=AC 2+CO 2,∴r 2=52+r -1 2,解得:r =13,∴直径为26,故答案为:26.【点睛】本题考查了垂径定理的应用,勾股定理,掌握垂径定理是解题的关键.【考点六垂径定理的实际应用】1(2023春·安徽亳州·九年级专题练习)如图,⊙O 的直径AB 与弦CD 交于点E ,CE =DE ,则下列说法错误的是()A.CB =BDB.OE =BEC.CA =DAD.AB ⊥CD【答案】B【分析】根据垂径定理及其推论判断即可.【详解】解:∵AB 是⊙O 的直径与弦CD 交于点E ,CE =DE ,∴根据垂径定理及其推论可得,点B 为劣弧CD的中点,点A 为优弧CD的中点,AB ⊥CD ∴CB=BD,AC=AD,∴CA =DA但不能证明OE =BE ,故B 选项说法错误,符合题意;故选:B .【点睛】本题考查的是垂径定理及其推论,解决本题的关键是熟练掌握垂径定理及其推论:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧,平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.【变式训练】1(2023春·九年级单元测试)下列说法正确的是()①平分弧的直径垂直平分弧所对的弦②平分弦的直径平分弦所对的弧③垂直于弦的直线必过圆心④垂直于弦的直径平分弦所对的弧A.②③ B.①③C.②④D.①④【答案】D【详解】根据垂径定理及其推论进行判断.【解答】解:根据垂径定理,①正确;②错误.平分弦(不是直径)的直径平分弦所对的弧;③错误.垂直于弦且平分弦的直线必过圆心;④正确.故选:D.【点评】注意概念性质的语言叙述,有时是专门来混淆是非的,只是一字之差,所以学生一定要养成认真仔细的习惯.2(2023·四川攀枝花·校联考二模)下列说法中正确的说法有( )个①对角线相等的四边形是矩形②在同圆或等圆中,同一条弦所对的圆周角相等③相等的圆心角所对的弧相等④平分弦的直径垂直于弦,并且平分弦所对的弧⑤到三角形三边距离相等的点是三角形三个内角平分线的交点A.1B.2C.3D.4【答案】A【分析】根据矩形的判定方法、圆的性质、垂径定理、三角形的有关性质求解即可.【详解】解:①对角线相等的平行四边形是矩形,故错误;②在同圆或等圆中,同一条弦所对的圆周角不一定相等,∵同一条弦所对的圆周角有两种情况,故不正确;③在同圆或等圆中,相等的圆心角所对的弧相等,故错误;④平分非直径的弦的直径垂直于弦,并且平分弦所对的弧,故错误;⑤到三角形三边距离相等的点是三角形的内心,而内心是角平分线的交点,故正确;故选:A.【点睛】本题是对基础概念的考查,熟记概念是解题关键.【过关检测】一、单选题1(2023·上海普陀·统考二模)下列关于圆的说法中,正确的是()A.过三点可以作一个圆B.相等的圆心角所对的弧相等C.平分弦的直径垂直于弦D.圆的直径所在的直线是它的对称轴【答案】D【分析】利用圆的有关定义及性质分别判断后即可确定正确的选项.【详解】解:A、过不在同一直线上的三个点一定能作一个圆,故错误,不符合题意;B、同圆或等圆中,相等的圆心角所对的弧相等,故错误,不符合题意;C、平分弦(不是直径)的直径垂直于弦,故错误,不符合题意;D、圆的直径所在的直线是它的对称轴,正确,符合题意.故选:D.【点睛】本题考查了确定圆的条件及圆的有关性质,解题的关键是了解有关性质及定义,难度不大.2(2023·浙江·模拟预测)已知弦AB把圆周分成1:3两部分,则弦AB所对圆心角的度数为()A.90°B.270°C.90°或270°D.45°或135°【答案】C【分析】分优弧,劣弧两种情况,求解即可.【详解】解:∵弦AB 把圆周分成1:3两部分,∴劣弧AB 的度数为:360°×14=90°,即:劣弧所对的圆心角的度数为90°,优弧AB 的度数为:360°×34=270°,即:优弧所对的圆心角的度数为270°,∴弦AB 所对圆心角的度数为90°或270°;故选C .【点睛】本题考查弦,弧,角之间的关系.注意弦分弧为优弧和劣弧两种情况.3(2023·全国·九年级专题练习)如图,线段CD 是⊙O 的直径,CD ⊥AB 于点E ,若AB 长为16,OE 长为6,则⊙O 半径是()A.5B.6C.8D.10【答案】D【分析】连接OB ,由垂径定理可得BE =AE =8,由勾股定理计算即可获得答案.【详解】解:如图,连接OB ,∵线段CD 是⊙O 的直径,CD ⊥AB 于点E ,AB =16,∴BE =AE =12AB =12×16=8,∴在Rt △OBE 中,可有OB =OE 2+BE 2=62+82=10,∴⊙O 半径是10.故选:D .【点睛】本题主要考查了垂径定理及勾股定理等知识,理解并掌握垂径定理是解题关键.4(2023秋·浙江台州·九年级统考期末)如图,CD 是⊙O 的直径,弦AB 垂直CD 于点E ,连接AC ,BC ,AD ,BD ,则下列结论不一定成立的是()A.AE =BEB.CE =OEC.AC =BCD.AD =BD【答案】B【分析】根据垂径定理对各选项进行逐一分析即可.【详解】解:∵CD 是⊙O 的直径,弦AB 垂直CD 于点E ,∴AE =BE ,AC=BC,AD=BD,∴AC =BC ,AD =BD ,而CE =OE 不一定成立,故选:B .【点睛】本题考查的是垂径定理,垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.5(2023·浙江衢州·统考二模)一次综合实践的主题为:只用一张矩形纸条和刻度尺,如何测量一次性纸杯杯口的直径?小聪同学所在的学习小组想到了如下方法:如图,将纸条拉直紧贴杯口上,纸条的上下边沿分别与杯口相交于A ,B ,C ,D 四点,利用刻度尺量得该纸条宽为3.5cm ,AB =3cm ,CD =4cm .请你帮忙计算纸杯的直径为()A.4cmB.5cmC.6cmD.7cm【答案】B【分析】设圆心为O ,根据垂径定理可以得到CE =2,AF =1.5,再根据勾股定理构建方程解题即可.【详解】设圆心为O ,EF 为纸条宽,连接OC ,OA ,则EF ⊥CD ,EF ⊥AB ,∴CE =12CD =12×4=2,AF =12AB =12×3=1.5,设OE =x ,则OF =3.5-x ,又∵OC =OA ,∴CE 2+OE 2=AF 2+OF 2,即22+x 2=1.52+3.5-x 2,解得:x =1.5,∴半径OC =22+x 2=2.5,即直径为5cm ,故选B .【点睛】本题考查垂径定理,勾股定理,构建直角三角形利用勾股定理计算是解题的关键.二、填空题6(2023春·九年级单元测试)AB 为⊙O 的直径,弦CD ⊥AB 于E ,且CD =6cm ,OE =4cm ,则AB =.【答案】10cm【分析】由垂径定理可知CE =12CD =3cm ,在Rt △CEO 中由勾股定理可求得OC 即AB 的值.【详解】解:如图:依题意可知OA =OC =12AB ,∵AB 为⊙O 的直径,弦CD ⊥AB 于E ,∴CE =12CD =3cm ,在Rt △CEO 中,OC =OE 2+CE 2=42+32=5cm ,∴AB =2OC =10cm ,故答案为:10cm .【点睛】本题考查了垂径定理,勾股定理解直角三角形;解题的关键是熟练掌握相关知识.7(2023春·北京海淀·九年级101中学校考阶段练习)如图,AB 是⊙O 的直径,BC=CD=DE,∠AOE =78°,则∠COB 的度数是.-【答案】34°/34度【分析】先由平角的定义求出∠BOE 的度数,由BC=CD=DE,根据相等的弧所对的圆心角相等可得∠BOC =∠EOD =∠COD =13∠BOE ,即可求解.【详解】∵∠AOE =78°,∴∠BOE =180°-∠AOE =180°-78°=102°,∵BC=CD=DE,∴∠BOC =∠EOD =∠COD =13∠BOE =34°,故答案为:34°.【点睛】此题考查了弧与圆心角的关系.此题比较简单,注意掌握数形结合思想的应用.8(2023春·九年级单元测试)半径为5的⊙O 内有一点P ,且OP =4,则过点P 的最短的弦长是,最长的弦长是.【答案】 610【分析】过点P 的最短的弦是垂直于OP 的弦,过点P 的最长的弦是直径,利用勾股定理和垂径定理进行求解即可得到答案.【详解】解:如图,OP 在直径AB 上,AB ⊥CD 于点P ,过点P 的最短的弦是垂直于OP 的弦,即CD 的长∵OC =5,OP =4,由勾股定理得:PC =OC 2-OP 2=3,∴CD =2PC =6,∴过点P 的最短的弦长是6;过点P 的最长的弦是直径,即AB 的长,∵AB =5×2=10,.∴过点P 的最长的弦长是10,故答案为:6;10.【点睛】本题考查了垂径定理,勾股定理,解题关键是熟练掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.9(2023·河南南阳·校联考二模)已知半径为5的圆O 中有一条长度为8的弦AB ,分别以A ,B 为圆心,长度大于4为半径作圆弧交于点M ,N ,连接MN ,点C 为直线MN 与圆O 的交点,点D 为直线MN 与弦AB 的交点,则CD 的长度为.【答案】2或8【分析】根据作图可知,MN 为AB 的中垂线,则MN 必过圆心O ,连接OA ,利用垂径定理求出OD 的长,分点C 在劣弧AB 上和点C 在优弧AB 上两种情况进行求解即可.【详解】解:由题意,得:MN 是弦AB 的中垂线,D 为AB 的中点,如图,连接OA ,OD ,OB ,则:OA =OB =5,AD =12AB =4,∴OD ⊥AB ,∵CD ⊥AB ,∴O ,C ,D 三点共线,∴OC =5,∴OD =OA 2-AD 2=3;①当点C 在劣弧AB 上时:CD =OC -OD =2;②当点C 在优弧AB 上时:CD =OC +OD =8;故答案为:2或8【点睛】本题考查中垂线的作图,垂径定理.根据作图方法得到MN 是AB 的中垂线,是解题的关键.注意分类讨论.10(2023·浙江·九年级专题练习)图1是小文家的木马玩具,图2是木马玩具底座水平放置的示意图,点O 是AB所在圆的圆心,OA =OB ,点A ,点B 离地高度均为15cm ,水平距离AB =90cm .则OA =cm .当半径OA 转到竖直位置时,木马就有翻倒的风险,为安全起见,点B 离地高度应小于cm .。

必考圆中考试题集锦 附答案

必考圆中考试题集锦 附答案

必考圆中考试题集锦附答案集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]圆中考试题集锦 一、选择题 1.如图,BC 是⊙O 的直径,P 是CB 延长线上一点,PA 切⊙O 于点A ,如果PA =3,PB =1,那么∠APC 等于()(A ) 15(B ) 30(C ) 45(D ) 602.如果圆柱的高为20厘米,底面半径是高的41,那么这个圆柱的侧面积是()(A )100π平方厘米(B )200π平方厘米(C )500π平方厘米(D )200平方厘米3.“圆材埋壁”是我国古代着名的数学菱《九章算术》中的一个问题,“今在圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何”用现在的数学语言表述是:“如图,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为E ,CE =1寸,AB=10寸,求直径CD 的长”.依题意,CD 长为()(A )225寸(B )13寸(C )25寸(D )26寸 4.已知:如图,⊙O 半径为5,PC 切⊙O 于点C ,PO 交⊙O 于点A ,PA =4,那么PC 的长等于()(A )6(B )25(C )210(D )2145.如果圆锥的侧面积为20π平方厘米,它的母线长为5厘米,那么此圆锥的底面半径的长等于()(A )2厘米(B )22厘米(C )4厘米(D )8厘米6.相交两圆的公共弦长为16厘米,若两圆的半径长分别为10厘米和17厘米,则这两圆的圆心距为()(A )7厘米(B )16厘米(C )21厘米(D )27厘米7.如图,⊙O 为△ABC 的内切圆,∠C = 90,AO 的延长线交BC 于点D ,AC =4,DC =1,,则⊙O 的半径等于()(A )54(B )45(C )43(D )658.一居民小区有一正多边形的活动场.小区管委会决定在这个多边形的每个顶点处修建一个半径为2米的扇形花台,花台都以多边形的顶点为圆心,以多边形的内角为圆心角,花台占地面积共为12π平方米.若每个花台的造价为400元,则建造这些花台共需资金()(A )2400元(B )2800元(C )3200元(D )3600元9.如图,AB 是⊙O 直径,CD 是弦.若AB =10厘米,CD =8厘米,那么A 、B两点到直线CD 的距离之和为()(A )12厘米(B )10厘米(C )8厘米(D )6厘米10.某工件形状如图所示,圆弧BC 的度数为 60,AB =6厘米,点B 到点C的距离等于AB ,∠BAC = 30,则工件的面积等于()(A )4π(B )6π(C )8π(D )10π11.如图,PA 切⊙O 于点A ,PBC 是⊙O 的割线且过圆心,PA =4,PB =2,则⊙O 的半径等于()(A )3(B )4(C )6(D )812.已知⊙O 的半径为35厘米,⊙O '的半径为5厘米.⊙O 与⊙O '相交于点D 、E .若两圆的公共弦DE 的长是6厘米(圆心O 、O '在公共弦DE 的两侧),则两圆的圆心距O O '的长为()(A )2厘米(B )10厘米(C )2厘米或10厘米(D )4厘米13.如图,两个等圆⊙O 和⊙O '的两条切线OA 、OB ,A 、B 是切点,则∠AOB 等于()(A ) 30(B ) 45(C ) 60(D ) 9014.如图,AB 是⊙O 的直径,∠C = 30,则∠ABD =()(A ) 30(B ) 40(C ) 50(D ) 6015.弧长为6π的弧所对的圆心角为 60,则弧所在的圆的半径为()(A )6(B )62(C )12(D )1816.如图,在△ABC 中,∠BAC = 90,AB =AC =2,以AB 为直径的圆交BC 于D ,则图中阴影部分的面积为()(A )1(B )2(C )1+4π(D )2-4π 17.已知圆的内接正六边形的周长为18,那么圆的面积为() (A )18π (B )9π(C )6π(D )3π18.如图,点P 是半径为5的⊙O 内一点,且OP =3,在过点P 的所有弦中,长度为整数的弦一共有()(A )2条 (B )3条(C )4条(D )5条19.如图,正六边形ABCDEF 的边长为a ,分别以C 、F 为圆心,a 为半径画弧,则图中阴影部分的面积是()(A )261a π(B )231a π(C )232a π(D )234a π 20.过⊙O 内一点M 的最长的弦长为6厘米,最短的弦长为4厘米,则OM的长为()(A )3厘米(B )5厘米(C )2厘米(D )5厘米21.已知圆锥的底面半径是3,高是4,则这个圆锥侧面展开图的面积是()(A )12π(B )15π(C )30π(D )24π22.已知⊙O 的直径AB 与弦AC 的夹角为 30,过C 点的切线PC 与AB延长线交P .PC =5,则⊙O 的半径为()(A )335(B )635(C )10(D )5 23.如图:PA 切⊙O 于点A ,PBC 是⊙O 的一条割线,有PA =32,PB=BC ,那么BC 的长是()(A )3(B )32(C )3(D )3224.如图,⊙A 、⊙B 、⊙C 、⊙D 、⊙E 相互外离,它们的半径都是1,顺次连结五个圆心得到五边形ABCDE ,则图中五个扇形(阴影部分)的面积之和是()(A )π(B )π(C )2π(D )π25.正六边形的半径为2厘米,那么它的周长为()(A )6厘米(B )12厘米(C )24厘米(D )122厘米26.一个圆柱形油桶的底面直径为0.6米,高为1米,那么这个油桶的侧面积为()(A )π平方米(B )π平方米(C )平方米(D )π平方米27.一个形如圆锥的冰淇淋纸筒,其底面直径为6厘米,母线长为5厘米,围成这样的冰淇淋纸筒所需纸片的面积是()(A )66π平方厘米(B )30π平方厘米(C )28π平方厘米(D )15π平方厘米28.在半径为2的⊙O 中,圆心O 到弦AB 的距离为1,则弦AB 所对的圆心角的度数可以是()(A ) 60(B ) 90(C ) 120(D ) 15029.将一张长80厘米、宽40厘米的矩形铁皮卷成一个高为40厘米的圆柱形水桶的侧面,(接口损耗不计),则桶底的面积为()(A )π1600平方厘米(B )1600π平方厘米(C )π6400平方厘米(D )6400π平方厘米 30.如图,已知AB 是⊙O 的直径,弦CD ⊥AB 于点P ,CD =10厘米,AP ∶PB =1∶5,那么⊙O 的半径是()(A )6厘米(B )53厘米(C )8厘米(D )35厘米31.在Rt △ABC 中,已知AB =6,AC =8,∠A = 90.如果把Rt △ABC 绕直线AC 旋转一周得到一个圆锥,其表面积为S 1;把Rt △ABC 绕直线AB 旋转一周得到另一个圆锥,其表面积为S 2,那么S 1∶S 2等于()(A )2∶3(B )3∶4(C )4∶9(D )5∶1232.如图,⊙O 的弦AB =8厘米,弦CD 平分AB 于点E .若CE =2厘米.ED长为()(A )8厘米(B )6厘米(C )4厘米(D )2厘米33.如图,四边形ABCD 内接于⊙O ,若∠BOD = 160,则∠BCD =()(A ) 160(B ) 100(C ) 80(D ) 2034.如图,正方形ABCD 内接于⊙O ,E 为DC 的中点,直线BE 交⊙O 于点F .若⊙O 的半径为2,则BF 的长为()(A )23(B )22(C )556(D )55435.如图,AB 是⊙O 的直径,∠ACD = 15,则∠BAD 的度数为()(A ) 75(B ) 72(C ) 70(D ) 6536.已知:点P 直线l 的距离为3,以点P 为圆心,r 为半径画圆,如果圆上有且只有两点到直线l 的距离均为2,则半径r 的取值范围是()(A )r >1(B )r >2(C )2<r <3(D )1<r <537.边长为a 的正方边形的边心距为()(A )a (B )23a (C )3a (D )2a 38.如图,以圆柱的下底面为底面,上底面圆心为顶点的圆锥的母线长为4,高线长为3,则圆柱的侧面积为()(A )30π(B )76π(C )20π(D )74π39.如图,扇形的半径OA =20厘米,∠AOB = 135,用它做成一个圆锥的侧面,则此圆锥底面的半径为()(A )厘米(B )厘米(C )15厘米(D )30厘米40.如图,正六边形ABCDEF 中.阴影部分面积为123平方厘米,则此正六边形的边长为()(A )2厘米(B )4厘米(C )6厘米(D )8厘米41.已知扇形的弧长是2π厘米,半径为12厘米,则这个扇形的圆心角是() (A ) 60(B ) 45(C ) 30(D ) 2042.圆锥的高线长是厘米,底面直径为12厘米,则这个圆锥的侧面积是()(A )48π厘米(B )24π13平方厘米(C )48π13平方厘米(D )60π平方厘米43.如图,AB 是⊙O 的直径,点P 在BA 的延长线上,PC 是⊙O 的切线,C 为切点,PC =26,PA =4,则⊙O 的半径等于()(A )1(B )2(C )23(D )26 44.已知圆柱的母线长为5厘米,表面积为28π平方厘米,则这个圆柱的底面半径是()(A )5厘米(B )4厘米(C )2厘米(D )3厘米45.半径相等的圆内接正三角形、正方形、正六边形的边长之比为()(A )1∶2∶3(B )3∶2∶1(C )3∶2∶1 (D )1∶2∶346.如图,若四边形ABCD 是半径为1和⊙O 的内接正方形,则图中四个弓形(即四个阴影部分)的面积和为()(A )(2π-2)厘米(B )(2π-1)厘米(C )(π-2)厘米(D )(π-1)厘米47.如图,已知圆心角∠BOC = 100,则圆周角∠BAC 的度数是()(A ) 50(B ) 100(C ) 130(D ) 20048.半径为5厘米的圆中,有一条长为6厘米的弦,则圆心到此弦的距离为()(A )3厘米(B )4厘米 (C )5厘米(D )6厘米49.已知:Rt △ABC 中,∠C = 90,O 为斜边AB 上的一点,以O 为圆心的圆与边AC 、BC 分别相切于点E 、F ,若AC =1,BC =3,则⊙O 的半径为()(A )21(B )32 (C )43(D )54 50.已知:如图,E 是相交两圆⊙M 和⊙O 的一个交点,且ME ⊥NE ,AB为外公切线,切点分别为A 、B ,连结AE 、BE .则∠AEB 的度数为()(A )145°(B )140°(C )135°(D )130°二、填空题1.如图,AB 、AC 是⊙O 的两条切线,切点分别为B 、C ,D 是优弧上的一点,已知∠BAC = 80,那么∠BDC =__________度.2.在Rt △ABC 中,∠C = 90,A B=3,BC =1,以AC 所在直线为轴旋转一周,所得圆锥的侧面展开图的面积是__________.3.如果圆锥母线长为6厘米,那么这个圆锥的侧面积是_______平方厘米4.一种圆状包装的保鲜膜,如图所示,其规格为“20厘米×60米”,经测量这筒保鲜膜的内径1ϕ、外径2ϕ的长分别为厘米、厘米,则该种保鲜膜的厚度约为_________厘米(π取,结果保留两位有效数字).5.两个点O 为圆心的同心圆中,大圆的弦AB 与小圆相切,如果AB 的长为24,大圆的半径OA 为13,那么小圆的半径为___________.6.已知⊙O 中,两弦AB 与CD 相交于点E ,若E 为AB 的中点,CE ∶ED =1∶4,AB =4,则CD 的长等于___________.7.如图,AB 是⊙O 的直径,四边形ABCD 内接于⊙O ,,,的度数比为3∶2∶4,MN 是⊙O 的切线,C 是切点,则∠BCM 的度数为___________.8.如图,P 是⊙O 的直径AB 延长线上一点,PC 切⊙O 于点C ,PC =6,BC ∶AC =1∶2,则AB 的长为___________.9.如图,四边形ABCD 内接于⊙O ,AD ∥BC ,=,若AD =4,BC =6,则四边形ABCD 的面积为__________.10.若一个圆柱的侧面积等于两底面积的和,则它的高h 与底面半径r 的大小关系是__________.11.要用圆形铁片截出边长为4厘米的正方形铁片,则选用的圆形铁片的直径最小要___________厘米.12.圆内两条弦AB 和CD 相交于P 点,AB 长为7,AB 把CD 分成两部分的线段长分别为2和6,那么=__________.13.△ABC 是半径为2厘米的圆内接三角形,若BC =23厘米,则∠A 的度数为________.14.如图,已知OA 、OB 是⊙O 的半径,且OA =5,∠AOB =15 ,AC ⊥OB 于C ,则图中阴影部分的面积(结果保留π)S =_________.15.如图,圆内接正六边形ABCDEF 中,AC 、BF 交于点M .则ABM S △∶AFM S △=_________.16.两圆外离,圆心距为25厘米,两圆周长分别为15π厘米和10π厘米.则其内公切线和连心线所夹的锐角等于__________度.17.将两边长分别为4厘米和6厘米的矩形以其一边所在直线为轴旋转一周,所得圆柱体的表面积为_________平方厘米.18.如图,在⊙O 的内接四边形ABCD 中,∠BCD =130 ,则∠BOD 的度数是________.19.已知⊙O 的半径为4厘米,以O 为圆心的小圆与⊙O 组成的圆环的面积等于小圆的面积,则这个小圆的半径是______厘米.20.如图,⊙O1的半径O1A是⊙O2的直径,C是⊙O1上的一点,O1C交⊙O2于点B.若⊙O1的半径等于5厘米,的长等于⊙O1周长的101,则的长是_________.21.正三角形的内切圆与外接圆面积之比为_________.22.如图,AB=8,AC=6,以AC和BC为直径作半圆,两圆的公切线MN与AB的延长线交于D,则BD的长为_________.23.圆锥的母线长为5厘米,高为3厘米,在它的侧面展开图中,扇形的圆心角是_________度.24.如图,AB是⊙O的直径,弦CD⊥AB,垂足是G,F是CG的中点,延长AF交⊙O于E,CF=2,AF=3,则EF的长是_________.25.在⊙O中,直径AB=4厘米,弦CD⊥AB于E,OE=3,则弦CD的长为__________厘米.26.若圆锥底面的直径为厘米,线线长为5厘米,则它的侧面积为__________平方厘米(结果保留π).27.如图,AB为⊙O的直径,P点在AB的延长线上,PM切⊙O于M点.若OA=a,PM=3a,那么△PMB的周长的__________.28.在半径9厘米的圆中,60的圆心角所对的弧长为__________厘米.29.扇形的圆心角为120 ,弧长为6π厘米,那么这个扇形的面积为_________.30.如果圆O的直径为10厘米,弦AB的长为6厘米,那么弦AB的弦心距等于________厘米.31.某种商品的商标图案如图所求(阴影部分),已知菱形ABCD的边长为4,∠A=60,是以A为圆心,AB长为半径的弧,是以B为圆心,BC长为半径的弧,则该商标图案的面积为_________.32.已知,一个直角三角形的两条直角边的长分别为3厘米、4厘米、以它的直角边所在直角线为轴旋转一周,所得圆锥的表面积是__________.33.正六边形的边心距与半径的比值为_________.34.如图,已知扇形AOB 的半径为12,OA ⊥OB ,C 为OA 上一点,以AC 为直径的半圆1O 和以OB 为直径的半圆2O 相切,则半圆1O 的半径为__________.35.如图,PA 、PB 与⊙O 分别相切于点A 、点B ,AC 是⊙O 的直径,PC 交⊙O 于点D .已知∠APB = 60,AC =2,那么CD 的长为________.36.底面半径为2厘米,高为3厘米的圆柱的体积为_________立方厘米(结果保留π).37.边长为2厘米的正六边形的外接圆半径是________厘米,内切圆半径是________厘米(结果保留根号).38.如图,PT 是⊙O 的切线,T 为切点,PB 是⊙O 的割线交⊙O 于A 、B 两点,交弦CD 于点M ,已知:CM =10,MD =2,PA =MB =4,则PT 的长等于__________.39.如图,扇形OAB 中,∠AOB = 90,半径OA =1,C 是线段AB 的中点,CD ∥OA ,交于点D ,则CD =________.40.已知扇形的圆心角为150 ,它所对的弧长为20π厘米,则扇形的半径是________厘米,扇形的面积是__________平方厘米.41.如图,AB 是⊙O 直径,CE 切⊙O 于点C ,CD ⊥AB ,D 为垂足,AB =12厘米,∠B =30 ,则∠ECB =__________ ;CD =_________厘米.42.如图,DE 是⊙O 直径,弦AB ⊥DE ,垂足为C ,若AB =6,CE =1,则CD =________,OC =_________.43.如果把人的头顶和脚底分别看作一个点,把地球赤道作一个圆,那么身高压2米的汤姆沿着地球赤道环道环行一周,他的头顶比脚底多行________米.44.已知:⊙O 的半径为1,M 为⊙O 外的一点,MA 切⊙O 于点A ,MA =1.若AB 是⊙O 的弦,且AB =2,则MB 的长度为_________.45.如果圆的半径为4厘米,那么它的周长为__________厘米.三、解答题:1.已知:如图,△ABC 内接于⊙O ,过点B 作⊙O 的切线,交CA 的延长线于点E ,∠EBC =2∠C . ①求证:AB =AC ; ②若tan ∠ABE =21,(ⅰ)求BCAB 的值;(ⅱ)求当AC =2时,AE 的长.2.如图,PA 为⊙O 的切线,A 为切点,⊙O 的割线PBC 过点O 与⊙O 分别交于B 、C ,PA =8cm ,PB =4cm ,求⊙O 的半径.3.已知:如图,BC 是⊙O 的直径,AC 切⊙O 于点C ,AB 交⊙O 于点D ,若AD ︰DB =2︰3,AC =10,求AC ︰A B 的值.4.如图,PC 为⊙O 的切线,C 为切点,PAB 是过O 的割线,CD ⊥AB 于点D ,若CD ︰DB =21,PC =10cm ,求三角形BCD 的面积.5.如图,在两个半圆中,大圆的弦MN 与小圆相切,D 为切点,且MN ∥AB ,MN =a ,ON 、CD 分别为两圆的半径,求阴影部分的面积.6.已知,如图,以△ABC 的边AB 作直径的⊙O ,分别并AC 、BC 于点D 、E ,弦FG ∥AB ,S △CDE ︰S △ABC =1︰4,DE =5cm ,FG =8cm ,求梯形AFGB 的面积.7.如图所示:PA 为⊙O 的切线,A 为切点,PBC 是过点O 的割线,PA =10,PB =5,求:(1)⊙O 的面积(注:用含π的式子表示); (2)cos ∠BAP 的值.参考答案 一、选择题1.B2.B3.D4.D5.C6.C7.A8.C9.D10.B11.A12.B13.C14.D15.D16.A17.B18.C19.C20.B21.B22.A23.A24.B25.B26.D27.D28.C29.A30.B31.A32.A33.B34.C35.A36.D37.B38.B39.B40.B41.C42.D43.A44.C45.B46.C47.A48.B49.C50.C 二、填空题1.502.2π3.18π4.4105.7-⨯5.56.57.30°8.99.2510.h =r 11.4212.3或413.60°或120°14.8252425-π15.1:216.3017.80π或120π18.100°19.22 20.π21.1:422.123.28824.425.226.15π27.()a 23+28.3π29.27π平方厘米30.431.34 32.24π平方厘米或36π平方厘米33.2334.435.77436.12π37.2,338.13239.213-40.24,240π41.60°,3342.9,443.4π44.1或545.8π三、解答题:1.(1)∵ BE 切⊙O 于点B ,∴ ∠ABE =∠C . ∵ ∠EBC =2∠C ,即 ∠ABE +∠ABC =2∠C , ∴ ∠C +∠ABC =2∠C , ∴ ∠ABC =∠C ,∴ AB =AC . (2)①连结AO ,交BC 于点F , ∵ AB =AC ,∴=,∴ AO ⊥BC 且BF =FC .在Rt △ABF 中,BFAF=tan ∠ABF , 又 tan ∠ABF =tan C =tan ∠ABE =21,∴ BF AF =21,∴ AF =21BF .∴ AB =22BF AF +=2221BF BF +⎪⎭⎫⎝⎛=25BF .∴452==BF AB BC AB . ②在△EBA 与△ECB 中,∵ ∠E =∠E ,∠EBA =∠ECB ,∴ △EBA ∽△ECB .∴ ⎪⎩⎪⎨⎧⋅==ECEA BE BC ABEB EA 2,解之,得516EA 2=EA ·(EA +AC ),又EA ≠0,∴511EA =AC ,EA =115×2=1110. 2.设⊙的半径为r ,由切割线定理,得PA 2=PB ·PC , ∴ 82=4(4+2r ),解得r =6(cm ). 即⊙O 的半径为6cm .3.由已知AD ︰DB =2︰3,可设AD =2k ,DB =3k (k >0). ∵ AC 切⊙O 于点C ,线段ADB 为⊙O 的割线, ∴ AC 2=AD ·AB ,∵ AB =AD +DB =2k +3k =5k , ∴ 102=2k ×5k ,∴ k 2=10,∵ k >0,∴ k =10. ∴ AB =5k =510.∵ AC 切⊙O 于C ,BC 为⊙O 的直径, ∴ AC ⊥BC . 在Rt △ACB 中,sin B =51010510==AB AC . 4.解法一:连结AC .∵ AB 是⊙O 的直径,点C 在⊙O 上, ∴ ∠ACB =90°. CD ⊥AB 于点D ,∴ ∠ADC =∠BDC =90°,∠2=90°-∠BAC =∠B .∵ tan B =21, ∴ tan ∠2=21.∴ CBACDB CD CD AD ===21. 设AD =x (x >0),CD =2x ,DB =4x ,AB =5x . ∵ PC 切⊙O 于点C ,点B 在⊙O 上,∴ ∠1=∠B . ∵ ∠P =∠P ,∴ △PAC ∽△PCB , ∴21==CB AC PC PA . ∵ PC =10,∴ PA =5,∵ PC 切⊙O 于点C ,PAB 是⊙O 的割线, ∵ PC 2=PA ·PB , ∴ 102=5(5+5x ).解得x =3.∴ AD =3,CD =6,DB =12. ∴ S △BCD =21CD ·DB =21×6×12=36. 即三角形BCD 的面积36cm 2.解法二:同解法一,由△PAC ∽△PCB ,得21==CB AC PC PA . ∵ PA =10,∴ PB =20.由切割线定理,得PC 2=PA ·PB .∴ PA =201022-PB PC =5,∴ AB =PB -PA =15, ∵ AD +DB =x +4x =15,解得x =3, ∴ CD =2x =6,DB =4x =12. ∴ S △BCD =21CD ·DB =21×6×12=36. 即三角形BCD 的面积36cm 2.5.解:如图取MN 的中点E ,连结OE ,∴ OE ⊥MN ,EN =21MN =21a . 在四边形EOCD 中,∵ CO ⊥DE ,OE ⊥DE ,DE ∥CO , ∴ 四边形EOCD 为矩形. ∴ OE =CD ,在Rt △NOE 中,NO 2-OE 2=EN 2=22⎪⎭⎫⎝⎛a .∴ S 阴影=21π(NO 2-OE 2)=21π·22⎪⎭⎫⎝⎛a =28πa .6.解:∵ ∠CDE =∠CBA ,∠DCE =∠BCA ,∴ △CDE ∽△ABC .∴ 2⎪⎭⎫⎝⎛=∆∆AB DE S S ABC CDE∴ AB DE =ABC CDE S S ∆∆=41=21,即215=AB ,解得 AB =10(cm ), 作OM ⊥FG ,垂足为M ,则FM =21FG =21×8=4(cm ),连结OF , ∵ OA =21AB =21×10=5(cm ).∴ OF =OA =5(cm ). 在Rt △OMF 中,由勾股定理,得OM =22FM OF -=2245-=3(cm ). ∴ 梯形AFGB 的面积=2FG AB +·OM =2810⨯×3=27(cm 2). 7.⎭⎬⎫的割线⊙是的切线⊙是O PBC O PA )1(PA 2=PB ·PCPC =20半径为圆面积为π4225(或π)(平方单位).⎭⎬⎫∠=∠∠=∠P P BAP C )2(△ACP ∽△BAP PB PA AB AC =12=AB AC . 解法一:设AB =x ,AC =2x ,BC 为⊙O 的直径∠CAB =90°,则 BC =5x . ∵ ∠BAP =∠C ,∴ cos ∠BAP =cos ∠C =55252==xx BC AC 解法二:设AB =x ,在Rt △ABC 中,AC 2+AB 2=BC 2, 即 x 2+(2x )2=152,解之得 x =35,∴ AC =65,∵ ∠BAP =∠C ,∴ ∴ cos ∠BAP =cos ∠C =5521556==BC AC 6.解:∵ ∠CDE =∠CBA ,∠DCE =∠BCA ,∴ △CDE ∽△ABC .∴ 2⎪⎭⎫⎝⎛=∆∆AB DE S S ABC CDE∴ AB DE =ABC CDE S S ∆∆=41=21,即215=AB ,解得 AB =10(cm ), 作OM ⊥FG ,垂足为M ,则FM =21FG =21×8=4(cm ),连结OF , ∵ OA =21AB =21×10=5(cm ). ∴ OF =OA =5(cm ). 在Rt △OMF 中,由勾股定理,得OM =22FM OF -=2245-=3(cm ). ∴ 梯形AFGB 的面积=2FG AB +·OM =2810⨯×3=27(cm 2). 7.⎭⎬⎫的割线⊙是的切线⊙是O PBC O PA )1(PA 2=PB ·PCPC =20半径为圆面积为π4225(或π)(平方单位).⎭⎬⎫∠=∠∠=∠P P BAP C )2(△ACP ∽△BAP PB PA AB AC =12=AB AC . 解法一:设AB =x ,AC =2x ,BC 为⊙O 的直径∠CAB =90°,则 BC =5x . ∵ ∠BAP =∠C ,∴ cos ∠BAP =cos ∠C =55252==x x BC AC 解法二:设AB =x ,在Rt △ABC 中,AC 2+AB 2=BC 2, 即 x 2+(2x )2=152,解之得 x =35,∴ AC =65,∵ ∠BAP =∠C ,∴ ∴ cos ∠BAP =cos ∠C =5521556==BC AC 6.解:∵ ∠CDE =∠CBA ,∠DCE =∠BCA ,∴ △CDE ∽△ABC .∴ 2⎪⎭⎫⎝⎛=∆∆AB DE S S ABC CDE∴ AB DE =ABC CDE S S ∆∆=41=21,即215=AB ,解得 AB =10(cm ), 作OM ⊥FG ,垂足为M ,则FM =21FG =21×8=4(cm ),连结OF , ∵ OA =21AB =21×10=5(cm ). ∴ OF =OA =5(cm ). 在Rt △OMF 中,由勾股定理,得OM =22FM OF -=2245-=3(cm ).∴ 梯形AFGB 的面积=2FG AB +·OM =2810⨯×3=27(cm 2).7.⎭⎬⎫的割线⊙是的切线⊙是O PBC O PA )1(PA 2=PB ·PCPC =20半径为圆面积为π4225(或π)(平方单位). ⎭⎬⎫∠=∠∠=∠P P BAP C )2(△ACP ∽△BAPPB PA AB AC =12=AB AC . 解法一:设AB =x ,AC =2x ,BC 为⊙O 的直径∠CAB =90°,则 BC =5x . ∵ ∠BAP =∠C ,∴ cos ∠BAP =cos ∠C =55252==x x BC AC 解法二:设AB =x ,在Rt △ABC 中,AC 2+AB 2=BC 2, 即 x 2+(2x )2=152,解之得 x =35,∴ AC =65,∵ ∠BAP =∠C ,∴ ∴ cos ∠BAP =cos ∠C =5521556==BC AC圆是中考中的必考内容,大约占整个分数的百分之30左右,希望大家能够加深练习,提到自己的做题能力。

中考数学《圆的有关概念及性质》专题复习

中考数学《圆的有关概念及性质》专题复习

中考数学《圆的有关概念及性质》专题复习【基础知识回顾】一、圆的定义:1、⑴形成性定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转形成的图形叫做圆,固定的端点叫线段OA叫做⑵描述性定义:圆是到定点的距离等于的点的集合【名师提醒:1、在一个圆中,圆心决定圆的半径决定圆的2、直径是圆中的弦,弦不一定是直径】3、弦与弧:弦:连接圆上任意两点的叫做弦弧:圆上任意两点间的叫做弧,弧可分为、、三类4、圆的对称性:⑴轴对称性:圆是轴对称图形,有条对称轴的直线都是它的对称轴.⑵中心对称性:圆是中心对称图形,对称中心是【名师提醒:圆不仅是中心对称图形,而且具有旋转性,即绕圆心旋转任意角度都被与原来的图形重合】5、垂径定理及推论:(1)垂径定理:垂直于弦的直径,并且平分弦所对的几何语言:∵CD过圆心, 且___________∴ , , .(2)推论:平分弦()的直径,并且平分弦所对的几何语言:∵CD过圆心, 且___________∴ , , .【名师提醒:1、垂径定理及其推论实质是指一条直线满足:⑴过圆心⑵垂直于弦⑶平分弦⑷平分弦所对的优弧⑸平分弦所对的劣弧五个条件中的两个,那么可推出其中三个,注意解题过程中的灵活运用2、圆中常作的辅助线是过圆心作弦的线3、垂径定理常用作计算,在半径r弦a弦心d和弦h中已知两个可求另外两个】三、圆心角、弧、弦之间的关系:1、圆心角定义:顶点在的角叫做圆心角2、定理:在中,两个圆心角、两条弧、两条弦中有一组量它们所对应的其余各组量也分别几何语言:∵在圆O中,_______∴ , .∵在圆O中,________∴ , .∵在圆O中,________∴ , .【名师提醒:注意:该定理的前提条件是“在同圆或等圆中”】四、圆周角定理及其推论:1、圆周角定义:顶点在并且两边都和圆的角叫圆周角2、圆周角定理:在同圆或等圆中,圆弧或等弧所对的圆周角都等于这条弧所对的圆心角的推论1、在同圆或等圆中,如果两个圆周角那么它们所对的弧推论2、半圆(或直弦)所对的圆周角是 900的圆周角所对的弦是【名师提醒:1、在圆中,一条弦所对的圆心角只有一个,而它所对的圆周角有个,它们的关系是2、作直弦所对的圆周角是圆中常作的辅助线】3、圆内接四边形定义:如果一个多边形的所有顶点都在圆上,这个多边形叫做这个圆叫做性质:圆内接四边形的对角【名师提醒:圆内接平行四边形是圆内接梯形是】考点一:垂径定理例1、一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是A. 4B. 5C. 6D. 8例2、绍兴市著名的桥乡,如图,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,则水面宽AB 为_________考点二:圆心角定理例3、如图,DC 是⊙O直径,弦AB⊥CD于F,连接BC,DB,则下列结论错误的是()A.B.AF=BF C.OF=CF D.∠DBC=90°例4、如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为____________对应训练2.如图,AB是半圆的直径,点D是弧AC的中点,∠ABC=50°,则∠DAB等于().A.55° B.60°C.65° D.70°考点三:圆周角定理例5、如图,将直角三角板60°角的顶点放在圆心O上,斜边和一直角边分别与⊙O相交于A、B两点,P 是优弧AB上任意一点(与A、B不重合),则∠APB= .例6、如图,已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD等于_____________对应训练6、△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80° B.160° C.100° D.80°或100°7、如图,AB是⊙O的直径,弦CD⊥AB于点N,点M在⊙O上,∠1=∠C(1)求证:CB∥MD;(2)若BC=4,sinM= ,求⊙O的直径.考点四:圆内接四边形的性质例3 如图,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,3),M是第三象限内上一点,∠BMO=120°,则⊙C的半径长为()A.6 B.5 C.3 D.3对应训练【聚焦中考】1.如图,AB是的直径,C是上一点,AB=10,AC=6,,垂足为D,则BD的长为(A)2 (B)3 (C)4 (D)62.如图,⊙O的直径AB=12,CD是⊙O的弦,CD⊥AB,垂足为P,且BP:AP=1:5,则CD的长为(). A. B. C. D.3.如图,在⊙O中,∠CBO=45°,∠CAO=15°,则∠AOB的度数是(A)75°. (B)60°. (C)45°. (D)30°.4.如图,已知圆心角∠BOC=78°,则圆周角∠BAC的度数是()A.156°B.78°C.39°D.12°5.如图,点A,B,C,在⊙O上,∠ABO=32°,∠ACO=38°,则∠BOC等于()A.60° B.70° C.120° D.140°6.如图,AB是⊙O的直径,,AB=5,BD=4,则sin∠ECB=______7.如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为()A. 135°B. 122.5°C. 115.5°D.112.5°8.如图,在△ABC中,以BC为直径的圆分别交边AC、AB于D、E两点,连接BD、DE.若BD平分∠ABC,则下列结论不一定成立的是A.BD⊥ACB.AC2=2AB·AEC.△ADE是等腰三角形D. BC=2AD.9.如图(b),已知,⊙O的直径CD为4,点A 在⊙O 上,∠ACD=30°,B 为弧AD 的中点,P为直径CD上一动点,则BP+AP的最小值为__________.10.如图,CD为⊙O的直径,CD⊥AB,垂足为点F,AO⊥BC,垂足为点E,AO=1.(1)求∠C的大小;(2)求阴影部分的面积.11.AB是圆O的直径,BC是圆O的切线,连接AC交圆O于点D,E为弧AD上一点,连接AE、BE,BE交AC于点F,且AF²=EF.EB(1)求证:CB=CF (2)若点E到弦AD的距离为1,cos角C=3/5,求圆O的半径12.某施工工地安放了一个圆柱形饮水桶的木制支架(如图1),若不计木条的厚度,其俯视图如图2所示,已知AD垂直平分BC,AD=BC=48cm,则圆柱形饮水桶的底面半径的最大值是 cm.【备考真题过关】一、选择题1.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为__________2.如图,以M(-5,0)为圆心、4为半径的圆与x轴交于A、B两点,P是⊙M上异于A、B的一动点,直线PA、PB分别交y轴于C、D,以CD为直径的⊙N与x轴交于E、F,则EF的长()A.等于4 B.等于4 C.等于6 D.随P点位置的变化而变化3.如图,在半径为5的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为()A.3 B.4 C.3 D.44.如图,AB为⊙O的直径,弦CD⊥AB于E,已知CD=12,BE=2,则⊙O的直径为()A.8 B.10 C.16 D.205.如图,CD是⊙O的直径,AB是弦(不是直径),AB⊥CD于点E,则下列结论正确的是()A.AE>BE B.C.∠D=∠AEC D.△ADE∽△CBE6.△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80° B.160° C.100° D.80°或100°7.如图,在△ABC中,AB为⊙O的直径,∠B=60°,∠BOD=100°,则∠C的度数为()A.50° B.60° C.70° D.80°二、填空题8.如图,AB为⊙O的直径,CD为⊙O的一条弦,CD⊥AB,垂足为E,已知CD=6,AE=1,则⊙0的半径为.9.如图,AB是⊙O的弦,OC⊥AB于C.若AB=2,0C=1,则半径OB的长为.10.如图,在⊙O中,直径AB丄弦CD于点M,AM=18,BM=8,则CD的长为.111314.如图,已知点A(0,2)、B(2,2)、C(0,4),过点C向右作平行于x轴的射线,点P是射线上的动点,连接AP,以AP为边在其左侧作等边△APQ,连接PB、BA.若四边形ABPQ为梯形,则:(1)当AB为梯形的底时,点P的横坐标是;15.如图,△ABC内接于⊙O,AB、CD为⊙O直径,DE⊥AB于点E,sinA=,则∠D的度数是.三、解答题16.如图所示为圆柱形大型储油罐固定在U型槽上的横截面图.已知图中ABCD为等腰梯形(AB∥DC),支点A与B相距8m,罐底最低点到地面CD距离为1m.设油罐横截面圆心为O,半径为5m,∠D=56°,求:U 型槽的横截面(阴影部分)的面积.(参考数据:sin53°≈0.8,tan56°≈1.5,π≈3,结果保留整数)17.如图,⊙O的半径为17cm,弦AB∥CD,AB=30cm,CD=16cm,圆心O位于AB,CD的上方,求AB和CD的距离.18.在⊙O中,直径AB⊥CD于点E,连接CO并延长交AD于点F,且CF⊥AD.求∠D的度数.19.如图,A,P,B,C是半径为8的⊙O上的四点,且满足∠BAC=∠APC=60°,(1)求证:△ABC是等边三角形;(2)求圆心O到BC的距离OD.20.如图△ABC中,BC=3,以BC为直径的⊙O交AC于点D,若D是AC中点,∠ABC=120°.(1)求∠ACB的大小;(2)求点A到直线BC的距离.21.如图,已知AB是⊙O的弦,OB=4,∠OBC=30°,点C是弦AB上任意一点(不与点A、B重合),连接CO并延长CO交⊙O于点D,连接AD、DB.(1)当∠ADC=18°时,求∠DOB的度数;(2)若AC=2,求证:△ACD∽△OCB.。

初三数学圆的对称性练习题

初三数学圆的对称性练习题

初三数学圆的对称性练习题圆是我们数学学习中重要的概念之一,它具有许多特殊的性质和定理。

其中之一就是对称性。

掌握了圆的对称性,我们可以更好地理解和解决与圆相关的问题。

本文将介绍一些初三数学中关于圆的对称性练习题,希望能帮助同学们更好地掌握这一知识点。

一、平面内的对称性1. 在平面直角坐标系中,有一个圆的圆心坐标为(2, 3),半径为5。

请问圆上哪些点关于x轴对称?哪些点关于y轴对称?解析:首先,我们知道与x轴对称的点的坐标形式为(x, -y),与y 轴对称的点的坐标形式为(-x, y)。

对于给定的圆心坐标和半径,我们可以通过根据对称性来确定关于x轴和y轴对称的点。

关于x轴对称的点:圆心坐标为(2, 3),半径为5。

所以关于x轴对称的点具有相同的y坐标,而x坐标的正负号互为相反数。

因此,关于x轴对称的点有(2, -3)和(2, 8)。

关于y轴对称的点:圆心坐标为(2, 3),半径为5。

所以关于y轴对称的点具有相同的x坐标,而y坐标的正负号互为相反数。

因此,关于y轴对称的点有(-2, 3)和(7, 3)。

综上所述,关于x轴对称的点有(2, -3)和(2, 8),关于y轴对称的点有(-2, 3)和(7, 3)。

2. 在平面上,有一个圆的圆心坐标为(4, 5),半径为7。

如果一个点关于直线x=y对称,那么它一定在圆的什么位置?解析:如果一个点关于直线x=y对称,那么它的坐标形式应该是(x, x)。

根据对称性,该点也是关于该圆的圆心对称的。

因此,该点必然在圆的边上。

二、空间中的对称性1. 有一个圆的圆心坐标为(2, 3, 4),半径为6。

请问圆上哪些点关于xy平面对称?哪些点关于xz平面对称?哪些点关于yz平面对称?解析:首先,我们知道与xy平面对称的点的坐标形式为(x, y, -z),与xz平面对称的点的坐标形式为(x, -y, z),与yz平面对称的点的坐标形式为(-x, y, z)。

根据对称性,我们可以确定关于不同平面对称的点。

初中数学圆知识梳理 题型归纳附答案-(详细知识点归纳 中考真题)

初中数学圆知识梳理 题型归纳附答案-(详细知识点归纳 中考真题)

圆【知识点梳理】一、圆的概念集合形式的概念: 1、 圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线); 3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

二、点与圆的位置关系1、点在圆内 ⇒ d r < ⇒ 点C 在圆内;2、点在圆上 ⇒ d r = ⇒ 点B 在圆上;3、点在圆外 ⇒ d r > ⇒ 点A 在圆外; 三、直线与圆的位置关系1、直线与圆相离 ⇒ d r > ⇒ 无交点;2、直线与圆相切 ⇒ d r = ⇒ 有一个交点;3、直线与圆相交 ⇒ d r < ⇒ 有两个交点;四、圆与圆的位置关系外离(图1)⇒ 无交点 ⇒ d R r >+; 外切(图2)⇒ 有一个交点 ⇒ d R r =+; 相交(图3)⇒ 有两个交点 ⇒ R r d R r -<<+; 内切(图4)⇒ 有一个交点 ⇒ d R r =-; 内含(图5)⇒ 无交点 ⇒ d R r <-;A五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。

九年级圆知识点及习题(含答案)

九年级圆知识点及习题(含答案)

圆圆的有关概念与性质1.圆上各点到圆心的距离都等于半径。

2.圆是轴对称图形,任何一条直径所在的直线都是它的对称轴;圆又是中心对称图形,圆心是它的对称中心。

3.垂直于弦的直径平分这条弦,并且平分弦所对的弧;平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。

4.在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两条弦心距,两个圆周角中有一组量相等,那么它们所对应的其余各组量都分别相等。

5.同弧或等弧所对的圆周角相等,都等于它所对的圆心角的一半。

6.直径所对的圆周角是 90°,90°所对的弦是直径。

7.三角形的三个顶点确定 1 个圆,这个圆叫做三角形的外接圆,三角形的外接圆的圆心叫外心,是三角形三边垂直平分线的交点。

8.与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点的交点,叫做三角形的内心。

9.圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.10.圆内接四边形对角互补,它的一个外角等于它相邻内角的对角与圆有关的位置关系1.点与圆的位置关系共有三种:①点在圆外,②点在圆上,③点在圆内;对应的点到圆心的距离d和半径r之间的数量关系分别为:①d > r,②d = r,③d < r.2.直线与圆的位置关系共有三种:①相交,②相切,③相离;对应的圆心到直线的距离d和圆的半径r之间的数量关系分别为:①d < r,②d = r,③d > r.3.圆与圆的位置关系共有五种:①内含,②相内切,③相交,④相外切,⑤外离;两圆的圆心距d和两圆的半径R、r(R≥r)之间的数量关系分别为:①d < R-r,②d = R-r,③ R-r < d < R+ r,④d = R+r,⑤d > R+r.4.圆的切线垂直于过切点的半径;经过直径的一端,并且垂直于这条直径的直线是圆的切线.5.从圆外一点可以向圆引 2 条切线, 切线长 相等,这点与圆心之间的连线 平分 这两条切线的夹角。

圆中考常考题型

圆中考常考题型

圆中考常考题型摘要:1.圆的概述2.圆的性质3.常考题型及解题方法4.总结与建议正文:一、圆的概述圆是几何学中的一种基本图形,它是由一条闭合的曲线组成,其上所有点到某一固定点的距离相等。

这个固定点被称为圆心,距离被称为半径。

圆可以根据其半径和圆心的位置进行分类,如以圆心为中心,半径为R 的圆可以表示为(x-a)+(y-b)=R。

二、圆的性质圆具有许多重要的性质,如:1.圆的周长:C=2πR,其中R 为半径,π为圆周率。

2.圆的面积:S=πR。

3.圆的切线:与圆相切且与圆只有一个公共点的直线称为圆的切线。

4.圆的割线:过圆上一点且与圆相交的直线称为圆的割线。

5.圆的同心圆:与已知圆有共同圆心的圆称为同心圆。

6.圆的公切线:与两个圆都相切的直线称为公切线。

三、常考题型及解题方法在中考数学中,圆的题型丰富多样,主要包括以下几种:1.求圆的周长、面积及半径解法:根据圆的性质,直接套用公式进行计算。

2.求圆的切线、割线长度解法:利用切线、割线与半径的关系进行计算。

3.判断两圆的位置关系解法:根据两圆的半径大小和圆心距进行判断,如外离、外切、相交、内切、内含等。

4.求圆与直线的交点解法:利用解析几何中的公式,如点到直线距离公式、直线与圆的位置关系等。

5.圆与圆的位置关系及应用解法:根据两圆的位置关系,利用公式进行计算,如求公共弦、公共切线等。

四、总结与建议对于圆的题型,我们要熟练掌握圆的性质和公式,并能灵活运用到实际问题中。

在做题过程中,要注重分析题目,找到问题的关键点,运用相应的知识点进行解答。

中考数学复习《圆》经典题型及测试题(含答案)

中考数学复习《圆》经典题型及测试题(含答案)

中考数学复习《圆》经典题型及测试题(含答案)【专题分析】圆在中考中的常见考点有圆的性质及定理,圆周角定理及其推论,圆心角、圆周角、弧、弦之间的“等推”关系;切线的判定,切线的性质,切线长定理,弧长及扇形面积的计算,求阴影部分的面积等.对圆的考查在中考中以客观题为主,考查题型多样,关于圆的基本性质一般以选择题或填空题的形式进行考查,切线的判定等综合性强的问题一般以解答题的形式进行考查;圆在中考中的比重约为10%~15%.【解题方法】解决圆的有关问题常用的数学思想就是转化思想,方程思想和数形结合思想;常用的数学方法有分类讨论法,设参数法等.【知识结构】【典例精选】如图,⊙O的半径是3,点P是弦AB延长线上的一点,连结OP,若OP =4,∠APO=30°,则弦AB的长为( )A.2 5 B. 5C.213 D. 13【思路点拨】先过点O作OC⊥AP,连结OB,根据OP=4,∠APO=30°,求出OC的值,在Rt△BCO中,根据勾股定理求出BC的值,进而得出AB的值.【解析】如图,过点O作OC⊥AP于点C,连结OB,∵OP=4,∠APO=30°,∴OC=4×sin 30°=2.∵OB=3,∴BC=OB2-OC2=32-22=5,∴AB=2 5.故选A.答案:A规律方法:利用垂径定理进行证明或计算,通常是在半径、圆心距和弦的一半所组成的直角三角形中,利用勾股定理构建方程求出未知线段的长.如图,从一块直径是8 m的圆形铁皮上剪出一个圆心角为90°的扇形,将剪下的扇形围成一个圆锥,圆锥的高是( )A.4 2 m B.5 m C. 30 m D.215 m【思路点拨】首先连结AO,求出AB,然后求出扇形的弧长BC,进而求出扇形围成的圆锥的底面半径,最后应用勾股定理求出圆锥的高即可.【解析】如图,连结AO,∵AB=AC,点O是BC的中点,∴AO⊥BC.又∵∠BAC=90°,∴∠ABO=∠ACO=45°,∴AB=2OB=2×(8÷2)=42(m).∴l BC=90π×42180=22π(m).∴将剪下的扇形围成的圆锥形的半径是22π÷2π=2(m).∴圆锥的高是422-22=30(m).故选C.答案:C规律方法:解决圆锥的相关问题,可以利用圆的周长等于扇形的弧长建立方程,利用方程解决问题.如图,在边长为6的正方形ABCD中,E是AB的中点,以E为圆心、ED 为半径作半圆,交A,B所在的直线于M,N两点,分别以MD,ND为直径作半圆,则阴影部分的面积为( )A.9 5 B.18 5 C.36 5 D.72 5【思路点拨】根据图形可知阴影部分的面积=两个小的半圆的面积+△DMN 的面积-大半圆的面积,MN为半圆的直径,从而可知∠MDN=90°,在Rt△MDN 中,由勾股定理可知MN2=MD2+DN2,从而可得到两个小半圆的面积=大半圆的面积,故此阴影部分的面积=△DMN的面积,在Rt△AED中,ED=AD2+AE2=62+32=35,所以MN=65,然后利用三角形的面积公式求解即可.【解析】根据图形可知阴影部分的面积=两个小的半圆的面积+△DMN的面积-大半圆的面积.∵MN为大半圆的直径,∴∠MDN=90°.在Rt△MDN中,MN2=MD2+DN2,∴两个小半圆的面积和=大半圆的面积.∴阴影部分的面积=△DMN 的面积.在Rt△AED中,ED=AD2+AE2=62+32=35,∴阴影部分的面积=△DMN的面积=12MN·AD=12×65×6=18 5.故选B.答案:B规律方法:求阴影部分的面积,一般是将所求阴影部分进行分割组合,转化为规则图形的和或差.如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O交AB于点D,连结CD.(1)求证:∠A=∠BCD.(2)若M为线段BC上一点,试问当点M在什么位置时,直线DM与⊙O相切?并说明理由.【思路点拨】(1)根据圆周角定理可得∠ADC=90°,根据直角三角形的性质可得∠A+∠ACD=90°,再由∠DCB+∠ACD=90°,可得∠A=∠BCD;(2)当点M是BC的中点时,直线DM与⊙O相切.连结DO,证明∠ODM =90°,进而证得直线DM与⊙O相切.【自主解答】(1)证明:∵AC为直径,∴∠ADC=90°,∴∠A+∠ACD=90°.∵∠ACB=90°,∴∠BCD+∠ACD=90°,∴∠A=∠BCD.(2)解:当点M是BC的中点时,直线DM与⊙O相切.理由如下:如图,连结DO,∵DO=CO,∴∠1=∠2.∵∠BDC=90°,点M是BC的中点,∴DM=CM,∴∠4=∠3.∵∠2+∠4=90°,∴∠1+∠3=90°,∴直线DM与⊙O相切.规律方法:在判定一条直线是圆的切线时,如果这条直线和圆有公共点,常作出经过公共点的半径,证明这条直线与经过公共点的半径垂直,概括为“连半径,证垂直,得切线”.【能力评估检测】一、选择题1.如图,AB是⊙O的直径,点C在⊙O上,AE是⊙O的切线,A为切点,连结BC并延长交AE于点D.若∠AOC=80°,则∠ADB的度数为( B )A.40° B.50° C.60° D.20°2.如图,⊙O是△ABC的外接圆,∠AOB=60°,AB=AC=2,则弦BC的长为( C )A. 3 B.3 C.2 3 D.43.如图,在⊙O中,弦AC∥半径OB,∠BOC=50°,则∠OAB的度数为( A )A.25° B.50° C.60° D.30°4.如图,直线CD与以线段AB为直径的圆相切于点D并交BA的延长线于点C,且AB=2,AD=1,P点在切线CD上移动.当∠APB的度数最大时,则∠ABP 的度数为( B )A.15° B.30° C.60° D.90°5.如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD变形为以A为圆心、AB长为半径的扇形(忽略铁丝的粗细),则所得扇形DAB的面积为( D )A.6 B.7 C.8 D.96.如图,已知AB为⊙O的直径,AD切⊙O于点A,EC=CB.则下列结论中不一定正确的是( D )A.BA⊥DA B.OC∥AEC.∠COE=2∠CAE D.OD⊥AC7.如图,菱形ABCD的对角线BD,AC分别为2,23,以B为圆心的弧与AD,DC相切,则阴影部分的面积是( D )A.23-33π B.43-33πC.43-π D.23-π8.如图,正六边形ABCDEF是边长为2 cm的螺母,点P是FA延长线上的点,在A,P之间拉一条长为12 cm的无伸缩性细线,一端固定在点A,握住另一端点P拉直细线,把它全部紧紧缠绕在螺母上(缠绕时螺母不动),则点P运动的路径长为( B )A .13π cmB .14π cmC .15π cmD .16π cm9.如图,在矩形ABCD 中,AB =4,AD =5,AD ,AB ,BC 分别与⊙O 相切于E ,F ,G 三点,过点D 作⊙O 的切线交BC 于点M ,切点为N ,则DM 的长为( )A. 133B. 92C. 4313 D .2 5 解:如图,连接OE ,OF ,ON ,OG .∵AD ,AB ,BC 分别与⊙O 相切于E ,F ,G 三点,∴∠AEO =∠AFO =∠OFB =∠BGO =90°.∴四边形AFOE ,FBGO 都是正方形.∴AF =BF =AE =BG =2.∴DE =3.∵DM 是⊙O 的切线,∴DN =DE =3,MN =MG . ∴CM =5-2-MN =3-MN .在Rt △DMC 中,DM 2=CD 2+CM 2,∴(3+MN )2=(3-MN )2+42.∴NM =43.∴DM =3+43=133.故选A. 答案:A二、填空题10.在平面直角坐标系中,O 为坐标原点,则直线y =x +2与以O 点为圆心,1为半径的圆的位置关系为 相切.11.如图,圆内接四边形ABCD 两组对边的延长线分别相交于点E ,F ,且∠A =55°,∠E =30°,则∠F =40° .12.如图,正三角形ABC 的边长为2,点A ,B 在半径为2的圆上,点C 在圆内,将正三角形ABC 绕点A 逆时针旋转,当点C 第一次落在圆上时,点C 运动的路线长为 .【解析】设点C 落在圆上的点为C ′,连结OA ,OB ,OC ′,则OA =OB = 2.又∵AB =2,∴OA 2+OB 2=AB 2,∴∠AOB =90°,∴∠OAB =45°,同理∠OAC ′=45°,∴∠BAC ′=90°.∵△ABC 为等边三角形,∴∠CAB =60°,∴∠CAC ′=30°,∴点C 运动的路线长为30π×2180=π3.故答案为π3. 答案:π3 13.如图,在△ABC 中,∠BAC =90°,AB =5 cm ,AC =2 cm ,将△ABC 绕顶点C按顺时针方向旋转45°至△A 1B 1C 的位置,则线段AB 扫过区域(图中的阴影部分)的面积为 cm 2.【解析】在Rt△ABC 中,BC =AC 2+AB 2=29(cm),S 扇形BCB 1=45π×292360=29π8(cm 2),S △CB 1A 1=12×5×2=5(cm 2),S 扇形CAA 1=45π×22360=π2(cm 2),故S 阴影部分=S 扇形BCB 1+S △CB 1A 1-S △ABC -S 扇形CAA 1=29π8+5-5-π2=25π8(cm 2). 答案:25π8三、解答题14.如图,AB 是⊙O 的直径,BC 切⊙O于点B ,OC 平行于弦AD ,过点D 作DE ⊥AB 于点E ,连结AC ,与DE 交于点P .求证:(1)PE =PD ;(2)AC ·PD =AP ·BC .证明:(1)∵AB 是⊙O 的直径,BC 是切线,∴AB ⊥BC ,∵DE ⊥AB ,∴DE ∥BC ,∴△AEP ∽△ABC ,∴EP BC =AE AB .又∵AD ∥OC ,∴∠DAE =∠COB ,∴△AED ∽△OBC ,∴ED BC =AE OB =AE 12AB =2AE AB .∴ED =2EP ,∴PE =PD . (2)∵AB 是⊙O 的直径,BC 是切线,∴AB ⊥BC ,∵DE ⊥AB ,∴DE ∥BC ,∴△AEP ∽△ABC ,∴AP AC =PE BC .∵PE =PD ,∴AP AC =PD BC,∴AC ·PD =AP ·BC . 15.如图,在△OAB 中,OA =OB =10,∠AOB =80°,以点O 为圆心,6为半径的优弧MN 分别交OA ,OB 于点M ,N .(1)点P 在右半弧上(∠BOP 是锐角),将OP 绕点O 逆时针旋转80°得OP ′,求证:AP =BP ′;(2)点T 在左半弧上,若AT 与弧相切,求点T 到OA 的距离;(3)设点Q 在优弧MN 上,当△AOQ 的面积最大时,直接写出∠BOQ 的度数.(1)证明:如图,∵∠AOP=∠AOB+∠BOP=80°+∠BOP,∠BOP′=∠POP′+∠BOP=80°+∠BOP,∴∠AOP=∠BOP′.又∵OA=OB,OP=OP′,∴△AOP≌△BOP′.∴AP=BP′.(2)解:如图,连结OT,过点T作TH⊥OA于点H.∵AT与MN相切,∴∠ATO=90°.∴AT=OA2-OT2=102-62=8.∵12OA·TH=12AT·OT,即12×10×TH=12×8×6,∴TH=245,即点T到OA的距离为245.(3)10°,170°.16.如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC边于点D.以AB上一点O为圆心作⊙O,使⊙O经过点A和点D.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若AC=3,∠B=30°.①求⊙O的半径;②设⊙O与AB边的另一个交点为E,求线段BD,BE与劣弧DE所围成的阴影部分的面积(结果保留根号和π).解:(1)直线BC与⊙O相切.理由如下:如图,连结OD,∵OA=OD,∴∠OAD=∠ODA,∵∠BAC的角平分线AD交BC边于点D,∴∠CAD=∠OAD,∴∠CAD=∠ODA,∴OD∥AC,∴∠ODB=∠C=90°,即OD⊥BC.∴直线BC与⊙O相切.(2)①设OA=OD=r,∵在Rt△BDO中,∠B=30°,∴OB=2r,∴在Rt△ACB中,∠B=30°,∴AB=2AC=6,∴3r=6,解得r=2.②∵在Rt△ODB中,∠B=30°,∴∠BOD=60°,∴S扇形ODE=60π×22360=23π,∴阴影部分面积为S△BOD-S扇形ODE=23-23π.11。

18道圆相关的压轴题,2021中考冲刺必看!

18道圆相关的压轴题,2021中考冲刺必看!

18道圆相关的压轴题,2021中考冲刺必看!圆的基本性质一. 性质圆既是轴对称图形,又是中心对称图形,任何一条直径所在的直线都是它的对称轴,圆心是它的对称中心二. 垂径定理及其推论 1. 定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧2. 推论:•平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧•弦的垂直平分线经过圆心,并且平分弦所对的两条弧•平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧•在同圆或者等圆中,圆的两条平行弦所夹的弧相等3. 垂径定理与推论的延伸:三. 弦、弧、圆心角的关系 1. 定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等2. 推论:•在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,它们所对应的其余各组量都分别相等•弧的度数等于它所对圆心角的度数四. 圆周角定理及其推论 1. 定理:一条弧所对的圆周角等于它所对的圆心角的一半2. 推论•同弧或等弧所对的圆周角相等•半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径五. 圆与多边形 1. 圆内接多边形2. 正多边形和圆六. 三角形的外接圆与圆有关的位置关系一. 点与圆的位置关系(设圆的半径为r,平面内任一点到圆心的距离为d)点在圆外d>r,如右图中点A点在圆上d=r,如右图中点B点在圆内d<r,如右图中点C二. 直线与圆的位置关系(设圆的半径为r,圆心到直线的距离为d)三. 切线的性质数量关系:圆心到切线的距离等于半径位置关系:切线垂直于过切点的半径四. 切线的判定直线与圆有公共点,连半径,证垂直直线与圆无公共点,作垂线,证半径五. 切线长定理从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角如图,过⊙O外一点P可引两条切线PA、PB,则PA=PB,PO平分∠APB六. 三角形的内切圆18道与圆相关的压轴题来源:本相关素材来源于网络,如有侵权,请联系后台删除。

中考数学专题复习(有答案)与圆有关的概念与性质

中考数学专题复习(有答案)与圆有关的概念与性质

第六章圆第1节与圆有关的概念与性质A组1.长为4 cm的弦所对的圆周角为90°,则此圆的半径为 2 cm.2.(2020绍兴)如图,点A,B,C,D,E均在⊙O上,∠BAC=15°,∠CED=30°,则∠BOD的度数为(D)A.45°B.60°C.75°D.90°第2题图第3题图3.如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC于点D,则OD的长为 4 .4.(2020攀枝花)如图,已知锐角三角形ABC内接于半径为2的⊙O,OD⊥BC于点D,∠BAC=60°,则OD= 1 .第4题图第5题图5.如图,△ABC内接于⊙O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若⊙O 的半径为2,则CD的长为 2 .6.如图,A,B,C是⊙O上的三点,且四边形OABC是菱形.若点D是圆上异于A,B,C的另一点,则∠ADC的度数是60°或120°.B组7.已知△ABC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED,若ED=EC.(1)求证:AB=AC;(2)若AB=4,BC=23,求CD的长.(1)证明:∵ED =EC ,∴∠EDC =∠C .∵∠EDC +∠ADE =180°,∠B +∠ADE =180°,∴∠EDC =∠B ,∴∠B =∠C ,∴AB =AC .(2)解:如图,连接AE .∵AB 为直径,∴AE ⊥BC .由(1)知AB =AC ,∴BE =CE =12BC = 3. ∵∠CDE =∠B ,∠C =∠C ,∴△CDE ∽△CBA ,∴CD CB =CE CA,∴CE ·CB =CD ·CA . ∵AC =AB =4,∴3·23=4CD ,∴CD =32. C 组8.如图,D 是△ABC 的BC 边上一点,连接AD ,作△ABD 的外接圆,将△ADC 沿直线AD 折叠,点C 的对应点E 落在⊙O 上.(1)求证:AE =AB ;(2)若∠CAB =90°,cos ∠ADB =13,BE =2,求BC 的长.(1)证明:由折叠的性质可知,△ADE ≌△ADC ,∴∠AED =∠ACD ,AE =AC .∵∠ABD =∠AED ,∴∠ABD =∠ACD ,∴AB =AC ,∴AE =AB .(2)解:如图,过点A 作AH ⊥BE 于点H .∵AB =AE ,BE =2,∴BH =EH =1.∵∠ABE =∠AEB =∠ADB ,cos ∠ADB =13,∴cos ∠ABE =cos ∠ADB =13, ∴BH AB =13.∴AC =AB =3. ∵∠CAB =90°,AC =AB , ∴BC =3 2.。

中考数学复习《圆的对称性-弧、弦、圆心角》专题练习含真题分类

中考数学复习《圆的对称性-弧、弦、圆心角》专题练习含真题分类

北京市海淀区普通中学届初三中考数学复习 圆的对称性-弧、弦、圆心角 专题复习练习题1.如图,在⊙O 中,AC ︵=BD ︵,∠AOB =40°,则∠COD 的度数为( )A .20°B .40°C .50°D .60°2.如图,AB 是⊙O 的直径,BC 、CD 、DA 是⊙O 的弦,且BC =CD =DA ,则∠BCD 的度数为( )A .100°B .110°C .120°D .135° 3. 如图,⊙O 中,如果∠AOB =2∠COD,那么( )A .AB =DC B .AB <DC C .AB <2DCD .AB >2DC4. 如图,在三个等圆上各有一条劣弧:弧AB 、弧CD 、弧EF ,如果AB ︵+CD ︵=EF ︵,那么AB +CD 与EF 的大小关系是( )A .AB +CD =EF B .AB +CD <EFC .AB +CD >EF D .大小关系不确定 5. 下列语句中,正确的有( ) ①相等的圆心角所对的弧相等; ②弦相等所对的弧相等; ③长度相等的两条弧是等弧;④经过圆心的每一条直线都是圆的对称轴. A .1个 B .2个 C .3个 D .4个6. 如图,在⊙O 中,已知AC ︵=BD ︵,则AB 与CD 的关系是( )A .AB =CD B .AB <CDC .AB >CD D .不能确定7. 在同圆或等圆中,下列说法错误的是( ) A .相等弦所对的弧相等 B .相等弦所对的圆心角相等 C .相等圆心角所对的弧相等 D .相等圆心角所对的弦相等8. 如图,在⊙O 中,若点C 是AB ︵的中点,∠A =50°,则∠BOC =( )A .40°B .45°C .50°D .60°9. 如图,AB 是⊙O 的直径,BC ︵=CD ︵=DE ︵,∠COD=34°,则∠AEO 的度数是___________.10. 如图,在⊙O 中, AB ︵=AC ︵,AB =2,则AC =_____.11. 如图,A 、B 、C 、D 是⊙O 上的四点.如果∠AOB =∠COD ,那么AB =_____,AB ︵=____. 如果AB ︵=CD ︵,那么∠AOB =________,_____=CD. 如果AB =CD ,那么AB ︵=______,_______=∠COD.12. 如图,AB 、CD 是⊙O 的直径,AB∥DE,AC =3,则AE = ___.13. 如图,弦AC 、BD 相交于点E ,且AB ︵=BC ︵=CD ︵,∠BEC =110°,则∠ACD 的度数是________.14. 如图所示,OA 、OB 、OC 是⊙O 的三条半径,弧AC 和弧BC 相等,M 、N 分别是OA 、OB 的中点.求证:MC =N C .15.如图,M 为⊙O 上一点,且MA ︵=MB ︵,MD ⊥OA 于点D ,ME ⊥OB 于点E ,求证:MD =ME.16.如图,以平行四边形ABCD 的顶点A 为圆心,AB 为半径作圆,交AD 、BC 于点E 、F ,延长BA 交⊙A 于点G ,求证:GE ︵=EF ︵.17. 如图,∠AOB =90°,C 、D 是AB ︵的三等分点,AB 分别交OC 、OD 于点E 、F ,求证:AE =CD.18. 如图,点A 是半圆上一个三等分点,点B 是AN ︵的中点,点P 是直径 MN 上一动点,若⊙O 的直径为2,求AP +BP 的最小值.答案:1---8 BCCCA AAA 9. 51° 10. 211. CD CD∠COD AB CD ∠AOB 12. 3 13. 75°14. 证明:∵弧AC 和弧BC 相等,∴∠AOC =∠BOC.又∵OA =OB ,M 、N 分别是OA 、OB 的中点,∴OM =ON. 在△MOC 和△NOC 中,⎩⎪⎨⎪⎧OM =ON ,∠AOC =∠BOC ,OC =OC ,∴△MOC ≌△NOC ,∴MC =NC. 15. 证明:连结MO.∵MA ︵=MB ︵, ∴∠AOM =∠BOM , ∴MO 为∠AOB 的平分线. ∵MD ⊥OA 于点D ,ME ⊥OB 于点E , ∴MD =ME. 16. 证明:连结AF.∵四边形ABCD 为平行四边形,∴AD ∥BC. ∴∠GAE =∠B ,∠EAF =∠AFB. ∵AF =AB ,∴∠B =∠AFB , ∴∠GAE =∠EAF ,∴GE ︵=EF ︵. 17. 证明:连结AC.∵C 、D 是AB ︵的三等分点,∴AC ︵=CD ︵,AC =CD ,∠AOC =30°. ∵AO =CO ,∴∠OCA =75°.∵∠AOB =90°,AO =BO ,∴∠OAB =45°,∴∠AEC =75°,∴∠AEC =∠ACE ,∴AE =AC ,∴AE =CD.18. 解:作点B 关于MN 的对称点B ′,连结AB ′交MN 于点P ,连结BP ,此时AP +BP =AB ′最小,连结OB ′,如图所示.∵点B 和点B ′关于MN 对称,∴PB =PB ′.∵点A 是半圆上一个三等分点,点B 是AN ︵的中点,∴∠AON =180°÷3=60°,∠B ′ON =∠AON ÷2=30°.∴∠AOB ′=∠AON +∠B ′ON =90°.∵OA =OB ′=1,∴AB ′= 2.∴AP +BP 的最小值为 2.。

九年级圆知识点及习题(含答案)

九年级圆知识点及习题(含答案)

数学九年级圆复习测圆圆的有关概念与性质1.圆上各点到圆心的距离都等于半径。

2.圆是轴对称图形,任何一条直径所在的直线都是它的对称轴;圆又是中心对称图形,圆心是它的对称中心。

3.垂直于弦的直径平分这条弦,并且平分弦所对的弧;平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。

4.在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两条弦心距,两个圆周角中有一组量相等,那么它们所对应的其余各组量都分别相等。

5.同弧或等弧所对的圆周角相等,都等于它所对的圆心角的一半。

6.直径所对的圆周角是 90°,90°所对的弦是直径。

7.三角形的三个顶点确定 1 个圆,这个圆叫做三角形的外接圆,三角形的外接圆的圆心叫外心,是三角形三边垂直平分线的交点。

8.与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点的交点,叫做三角形的内心。

9.圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.10.圆内接四边形对角互补,它的一个外角等于它相邻内角的对角与圆有关的位置关系1.点与圆的位置关系共有三种:①点在圆外,②点在圆上,③点在圆内;对应的点到圆心的距离d和半径r之间的数量关系分别为:①d > r,②d = r,③d < r.2.直线与圆的位置关系共有三种:①相交,②相切,③相离;对应的圆心到直线的距离d和圆的半径r之间的数量关系分别为:①d < r,②d = r,③d > r.3.圆与圆的位置关系共有五种:①内含,②相内切,③相交,④相外切,⑤外离;两圆的圆心距d和两圆的半径R、r(R≥r)之间的数量关系分别为:①d < R-r,②d = R-r,③ R-r < d < R+ r,④d = R+r,⑤d > R+r.4.圆的切线垂直于过切点的半径;经过直径的一端,并且垂直于这条直径的直线是圆的切线.5.从圆外一点可以向圆引 2 条切线,切线长相等,这点与圆心之间的连线平分这两条切线的夹角。

中考专题复习圆形(含答案)

中考专题复习圆形(含答案)

中考专题复习圆形(含答案)本文档为中考数学专题复,主要涵盖了圆形的相关知识点及答案。

以下是题目及对应的答案:1. 求圆的面积题目:已知圆的半径为4cm,求圆的面积。

答案:圆的面积公式为$S = \pi \cdot r^2$,代入半径$r = 4$,得到$S = \pi \cdot 4^2 = 16\pi cm^2$。

2. 求圆的周长题目:已知圆的直径为6cm,求圆的周长。

答案:圆的周长公式为$C = \pi \cdot d$,代入直径$d = 6$,得到$C = \pi \cdot 6 = 6\pi cm$。

3. 求圆的直径题目:已知圆的周长为10π cm,求圆的直径。

答案:圆的周长公式为$C = \pi \cdot d$,代入周长$C = 10\pi$,解方程得到$d = \frac{C}{\pi} = \frac{10\pi}{\pi} = 10 cm$。

4. 求圆柱体的体积题目:已知圆柱体的底面积为9π $cm^2$,高度为5cm,求圆柱体的体积。

答案:圆柱体的体积公式为$V = \pi \cdot r^2 \cdot h$,代入底面积$S = 9\pi$,高度$h = 5$,得到$V = \pi \cdot 3^2 \cdot 5 = 45\pi cm^3$。

5. 求扇形的面积题目:已知扇形的半径为8cm,弧长为12cm,求扇形的面积。

答案:扇形的面积公式为$S = \frac{1}{2} \cdot r \cdot l$,代入半径$r = 8$,弧长$l = 12$,得到$S = \frac{1}{2} \cdot 8 \cdot 12 =48 cm^2$。

6. 求圆锥的体积题目:已知圆锥的底面积为16π $cm^2$,高度为6cm,求圆锥的体积。

答案:圆锥的体积公式为$V = \frac{1}{3} \cdot \pi \cdot r^2\cdot h$,代入底面积$S = 16\pi$,高度$h = 6$,得到$V =\frac{1}{3} \cdot \pi \cdot 4^2 \cdot 6 = 32\pi cm^3$。

中考数学复习《对称图形——圆》专项测试卷(带答案)

中考数学复习《对称图形——圆》专项测试卷(带答案)

中考数学复习《对称图形——圆》专项测试卷(带答案)学校:___________班级:___________姓名:___________考号:___________知识点扫描考点一 正多边形与圆的概念及性质1.定义:各边 、各角也 的多边形叫做正多边形2.定义:一般地,用量角器把一个圆n (n ≥3)等分,依次连接各等分点所得的多边形是这个圆的内接正多边形.正多边形的外接圆的 叫做正多边形的中心,外接圆的 叫做正多边形的半径.3.正十二边形的每一个外角为 °,每一个内角是 °,该图形绕其中心至少旋转 °和本身重合.4.半径为r 圆内接正方形的边长为 ,面积为 .考点二。

弧长和扇形面积1.如果弧长为l ,圆心角为n°,圆的半径为r ,那么弧长的计算公式为:l =nπr 180. 2.由组成圆心角的两条半径和圆心角所对弧围成的图形叫做扇形.若扇形的圆心角为n°,所在圆半径为r ,弧长为l ,面积为S ,则S =nπr 2360,或S =12lr. 考点三 圆柱和圆锥1.圆柱的侧面展开图是矩形,这个矩形的长等于圆柱的__________________,宽是圆柱的_____________,如果圆柱的底面半径是r ,则S 圆柱侧=cl =2πrl.2.圆锥的侧面展开图是_______,这个扇形的______等于圆锥的底面周长c ,______等于圆锥的母线长l.若圆锥的底面半径为r ,这个扇形的圆心角为α,则α=r l ·360°,S 圆锥侧=12cl =πrl. 考点四 阴影部分面积的求法1.规则图形:按规则图形的面积公式去求.2.不规则图形:采用“转化”的数学思想方法.把不规则图形的面积采用“割补法”、“等积变形法”、“平移法”、“旋转法”等转化为规则图形的面积.《对称图形——圆》专题强化提优训练(三)一.选择题(共30分)1.一个适当大的正六边形,它的一个顶点与一个边长为定值的小正六边形ABCDEF 的中心O 重合,且与边AB 、CD 相交于G 、H (如图).图中阴影部分的面积记为S ,三条线段GB 、BC 、CH 的长度之和记为l ,在大正六边形绕点O 旋转过程中,下列说法正确的是( )A .S 变化,l 不变B .S 不变,l 变化C .S 变化,l 变化D .S 与l 均不变第1题图 第2题图 第3题图 第4题图 第5题图2.如图,在Rt △ABC 中,∠C =90°,AC =BC ,点O 在AB 上,经过点A 的⊙O 与BC 相切于点D ,交AB 于点E ,若CD =,则图中阴影部分面积为( )A .8﹣πB .4﹣2πC .8﹣2πD .4﹣π3.如图,半圆O 的直径AB =8,将半圆O 绕点B 顺时针旋转45°得到半圆O ′,与AB 交于点P ,则图中阴影部分的面积为( )A .4π+8B .4π﹣8C .8πD .8π+84.如图,在△ABC 中,AB =AC ,AB =8,BC =12,分别以AB 、AC 为直径作半圆,则图中阴影部分的面积是()A.64π-127 B.16π-32 C.16π-247 D.16π-1275.如图,在正方形ABCD中,AC和BD交于点O,过点O的直线EF交AB于点E(E不与A,B重合),交CD于点F.以点O为圆心,OC为半径的圆交直线EF于点M,N.若AB=1,则图中阴影部分的面积为()A.﹣B.﹣C.﹣D.﹣6.如图是一张圆心为O,半径为4cm的圆形纸片,沿弦AC所在直线折叠,使得经过点O,将纸片⊙O 展平后,作半径OB⊥OA,则图中阴影部分的面积等于()A.(4π﹣4)cm2 B.πcm2 C.(﹣8)cm2 D.(π﹣8)cm2第6题图第7题图第8题图第9题图第10题图7.如图,在△ABC中,∠ACB=90°,AC=BC,AB=4cm,CD是中线,点E、F同时从点D出发,以相同的速度分别沿DC、DB方向移动,当点E到达点C时,运动停止,直线AE分别与CF、BC相交于G、H,则在点E、F移动过程中,点G移动路线的长度为()A.2 B.πC.2πD.2 2π8.如图,在扇形OAB中,OC⊥AB于点D,AB=8,将△ODB绕点O点逆时针旋转60°,则线段DB扫过的图形面积为()A.B.2πC.D.9.如图,已知正方形ABCD的边长为20,以A为圆心,AD长为半径作,点E在上,∠DEC=135°,则△DEC的面积为()A.20 B.40 C.20D.2010.如图,在半径为4的扇形OAB中,∠AOB=90°,点C是AB上一动点,点D是OC的中点,连结AD并延长交OB于点E,则图中阴影部分面积的最小值为( B )A.4π﹣4 B.4π﹣C.2π﹣4 D.2π﹣二.填空题(30分)11.如图,将半径为2,圆心角为90°的扇形BAC绕点A逆时针旋转60°,点B、C的对应点分别为D、E,点D在上,则阴影部分的面积为.12.如图,从一块直径为4的圆形铁皮上剪出一个圆心角为90 的扇形CAB,且点C,A,B都在O上,将此扇形围成一个圆锥,则该圆锥底面圆的半径是________.13.如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型.若圆的半径为r,扇形的半径为R,扇形的圆心角等于90°,则r与R之间的关系是_______.14.如图,在每个小正方形的边长均为1的网格图中,一段圆弧经过格点A,B,C,格点A,D的连线交圆弧于点E,则弧AE的长为.15.如图矩形ABCD中,以A为圆心,AB的长为半径画圆,交CD于点E,再以D为圆心,DA的长为半径画圆,恰好经过点E.已知AB=2,AD=2,则图中阴影部分的面积为.16.如图,有一张四边形纸片ABCD,已知AB=,AD=2,∠B=80°,∠C=∠D=90°,小明和小丽各做了如图操作,请你选择他俩当中的一人所剪出的扇形,求出它的弧长等于.17.如图,在正方形ABCD中,对角线AC、BD相交于O,AB=4,以点B为圆心,AB长为半径画弧;再以B为圆心,BO长为半径画弧,分别交AB、BC于点E、F、则图中阴影部分的面积为.(结果保留π)第17题图第18题图第19题图第20题图18.如图,水平地面上有一面积为30πcm2的扇形AOB,半径OA=6cm,且OA与地面垂直在没有滑动的情况下,将扇形向右滚动至OB与地面垂直为止,则O点移动的距离为.19.如图四边形ABCD是正方形曲线DA1B1C1D1A2…是由一段段90°的弧组成的.其中:的圆心为点A半径为AD;的圆心为点B半径为;的圆心为点C半径为CB1;的圆心为点D半径为DC1;……的圆心依次按点A B C D循环.若正方形ACD的边长为1 则的长为______________20.如图点C点D点E分别是以AB AC BC为直径的半圆弧的一个三等分点再分别以AD DC CE BE为直径向外侧作4个半圆若图中阴影部分的面积为则AB的长为_____________. 三.解答题(90分)21.(8分)如图在平面直角坐标系中已知△ABC的三个顶点的坐标分别为A(﹣1 1)B(﹣4 0)C(﹣2 2).将△ABC绕原点O顺时针旋转90°后得到△A1B1C1.(1)请写出A1、B1、C1三点的坐标:A1B1C1;(2)求点B旋转到点B1的弧长.22.(9分)如图在单位长度为1的正方形网格中建立一直角坐标系一条圆弧经过网格点A、B、C请在网格图中进行下列操作(以下结果保留根号):(1)利用网格找出该圆弧所在圆的圆心D点的位置写出D点的坐标为;(2)连接AD、CD若扇形DAC是一个圆锥的侧面展开图则该圆锥底面半径为;(3)连接BC将线段BC绕点D旋转一周求线段BC扫过的面积.23.(8分)如图在△ABC中AB=AC以AB为直径作⊙O AC与⊙O交于点D BC与⊙O交于点E过点C作CF∥AB且CF=CD连接BF.(1)求证:BF是⊙O的切线;(2)若∠BAC=45°AD=4 求图中阴影部分的面积.24.(8分)如图 AB是⊙O的直径∠BAC=90°四边形EBOC是平行四边形 EB交⊙O于点D 连接CD并延长交AB的延长线于点F.(1)求证:CF是⊙O的切线;(2)若∠F=30° EB=4 求图中阴影部分的面积(结果保留根号和π)25.(8分)如图菱形OABC的顶点A的坐标为(2 0) ∠COA=60°.将菱形OABC绕坐标原点O逆时针旋转120°得到菱形ODEF.(1)直接写出点F的坐标;(2)求线段OB的长及图中阴影部分的面积.26.(12分)如图 AB=16 O为AB中点点C在线段OB上(不与点O B重合)将OC绕点O逆时针旋转270°后得到扇形COD AP BQ分别切优弧于点P Q 且点P Q在AB异侧连接OP. (1)求证:AP=BQ;(2)当BQ=43时求扇形COQ的面积及的长(结果保留π);(3)若△APO的外心在扇形COD的内部请直接写出OC的取值范围.27.(12分)如图已知AB是⊙O的直径点C D在⊙O上∠D=60°且AB=6 过O点作OE ⊥AC垂足为E.(1)填空:∠CAB=度;(2)求OE的长;(3)若OE的延长线交⊙O于点F求弦AF AC和弧FC围成的图形(阴影部分)的面积S.28.(13分)如图有一个直径MN=4的半圆形纸片其圆心为点P从初始阶段Ⅰ位置开始在无滑动的情况下沿数轴向右翻滚至位置Ⅴ其中位置Ⅰ中的MN平行于数轴且半⊙P与数轴相切于原点O;位置Ⅱ和位置Ⅳ中的MN垂直于数轴;位置Ⅲ中的MN在数轴上;位置Ⅴ中的点N到数轴的距离为3 且半⊙P与数轴相切于点A.解答下列问题:(1)位置Ⅰ中的MN与数轴之间的距离为;位置Ⅱ中的半⊙P与数轴位置关系是;(2)求位置Ⅲ中的圆心P在数轴上表示的数;(3)纸片半⊙P从位置Ⅲ翻滚到位置Ⅳ时求点N所经过路径长及该纸片所扫过的图形的面积;(4)求OA的长.(结果保留π)29.(12分)如图在平面直角坐标系中四边形OABC是边长为2的正方形二次函数y=﹣x2+bx+c 的图象经过A、E两点且点E的坐标为(﹣0)以OC为直径作半圆圆心为D.(1)求二次函数的解析式;(2)求证:直线BE是⊙D的切线;(3)若直线BE与抛物线的对称轴交点为P M是线段CB上的一个动点(点M与点B C不重合)过点M作MN∥BE交x轴与点N连结PM PN设CM的长为t△PMN的面积为S求S与t的函数关系式并写出自变量t的取值范围.S是否存在着最大值?若存在求出最大值;若不存在请说明理由.教师样卷知识点扫描考点一正多边形与圆的概念及性质1.定义:各边相等、各角也相等的多边形叫做正多边形2.定义:一般地用量角器把一个圆n(n≥3)等分依次连接各等分点所得的多边形是这个圆的内接正多边形.正多边形的外接圆的圆心叫做正多边形的中心外接圆的半径叫做正多边形的半径.3.正十二边形的每一个外角为 30 ° 每一个内角是 150 ° 该图形绕其中心至少旋转 30 °和本身重合.4.半径为r 圆内接正方形的边长为2r 面积为 2r 2 . 考点二。

初三年级数学圆经典例题

初三年级数学圆经典例题

一.圆的定义及相关概念【考点速览】考点1:圆的对称性:圆既是轴对称图形又是中心对称图形。

经过圆心的每一条直线都是它的对称轴。

圆心是它的对称中心。

考点2:确定圆的条件;圆心和半径①圆心确定圆的位置,半径确定圆的大小;②不在同一条直线上的三点确定一个圆;考点3:弦:连结圆上任意两点的线段叫做弦。

经过圆心的弦叫做直径。

直径是圆中最大的弦。

弦心距:圆心到弦的距离叫做弦心距。

弧:圆上任意两点间的部分叫做弧。

弧分为半圆,优弧、劣弧三种。

(请务必注意区分等弧,等弦,等圆的概念)弓形:弦与它所对应的弧所构成的封闭图形。

弓高:弓形中弦的中点与弧的中点的连线段。

(请务必注意在圆中一条弦将圆分割为两个弓形,对应两个弓高)固定的已经不能再固定的方法:求弦心距,弦长,弓高,半径时通常要做弦心距,并连接圆心和弦的一个端点,得到直角三角形。

如下图:考点4:三角形的外接圆:锐角三角形的外心在 ,直角三角形的外心在 ,钝角三角形的外心在 。

考点5点和圆的位置关系 设圆的半径为r ,点到圆心的距离为d , 则点与圆的位置关系有三种。

①点在圆外⇔d >r ;②点在圆上⇔d=r ;③点在圆内⇔ d <r ;【典型例题】例1 在⊿ABC 中,∠ACB =90°,AC =2,BC =4,CM 是AB 边上的中线,以点C 为圆心,以5为半径作圆,试确定A,B,M 三点分别与⊙C 有怎样的位置关系,并说明你的理由。

例2.已知,如图,CD 是直径,︒=∠84EOD ,AE 交⊙O 于B ,且AB=OC ,求∠A 的度数。

例3 ⊙O 平面内一点P 和⊙O 上一点的距离最小为3cm ,最大为8cm ,则这圆的半径是_________cm 。

例4 在半径为5cm 的圆中,弦AB ∥CD ,AB=6cm ,CD=8cm ,则AB 和CD 的距离是多少? 例5 如图,⊙O 的直径AB 和弦CD 相交于点E ,已知AE=6cm ,EB=2cm,30=∠CEA , 求CD 的长.例6.已知:⊙O 的半径0A=1,弦AB 、AC 的长分别为3,2,求BAC ∠的度数.AB DCO· EMABCDOEBACACBD例7.如图,已知在ABC ∆中,︒=∠90A ,AB=3cm ,AC=4cm ,以点A 为圆心,AC 长为半径画弧交CB 的延长线于点D ,求CD 的长.例8、如图,有一圆弧开桥拱,拱的跨度AB =16cm ,拱高CD =4cm ,那么拱形的半径是__m 。

(完整版)中考复习--圆专题(所有知识点和题型汇总,全)

(完整版)中考复习--圆专题(所有知识点和题型汇总,全)

《圆》题型分类资料一.圆的有关概念:1.下列说法:①直径是弦②弦是直径③半圆是弧,但弧不一定是半圆④长度相等的两条弧是等弧,正确的命题有()A. 1 个B.2 个C.3 个D.4 个2.下列命题是假命题的是()A.直径是圆最长的弦B.长度相等的弧是等弧C.在同圆或等圆中,相等的圆心角所对的弧也相等D.如果三角形一边的中线等于这条边的一半,那么这个三角形是直角三角形。

3.下列命题正确的是()A.三点确定一个圆B.长度相等的两条弧是等弧C.一个三角形有且只有一个外接圆D.一个圆只有一个外接三角形4.下列说法正确的是( )A.相等的圆周角所对的弧相等B.圆周角等于圆心角的一半C.长度相等的弧所对的圆周角相等5.下面四个图中的角,为圆心角的是( )D.直径所对的圆周角等于90°A.B.C.D.二.和圆有关的角:1.如图1,点O 是△ABC 的内心,∠A=50 ,则∠BOC=图1 图22.如图2,若AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD=58°,则∠BCD 的度数为( )A.116°B.64°C. 58°D.32°3.如图3,点O 为优弧AB 所在圆的圆心,∠AOC=108°,点D 在AB 的延长线上,BD=BC,则∠D 的度数为ADOO1 2CDC图 3图 44.如图 4,AB 、AC 是⊙O 的两条切线,切点分别为 B 、C ,D 是优弧 BC 上的一点,已知∠BAC =80°,那么∠BDC =度.5. 如图 5,在⊙O 中, BC 是直径,弦 BA ,CD 的延长线相交于点 P ,若∠P =50°,则∠AOD =.PCBAOBC图 5 图 66. 如图 6,A ,B ,C ,是⊙O 上的三个点,若∠AOC =110°,则∠ABC =°.7. 圆的内接四边形 ABCD 中,∠A :∠B :∠C =2:3:7,则∠D 的度数为。

最新经典必考圆中考试题集锦(附答案)

最新经典必考圆中考试题集锦(附答案)

圆中考试题集锦令狐采学一、选择题1.如图,BC是⊙O的直径,P是CB延长线上一点,PA切⊙O于点A,如果PA=,PB=1,那么∠APC等于()(A)(B)(C)(D)2.如果圆柱的高为20厘米,底面半径是高的,那么这个圆柱的侧面积是()(A)100π平方厘米(B)200π平方厘米(C)500π平方厘米(D)200平方厘米3.“圆材埋壁”是我国古代著名的数学菱《九章算术》中的一个问题,“今在圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”用现在的数学语言表述是:“如图,CD为⊙O的直径,弦AB⊥CD,垂足为E,CE=1寸,AB=10寸,求直径CD的长”.依题意,CD长为()(A)寸(B)13寸(C)25寸(D)26寸4.已知:如图,⊙O半径为5,PC切⊙O于点C,PO交⊙O于点A,PA=4,那么PC的长等于()(A)6(B)2(C)2(D)25.如果圆锥的侧面积为20π平方厘米,它的母线长为5厘米,那么此圆锥的底面半径的长等于()(A)2厘米(B)2厘米(C)4厘米(D)8厘米6.相交两圆的公共弦长为16厘米,若两圆的半径长分别为10厘米和17厘米,则这两圆的圆心距为()(A)7厘米(B)16厘米(C)21厘米(D)27厘米7.如图,⊙O为△ABC的内切圆,∠C=,AO的延长线交BC于点D,AC=4,DC=1,,则⊙O的半径等于()(A)(B)(C)(D)8.一居民小区有一正多边形的活动场.小区管委会决定在这个多边形的每个顶点处修建一个半径为2米的扇形花台,花台都以多边形的顶点为圆心,以多边形的内角为圆心角,花台占地面积共为12π平方米.若每个花台的造价为400元,则建造这些花台共需资金()(A)2400元(B)2800元(C)3200元(D)3600元9.如图,AB是⊙O直径,CD是弦.若AB=10厘米,CD=8厘米,那么A、B两点到直线CD的距离之和为()(A)12厘米(B)10厘米(C)8厘米(D)6厘米10.某工件形状如图所示,圆弧BC的度数为,AB=6厘米,点B到点C的距离等于AB,∠BAC=,则工件的面积等于()(A)4π(B)6π(C)8π(D)10π11.如图,PA切⊙O于点A,PBC是⊙O的割线且过圆心,PA=4,PB=2,则⊙O的半径等于()(A)3(B)4(C)6(D)812.已知⊙O的半径为3厘米,⊙的半径为5厘米.⊙O与⊙相交于点D、E.若两圆的公共弦DE的长是6厘米(圆心O、在公共弦DE的两侧),则两圆的圆心距O的长为()(A)2厘米(B)10厘米(C)2厘米或10厘米(D)4厘米13.如图,两个等圆⊙O和⊙的两条切线OA、OB,A、B是切点,则∠AOB等于()(A)(B)(C)(D)14.如图,AB是⊙O的直径,∠C=,则∠ABD=()(A)(B)(C)(D)15.弧长为6π的弧所对的圆心角为,则弧所在的圆的半径为()(A)6(B)6(C)12(D)1816.如图,在△ABC中,∠BAC=,AB=AC=2,以AB为直径的圆交BC于D,则图中阴影部分的面积为()(A)1(B)2(C)1+(D)2-17.已知圆的内接正六边形的周长为18,那么圆的面积为()(A)18π(B)9π(C)6π(D)3π18.如图,点P是半径为5的⊙O内一点,且OP=3,在过点P的所有弦中,长度为整数的弦一共有()(A)2条(B)3条(C)4条(D)5条19.如图,正六边形ABCDEF的边长为a,分别以C、F为圆心,a为半径画弧,则图中阴影部分的面积是()(A)(B)(C)(D)20.过⊙O内一点M的最长的弦长为6厘米,最短的弦长为4厘米,则OM的长为()(A)厘米(B)厘米(C)2厘米(D)5厘米21.已知圆锥的底面半径是3,高是4,则这个圆锥侧面展开图的面积是()(A)12π(B)15π(C)30π(D)24π22.已知⊙O的直径AB与弦AC的夹角为,过C点的切线PC与AB延长线交P.PC=5,则⊙O的半径为()(A)(B)(C)10(D)523.如图:PA切⊙O于点A,PBC是⊙O的一条割线,有PA=3,PB=BC,那么BC的长是()(A)3(B)3(C)(D)24.如图,⊙A、⊙B、⊙C、⊙D、⊙E相互外离,它们的半径都是1,顺次连结五个圆心得到五边形ABCDE,则图中五个扇形(阴影部分)的面积之和是()(A)π(B)1.5π(C)2π(D)2.5π25.正六边形的半径为2厘米,那么它的周长为()(A)6厘米(B)12厘米(C)24厘米(D)12厘米26.一个圆柱形油桶的底面直径为0.6米,高为1米,那么这个油桶的侧面积为()(A)0.09π平方米(B)0.3π平方米(C)0.6平方米(D)0.6π平方米27.一个形如圆锥的冰淇淋纸筒,其底面直径为6厘米,母线长为5厘米,围成这样的冰淇淋纸筒所需纸片的面积是()(A)66π平方厘米(B)30π平方厘米(C)28π平方厘米(D)15π平方厘米28.在半径为2的⊙O中,圆心O到弦AB的距离为1,则弦AB所对的圆心角的度数可以是()(A)(B)(C)(D)29.将一张长80厘米、宽40厘米的矩形铁皮卷成一个高为40厘米的圆柱形水桶的侧面,(接口损耗不计),则桶底的面积为()(A)平方厘米(B)1600π平方厘米(C)平方厘米(D)6400π平方厘米30.如图,已知AB是⊙O的直径,弦CD⊥AB于点P,CD=10厘米,AP∶PB=1∶5,那么⊙O的半径是()(A)6厘米(B)厘米(C)8厘米(D)厘米31.在Rt△ABC中,已知AB=6,AC=8,∠A=.如果把Rt△ABC绕直线AC旋转一周得到一个圆锥,其表面积为S;把Rt△ABC绕直线AB旋转一周得到另一个圆锥,其表面积为S,那么S∶S等于()(A)2∶3(B)3∶4(C)4∶9(D)5∶1232.如图,⊙O的弦AB=8厘米,弦CD平分AB于点E.若CE=2厘米.ED长为()(A)8厘米(B)6厘米(C)4厘米(D)2厘米33.如图,四边形ABCD内接于⊙O,若∠BOD=,则∠BCD=()(A)(B)(C)(D)34.如图,正方形ABCD内接于⊙O,E为DC的中点,直线BE交⊙O于点F.若⊙O的半径为,则BF的长为()(A)(B)(C)(D)35.如图,AB是⊙O的直径,∠ACD=,则∠BAD的度数为()(A)(B)(C)(D)36.已知:点P直线l的距离为3,以点P为圆心,r为半径画圆,如果圆上有且只有两点到直线l的距离均为2,则半径r的取值范围是()(A)r>1(B)r>2(C)2<r<3(D)1<r<537.边长为a的正方边形的边心距为()(A)a(B)a(C)a(D)2a38.如图,以圆柱的下底面为底面,上底面圆心为顶点的圆锥的母线长为4,高线长为3,则圆柱的侧面积为()(A)30π(B)π(C)20π(D)π39.如图,扇形的半径OA=20厘米,∠AOB=,用它做成一个圆锥的侧面,则此圆锥底面的半径为()(A)3.75厘米(B)7.5厘米(C)15厘米(D)30厘米40.如图,正六边形ABCDEF中.阴影部分面积为12平方厘米,则此正六边形的边长为()(A)2厘米(B)4厘米(C)6厘米(D)8厘米41.已知扇形的弧长是2π厘米,半径为12厘米,则这个扇形的圆心角是()(A)(B)(C)(D)42.圆锥的高线长是厘米,底面直径为12厘米,则这个圆锥的侧面积是()(A)48π厘米(B)24平方厘米(C)48平方厘米(D)60π平方厘米43.如图,AB是⊙O的直径,点P在BA的延长线上,PC 是⊙O的切线,C为切点,PC=2,PA=4,则⊙O的半径等于()(A)1(B)2(C)(D)44.已知圆柱的母线长为5厘米,表面积为28π平方厘米,则这个圆柱的底面半径是()(A)5厘米(B)4厘米(C)2厘米(D)3厘米45.半径相等的圆内接正三角形、正方形、正六边形的边长之比为()(A)1∶∶(B)∶∶1(C)3∶2∶1(D)1∶2∶346.如图,若四边形ABCD是半径为1和⊙O的内接正方形,则图中四个弓形(即四个阴影部分)的面积和为()(A)(2π-2)厘米(B)(2π-1)厘米(C)(π-2)厘米(D)(π-1)厘米47.如图,已知圆心角∠BOC=,则圆周角∠BAC的度数是()(A)(B)(C)(D)48.半径为5厘米的圆中,有一条长为6厘米的弦,则圆心到此弦的距离为()(A)3厘米(B)4厘米(C)5厘米(D)6厘米49.已知:Rt△ABC中,∠C=,O为斜边AB上的一点,以O为圆心的圆与边AC、BC分别相切于点E、F,若AC=1,BC=3,则⊙O的半径为()(A)(B)(C)(D)50.已知:如图,E是相交两圆⊙M和⊙O的一个交点,且ME⊥NE,AB为外公切线,切点分别为A、B,连结AE、BE.则∠AEB的度数为()(A)145°(B)140°(C)135°(D)130°二、填空题1.如图,AB、AC是⊙O的两条切线,切点分别为B、C,D是优弧上的一点,已知∠BAC=,那么∠BDC=__________度.2.在Rt△ABC中,∠C=,AB=3,BC=1,以AC所在直线为轴旋转一周,所得圆锥的侧面展开图的面积是__________.3.如果圆锥母线长为6厘米,那么这个圆锥的侧面积是_______平方厘米4.一种圆状包装的保鲜膜,如图所示,其规格为“20厘米×60米”,经测量这筒保鲜膜的内径、外径的长分别为3.2厘米、4.0厘米,则该种保鲜膜的厚度约为_________厘米(π取3.14,结果保留两位有效数字).5.两个点O为圆心的同心圆中,大圆的弦AB与小圆相切,如果AB的长为24,大圆的半径OA为13,那么小圆的半径为___________.6.已知⊙O中,两弦AB与CD相交于点E,若E为AB的中点,CE∶ED=1∶4,AB=4,则CD的长等于___________.7.如图,AB是⊙O的直径,四边形ABCD内接于⊙O,,,的度数比为3∶2∶4,MN是⊙O的切线,C 是切点,则∠BCM的度数为___________.8.如图,P是⊙O的直径AB延长线上一点,PC切⊙O于点C,PC=6,BC∶AC=1∶2,则AB的长为___________.9.如图,四边形ABCD内接于⊙O,AD∥BC,=,若AD=4,BC=6,则四边形ABCD的面积为__________.10.若一个圆柱的侧面积等于两底面积的和,则它的高h 与底面半径r的大小关系是__________.11.要用圆形铁片截出边长为4厘米的正方形铁片,则选用的圆形铁片的直径最小要___________厘米.12.圆内两条弦AB和CD相交于P点,AB长为7,AB把CD分成两部分的线段长分别为2和6,那么=__________.13.△ABC是半径为2厘米的圆内接三角形,若BC=2厘米,则∠A的度数为________.14.如图,已知OA、OB是⊙O的半径,且OA=5,∠AOB=15,AC⊥OB于C,则图中阴影部分的面积(结果保留π)S=_________.15.如图,圆内接正六边形ABCDEF中,AC、BF交于点M.则∶=_________.16.两圆外离,圆心距为25厘米,两圆周长分别为15π厘米和10π厘米.则其内公切线和连心线所夹的锐角等于__________度.17.将两边长分别为4厘米和6厘米的矩形以其一边所在直线为轴旋转一周,所得圆柱体的表面积为_________平方厘米.18.如图,在⊙O的内接四边形ABCD中,∠BCD=130,则∠BOD的度数是________.19.已知⊙O的半径为4厘米,以O为圆心的小圆与⊙O 组成的圆环的面积等于小圆的面积,则这个小圆的半径是______厘米.20.如图,⊙O的半径O A是⊙O的直径,C是⊙O上的一点,O C交⊙O于点B.若⊙O的半径等于5厘米,的长等于⊙O周长的,则的长是_________.21.正三角形的内切圆与外接圆面积之比为_________.22.如图,AB=8,AC=6,以AC和BC为直径作半圆,两圆的公切线MN与AB的延长线交于D,则BD的长为_________.23.圆锥的母线长为5厘米,高为3厘米,在它的侧面展开图中,扇形的圆心角是_________度.24.如图,AB是⊙O的直径,弦CD⊥AB,垂足是G,F 是CG的中点,延长AF交⊙O于E,CF=2,AF=3,则EF的长是_________.25.在⊙O中,直径AB=4厘米,弦CD⊥AB于E,OE=,则弦CD的长为__________厘米.26.若圆锥底面的直径为厘米,线线长为5厘米,则它的侧面积为__________平方厘米(结果保留π).27.如图,AB为⊙O的直径,P点在AB的延长线上,PM切⊙O于M点.若OA=a,PM=a,那么△PMB的周长的__________.28.在半径9厘米的圆中,的圆心角所对的弧长为__________厘米.29.扇形的圆心角为120,弧长为6π厘米,那么这个扇形的面积为_________.30.如果圆O的直径为10厘米,弦AB的长为6厘米,那么弦AB的弦心距等于________厘米.31.某种商品的商标图案如图所求(阴影部分),已知菱形ABCD的边长为4,∠A=,是以A为圆心,AB长为半径的弧,是以B为圆心,BC长为半径的弧,则该商标图案的面积为_________.32.已知,一个直角三角形的两条直角边的长分别为3厘米、4厘米、以它的直角边所在直角线为轴旋转一周,所得圆锥的表面积是__________.33.正六边形的边心距与半径的比值为_________.34.如图,已知扇形AOB的半径为12,OA⊥OB,C为OA 上一点,以AC为直径的半圆和以OB为直径的半圆相切,则半圆的半径为__________.35.如图,PA、PB与⊙O分别相切于点A、点B,AC是⊙O 的直径,PC交⊙O于点D.已知∠APB=,AC=2,那么CD的长为________.36.底面半径为2厘米,高为3厘米的圆柱的体积为_________立方厘米(结果保留π).37.边长为2厘米的正六边形的外接圆半径是________厘米,内切圆半径是________厘米(结果保留根号).38.如图,PT是⊙O的切线,T为切点,PB是⊙O的割线交⊙O于A、B两点,交弦CD于点M,已知:CM=10,MD=2,PA=MB=4,则PT的长等于__________.39.如图,扇形OAB中,∠AOB=,半径OA=1,C是线段AB的中点,CD∥OA,交于点D,则CD=________.40.已知扇形的圆心角为150,它所对的弧长为20π厘米,则扇形的半径是________厘米,扇形的面积是__________平方厘米.41.如图,AB是⊙O直径,CE切⊙O于点C,CD⊥AB,D 为垂足,AB=12厘米,∠B=30,则∠ECB=__________;CD=_________厘米.42.如图,DE是⊙O直径,弦AB⊥DE,垂足为C,若AB=6,CE=1,则CD=________,OC=_________.43.如果把人的头顶和脚底分别看作一个点,把地球赤道作一个圆,那么身高压2米的汤姆沿着地球赤道环道环行一周,他的头顶比脚底多行________米.44.已知:⊙O的半径为1,M为⊙O外的一点,MA切⊙O 于点A,MA=1.若AB是⊙O的弦,且AB=,则MB的长度为_________.45.如果圆的半径为4厘米,那么它的周长为__________厘米.三、解答题:1.已知:如图,△ABC内接于⊙O,过点B作⊙O的切线,交CA的延长线于点E,∠EBC=2∠C.①求证:AB=AC;②若tan∠ABE=,(ⅰ)求的值;(ⅱ)求当AC=2时,AE的长.2.如图,PA为⊙O的切线,A为切点,⊙O的割线PBC过点O与⊙O分别交于B、C,PA=8cm,PB=4cm,求⊙O的半径.3.已知:如图,BC是⊙O的直径,AC切⊙O于点C,AB交⊙O于点D,若AD︰DB=2︰3,AC=10,求AC︰AB的值.4.如图,PC为⊙O的切线,C为切点,PAB是过O的割线,CD⊥AB于点D,若CD︰DB=,PC=10cm,求三角形BCD的面积.5.如图,在两个半圆中,大圆的弦MN与小圆相切,D为切点,且MN∥AB,MN=a,ON、CD分别为两圆的半径,求阴影部分的面积.6.已知,如图,以△ABC的边AB作直径的⊙O,分别并AC、BC于点D、E,弦FG∥AB,S△CDE︰S△ABC=1︰4,DE=5cm,FG=8cm,求梯形AFGB的面积.7.如图所示:PA为⊙O的切线,A为切点,PBC是过点O的割线,PA=10,PB=5,求:(1)⊙O的面积(注:用含π的式子表示);(2)cos∠BAP的值.参考答案一、选择题1.B 2.B 3.D 4.D 5.C 6.C 7.A 8.C 9.D 10.B 11.A 12.B 13.C 14.D 15.D 16.A 17.B 18.C 19.C 20.B 21.B 22.A 23.A 24.B 25.B 26.D 27.D 28.C 29.A 30.B 31.A 32.A 33.B 34.C 35.A 36.D 37.B 38.B 39.B 40.B 41.C 42.D 43.A 44.C 45.B 46.C 47.A 48.B 49.C 50.C二、填空题1.50 2.2π3.18π4.5.5 6.5 7.30°8.9 9.25 10.h=r 11.412.3或4 13.60°或120°14.15.1:2 16.30 17.80π或120π18.100°19.20.π21.1:4 22.1 23.288 24.4 25.2 26.15π27.28.3π29.27π平方厘米30.4 31.32.24π平方厘米或36π平方厘米33.34.4 35.36.12π37.2,38.39.40.24,240π41.60°,42.9,443.4π44.1或45.8π三、解答题:1.(1)∵BE切⊙O于点B,∴∠ABE=∠C.∵∠EBC=2∠C,即∠AB E+∠ABC=2∠C,∴∠C+∠ABC=2∠C,∴∠ABC=∠C,∴AB=AC.(2)①连结AO,交BC于点F,∵AB=AC,∴=,∴AO⊥BC且BF=FC.在Rt△ABF中,=tan∠ABF,又tan∠ABF=tanC=tan∠ABE=,∴=,∴AF=BF.∴AB===BF.∴.②在△EBA与△ECB中,∵∠E=∠E,∠EBA=∠ECB,∴△EBA∽△ECB.∴,解之,得EA2=EA·(EA+AC),又EA≠0,∴EA=AC,EA=×2=.2.设⊙的半径为r,由切割线定理,得PA2=PB·PC,∴82=4(4+2r),解得r=6(cm).即⊙O的半径为6cm.3.由已知AD︰DB=2︰3,可设AD=2k,DB=3k(k>0).∵AC切⊙O于点C,线段ADB为⊙O的割线,∴AC2=AD·AB,∵AB=AD+DB=2k+3k=5k,∴102=2k×5k,∴k2=10,∵k>0,∴k=.∴AB=5k=5.∵AC切⊙O于C,BC为⊙O的直径,∴AC⊥BC.在Rt△ACB中,sinB=.4.解法一:连结AC.∵AB是⊙O的直径,点C在⊙O上,∴∠ACB=90°.CD⊥AB于点D,∴∠ADC=∠BDC=90°,∠2=90°-∠BAC=∠B.∵tanB=,∴tan∠2=.∴.设AD=x(x>0),CD=2x,DB=4x,AB=5x.∵PC切⊙O于点C,点B在⊙O上,∴∠1=∠B.∵∠P=∠P,∴△PAC∽△PCB,∴.∵PC=10,∴PA=5,∵PC切⊙O于点C,PAB是⊙O的割线,∵PC2=PA·PB,∴102=5(5+5 x).解得x=3.∴AD=3,CD=6,DB=12.∴S△BCD=CD·DB=×6×12=36.即三角形BCD的面积36cm2.解法二:同解法一,由△PAC∽△PCB,得.∵PA=10,∴PB=20.由切割线定理,得PC2=PA·PB.∴PA==5,∴AB=PB-PA=15,∵AD+DB=x+4x=15,解得x=3,∴CD=2x=6,DB=4x=12.∴S△BCD=CD·DB=×6×12=36.即三角形BCD的面积36cm2.5.解:如图取MN的中点E,连结OE,∴OE⊥MN,EN=MN=a.在四边形EOCD中,∵CO⊥DE,OE⊥DE,DE∥CO,∴四边形EOCD为矩形.∴OE=CD,在Rt△NOE中,NO2-OE2=EN2=.∴S阴影=π(NO2-OE2)=π·=.6.解:∵∠CDE=∠CBA,∠DCE=∠BCA,∴△CDE∽△ABC.∴∴===,即,解得AB=10(cm),作OM⊥FG,垂足为M,则FM=FG=×8=4(cm),连结OF,∵OA=AB=×10=5(cm).∴OF=OA=5(cm).在Rt△OMF中,由勾股定理,得OM===3(cm).∴梯形AFGB的面积=·OM=×3=27(cm2).7.PA2=PB·PC PC=20Þ半径为7.5Þ圆面积为(或56.25π)(平方单位).Þ△ACP∽△BAPÞÞ.解法一:设AB=x,AC=2x,BC为⊙O的直径∠CAB=90°,则BC=x.∵∠BAP=∠C,∴cos∠BAP=cos∠C=解法二:设AB=x,在Rt△ABC中,AC2+AB2=BC2,即x2+(2x)2=152,解之得x=3,∴AC=6,∵∠BAP=∠C,∴∴cos∠BAP=cos∠C=6.解:∵∠CDE=∠CBA,∠DCE=∠BCA,∴△CDE∽△ABC.∴∴===,即,解得AB=10(cm),作OM⊥FG,垂足为M,则FM=FG=×8=4(cm),连结OF,∵OA=AB=×10=5(cm).∴OF=OA=5(cm).在Rt△OMF中,由勾股定理,得OM===3(cm).∴梯形AFGB的面积=·OM=×3=27(cm2).7.PA2=PB·PC PC=20Þ半径为7.5Þ圆面积为(或56.25π)(平方单位).Þ△ACP∽△BAPÞÞ.解法一:设AB=x,AC=2x,BC为⊙O的直径∠CAB=90°,则BC=x.∵∠BAP=∠C,∴cos∠BAP=cos∠C=解法二:设AB=x,在Rt△ABC中,AC2+AB2=BC2,即x2+(2x)2=152,解之得x=3,∴AC=6,∵∠BAP=∠C,∴∴cos∠BAP=cos∠C=6.解:∵∠CDE=∠CBA,∠DCE=∠BCA,∴△CDE∽△ABC.∴∴===,即,解得AB=10(cm),作OM⊥FG,垂足为M,则FM=FG=×8=4(cm),连结OF,∵OA=AB=×10=5(cm).∴OF=OA=5(cm).在Rt△OMF中,由勾股定理,得OM===3(cm).∴梯形AFGB的面积=·OM=×3=27(cm2).7.PA2=PB·PC PC=20Þ半径为7.5Þ圆面积为(或56.25π)(平方单位).Þ△ACP∽△BAPÞÞ.解法一:设AB=x,AC=2x,BC为⊙O的直径∠CAB=90°,则BC=x.∵∠BAP=∠C,∴cos∠BAP=cos∠C=解法二:设AB=x,在Rt△ABC中,AC2+AB2=BC2,即x2+(2x)2=152,解之得x=3,∴AC=6,∵∠BAP=∠C,∴∴cos∠BAP=cos∠C=圆是中考中的必考内容,大约占整个分数的百分之30左右,希望大家能够加深练习,提到自己的做题能力。

中考数学圆综合题(含答案)

中考数学圆综合题(含答案)

一、圆的概念集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

二、点与圆的位置关系1、点在圆内⇒d r<⇒点C在圆内;2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;三、直线与圆的位置关系1、直线与圆相离⇒d r>⇒无交点;2、直线与圆相切⇒d r=⇒有一个交点;3、直线与圆相交⇒d r<⇒有两个交点;四、圆与圆的位置关系外离(图1)⇒无交点⇒d R r>+;外切(图2)⇒有一个交点⇒d R r=+;相交(图3)⇒有两个交点⇒R r d R r-<<+;内切(图4)⇒有一个交点⇒d R r=-;内含(图5)⇒无交点⇒d R r<-;A图1五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥③CE DE =④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

与《圆的概念、圆的对称性》有关的中考题集锦第1题. (2006 漳州课改)学校有一个圆形花坛,现要求将它三等分,以便在上面种植三种不同的花,你认为符合设计要求的图案是 (将所有符合设计要求的图案序号填上).与《垂径定理及其推论的应用》有关的中考题集锦(2006年)第1题. (2006 常州课改)如图,已知O 的半径为5mm ,弦8m m A B =,则圆心O 到A B 的距离是( )A .1mmB .2mmC .3mmD .4mm1 2 3第2题. (2006 成都课改)如图,以等腰三角形ABC 的一腰A B 为直径的O 交B C 于点D ,交A C 于点G ,连结A D ,并过点D 作D E A C ⊥,垂足为E .根据以上条件写出三个正确结论(除AB AC AO BO ABC ACB ===,,∠∠外)是: (1) ;(2) ;(3) .第3题. (2006 滨州非课改)如图,在半径为10的O 中,如果弦心距6O C =,那么弦A B 的长等于( )A.4 B.8 C.16 D.32第4题. (2006 常德课改))在半径为10cm 的O 中,圆心O 到弦A B 的距离为6cm ,则弦A B 的长是 cm . 第5题. (2006 河北非课改)图-1是某学校存放学生自行车的车棚的示意图(尺寸如图所示),车棚顶部是圆柱侧面的一部分,其展开图是矩形.图-2是车棚顶部截面的示意图, AB 所在圆的圆心为O .车棚顶部是用一种帆布覆盖的,求覆盖棚顶的帆布的面积(不考虑接缝等因素,计算结果保留π).5 6第6题. (2006 青岛课改)某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下面是水平放置的破裂管道有水部分的截面. (1)请你补全这个输水管道的圆形截面;(2)若这个输水管道有水部分的水面宽16cm AB =,水面最深地方的高度为4cm ,求这个圆形截面的半径.第7题. (2006 上海非课改)本市新建的滴水湖是圆形人工湖.为测量该湖的半径,小杰和小丽沿湖边选取A ,B ,C三根①②③④图-1木柱,使得A ,B 之间的距离与A ,C 之间的距离相等,并测得B C 长为240米,A 到B C 的距离为5米,如图所示.请你帮他们求出滴水湖的半径.第8题. (2006 烟台非课改)如图,用一块直径为a 的圆桌布平铺在对角线长为a 的正方形桌面上,若四周下垂的最大长度相等,则桌布下垂的最大长度x 为( )A.)1aB.12aC.24a -D.(2a -第9题. (2006 湛江非课改)如图,O 的半径为5,弦A B 的长为8,点M 在线段A B (包括端点A B ,)上移动,则O M 的取值范围是( )A.35O M ≤≤ B.35O M <≤C.45O M ≤≤ D.45O M <≤第10题. (2006 镇江课改)如图,已知O的半径为5mm ,弦8m m A B =,则圆心O 到A B 的距离是( ) A .1mm B .2mm C .3mm D .4mm8 9 10 11第11题. (2006 韶关课改)如右图,O 的半径为5,弦A B 的长为8,M 是弦A B 上的动点,则线段O M 长的最小值为( )A.2 B.3 C.4 D.5第12题. (2006 菏泽课改)如图,底面半径为5dm 的圆柱形油桶横放在水平地面上,向桶内加油后,量得长方形油面的宽度为8dm ,则油的深度(指油的最深处即油面到水平地面的距离)为( ) A.2dm B.3dm C.2dm 或3dm D.2dm 或8dm12 13 1414第13题. (2006 衡阳课改)如图,水平放置的一个油管的截面半径为13cm ,其中有油部分油面宽A B 为24cm ,则截面上有油部分油面高C D (单位:cm )为 .第14题. (2006 新疆课改)如图,O 的半径长为12cm ,弦16cm A B =. (1)求圆心到弦A B 的距离.(2)考生注意:本小题为超量给分题,超量分2分 如果弦A B 的两端点在圆周上滑动(A B 弦长不变),那么弦A B 的中点形成什么样的图形?第15题. (2006 沈阳课改)如图,已知在O 中,直径10M N =,正方形A B C D 的四个顶点分别在半径O M ,O P 以及O 上,并且45POM =∠,则A B 的长为 .15 16182021第16题.(2006 湘潭课改)如图,在半径为2的O 中,弦A B 的长为_______AOB =∠第17题. (2006 兰州A 课改)在O 中,弦C D 与直径A B 相交于点P ,夹角为30 ,且分直径为1:5两部分,6A B =厘米,则弦C D 的长为( )厘米.A.B.C.D.第18题. (2006 辽宁十一市非课改)如图,已知O 的半径是10,弦AB 长为16.现要从弦AB 和劣弧 AB 组成的弓形上画出一个面积最大的圆,所画出的圆的半径为 .第19题. (2006 浙江湖州课改)如图,在O 中,A B 是弦,O C AB ⊥,垂足为C ,若16A B =,6O C =,则O 的半径O A 等于( )A.16 B.12 C.10 D.8第20题. (2006 漳州课改)如图,已知O 中,M N 是直径,A B 是弦,M N B C ⊥,垂足为C , 由这些条件可推出结论 (不添加辅助线,只写出1个结论)第21题. (2006 龙岩三县非课改)如图,已知O 的半径为5,弦8A B P =,是弦A B 上一点,且2PB =,则_____OP =.与《圆心角、圆周角的性质》有关的中考题集锦(一)第1题. (2006 重庆课改)如图,O 的直径C D 过弦EF 的中点G ,40EOD ∠= ,则D C F ∠等于( )A.80 B.50 C.40 D.201 2 3 4 5第2题. (2006 河南课改)如图,点A ,B ,C 是O 上的三点,若56BOC =∠,则A ∠的度数为____________. 第3题. (2006 临沂非课改)如图,A B 是O 的直径,以B 为圆心,B O 为半径画弧交O 于C D ,两点,则B C D ∠的度数是 .第4题. (2006 青岛课改)如图,O 的直径8cm AB C =,为O 上的一点,30BAC ∠=,则B C = cm . 第5题. (2006 肇庆课改)如图,O 是等边A B C △的外接圆,P 是O 上一点,则C P B ∠等于( )A.30B.45C.60D.90第6题. (2006 海南非课改)如图,A B 和C D 都是O 的直径,50AOC =∠,则C ∠的度数是( )A.20B.25C.30D.506 7 8 9 10第7题. (2006 安徽课改)如图,ABC △内接于O ,45C ∠= ,4AB =,则O 的半径为( ) A. B.4 C. D.5NO C F G D EA B B A OBDCAC第8题. (2006 广东非课改)如图,A B 是O 的弦,A C 平分O A B ∠,若60OBA ∠= ,则O B C ∠= . 第9题. (2006 贵港课改)如图,在O 中,弦AD 平行于弦BC ,若80AOC ∠= ,则DAB ∠= 度. 第10题. (2006 贵阳课改)如图,O 是等边三角形ABC 的外接圆,点D 是O 上一点,则B D C =∠___ . 第11题. (2006 黔南非课改)如图,O 的弦AB CD ,相交于E ,已知60ECB = ∠,65AED = ∠,那么A D E ∠的度数是( )A .40B .15C .55D .6511 12 13 14 15第12题. (2006 南京课改)如图,点A B C ,,在O 上,A O B C ∥,20OAC ∠= ,则AO B ∠的度数是( ) A.10B.20C.40D.70第13题. (2006 玉林、防城港课改)如图,A B 为O 的直径,A B 经过弦C D 的中点E ,150BOC ∠= ,则ABD ∠= .第14题. (2006 山西吕梁课改)如图,在“世界杯”足球比赛中,甲带球向对方球门PQ 进攻.当他带球冲到A 点时,同伴乙已经助攻冲到B 点.有两种射门方式:第一种是甲直接射门;第二种是甲将球传给乙,由乙射门.仅从射门角度考虑,应选择 种射门方式.第15题. (2006 鄂尔多斯课改)如图,A B C ,,是O 上的三点,2A B =,30ACB ∠= ,那么O 的半径等于 .与《圆心角、圆周角的性质》有关的中考题集锦(二)第1题. (2006 沈阳非课改)如图,已知点A ,B ,C ,D ,E 是O 的五等分点,则B A D ∠的度数是( ) A.3672D.9612345第2题. (2006 辽宁十一市课改)如图,A B C ,,是O 上三点,30ACB ∠= ,则BAO ∠的度数是 .第3题. (2006 辽宁十一市非课改)如图,AB 是半圆O 的直径,C D ,是 AB 上两点,120ADC ∠=,则BAC ∠的度数是 .第4题. (2006 长春课改)如图,B D 为O 的直径,30A =∠,则C B D ∠的度数为( )A.30 B.45 C.60 D.80第5题. (2006 无锡课改)如图,点A B C D ,,,在O 上,若60C =∠,则D =∠ ,O =∠第6题. (2006 吉林课改)如图,A B C △是O 的内接三角形,50B = ∠,点P 在 CA 上移动(点P 不与点A ,C 重合),则α的变化范围是_______.ABCABQPEBCBAP O B C α AB6 7 8 9第7题. (2006 泉州课改)如图,A B C △为O 的内接三角形,A B 是直径,20A ∠= , 则B ∠=度.第8题. (2006 山西临汾)如图,A B 为O ⊙的直径,C D ,是O ⊙上两点,若50ABC = ∠,则D ∠的度数为________. 第9题. (2006 安徽非课改)如图,P A ,P B 是O 的两条切线,A B ,分别是切点,点C 是 AB 上任意一点,连结O A ,O B ,C A ,C B ,70P ∠= ,求A C B ∠的度数.第10题. (2006 南充课改)下列图形中,能肯定12>∠∠的是( )第11题. (2006 湘西自治区)如图,A B 是O 的直径,点C 在O 上,连结O C ,B C ,若30OCB ∠= ,则AOC ∠的度数是( )A.30 B.60 C.90 D.不能确定11 12第12题. (2006 湘西自治区)如图,A B 是O 的直径,C D E ,,是O 上的点,则12∠+∠=.与《弧长、扇形等面积》有关的计算中考题集锦(一)第1题. (2006 常州课改)已知扇形的圆心角为120︒,半径为2cm ,则扇形的弧长是 cm ,扇形的面积是______ 2cm . 第2题. (2006 梅州课改)如图,两个半圆中,小圆的圆心O '在大O 的直径C D 上,长为4的弦A B 与直径C D 平行且与小半圆相切,那么圆中阴影部分面积等于 .2第3题. (2006 荆门大纲)在半径为1的圆中,135的圆心角所对的弧长为( ) A.8π3B.3π8C.4π3D.3π4第4题. (2006 芜湖课改)一位小朋友在粗糙不打滑的“Z”字形平面轨道上滚动一个半径为10cm 的圆盘,如图所示,A B与C D 是水平的,B C 与水平面的夹角为60,其中60cm 40cm AB CD ==,,40cm B C =,请你作出该小朋友将圆盘从A 点滚动到D 点其圆心所经过的路线的示意图,并求出此路线的长度.1 2 1 22 1A .B .C .D .C OA B 4 D60cmBE第5题. (2006 河南课改)如图,一块含有30 角的直角三角板ABC ,在水平桌面上绕点C 按顺时针方向旋转到A B C ''的位置.若B C 的长为15cm ,那么顶点A 从开始到结束所经过的路径长为( ) A.10πcmB.cm C.15πcmD.20πcm5 8第6题. (2006 枣庄非课改)钟表的轴心到分针针端的长为5cm ,那么经过40分钟,分针针端转过的弧长是( ) A.10πcm 3B.20πcm 3C.25πcm 3D.50πcm 3第7题. (2006 德州非课改)钟表的轴心到分针针端的长为5cm ,那么经过40分钟,分针针端转过的弧长是 .8题. (2006 济南非课改)如图,矩形A B C D 中,86AB AD ==,,将矩形A B C D 在直线l 上按顺时针方向不滑动的每秒转动90 ,转动3秒后停止,则顶点A 经过的路线长为 .第9题. (2006 佛山非课改)如图,矩形草坪ABC D中,10m AD AB ==,.现需要修一条由两个扇环构成的便道H EFG ,扇环的圆心分别是B D ,.若便道的宽为1m ,则这条便道的面积大约是( )(精确到20.1m ).A.29.5m B.210.0m C.210.5mD.211.0m9 12 13 14第10题. (2006 湛江非课改)如果一个扇形的圆心角为135,半径为8,那么该扇形的弧长是 .第11题. (2006 镇江课改)已知扇形的圆心角为120︒,半径为2cm ,则扇形的弧长是 cm ,扇形的面积是______ 2cm . 第12题. (2006 白银课改)如图,ABC △的边长都大于2,分别以它的顶点为圆心,1为半径画弧(弧的端点分别在三角形的相邻两边上),则这三条弧的长的和是( )A.4π B.3π C.6π D.5π第13题. (2006 韶关课改)如右图,A ,B ,C ,D 相互外离,它们的半径都是1,顺次连结四个圆心得到四边形A B C D ,则图中四个扇形(阴影部分)的面积之和等于__________.(结果保留π)第14题. (2006 贵阳课改)如图,B 是线段A C 上一点,且:2:5AB AC =,分别以A B ,A C 为直径画圆,则小圆面积与大圆面积之比为___________.15 16173lACBDGFH E2L LBB(D ) C C lB第15题. (2006 菏泽课改)如图,1O ,2O ,3O ,4O ,O 的半径均为2cm ,O 与1O ,3O 相外切,O 与2O ,4O 相外切,并且圆心分别位于两条互相垂直的直线1L ,2L 上,连结1O ,2O ,3O ,4O 得四边形1234O O O O ,则图中阴影部分的面积为_________2cm .第16题. (2006贺州课改)如图,AB =O 为A B 的中点,AC BD ,都是半径为3的O 的切线,C D ,为切点,则 CD 的长为 . 第17题. (2006 黄冈非课改)将边长为8cm 的正方形A B C D 的四边沿直线l 向右滚动(不滑动),当正方形滚动两周时,正方形的顶点A 所经过的路线的长是 cm .第18题. (2006 济宁课改)如图,以B C 为直径,在半径为2圆心角为90 的扇形内作半圆,交弦A B 于点D ,连接C D ,则阴影部分的面积是( A .1π- B .2π- C .112π- D .122π-18 19 20第19题. (2006 荆州课改)有一张矩形纸片A B C D ,其中4cm A D =.上面有一个以A D 为直径的半圆,正好与对边B C 相切,如图(甲).将它沿D E 折叠,使A 点落在B C 上,如图(乙).这时,半圆还露在外面的部分(阴影部分)的面积是( )A.(2πcm -B.21πcm 2⎛+⎝C.24πcm 3⎛- ⎝D.22πcm 3⎛+ ⎝第20题. (2006 柳州、北海课改)如图,四边形A B C D 是一个矩形,C 的半径是2cm ,4cm 2cm C F EF ==,.则图中阴影部分的面积约为 2cm (精确到20.1cm ).与《弧长、扇形等面积》有关的计算中考题集锦(二)第1题. (2006 黔南非课改)秋千拉绳长3米,静止时踩板离地面0.5米,某小朋友荡秋千时,秋千在最高处踩板离地面2米(左右对称),如图5所示,则该秋千所荡过的圆弧长为( )A .π米 B .2π米C .43π米 D .43米2第2题. (2006 宜昌课改)某校编排的一个舞蹈需要五把和图1形状大小完全相同的绸扇.学校现有三把符合要求的绸扇,将这三把绸扇完全展开刚好组成图2所示的一朵圆形的花.请你算一算:再做两把这样的绸扇至少需要多少平方米的绸布?(单面制作,不考虑绸扇的折皱,结果用含π的式子表示)AB C DB A DC B ED C A甲 乙 G 1 18cm 12cm 图2第3题. (2006 嘉兴课改)如图,已知A B C △,6AC BC ==,90C ∠= .O 是A B 的中点,O 与A C 相切于点D ,与B C 相切于点E ,设O 交O B 于F ,连D F 并延长交C B 的延长线于G .(1)B F G ∠与B G F ∠是否相等?为什么?(2)求由D G ,G E 和弧E D 所围成图形的面积(阴影部分).第4题. (2006 鄂尔多斯非课改)如图,在相距60km 的两个城镇A B ,之间,有一近似圆形的湖泊,其半径为15km ,圆心O 恰好位于A B ,连线的中点处.现要绕过湖泊从A 城到B 城,假设除湖泊外,所有的地方均可行走,如路线:线段AC CD →→线段D B ,其中C D ,在直线A B 上.请你找出最短的行走路线,并求出这条路线的长度. 1.73)≈π≈3.14,4 6 7第5题. (2006 沈阳非课改)在O 中,90 的圆心角所对的弧长是2πcm ,则O 的半径是____________cm . 第6题. (2006 兰州A 课改)一个滑轮起重装置如图所示,滑轮的半径是10cm ,当重物上升10cm 时,滑轮的一条半径O A 绕轴心O 按逆时针方向旋转的角度约为 .(假设绳索与滑轮之间没有滑动,π取3.14,结果精确到1 ) 第7题. (2006 辽宁十一市课改)如图,扇形AO B 的圆心角为90 ,四边形O C D E 是边长为1的正方形,点C E D ,,分别在O A O B ,, AB 上,过A 作AF ED ⊥交ED 的延长线于点F ,那么图中阴影部分的面积为 .第8题. (2006 新疆课改)某公园计划砌一个形状如图(1)所示的喷水池,后来有人建议改为图(2)的形状,且外圆的直径不变,喷水池边沿的宽度、高度不变,你认为砌喷水池的边沿( ) A.图(1)需要的材料多B.图(2)需要的材料多C.图(1)、图(2)需要的材料一样多D.无法确定第9题. (2006 漳州课改)如图,已知A B 是O 的直径,A C 是弦,过点O 作O D A C ⊥ 于D ,连结B C .(1)求证:12O D B C =;(2)若40BAC =∠,求ABC 的度数.图(1) 图(2)C O E BC D A F第10题. (2006 吉林课改)如图,圆心为点M 的三个半圆的直径都在x 轴上,所有标注A 的图形面积都是A S ,所有标注B 的图形面积都是B S .(1)求标注C 的图形面积C S ;(2)求:A B S S .第11题. (2006 山西非课改)小明自制了一个翘翘板,它的左、右臂O A ,O B 的长分别为1米,2米.如图所示,当点B 经过的路径长为1米时,点A 经过的路径长为_________米.第12题. (2006 山西临汾课改)如图,网格中每个小正方形的边长均为1.在A B 的左侧,分别以A B C △的三边为直径作三个半圆围成图中的阴影部分. (1)图中A B C △是什么特殊三角形? (2)求图中阴影部分的面积;(3)作出阴影部分关于A B 所在直线的对称图形.第13题. (2006 安徽非课改)如图用两道绳子....捆扎着三瓶直径均为8cm 的酱油瓶,若不计绳子接头(π取3),则捆绳总长是( ) A.24cm B.48cm C.96cmD.192cm第14题. (2006 南宁课改)已知圆上一段弧长为5cm π,它所对的圆心角为100,则该圆的半径为( )A.6 B.9 C.12 D.18第15题. (2006 南宁课改)如图,A 是硬币圆周上一点,硬币与数轴相切于原点O (A 与O 点重合).假设硬币的直径为1个单位长 度,若将硬币沿数轴正方向滚动一周,点A 恰 好与数轴上点A '重合,则点A '对 应的实数是 . 答案: 第16题. (2006 南充课改)如图,O 的半径O B A C 2 4 M 6 8 10 x B BB B AA yO A BA BCA为3,6O A =,A B 切O 于B ,弦BC O A ∥,连结A C ,图中阴影部分的面积为 .第17题. (2006 娄底)如图,一个半径为20cm 的转动轮转动150 角时,传送带上的物体A 平移的距离是 cm .(结果用含π的式子表示)第18题. (2006 岳阳课改)钟面上的分针长是6cm ,经过25分钟时间,分针在钟面上扫过的面积是( ) A.215πcm2 B.215πcm C.29πcm D.230πcm第19题. (2006 张家界课改)中央电视台大风车栏目图标如图甲,其中心为O ,半圆 ACB 固定,其半径为2r ,车轮为中心对称图形,轮片也是半圆形,小红通过观察发现车轮旋转过程中留在半圆 ACB 内的轮片面积是不变的(如图乙),这个不变的面积值是___________.第20题. (2006 张家界课改)如右图,某运动员P 从半圆跑道的A 点出发沿 AB 匀速前进到达终点B ,若以时间t 为自变量,扇形O A P 的面积S 为函数的图象大致是( )A CB O (甲) (乙) OB C AA. B. C. D.A。

相关文档
最新文档