离散型随机变量概率基础作业练习含答案解析高二数学北京海淀
高中数学选修2-3 离散型随机变量导学案加课后作业及答案
§2.1.1 离散型随机变量【学习要求】1.理解随机变量及离散型随机变量的含义.2.了解随机变量与函数的区别与联系.【学法指导】引进随机变量的概念,就可以用数字描述随机现象,建立连接数和随机现象的桥梁,通过随机变量和函数类比,可以更好地理解随机变量的定义,随机变量是函数概念的推广.【知识要点】1.随机试验:一般地,一个试验如果满足下列条件:(1)试验可以在相同的情形下重复进行;(2)试验所有可能的结果是明确的,并且不只一个;(3)每次试验总是恰好出现这些可能结果中的一个,但在一次试验之前却不能肯定这次试验的结果会出现哪一个.这种试验就是一个随机试验.2.随机变量:在随机试验中,随着变化而变化的变量称为随机变量.3.离散型随机变量:所有取值可以的随机变量,称为离散型随机变量.【问题探究】探究点一随机变量的概念问题1掷一枚骰子,出现的点数可以用数字1,2,3,4,5,6来表示,那么掷一枚硬币的结果是否也可以用数字来表示呢?问题2随机变量和函数有类似的地方吗?例1下列变量中,哪些是随机变量,哪些不是随机变量?并说明理由.(1)上海国际机场候机室中2013年10月1日的旅客数量;(2)2013年某天济南至北京的D36次列车到北京站的时间;(3)2013年某天收看齐鲁电视台《拉呱》节目的人数;(4)体积为1 000 cm3的球的半径长.小结随机变量从本质上讲就是以随机试验的每一个可能结果为自变量的一个函数,即随机变量的取值实质上是试验结果对应的数,但这些数是预先知道所有可能的值,而不知道究竟是哪一个值.跟踪训练1指出下列变量中,哪些是随机变量,哪些不是随机变量,并说明理由.(1)某人射击一次命中的环数;(2)任意掷一枚均匀硬币5次,出现正面向上的次数;(3)投一颗质地均匀的骰子两次出现的点数(最上面的数字)中的最小值;(4)某个人的属相.探究点二离散型随机变量的判定问题1什么是离散型随机变量?问题2非离散型随机变量和离散型随机变量有什么区别?例2①某座大桥一天经过的中华牌轿车的辆数为ξ;②某网站中歌曲《爱我中华》一天内被点击的次数为ξ;③一天内的温度为ξ;④射手对目标进行射击,击中目标得1分,未击中目标得0分,用ξ表示该射手在一次射击中的得分.上述问题中的ξ是离散型随机变量的是()A.①②③④B.①②④C.①③④D.②③④小结该题主要考查离散型随机变量的定义,判断时要紧扣定义,看是否能一一列出.跟踪训练2指出下列随机变量是否是离散型随机变量,并说明理由.(1)白炽灯的寿命ξ;(2)某加工厂加工的一批某种钢管的外径与规定的外径尺寸之差ξ;(3)江西九江市长江水位监测站所测水位在(0,29]这一范围内变化,该水位站所测水位ξ;(4)一个袋中装有5个白球和5个黑球,从中任取3个,其中所含白球的个数.探究点三离散型随机变量的应用例3(1)一袋中装有5只同样大小的白球,编号为1,2,3,4,5.现从该袋内随机取出3只球,被取出的球的最大号码数ξ.写出随机变量ξ可能取的值,并说明随机变量所取的值表示的随机试验的结果.(2)抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为ξ,试问:“ξ>4”表示的试验结果是什么?小结解答此类问题的关键在于明确随机变量的所有可能的取值,以及其取每一个值时对应的意义,即一个随机变量的取值可能对应一个或多个随机试验的结果,解答过程中不要漏掉某些试验结果.跟踪训练3下列随机试验的结果能否用离散型随机变量表示?若能,请写出各随机变量可能的取值并说明这些值所表示的随机试验的结果.(1)盒中装有6支白粉笔和2支红粉笔,从中任意取出3支,其中所含白粉笔的支数ξ,所含红粉笔的支数η.(2)从4张已编有1~4的卡片中任意取出2张,被取出的卡片号数之和ξ.(3)离开天安门的距离η.(4)袋中有大小完全相同的红球5个,白球4个,从袋中任意取出一球,若取出的球是白球,则过程结束;若取出的球是红球,则将此红球放回袋中,然后重新从袋中任意取出一球,直至取出的球是白球,此规定下的取球次数ξ.【当堂检测】1.下列变量中,不是随机变量的是()A.一射击手射击一次命中的环数B.标准状态下,水沸腾时的温度C.抛掷两枚骰子,所得点数之和D.某电话总机在时间区间(0,T)内收到的呼叫次数2.10件产品中有3件次品,从中任取2件,可作为随机变量的是()A.取到产品的件数B.取到正品的概率C.取到次品的件数D.取到次品的概率3.抛掷2枚骰子,所得点数之和记为ξ,那么“ξ=4”表示的随机试验的结果是()A.2枚都是4点B.1枚是1点,另1枚是3点C.2枚都是2点D.1枚是1点,另1枚是3点,或者2枚都是2点4.一袋中装有6个同样大小的黑球,编号为1,2,3,4,5,6.现从中随机取出2个球,以ξ表示取出的球的最大号码,则“ξ=6”表示的试验结果是___________________.【课堂小结】1.所谓的随机变量就是试验结果和实数之间的一个对应关系,随机变量是将试验的结果数量化,变量的取值对应于随机试验的某一个随机事件.2.写随机变量表示的结果,要看三个特征:(1)可用数来表示;(2)试验之前可以判断其可能出现的所有值;(3)在试验之前不能确定取值.【课后作业】一、基础过关1.袋中有2个黑球6个红球,从中任取两个,可以作为随机变量的是() A.取到的球的个数B.取到红球的个数C.至少取到一个红球D.至少取到一个红球的概率2.①某电话亭内的一部电话1小时内使用的次数记为X;②某人射击2次,击中目标的环数之和记为X;③测量一批电阻,在950 Ω~1 200 Ω之间的阻值记为X;④一个在数轴上随机运动的质点,它在数轴上的位置记为X.其中是离散型随机变量的是()A.①②B.①③C.①④D.①②④3.袋中装有大小相同的5个球,分别标有1,2,3,4,5五个号码,现在在有放回取出的条件下依次取出两个球,设两个球号码之和为随机变量ξ,则ξ所有可能取值的个数是()A.5 B.9C.10 D.254.某人射击的命中率为p(0<p<1),他向一目标射击,当第一次射中目标则停止射击,射击次数的取值是()A.1,2,3,…,n B.1,2,3,…,n,…C.0,1,2,…,n D.0,1,2,…,n,…5.某人进行射击,共有5发子弹,击中目标或子弹打完就停止射击,射击次数为ξ,则“ξ=5”表示的试验结果是()A.第5次击中目标B.第5次未击中目标C.前4次均未击中目标D.第4次击中目标6.一木箱中装有8个同样大小的篮球,编号为1,2,3,4,5,6,7,8,现从中随机取出3个篮球,以ξ表示取出的篮球的最大号码,则ξ=8表示的试验结果有________种.二、能力提升7.如果X是一个离散型随机变量且η=aX+b,其中a,b是常数且a≠0,那么η() A.不一定是随机变量B.一定是随机变量,不一定是离散型随机变量C.一定是连续型随机变量D.一定是离散型随机变量8.在8件产品中,有3件次品,5件正品,从中任取一件,取到次品就停止,抽取次数为ξ,则ξ=3表示的试验结果是__________________9.在一次考试中,某位同学需回答三个问题,考试规则如下:每题回答正确得100分,回答不正确得-100分,则这名同学回答这三个问题的总得分ξ的所有可能取值是________.10.一用户在打电话时忘记了最后3个号码,只记得最后3个数两两不同,且都大于5.于是他随机拨最后3个数(两两不同),设他拨到正确号码的次数为X,随机变量X的可能值有________个.11.设一汽车在开往目的地的道路上需经过5盏信号灯,ξ表示汽车首次停下时已通过的信号灯的盏数,写出ξ所有可能取值并说明这些值所表示的试验结果.12.某车间两天内每天生产10件某产品,其中第一天、第二天分别生产了1件、2件次品,而质检部门每天要在生产的10件产品中随机抽取4件进行检查,若发现有次品,则当天的产品不能通过.若厂内对车间生产的产品采用记分制,两天全不通过检查得0分,通过一天、两天分别得1分、2分,设该车间在这两天内总得分为ξ,写出ξ的可能取值.三、探究与拓展13.小王钱夹中只剩有20元、10元、5元、2元和1元的人民币各一张.他决定随机抽出两张,用来买晚餐,用X表示这两张金额之和.写出X的可能取值,并说明所取值表示的随机试验结果§2.1.2离散型随机变量的分布列(一)【学习要求】1.在对具体问题的分析中,理解取有限值的离散型随机变量及其分布列的概念.认识分布列对于刻画随机现象的重要性.2.掌握离散型随机变量分布列的表示方法和性质.【学法指导】离散型随机变量的分布列可以完全描述随机变量所刻画的随机现象,利用分布列可以计算随机变量所表示的事件的概率.【知识要点】1.定义:一般地,若离散型随机变量X可能取的不同值为x1,x2,…,x i,…,x n,X取每一个值x i (i=1,2,…,n)的概率此表称为离散型随机变量X的概率分布列,简称为X的.2.离散型随机变量的分布列的性质:(1)p i 0,i =1,2,3,…,n ;(2)∑ni =1p i = .【问题探究】探究点一 离散型随机变量的分布列的性质问题1 对于一个随机试验,仅知道试验的可能结果是不够的,还要能把握每一个结果发生的概率.请问抛掷一枚骰子,朝上的一面所得点数有哪些值?取每个值的概率是多少?问题2 离散型随机变量X 的分布列刻画的是一个函数关系吗?有哪些表示法? 问题3 离散型随机变量的分布列有哪些性质?例1 设随机变量X 的分布列P ⎝⎛⎭⎫X =k5=ak (k =1,2,3,4,5). (1)求常数a 的值; (2)求P ⎝⎛⎭⎫X ≥35; (3)求P ⎝⎛⎭⎫110<X <710. 小结 离散型随机变量的分布列的性质可以帮助我们求题中参数a ,然后根据互斥事件的概率加法公式求得概率.跟踪训练1 (1试说明该同学的计算结果是否正确.(2)设ξ①求q 的值;②求P (ξ<0),P (ξ≤0).探究点二 求离散型随机变量的分布列例2 将一颗骰子掷两次,求两次掷出的最大点数ξ的分布列.小结 (1)求离散型随机变量的分布列关键是搞清离散型随机变量X 取每一个值时对应的随机事件,然后利用排列、组合知识求出X 取每个值的概率,最后列出分布列.(2)求离散型随机变量X 的分布列的步骤是:首先确定X 的所有可能的取值;其次,求相应的概率P (X =x i )=p i ;最后列成表格的形式.跟踪训练2 将一颗骰子掷2次,求下列随机事件的分布列. (1)两次掷出的最小点数Y ;(2)第一次掷出的点数减去第二次掷出的点数之差ξ.【当堂检测】1.下列表中可以作为离散型随机变量的分布列的是( )ABCD2.设随机变量ξ的分布列为P (ξ=i )=a ⎝⎛⎭⎫13i,i =1,2,3,则a 的值为 ( ) A .1B .913C .2713D .11133.将一枚硬币扔三次,设X 为正面向上的次数,则P (0<X <3)=________.4.一盒中放有大小相同的红色、绿色、黄色三种小球,已知红球个数是绿球个数的两倍,黄球个数是绿球个数的一半.现从该盒中随机取出一个球,若取出红球得1分,取出黄球得0分,取出绿球得-1分,试写出从该盒中取出一球所得分数ξ的分布列.【课堂小结】1.离散型随机变量的分布列,不仅能清楚地反映其所取的一切可能的值,而且能清楚地看到每一个值的概率的大小,从而反映了随机变量在随机试验中取值的分布情况.2.一般地,离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.【课后作业】一、基础过关1.若随机变量X( )A .1B .12C .13D .162.设随机变量X 的分布列为P (X =k )=m ⎝⎛⎭⎫23k,k =1,2,3,则m 的值为( )A .1718B .2738C .1719D .27193.抛掷2颗骰子,所得点数之和ξ是一个随机变量,则P (ξ≤4)等于( ) A .16 B .13 C .12D .234.袋中有大小相同的红球6个,白球5个,从袋中每次任意取出1个球,直到取出的球是白球为止,所需要的取球次数为随机变量ξ,则ξ的可能取值为( )A .1,2,3,…,6B .1,2,3,…,7C .0,1,2,…,5D .1,2,…,5 5.随机变量ξ的所有可能取值为1,2,…,n ,若P (ξ<4)=0.3,则 ( ) A .n =3B .n =4C .n =10D .不能确定6.抛掷两次骰子,两次点数的和不等于8的概率为 ( )A .1112B .3136C .536D .1127.设随机变量X 的分布列为P (X =k )=Ck (k +1),k =1,2,3,C 为常数,则P (0.5<X <2.5)=________.二、能力提升8.已知随机变量ξ只能取三个值x 1,x 2,x 3,其概率依次成等差数列,则该等差数列公差的取值范围是( )A .⎣⎡⎦⎤0,13B .⎣⎡⎦⎤-13,13C .[-3,3]D .[0,1]9.一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X 是一个随机变量,其分布列为P (X ),则P (X =4)的值为( )A .1220B .2755C .27220D .212510.盒中装有大小相等的10个球,编号分别是0,1,2,…,9,从中任取1个,观察号码是“小于5”“等于5”“大于5”三类情况之一,求其概率分布列.11.已知随机变量ξ(1)求η1=12ξ的分布列;(2)求η2=ξ2的分布列.12.从4张已编号(1~4号)的卡片中任意取出2张,取出的卡片号码数之和为X .求随机变量X 的分布列.三、探究与拓展13.安排四名大学生到A ,B ,C 三所学校支教,设每名大学生去任何一所学校是等可能的.(1)求四名大学生中恰有两人去A 校支教的概率; (2)设有大学生去支教的学校的个数为ξ,求ξ的分布列.§2.1.2 离散型随机变量的分布列(二)【学习要求】1.进一步理解离散型随机变量的分布列的求法、作用.2.理解两点分布和超几何分布.【学法指导】两点分布是常见的离散型随机变量的概率分布,如某队员在比赛中能否胜出,某项科学试验是否成功,都可用两点分布来研究.在产品抽样检验中,一般采用不放回抽样,则抽到次品数服从超几何分布;在实际工作中,计算次品数为k 的概率,由于涉及产品总数,计算比较复杂,因而,当产品数较大时,可用后面即将学到的二项分布来代替.【知识要点】1则称离散型随机变量X 服从2.一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )=C k M C n -k N -MC nN,k =0,1,2,…,m ,其中*为 .如果随机变量X 的分布列为超几何分布列,则称随机变量X 服从【问题探究】探究点一 两点分布问题1 利用随机变量研究一类问题,如抽取的奖券是否中奖,买回的一件产品是否为正品,新生婴儿的性别,投篮是否命中等,这些有什么共同点?问题2 只取两个不同值的随机变量是否一定服从两点分布?例1 袋中有红球10个,白球5个,从中摸出2个球,如果只关心摸出两个红球的情形,问如何定义随机变量X ,才能使X 满足两点分布,并求分布列.小结 两点分布中只有两个对应的结果,因此在解答此类问题时,应先分析变量是否满足两点分布的条件,然后借助概率的知识,给予解决.跟踪训练1 设某项试验成功率是失败率的2倍,用随机变量ξ描述1次试验的成功次数,则P (ξ=0)等于 ( ) A .0B .12C .13D .23探究点二 超几何分布问题 超几何分布适合解决什么样的概率问题?例2 从一批含有13件正品、2件次品的产品中,不放回任取3 件,求取得次品数为ξ的分布列.跟踪训练2 某校高三年级某班的数学课外活动小组中有6名男生,4名女生,从中选出4人参加数学竞赛考试,用X 表示其中的男生人数. (1)求X 的分布列;(2)求至少有2名男生参加数学竞赛的概率. 探究点三 实际应用例3 在一次购物抽奖活动中,假设某10张奖券中有一等奖券1张,可获得价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖,某顾客从这10张中任抽2张,求: (1)该顾客中奖的概率;(2)该顾客获得的奖品总价值X (元)的分布列.小结 此类题目中涉及的背景多数是生活、生产实践中的问题,如产品中的正品和次品,盒中的白球和黑球,同学中的男生和女生等,分析题意,判断其中的随机变量是否服从超几何分布是解决此类题目的关键. 跟踪训练3 交5元钱,可以参加一次摸奖,一袋中有同样大小的球10个,其中8个标有1元钱,2个标有5元钱,摸奖者只能从中任取2个球,他所得奖励是所抽2球的钱数之和,求抽奖人所得钱数的分布列.【当堂检测】1.今有电子元件50个,其中一级品45个,二级品5个,从中任取3个,出现二级品的概率为 ( ) A .C 35C 350B .C 15+C 25+C 35C 350 C .1-C 345C 350D .C 15C 25+C 25C 145C 3502.一个箱内有9张票,其号数分别为1,2,3,…,9,从中任取2张,其号数至少有一个为奇数的概率是 ( )A .13B .12C .16D .563.在掷一枚图钉的随机试验中,令X =⎩⎪⎨⎪⎧1,针尖向上0,针尖向下,如果针尖向上的概率为0.8,试写出随机变量X 的分布列为___________4.袋中有4只红球3只黑球,从袋中任取4只球,取到1只红球得1分,取到1只黑球得3分,设得分为随机变量ξ,则P (ξ≤6)=________【课堂小结】1.两点分布两点分布是很简单的一种概率分布,两点分布的试验结果只有两种可能,要注意成功概率的值指的是哪一个量.2.超几何分布超几何分布在实际生产中常用来检验产品的次品数,只要知道N 、M 和n 就可以根据公式:P (X =k )=C k M C n -k N -MC nN求出X 取不同值k 时的概率.学习时,不能机械地去记忆公式,而要结合条件以及组合知识理解M 、N 、n 、k 的含义.【课后作业】一、基础过关1.在100张奖券中,有4张能中奖,从中任取2张,则2张都能中奖的概率是 ( )A .150B .125C .1825D .14 9502.从一副不含大、小王的52张扑克牌中任意抽出5张,则至少有3张是A 的概率为( )A .C 34C 248C 552B .C 348C 24C 552 C .1-C 148C 44C 552D .C 34C 248+C 44C 148C 5523.一个盒子里装有相同大小的10个黑球,12个红球,4个白球,从中任取2个,其中白球的个数记为X ,则下列概率等于C 122C 14+C 22C 226的是 ( )A .P (0<X ≤2)B .P (X ≤1)C .P (X =1)D .P (X =2) 4.在3双皮鞋中任意抽取两只,恰为一双鞋的概率为( )A .15B .16C .115D .135.在5件产品中,有3件一等品和2件二等品,从中任取2件,那么以710为概率的事件是( )A .都不是一等品B .恰有一件一等品C .至少有一件一等品D .至多有一件一等品 6.若离散型随机变量X 的分布列为:则c =________. 二、能力提升7.从只有3张中奖的10张彩票中不放回随机逐张抽取,设X 表示直至抽到中奖彩票时的次数,则P (X =3)等于( )A .310B .710C .2140D .7408.若随机变量X 服从两点分布,且P (X =0)=0.8,P (X =1)=0.2.令Y =3X -2,则P (Y =-2)=____. 9.有同一型号的电视机100台,其中一级品97台,二级品3台,从中任取4台,则二级品不多于1台的概率为________.(用式子表示)10.老师要从10篇课文中随机抽3篇让学生背诵,规定至少要背出其中2篇才能及格.某同学只能背诵其中的6篇,试求:(1)抽到他能背诵的课文的数量的分布列; (2)他能及格的概率.11.已知箱中装有4个白球和5个黑球,且规定:取出一个白球得2分,取出一个黑球得1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出此3球所得分数之和.求X的分布列.三、探究与拓展12.袋中装着标有数字1,2,3,4,5的小球各2个,从袋中任取3个小球,按3个小球上最大数字的9倍计分,每个小球被取出的可能性都相等,用X表示取出的3个小球上的最大数字,求:(1)取出的3个小球上的数字互不相同的概率;(2)随机变量X的分布列;(3)计算介于20分到40分之间的概率.§2.2.1条件概率【学习要求】1.理解条件概率的定义.2.掌握条件概率的计算方法.3.利用条件概率公式解决一些简单的实际问题.【学法指导】理解条件概率可以以简单事例为载体,先从古典概型出发求条件概率,然后再进行推广;计算条件概率可利用公式P(B|A)=P(AB)P(A),也可以利用缩小样本空间的观点计算.【知识要点】1.条件概率的概念设A,B为两个事件,且P(A)>0,称P(B|A)=为在事件发生的条件下,事件发生的条件概率.P(B|A)读作发生的条件下发生的概率.2.条件概率的性质(1)P(B|A)∈.(2)如果B与C是两个互斥事件,则P(B∪C|A)=.【问题探究】探究点一条件概率问题13张奖券中只有1张能中奖,现分别由3名同学无放回地抽取,问最后一名同学抽到中奖奖券的概率是否比其他同学小?问题2如果已知第一名同学没有抽到中奖奖券,那么最后一名同学抽到中奖奖券的概率是多少?问题3怎样计算条件概率?问题4若事件A、B互斥,则P(B|A)是多少?例1在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2道题,求:(1)第1次抽到理科题的概率;(2)第1次和第2次都抽到理科题的概率;(3)在第1次抽到理科题的条件下,第2次抽到理科题的概率.小结利用P(B|A)=n ABn A解答问题的关键在于明确B中的基本事件空间已经发生了质的变化,即在A事件必然发生的前提下,B事件包含的样本点数即为事件AB包含的样本点数.跟踪训练1一个盒子中有6个白球、4个黑球,每次从中不放回地任取1个,连取两次,求第一次取到白球的条件下,第二次取到黑球的概率.探究点二条件概率的性质及应用问题条件概率满足哪些性质?例2一张储蓄卡的密码共有6位数字,每位数字都可从0~9中任选一个.某人在银行自动提款机上取钱时,忘记了密码的最后一位数字,求:(1)任意按最后一位数字,不超过2次就按对的概率;(2)如果他记得密码的最后一位是偶数,不超过2次就按对的概率.小结本题条件多,所设事件多,要分清楚事件之间的关系及谁是条件,同时利用公式P(B∪C|A)=P(B|A)+P(C|A)可使有些条件概率的计算较为简捷,但应注意这个性质在“B与C互斥”这一前提下才成立.跟踪训练2在某次考试中,从20道题中随机抽取6道题,若考生至少能答对其中的4道即可通过;若至少能答对其中5道就获得优秀.已知某考生能答对其中10道题,并且知道他在这次考试中已经通过,求他获得优秀成绩的概率.【当堂检测】1.从1,2,3,4,5中任取2个不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则P(B|A)等于()A.18B.14C.25D.122.某人一周晚上值班2次,在已知他周日一定值班的条件下,则他在周六晚上值班的概率为________ 3.设某种动物能活到20岁的概率为0.8,能活到25岁的概率为0.4,现有一只20岁的这种动物,问它能活到25岁的概率是_______4.考虑恰有两个小孩的家庭.若已知某家有男孩,求这家有两个男孩的概率;若已知某家第一个是男孩,求这家有两个男孩(相当于第二个也是男孩)的概率.(假定生男生女为等可能)【课堂小结】1.条件概率:P(B|A)=P(AB)P(A)=n(AB)n(A).2.概率P(B|A)与P(AB)的区别与联系:P(AB)表示在样本空间Ω中,计算AB发生的概率,而P(B|A)表示在缩小的样本空间ΩA中,计算B发生的概率.用古典概型公式,则P(B|A)=AB中样本点数ΩA中样本点数,P(AB)=AB中样本点数Ω中样本点数.【课后作业】一、基础过关1.若P (A )=34,P (B |A )=12,则P (AB )等于( )A .23B .38C .13D .582.盒中装有10只乒乓球,其中6只新球,4只旧球,不放回地依次取出2只球使用,在第一次摸出新球的条件下,第二次也取到新球的概率为( ) A .59 B .110C .35D .253.某地区气象台统计,该地区下雨的概率是415,刮风的概率为215,既刮风又下雨的概率为110,则在下雨天里,刮风的概率为( )A .8225B .12C .38D .344.某人忘记了一个电话号码的最后一个数字,只好任意去试拨,他第一次失败、第二次成功的概率是 ( )A .110B .210C .810D .9105.某地一农业科技实验站,对一批新水稻种子进行试验,已知这批水稻种子的发芽率为0.8,出芽后的幼苗成活率为0.9,在这批水稻种子中,随机地抽取一粒,则这粒水稻种子能成长为幼苗的概率为 ( ) A .0.02B .0.08C .0.18D .0.726.有一匹叫Harry 的马,参加了100场赛马比赛,赢了20场,输了80场.在这100场比赛中,有30场是下雨天,70场是晴天.在30场下雨天的比赛中,Harry 赢了15场.如果明天下雨,Harry 参加赛马的赢率是 ( )A .15B .12C .34D .3107.从混有5张假钞的20张百元钞票中任意抽出2张,将其中1张放到验钞机上检验发现是假钞,则第2张也是假钞的概率为( )A .119B .1738C .419D .217二、能力提升8.一个袋中装有7个大小完全相同的球,其中4个白球,3个黄球,从中不放回地摸4次,一次摸一球,已知前两次摸得白球,则后两次也摸得白球的概率为________.9.以集合A ={2,4,6,7,8,11,12,13}中的任意两个元素分别为分子与分母构成分数,已知取出的一个数是12,则取出的数构成可约分数的概率是________.10.抛掷红、蓝两枚骰子,设事件A 为“蓝色骰子的点数为3或6”,事件B 为“两枚骰子的点数之和大于8”.(1)求P (A ),P (B ),P (AB );(2)当已知蓝色骰子点数为3或6时,问两枚骰子的点数之和大于8的概率为多少?11.把外形相同的球分装三个盒子,每盒10个.其中,第一个盒子中有7个球标有字母A,3个球标有字母B ;第二个盒子中有红球和白球各5个;第三个盒子中则有红球8个,白球2个.试验按如下规则进行:先在第一个盒子中任取一个球,若取得标有字母A 的球,则在第二个盒子中任取一个球;若第一次取得标有字母B 的球,则在第三个盒子中任取一个球.如果第二次取出的是红球,则称试验为成功.求试验成功的概率.三、探究与拓展12.某生在一次口试中,共有10题供选择,已知该生会答其中6题,随机从中抽5题供考生回答,答对3题及格,求该生在第一题不会答的情况下及格的概率.§2.2.2 事件的相互独立性【学习要求】1.在具体情境中,了解两个事件相互独立的概念.2.能利用相互独立事件同时发生的概率公式解决一些简单的实际问题.【学法指导】相互独立事件同时发生的概率可以和条件概率对比理解,事件独立可以简化概率计算,学习中要结合实例理解.【知识要点】1.相互独立的概念设A ,B 为两个事件,若P (AB )= ,则称事件A 与事件B 相互独立. 2.相互独立的性质如果事件A 与B 相互独立,那么A 与 , 与B , 与 也都相互独立.【问题探究】探究点一 相互独立事件的概念问题1 3张奖券只有1张能中奖,3名同学有放回地抽取.事件A 为“第一名同学没有抽到中奖奖券”,事件B 为“第三名同学抽到中奖奖券”,事件A 的发生是否会影响B 发生的概率?问题2 在问题1中求P (A )、P (B )及P (AB ),观察它们有何关系?总结相互独立事件的定义. 问题3 互斥事件与相互独立事件有什么区别?问题4 若A 与B 是相互独立事件,则A 与B ,A 与B ,A 与B 也相互独立,如何证明?例1 (1)甲、乙两名射手同时向一目标射击,设事件A :“甲击中目标”,事件B :“乙击中目标”,则事件A 与事件B ( )A .相互独立但不互斥B .互斥但不相互独立C .相互独立且互斥D .既不相互独立也不互斥(2)掷一颗骰子一次,设事件A :“出现偶数点”,事件B :“出现3点或6点”,则事件A ,B 的关系是 ( )A .互斥但不相互独立B .相互独立但不互斥。
离散型随机变量的方差概率基础作业练习含答案解析高二数学北京海淀
课时提升作业十三离散型随机变量的方差一、选择题(每小题5分,共25分)1.已知随机变量X的分布列是则E(X)和D(X)分别等于( )A.1和0B.1和1.8C.2和2D.2和0.8【解析】选D.E(X)=1×0.4+2×0.2+3×0.4=2,D(X)=(2-1)2×0.4+(2-2)2×0.2+(2-3)2×0.4=0.8.2.(2018·北京高二检测)已知随机变量X的方差D(X)=m,设Y=3X+2,则D(Y)=( ) A.9m B.3mC.mD.3m+2【解析】选A.因为D(X)=m,所以D(Y)=D(3X+2)=32D(X)=9D(X)=9m.3.(2018·威海高二检测)已知随机变量X的分布列为则下列式子:①E(X)=-;②D(X)=;③P(X=0)=.其中正确的个数是( )A.0B.1C.2D.3【解析】选C.由分布列可知,E(X)=(-1)×+0×+1×=-,故①正确;D(X)=×+×+×=,故②不正确,③显然正确.4.已知随机变量X的分布列如表,则随机变量X的方差D(X)的最大值为( )X 0 1 2P y 0.4 xA.0.72B.0.6C.0.24D.0.48【解题指南】根据三个变量对应的概率之和是1,写出y与x之间的关系,写出变量的期望和变量平方的期望,写出方差的表示式,表示式是一个关于x的二次函数,根据二次函数求最值可得答案.【解析】选B.由题意知y=0.6-x,因为E(X)=0.4+2x,所以E(X2)=0.4+4x,D(X)=E(X2)-(E(X))2=0.4+4x-(0.4+2x)2=-4x2+2.4x+0.24,当x=0.3时,D(X)max=0.6.5.有甲、乙两名射手,他们的射击技术用下表表示:甲击中环数8 9 10概率0.2 0.6 0.2乙击中环数8 9 10概率0.4 0.2 0.4试问哪一名射手技术较好? ( )A.甲B.乙C.一样好D.无法比较【解析】选A.由题意经计算可知E(X甲)=E(X乙),而D(X甲)<D(X乙),所以甲的射击技术较好.二、填空题(每小题5分,共15分)6.已知离散型随机变量X的分布列如下表,若E(X)=0,D(X)=1,则a=_________,b=_________.X -1 0 1 2P a b c 1 12【解析】由题意知解得答案:【延伸探究】在本题中,把条件“E(X)=0,D(X)=1”改为“a,b,c成等差数列,若E(ξ)=0”,则D(ξ)=__________.【解析】由题意知解得所以D(X)=(-1-0)2×+(0-0)2×+(1-0)2×+(2-0)2×=.答案:【补偿训练】已知X的分布列为:X -1 0 1P 121316若η=2X+2,则D(η)的值为__________.【解析】E(X)=-1×+0×+1×=-,D(X)=,D(η)=D(2X+2)=4D(X)=.答案:7.有甲、乙两种品牌的手表,它们的日误差分别为X,Y(单位:s),其分布列如下:则两种品牌中质量好的是__________.【解析】E(X)=E(Y)=0,D(X)=0.2,D(Y)=1.2,因为D(X)<D(Y),所以甲质量好.答案:甲【补偿训练】(2018·安康高二检测)一次数学测验由25道选择题构成,每个选择题有4个选项,其中有且仅有一个选项是正确的,每个答案选择正确得4分,不作出选择或选错不得分,满分100分,某学生选对任一题的概率均为0.6,则此学生在这一次测验中成绩的均值与方差分别为__________. 【解析】设该学生在这次数学测验中选对答案的题目的个数为X,所得的分数(成绩)为Y,则Y=4X.由题意知X~B(25,0.6),所以E(X)=25×0.6=15,D(X)=25×0.6×0.4=6,E(Y)=E(4X)=4E(X)=60,D(Y)=D(4X)=42×D(X)=16×6=96,所以该学生在这次测验中成绩的均值与方差分别是60与96.答案:60,968.抛掷一枚均匀硬币n(3≤n≤8)次,正面向上的次数ξ服从二项分布B,若P(ξ=1)=,则方差D(ξ)=__________.【解析】因为3≤n≤8,ξ服从二项分布B,且P(ξ=1)=,所以·=,即n=,解得n=6,所以方差D(ξ)=np(1-p)=6××=.答案:三、解答题(每小题10分,共20分)9.抛掷一枚质地均匀的骰子,用X表示掷出偶数点的次数.(1)若抛掷一次,求E(X)和D(X).(2)若抛掷10次,求E(X)和D(X).【解析】(1)X服从二点分布X 0 1P 1212所以E(X)=p=,D(X)=p(1-p)=×=.(2)依题意可知,X~B,所以E(X)=np=10×=5,D(X)=np(1-p)=10××=.10.海关大楼顶端镶有A,B两面大钟,它们的日走时误差分别为X1,X2(单位:s),其分布列为:X1=k -2 -1 0 1 2P(X1=k) 0.05 0.05 0.8 0.05 0.05X2=k -2 -1 0 1 2P(X2=k) 0.1 0.2 0.4 0.2 0.1根据这两面大钟日走时误差的均值与方差比较这两面大钟的质量.【解析】因为E(X1)=0,E(X2)=0,所以E(X1)=E(X2).又因为D(X1)=(-2-0)2×0.05+(-1-0)2×0.05+(0-0)2×0.8+(1-0)2×0.05+(2-0)2×0.05=0.5,D(X2)=(-2-0)2×0.1+(-1-0)2×0.2+(0-0)2×0.4+(1-0)2×0.2+(2-0)2×0.1=1.2,所以D(X1)<D(X2).所以大钟A的质量较好.。
高中数学离散型随机变量的期望与方差练习(含答案)
离散型随机变量均值与方差专题练习一、单选题(共16题;共32分)1.将三颗骰子各掷一次,记事件A=“三个点数都不同”,B=“至少出现一个6点”,则条件概率P(A|B),P (B|A)分别是()A. ,B. ,C. ,D. ,2.已知随机变量ξ服从正态分布N(1,1),若P(ξ<3)=0.977,则P(﹣1<ξ<3)=()A. 0.683B. 0.853C. 0.954D. 0.9773.随机变量X的取值为0,1,2,若P(X=0)= ,E(X)=1,则D(X)=()A. B. C. D.4.已知随机变量X服从正态分布N(3,1),且P(X≥4)=0.1587,则P(2<X<4)=()A. 0.6826B. 0.3413C. 0.4603D. 0.92075.甲乙等人参加米接力赛,在甲不跑第一棒的条件下,乙不跑第二棒的概率是()A. B. C. D.6.不透明袋子中装有大小、材质完全相同的2个红球和5个黑球,现从中逐个不放回地摸出小球,直到取出所有红球为止,则摸取次数的数学期望是()A. B. C. D.7.下面说法中正确的是()A. 离散型随机变量ξ的均值E(ξ)反映了ξ取值的概率的平均值B. 离散型随机变量ξ的方差D(ξ)反映了ξ取值的平均水平C. 离散型随机变量ξ的均值E(ξ)反映了ξ取值的平均水平D. 离散型随机变量ξ的方差D(ξ)反映了ξ取值的概率的平均值8.每次试验的成功率为,重复进行10次试验,其中前7次都未成功,后3次都成功的概率为()A. B. C. D.9.已知随机变量,则()A. B. C. D.10.设随机变量的分布列为,,则等于()A. B. C. D.11.现在有张奖券,张元的,张元的,某人从中随机无放回地抽取张奖券,则此人得奖金额的数学期望为()A. B. C. D.12.已知X~B(n,p),E(X)=2,D(X)=1.6,则n,p的值分别为()A. 100,0.8B. 20,0.4C. 10,0.2D. 10,0.813.袋中有大小相同的5个球,分别标有1,2,3,4,5五个号码,现在在有放回抽取的条件下依次取出两个球,设两个球号码之和为随机变量,则所有可能取值的个数是()A. 5B. 9C. 10D. 2514.电灯泡使用时数在1 000小时以上的概率为0.2,则三个灯泡在1 000小时以后最多有一个坏了的概率是()A. 0.401B. 0.104C. 0.410D. 0.01415.已知随机变量的概率分布列如下表所示:50.4且的数学期望,则()A. B. C. D.16.用电脑每次可以从区间(0,1)内自动生成一个实数,且每次生成每个实数都是等可能性的,若用该电脑连续生成3个实数,则这3个实数都大于的概率为()A. B. C. D.二、解答题(共7题;共65分)17.某班有6名班干部,其中男生4人,女生2人,任选3人参加学校组织的义务植树活动.(I)求男生甲、女生乙至少有1人被选中的概率;(II)设“男生甲被选中”为事件A,“女生乙被选中”为事件B,求P (A)和P (B|A).18.某射手每次射击击中目标的概率是,求这名射手在10次射击中,(1)恰有8次击中目标的概率;(2)至少有8次击中目标的概率.19.“中国人均读书4.3本(包括网络文学和教科书),比韩国的11本、法国的20本、日本的40本、犹太人的64本少得多,是世界上人均读书最少的国家.”这个论断被各种媒体反复引用,出现这样的统计结果无疑是令人尴尬的,而且和其他国家相比,我国国民的阅读量如此之低,也和我国是传统的文明古国、礼仪之邦的地位不相符.某小区为了提高小区内人员的读书兴趣,特举办读书活动,准备进一定量的书籍丰富小区图书站,由于不同年龄段需看不同类型的书籍,为了合理配备资源,现对小区内看书人员进行年龄调查,随机抽取了一天40名读书者进行调查,将他们的年龄分成6段:,,,,,后得到如图所示的频率分布直方图.问:(1)估计在40名读书者中年龄分布在的人数;(2)求40名读书者年龄的平均数和中位数;(3)若从年龄在的读书者中任取2名,求这两名读书者年龄在的人数的分布列及数学期望.20.某篮球队与其他6支篮球队依次进行6场比赛,每场均决出胜负,设这支篮球队与其他篮球队比赛中获胜的事件是独立的,并且获胜的概率均为.(1)求这支篮球队首次获胜前已经负了两场的概率;(2)求这支篮球队在6场比赛中恰好获胜3场的概率;(3)求这支篮球队在6场比赛中获胜场数的期望.21.某学校有甲、乙两个实验班,为了了解班级成绩,采用分层抽样的方法从甲、乙两个班学生中分别抽取8名和6名测试他们的数学成绩与英语成绩(单位:分),用表示(m,n).下面是乙班6名学生的测试分数:A(138,130),B(140,132),C(140,130),D(134,140),E(142,134),F(134,132),当学生的数学、英语成绩满足m≥135,且n≥130时,该学生定为优秀学生.(1)已知甲班共有80名学生,用上述样本数据估计乙班优秀生的数量;(2)从乙班抽出的上述6名学生中随机抽取3名,求至少有两名优秀生的概率;(3)从乙班抽出的上述6名学生中随机抽取2名,其中优秀生数记为ξ,求ξ的分布列和数学期望.22.甲参加A,B,C三个科目的学业水平考试,其考试成绩合格的概率如下表,假设三个科目的考试甲是否成绩合格相互独立.(I)求甲至少有一个科目考试成绩合格的概率;(Ⅱ)设甲参加考试成绩合格的科目数量为X,求X的分布列和数学期望.23.由于当前学生课业负担较重,造成青少年视力普遍下降,现从某高中随机抽取16名学生,经校医用对数视力表检查得到每个学生的视力状况的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶)如图:(Ⅰ)指出这组数据的众数和中位数;(Ⅱ)若视力测试结果不低丁5.0,则称为“好视力”,求校医从这16人中随机选取3人,至多有1人是“好视力”的概率;(Ⅲ)以这16人的样本数据来估计整个学校的总体数据,若从该校(人数很多)任选3人,记ξ表示抽到“好视力”学生的人数,求ξ的分布列及数学期望.答案解析部分一、单选题1.【答案】A【考点】条件概率与独立事件【解析】【解答】解:根据条件概率的含义,P(A|B)其含义为在B发生的情况下,A发生的概率,即在“至少出现一个6点”的情况下,“三个点数都不相同”的概率,∵“至少出现一个6点”的情况数目为6×6×6﹣5×5×5=91,“三个点数都不相同”则只有一个6点,共C31×5×4=60种,∴P(A|B)= ;P(B|A)其含义为在A发生的情况下,B发生的概率,即在“三个点数都不相同”的情况下,“至少出现一个6点”的概率,∴P(B|A)= .故选A.【分析】根据条件概率的含义,明确条件概率P(A|B),P(B|A)的意义,即可得出结论.2.【答案】C【考点】正态分布曲线的特点及曲线所表示的意义【解析】【解答】解:随机变量ξ服从正态分布N(1,1),∴曲线关于x=1对称,∵P(ξ<3)=0.977,∴P(ξ>3)=0.023,∴P(﹣1≤ξ≤3)=1﹣2P(ξ>3)=1﹣0.046=0.954.故选:C.【分析】根据随机变量ξ服从正态分布,知正态曲线的对称轴是x=1,且P(ξ>3)=0.023,依据正态分布对称性,即可求得答案.3.【答案】B【考点】离散型随机变量的期望与方差【解析】【解答】解:设P(X=1)=p,P(X=2)=q,∵E(X)=0× +p+2q=1①,又+p+q=1,②由①②得,p= ,q= ,∴D(X)= (0﹣1)2+ = ,故选:B.【分析】设P(X=1)=p,P(X=2)=q,则由P(X=0)= ,E(X)=1,列出方程组,求出p= ,q= ,由此能求出D(X).4.【答案】A【考点】正态分布曲线的特点及曲线所表示的意义【解析】【解答】解:∵随机变量X服从正态分布N(3,1),∴正态曲线的对称轴是x=3,∵P(X≥4)=0.1587,∴P(2<X<4)=1﹣2P(X≥4)=1﹣0.3174=0.6826.故选:A.【分析】根据随机变量X服从正态分布,可知正态曲线的对称轴x=μ=3,利用对称性,即可求得P(2<X <4).5.【答案】D【考点】古典概型及其概率计算公式,条件概率与独立事件【解析】【解答】由题得甲不跑第一棒的总的基本事件有个,甲不跑第一棒,乙不跑第二棒的基本事件有,由古典概型的概率公式得在甲不跑第一棒的条件下,乙不跑第二棒的概率是.故答案为:D.【分析】由题得甲不跑第一棒的总的基本事件有18 个,甲不跑第一棒,乙不跑第二棒的基本事件有14个,由古典概型的概率公式求得在甲不跑第一棒的条件下,乙不跑第二棒的概率.6.【答案】D【考点】离散型随机变量及其分布列,离散型随机变量的期望与方差【解析】【解答】当时,第次取出额必然是红球,而前k-1次中,有且只有1次取出的是红球,其余次数取出的皆为黑球,故,于是得到X的分布列为故故答案为:D【分析】X的可能取值为2,3,4,5,6,7,利用互斥事件概率加法公式、相互独立事件概率乘法公式分别求出相应的概率,由此能求出摸取次数X的分布列,最后利用数学期望求解即可.7.【答案】C【考点】离散型随机变量的期望与方差【解析】【解答】离散型随机变量ξ的均值E(ξ)反映ξ取值的平均水平,它的方差反映ξ的取值的离散程度.故答案为:C.【分析】由离散型随机变量的均值与方差的意义判断。
高中数学 人教A版 选修2-3离散型随机变量
第二章 2.1 2.1.1离散型随机变量【基础练习】1.下面给出三个变量:①2018年10月北京市下雨的天数ξ;②从学校回家要经过5个红绿灯口,可能遇到红灯的次数η;③一同学放学后到食堂就餐,到达某个窗口时已经在此排队的学生数X.其中是随机变量的是()A.②B.①③C.②③D.①②③【答案】C2.袋中有2个黑球,6个红球,从中任取两个,可以作为随机变量的是()A.取到的球的个数B.取到红球的个数C.至少取到一个红球D.至少取到一个红球的概率【答案】B3.抛掷2颗骰子,所得点数之和记为ξ,那么“ξ=4”表示的随机试验的结果是() A.2颗都是4点B.1颗是1点,另1颗是3点C.2颗都是2点D.1颗是1点,另一颗是3点,或者2颗都是2点【答案】D4.(2019年西安月考)抛掷两枚骰子一次,ξ为第一枚骰子掷出的点数与第二枚骰子掷出的点数之差,则ξ的所有可能的取值为( )A.0≤ξ≤5,ξ∈NB.-5≤ξ≤0,ξ∈ZC.1≤ξ≤6,ξ∈ND.-5≤ξ≤5,ξ∈Z【答案】D5.一盒乒乓球共15个,其中有4个是已用过的,在比赛时,某运动员从中随机取2个使用,比赛结束后又放回盒中,则此盒中已用过的乒乓球个数的所有可能取值是________.【答案】4,5,66.连续不断地射击某一目标,首次击中目标需要的射击次数X是一个随机变量,则X =4表示的试验结果是________.【答案】前3次未击中目标,第4次击中目标7.某校为学生定做校服,规定凡身高(精确到1 cm )不超过160 cm 的学生交校服费80元;凡身高超过160 cm 的学生,身高每超出1 cm 多交5元钱.若学生应交校服费为η,学生身高用ξ表示,则η和ξ是否为离散型随机变量?【解析】由于该校的每一个学生对应着唯一的身高,并且ξ取整数值,因此ξ是一个离散型随机变量.而η=⎩⎪⎨⎪⎧80,ξ≤160,(ξ-160)×5+80,ξ>160,所以η也是一个离散型随机变量. 8.写出下列随机变量ξ可能取的值,并说明随机变量ξ=4所表示的随机试验的结果.(1)从10张已编号的卡片(编号从1号到10号)中任取2张(一次性取出),被取出的卡片的较大编号为ξ;(2)某足球队在点球大战中5次点球射进的次数为ξ.【解析】(1)ξ的所有可能取值为2,3,4,…,10.其中“ξ=4”表示的试验结果为“取出的两张卡片中的较大号码为4”.基本事件有如下三种:取出的两张卡片编号分别为1和4,2和4,3和4.(2)ξ的所有可能取值为0,1,2,3,4,5.其中“ξ=4”表示的试验结果为“5次点球射进4个球”.【能力提升】9.某人进行射击,共有5发子弹,击中目标或子弹打完就停止射击,射击次数为ξ,则“ξ=5”表示的试验结果是( )A .第5次击中目标B .第5次未击中目标C .前4次均未击中目标D .前4次击中目标 【答案】C【解析】ξ=5表示射击5次,即前4次均未击中,否则不可能射击第5次,但第5次是否击中目标,就不一定,因为他只有5发子弹.故选C.10.袋中装有号码分别为1,2,3,4,5的5张卡片,从中有放回地抽2张卡片,记顺次抽出的2张卡片号码之和为X ,则“X =4”所表示的试验结果是( )A .抽到4号卡片B .抽到4张号码为1的卡片C .第一次抽到1号,第二次抽到3号;或第一次抽到3号,第二次抽到1号D .第一次抽到1号,第二次抽到3号;或第一次抽到3号,第二次抽到1号;或两次都抽到2号【答案】D【解析】“x =4”表示抽出的2张卡号码之和为4,有1+3,3+1,2+2共3种情况.11.在考试中,需回答三个问题,考试规则规定:每题回答正确得100分,回答不正确得-100分,则这名同学回答这三个问题的总得分ξ的所有可能取值是________.【答案】100,-100,300,-300【解析】由题意得,结果有4种情况,①答对3题,得300分;②答对2题,得100分;③答对1题,得-100分;④全部答错,得-300分.12.某同学的钱夹只剩有20元、10元、5元、2元和1元人民币各1张,他决定随机抽出2张.用ξ表示这两张金额之和.写出ξ的可能取值,并说明所取值表示的随机试验结果.【解析】ξ的可能取值为3,6,7,11,12,15,21,22,25,30.ξ=3表示抽到的是1元和2元;ξ=6表示抽到的是1元和5元;ξ=7表示抽到的是2元和5元;ξ=11表示抽到的是1元和10元;ξ=12表示抽到的是2元和10元;ξ=15表示抽到的是5元和10元;ξ=21表示抽到的是1元和20元;ξ=22表示抽到的是2元和20元;ξ=25表示抽到的是5元和20元;ξ=30表示抽到的是10元和20元.。
第二章 2.1 2.1.1 离散型随机变量(优秀经典课时作业练习及答案详解)
[A组学业达标]1.给出下列四个命题:①15秒内,通过某十字路口的汽车的数量是随机变量;②解答高考数学卷Ⅰ的时间是随机变量;③一条河流每年的最大流量是随机变量;④一个剧场共有三个出口,散场后某一出口退场的人数是随机变量.其中正确的个数是()A.1B.2C.3 D.4解析:由随机变量的概念可以直接判断①②③④都是正确的.答案:D2.将一个骰子掷两次,不能作为随机变量的是()A.两次掷出的点数之和B.两次掷出的最大点数C.第一次与第二次掷出的点数之差D.两次掷出的点数解析:将一个骰子掷两次,两次掷出的点数之和是一个变量,且随试验结果的变化而变化,是一个随机变量.同理,两次掷出的最大点数、第一次与第二次掷出的点数之差也都是随机变量,而两次掷出的点数不是一个变量.答案:D3.下列叙述中,是离散型随机变量的为()A.将一枚均匀硬币掷五次,出现正面和反面向上的次数之和B.某人早晨在车站等出租车的时间C.连续不断地射击,首次命中目标所需要的次数D.袋中有2个黑球6个红球,任取2个,取得一个红球的可能性解析:选项A,掷硬币不是正面向上就是反面向上,次数之和为5,是常量.选项B,是随机变量,但不能一一列出,不是离散型随机变量.选项D,事件发生的可能性不是随机变量.故选C.答案:C4.袋中有大小相同的5个钢球,分别标有1,2,3,4,5五个号码.在有放回地抽取条件下依次取出2个球,设两个球号码之和为随机变量X ,则X 所有可能取值是( )A .1,2,…,5B .1,2,…,10C .2,3,…,10D .1,2,…,6解析:第一次可取1,2,3,4,5中的任意一个,由于是有放回抽取,第二次也可取1,2,3,4,5中的任何一个,两次的号码和可能为2,3,4,5,6,7,8,9,10.答案:C5.对一批产品逐个进行检测,第一次检测到次品前已检测的产品个数为X ,则X =k 表示的试验结果为( )A .第k -1次检测到正品,而第k 次检测到次品B .第k 次检测到正品,而第k +1次检测到次品C .前k -1次检测到正品,而第k 次检测到次品D .前k 次检测到正品,而第k +1次检测到次品解析:X 就是检测到次品前正品的个数,X =k 表明前k 次检测到的都是正品,第k +1次检测到的是次品.答案:D6.抛掷2枚骰子,所得点数之和记为ξ,那么“ξ=4”表示的随机试验的结果是________(填序号).①2枚都是4点;②1枚是1点,另1枚是3点;③2枚都是2点;④1枚是1点,另1枚是3点,或者2枚都是2点.解析:抛掷2枚骰子,其中1枚是x 点,另1枚是y 点,其中x ,y =1,2,…,6. 而ξ=x +y ,ξ=4⇔⎩⎪⎨⎪⎧ x =1,y =3或⎩⎪⎨⎪⎧x =2,y =2.答案:④7.下列随机变量中不是离散型随机变量的是________(填序号).①广州白云机场候机室中一天的旅客数量X ;②广州某水文站观察到一天中珠江的水位X ;③深圳欢乐谷一日接待游客的数量X ;④虎门大桥一天经过的车辆数X.解析:①③④中的随机变量X的所有取值,我们都可以按照一定的次序一一列出,因此它们是离散型随机变量;②中的随机变量X可以取某一区间内的一切值,但无法按一定的次序一一列出,故不是离散型随机变量,故填②.答案:②8.一批产品共有12件,其中次品3件,每次从中任取一件,在取得合格品之前取出的次品数X的所有可能取值是________.解析:可能第一次就取得合格品,也可能取完次品后才取得合格品.X的结果有0,1,2,3.答案:0,1,2,39.某车间三天内每天生产10件某产品,其中第一天,第二天分别生产了1件次品、2件次品,而质检部门每天要在生产的10件产品中随机抽取4件进行检查,若发现有次品,则当天的产品不能通过.若厂内对车间生产的产品采用记分制,两天全不通过检查得0分,通过一天、两天分别得1分、2分,设该车间在这两天内得分为X,写出X的可能取值.解析:X的可能取值为0,1,2.X=0表示在两天检查中均发现了次品.X=1表示在两天检查中有1天没有检查到次品,1天检查到了次品.X=2表示在两天检查中没有发现次品.10.指出下列随机变量是否是离散型随机变量,并说明理由:(1)某加工厂加工的一批某种钢管的外径与规定的外径尺寸之差;(2)在西安至成都的高铁线上,每隔500 m有一电线铁塔,将电线铁塔进行编号,则某一电线铁塔的编号X;(3)江西九江市长江水位监测站所测水位在(0,29]这一范围内变化,该水位站所测水位X.解析:(1)不是离散型随机变量.因为实际测量值与规定值之间的差值无法一一列出.(2)是离散型随机变量.因为电线铁塔为有限个,其编号从1开始,可以一一列出.(3)不是离散型随机变量.因为水位在(0,29]范围内变化,对水位值我们不能按一定次序一一列出.[B组能力提升]11.袋中装有10个红球,5个黑球,每次随机抽取一个球,若取得黑球,则另换一个红球放回袋中,直到取到红球为止,若抽取的次数为X,则表示“放回5个球”的事件为()A.X=4 B.X=5C.X=6 D.X≤4解析:第一次取到黑球,则放回1个球,第二次取到黑球,则共放回2个球…,共放了五回,第六次取到了红球,试验终止,故X=6.答案:C12.袋中有大小相同的5个球,分别标有1,2,3,4,5五个号码,任意抽取2个球,设2个球号码之和为Y,则Y所有可能值的个数是()A.25 B.10C.7 D.6解析:∵Y表示取出的2个球的号码之和,又1+2=3,1+3=4,1+4=5,1+5=6,2+3=5,2+4=6,2+5=7,3+4=7,3+5=8,4+5=9,故Y的所有可能取值为3,4,5,6,7,8,9,共7个.答案:C13.一串钥匙有5把,只有一把能打开锁,依次试验,打不开的扔掉,直到找到能开锁的钥匙为止,则试验次数X的最大值可能为________.解析:由题意可知X取最大值时只剩下一把钥匙,但锁此时未打开,故试验次数为4.答案:414.一用户在打电话时忘了号码的最后四位数字,只记得最后四位数字两两不同,且都大于5,于是他随机拨最后四位数字(两两不同),设他拨到所要号码时总共拨的次数为X,则随机变量X的所有可能取值的种数为________.解析:由于后四位数字两两不同,且都大于5,因此只能是6,7,8,9四位数字的不同排列,故有A44=24种.答案:2415.甲、乙两队在一次对抗赛的某一轮中有3个抢答题,比赛规定:对于每一个题,没有抢到题的队伍得0分,抢到题并回答正确的得1分,抢到题但回答错误的扣1分(即得-1分),若X是甲队在该轮比赛获胜时的得分(分数高者胜),写出X的所有可能取值,并说明X 的值表示的随机试验的结果.解析:X的所有可能取值是-1,0,1,2,3.(1)X=-1表示:甲抢到1题但答错了,而乙抢到2题都答错了.(2)X=0表示:甲没抢到题,乙抢到的题答错至少2个题或甲抢到2题,但回答1对1错,而乙答错1题.(3)X=1表示:甲抢1题且答对,乙抢到2题且1对1错或全错或甲抢到3题,且2对1错.(4)X=2表示:甲抢到2题均答对.(5)X=3表示:甲抢到3题均答对.16.一个袋中装有5个白球和5个黑球,从中任取3个,其中所含白球的个数为X.(1)列表说明可能出现的结果与对应的X的值;(2)若规定取3个球,每取到一个白球加5分,取到黑球不加分,且最后不管结果如何都加上6分,求最终得分Y的可能取值,并判定Y的随机变量类型.解析:(1)(2)由题意可得Y=5X+6,而X可能的取值范围为{0,1,2,3},所以Y对应的各值是6,11,16,21.故Y的可能取值为6,11,16,21,显然Y为离散型随机变量.。
条件概率概率基础作业练习含答案解析高二数学北京海淀
课时提升作业九条件概率一、选择题(每小题5分,共25分)1.下列说法正确的是( )A.P(B|A)<P(A∩B)B.P(B|A)=是可能的C.0<P(B|A)<1D.P(A|A)=0【解析】选B.由条件概率公式P(B|A)=及0<P(A)≤1知P(B|A)≥P(A ∩B),故A选项错误;当事件A包含事件B时,有P(A∩B)=P(B),此时P(B|A)= ,故B选项正确,由于0≤P(B|A)≤1,P(A|A)=1,故C,D选项错误.2.已知P(A∩B)=,P(A)=,P (B)=,则P(B|A)= ()A. B. C. D.【解析】选B.由条件概率的定义知:P(B|A)===.3.同时抛掷一颗红骰子和一颗蓝骰子,观察向上的点数,记“红骰子向上的点数是3的倍数”为事件A,“两颗骰子的点数和大于8”为事件B,则P(B|A)=( ) A. B. C. D.【解析】选A.由题意知,P(A∩B)==,P(B)=,所以P(B|A)== =.【补偿训练】抛掷一枚均匀的骰子所得的样本空间为Ω={1,2,3,4,5,6},令事件A={2,3,5},B={1,2,4,5,6},则P(A|B)等于( )A. B. C. D.【解析】选A.由题意得,P(A∩B)=,P(B)=,所以P(A|B)===. 4.一盒中装有5个产品,其中有3个一等品,2个二等品,从中不放回地取出产品,每次1个,取两次,已知第二次取得一等品的条件下,第一次取得的是二等品的概率是 ( )A. B. C. D.【解析】选A.设A=“第一次取得二等品”,B=“第二次取得一等品”,则A ∩B=“第一次取得二等品且第二次取得一等品”,所以P(A|B)== =.【一题多解】选A.设一等品为a,b,c,二等品为A,B,“第二次取得一等品”所含基本事件有(a,b),(a,c),(b,a),(b,c),(c,a),(c,b),(A,a),(A,b),(A,c),(B,a),(B,b),(B,c),共12个,其中第一次取得二等品的基本事件共有6个,所以所求概率为P==.5.已知箱中共有6个球,其中红球、黄球、蓝球各2个,每次从该箱中取1个球(有放回,每球取到的机会均等),共取三次.设事件A:“第一次取到的球和第二次取到的球颜色相同”,事件B:“三次取到的球颜色都相同”,则P(B|A)=( )A. B. C. D.1【解题指南】解答本题的关键是计算P(A),P(A∩B),求P(A)时事件A包含的基本事件个数可分前两次:两红、两黄、两蓝三种情况计数;另外要注意本题中P(A∩B)=P(B).【解析】选B.根据题意,可得事件A发生的概率为P(A)==,事件AB发生的概率P(A∩B)==.所以P(B|A)==.二、填空题(每小题5分,共15分)6.把一枚硬币任意抛掷三次,事件A=“至少一次出现反面”,事件B=“恰有一次出现正面”,则P(B|A)=__________.【解析】由题意,P(A∩B)==,P(A)=1-=,所以P(B|A)===.答案:7.(2018·长春高二检测)高二某班共有60名学生,其中女生有20名,三好学生占,而且三好学生中女生占一半.现在从该班同学中任选一名参加某一座谈会.则在已知没有选上女生的条件下,选上的是三好学生的概率为__________.【解析】设事件A表示“任选一名同学是男生”;事件B为“任选一名同学为三好学生”,则所求概率为P(B|A).依题意得P(A)==,P(A∩B)==.故P(B|A)===.答案:8.某种元件的使用寿命超过1年的概率为0.6,使用寿命超过2年的概率为0.3,则某元件使用寿命超过1年还能继续使用1年的概率为__________. 【解题指南】主要理解“某元件使用寿命超过1年还能继续使用1年”是指该元件的使用寿命超过2年.【解析】设事件A为“该元件的使用寿命超过1年”,B为“该元件的使用寿命超过2年”,则P(A)=0.6,P(B)=0.3,因为B⊆A,所以P(A∩B)=0.3,于是P(B|A)===0.5.答案:0.5三、解答题(每小题10分,共20分)9.某校高三(1)班有学生40人,其中共青团员15人.全班分成4个小组,第一组有学生10人,共青团员4人,从该班任选一个作学生代表.(1)求选到的是第一组的学生的概率.(2)已知选到的是共青团员,求他是第一组学生的概率.【解析】设事件A表示“选到第一组学生”,事件B表示“选到共青团员”.(1)由题意,P(A)==.(2)要求的是在事件B发生的条件下,事件A发生的条件概率P(A|B).在事件B发生的条件下,有15种不同的选择,其中属于第一组的有4种选择, 因此,P(A|B)=.10.任意向x轴上(0,1)这一区间内投掷一个点,问:(1)该点落在区间内的概率是多少?(2)在(1)的条件下,求该点落在内的概率.【解析】由题意可知,任意向(0,1)这一区间内掷一点,该点落在(0,1)内哪个位置是等可能的.令A=,由几何概型的计算公式可知:(1)P(A)==.(2)令B=,则A∩B=,P(A∩B)=,故在A的条件下B发生的概率为P(B|A)===.。
高考数学专题《离散型随机变量的分布列》习题含答案解析
专题11.5 离散型随机变量的分布列1.(2021·全国·高二课时练习)某商店购进一批西瓜,预计晴天西瓜畅销,可获利1000元;阴天销路一般,可获利500元;下雨天西瓜滞销,会亏损500元,根据天气预报,未来数日晴天的概率为0.4,阴天的概率为0.2,下雨的概率为0.4,试写出销售这批西瓜获利的分布列.【答案】答案见解析. 【分析】根据已知数据列表格. 【详解】用X 表示获利,则X 的取值分别是1000,500,-500,分布列如下表:的分布列如下表所示,求a 的值. 【答案】0.2 【分析】由分布列中所有概率和为1计算. 【详解】由题意0.30.51a ++=,解得0.2a =3.(2021·全国·高二课时练习)抛一枚均匀的硬币,设1,,0,,X ⎧=⎨⎩出现正面出现反面写出X 的分布列. 【答案】答案见解析. 【分析】X 的值分别为0,1,求出概率后得分布列.【详解】抛一枚均匀的硬币,有两种可能,正面向上或反面向上,两种情况的可能性相同,X 0=或1,1(0)(1)2P X P X ====, 分布列如下:练基础ξ只能取两个值0,1,又知ξ取0的概率是取1的概率的3倍,写出ξ的分布列. 【答案】答案见解析 【分析】根据概率之和为1可求出. 【详解】由题意及分布列满足的条件知P (ξ=0)+P (ξ=1)=3P (ξ=1)+P (ξ=1)=1, 所以()114P ξ==,故()314P ξ==. 所以ξ的分布列为ξ的分布列如下,求k 的值.【答案】121nk =- 【分析】根据离散型随机变量ξ的概率性质即可求解参数. 【详解】因为1=k +2k +…+2n -1k =k (1+2+…+2n -1)=k ·1212n--=(2n -1)k ,所以121n k =-.6.(2021·全国·高二课时练习)某射击运动员射击一次所得环数的分布列如下表所示.(1)求常数a 的值; (2)求(6)P ξ>.【答案】 (1)0.28 (2)0.85 【分析】(1)由分布列中所有概率和为1计算;(2)计算(7)(8)(9)(10)P P P P ξξξξ=+=+=+=即可 . (1)由题意0.030.050.070.080.260.231a ++++++=,解得0.28a =; (2)(6)P ξ>=(7)(8)(9)(10)P P P P ξξξξ=+=+=+==0.080.260.280.230.85+++=.7.(2021·全国·高二课时练习)从装有6个白球和4个红球的口袋中任取1个球,用X 表示取得的白球数,求X 的分布列. 【答案】答案见解析. 【分析】确定X 的可能值,计算出概率后得分布列. 【详解】X 的所有可能值是0,1.42(0)105P X ===,63(1)105P X ===, 所以X 的分布列如下:X 服从参数为0.3的两点分布. (1)求()0P X =;(2)若21Y X =+,写出Y 的分布列. 【答案】 (1)0.7(2)答案见解析. 【分析】(1)根据二项分布的概念求解; (2)求出Y 的可能值,写出分布列即可. (1)(0)10.30.7P X ==-=.(2)X 0=时,1Y =,1X =时,3Y =,所以Y 的分布列为:X 的分布列,并说明理由: (1)(2)【答案】(1)不是,理由见解析. (2)不是,理由见解析. 【分析】(1)根据分布列中所有概率和为1说明; (2)由概率的范围说明. (1)由于0.20.20.20.20.3 1.11++++=>,因此此表格不是随机变量X 的分布列 (2)表格中事件1X =的概率是0.2-,这是不可能的,概率在[0,1]范围内.因此此表格不是随机变量的分布列.10.(2021·全国·高二单元测试)设离散型随机变量X 的分布列为(2)()39P Y <≤的值.【答案】(1)分布列见解析;(2)0.7.【分析】(1)先由分布列的性质解出m ,然后按步骤写出分布列即可; (2)根据(1)中的分布列可计算出答案. 【详解】由分布列的性质知,0.20.10.10.31m ++++=,解得0.3m =.(1)由题意可知,()()21100.2P X P X +====,()()21310.1P X P X +====,()()21520.1P X P X +====,()()21730.3P X P X +====,()()21940.3P X P X +====, 所以21Y X =+的分布列为:(2)395790.10.30.30.7P Y P Y P Y P Y <≤==+=+==++=.1.(2022·江苏·高三专题练习)设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,ξ=0;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,ξ=1,则随机变量ξ的取值对应的概率正确的是( ). A .P (ξ=0)=411 B .P (ξ=111C .P (ξ=1)=611D .P (ξ=122【答案】ABC 【分析】根据题设,结合正方体的性质求两条棱相交、平行、异面的可能情况数,再写出对应ξ=0、ξ=1、ξ. 【详解】由题设,ξ的可能取值为0,1.若两条棱相交,交点必在正方体的顶点处,过任意一个顶点的棱有3条,则P (ξ=0)=232128C C =411, 若两条棱平行,它们的距离为16对,∴P (ξ=2126C =111,故P (ξ=1)=1-P (ξ=0)-P (ξ)=1-411-111=611,练提升ξ分布列如下:故选:ABC2.(2021·全国·高二课时练习)若随机变量X的分布列如下表所示:.【答案】1 8【分析】首先根据分布列的性质得到12a b+=,再利用基本不等式的性质求解即可.【详解】由分布列的性质,知11144a b+++=,即12a b+=.因为()222128a ba b++≥=,当且仅当14a b==时取等号.所以22a b+的最小值为1 8 .故答案为:1 83.(2021·全国·高二课时练习)将3个小球任意地放入4个大玻璃杯中,一个杯子中球的最多个数记为X,则X的分布列是________.【答案】将3个小球任意地放入4个玻璃杯中,杯子中球的个数最多为3个,那么对于各种情况下的概率值进行计算得到分布列.由题意知X 的可能取值为1,2,3()3433=148A P X ==; ()223439=2416C A P X ==;()1431=3416A P X ==故答案为:相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:(1)求六月份这种酸奶一天的需求量X (单位:瓶)的分布列; 【答案】(1)见解析. 【解析】(1)由题意知,X 所有的可能取值为200,300,500,由表格数据知 ()2162000.290P X +===,()363000.490P X ===,()25745000.490P X ++===. 因此X 的分布列为5.(2021·X . (1)说明1X =表示的是什么事件,并求出(1)P X =; (2)求X 的分布列. 【答案】(1)事件见解析,1(1)2P X ==; (2)分布列见解析.(1)根据X表示的意义确定事件,并计算概率.(2)X的可能值为0,1,2,求出各概率后得分布列.(1)1X=表示正面向上的次数为1的事件,1221 (1)22CP X===.(2)X的可能值为0,1,2,则221(0)24CP X===,2221(2)24CP X===,X的分布列如下:5发子弹,如果命中就停止射击,否则一直到子弹用尽.若已知每次射击命中的概率均为0.9,求该运动员这次训练耗用的子弹数X的分布列.【答案】答案见详解.【分析】X的可能取值为1,2,3,4,5,分别求出相应的概率,由此能求出耗用的子弹数X的分布列.【详解】根据题意1,2,3,4,5X=,()10.9P X==,()20.10.90.09P X==⨯=,()30.10.10.90.009P X==⨯⨯=,()40.10.10.10.90.0009P X==⨯⨯⨯=,()50.10.10.10.10.10.10.10.10.10.90.0001P X==⨯⨯⨯⨯+⨯⨯⨯⨯=.∴X的分布列为:),设某天开始营业时有该商品3件,当天营业结束后检查存货,若发现存量少于2件,则当天进货补充至3件,否则不进货,将频率视为概率.(1)求当天商店不进货的概率;(2)记X为第二天开始营业时该商品的件数,求X的分布列.【答案】(1)310;(2)答案见解析.【分析】(1)由古典概型概率公式与互斥事件的概率公式求解即可;(2)求出X的可能取值,再用古典概型概率公式与互斥事件的概率公式求出概率,即可求解【详解】(1)记“当天商品销售量为0件”为事件A,“当天商品销售量为1件”为事件B,“当天商店不进货”为事件C,则()()()153 202010P C P A P B=+=+=;(2)由题意知,X的可能取值为2,3.P(X=2) =P(当天商品销售量为1件)=51 204;P(X=3)=P(当天商品销售量为0件)+P(当天商品销售量为2件)+P(当天商品销售量为3件)=1953 2020204++=,故X的分布列为:8.(2021·全国·高二课时练习)从集合{}1,2,3,4,5的所有非空子集中,随机地取出一个.(1)求所取出的非空子集中所有元素之和为10的概率;(2)记所取出的非空子集中的元素个数为X,求X的分布列.【答案】(1)331;(2)答案见解析.【分析】(1)计算基本事件总数和满足条件的基本事件数,利用古典概型的概率公式即得解;(2)X 的所有可能取值为1,2,3,4,5,计算对应的概率,列出分布列即可. 【详解】(1)记“所取出的非空子集中所有元素之和为10”为事件A .基本事件总数1234555555C C C C C 31n =++++=,事件A 包含的基本事件有{}1,4,5,{}2,3,5,{}1,2,3,4,共3个,故()331P A =. (2)依题意,X 的所有可能取值为1,2,3,4,5.()151131C 53P X ===,()2510231C 13P X ===,()3510331C 13P X ===,()454131C 53P X ===,()555131C 13P X ===.故X 的分布列为X . (1)写出X 的分布列; (2)求(5)P X <;(3)求“点数和大于9”的概率. 【答案】 (1)答案见解析 (2)16(3)16.【分析】(1)X 的可能值为2,3,4,5,6,7,8,9,10,11,12,分别计算出概率后可得分布列; (2)由(2)(3)(4)P X P X P X =+=+=可得; (3)由(10)(11)(12)P X P X P X =+=+=可得. (1)由题意X 的可能值依次为2,3,4,5,6,7,8,9,10,11,12,两枚骰子的点数和列表如下(第一行是一个骰子的点数,第一列是另一个骰子的点数,其他格子中为两个骰子点数和,共36个:1(2)(12)36P X P X ====,21(3)(11)3618P X P X =====, 31(4)(10)3612P X P X =====,41(5)(9)369P X P X =====, 5(6)(8)36P X P X ====,61(7)366P X ===, X 的分布列如下:(2)(5)(2)(3)(4)361812366P X P X P X P X <==+=+==++==; (3)1111(9)(10)(11)(12)1218366P X P X P X P X >==+=+==++=. 10.(2021·全国·高二单元测试)某市高考模拟考试数学试卷解答题的网上评卷采用“双评+仲裁”的方式:两名老师独立评分,称为一评和二评,当两者所评分数之差的绝对值小于或等于1分时,取两者平均分为该题得分;当两者所评分数之差的绝对值大于1分时,再由第三位老师评分,称之为仲裁,取仲裁分数和一、二评中与之接近的分数的平均分为该题得分;当一、二评分数和仲裁分数差值的绝对值相同时,取仲裁分数和一、二评中较高的分数的平均分为该题得分.有的学生考试中会做的题目答完后却得不了满分,原因多为答题不规范,比如:语言不规范、缺少必要文字说明、卷面字迹不清、得分要点缺失等等,把这样的解答称为“缺憾解答”.该市教育研训部门通过大数据统计发现,满分为12分的题目,这样的“缺憾解答”,阅卷老师所评分数及各分数所占比例如表:将这个表中的分数所占比例视为老师对满分为12分题目的“缺憾解答”所评分数的概率,且一、二评与仲裁三位老师评分互不影响.已知一个同学的某道满分为12分题目的解答属于“缺憾解答”.(1)求该同学这个题目需要仲裁的概率; (2)求该同学这个题目得分X 的分布列.【答案】(1)18;(2)分布列见解析.【分析】(1)记A 表示事件:" 该同学这个解答题需要仲裁 " ,设—评、二评所打分数分别为 , ,x y 由题设知事件A 的所有可能情况有: 119x y =⎧⎨=⎩ 或 911x y =⎧⎨=⎩由此能求出该同学这个题目需要仲裁的概率; (2)随机事件X 的可能取值为 9 , 9 . 5 , 10 , 10 . 5 , 11 , 分别求出相应的概率,由此能求出 X 的分布列. 【详解】(1)设事件A 表示“该同学这个题目需要仲裁”,一评、二评所打分数分别为x ,y ,由题意知事件A 的所有可能情况有119x y =⎧⎨=⎩或911x y =⎧⎨=⎩,∴()1191111191144448x x P A P P y y ⎛⎫⎛⎫==⎧⎧=+=⨯+⨯= ⎨⎪ ⎨⎪==⎩⎩⎝⎭⎝⎭. (2)随机事件X 的取值范围为{}9,9.5,10,10.5,11,设仲裁所打分数为z ,则 ()911911111111391199444444443299x x x P X P P y P y y z z ⎛⎫⎛⎫==⎧⎧⎛⎫=⎧ ⎪ ⎪⎪⎪==+=+==⨯+⨯⨯+⨯⨯=⎨⎪⎨⎨ ⎪ ⎪=⎩⎝⎭⎪⎪ ⎪ ⎪==⎩⎩⎝⎭⎝⎭, ()910111119.510942244x x P X P P y y ⎛⎫⎛⎫==⎧⎧==+=⨯+⨯= ⎨⎪ ⎨⎪==⎩⎩⎝⎭⎝⎭,()101111010224x P X P y ⎛⎫=⎧===⨯= ⎨⎪=⎩⎝⎭,()911101110.511911101010x x x x P X P P P y P y y y z z ⎛⎫⎛⎫==⎧⎧⎛⎫⎛⎫==⎧⎧ ⎪ ⎪⎪⎪==++=+= ⎨⎪ ⎨⎪⎨⎨ ⎪ ⎪==⎩⎩⎝⎭⎝⎭⎪⎪ ⎪ ⎪==⎩⎩⎝⎭⎝⎭11111111115244244244216=⨯+⨯+⨯⨯+⨯⨯=, ()11911111111113119111144444444321111x x x P X P P P y y y z z ⎛⎫⎛⎫==⎧⎧⎛⎫=⎧ ⎪⎪ ⎪⎪==++=⨯+⨯⨯+⨯⨯=== ⎨⎪⎨⎨ ⎪ ⎪=⎩⎝⎭⎪⎪ ⎪ ⎪==⎩⎩⎝⎭⎝⎭,∴X 的分布列为:1.(2021·湖南·高考真题)端午节吃粽子是我国的传统习俗.设一盘中装有6个粽子,其中肉粽1个,蛋黄粽2个,豆沙粽3个,这三种粽子的外观完全相同,从中任意选取2个. (1)用ξ表示取到的豆沙粽的个数,求ξ的分布列; (2)求选取的2个中至少有1个豆沙粽的概率. 【答案】(1)分布列见解析;(2)45. 【分析】(1)首先求随机变量0,1,2ξ=,再利用古典概型求概率; (2)根据(1)的结果求概率. 【详解】(1)由条件可知0,1,2ξ=,()2326105C P C ξ===,()113326315C C P C ξ===,()2326125C P C ξ===,所以ξ的分布列,如下表,则选取的2个中至少有1个豆沙粽的概率14155P . 2.(2019年高考北京卷理选)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A ,B 两种支付方式都不使用的有5人,样本中仅使用A 和仅使用B 的学生的支付金额分布情况如下:(2)从样本仅使用A 和仅使用B 的学生中各随机抽取1人,以X 表示这2人中上个月支付金额大于1000元的人数,求X 的分布列;(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A 的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A 的学生中本月支付金额大于2000元的人数有变化?说明理由. 【答案】(1)0.4;(2)分布列见解析,E (X )=1;(3)见解析.【解析】(1)由题意知,样本中仅使用A 的学生有18+9+3=30人,仅使用B 的学生有10+14+1=25人,A ,B 两种支付方式都不使用的学生有5人.故样本中A ,B 两种支付方式都使用的学生有100−30−25−5=40人.所以从全校学生中随机抽取1人,该学生上个月A ,B 两种支付方式都使用的概率估计为400.4100=. (2)X 的所有可能值为0,1,2.记事件C 为“从样本仅使用A 的学生中随机抽取1人,该学生上个月的支付金额大于1000元”,事件D 为“从样本仅使用B 的学生中随机抽取1人,该学生上个月的支付金额大于1000元”. 由题设知,事件C ,D 相互独立,且93141()0.4,()0.63025P C P D ++====. 所以(2)()()()0.24P X P CD P C P D ====,(1)()P X P CD CD == ()()()()P C P D P C P D =+ 0.4(10.6)(10.4)0.6=⨯-+-⨯0.52=,(0)()()()0.24P X P CD P C P D ====.所以X 的分布列为(3)记事件E 为“2000元”. 假设样本仅使用A 的学生中,本月支付金额大于2000元的人数没有变化, 则由上个月的样本数据得33011()C 4060P E ==. 答案示例1:可以认为有变化.理由如下:P (E )比较小,概率比较小的事件一般不容易发生.一旦发生,就有理由认为本月的支付金额大于2000元的人数发生了变化,所以可以认为有变化.答案示例2:无法确定有没有变化.理由如下: 事件E 是随机事件,P (E )比较小,一般不容易发生, 但还是有可能发生的,所以无法确定有没有变化.3.(2018年理数天津卷选)已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查. (I )应从甲、乙、丙三个部门的员工中分别抽取多少人?(II )若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.(i )用X 表示抽取的3人中睡眠不足的员工人数,求随机变量X 的分布列;(ii )设A 为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A 发生的概率.【答案】(Ⅰ)从甲、乙、丙三个部门的员工中分别抽取3人,2人,2人.(Ⅱ)(i )答案见解析;(ii )67. 【解析】(Ⅰ)由已知,甲、乙、丙三个部门的员工人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7人,因此应从甲、乙、丙三个部门的员工中分别抽取3人,2人,2人. (Ⅱ)(i )随机变量X 的所有可能取值为0,1,2,3.P (X =k )=C 4k ⋅C 33−k C 73(k =0,1,2,3).所以,随机变量X 的分布列为事件C 为“抽取的3人中,睡眠充足的员工有2人,睡眠不足的员工有1人”, 则A =B ∪C ,且B 与C 互斥,由(i )知,P (B )=P (X =2),P (C )=P (X =1), 故P (A )=P (B ∪C )=P (X =2)+P (X =1)=67.所以,事件A 发生的概率为67.4.(2017山东,理18选)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者A 1,A 2,A 3,A 4,A 5,A 6和4名女志愿者B 1,B 2,B 3,B 4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示. (I )求接受甲种心理暗示的志愿者中包含A 1但不包含1B 的频率. (II )用X 表示接受乙种心理暗示的女志愿者人数,求X 的分布列. 【答案】(I )(II)X 的分布列为因此X 的分布列为 5.(2017北京,理17选)为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x 和y 的数据,并制成下图,其中“*”表示服药者,“+”表示未服药者.5.18(Ⅰ)从服药的50名患者中随机选出一人,求此人指标y 的值小于60的概率; (Ⅱ)从图中A ,B ,C ,D 四人中随机选出两人,记ξ为选出的两人中指标x 的值大于1.7的人数,求ξ的分布列.【答案】(Ⅰ)0.3. (Ⅱ)见解析. 【解析】(Ⅰ)由图知,在服药的50名患者中,指标y 的值小于60的有15人,所以从服药的50名患者中随机选出一人,指标y 的值小于60的有15人,所以从概率为150.350=. (Ⅱ)由图知,A,B,C,D 四人中,指标x 的值大于1.7的有2人:A 和C. 所以ξ的所有可能取值为0,1,2.21122222222444C C C C 121(0),(1),(2)C 6C 3C 6P P P ξξξ=========.所以ξ的分布列为6.(2017·天津高考真题(理))从甲地到乙地要经过个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为12,13,14.(1)设X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列和均值. (2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率. 【答案】(1)见解析;(2)11()()48P A P B +=. 【解析】(Ⅰ)解:随机变量X 的所有可能取值为0,1,2,3.()111101112344P X ⎛⎫⎛⎫⎛⎫==-⨯-⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()11111111111111111123423423424P X ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==⨯-⨯-+-⨯⨯-+-⨯-⨯= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, ()111111111121112342342344P X ⎛⎫⎛⎫⎛⎫==-⨯⨯+⨯-⨯+⨯⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()1111323424P X ==⨯⨯=.所以,随机变量X 的分布列为随机变量X 的数学期望()1111113012342442412E X =⨯+⨯+⨯+⨯=. (Ⅱ)解:设Y 表示第一辆车遇到红灯的个数,Z 表示第二辆车遇到红灯的个数,则所求事件的概率为()()()()()()()10,11,00110P Y Z P Y Z P Y Z P Y P Z P Y P Z +====+=====+==1111111142424448=⨯+⨯=. 所以,这2辆车共遇到1个红灯的概率为1148.。
离散型随机变量及其分布列练习题和答案
高二理科数学测试题(9-28)1.每次试验的成功率为(01)p p <<,重复进行10次试验,其中前7次都未成功后3次都成功的概率为( )2.投篮测试中,每人投3次,至少投中2次才能通过测试,已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )(A )0.648 (B )0.432 (C )0.36 (D )0.3123.甲、乙两队参加乒乓球团体比赛,甲队与乙队实力之比为3:2,比赛时均能正常发挥技术水平,则在5局3胜制中,甲打完4局才胜的概率为( )4.某地区气象台统计,该地区下雨的概率是154,刮三级以上风的概率为152,既刮风又下雨的概率为101,则在下雨天里,刮风的概率为( ) A.2258B.21C.83 D.43 5.从4名男生和2名女生中任选3人参加演讲比赛,设随机变量ξ表示所选3人中女生的人数,则P (ξ≤1)等于( ).A.15B.25C.35D.456.一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了ξ次球,则==)12(ξP ( ) A.2101012)85()83(⋅C B.83)85()83(29911⨯C C.29911)83()85(⋅C D. 29911)85()83(⋅C 7.袋中有5个球,3个白球,2个黑球,现每次取一个,无放回地抽取两次,第二次抽到白球的概率为( ) A.53 B.43 C.21 D.1038.6位同学参加百米短跑初赛,赛场有6条跑道,已知甲同学排在第一跑道,则乙同学排在第二跑道的概率( )A. 52B.51C.92D. 73 9.一个袋中有9张标有1,2,3,…,9的票,从中依次取两张,则在第一张是奇数的条件下第二张也是奇数的概率( ) A.52 B.51 C.21 D. 7310.位于坐标原点的一个质点P 按下述规则移动:质点每次移动一个单位;移动的方向为向上或向右,并且向上向右的概率都是21,质点P 移动5次后位于点(2,3)的概率是( ) A.3)21( B.525)21(C C.335)21(C D.53525)21(C C 11.若样本数据1x ,2x ,⋅⋅⋅,10x 的标准差为8,则数据121x -,221x -,⋅⋅⋅,1021x -的标准差为( )(A )8 (B )15 (C )16 (D )3212.设某项试验的成功率是失败率的2倍,用随机变量ξ描述一次试验的成功次数,则)0(=ξP 等于( ) A.0 B.21 C. 31 D.32 解答题 13.种植某种树苗,成活率为90%,现在种植这种树苗5棵,试求:⑴全部成活的概率; ⑵全部死亡的概率;⑶恰好成活3棵的概率; ⑷至少成活4棵的概率14.某高中共派出足球、排球、篮球三个球队参加市学校运动会,它们获得冠军的概率分别为12,13,23.(1)求该高中获得冠军个数X 的分布列; (2)若球队获得冠军,则给其所在学校加5分,否则加2分,求该高中得分η的分布列.15.实力相等的甲、乙两队参加乒乓球团体比赛,规定5局3胜制(即5局内谁先赢3局就算胜出并停止比赛).(1)试分别求甲打完3局、4局、5局才能取胜的概率;(2)求按比赛规则甲获胜的概率.16.某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X ,求X 的分布列.1--5:CAACD 6-12: BABCB CC13. ⑴5550.90.59049C =; ⑵5550.10.00001C =; ⑶()3325530.90.10.0729P C =⋅=; ⑷()()55450.91854P P P =+=14.解 (1)∵X 的可能取值为0,1,2,3,取相应值的概率分别为∴X 的分布列为(2)∵得分η=5X +2(3-∵X 的可能取值为0,1,2,3.∴η的可能取值为6,9,12,15,取相应值的概率分别为P (η=6)=P (X =0)=19,P (η=9)=P (X =1)=718, P (η=12)=P (X =2)=718,P (η=15)=P (X =3)=19.∴得分η的分布列为15.解:甲、乙两队实力相等,所以每局比赛甲获胜的概率为12,乙获胜的概率为12. 记事件A =“甲打完3局才能取胜”,记事件B =“甲打完4局才能取胜”, 记事件C =“甲打完5局才能取胜”.①甲打完3局取胜,相当于进行3次独立重复试验,且每局比赛甲均取胜∴甲打完3局取胜的概率为33311()()28P A C ==. ②甲打完4局才能取胜,相当于进行4次独立重复试验,且甲第4局比赛取胜,前3局为2胜1负∴甲打完4局才能取胜的概率为2231113()()22216P B C =⨯⨯⨯=. ③甲打完5局才能取胜,相当于进行5次独立重复试验,且甲第5局比赛取胜,前4局恰好2胜2负∴甲打完5局才能取胜的概率为22241113()()()22216P C C =⨯⨯⨯=. (2)事件D =“按比赛规则甲获胜”,则D A B C =++,又因为事件A 、B 、C 彼此互斥,故1331()()()()()816162P D P A B C P A P B P C =++=++=++=. 16.(1):107。
高中数学2-3检测:离散型随机变量(附解析)
1.下列变量中,不是随机变量的是()A.一射击手射击一次命中的环数B.标准状态下,水沸腾时的温度C.抛掷两枚骰子,所得点数之和D.某电话总机在时间区间(0,T)内收到的呼叫次数2.下列命题中,正确的个数是()①15秒内,通过某十字路口的汽车的辆数是随机变量;②在一段时间内,候车室内候车的旅客人数是随机变量;③一条河流每年的最大流量是随机变量;④一个剧场共有三个出口,散场后从某一出口退场的人数是随机变量.A.1 B.2 C.3 D.43.判断下面问题是否构成随机试验.(1)京哈T17次特快列车到达哈尔滨站是否正点.(2)1976年辽宁海城地震.4.已知下列随机变量:①10件产品中有2件次品,从中任选3件,取到次品的件数X;②某教学资源网站一天内的点击量X;③某运动员在一次110米跨栏比赛中的成绩X;④在体育彩票的抽奖中,一次摇号产生的号码数X.其中X是离散型随机变量的是()A.①②③B.②③④C.①②④D.③④5.抛掷两颗骰子,所得点数之差的绝对值为X,那么X=4表示的随机试验的结果是() A.一颗是1点,一颗是5点B.一颗是2点,一颗是6点C.两颗都是2点D.一颗是1点,一颗是5点或一颗是2点,一颗是6点6.从学号分别为1,2,3,4,5,6的6名同学中,随意选出2名同学去打扫卫生,设选出的2名同学的学号之和为X,则X的所有可能取值的个数为()A.11 B.8 C.9 D.107.某人进行射击,共有5发子弹,击中目标或子弹打完就停止射击,射击次数为ξ,则“ξ=5”表示的试验结果是()A.第5次击中目标B.第5次未击中目标C.前4次均未击中目标D.第4次击中目标8.若用随机变量X表示从一个装有1个白球、3个黑球、2个黄球的袋中取出的4个球中不是黑球的个数,则X 的取值不可能为()A.0 B.1 C.2 D.39.在一次比赛中,需回答三个问题,比赛规则规定:每题回答正确得100分,回答不正确得-100分,则选手甲回答这三个问题的总得分ξ的所有可能取值是____________.10.小王参加一次比赛,比赛共设三关,第一、二关各有两个必答题,如果每关两个问题都答对,可进入下一关,第三关有三个问题,只要答对其中两个问题,则闯关成功.每过一关可一次性获得价值分别为1000元,3000元,6000元的奖品(不重复得奖),用ξ表示小王所获奖品的价值,则ξ的可能取值为________________.1.下列变量中,不是随机变量的是()A.一射击手射击一次命中的环数B.标准状态下,水沸腾时的温度C.抛掷两枚骰子,所得点数之和D.某电话总机在时间区间(0,T)内收到的呼叫次数[解析]标准状态下,水沸腾时的温度是一个确定值,而不是随机变量.故选B.2.下列命题中,正确的个数是()①15秒内,通过某十字路口的汽车的辆数是随机变量;②在一段时间内,候车室内候车的旅客人数是随机变量;③一条河流每年的最大流量是随机变量;④一个剧场共有三个出口,散场后从某一出口退场的人数是随机变量.A.1 B.2 C.3 D.4[解析]由随机变量的概念知四个命题都正确.[答案] D3.判断下面问题是否构成随机试验.(1)京哈T17次特快列车到达哈尔滨站是否正点.(2)1976年辽宁海城地震.[解](1)是随机试验.因为它满足随机试验的三个条件:即在相同的情况下可重复进行(每天一次);所有可能的结果是明确的(正点或误点);试验之前不能肯定会出现哪种结果.(2)不是随机试验.因为它不可重复进行.4.已知下列随机变量:①10件产品中有2件次品,从中任选3件,取到次品的件数X;②某教学资源网站一天内的点击量X;③某运动员在一次110米跨栏比赛中的成绩X;④在体育彩票的抽奖中,一次摇号产生的号码数X.其中X是离散型随机变量的是()A.①②③B.②③④C.①②④D.③④[解析]③中X的值可在某一区间内取值,不能一一列出,故不是离散型随机变量.[答案] C 5.抛掷两颗骰子,所得点数之差的绝对值为X,那么X=4表示的随机试验的结果是() A.一颗是1点,一颗是5点B.一颗是2点,一颗是6点C.两颗都是2点D.一颗是1点,一颗是5点或一颗是2点,一颗是6点[解析]因为|5-1|=4,|6-2|=4,所以选D.[答案] D6.从学号分别为1,2,3,4,5,6的6名同学中,随意选出2名同学去打扫卫生,设选出的2名同学的学号之和为X,则X的所有可能取值的个数为()A.11 B.8 C.9 D.10[解析]易知X的所有可能取值为3,4,5,6,7,8,9,10,11,共9个.[答案] C7.某人进行射击,共有5发子弹,击中目标或子弹打完就停止射击,射击次数为ξ,则“ξ=5”表示的试验结果是()A.第5次击中目标B.第5次未击中目标C.前4次均未击中目标D.第4次击中目标[解析]ξ=5表示射击5次,即前4次均未击中目标,否则不可能射击第5次,但第5次是否击中目标不一定.故选C.8.若用随机变量X表示从一个装有1个白球、3个黑球、2个黄球的袋中取出的4个球中不是黑球的个数,则X的取值不可能为()A.0 B.1 C.2 D.3[解析]由于白球和黄球的个数和为3,黑球的个数是3,所以4个球中不是黑球的个数分别可能是1,2,3,X不可能取0.故选A.9.在一次比赛中,需回答三个问题,比赛规则规定:每题回答正确得100分,回答不正确得-100分,则选手甲回答这三个问题的总得分ξ的所有可能取值是____________.[解析]因为答对的个数可以取0,1,2,3,所对应的得分为-300,-100,100,300,∴ξ可取-300,-100,100,300.[答案]-300,-100,100,30010.小王参加一次比赛,比赛共设三关,第一、二关各有两个必答题,如果每关两个问题都答对,可进入下一关,第三关有三个问题,只要答对其中两个问题,则闯关成功.每过一关可一次性获得价值分别为1000元,3000元,6000元的奖品(不重复得奖),用ξ表示小王所获奖品的价值,则ξ的可能取值为________________.[解析]若第一关错,没有获得奖励,则ξ=0;若第一关答对,第二关答错,则ξ=1000;若第一、二关答对,第三关错,则ξ=3000;若第一、二、三关都答对,则ξ=6000.综上可得ξ可取0,1000,3000,6000. [答案]0,1000,3000,6000。
2019高中数学第二章概率2.1离散型随机变量及其分布列精练含解析北师大版选修232019041621.doc
§1 离散型随机变量及其分布列A组1.袋中有大小、形状、质地相同的5个球,分别标有1,2,3,4,5五个号码,现在在有放回抽取的条件下依次取出两个球,设两个球号码之和为随机变量X,则X所有可能取值的个数是( ) A.5 B.9 C.10 D.25解析:X的所有可能取值为2,3,4,5,6,7,8,9,10,共9个.答案:B2.设某项试验的成功率是失败率的2倍,用随机变量X去描述1次试验的成功次数,则P(X=0)等于( )A.0B.C.D.解析:设X的分布列为X 0 1P p 2p即“X=0”表示试验失败,“X=1”表示试验成功,设失败率为p,则成功率为2p.由p+2p=1,得p=,故选C.答案:C3.设随机变量Y的分布列为Y -1 2 3P m则“≤Y≤”的概率为( )A. B. C. D.解析:依题意知,+m+=1,则m=.故P=P(Y=2)+P(Y=3)=.答案:C4.抛掷两枚骰子一次,ξ为第一枚骰子掷出的点数与第二枚骰子掷出的点数之差,则ξ的所有可能的取值为( )A.0≤ξ≤5,ξ∈NB.-5≤ξ≤0,ξ∈ZC.1≤ξ≤6,ξ∈ND.-5≤ξ≤5,ξ∈Z解析:ξ的所有可能取值为-5,-4,-3,-2,-1,0,1,2,3,4,5,即-5≤ξ≤5,ξ∈Z.答案:D5.设X是一个离散型随机变量,其分布列如下:X -1 0 1P 1-2a a2则a等于( )A.1B.1±C.1+D.1-解析:由分布列性质可得解得a=1-,故选D.答案:D6.在8件产品中,有3件次品,5件正品,从中任取3件,记次品的件数为ξ,则{ξ<2}表示的试验结果是.?解析:应分ξ=0和ξ=1两类.ξ=0表示取到3件正品;ξ=1表示取到1件次品、2件正品.故{ξ<2}表示的试验结果为取到1件次品、2件正品或取到3件正品.答案:取到1件次品、2件正品或取到3件正品7.设随机变量X的分布列为P(X=k)=,k=1,2,3,其中c为常数,则P(0<X<2)= .?解析:由题意得=1,解得c=.所以P(0<X<2)=P(X=1)=.8.从4名男生和2名女生中任选3人参加演讲比赛,设随机变量ξ表示所选3人中女生的人数.(1)求ξ的分布列;(2)求“所选3人中女生人数ξ≤1”的概率.解P(ξ=k)=,k=0,1,2.(1)ξ可能取的值为0,1,2.所以ξ的分布列为ξ0 1 2P(2)由(1),“所选3人中女生人数ξ≤1”的概率为P(ξ≤1)=P(ξ=0)+P(ξ=1)=.9.导学号43944027如图所示,设P1,P2,…,P6为单位圆上逆时针均匀分布的六个点.现从这六个点中任选其中三个不同点构成一个三角形,记该三角形的面积为随机变量S.(1)求S=的概率;(2)求S的分布列.解(1)从六个点中任选三个不同点构成一个三角形共有种不同选法,其中S=为有一个角是30°的直角三角形(如△P1P4P5)的面积,共12种,所以,P.(2)S的所有可能取值为.S=为顶角是120°的等腰三角形(如△P1P2P3)的面积,共6种,所以P.S=为等边三角形(如△P1P3P5)的面积,共2种,所以P,又由(1)知P,故S的分布列为SPB组1.一串钥匙有6把,只有一把能打开锁,依次试验,打不开的扔掉,直到找到能开锁的钥匙为止,则试验次数X的最大可能取值为( )A.6B.5C.4D.2解析:由于是逐次试验,可能前5次都打不开锁,那么剩余钥匙一定能打开锁,故选B.答案:B2.一用户在打电话时忘了号码的最后四位数字,只记得最后四位数字两两不同,且都大于5,于是他随机拨最后四位数字(两两不同),设他拨到所要号码时已拨的次数为ξ,则随机变量ξ的所有可能取值的种数为( )A.20B.24C.4D.18解析:由于后四位数字两两不同,且都大于5,因此只能是6,7,8,9四位数字的不同排列,故有=24种.答案:B3.(2016·江苏响水中学期中)设随机变量X的概率分布为P(X=2k)=ak(a为不为零的常数,k=1,2,3,4,5),则P(X>6)= .?解析:由随机变量分布列的性质知概率之和为1,故P(X=2)+P(X=4)+P(X=6)+P(X=8)+P(X=10)=a+2a+3a+4a+5a=15a=1,∴a=,∴P(X=2k)=k(k=1,2,3,4,5),∴P(X>6)=P(X=8)+P(X=10)=.4.若随机变量η的分布列为η-2 -1 0 1 2 3P 0.1 0.2 0.2 0.3 0.1 0.1则当P(η<x)=0.8时,实数x的取值范围是( )A.x≤2B.1≤x≤2C.1<x≤2D.1<x<2解析:由随机变量η的分布列知:P(η<-1)=0.1,P(η<0)=0.3,P(η<1)=0.5,P(η<2)=0.8,则当P(η<x)=0.8时,实数x的取值范围是1<x≤2.答案:C5.若P(ξ≤x2)=1-β,P(ξ≥x1)=1-α,其中x1<x2,则P(x1≤ξ≤x2)等于.?解析:由分布列性质可有:P(x1≤ξ≤x2)=P(ξ≤x2)+P(ξ≥x1)-1=(1-β)+(1-α)-1=1-(α+β).答案:1-(α+β)6.导学号43944028设离散型随机变量X的分布列为X 0 1 2 3 4P 0.2 0.1 0.1 0.3 m求:(1)2X+1的分布列;(2)|X-1|的分布列.解由分布列的性质知0.2+0.1+0.1+0.3+m=1,解得m=0.3.首先列表为X 0 1 2 3 42X+1 1 3 5 7 9|X-1| 1 0 1 2 3从而由上表得两个分布列为:(1)2X+1的分布列2X+1 1 3 5 7 9P 0.2 0.1 0.1 0.3 0.3(2)|X-1|的分布列|X-1| 0 1 2 3P 0.1 0.3 0.3 0.3。
离散型随机变量的数学期望概率课堂达标检测练习含答案解析高二数学北京海淀
离散型随机变量的数学期望课时自测·当堂达标1.现有一个项目,对该项目每投资10万元,一年后利润是1.2万元、1.18万元、1.17万元的概率分别为,,.随机变量X表示对此项目投资10万元一年后的利润,则X的均值为( )A.1.18B.3.55C.1.23D.2.38【解析】选A.因为X的所有可能取值为1.2,1.18,1.17,P(X=1.2)=,P(X=1.18)=,P(X=1.17)=,所以X的概率分布列为X 1.2 1.18 1.17P 161213则E(X)=1.2×+1.18×+1.17×=1.18.2.随机变量X的分布列为X 1 2 3P 0.2 0.5 m则X的均值是( )A.2B.2.1C.2.3D.随m的变化而变化【解析】选B.因为0.2+0.5+m=1,所以m=0.3,所以E(X)=1×0.2+2×0.5+3×0.3=2.1.3.某班有的学生数学成绩优秀,如果从班中随机地找出5名同学,那么其中数学成绩优秀的学生数为X,则E(2X+1)等于 ( )A. B. C.3 D.【解析】选D.由题可知,X服从二项分布,即X~B,所以E(X)=,所以E(2X+1)=2E(X)+1=2×+1=.4.某射手射击所得环数ξ的分布列如下:ξ7 8 9 10P x 0.1 0.3 y已知ξ的期望E(ξ)=8.9,则y的值为__________.【解析】由题意得⇒答案:0.45.设随机变量X~B(40,p),且E(X)=16,则p=__________.【解析】由二项分布的均值公式得E(X)=np=40p=16,得p=0.4.答案:0.4。
2019高中数学第二章概率2.5离散型随机变量的均值与方差精练含解析北师大选修232019041625.doc
§5离散型随机变量的均值与方差A组1.设随机变量X的分布列为P(X=k)=,k=1,2,3,4,则EX的值为()A. B. C. D.2解析:EX=1×+2×+3×+4××10=.答案:A2.某食品企业一个月内被消费者投诉的次数用ξ表示,据统计,随机变量ξ的分布列如下:ξ0123P0.10.32a a则a的值和ξ的数学期望分别是()A.0.2,1.8B.0.2,1.7C.0.1,1.8D.0.1,1.7解析:由题意得0.1+0.3+2a+a=1,解得a=0.2.Eξ=0×0.1+1×0.3+2×0.4+3×0.2=1.7.答案:B3.有10件产品,其中3件是次品,从中任取2件,若X表示取到次品的件数,则EX等于()A. B. C. D.1解析:离散型随机变量X服从N=10,M=3,n=2的超几何分布,∴EX=.答案:A4.已知X~B(n,p),EX=2,DX=1.6,则n,p的值分别为()A.100,0.8B.20,0.4C.10,0.2D.10,0.8解析:由题意可得解得p=0.2,n=10.答案:C5.同时抛掷两枚均匀的硬币10次,设两枚硬币同时出现反面的次数为ξ,则Dξ=()A. B. C. D.5解析:两枚硬币同时出现反面的概率为,则ξ~B,故Dξ=10×.答案:A6.已知X的分布列为X-202P0.40.30.3若Y=3X+5,则DY的值为()A.24.84B.2.76C.4.4D.29.84解析:∵EX=-2×0.4+0×0.3+2×0.3=-0.2,∴DX=(-2+0.2)2×0.4+(0+0.2)2×0.3+(2+0.2)2×0.3=2.76,∴DY=D(3X+5)=9DX=24.84.答案:A7.某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率为,得到乙、丙两公司面试的概率均为p,且三个公司是否让其面试是相互独立的.记X为该毕业生得到面试的公司个数.若P(X=0)=,则随机变量X的均值EX=.?解析:∵P(X=0)=×(1-p)2=,∴p=.则P(X=1)=×2=,P(X=2)=×2+,P(X=3)=.则EX=0×+1×+2×+3×.答案:8.随机变量ξ的取值为0,1,2,若P(ξ=0)=,Eξ=1,则Dξ=.?解析:设ξ=1时的概率为p,则Eξ=0×+1×p+2×=1,解得p=,故Dξ=(0-1)2×+(1-1)2×+(2-1)2×.答案:9.(2016·赣州模拟)2016年里约的周边商品有80%左右为“中国制造”,所有的厂家都是经过层层筛选才能获此殊荣.甲、乙两厂生产同一产品,为了解甲、乙两厂的产品质量,以确定这一产品最终的供货商,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽取14件和5件,测量产品中的微量元素x,y的含量(单位:毫克).下表是乙厂的5件产品的测量数据:编号12345x169178166175180y7580777081(1)已知甲厂生产的产品共有98件,求乙厂生产的产品数量.(2)当产品中的微量元素x,y满足x≥175,且y≥75时,该产品为优等品.用上述样本数据估计乙厂生产的优等品的数量.(3)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数ξ的分布列及其均值.解(1)乙厂生产的产品总数为5÷=35.(2)样品中优等品的频率为,乙厂生产的优等品的数量为35×=14.(3)ξ=0,1,2,P(ξ=i)=(i=0,1,2),ξ的分布列为ξ012P均值Eξ=1×+2×.10.导学号43944040设袋子中装有除颜色外都相同的a个红球,b个黄球,c个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分.(1)当a=3,b=2,c=1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和,求ξ的分布列;(2)从该袋子中任取(每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若Eη=,D η=,求a∶b∶c.解(1)由题意得ξ=2,3,4,5,6.故P(ξ=2)=,P(ξ=3)=,P(ξ=4)=,P(ξ=5)=,P(ξ=6)=,所以ξ的分布列为ξ23456P(2)由题意知η的分布列为η123P所以Eη=,Dη=,化简得解得a=3c,b=2c,故a∶b∶c=3∶2∶1.B组1.袋中装有大小、形状、质地完全相同,标号分别为1,2,3,…,9的九个球.现从袋中随机取出3个球.设ξ为这3个球的标号相邻的组数(例如:若取出球的标号为3,4,5,则有两组相邻的标号3,4和4,5,此时ξ的值是2),则随机变量ξ的均值Eξ为()A. B. C. D.解析:依题意得,ξ的所有可能取值是0,1,2.且P(ξ=0)=,P(ξ=1)=,P(ξ=2)=,因此Eξ=0×+1×+2×.答案:D2.随机变量ξ的分布列如下,其中a,b,c为等差数列,若Eξ=,则Dξ的值为()ξ-101P a b cA. B. C. D.解析:由分布列得a+b+c=1,①由均值Eξ=得-a+c=,②由a,b,c为等差数列得2b=a+c,③由①②③得a=,b=,c=,所以Dξ=.答案:B3.随机变量X的分布列为:X01mP n且EX=1.1,则DX=.?解析:由分布列的性质得+n+=1,所以n=.又EX=0×+1×+m×=1.1,解得m=2.所以DX=(0-1.1)2×+(1-1.1)2×+(2-1.1)2×=0.49.答案:0.494.随机变量ξ的分布列如下:ξ-101P a b c其中a,b,c成等差数列,若Eξ=,则Dξ=.?解析:由题意得2b=a+c①,a+b+c=1②,c-a=③,由①②③得a=,b=,c=,易求得Dξ=.答案:5.一个口袋中有5个相同的球,编号分别为1,2,3,4,5,从中任取3个球,以ξ表示取出球的最大号码,则Eξ=.?解析:由题意知ξ的分布列为ξ345P所以Eξ=3×+4×+5×=4.5.答案:4.56.某网站针对某歌唱比赛的歌手A,B,C三人进行网上投票,结果如下:观众年龄支持A支持B支持C20岁以下20040080020岁以上(含20岁)100100400(1)在所有参与该活动的人中,用分层抽样的方法抽取n人,其中有6人支持A,求n的值;(2)若在参加活动的20岁以下的人中,用分层抽样的方法抽取7人作为一个样本,从7人中任意抽取3人,用随机变量X表示抽取出3人中支持B的人数,写出X的分布列,并计算EX,DX.解(1)因为利用分层抽样的方法抽取n个人时,从“支持A”的人中抽取了6人,所以,解得n=40.(2)X的所有可能取值为0,1,2,则分布列为X012P所以EX=0×+1×+2×,DX=.7.导学号43944041某大学对参加了“世博会”的该校志愿者实施“社会教育实践”学分考核,因该批志愿者表现良好,该大学决定考核只有合格和优秀两个等次,若某志愿者考核为合格,授予0.5个学分;考核为优秀,授予1个学分.假设该校志愿者甲、乙、丙考核为优秀的概率分别为,他们考核所得的等次相互独立.(1)求在这次考核中,志愿者甲、乙、丙三人中至少有一名考核为优秀的概率;(2)记这次考核中甲、乙、丙三名志愿者所得学分之和为随机变量ξ,求随机变量ξ的分布列和均值Eξ.解(1)记“甲考核为优秀”为事件A,“乙考核为优秀”为事件B,“丙考核为优秀”为事件C,“志愿者甲、乙、丙三人中至少有一名考核为优秀”为事件E,则事件A,B,C相互独立,与事件E是对立事件.则P(E)=1-P()=1-P()·P()·P()=1-.(2)ξ的可能取值为,2,,3.P=P()=,P(ξ=2)=P(A·)+P(·B·)+P(·C)=,P=P(A·B·)+P(A··C)+P(·B·C)=,P(ξ=3)=P(A·B·C)=.所以ξ的分布列为ξ23P所以Eξ=+2×+3×.。
离散型随机变量概率提升作业练习含答案解析高二数学北京海淀
课时提升作业六离散型随机变量一、选择题(每小题5分,共10分)1.下列变量中不是随机变量的是( )A.某人投篮6次投中的次数B.某日上证收盘指数C.标准状态下,水在100 ℃时会沸腾D.某人早晨在车站等出租车的时间【解析】选C.由随机变量的概念可知.标准状态下,水在100 ℃时会沸腾不是随机变量.2.设随机变量X等可能取值1,2,3,…,n,如果P(X<4)=0.3,那么( )A.n=6B.n=4C.n=10D.n=9【解析】选C.由题意知,P(X<4)=P(X=1)+P(X=2)+P(X=3)=++==0.3,故n=10.二、填空题(每小题5分,共10分)3.袋中有大小相同的5个小球,分别标有1,2,3,4,5五个号码,现在在有放回的条件下取出两个小球,设两个小球号码之和为X,则X所有可能值的个数是__________;“X=4”表示__________.【解析】在有放回的条件下取出两个小球的号码可能为:(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5),两个小球号码之和X可能为:2,3,4,5,6,7,8,9,10,共9个.“X=4”表示“第一次取1号、第二次取3号,或者第一次取3号、第二次取1号,或者第一次、第二次都取2号”.答案:9 “第一次取1号、第二次取3号,或者第一次取3号、第二次取1号,或者第一次、第二次都取2号”【误区警示】解答本题容易对“有放回”理解不准确,导致误认为“X=4”表示“第一次取1号、第二次取3号,或者第一次取3号、第二次取1号”.4.一用户在打电话时忘记了号码的最后三个数字,只记得最后三个数字两两不同,且都大于5,于是他随机拨最后三个数字(两两不同),设他第X次拨到所要号码,则随机变量X的可能取值共有__________种.【解题指南】本题实际上是从6,7,8,9四个数中选三个数的排列数.【解析】后三个数字两两不同且都大于5的电话号码共有=24种.答案:24三、解答题(每小题10分,共20分)5.小王钱夹中只剩有20元、10元、5元和1元的人民币各一张.他决定随机抽出两张,用来买晚餐,用X表示这两张金额之和.写出X的可能取值,并说明所取值表示的随机试验结果.【解析】X的可能取值为6,11,15,21,25,30.其中,X=6,表示抽到的是1元和5元;X=11,表示抽到的是1元和10元;X=15,表示抽到的是5元和10元;X=21,表示抽到的是1元和20元;X=25,表示抽到的是5元和20元;X=30,表示抽到的是10元和20元.6.(2018·徐州高二检测)写出下列各随机变量的可能取值,并说明随机变量所取的值表示的随机试验的结果.(1)抛掷甲、乙两枚骰子,所得点数之和Y.(2)设一汽车在开往目的地的道路上需经过5盏信号灯,Y表示汽车首次停下时已通过的信号灯的盏数,写出Y的所有可能取值,并说明这些值所表示的试验结果.(3)一个袋中装有5个同样大小的球,编号为1,2,3,4,5.现从该袋内随机取出3个球,被取出的球的最大号码数为ξ.【解析】(1)Y的可能取值为2,3,4,…12,若以(i,j)表示抛掷甲、乙两枚骰子后骰子甲得i点且骰子乙得j点,则{Y=2}表示(1,1);{Y=3}表示(1,2),(2,1);{Y=4}表示(1,3),(2,2),(3,1);…;{Y=12}表示(6,6).(2)Y的可能取值为0,1,2,3,4,5.{Y=0}表示在遇到第1盏信号灯时首次停下,{Y=1}表示在遇到第2盏信号灯时首次停下,{Y=2}表示遇到第3盏信号灯时首次停下,{Y=3}表示遇到第4盏信号灯时首次停下,{Y=4}表示遇到第5盏信号灯时首次停下,{Y=5}表示在途中没有停下,直达目的地.(3)ξ可取3,4,5.ξ=3,表示取出的3个球的编号为1,2,3;ξ=4,表示取出的3个球的编号为1,2,4或1,3,4或2,3,4;ξ=5,表示取出的3个球的编号为1,2,5或1,3,5或1,4,5或2,3,5或2,4,5或3,4,5.。
离散型随机变量的方差概率课堂达标检测练习含答案解析高二数学北京海淀
离散型随机变量的方差课时自测·当堂达标1.下面说法中正确的是 ( )A.离散型随机变量的均值E(ξ)反映了取值的概率的平均值B.离散型随机变量的方差D(ξ)反映了取值的平均水平C.离散型随机变量的均值E(ξ)反映了取值的平均水平D.离散型随机变量的方差D(ξ)反映了取值的概率的平均值【解析】选C.离散型随机变量的均值E(ξ)反映了取值的平均水平,它的方差反映了取值的离散程度.2.已知随机变量ξ,η满足ξ+η=8,且ξ服从二项分布ξ~B(10,0.6),则E(η)和D(η)的值分别是( )A.6和2.4B.2和2.4C.2和5.6D.6和5.6【解析】选B.由已知E(ξ)=10×0.6=6,D(ξ)=10×0.6×0.4=2.4.因为ξ+η=8,所以η=8-ξ.所以E(η)=-E(ξ)+8=2,D(η)=(-1)2D(ξ)=2.4.3.由以往的统计资料表明,甲、乙两运动员在比赛中得分情况为:ξ2(乙得分) 0 1 2P(ξ2=x i) 0.3 0.3 0.4现有一场比赛,派哪位运动员参加较好( )A.甲B.乙C.甲、乙均可D.无法确定【解析】选A.E(ξ1)=E(ξ2)=1.1,D(ξ1)=1.12×0.2+0.12×0.5+0.92×0.3= 0.49,D(ξ2)=1.12×0.3+0.12×0.3+0.92×0.4=0.69,所以D(ξ1)<D(ξ2), 即甲比乙得分稳定,选甲参加较好.4.同时抛掷两枚质地均匀的硬币10次,设两枚硬币同时出现反面的次数为ξ,则D(ξ)等于__________.【解析】由题意知ξ~B,D(ξ)=10××=.答案:5.已知某随机变量X的分布列如下,其中x>0,y>0,随机变量X的方差D(X)= ,则x+y=__________.X 1 2 3P x y x【解析】由题意,得2x+y=1.E(X)=x+2y+3x=4x+2y=4x+2(1-2x)=2,D(X)==(1-2)2x+(2-2)2(1-2x)+(3-2)2x,即2x=,解得x=.所以y=1-2×=.所以x+y=+=.答案:6.一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立. (1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的销售量低于50个的概率.(2)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望E(X)及方差D(X).【解析】(1)设A1表示事件“日销售量不低于100个”,A2表示事件“日销售量低于50个”,B表示事件“在未来连续3天里有连续2天日销售量都不低于100个且另1天的销售量低于50个”.因此P(A1)=(0.006+0.004+0.002)×50=0.6,P(A2)=0.003×50=0.15,P(B)=0.6×0.6×0.15×2=0.108.(2)X可能取的值为0,1,2,3,相应的概率为P(X=0)=·(1-0.6)3=0.064,P(X=1)=·0.6×(1-0.6)2=0.288,P(X=2)=·0.62×(1-0.6)=0.432,P(X=3)=·0.63=0.216,所以X的分布列为X 0 1 2 3P 0.064 0.288 0.432 0.216 因为X~B(3,0.6),所以期望E(X)=3×0.6=1.8,方差D(X)=3×0.6×(1-0.6)=0.72.。
超几何分布概率基础作业练习含答案解析高二数学北京海淀
课时提升作业八超几何分布一、选择题(每小题5分,共25分)1.某校从学生会中的10名女生干部与5名男生干部中随机选取6名学生干部组成“文明校园督察队”,则组成4女2男的“文明校园督察队”的概率为( )A. B. C. D.【解析】选C.组成4女2男的“文明校园督察队”的概率为.2.已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为 ( )A.0.4B.0.6C.0.8D.1【解题指南】先对产品标号,然后列举出可能出现的结果,根据古典概型概率公式求出所求的概率.【解析】选B.5件产品中有2件次品,记为a,b,有3件合格品,记为c,d,e,从这5件产品中任取2件,有10种,分别是(a,b),(a,c),(a,d),(a,e),(b,c),(b,d), (b,e),(c,d),(c,e),(d,e),恰有一件次品,有6种,分别是(a,c),(a,d),(a,e), (b,c),(b,d),(b,e),设事件A=“恰有一件次品”,则P(A)==0.6.3.从含2名女生的10名大学毕业生中任选3人进行某项调研活动,记女生入选的人数为X,则X的分布列为( )A.X=k 0 1 2P(X=k) 715715115B.X=k 1 2 3P(X=k) 115715715C.X=k 0 1 2P(X=k) 121316D.X=k 0 1 2P(X=k) 115715715【解析】选A.X的所有可能取值为0,1,2, “X=0”表示入选3人全是男生,则P(X=0)==,“X=1”表示入选3人中恰有1名女生,则P(X=1)==,“X=2”表示入选3人中有2名女生,则P(X=2)==.因此X的分布列为X=k 0 1 2P(X=k) 715715115【延伸探究】在题设条件不变的情况下,计算P(X≤1)的值.【解析】P(X≤1)=1-P(X=2)=1-=.4.从一副不含大小王的52张扑克牌中任意抽出5张,至少抽到3张A的概率约为( )A.0.001 8B.0.018C.0. 021D.0.002 1【解析】选A.因为一副扑克牌中有4张A,则取到扑克牌A的张数X服从参数为N=52,M=4,n=5的超几何分布,它的可能取值为0,1,2,3,4,根据超几何分布的公式得至少抽到3张A的概率为P(X≥3)=P(X=3)+P(X=4)=+ = +≈0.001 8.即至少抽到三张A的概率约为0.001 8.5.10名同学中有a名女生,若从中抽取2个人作为学生代表,恰好取1名女生的概率为,则a= ( )A.1B.2或8C.2D.8【解析】选B.由题意,得=,解得a=2或a=8.二、填空题(每小题5分,共15分)6.从3台甲型彩电和2台乙型彩电中任取2台,若设X表示所取的2台彩电中甲型彩电的台数,则P(X=1)=__________.【解析】X=1表示的结果是抽取的2台彩电有甲型和乙型彩电各一台,故所求概率P(X=1)==.答案:7.某班班委会由5名女生和4名男生组成,现要从中任选3人参加一项公益活动,所选3人中男生人数ξ的分布列为__________ .【解析】ξ的可能取值为0,1,2,3,P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,P(ξ=3)==.所以ξ的分布列为ξ0 1 2 3P 5421021514121答案:ξ0 1 2 3P 54210215141218.从分别标有数字1,2,3,4,5,6,7,8,9的9张卡片中任取2张,则两数字之和是奇数的概率是__________.【解题指南】两数之和是奇数,必为一奇一偶,故先对这9张卡片分组:1,3,5,7,9和2,4,6,8,然后再求解.【解析】两数字之和为奇数,必定是从1,3,5,7,9中取一个奇数,从2,4,6,8中取一个偶数.故P==.答案:三、解答题(每小题10分,共20分)9.从一批含有13只正品和2只次品的产品中,一次任取3只,求一次取出次品数X的分布列.【解析】由已知可得X服从参数为N=15,M=2,n=3的超几何分布,X可能的取值为0,1,2,相应的概率依次为:P(X=0)==,P(X=1)==,P(X=2)==,所以X的分布列为X 0 1 2P 22351235135【误区警示】X的取值易漏掉X=0的情况.10.袋中有4个红球、3个黑球,从袋中随机取球,设取到一个红球得2分,取到一个黑球得1分,从袋中任取4个球.(1)求得分X的分布列;(2)求得分大于6分的概率.【解析】(1)从袋中随机摸4个球的情况为:1红3黑,2红2黑,3红1黑,4红四种情况,分别得分为5分、6分、7分、8分,故X的可能取值为5,6,7,8.P(X=5)==,P(X=6)==,P(X=7)==,P(X=8)==.故所求概率分布列为X=k 5 6 7 8P(X=k) 43518351235135(2)根据随机变量X的概率分布列,可以得到得分大于6分的概率为P(X>6)=P(X=7)+P(X=8)=+=.【补偿训练】已知箱中装有4个白球和5个黑球,且规定:取出一个白球得2分,取出一个黑球得1分.现从该箱中任取(无放回,且每球取得的机会均等)3个球,记随机变量X为取出此3球所得分数之和.求X的分布列.【解析】由题意得X取3,4,5,6,且P(X=3)==,P(X=4)==,P(X=5)==,P(X=6)==,所以X的分布列为X=k 3 4 5 6P(X=k) 5421021514121。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时提升作业六
离散型随机变量
一、选择题(每小题5分,共25分)
1.下面给出四个随机变量:①一高速公路上某收费站在1小时内经过的车辆数X是一个随机变量;②一个沿直线y=x进行随机运动的质点,它在该直线上的位置Y是一个随机变量;③某人1小时内接到的电话次数X是一个随机变量;④1天内的温度Y是一个随机变量.其中是离散型随机变量的为( )
A.①②
B.③④
C.①③
D.②④
【解析】选C.①中经过的车辆数和③中接到的电话次数都能列举出来,而
②④中都不能列举出来,所以①③中的X是一个离散型随机变量.
2.(2018·菏泽高二检测)如果X是一个离散型随机变量且η=aX+b,其中a,b 是常数且a≠0,那么η ( )
A.不一定是随机变量
B.一定是随机变量,不一定是离散型随机变量
C.一定是连续型随机变量
D.一定是离散型随机变量
【解析】选D.若X是离散型随机变量,则X乘以不为零的常数再加上常数b 也是随机变量,即η必是离散型随机变量.
3.已知下列随机变量:
①10件产品中有2件次品,从中任选3件,取到次品的件数X;
②一位射击手对目标进行射击,击中目标得1分,未击中目标得0分,用X表示该射击手在一次射击中的得分;
③某运动员在一次110米跨栏比赛中的成绩X;
④在体育彩票的抽奖中,一次摇号产生的号码数X.
其中X是离散型随机变量的是 ( )
A.①②③
B.②③④
C.①②④
D.③④
【解析】选C.③中X的值可在某一区间内取值,不能一一列出,故不是离散型随机变量.而①②④中的随机变量都可以一一列出.
4.甲、乙两名乒乓球运动员进行单打比赛,采用“五局三胜制”且每局比赛胜负相互没有影响,设X表示比赛结束时甲胜的局数,则X的可能取值为( )
A.1,2,3
B.2,3
C.0,1,2,3
D.0,1,2,3,4,5
【解析】选C.比赛结束若甲胜,则X=3,若乙胜X可能为0,1,2,故X的可能取值有四个,它们是0,1,2,3.
5.一串钥匙有5把,只有一把能打开锁,依次试验,打不开的扔掉,直到找到能打开锁的钥匙为止,则试验次数X的最大可能取值为 ( )
A.2
B.3
C.4
D.5
【解析】选C.根据题意,最多试验4次,就能找到能打开锁的钥匙.
【误区警示】解答本题若对“找到能打开锁的钥匙为止”理解不准确,容易错选D.
【补偿训练】对一批产品逐个进行检测,第一次检测到次品前已检测的产品个数为ξ,则ξ=k表示的试验结果为( )
A.第k-1次检测到正品,而第k次检测到次品
B.第k次检测到正品,而第k+1次检测到次品
C.前k-1次检测到正品,而第k次检测到次品
D.前k次检测到正品,而第k+1次检测到次品
【解析】选D.ξ就是检测到次品前正品的个数,ξ=k表明前k次检测到的都是正品,第k+1次检测到的是次品.
二、填空题(每小题5分,共15分)
6.下列变量中,不是随机变量的是(填序号).
①下一个交易日上证收盘指数;
②标准大气压下冰水混合物的温度;
③明日上课某班(共50人)请假同学的人数;
④小马登录QQ找小胡聊天,设X=
【解析】①下一个交易日上证收盘指数在某一区间内任意取值,是随机变化的,是随机变量;②标准大气压下冰水混合物的温度是0 ℃,是常数,不是随机变量;③明日上课某班请假同学的人数可能是:0,1,2,…,50,是随机变化的,是随机变量;④小胡在线时X=1,小胡不在线时X=0,是随机变化的,是随机变量.
答案:②
7.从5张已编号(1号~5号)的卡片中任意取出2张,被取出的卡片编号数之和记为X,则X=6表示的试验结果是____________________.
【解析】根据题意可知X=6表示:取出分别标有1,5或2,4的两张卡片. 答案:取出分别标有1,5或2,4的两张卡片
8.小王参加一次比赛,比赛共设三关,第一、二关各有两个必答题,如果每关两个问题都答对,可进入下一关,第三关有三个问题,只要答对其中两个问
题,则闯关成功.每过一关可一次性获得价值分别为1 000元,3 000元,6 000元的奖品(不重复得奖),用X表示小王所获奖品的价值,则X的可能取值为__________.
【解析】X=0表示第一关就没有过;
X=1 000表示第一关过而第二关没有通过;
X=3 000表示第一关通过,第二关通过而第三关没有通过;
X=6 000表示三关都通过.
综上知,X的可能取值为:0,1 000,3 000,6 000.
答案:0,1 000,3 000,6 000
【误区警示】对题目背景理解不准确:忽略不重复得奖,最高奖不会超过6 000元,导致误认为的可能取值为0,1 000,4 000,10 000.
三、解答题(每小题10分,共20分)
9.判断下列各个量,哪些是随机变量,哪些不是随机变量,并说明理由.
(1)某地“行风热线”某天接到电话的个数.
(2)新赛季,梅西在某场比赛中(90分钟),上场比赛的时间.
(3)对角线互相垂直且长度分别为6和8的四边形的面积.
(4)在一次书法作品评比中,设一、二、三等奖,小刚的一件作品获奖的等次.【解析】(1)接到电话的个数可能是0,1,2,…出现哪一个结果都是随机的,所以是随机变量.
(2)梅西在某场比赛中上场比赛的时间在[0,90]内,是随机的,所以是随机变量.
(3)对角线互相垂直且长度分别为6和8的四边形的面积是定值,所以不是随机变量.
(4)获奖的等次可能是一、二、三,出现哪一个结果都是随机的,所以是随机变量.
10.写出下列各随机变量可能的取值,并说明随机变量所取的值所表示的随机试验的结果.
(1)从一个装有编号为1号到10号的10个球的袋中任取1球,被取出的球的编号为X.
(2)一个袋中装有10个红球,5个白球,从中任取4个球,其中所含红球的个数为X.
(3)投掷甲、乙两枚骰子,所得点数之和为X.
【解析】(1)X的可能取值为1,2,3,…,10,X=k(k=1,2,…,10)表示取出第k 号球.
(2)X的可能取值为0,1,2,3,4.X=k表示取出k个红球,4-k个白
球,k=0,1,2,3,4.
(3)X的可能取值为2,3,4,…,12.若以(i,j)表示投掷甲、乙两枚骰子后骰子甲得i点且骰子乙得j点,则X=2表示(1,1);X=3表示(1,2),(2,1);X=4表示(1,3),(2,2),(3,1);X=5表示(1,4),(2,3),(3,2),(4,1);X=6表示(1,5),(2,4), (3,3),(4,2);(5,1);X=7表示
(1,6),(2,5),(3,4),(4,3);(5,2);(6,1);X=8表示
(2,6),(3,5),(4,4),(5,3);(6,2);X=9表示
(3,6),(4,5),(5,4),(6,3);X=10表示(4,6),(5,5),(6,4);X=11表示(5,6),(6,5);X=12表示(6,6).
【延伸探究】本题(2)中每抽到一个红球加5分,抽到白球不加分,且最终不管结果如何都加上7分,求最终得分Y的可能取值,并判定其是否为离散型随机变量.
【解析】由题意可得Y=5X+7,X的可能取值为0,1,2,3,4.所以Y的可能取值是:7,12,17,22,27.显然Y是离散型随机变量.。