《排队论》习题解答

合集下载

排队考试题及答案

排队考试题及答案

排队考试题及答案一、单项选择题(每题2分,共20分)1. 排队理论中,顾客到达的过程通常被假设为()。

A. 确定性过程B. 随机过程C. 周期性过程D. 线性过程答案:B2. 在排队系统中,如果服务时间是确定的,那么该系统被称为()。

A. M/M/1B. M/D/1C. M/G/1D. D/M/1答案:B3. 排队理论中,以下哪个参数表示顾客在系统中的平均逗留时间?()A. λ(到达率)B. μ(服务率)C. W(平均逗留时间)D. L(系统中的平均顾客数)答案:C4. 以下哪个公式用于计算排队系统中顾客的平均等待时间?()A. Wq = λ / (μ - λ)B. Lq = λ / (μ - λ)C. Wq = 1 / (μ - λ)D. Lq = 1 / (μ - λ)答案:A5. 在排队理论中,如果顾客到达率和服务率都是随机的,这种类型的系统被称为()。

B. M/G/1C. G/M/1D. G/G/1答案:D6. 以下哪个参数表示系统中顾客的平均数量?()A. λ(到达率)B. μ(服务率)C. L(系统中的平均顾客数)D. W(平均逗留时间)答案:C7. 排队理论中,如果服务台数量为无限大,这种类型的系统被称为()。

A. M/M/1B. M/M/∞C. M/M/k答案:B8. 在排队系统中,如果顾客到达过程是泊松分布,服务时间是指数分布,这种类型的系统被称为()。

A. M/M/1B. M/D/1C. M/G/1D. G/M/1答案:A9. 以下哪个参数表示顾客在队列中的平均等待时间?()A. λ(到达率)B. μ(服务率)C. Wq(队列中的平均等待时间)D. Lq(队列中的平均顾客数)答案:C10. 排队理论中,如果顾客到达率和服务率都是确定的,这种类型的系统被称为()。

A. M/M/1B. D/D/1C. M/D/1D. D/M/1答案:B二、多项选择题(每题3分,共15分)11. 排队理论中,以下哪些因素会影响顾客的平均等待时间?()A. 到达率B. 服务率C. 服务台数量D. 顾客的耐心答案:ABC12. 在排队理论中,以下哪些参数是描述系统性能的?()A. 系统中的平均顾客数(L)B. 队列中的平均顾客数(Lq)C. 系统中的平均逗留时间(W)D. 队列中的平均等待时间(Wq)答案:ABCD13. 以下哪些是排队理论中常见的排队规则?()A. 先来先服务(FCFS)B. 后来先服务(LCFS)C. 随机服务(RS)D. 最短处理时间优先(SPT)答案:ABD14. 以下哪些是排队理论中常见的到达和服务时间分布?()A. 泊松分布B. 指数分布C. 均匀分布D. 确定性分布答案:ABCD15. 在排队理论中,以下哪些因素会影响顾客的满意度?()A. 等待时间B. 服务时间C. 服务台数量D. 环境舒适度答案:ABD三、简答题(每题10分,共30分)16. 请简述排队理论中的“Little定律”。

《排队论》习题解答

《排队论》习题解答
(1 3 4)( 3 4) 2 f 8 30 (1 ) 5 40 31.35 3 1 ( 3 4)
故方案I比方案II好。
2018/11/23 计算机科学与工程学院 顾小丰 18-9
习题4
某系统利用2台计算机进行容错处理。
如果 1 台计算机正常工作时间服从负指数 分布,平均 10 天,而计算机损坏时由 1 名 工程师维修,维修 1 台计算机的时间是负 指数分布的,平均 5天。求: 2台计算机都 正常运行的概率和由于计算机损坏无法运 行的概率,系统中平均运行的计算机数。
m 1
2! 1 i ( ) i 0 ( 2 i )! 2
2
1
2 0. 4 5
P{计算机损坏无法运行}=p2
2! 1 2! 1 ( ) 2 p0 ( ) 2 0.4 0.2 ( 2 2)! 2 ( 2 2)! 2
计算机科学与工程学院 顾小丰 18-11
随机过程与排队论
计算机科学与工程学院 顾小丰 Email:guxf@ 2018年11月23日星期五
习题1
病人以每小时3人的泊松流到达医院,假
设该医院只有一个医生服务,他的服务时间服 从负指数分布,并且平均服务一个顾客时间为 15分钟。
(a) 医生空闲时间的比例? (b) 有多少病人等待看医生? (c) 病人的平均等待时间? (d) 一个病人等待超过一个小时的概率?
3 4 ( 1 4 ) 3 1 e e 4 4
3
≈0.276 即病人等待超过一个小时的概率约为0.276。
2018/11/23
计算机科学与工程学院
顾小丰
18-4
习题2
一台计算机有 2 个终端,假定计算一个题目

排队论习题及答案

排队论习题及答案

排队论习题及答案排队论习题及答案排队论是概率论和数学统计中的一个重要分支,研究的是随机事件的排队问题。

在现实生活中,我们经常会遇到排队的情况,如等候乘坐公交车、购物结账等。

排队论的研究可以帮助我们更好地理解和优化排队过程,提高效率和服务质量。

下面,我们将介绍几个排队论的习题及其解答。

习题一:某银行有两个窗口,顾客到达银行的时间服从平均到达率为λ的泊松分布,每个顾客在窗口办理业务的时间服从平均服务率为μ的指数分布。

求平均等待时间和平均排队长度。

解答:首先,我们可以根据泊松分布和指数分布的性质,得到顾客到达时间和服务时间之间的关系。

假设顾客到达时间服从泊松分布,到达率为λ,那么两个顾客到达时间之间的时间间隔服从参数为λ的指数分布。

同样,假设顾客的服务时间服从指数分布,服务率为μ,那么两个顾客的服务时间之间的时间间隔服从参数为μ的指数分布。

根据排队论的基本原理,平均等待时间等于平均排队长度除以到达率。

平均排队长度可以通过利用排队论的公式计算得到。

在本题中,根据M/M/2模型,可以得到平均排队长度的公式为:Lq = λ^2 / (2μ(μ - λ))其中,Lq表示平均排队长度,λ表示到达率,μ表示服务率。

接下来,我们可以计算平均等待时间。

根据排队论的公式,平均等待时间等于平均排队长度除以到达率。

所以,平均等待时间的公式为:Wq = Lq / λ综上所述,我们可以通过计算得到平均等待时间和平均排队长度。

习题二:某餐厅有4个服务台,每个服务台的服务时间服从平均服务率为μ的指数分布,顾客到达时间服从平均到达率为λ的泊松分布。

求平均等待时间和平均排队长度。

解答:在这个问题中,我们可以使用M/M/4模型来求解。

根据M/M/4模型,平均排队长度的公式为:Lq = (λ/μ)^4 * (1/(4! * (1 - ρ)))其中,Lq表示平均排队长度,λ表示到达率,μ表示服务率,ρ表示系统繁忙度。

平均等待时间的公式为:Wq = Lq / λ通过计算可以得到平均等待时间和平均排队长度。

《排队论》习题解答

《排队论》习题解答
f83 0 (1(1 1 3(4 3 )4 3 ( )3 4 )2)54 0 3.3 15
故方案I比方案II好。
习题4
某系统利用2台计算机进行容错处理。 如果1台计算机正常工作时间服从负指数 分布,平均10天,而计算机损坏时由1名 工程师维修,维修1台计算机的时间是负 指数分布的,平均5天。求:2台计算机都 正常运行的概率和由于计算机损坏无法运 行的概率,系统中平均运行的计算机数。
= 3 ,该系统按M/M/1/型处理。
4
a)
P{医生空闲}=P{系统空闲}=p0=1-= =0.25。
1 4
b) 平均等待对长 N q 2
(3/4)2 9
2.25
1 13/4 4
即平均有2.25个病人等待看医生
c) 平均等待时间 Wq 3/4 30.75
(1 ) 4(13/4) 4
jc
pj
c (1c)c!p0
(53)2 1 25
0.7576
(156)2! 11 33
平均积压的题目数
Nq
c (1c)2
pc
(56)(53)2 1 125 (156)22!11333.7879
习题3
考虑一个M/M/1/K排队系统,λ=10人/小 时,μ=30人/小时,K=2。管理者想改进服务 机构,提出了两个方案。方案I:增加等待空 间,K=3;方案II:提高服务率,μ=40人/小 时。假设在单位时间内单位服务成本5元和每 服务一个顾客收益8元不变得情况下,哪个方 案获得更大的收益?当λ=30人/小时,又有什 么结果?

由题设知,=1/10(台/天),=1/5(台/天), =1/2,该系统按M/M/c/m/m型处理,c=1,m =2。
P{2台计算机都正常运行}=p0

(完整word版)《运筹学》_第六章排队论习题及_答案

(完整word版)《运筹学》_第六章排队论习题及_答案

《运筹学》第六章排队论习题转载请注明1. 思考题(1)排队论主要研究的问题是什么;(2)试述排队模型的种类及各部分的特征;(3)Kendall 符号C B A Z Y X /////中各字母的分别代表什么意义;(4)理解平均到达率、平均服务率、平均服务时间和顾客到达间隔时间等概念; (5)分别写出普阿松分布、负指数分布、爱尔朗分布的密度函数,说明这些分布的主要性质;(6)试述队长和排队长;等待时间和逗留时间;忙期和闲期等概念及他们之间的联系与区别。

2.判断下列说法是否正确(1)若到达排队系统的顾客为普阿松流,则依次到达的两名顾客之间的间隔时间服从负指数分布;(2)假如到达排队系统的顾客来自两个方面,分别服从普阿松分布,则这两部分顾客合起来的顾客流仍为普阿松分布;(3)若两两顾客依次到达的间隔时间服从负指数分布,又将顾客按到达先后排序,则第1、3、5、7,┉名顾客到达的间隔时间也服从负指数分布; (4)对1//M M 或C M M //的排队系统,服务完毕离开系统的顾客流也为普阿松流; (5)在排队系统中,一般假定对顾客服务时间的分布为负指数分布,这是因为通过对大量实际系统的统计研究,这样的假定比较合理;(6)一个排队系统中,不管顾客到达和服务时间的情况如何,只要运行足够长的时间后,系统将进入稳定状态;(7)排队系统中,顾客等待时间的分布不受排队服务规则的影响;(8)在顾客到达及机构服务时间的分布相同的情况下,对容量有限的排队系统,顾客的平均等待时间少于允许队长无限的系统;(9)在顾客到达分布相同的情况下,顾客的平均等待时间同服务时间分布的方差大小有关,当服务时间分布的方差越大时,顾客的平均等待时间就越长; (10)在机器发生故障的概率及工人修复一台机器的时间分布不变的条件下,由1名工人看管5台机器,或由3名工人联合看管15台机器时,机器因故障等待工人维修的平均时间不变。

3.某店有一个修理工人,顾客到达过程为Poisson 流,平均每小时3人,修理时间服从负指数分布,平均需19分钟,求: (1)店内空闲的时间; (2)有4个顾客的概率; (3)至少有一个顾客的概率; (4)店内顾客的平均数; (5)等待服务的顾客数; (6)平均等待修理的时间;(7)一个顾客在店内逗留时间超过15分钟的概率。

排队论习题解

排队论习题解

排队论习题解10.1某修理店只有一个修理工人, 来修理的顾客到达次数服从普阿松分布,平均每小时3人,修理时间服从负指数分布,平均需10分钟, 求(1) 修理店空闲时间概率; (2) 店内有4个顾客的概率; (3) 店内至少有一个顾客的概率; (4) 在店内顾客平均数; (5) 等待服务的顾客平均数; (6) 在店内平均逗留时间; (7) 平均等待修理(服务)时间;(8) 必须在店内消耗15分钟以上的概率.04440s q s q 60M /M /1//3 6.1031(1)p 1162111(2)p (1)(1)()223211(3)1p 1223(4)L 1()631312(5)L ()632111(6)()633112(7)()636(8)1-F()W W λμρρρλμλρλμλμλρμλω∞∞====-=-==-=-=-=-====--⋅===--===--===--解:该系统为()模型,,;;;人;人;小时;小时;1515-(6-3)--(-)6020eee .μλω⨯===11(1)(2)(3)23211(4)(5)2211(6)(7)(8)3615.15-20答:修理店空闲时间概率为;店内有三个顾客的概率为;店内至少有一个顾客的概率为;店内顾客平均数为1人;等待服务顾客平均数为人;在店内平均逗留时间分钟;平均等待修理时间为分钟;必须在店内消耗分钟以上的概率为e10.22015(1)(2)(3)(4) 1.25M /M /1.603(/20λ==设有一单人打字室,顾客的到达为普阿松流,平均到达时间间隔为分钟,打字时间服从指数分布,平均时间为分钟,求顾客来打字不必等待的概率;打字室内顾客的平均数;顾客在打字室内平均逗留时间;若顾客在打字室内的平均逗留时间超过小时,则主人将考虑增加设备及打字员,问顾客的平均到达概率为多少时,主人才会考虑这样做?解:该题属模型人小时0s s s 60)4(/).1531(1)p 11443(2)L 3()4311(3)1()431(4)1.2511.25 3.23.230.2(/).4W W μρλμλμλμλλλ===-=-====--===--=>-≥>-=-Q ,人小时;人;小时;;,,人小时1(1)(2)3(3)41(4)0.2/.答:顾客来打字不必等待的概率为;打字室内顾客平均数为人;顾客在打字室内平均逗留时间为小时;平均到达率为人小时时,店主才会考虑增加设备及打字员 10.3 汽车按平均90辆/h 的poission 流到达高速公路上的一个收费关卡,通过关卡的平均时间为38s 。

排队论练习题

排队论练习题
3.在[M/M/1]:[N/∞/FCFS]系统中,设顾客到达速率为λ,服务速率为μ,求单位时间内被拒绝的 顾客数的期望值。
4.在第一题中,设顾客到达速率增加到12人/小时,这时又增加一个同样熟练的修理工,平均 修理时间也是6分钟。求: (1)店内空闲的概率; (2)店内有两个或更多顾客的概率; (3)计算运行指标L,Lq,W,Wq。
Ls=1.47708 (7) Wq=1.08分钟
Ws=6.08分钟
例10 某车站候车室在某段时间旅客到达服从泊松流分布,平均速度 为50人/小时,每位旅客在候车室内逗留的时间服从负指数分布,平均 停留时间为0.5小时,问候车室内平均人数为多少? 解:把旅客停留在候车室看做服务,于是就看为M/M/∞/∞/∞
服从负指数分布,平均理发时间为15分钟。求:
(1)顾客来店理发不必等待的概率; (2)理发店内顾客平均数; (3)顾客在理发店内的平均逗留时间; (4)当顾客到达速率是多少时,顾客在店内的平均逗留时间将超过1.25小时。
解:这是一个[M/M/1]:[//FCFS]排队系统
=3,=4,=/=3/4=0.75 (1) P0=1-=1-0.75=0.25 (2) (3) (4) ,=3.2,
解:这是一个[M/M/1]:[//FCFS]排队系统
=4,=10,=/=2/5=0.4 (1) P0=1-=1-2/5=3/5=0.6 (2) P3=3(1-)=0.43×0.6=0.0384 (3) 1-P0=1-(1-)==0.4 (4) (5) (6)
(7)
例7.一个单人理发点,顾客到达服从Poisson分布,平均到达时间间隔为20分钟;理发时间
问题解决:
分三种情况考虑: (1) 当无病人时,三种互不相容事件的概率分别为: (a) 在时间t内没有病人排队,时刻也没有病人到达的概 率为。 (b) 在时间t内有一个病人,内没有顾客到达,但有一位 病人接受诊断后离去的概率为。 (c) 在时间t内没有病人排队,但在时刻内有一位病人到 达,也有一位病人接受诊断后离去的概率为。

胡运权排队论习题解

胡运权排队论习题解

解:该系统属于 M/M/1 模型
旧装置各参数计算:
90 / h 3600 94.7
38 90 0.95
94.7
L 0.95 19 1 0.05
Lq L 19 0.95 18.05 P0 1 0.05
采用新装置各参数计算:
' 90 / h ' 3600 120
)2
[1
cN c (N
c)(1
c )cN c ]
0.42 0.60 [1 0.651 (5 1)(1 0.6) 0.651] 0!(1 0.6)
0.6962
Ls
Lq
e
0.6962
4.8 10
1.1762,
(3)系统的满意率为p5 0.04.
(4)服务台降低服务强度,原因是因为系统中没有顾客的概率比重较大.
10.8 在第10.1题中,如服务时间服从正态分布,数学期望仍然为6分钟, 方差 2 1,求店内顾客数的期望值。
8
解 =4人 / 小时,E(T ) 1(小时),= 4 ,Var[T ] 1
10
10
8
Ls
2
2Var[T ] 2(1 )
4 10
4 10
2
16
1 8
=11.
2(1 4 ) 5
解:该系统为(M / M /1/ / )模型, 3, 60 6. 10
(1)p0
1
1
3 6
1; 2
(2)p4
(1
)4
(1
1)( 1)4 22
1; 32
(3)1
p0
1
1 2
1; 2
(4)Ls
3 63
1(人);

排队论习题答案

排队论习题答案

排队论习题答案排队论习题答案排队论是运筹学中的一个重要分支,研究的是排队系统中的等待时间、服务时间以及系统的稳定性等问题。

在实际生活中,我们经常会遇到排队的情况,比如超市、银行、医院等地方。

那么,如何有效地解决排队问题,减少等待时间呢?下面我将通过几个习题来探讨排队论的解题方法。

习题一:某银行有两个窗口,分别为A窗口和B窗口,顾客到达的时间间隔服从指数分布,平均每10分钟到达一人。

A窗口的服务时间服从均值为5分钟的指数分布,B窗口的服务时间服从均值为7分钟的指数分布。

求顾客平均等待时间和平均逗留时间。

解答一:首先,我们需要计算平均到达率λ和平均服务率μ。

根据题目给出的信息,平均到达率λ=1/10=0.1人/分钟,平均服务率μA=1/5=0.2人/分钟,平均服务率μB=1/7≈0.1429人/分钟。

根据排队论的基本原理,当λ<μ时,系统稳定,顾客平均等待时间为0。

当λ>μ时,系统不稳定,顾客平均等待时间为ρ/(μ-λ),其中ρ为系统繁忙率。

由于该题目中有两个窗口,所以我们需要计算两个窗口的繁忙率ρA和ρB。

ρA=λ/μA=0.1/0.2=0.5,ρB=λ/μB=0.1/0.1429≈0.7。

由于两个窗口的繁忙率不相等,我们需要使用排队网络的方法来求解。

根据排队网络的基本原理,顾客平均逗留时间等于顾客在每个窗口的平均逗留时间之和。

根据排队网络的公式,顾客在A窗口的平均逗留时间为1/(μA-λ)≈5分钟,顾客在B窗口的平均逗留时间为1/(μB-λ)≈7.5分钟。

所以,顾客平均逗留时间为5+7.5=12.5分钟。

习题二:某医院门诊部有一个窗口,顾客到达的时间间隔服从泊松分布,平均每10分钟到达一人。

窗口的服务时间服从均值为8分钟的指数分布。

求顾客平均等待时间和平均逗留时间。

解答二:同样地,我们需要计算平均到达率λ和平均服务率μ。

根据题目给出的信息,平均到达率λ=1/10=0.1人/分钟,平均服务率μ=1/8=0.125人/分钟。

《运筹学》 第六章排队论习题及 答案

《运筹学》 第六章排队论习题及 答案

《运筹学》第六章排队论习题1. 思考题(1)排队论主要研究的问题是什么;(2)试述排队模型的种类及各部分的特征;(3)Kendall 符号C B A Z Y X /////中各字母的分别代表什么意义;(4)理解平均到达率、平均服务率、平均服务时间和顾客到达间隔时间等概念; (5)分别写出普阿松分布、负指数分布、爱尔朗分布的密度函数,说明这些分布的主要性质;(6)试述队长和排队长;等待时间和逗留时间;忙期和闲期等概念及他们之间的联系与区别。

2.判断下列说法是否正确(1)若到达排队系统的顾客为普阿松流,则依次到达的两名顾客之间的间隔时间服从负指数分布;(2)假如到达排队系统的顾客来自两个方面,分别服从普阿松分布,则这两部分顾客合起来的顾客流仍为普阿松分布;(3)若两两顾客依次到达的间隔时间服从负指数分布,又将顾客按到达先后排序,则第1、3、5、7,┉名顾客到达的间隔时间也服从负指数分布; (4)对1//M M 或C M M //的排队系统,服务完毕离开系统的顾客流也为普阿松流; (5)在排队系统中,一般假定对顾客服务时间的分布为负指数分布,这是因为通过对大量实际系统的统计研究,这样的假定比较合理;(6)一个排队系统中,不管顾客到达和服务时间的情况如何,只要运行足够长的时间后,系统将进入稳定状态;(7)排队系统中,顾客等待时间的分布不受排队服务规则的影响;(8)在顾客到达及机构服务时间的分布相同的情况下,对容量有限的排队系统,顾客的平均等待时间少于允许队长无限的系统;(9)在顾客到达分布相同的情况下,顾客的平均等待时间同服务时间分布的方差大小有关,当服务时间分布的方差越大时,顾客的平均等待时间就越长; (10)在机器发生故障的概率及工人修复一台机器的时间分布不变的条件下,由1名工人看管5台机器,或由3名工人联合看管15台机器时,机器因故障等待工人维修的平均时间不变。

3.某店有一个修理工人,顾客到达过程为Poisson 流,平均每小时3人,修理时间服从负指数分布,平均需19分钟,求: (1)店内空闲的时间; (2)有4个顾客的概率; (3)至少有一个顾客的概率; (4)店内顾客的平均数; (5)等待服务的顾客数; (6)平均等待修理的时间;(7)一个顾客在店内逗留时间超过15分钟的概率。

排队论习题集汇总情况_jieda

排队论习题集汇总情况_jieda

排队论习题集汇总_解答例1 高速公路入口收费处设有一个收费通道,汽车到达服从Poisson 分布,平均到达速率为100辆/小时,收费时间服从负指数分布,平均收费时间为15秒/辆。

求1、收费处空闲的概率;2、收费处忙的概率;3、系统中分别有1,2,3辆车的概率。

根据题意, λ=100辆/小时,μ1=15秒=2401(小时/辆),即μ=240(辆/小时)。

因此125240100==μλ=ρ 系统空闲的概率为:583.012712511P 0==-=ρ-= 系统忙的概率为:417.0125)1(1P 10==ρ=ρ--=- 系统中有1辆车的概率为:243.014435127125)1(P 1==⨯=ρ-ρ= 系统中有2辆车的概率为:101.01728175127125)1(P 222==⨯⎪⎭⎫⎝⎛=ρ-ρ=系统中有3辆车的概率为: 0422.020736875127125)1(P 333==⨯⎪⎭⎫⎝⎛=ρ-ρ=1. 思考题(1)排队论主要研究的问题是什么;(2)试述排队模型的种类及各部分的特征;(3)Kendall 符号C B A Z Y X /////中各字母的分别代表什么意义;(4)理解平均到达率、平均服务率、平均服务时间和顾客到达间隔时间等概念; (5)分别写出普阿松分布、负指数分布、爱尔朗分布的密度函数,说明这些分布的主要性质;(6)试述队长和排队长;等待时间和逗留时间;忙期和闲期等概念及他们之间的联系与区别。

2.判断下列说法是否正确(1)若到达排队系统的顾客为普阿松流,则依次到达的两名顾客之间的间隔时间服从负指数分布;(2)假如到达排队系统的顾客来自两个方面,分别服从普阿松分布,则这两部分顾客合起来的顾客流仍为普阿松分布;(3)若两两顾客依次到达的间隔时间服从负指数分布,又将顾客按到达先后排序,则第1、3、5、7,┉名顾客到达的间隔时间也服从负指数分布; (4)对1//M M 或C M M //的排队系统,服务完毕离开系统的顾客流也为普阿松流; (5)在排队系统中,一般假定对顾客服务时间的分布为负指数分布,这是因为通过对大量实际系统的统计研究,这样的假定比较合理;(6)一个排队系统中,不管顾客到达和服务时间的情况如何,只要运行足够长的时间后,系统将进入稳定状态;(7)排队系统中,顾客等待时间的分布不受排队服务规则的影响;(8)在顾客到达及机构服务时间的分布相同的情况下,对容量有限的排队系统,顾客的平均等待时间少于允许队长无限的系统;(9)在顾客到达分布相同的情况下,顾客的平均等待时间同服务时间分布的方差大小有关,当服务时间分布的方差越大时,顾客的平均等待时间就越长; (10)在机器发生故障的概率及工人修复一台机器的时间分布不变的条件下,由1名工人看管5台机器,或由3名工人联合看管15台机器时,机器因故障等待工人维修的平均时间不变。

排队论

排队论

1.高速公路入口收费处设有一个收费通道,汽车到达服从Poisson 分布,平均到达速率为100辆/小时,收费时间服从负指数分布,平均收费时间为15秒/辆。

求1、收费处空闲的概率;2、收费处忙的概率;3、系统中分别有1,2,3辆车的概率。

解:根据题意, λ=100辆/小时, 1/µ=15秒=1/240(小时/辆),即µ=240(辆/小时)。

ρ=λ/µ=100/240=5/12。

系统空闲的概率为:P 0=1-ρ=1-(5/12)=7/12=0.583系统忙的概率为:1-P 0=1-(1- ρ )==5/12=0.417系统中有1辆车的概率为:P 1=ρ (1- ρ )=0.417×0.583=0.243系统中有2辆车的概率为:P 2= ρ² (1- ρ )=0.417 2×0.583=0.101系统中有3辆车的概率为:P 3= ρ³ (1- ρ)=0.417 3×0.583=0.04212.高速公路入口收费处设有一个收费通道,汽车到达服从Poisson 分布,平均到达速率为200辆/小时,收费时间服从负指数分布,平均收费时间为15秒/辆。

求L 、Lq 、W 和Wq 。

解:根据题意,λ=200辆/小时,µ=240辆/小时,ρ=λ/µ=5/6。

3.一个单人理发店,除理发椅外,还有4把椅子可供顾客等候。

顾客到达发现没有座位空闲,就不再等待而离去。

顾客到达的平均速率为4人/小时,理发的平均时间为10分钟/人。

顾客到达服从Poisson 流,理发时间服从负指数分布。

求:1、顾客到达不用等待就可理发的概率;2、理发店里的平均顾客数以及等待理发的平均顾客数;3、顾客来店理发一次平均花费的时间及平均等待的时间;4、顾客到达后因客满而离去的概率;5、增加一张椅子可以减少的顾客损失率。

解:这是一个[M/M/1]:[N//FCFS]系统,其中N=4+1=5λ=4人/µ=6人/小时,ρ=2/3。

排队论_运筹学

排队论_运筹学

排队论例1题目:某火车站的售票处设有一个窗口,若购票者是以最简单流到达,平均每分钟到达1人,假定售票时间服从负指数分布,平均每分钟可服务2人,试研究售票窗口前排队情况解:由题设λ=1(人/分),μ=2(人/分),ρ=λμ=12平均队长L=1ρρ-=1(人)平均等待队长Lq=21ρρ-=12(人)平均等待时间Wq=λμμ(-1)=12(分)平均逗留时间W=1μλ-=1(分)顾客不需要等待的概率为P o=12,等待的顾客人数超过5人的概率为P(N≥6)=1766666111111()(1)()()()()222222n n nnn n n nPρ-∞∞∞∞=====-===∑∑∑∑1例2题目:在某工地卸货台装卸设备的设计方案中,有三个方案可供选择,分别记作甲、乙、丙。

目的是选取使总费用最小的方案,有关费用(损失)如下表所示设货车按最简单流到达,平均每天(按10小时计算)到达15车,每车平均装货500袋,卸货时间服从负指数分布,每辆车停留1小时的损失为10元。

解:平均到达率λ=1.5车/小时,服务率μ依赖于方案μ甲=1000/500/袋小时袋车=2车/小时μ乙=2000/500/袋小时袋车=4车/小时μ丙=6000/500/袋小时袋车=12车/小时由(7.2.6),1辆车在系统内平均停留时间为W甲=12-1.5=2(小时/车)W乙=14-1.5=0.4(小时/车)W丙=112-1.5=0.095(小时/车)每天货车在系统停留的平均损失费为W⨯10⨯15,每天的实际可变费用(如燃料费等)为(可变操作费/天)⨯设备忙的概率=c p(元/天)而ρ甲=0.75 , ρ乙=0.375 , ρ丙=0.125,所以每个方案的费用综合如下表所示:23例3 题目:要购置计算机,有两种方案.甲方案是购进一大型计算机,乙方案是购置n 台小型计算机.每台小型计算机是大型计算机处理能力的1n设要求上机的题目是参数为λ的最简单流,大型计算机与小型计算机计算题目的时间是负指数分布,大型计算机的参数是μ.试从平均逗留时间、等待时间看,应该选择哪一个方案 解:设ρ=λμ,按甲方案,购大型计算机 平均等待时间 q W 甲=ρμρ(1-)=λμμλ(-)平均逗留时间 W 甲=1μλ- 按乙方案,购n 台小型计算机,每台小计算机的题目到达率为n λ,服务率为nμ, ρ=//n n λμ=λμ平均等待时间 W q 乙=nρμρ(1-)=n ρμρ(1-)=nW q 甲平均逗留时间 W 乙=1n nμλ-=n μλ-=nW 甲所以只是从平均等待时间,平均逗留时间考虑,应该购置大型计算机4例4题目:设船到码头,在港口停留单位时间损失c 1 元,进港船只是最简单流,参数为λ,装卸时间服从参数为μ的负指数分布,服务费用为c μ2,c 2是一个正常数.求使整个系统总费用损失最小的服务率μ 解:因为平均队长L λμλ=-,所以船在港口停留的损失费为1c λμλ-,服务费为c μ1,因此总费用为 1c F c λμμλ=+-2 求μ使F 达到最小,先求F 的导数12()c dF c d λμμλ=-+-2 让dF d μ=0,解出2μλ=因为 22F u μμ*=∂∂=22()c λμλ*-1>0 (μ>λ) 最优服务率是μ*,当μμ*=时, 12()[c F c c λμλ*=+5例5题目:一个理发店只有一个理发师,有3个空椅供等待理发的人使用,设顾客以最简单流来到,平均每小时5人,理发师的理发时间服从负指数分布,平均每小时6人.试求L ,q L ,W ,q W解:λ=5(人/小时) , μ=5(人/小时) , k =4 , 56ρ= 用公式(7.2.10),(7.2.11),(7.2.12),(7.2.13)得到565555[16()5()]666 1.9715[1()]66L -+==- 5555(1)[16()]66 1.97 1.2251()6q L -=+=- 55555()[1()]660.101()6P -==- 5(1)z LLW P λλ==-=1.9750.9=0.438(小时)0.271qq zL W λ==(小时)6例6题目:给定一个//1/M M k 系统,具有λ=10(人/小时), μ=30(人/小时),k =2.管理者想改进服务机构.方案甲是增加等待空间,使k =3.方案乙是将平均服务率提高到μ=40(人/小时),设服务每个顾客的平均收益不变,问哪个方案获得更大收益,当λ增加到每小时30人,又将有什么结果?解:由于服务每个顾客的平均收益不变,因此服务机构单位时间的收益与单位时间内实际进入系统的平均人数k n 成正比(注意,不考虑成本)!(1)(1)1k k k k n p λρλρ+-=-=- 方案甲:k=3, λ=10, μ=3033411()310[]11()3n -=-=9.75 方案乙: k=2, λ=10, μ=40223110(1())311()4n -=-=9.5 因此扩大等待空间收益更大 当λ增加到30人/小时时,λρμ==1.这时方案甲有3330()31n =+=22.5(人/小时) 而方案乙是把μ提高到μ=40人/小时. λρμ==3040<1, k=2 2233(1())430[]31()4n -=-=22.7(人/小时) 所以当λ=30人/小时时,提高服务效益的收益比扩大等待空间的收益大7例7题目:一个大型露天矿山,考虑建设矿山卸矿场,是建一个好呢?还是建两个好.估计矿车按最简单流到达,平均每小时到达15辆,卸车时间也服从负指数分布,平均卸车时间是3分钟,每辆卡车售价8万元,建设第二个卸矿场需要投资14万元解:平均到达率 λ=15(辆/小时) 平均服务率 μ=20(辆/小时) 只建一个卸矿场的情况:1ρρ==1520=0.75 在卸矿场停留的平均矿车数0,,,,,,q q q q p p L L W W λμL λμλ=-=152015-=3(辆)建两个卸矿场的情况:ρ=0.75,2μ=2λμ=0.375 2101220[10.75(0.75)]0.452!22015P -=++=- 220.451520(0.75)0.750.120.750.871!(22015)L +=+=+=-因此建两个卸矿场可减少在卸矿场停留的矿车数为:3-0.87=2.13辆.就是相当于平均增加2.13辆矿车运矿石.而每辆卡车的价格为8万元,所以相当于增加2.13⨯8=17.04万元的设备,建第二个卸矿场的投资为14万元,所以建两个卸矿场是合适的.8例8题目:有一个///M M c ∞系统,假定每个顾客在系统停留单位时间的损失费用为c 1元,每个服务设备单位时间的单位服务率成本为c 2元.要求建立几个服务台才能使系统单位时间平均总损失费用最小解:单位时间平均损失费为F c L c c μ=+12要求使F 达到最小的正整数解c *,通常用边际分析法:找正整数c *,使其满足{()(1)()(1)F c F c F c F c ****≤+≤-由()(1)F c F c **≤+,得到122()(1)(1)c L c c c c L c c c μμ****+≤+++所以 21()(1)c L c L c c μ**-+≤ 同样,由()(1)F c F c **≤-得到21(1)()c L c L c c μ**--≥因此c *必须满足不等式21()(1)c L c L c c μ**-+≤≤(1)()L c L c **-- 取c =1,2,…,计算()L c 与(1)L c +之差,若21c c μ落在()(1)L c L c **-+,(1)()L c L c **--之间,c *就是最优解9例9题目:某公司中心实验室为各工厂服务,设做实验的人数按最简单流到来.平均每天48(人次/天),1c =6(元).作实验时间服从负指数分布,平均服务率为μ=25(人次/天),2c =4(元),求最优实验设备c *,使系统总费用为最小. 解:λ= 48(人次/天),μ=25(人次/天),λμ=1.92 按///M M c ∞计算0P ,()L c 等(注意以下公式只对0 1.92cρ=<1成立). 201100(1.92)(1.92)[]!(1)!( 1.92)n P n c c ρ--==+--∑12(1.92)() 1.92(1)!( 1.92)c L c P c c +=+-- 将计算结果列成下表21c c μ=1006=16.67 所以取c *=3,总费用最小10例10题目:设有2个工人看管5台自动机,组成//2/5/5M M 系统,λ=1(次/运转小时),μ=4(次/小时),求平均停止运转机器数L 、平均等待修理数q L 以及每次出故障的平均停止运转时间W 、平均等待修理时间q W解:14λμ=,18c λμ=由(7.3.1),(7.3.2)有 0P =0.3149 1P =0.391 2P =0.197 由(7.3.3),(7.3.4)有 q L =0.118,L =1.094,c λ=3.906 由(7.3.5),(7.3.6)有W =0.28(小时),q W =0.03(小时)实际上,这些数量指标有表可查例11题目:设某厂有自动车床若干台,各台的质量是相同的,连续运转时间服从负指数分布,参数为λ,工人的技术也差不多,排除故障的时间服从负指数分布,参数为μ.设λμ=0.1,有两个方案.方案一:3个工人独立地各自看管6台机器.方案二,3个工人共同看管20台机器,试比较两个方案的优劣解:方案一.因为是分别看管,可以各自独立分析,是3个//1/6M M 系统.由上面的公式可求出01P -=0.5155,c =0.5155, a =5.155Lq =0.3295, L =0.845,(1)q =0.4845,(1)r =0.0549方案二.m =20,c =3,λμ=0.1,可求得c =1.787,a =17.87,q L =0.339 L =2.126,(3)q =0.4042,(3)r =0.01695机器损失系数,修理工人损失系数都小于方案一,所以方案二较好11例12题目:某露天铁矿山,按设计配备12辆卡车参加运输作业(每辆载重160吨,售价72万元),备用车8辆,要求保证同时有12辆车参加运输的概率不低于0.995.设每辆平均连续运输时间为3个月,服从负指数分布.有两个修理队负责修理工作,修理时间服从负指数分布.平均修复时间为5天.问这个设计是否合理.解:由假设知,这是////M M c m N m +系统,m =12,1λ=3,1μ=6(月)c =2我们有m c λμ=0.3333,c μλ=36用c N ≤的公式,求N ,要求00.995Nn n p =≥∑设N =2,有Nnn p=∑=0.9474,当N =3时,有Nnn p=∑=0.9968.所以3辆备用车就能达到要求,原设计用的备用车太多当N =3时,卡车的利用律(2)q =0.793712例13题目:假定例2.1中工人的到达服从泊松分布,λ=8人/小时,试分别计算1h 内到达4,5,6,…,12个工人的概率。

第10章排队论.doc-四川大学课程中心

第10章排队论.doc-四川大学课程中心

四川大学2015-2016学年第二学期课程考试试卷答案(A卷)课程名称:运筹学考试时间:120分钟年级:xxx级专业:xxx题目部分,(卷面共有85题,0分,各大题标有题量和总分)一、判断(20小题,共0分)1、在顾客到达及机构服务时间的分布相同的情况下,对容量有限的排队系统,顾客的平均等待时间少于允许队长无限的系统。

( )答案:对2、若两两顾客依次到达的间隔时间服从负指数分布,又将顾客按到达先后排序,则第1、3、5、7、…名顾客到达的间隔时间也服从负指数分布。

( )答案:错3、一个排队系统中,不管顾客到达和服务时间的情况如何,只要运行足够长的时间后,系统将进入稳定状态;()答案:错4、若两两顾客依次到达的间隔时间服从负指数分布,又将顾客按到达先后排序,则第1,3,5,7,…名顾客到达的间隔时间也服从负指数分布;()答案:错5、在顾客到达及机构服务时间的分布相同的情况下,对容量有限的排队系统,顾客的平均等待时间将少于允许队长无限的系统;()答案:对6、假如到达排队系统的顾客来自两个方面,分别服从泊松分布,则这两部分顾客合起来的顾客流仍为泊松分布。

( )答案:对7、在顾客到达的分布相同的情况下,顾客的平均等待时间同服务时间分布的方差大小有关,当服务时间分布的方差越大时,顾客的平均等待时间将越长;()答案:对8、在机器发生故障的概率及工人修复一台机器的时间分布不变的条件下,由1名工人看管5台机器,或由3名工人联合看管15台机器时,机器因故障等待工人维修的平均时间不变。

( )答案:错9、假如到达排队系统的顾客来自两个方面,分别服从普阿松分布,则这两部分顾客合起来的顾客流仍为普阿松分布;()答案:对10、在顾客到达分布相同的情况下,顾客的平均等待时间同服务时间分布的方差大小有关,当服务时间分布的方差越大时,顾客的平均等待时间就越长。

( )答案:对11、在排队系统中,一般假定对顾客服务时间的分布为负指数分布,这是因为通过对大量实际系统的统计研究,这样的假定比较合理;( ) 答案:错12、若到达排队系统的顾客为普阿松流,则依次到达的两名顾客之间的间隔时间服从负指数分布;( ) 答案:对13、在机器发生故障的概率及工人修复一台机器的时间分布不变的条件下,由1名工人看管5台机器,或由3名工人联合看管15台机器时,机器因故障等待工人维修的平均时间不变。

《排队论》习题解答

《排队论》习题解答
f83 0 (1(1 1 3(4 3 )4 3 ( )3 4 )2)54 0 3.3 15
故方案I比方案II好。
习题4
某系统利用2台计算机进行容错处理。 如果1台计算机正常工作时间服从负指数 分布,平均10天,而计算机损坏时由1名 工程师维修,维修1台计算机的时间是负 指数分布的,平均5天。求:2台计算机都 正常运行的概率和由于计算机损坏无法运 行的概率,系统中平均运行的计算机数。
(2 2 !2)(!1 2)2p 0(2 2 !2)(!1 2)20.40.2
解(续)
平均发生故障的计算机数
m
N jpj p1 2p2 j0
( 1 p 0 p 2 ) 2 p 2 ( 1 0 . 4 0 . 2 ) 2 0 . 2 0 . 8
系统中平均运行的计算机数为2-0.8=1.2(台)

单位时间内的纯收入为
f8 (1p K )5 8 (1(1 1 )k 1 K )5
方案I(λ=10人/小时,μ=30人/小时,K=3):
f81 0 (1(11 1(3 1 )3 1 ()4 3)3)53 072
方案II(λ=10人/小时,μ=40人/小时,K=2):
f81 0 (1(11 1(4 1 )4 1 )(3 4)2)54 0 12 .83
11 3(1 3)211930.6923
P{由于停机无法发射}=p2
(12 1 1 1 )1 !!1 2 11!(1 3)21 9 31 1 30 .0 7 6 9
习题6
在一商店,顾客以泊松流到达收银台, 平均5分钟到达9个顾客;而服务员每5分钟能 服务10个顾客,服务时间服从指数分布。商 店经理希望将顾客等待时间不超过1分钟。他 有两个方案: 1. 增加一名服务同样效率的服务员,即提高 服务率一倍。 2. 增加一新柜台。

排队论

排队论

Ls n 1 npn 1 0.084 2 0.168 3 0.288 4 0.432
4
0.084 0.336 0.864 1.728 3.012

(5)每辆汽车在系统中逗留的时间 首先,
e (1 p4 ) 2 (1 0.432) 1.136 。 因 此 , 每 辆 汽 车 在 系 统 中 的 逗 留 时 间
① 平均空闲的车位是 10 L 0,因此,
由于这个排队系统没有队列,所以 L
Ls Lq
e 9.999914 e 1.666652 6
10 Ls 8.333348
② 找不到空闲车位的概率为 P ③ 有效到达率为 λ 8.6 ∗ 10 ; 9.999914 ;
④ 每天平均有 10λ损 台车因找不到车位而离去
解: ① 依题意, 该问题是一个 M/M/1 等待制排队系统,系统容量和顾客源无限。顾客到达按 泊松流输入, e =4 人/小时,理发时间服从负指数分布, =10 人/小时。
0
1
2
….
K-2
K
K+1
….
② 理发店空闲的概率: p0 1
4 1 0.6 。 10
1
0.1889
1 1 10 P0 PC C ! 10 ! 6
有效到达率为,
10
0.1889 8.6 10 6
e 1 PC 10 (1 8.6 10 6 ) 9.999914
由于
p
k 0
4
k
1 , p0 [1
3 2 3 3 3 4 1 32 ( ) ( ) ( ) ] 0.311 ( 1) 。 4 8 32 103

排队论习题及答案

排队论习题及答案

《运筹学》第六章排队论习题1. 思考题(1)排队论主要研究的问题是什么;(2)试述排队模型的种类及各部分的特征;(3)Kendall 符号C B A Z Y X /////中各字母的分别代表什么意义;(4)理解平均到达率、平均服务率、平均服务时间和顾客到达间隔时间等概念; (5)分别写出普阿松分布、负指数分布、爱尔朗分布的密度函数,说明这些分布的主要性质;(6)试述队长和排队长;等待时间和逗留时间;忙期和闲期等概念及他们之间的联系与区别。

2.判断下列说法是否正确(1)若到达排队系统的顾客为普阿松流,则依次到达的两名顾客之间的间隔时间服从负指数分布;(2)假如到达排队系统的顾客来自两个方面,分别服从普阿松分布,则这两部分顾客合起来的顾客流仍为普阿松分布;(3)若两两顾客依次到达的间隔时间服从负指数分布,又将顾客按到达先后排序,则第1、3、5、7,┉名顾客到达的间隔时间也服从负指数分布; (4)对1//M M 或C M M //的排队系统,服务完毕离开系统的顾客流也为普阿松流; (5)在排队系统中,一般假定对顾客服务时间的分布为负指数分布,这是因为通过对大量实际系统的统计研究,这样的假定比较合理;(6)一个排队系统中,不管顾客到达和服务时间的情况如何,只要运行足够长的时间后,系统将进入稳定状态;(7)排队系统中,顾客等待时间的分布不受排队服务规则的影响;(8)在顾客到达及机构服务时间的分布相同的情况下,对容量有限的排队系统,顾客的平均等待时间少于允许队长无限的系统;(9)在顾客到达分布相同的情况下,顾客的平均等待时间同服务时间分布的方差大小有关,当服务时间分布的方差越大时,顾客的平均等待时间就越长; (10)在机器发生故障的概率及工人修复一台机器的时间分布不变的条件下,由1名工人看管5台机器,或由3名工人联合看管15台机器时,机器因故障等待工人维修的平均时间不变。

3.某店有一个修理工人,顾客到达过程为Poisson 流,平均每小时3人,修理时间服从负指数分布,平均需19分钟,求: (1)店内空闲的时间; (2)有4个顾客的概率; (3)至少有一个顾客的概率; (4)店内顾客的平均数; (5)等待服务的顾客数; (6)平均等待修理的时间;(7)一个顾客在店内逗留时间超过15分钟的概率。

排队论习题解

排队论习题解

排队论习题解10.1某修理店只有一个修理工人, 来修理的顾客到达次数服从普阿松分布,平均每小时3人,修理时间服从负指数分布,平均需10分钟, 求(1) 修理店空闲时间概率; (2) 店内有4个顾客的概率; (3) 店内至少有一个顾客的概率; (4) 在店内顾客平均数; (5) 等待服务的顾客平均数; (6) 在店内平均逗留时间; (7) 平均等待修理(服务)时间;(8) 必须在店内消耗15分钟以上的概率.04440s q s q 60M /M /1//3 6.1031(1)p 1162111(2)p (1)(1)()223211(3)1p 1223(4)L 1()631312(5)L ()632111(6)()633112(7)()636(8)1-F()W W λμρρρλμλρλμλμλρμλω∞∞====-=-==-=-=-=-====--⋅===--===--===--解:该系统为()模型,,;;;人;人;小时;小时;1515-(6-3)--(-)6020eee .μλω⨯===11(1)(2)(3)23211(4)(5)2211(6)(7)(8)3615.15-20答:修理店空闲时间概率为;店内有三个顾客的概率为;店内至少有一个顾客的概率为;店内顾客平均数为1人;等待服务顾客平均数为人;在店内平均逗留时间分钟;平均等待修理时间为分钟;必须在店内消耗分钟以上的概率为e10.22015(1)(2)(3)(4) 1.25M /M /1.603(/20λ==设有一单人打字室,顾客的到达为普阿松流,平均到达时间间隔为分钟,打字时间服从指数分布,平均时间为分钟,求顾客来打字不必等待的概率;打字室内顾客的平均数;顾客在打字室内平均逗留时间;若顾客在打字室内的平均逗留时间超过小时,则主人将考虑增加设备及打字员,问顾客的平均到达概率为多少时,主人才会考虑这样做?解:该题属模型人小时0s s s 60)4(/).1531(1)p 11443(2)L 3()4311(3)1()431(4)1.2511.25 3.23.230.2(/).4W W μρλμλμλμλλλ===-=-====--===--=>-≥>-=-Q ,人小时;人;小时;;,,人小时1(1)(2)3(3)41(4)0.2/.答:顾客来打字不必等待的概率为;打字室内顾客平均数为人;顾客在打字室内平均逗留时间为小时;平均到达率为人小时时,店主才会考虑增加设备及打字员 10.3 汽车按平均90辆/h 的poission 流到达高速公路上的一个收费关卡,通过关卡的平均时间为38s 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六2安02市0/7长/14安小学
计算机科学与工程学院 顾小丰
18-10

由题设知,=1/10(台/天),=1/5(
台/天),=1/2,该系统按M/M/c/m/m型
处理,c=1,m=2。
P{2台计算机都正常运行}=p0
m i0
(
m! m i)!
i
1
2 i0
(2
2! i
)!
(
1 2
)
六2安02市0/7长/14安小学
计算机科学与工程学院 顾小丰
18-8
解(续)
当λ=30人/小时:
方案I(λ=30人/小时,μ=30人/小时,K=3):
f
8(1
pK
)
5
8
30
(1
3
1
) 1
5
30
30
方案II(λ=30人/小时,μ=40人/小时,K=2):
f
8
30
(1
(1
1
3
4)(3 4)2 (3 4)3
(b) 有多少病人等待看医生?
(c) 病人的平均等待时间?
(d) 一个病人等待超过一个小时的概率?
六2安02市0/7长/14安小学
计算机科学与工程学院 顾小丰
18-2

由题设知, =3(人/小时),=4(人/小
= 时43 ,),该系 统按M/M/1/型处理。
a)
P{医生空闲}=P{系统空闲}=p0=1-= =0.25。
六2安02市0/7长/14安小学
计算机科学与工程学院 顾小丰
18-13

由题设知,=1/9(台/天),=1/3(台/
天),=1/3,该系统按M/M/c/m+k/m型
处理,c=1,m=1,k=1。
若无备用机器,即K=0,化为M/M/c/m/m
型系统:
P{无备用机而正常运转}=p0
m i0
(
m! m i)!
习题2
一台计算机有2个终端,假定计算一 个题目的时间服从负指数分布,平均20分 钟。假定题目是以泊松流到达,平均每小 时到达5个。求积压题目的概率及平均积 压的题目数。
六2安02市0/7长/14安小学
计算机科学与工程学院 顾小丰
18-5

由题设知, =5(题/小时),=3(题/小时),c=2,
该系统按M/M/c/型处理。 5 3 ,
1 4
b) 平均等待对长 Nq 2 (3 / 4)2 9 2.25
1 13/4 4
即平均有2.25个病人等待看医生
c) 平均等待时间 Wq 3 / 4 3 0.75
(1 ) 4(1 3 / 4) 4
即病人的平均等待时间为0.75小时,即45分钟。
六2安02市0/7长/14安小学
系统中平均运行的计算机数为2-0.8=1.2(台)
六2安02市0/7长/14安小学
计算机科学与工程学院 顾小丰
18-12
习题5
某电视台有2部发射机,1部发射1部 备用。如果1部正常工作时间服从负指数 分布,平均9天,而调整维修1部机器的是 负指数分布的,平均3天。求无备用机而 正常运转的概率和由于停机无法发射的概 率。
25 33
0.7576
平均积压的题目数
Nq
六2安02市0/7长/14安小学
(1
c c
计)2算p机c科学与((15工程65学) 院6(5)2顾3小2)丰2!
1 11
125 33
3.7879
18-6
习题3
考虑一个M/M/1/K排队系统,λ=10
人/小时,μ=30人/小时,K=2。管理
者想改进服务机构,提出了两个方案。
i
1
2 5
0.4
P{计算机损坏无法运行}=p2
(2
2! 2)!
(
1 2
)
2
p
0
2! ( 1 )2 (2 2)! 2
0.4
0.2
六2安02市0/7长/14安小学
计算机科学与工程学院 顾小丰
18-11
解(续)
平均发生故障的计算机数
m
N jpj p1 2p2 j0
(1 p0 p2 ) 2p2 (1 0.4 0.2) 2 0.2 0.8
计算机科学与工程学院 顾小丰
18-3
解(续)

d)P{等待超过一个小时}
=P{Wq>1} =1-P{Wq≤1} =1-Wq(1) =e-(1-)
4(1 3 )
3e 4
3 e1
4
4
≈0.276
即病人等待超过一个小时的概率约为0.276。
六2安02市0/7长/14安小学
计算机科学与工程学院 顾小丰
18-4
随机过程与排队论
计算机科学与工程学院 顾小丰
Email:guxf@ 2020年7月14日星期二
六安市长安小学
习题1
病人以每小时3人的泊松流到达医院,假 设该医院只有一个医生服务,他的服务时间 服从负指数分布,并且平均服务一个顾客时 间为15分钟。
(a) 医生空闲时间的比例?
方案I:增加等待空间,K=3;方案II:
提高服务率,μ=40人/小时。假设在单
位时间内单位服务成本5元和每服务一
个顾客收益8元不变得情况下,哪个方
案获得更大的收益?当λ=30人/小时,
又有什么结果? 六2安02市0/7长/14安小学
计算机科学与工程学院 顾小丰
18-7

单位时间内的纯收入为
f
8(1
c
5 6
p0
c1
[
j0
j j!
cc ]1 c!(c )
21
[
j0
(5 3)j j!
2 (5 3)2 ]1 2! (2 5 3)
5 25 9 1 1
1
3
1
3
0.0909 11
P{积压题目}= P{题目到达时需要等待}
jc
pj
c (1 c ) c! p0
(5 3)2
1
(1 5 6) 2! 11
i
1
1 i0
(1
1! i)!
(
1 3
)i
1
3 4
0.75
六2安02市0/7长/14安小学
计算机科学与工程学院 顾小丰
18-14
解(续)
对M/M/1/1+1/1型系统
p0
)
5
40
31.35
故方案I比方案II好。
六2安02市0/7长/14安小学
计算机科学与工程学院 顾小丰
18-9
习题4
某系统利用2台计算机进行容错处理。 如果1台计算机正常工作时间服从负指数 分布,平均10天,而计算机损坏时由1名 工程师维修,维修1台计算机的时间是负 指数分布的,平均5天。求:2台计算机都 正常运行的概率和由于计算机损坏无法运 行的概率,系统中平均运行的计算机数。
pK
)
5
8(1
(1 1
)K k1
)
5
方案I(λ=10人/小时,μ=30人/小时,K=3):
f
8
10
(1
(1
1 1
3)(1 3)3 (1 3)4
)
5
30
72
方案II(λ=10人/小时,μ=40人/小时,K=2):
f
8
10
(1
(1
1
1
4)(1 4)2 (1 4)3
)
5
40
123.8
故方案I比方案II好。
相关文档
最新文档