尺规作图、最值问题
中考专题百题过关训练 06尺规作图+计算证明题
001(2018安徽)如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O,A,B均为网格线的交点.(1)在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段A1B1(点A,B的对应点分别为A1,B1),画出线段A1B1;(2)将线段A1B1绕点B1逆时针旋转90°得到线段A2B1,画出线段A2B1;(3)以A,A1,B1,A2为顶点的四边形AA1B1A2的面积是个平方单位.002(2018安徽)如图,⊙O为锐角△ABC的外接圆,半径为5.(1)用尺规作图作出∠BAC的平分线,并标出它与劣弧的交点E(保留作图痕迹,不写作法);(2)若(1)中的点E到弦BC的距离为3,求弦CE的长.003(2018北京)下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线l及直线l外一点P.求作:直线PQ,使得PQ∥l.作法:如图,①在直线l上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;②在直线l上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB= ,CB= ,∴PQ∥l()(填推理的依据).004(2018江西)如图,在四边形ABCD中,AB∥CD,AB=2CD,E为AB的中点,请仅用无刻度直尺分别按下列要求画图(保留画图痕迹).(1)在图1中,画出△ABD的BD边上的中线;(2)在图2中,若BA=BD,画出△ABD的AD边上的高.005(2018河南)如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.006(2018上海)如图,已知△ABC中,AB=BC=5,tan∠ABC=.(1)求边AC的长;(2)设边BC的垂直平分线与边AB的交点为D,求的值.007(2018陕西)如图,已知:在正方形ABCD中,M是BC边上一定点,连接AM.请用尺规作图法,在AM上作一点P,使△DPA∽△ABM.(不写作法,保留作图痕迹)008(2018•宁夏)已知:△ABC三个顶点的坐标分别为A(﹣2,﹣2),B(﹣5,﹣4),C(﹣1,﹣5).(1)画出△ABC关于x轴对称的△A1B1C1;(2)以点O为位似中心,将△ABC放大为原来的2倍,得到△A2B2C2,请在网格中画出△A2B2C2,并写出点B2的坐标.009(2018福建A)求证:相似三角形对应边上的中线之比等于相似比.要求:①根据给出的△ABC及线段A'B′,∠A′(∠A′=∠A),以线段A′B′为一边,在给出的图形上用尺规作出△A'B′C′,使得△A'B′C′∽△ABC,不写作法,保留作图痕迹;②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.010(2018•长春)图①、图②均是8×8的正方形网格,每个小正方形的顶点称为格点,线段OM、ON的端点均在格点上.在图①、图②给定的网格中以OM、ON 为邻边各画一个四边形,使第四个顶点在格点上.要求:(1)所画的两个四边形均是轴对称图形.(2)所画的两个四边形不全等.011(2018•吉林)如图是由边长为1的小正方形组成的8×4网格,每个小正方形的顶点叫做格点,点A,B,C,D均在格点上,在网格中将点D按下列步骤移动:第一步:点D绕点A顺时针旋转180°得到点D1;第二步:点D1绕点B顺时针旋转90°得到点D2;第三步:点D2绕点C顺时针旋转90°回到点D.(1)请用圆规画出点D→D1→D2→D经过的路径;(2)所画图形是对称图形;(3)求所画图形的周长(结果保留π).012(广东省)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.013(2018广州)如图,在四边形ABCD中,∠B=∠C=90°,AB>CD,AD=AB+CD.(1)利用尺规作∠ADC的平分线DE,交BC于点E,连接AE(保留作图痕迹,不写作法);(2)在(1)的条件下,①证明:AE⊥DE;②若CD=2,AB=4,点M,N分别是AE,AB上的动点,求BM+MN的最小值.014(2018深圳)已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△CFE 中,CF=6,CE=12,∠FCE=45°,以点C为圆心,以任意长为半径作AD,再分AD长为半径作弧,交EF于点B,AB∥CD.别以点A和点D为圆心,大于12(1)求证:四边形ACDB为△FEC的亲密菱形;(2)求四边形ACDB的面积.015(2018•呼和浩特)已知变量x、y对应关系如下表已知值呈现的对应规律.(1)依据表中给出的对应关系写出函数解析式,并在给出的坐标系中画出大致图象;(2)在这个函数图象上有一点P(x,y)(x<0),过点P分别作x轴和y轴的垂线,并延长与直线y=x﹣2交于A、B两点,若△PAB的面积等于,求出P点坐标.016(2018•赤峰)如图,D是△ABC中BC边上一点,∠C=∠DAC.(1)尺规作图:作∠ADB的平分线,交AB于点E(保留作图痕迹,不写作法);(2)在(1)的条件下,求证:DE∥AC.017(2018•贵阳)如图,在矩形ABCD中,AB═2,AD=,P是BC边上的一点,且BP=2CP.(1)用尺规在图①中作出CD边上的中点E,连接AE、BE(保留作图痕迹,不写作法);(2)如图②,在(1)的条件下,判断EB是否平分∠AEC,并说明理由;(3)如图③,在(2)的条件下,连接EP并廷长交AB的廷长线于点F,连接AP,不添加辅助线,△PFB能否由都经过P点的两次变换与△PAE组成一个等腰三角形?如果能,说明理由,并写出两种方法(指出对称轴、旋转中心、旋转方向和平移距离)018(2018甘肃)如图,在△ABC中,∠ABC=90°.(1)作∠ACB的平分线交AB边于点O,再以点O为圆心,OB的长为半径作⊙O;(要求:不写做法,保留作图痕迹)(2)判断(1)中AC与⊙O的位置关系,直接写出结果.019(2018甘肃省A卷)如图,在Rt△ABC中.(1)利用尺规作图,在BC边上求作一点P,使得点P到AB的距离(PD的长)等于PC的长;(2)利用尺规作图,作出(1)中的线段PD.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)020(2018•广西)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,1),B(4,1),C(3,3).(1)将△ABC向下平移5个单位后得到△A1B1C1,请画出△A1B1C1;(2)将△ABC绕原点O逆时针旋转90°后得到△A2B2C2,请画出△A2B2C2;(3)判断以O,A1,B为顶点的三角形的形状.(无须说明理由)021(2018广西贵港)尺规作图(只保留作图痕迹,不要求写出作法).如图,已知∠α和线段a,求作△ABC,使∠A=∠α,∠C=90°,AB=a.022(2018•哈尔滨)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以线段AB为一边的矩形ABCD(不是正方形),且点C和点D均在小正方形的顶点上;(2)在图中画出以线段AB为一腰,底边长为2的等腰三角形ABE,点E在小正方形的顶点上,连接CE,请直接写出线段CE的长.023(2018黑龙江鹤岗)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC的三个顶点坐标分别为A(1,4),B(1,1),C(3,1).(1)画出△ABC关于x轴对称的△A1B1C1;(2)画出△ABC绕点O逆时针旋转90°后的△A2B2C2;(3)在(2)的条件下,求线段BC扫过的面积(结果保留π).024(2018•阜新)如图,△ABC在平面直角坐标系内,顶点的坐标分别为A(﹣4,4),B (﹣2,5),C (﹣2,1).(1)平移△ABC ,使点C 移到点C 1(﹣2,﹣4),画出平移后的△A 1B 1C 1,并写出点A 1,B 1的坐标;(2)将△ABC 绕点(0,3)旋转180°,得到△A 2B 2C 2,画出旋转后的△A 2B 2C 2; (3)求(2)中的点C 旋转到点C 2时,点C 经过的路径长(结果保留π).025(2018湖北天潜沔)图①、图②都是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点.点O ,M ,N ,A ,B 均在格点上,请仅用无刻度直尺在网格中完成下列画图.(1)在图①中,画出∠MON 的平分线OP ;(2)在图②中,画一个Rt △ABC ,使点C 在格点上.026(2018湖北咸宁)已知:∠AOB .求作:∠A'O'B',使∠A'O′B'=∠AOB(1)如图1,以点O为圆心,任意长为半径画弧,分别交OA,OB于点C、D;(2)如图2,画一条射线O′A′,以点O′为圆心,OC长为半径画弧,交O′A′于点C′;(3)以点C′为圆心,CD长为半径画弧,与第2步中所画的弧交于点D′;(4)过点D′画射线O′B',则∠A'O'B'=∠AOB.根据以上作图步骤,请你证明∠A'O'B′=∠AOB.027(2018湖北孝感)如图,△ABC中,AB=AC,小聪同学利用直尺和圆规完成了如下操作:①作∠BAC的平分线AM交BC于点D;②作边AB的垂直平分线EF,EF与AM相交于点P;③连接PB,PC.请你观察图形解答下列问题:(1)线段PA,PB,PC之间的数量关系是;(2)若∠ABC=70°,求∠BPC的度数.028(2018湖南怀化)已知:如图,在四边形ABCD中,AD∥BC.点E为CD边上一点,AE与BE分别为∠DAB和∠CBA的平分线.(1)请你添加一个适当的条件,使得四边形ABCD是平行四边形,并证明你的结论;(2)作线段AB的垂直平分线交AB于点O,并以AB为直径作⊙O(要求:尺规作图,保留作图痕迹,不写作法);(3)在(2)的条件下,⊙O交边AD于点F,连接BF,交AE于点G,若AE=4,sin∠AGF=,求⊙O的半径.029(2018江苏无锡市)如图,平面直角坐标系中,已知点B的坐标为(6,4).(1)请用直尺(不带刻度)和圆规作一条直线AC,它与x轴和y轴的正半轴分别交于点A和点C,且使∠ABC=90°,△ABC与△AOC的面积相等.(作图不必写作法,但要保留作图痕迹.)(2)问:(1)中这样的直线AC是否唯一?若唯一,请说明理由;若不唯一,请在图中画出所有这样的直线AC,并写出与之对应的函数表达式.030(2018江苏镇江)(1)如图1,将矩形ABCD折叠,使BC落在对角线BD上,折痕为BE,点C落在点C′处,若∠ADB=46°,则∠DBE的度数为°.(2)小明手中有一张矩形纸片ABCD,AB=4,AD=9.【画一画】如图2,点E在这张矩形纸片的边AD上,将纸片折叠,使AB落在CE所在直线上,折痕设为MN(点M,N分别在边AD,BC上),利用直尺和圆规画出折痕MN (不写作法,保留作图痕迹,并用黑色水笔把线段描清楚);【算一算】如图3,点F在这张矩形纸片的边BC上,将纸片折叠,使FB落在射线FD上,折痕为GF,点A,B分别落在点A′,B′处,若AG=,求B′D的长;【验一验】如图4,点K在这张矩形纸片的边AD上,DK=3,将纸片折叠,使AB落在CK所在直线上,折痕为HI,点A,B分别落在点A′,B′处,小明认为B′I所在直线恰好经过点D,他的判断是否正确,请说明理由.031(2018浙江杭州市)如图,在△ABC中,∠ACB=90°,以点B为圆心,BC长为半径画弧,交线段AB于点D;以点A为圆心,AD长为半径画弧,交线段AC于点E,连结CD.(1)若∠A=28°,求∠ACD的度数.(2)设BC=a,AC=b.①线段AD的长是方程x2+2ax﹣b2=0的一个根吗?说明理由.②若AD=EC,求的值.032(2018浙江金华)如图,在6×6的网格中,每个小正方形的边长为1,点A 在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.033(2018浙江宁波)在5×3的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中画出线段BD ,使BD ∥AC ,其中D 是格点; (2)在图2中画出线段BE ,使BE ⊥AC ,其中E 是格点.034(2018浙江温州)如图,P ,Q 是方格纸中的两格点,请按要求画出以PQ 为对角线的格点四边形.(1)在图1中画出一个面积最小的▱PAQB .(2)在图2中画出一个四边形PCQD ,使其是轴对称图形而不是中心对称图形,且另一条对角线CD 由线段PQ 以某一格点为旋转中心旋转得到.注:图1,图2在答题纸上.035(2018四川巴中)在如图所示的平面直角坐标系中,已知点A (﹣3,﹣3),点B (﹣1,﹣3),点C (﹣1,﹣1). (1)画出△ABC ;(2)画出△ABC 关于x 轴对称的△A 1B 1C 1,并写出A 1点的坐标: ;(3)以O 为位似中心,在第一象限内把△ABC 扩大到原来的两倍,得到△A 2B 2C 2,并写出A 2点的坐标: .036(2018四川广安)下面有4张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长都是1,请在方格纸中分别画出符合要求的图形,所画图形各顶点必须与方格纸中小正方形的顶点重合,具体要求如下:(1)画一个直角边长为4,面积为6的直角三角形.(2)画一个底边长为4,面积为8的等腰三角形.(3)画一个面积为5的等腰直角三角形.(4)画一个一边长为2,面积为6的等腰三角形.037(2018四川凉山州)如图,△ABC在方格纸中(1)请在方格纸上建立平面直角坐标系,使A(2,3),C(6,2),并求出B点坐标;(2)以原点O为位似中心,相似比为2,在第一象限内将△ABC放大,画出放大后的图形△A′B′C′;(3)计算△A′B′C'的面积S.038(2018四川眉山)在边长为1个单位长度的正方形网格中建立如图所示的平面直角坐标系,△ABC的顶点都在格点上,请解答下列问题:(1)作出△ABC向左平移4个单位长度后得到的△A1B1C1,并写出点C1的坐标;(2)作出△ABC关于原点O对称的△A2B2C2,并写出点C2的坐标;(3)已知△ABC关于直线l对称的△A3B3C3的顶点A3的坐标为(﹣4,﹣2),请直接写出直线l的函数解析式.039(2018四川攀枝花)已知△ABC中,∠A=90°.(1)请在图1中作出BC边上的中线(保留作图痕迹,不写作法);(2)如图2,设BC边上的中线为AD,求证:BC=2AD.040(2018四川自贡)如图,在△ABC中,∠ACB=90°.(1)作出经过点B,圆心O在斜边AB上且与边AC相切于点E的⊙O(要求:用尺规作图,保留作图痕迹,不写作法和证明)(2)设(1)中所作的⊙O与边AB交于异于点B的另外一点D,若⊙O的直径为5,BC=4;求DE的长.(如果用尺规作图画不出图形,可画出草图完成(2)问)041(2018山东济宁)在一次数学活动课中,某数学小组探究求环形花坛(如图所示)面积的方法,现有以下工具;①卷尺;②直棒EF;③T型尺(CD所在的直线垂直平分线段AB).(1)在图1中,请你画出用T形尺找大圆圆心的示意图(保留画图痕迹,不写画法);(2)如图2,小华说:“我只用一根直棒和一个卷尺就可以求出环形花坛的面积,具体做法如下:将直棒放置到与小圆相切,用卷尺量出此时直棒与大圆两交点M,N之间的距离,就可求出环形花坛的面积”如果测得MN=10m,请你求出这个环形花坛的面积.042(2018山东青岛)已知:如图,∠ABC,射线BC上一点D.求作:等腰△PBD,使线段BD为等腰△PBD的底边,点P在∠ABC内部,且点P 到∠ABC两边的距离相等.043(2018山东枣庄)如图,在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中,画出一个与△ABC成中心对称的格点三角形;(2)在图2中,画出一个与△ABC成轴对称且与△ABC有公共边的格点三角形;(3)在图3中,画出△ABC绕着点C按顺时针方向旋转90°后的三角形.044(2015•安徽)如图,在边长为1个单位长度的小正方形网格中,给出了△ABC (顶点是网格线的交点).(1)请画出△ABC关于直线l对称的△A1B1C1;(2)将线段AC向左平移3个单位,再向下平移5个单位,画出平移得到的线段A2C2,并以它为一边作一个格点△A2B2C2,使A2B2=C2B2.045(2015•龙岩)下列网格中的六边形ABCDEF是由边长为6的正方形左上角剪去边长为2的正方形所得,该六边形按一定的方法可剪拼成一个正方形.(1)根据剪拼前后图形的面积关系求出拼成的正方形的边长;(2)如图甲,把六边形ABCDEF沿EH,BG剪成①②③三部分,请在图甲中画出将②③与①拼成的正方形,然后标出②③变动后的位置,并指出②③属于旋转、平移和轴对称中的哪一种变换;(3)在图乙中画出一种与图甲不同位置的两条裁剪线,并在图乙中画出将此六边形剪拼成的正方形.046(2015•宁德)如图,在边长为1的小正方形网格中,三角形的三个顶点均落在格点上.(1)以三角形的其中两边为边画一个平行四边形,并在顶点处标上字母A,B,C,D;(2)证明四边形ABCD是平行四边形.047(2015•厦门)在平面直角坐标系中,已知点A(﹣3,1),B(﹣2,0),C(0,1),请在图中画出△ABC,并画出与△ABC关于原点O对称的图形.048(2015•漳州)如图,在10×10的正方形网格中,点A,B,C,D均在格点上,以点A为位似中心画四边形AB′C′D′,使它与四边形ABCD位似,且相似比为2.(1)在图中画出四边形AB′C′D′;(2)填空:△AC′D′是三角形.049(2015•酒泉)如图,已知在△ABC中,∠A=90°(1)请用圆规和直尺作出⊙P,使圆心P在AC边上,且与AB,BC两边都相切(保留作图痕迹,不写作法和证明).(2)若∠B=60°,AB=3,求⊙P的面积.050(2015•庆阳)如图,在△ABC中,∠C=60°,∠A=40°.(1)用尺规作图作AB的垂直平分线,交AC于点D,交AB于点E(保留作图痕迹,不要求写作法和证明);(2)求证:BD平分∠CBA.051(2019•安徽)如图,在边长为1个单位长度的小正方形组成的12×12的网格中,给出了以格点(网格线的交点)为端点的线段AB.(1)将线段AB向右平移5个单位,再向上平移3个单位得到线段CD,请画出线段CD.(2)以线段CD为一边,作一个菱形CDEF,且点E,F也为格点.(作出一个菱形即可)052(2019•福建)已知△ABC和点A',如图.(1)以点A'为一个顶点作△A'B'C',使△A'B'C'∽△ABC,且△A'B'C'的面积等于△ABC面积的4倍;(要求:尺规作图,不写作法,保留作图痕迹)(2)设D、E、F分别是△ABC三边AB、BC、AC的中点,D'、E'、F'分别是你所作的△A'B'C'三边A'B'、B'C'、C'A'的中点,求证:△DEF∽△D'E'F'.053(2019•兰州)如图,AC=8,分别以A、C为圆心,以长度5为半径作弧,两条弧分别相交于点B和D.依次连接A、B、C、D,连接BD交AC于点O.(1)判断四边形ABCD的形状并说明理由;(2)求BD的长.054(2019•白银)已知:在△ABC中,AB=AC.(1)求作:△ABC的外接圆.(要求:尺规作图,保留作图痕迹,不写作法)(2)若△ABC的外接圆的圆心O到BC边的距离为4,BC=6,则S⊙O=.055(2019•甘肃)如图,在△ABC中,点P是AC上一点,连接BP,求作一点M,使得点M到AB和AC两边的距离相等,并且到点B和点P的距离相等.(不写作法,保留作图痕迹)056(2019•江西)在△ABC中,AB=AC,点A在以BC为直径的半圆内.请仅用无刻度的直尺分别按下列要求画图(保留画图痕迹).(1)在图1中作弦EF,使EF∥BC;(2)在图2中以BC为边作一个45°的圆周角.057(2019•陕西)如图,在△ABC中,AB=AC,AD是BC边上的高.请用尺规作图法,求作△ABC的外接圆.(保留作图痕迹,不写作法)058(2019•长春)图①、图②、图③均是6×6的正方形网格,每个小正方形的顶点称为格点,小正方形的边长为1,点A、B、C、D、E、F均在格点上.在图①、图②、图③中,只用无刻度的直尺,在给定的网格中按要求画图,所画图形的顶点均在格点上,不要求写出画法.(1)在图①中以线段AB为边画一个△ABM,使其面积为6.(2)在图②中以线段CD为边画一个△CDN,使其面积为6.(3)在图③中以线段EF为边画一个四边形EFGH,使其面积为9,且∠EFG=90°.059(2015•梧州)先化简,再求值:2x+7+3x﹣2,其中x=2.060(2019•吉林)如图,在▱ABCD中,点E在边AD上,以C为圆心,AE长为半径画弧,交边BC于点F,连接BE、DF.求证:△ABE≌△CDF.061(2019•吉林)图①,图②均为4×4的正方形网格,每个小正方形的顶点称为格点.在图①中已画出线段AB,在图②中已画出线段CD,其中A、B、C、D均为格点,按下列要求画图:(1)在图①中,以AB为对角线画一个菱形AEBF,且E,F为格点;(2)在图②中,以CD为对角线画一个对边不相等的四边形CGDH,且G,H为格点,∠CGD=∠CHD=90°.062(2019•宁夏)已知:在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(5,4),B(0,3),C(2,1).(1)画出△ABC关于原点成中心对称的△A1B1C1,并写出点C1的坐标;(2)画出将A1B1C1绕点C1按顺时针旋转90°所得的△A2B2C1.063(2019•赤峰)已知:AC是▱ABCD的对角线.(1)用直尺和圆规作出线段AC的垂直平分线,与AD相交于点E,连接CE.(保留作图痕迹,不写作法);(2)在(1)的条件下,若AB=3,BC=5,求△DCE的周长.064(2019•广州)如图,⊙O的直径AB=10,弦AC=8,连接BC.(1)尺规作图:作弦CD,使CD=BC(点D不与B重合),连接AD;(保留作图痕迹,不写作法)(2)在(1)所作的图中,求四边形ABCD的周长.065(2019•广东)如图,在△ABC中,点D是AB边上的一点.(1)请用尺规作图法,在△ABC内,求作∠ADE,使∠ADE=∠B,DE交AC于E;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若ADDB =2,求AEEC的值.066(2019•贵港)尺规作图(只保留作图痕迹,不要求写出作法):如图,已知△ABC,请根据“SAS”基本事实作出△DEF,使△DEF≌△ABC.067(2019•桂林)如图,在网格中,每个小正方形的边长均为1个单位长度.我们将小正方形的顶点叫做格点,△ABC的三个顶点均在格点上.(1)将△ABC先向右平移6个单位长度,再向上平移3个单位长度,得到△A1B1C1,画出平移后的△A1B1C1;(2)建立适当的平面直角坐标系,使得点A的坐为(﹣4,3);(3)在(2)的条件下,直接写出点A1的坐标.068(2019•河池)如图,AB为⊙O的直径,点C在⊙O上.(1)尺规作图:作∠BAC的平分线,与⊙O交于点D;连接OD,交BC于点E(不写作法,只保留作图痕迹,且用黑色墨水笔将作图痕迹加黑);(2)探究OE与AC的位置及数量关系,并证明你的结论.069(2019•柳州)已知:∠AOB.求作:∠A′O′B′,使得∠A′O′B′=∠AOB.作法:①以O为圆心,任意长为半径画弧,分别交OA,OB于点C,D;②画一条射线O′A′,以点O′为圆心,OC长为半径画弧,交O′A′于点C′;③以点C′为圆心,CD长为半径画弧,与第②步中所画的弧相交于点D′;④过点D′画射线O′B′,则∠A′O′B′=∠AOB.根据上面的作法,完成以下问题:(1)使用直尺和圆规,作出∠A′O′B′(请保留作图痕迹).(2)完成下面证明∠A′O′B′=∠AOB的过程(注:括号里填写推理的依据).证明:由作法可知O′C′=OC,O′D′=OD,D′C′=,∴△C′O′D′≌△COD()∴∠A′O′B′=∠AOB.()070(2019•广西)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(2,﹣1),B(1,﹣2),C(3,﹣3)(1)将△ABC向上平移4个单位长度得到△A1B1C1,请画出△A1B1C1;(2)请画出与△ABC关于y轴对称的△A2B2C2;(3)请写出A1、A2的坐标.071(2019•玉林)如图,已知等腰△ABC顶角∠A=36°.(1)在AC上作一点D,使AD=BD(要求:尺规作图,保留作图痕迹,不必写作法和证明,最后用黑色墨水笔加墨);(2)求证:△BCD是等腰三角形.072(2019•哈尔滨)图1、2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.(1)在图1中画出以AC为底边的等腰直角三角形ABC,点B在小正方形顶点上;(2)在图2中画出以AC为腰的等腰三角形ACD,点D在小正方形的顶点上,且△ACD的面积为8.073(2019•鸡西)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△OAB的三个顶点O(0,0)、A(4,1)、B(4,4)均在格点上.(1)画出△OAB关于y轴对称的△OA1B1,并写出点A1的坐标;(2)画出△OAB绕原点O顺时针旋转90°后得到的△OA2B2,并写出点A2的坐标;(3)在(2)的条件下,求线段OA在旋转过程中扫过的面积(结果保留π).074(2019•绥化)如图,已知△ABC三个顶点的坐标分别为A(﹣2,﹣4),B(0,﹣4),C(1,﹣1)(1)请在网格中,画出线段BC关于原点对称的线段B1C1;(2)请在网格中,过点C画一条直线CD,将△ABC分成面积相等的两部分,与线段AB相交于点D,写出点D的坐标;(3)若另有一点P(﹣3,﹣3),连接PC,则tan∠BCP=.075(2019•杭州)如图,在△ABC中,AC<AB<BC.(1)已知线段AB的垂直平分线与BC边交于点P,连接AP,求证:∠APC=2∠B.(2)以点B为圆心,线段AB的长为半径画弧,与BC边交于点Q,连接AQ.若∠AQC=3∠B,求∠B的度数.076(2019•金华)如图,在7×6的方格中,△ABC的顶点均在格点上.试按要求画出线段EF(E,F均为格点),各画出一条即可.077(2019浙江宁波)图1,图2都是由边长为1的小等边三角形构成的网格,每个网格图中有5个小等边三角形已涂上阴影,请在余下的空白小等边三角形中,按下列要求选取一个涂上阴影:(1)使得6个阴影小等边三角形组成一个轴对称图形.(2)使得6个阴影小等边三角形组成一个中心对称图形.(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形)078(2019•衢州)如图,在4×4的方格子中,△ABC的三个顶点都在格点上.(1)在图1中画出线段CD,使CD⊥CB,其中D是格点.(2)在图2中画出平行四边形ABEC,其中E是格点.079(2019•温州)如图,在7×5的方格纸ABCD中,请按要求画图,且所画格点三角形与格点四边形的顶点均不与点A,B,C,D重合.(1)在图1中画一个格点△EFG,使点E,F,G分别落在边AB,BC,CD上,且∠EFG=90°.(2)在图2中画一个格点四边形MNPQ,使点M,N,P,Q分别落在边AB,BC,CD,DA上,且MP=NQ.080(2019•舟山)在6×6的方格纸中,点A,B,C都在格点上,按要求画图:(1)在图1中找一个格点D,使以点A,B,C,D为顶点的四边形是平行四边形.(2)在图2中仅用无刻度的直尺,把线段AB三等分(保留画图痕迹,不写画法).081(2019•武汉)如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点.四边形ABCD的顶点在格点上,点E是边DC与网格线的交点.请选择适当的格点,用无刻度的直尺在网格中完成下列画图,保留连线的痕迹,不要求说明理由.(1)如图1,过点A画线段AF,使AF∥DC,且AF=DC.(2)如图1,在边AB上画一点G,使∠AGD=∠BGC.(3)如图2,过点E画线段EM,使EM∥AB,且EM=AB.082(2019•天门)请仅用无刻度的直尺完成下列画图,不写画法,保留画图痕迹.(1)如图①,四边形ABCD中,AB=AD,∠B=∠D,画出四边形ABCD的对称轴m;(2)如图②,四边形ABCD中,AD∥BC,∠A=∠D,画出BC边的垂直平分线n.083(2019•咸宁)在Rt△ABC中,∠C=90°,∠A=30°,D,E,F分别是AC,AB,BC的中点,连接ED,EF.(1)求证:四边形DEFC是矩形;(2)请用无刻度的直尺在图中作出∠ABC的平分线(保留作图痕迹,不写作法).084(2019•孝感)如图,Rt△ABC中,∠ACB=90°,一同学利用直尺和圆规完成如下操作:①以点C为圆心,以CB为半径画弧,交AB于点G;分别以点G、B为圆心,以GB的长为半径画弧,两弧交点K,作射线CK;大于12②以点B为圆心,以适当的长为半径画弧,交BC于点M,交AB的延长线于点N;MN的长为半径画弧,两弧交于点P,作直线BP 分别以点M、N为圆心,以大于12交AC的延长线于点D,交射线CK于点E.请你观察图形,根据操作结果解答下列问题;(1)线段CD与CE的大小关系是;(2)过点D作DF⊥AB交AB的延长线于点F,若AC=12,BC=5,求tan∠DBF 的值.085(2019•邵阳)如图,在等腰△ABC中,∠BAC=120°,AD是∠BAC的角平分线,且AD=6,以点A为圆心,AD长为半径画弧EF,交AB于点E,交AC于点F.(1)求由弧EF及线段FC、CB、BE围成图形(图中阴影部分)的面积;(2)将阴影部分剪掉,余下扇形AEF,将扇形AEF围成一个圆锥的侧面,AE与AF正好重合,圆锥侧面无重叠,求这个圆锥的高h.086(2019•淮安)如图,方格纸上每个小正方形的边长均为1个单位长度,点A、B都在格点上(两条网格线的交点叫格点).(1)将线段AB向上平移两个单位长度,点A的对应点为点A1,点B的对应点为点B1,请画出平移后的线段A1B1;(2)将线段A1B1绕点A1按逆时针方向旋转90°,点B1的对应点为点B2,请画出旋转后的线段A1B2;(3)连接AB2、BB2,求△ABB2的面积.。
最新通用版人教版中考数学一轮复习-第17讲 尺规作图(有详解)
第十七节尺规作图【知识点梳理】一)尺规作图1.定义只用没有刻度的直尺和圆规作图叫做尺规作图.2.步骤①根据给出的条件和求作的图形,写出已知和求作部分;②分析作图的方法和过程;③用直尺和圆规进行作图;④写出作法步骤,即作法.二)五种基本作图1.作一条线段等于已知线段;2.作一个角等于已知角;3.作已知角的平分线;4.过一点作已知直线的垂线;5.作已知线段的垂直平分线.三)基本作图的应用1.利用基本作图作三角形(1)已知三边作三角形;(2)已知两边及其夹角作三角形;(3)已知两角及其夹边作三角形;(4)已知底边及底边上的高作等腰三角形;(5)已知一直角边和斜边作直角三角形.2.与圆有关的尺规作图(1)过不在同一直线上的三点作圆(即三角形的外接圆).(2)作三角形的内切圆.【课堂练习】一.选择题(共8小题)1.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG,若AD=5,DE=6,则AG的长是()A.6 B.8 C.10 D.12【考点】N2:作图—基本作图;L5:平行四边形的性质.【分析】连接EG,由作图可知AD=AE,根据等腰三角形的性质可知AG是DE的垂直平分线,由平行四边形的性质可得出CD∥AB,故可得出∠2=∠3,据此可知AD=DG,由等腰三角形的性质可知OA=AG,利用勾股定理求出OA的长即可.【解答】解:连接EG,∵由作图可知AD=AE,AG是∠BAD的平分线,∴∠1=∠2,∴AG⊥DE,OD=DE=3.∵四边形ABCD是平行四边形,∴CD∥AB,∴∠2=∠3,∴∠1=∠3,∴AD=DG.∵AG⊥DE,∴OA=AG.在Rt△AOD中,OA===4,∴AG=2AO=8.故选B.2.如图,在△AEF中,尺规作图如下:分别以点E,点F为圆心,大于12EF的长为半径作弧,两弧相交于G,H两点,作直线GH,交EF于点O,连接AO,则下列结论正确的是()A.AO平分∠EAF B.AO垂直平分EF C.GH垂直平分EF D.GH平分AF 【考点】N2:作图—基本作图;KG:线段垂直平分线的性质.【分析】直接根据线段垂直平分线的作法即可得出结论.【解答】解:由题意可得,GH垂直平分线段EF.故选C.3.如图,已知线段AB,分别以A、B 为圆心,大于12AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至M,求∠BCM的度数为()A.40°B.50°C.60°D.70°【考点】N2:作图—基本作图;KG:线段垂直平分线的性质.【分析】根据作法可知直线l是线段AB的垂直平分线,故可得出AC=BC,再由三角形外角的性质即可得出结论.【解答】解:∵由作法可知直线l是线段AB的垂直平分线,∴AC=BC,∴∠CAB=∠CBA=25°,∴∠BCM=∠CAB+∠CBA=25°+25°=50°.故选B.4.下列四种基本尺规作图分别表示:①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点P作已知直线的垂线,则对应选项中作法错误的是()A.①B.②C.③D.④【考点】N2:作图—基本作图.【分析】利用作一个角等于已知角;作一个角的平分线;作一条线段的垂直平分线;过直线外一点P作已知直线的垂线的作法进而判断得出答案.【解答】解:①作一个角等于已知角的方法正确;②作一个角的平分线的作法正确;③作一条线段的垂直平分线缺少另一个交点,作法错误;④过直线外一点P作已知直线的垂线的作法正确.故选:C.5.如图,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于12BD的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,则AF的长为()A.5 B.6 C.7 D.8【考点】N2:作图—基本作图;KO:含30度角的直角三角形.【分析】连接CD,根据在△ABC中,∠ACB=90°,∠A=30°,BC=4可知AB=2BC=8,再由作法可知BC=CD=4,CE是线段BD的垂直平分线,故CD是斜边AB的中线,据此可得出BD的长,进而可得出结论.【解答】解:连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=8.∵作法可知BC=CD=4,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=4,∴BF=DF=2,∴AF=AD+DF=4+2=6.故选B.6.如图,用尺规作图作∠AOC=∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,那么第二步的作图痕迹②的作法是()A.以点F为圆心,OE长为半径画弧B.以点F为圆心,EF长为半径画弧C.以点E为圆心,OE长为半径画弧D.以点E为圆心,EF长为半径画弧【考点】N2:作图—基本作图.【分析】根据作一个角等于一直角的作法即可得出结论.【解答】解:用尺规作图作∠AOC=∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,第二步的作图痕迹②的作法是以点E为圆心,EF长为半径画弧.故选D.7.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()A.BH垂直平分线段AD B.AC平分∠BADC.S△ABC=BC•AH D.AB=AD【考点】N2:作图—基本作图;KG:线段垂直平分线的性质.【分析】根据已知条件可知直线BC是线段AD的垂直平分线,由此一一判定即可.【解答】解:A、正确.如图连接CD、BD,∵CA=CD,BA=BD,∴点C、点B在线段AD的垂直平分线上,∴直线BC是线段AD的垂直平分线,故A正确.B、错误.CA不一定平分∠BDA.C、错误.应该是S△ABC =•BC•AH.D、错误.根据条件AB不一定等于AD.故选A.8.下列尺规作图,能判断AD是△ABC边上的高是()A .B .C .D .【考点】N2:作图—基本作图.【分析】过点A作BC的垂线,垂足为D,则AD即为所求.【解答】解:过点A作BC的垂线,垂足为D,故选B.二.填空题(共5小题)9.如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于12MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为.【考点】N2:作图—基本作图;L5:平行四边形的性质.【分析】根据角平分线的性质可知∠DAQ=∠BAQ,再由平行四边形的性质得出CD∥AB,BC=AD=3,∠BAQ=∠DQA,故可得出△AQD是等腰三角形,据此可得出DQ=AD,进而可得出结论.【解答】解:∵由题意可知,AQ是∠DAB的平分线,∴∠DAQ=∠BAQ.∵四边形ABCD是平行四边形,∴CD∥AB,BC=AD=3,∠BAQ=∠DQA,∴∠DAQ=∠DQA,∴△AQD是等腰三角形,∴DQ=AD=3.∵DQ=2QC,∴QC=DQ=,∴CD=DQ+CQ=3+=,∴平行四边形ABCD周长=2(DC+AD)=2×(+3)=15.故答案为:15.10.如图所示,已知∠AOB=40°,现按照以下步骤作图:①在OA,OB上分别截取线段OD,OE,使OD=OE;②分别以D,E为圆心,以大于12DE的长为半径画弧,在∠AOB内两弧交于点C;③作射线OC..则∠AOC的大小为【分析】直接根据角平分线的作法即可得出结论.【解答】解:∵由作法可知,OC是∠AOB的平分线,∴∠AOC=∠AOB=20°.故答案为:20°.11.如图,依据尺规作图的痕迹,计算∠α=°.【考点】N2:作图—基本作图.【分析】先根据矩形的性质得出AD∥BC,故可得出∠DAC的度数,由角平分线的定义求出∠EAF的度数,再由EF是线段AC的垂直平分线得出∠AEF的度数,根据三角形内角和定理得出∠AFE的度数,进而可得出结论.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠DAC=∠ACB=68°.∵由作法可知,AF是∠DAC的平分线,∴∠EAF=∠DAC=34°.∵由作法可知,EF是线段AC的垂直平分线,∴∠AEF=90°,∴∠AFE=90°﹣34°=56°,∴∠α=56°.故答案为:56.12.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧在第二象限内交于点P(a,b),则a与b的数量关系是.【分析】根据作图方法可得点P在第二象限的角平分线上,根据角平分线的性质和第二象限内点的坐标符号,可得a与b的数量关系为互为相反数.【解答】解:根据作图方法可得,点P在第二象限角平分线上,∴点P到x轴、y轴的距离相等,即|b|=|a|,又∵点P(a,b)第二象限内,∴b=﹣a,即a+b=0,故答案为:a+b=0.13.图1是“作已知直角三角形的外接圆”的尺规作图过程已知:Rt△ABC,∠C=90°,求作Rt△ABC的外接圆.作法:如图2.(1)分别以点A和点B为圆心,大于12AB的长为半径作弧,两弧相交于P,Q两点;(2)作直线PQ,交AB于点O;(3)以O为圆心,OA为半径作⊙O.⊙O即为所求作的圆.请回答:该尺规作图的依据是.【考点】N3:作图—复杂作图;MA:三角形的外接圆与外心.【分析】由于90°的圆周角所对的弦是直径,所以Rt△ABC的外接圆的圆心为AB的中点,然后作AB的中垂线得到圆心后即可得到Rt△ABC的外接圆.【解答】解:该尺规作图的依据是到线段两端点的距离相等的点在这条线段的垂直平分线上;90°的圆周角所对的弦是直径.故答案为到线段两端点的距离相等的点在这条线段的垂直平分线上;两点确定一直线;90°的圆周角所对的弦是直径;圆的定义.三.解答题(共8小题)14.如图,△ABC中,∠ACB>∠ABC.(1)用直尺和圆规在∠ACB的内部作射线CM,使∠ACM=∠ABC(不要求写作法,保留作图痕迹);(2)若(1)中的射线CM交AB于点D,AB=9,AC=6,求AD的长.【考点】N2:作图—基本作图;S9:相似三角形的判定与性质.【分析】(1)根据尺规作图的方法,以AC为一边,在∠ACB的内部作∠ACM=∠ABC即可;(2)根据△ACD与△ABC相似,运用相似三角形的对应边成比例进行计算即可.【解答】解:(1)如图所示,射线CM即为所求;(2)∵∠ACD=∠ABC,∠CAD=∠BAC,∴△ACD∽△ABC,∴=,即=,∴AD=4.15.如图,在Rt△ABC中,∠B=90°,∠A=30°,AC=2.(1)利用尺规作线段AC的垂直平分线DE,垂足为E,交AB于点D,(保留作图痕迹,不写作法)(2)若△ADE的周长为a,先化简T=(a+1)2﹣a(a﹣1),再求T的值.【考点】N2:作图—基本作图;KO:含30度角的直角三角形.【分析】(1)根据作已知线段的垂直平分线的方法,即可得到线段AC的垂直平分线DE;(2)根据Rt△ADE中,∠A=30°,AE=,即可求得a的值,最后化简T=(a+1)2﹣a(a﹣1),再求T的值.【解答】解:(1)如图所示,DE即为所求;(2)由题可得,AE=AC=,∠A=30°,∴Rt△ADE中,DE=AD,设DE=x,则AD=2x,∴Rt△ADE中,x2+()2=(2x)2,解得x=1,∴△ADE的周长a=1+2+=3+,∵T=(a+1)2﹣a(a﹣1)=3a+1,∴当a=3+时,T=3(3+)+1=10+3.16.如图,已知△ABC,请用圆规和直尺作出△ABC的一条中位线EF(不写作法,保留作图痕迹).【考点】N3:作图—复杂作图;KX:三角形中位线定理.【分析】作线段AB的垂直平分线得到AB的中点E,作AC的垂直平分线得到线段AC的中点F.线段EF 即为所求.【解答】解:如图,△ABC的一条中位线EF如图所示,方法:作线段AB的垂直平分线得到AB的中点E,作AC的垂直平分线得到线段AC的中点F.线段EF即为所求.17.如图,已知△ABC,∠B=40°.(1)在图中,用尺规作出△ABC的内切圆O,并标出⊙O与边AB,BC,AC的切点D,E,F(保留痕迹,不必写作法);(2)连接EF,DF,求∠EFD的度数.【考点】N3:作图—复杂作图;MI:三角形的内切圆与内心.【分析】(1)直接利用基本作图即可得出结论;(2)利用四边形的性质,三角形的内切圆的性质即可得出结论.【解答】解:(1)如图1,⊙O即为所求.(2)如图2,连接OD,OE,∴OD⊥AB,OE⊥BC,∴∠ODB=∠OEB=90°,∵∠B=40°,∴∠DOE=140°,∴∠EFD=70°.18.在数学课本上,同学们已经探究过“经过已知直线外一点作这条直线的垂线“的尺规作图过程:已知:直线l和l外一点P求作:直线l的垂线,使它经过点P.作法:如图:(1)在直线l上任取两点A、B;(2)分别以点A、B为圆心,AP,BP长为半径画弧,两弧相交于点Q;(3)作直线PQ.参考以上材料作图的方法,解决以下问题:(1)以上材料作图的依据是:(3)已知,直线l和l外一点P,求作:⊙P,使它与直线l相切.(尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)【考点】N3:作图—复杂作图;MD:切线的判定.【分析】(1)根据线段垂直平分线的性质,可得答案;(2)根据线段垂直平分线的性质,切线的性质,可得答案.【解答】解:(1)以上材料作图的依据是:线段垂直平分线上的点到线段两端点的距离相等,故答案为:线段垂直平分线上的点到线段两端点的距离相等;(2)如图.19.“直角”在初中几何学习中无处不在.如图,已知∠AOB,请仿照小丽的方式,再用两种不同的方法判断∠AOB是否为直角(仅限用直尺和圆规).【考点】N3:作图—复杂作图;KS:勾股定理的逆定理;M5:圆周角定理.【分析】(1)根据勾股定理的逆定理,可得答案;(2)根据圆周角定理,可得答案.【解答】解:(1)如图1,在OA,OB上分别,截取OC=4,OD=3,若CD的长为5,则∠AOB=90°(2)如图2,在OA,OB上分别取点C,D,以CD为直径画圆,若点O在圆上,则∠AOB=90°.20.如图,已知正七边形ABCDEFG,请仅用无刻度的直尺,分别按下列要求画图.(1)在图1中,画出一个以AB为边的平行四边形;(2)在图2中,画出一个以AF为边的菱形.【考点】N3:作图—复杂作图;L5:平行四边形的性质;L8:菱形的性质.【分析】(1)连接AF、BE、CG,CG交AF于M,交BE于N.四边形ABNM是平行四边形.(2)连接AF、DF,延长DC交AB的延长线于M,四边形AFDM是菱形.【解答】解:(1)连接AF、BE、CG,CG交AF于M,交BE于N.四边形ABNM是平行四边形.(2)连接AF、DF,∠延长DC交AB的延长线于M,四边形AFDM是菱形.21.图①、图②、图③都是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点称为格点.线段AB的端点在格点上.(1)在图①、图2中,以AB为边各画一个等腰三角形,且第三个顶点在格点上;(所画图形不全等)(2)在图③中,以AB为边画一个平行四边形,且另外两个顶点在格点上.【考点】N4:作图—应用与设计作图;KI:等腰三角形的判定;KK:等边三角形的性质;L6:平行四边形的判定.【分析】(1)根据等腰三角形的定义作图可得;(2)根据平行四边形的判定作图可得.【解答】解:(1)如图①、②所示,△ABC和△ABD即为所求;(2)如图③所示,▱ABCD即为所求.。
中考培优竞赛专题经典讲义最值问题之将军饮马问题
2
2
2
∵ C( 1 , 0) ,∴ CN= 3﹣ 1 ﹣ 3 = 1,在 Rt△ DNC 中,由勾股定理得: DC= 31 ,
2
22
2
即 PA+ PC 的最小值是 31 . 2
【 思考 】
若把题中条件点“ C 的坐标为 ( 1 , 0) ”改为“点 C 为 OA 边上一动点”,其它条件不变,那么此时 2
∴ OE= 1 OA′= 2,A′E=
2
4
2
2 =2 3 .
2
∴ AM +MP + PN 的最小值为 2 3 .
【巩固练习】
1、如图所示,正方形 ABCD 的面积为 12,△ ABE 是等边三角形,点
上有一点 P,使 PD + PE 的和最小,则这个最小值为
.
E 在正方形 ABCD 内,在对角线 AC
;
(2) 求△ AMN 的周长最小值.
解:作 A 关于 BC 和 ED 的对称点 A′,A″,连接 A′A″,交 BC 于 M ,交 ED 于 N,则 A′A″即为△ AMN 的周
长最小值. ⑴作 EA 延长线的垂线,垂足为 H,∠ BAE= 120°,∴∠ AA′A″+∠ AA″A′= 60°,
PA+ PC 最小值又是多少呢?
解答:∵ PA+ PC=PC +PD= CD≥ DN = 3 3 ,∴ PA+ PC 的最小值为 3 3 .
2
2
例题 2、某长方体的长、宽、高分别为 4、 3、 5,
(1) 如图 1,点 A、 B 分别为该长方体的两个顶点,已知蚂蚁从点
A 沿长方体侧面爬到点 B,则最短路线
则 Rt△A′HA 中,∵∠ EAB= 120°,∴∠ HAA ′=60°, ∵ A′H⊥ HA,∴∠ AA″H= 30°,∴ AH = 1 AA′= 1,∴ A′H= 3 , A″H= 1+ 4=5,
中考数学尺规作图专题复习含答案
中考尺规作图专题复习(含答案)尺规作图定义:用无刻度的直尺和圆规画图,中考中常见画的图是线段的垂线,垂直平分线,角平分线、画等长的线段,画等角。
1.直线垂线的画法:【分析】:以点C为圆心,任意长为半径画弧交直线与A,B两点,再分别以点A,B为圆心,大于12AB的长为半径画圆弧,分别交直线l两侧于点M,N,连接MN,则MN即为所求的垂线2.线段垂直平分线的画法【分析】:作法如下:分别以点A,B为圆心,大于12AB的长为半径画圆弧,分别交直线AB两侧于点C,D,连接CD,则CD即为所求的线段AB的垂直平分线.3.角平分线的画法【分析】1.选角顶点O为圆心,任意长为半径画圆,分别交角两边A,B点,再分别以A,B为圆心,大于12AB的长为半径画圆弧,交H点,连接OH,并延长,则射线OH即为所求的角平分线.4.等长的线段的画法直接用圆规量取即可。
5.等角的画法【分析】以O为圆心,任意长为半径画圆,交原角的两边为A,B两点,连接AB;画一条射线l,以上面的那个半径为半径,l的顶点K为圆心画圆,交l与L,以L为圆心,AB 为半径画圆,交以K为圆心,KL为半径的圆与M点,连接KM,则角LKM即为所求.备注:1.尺规作图时,直尺主要用作画直线,射线,圆规主要用作截取相等线段和画弧;2.求作一个三角形,其实质是依据三角形全等的基本事实或判定定理来进行的;3.当作图要满足多个要求时,应逐个满足,取公共部分.例题讲解例题1.已知线段a,求作△ABC,使AB=BC=AC=a.解:作法如下:①作线段BC=a;(先作射线BD,BD截取BC=a).②分别以B、C为圆心,以a半径画弧,两弧交于点A;③连接AB、AC.则△ABC要求作三角形.例2.已知线段a和∠α,求作△ABC,使AB=AC=a,∠A=∠α.解:作法如下:①作∠MAN=∠α;②以点A为圆心,a为半径画弧,分别交射线AM,AN于点B,C.③连接B,C.△ABC即为所求作三角形.例3.(深圳中考)如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA +PC =BC ,则下列选项中,正确的是(D )【解析】由题意知,做出AB 的垂直平分线和BC 的交点即可。
2017八年级数学复习资料:尺规作图
XX八年级数学复习资料:尺规作图◆识记巩固尺规作图的定义:_____________2基本作图包括:_______,_______,________,________,_______3三角形三边的垂直平分线的交点叫三角形的外心,三角形三内角平分线的交点叫三角形的内心,外心到三角形的_______的距离相等,内心到三角形_______的距离相等识记巩固参考答案:限定只能使用圆规和没有刻度的直尺作图2作线段作角作线段的垂直平分线过一点作已知直线的垂线作角平分线3顶点三边◆考点聚焦掌握基本作图,尺规作图的要求与步骤2利用基本作图工具画三角形、四边形、圆以及简单几何体的三视图,对简单的作图能叙述作法3运用基本作图、结合相关的数学知识等进行简单的图案设计4运用基本作图解决实际问题◆备考兵法熟练掌握基本作图2在画几何体的三视图时,要注意其要求,即“长对正”“高平齐”“宽相等”3认真分析题意,善于把实际问题转化为基本作图用直尺和圆规作一个角等于已知角,如图,能得出∠A′′B′=∠AB的依据是()A.(SAS)B.(SSS).(ASA)D.(AAS)如图,下面是利用尺规作∠AB的角平分线的作法,在用尺规作角平分线过程中,用到的三角形全等的判定方法是()作法:①以为圆心,适当长为半径画弧,分别交A,B于点D,E;②分别以D,E为圆心,大于DE的长为半径画弧,两弧在∠AB内交于一点;③画射线,射线就是∠AB的角平分线.A.ASAB.SAS.SSSD.AAS如图,已知在Rt△AB中,∠AB=90°,点D是B边的中点,分别以B、为圆心,大于线段B长度一半的长为半径画弧,两弧在直线B上方的交点为P,直线PD交A于点E,连接BE,则下列结论:①ED⊥B;②∠A=∠EBA;③EB平分∠AED;④ED=AB中,一定正确的是()A.①②③B.①②④.①③④D.②③④如图,分别以线段A的两个端点A,为圆心,大于A的长为半径画弧,两弧相交于B,D两点,连接BD,AB,B,D,DA,以下结论:①BD垂直平分A;②A平分∠BAD;③A=BD;④四边形ABD是中心对称图形.其中正确的有()A.①②③B.①③④.①②④D.②③④观察图中尺规作图痕迹,下列结论错误的是()A.PQ为∠APB的平分线B.PA=PB.点A、B到PQ的距离不相等D.∠APQ=∠BPQ。
中考数学专题复习 专题30 尺规作图问题(教师版含解析)
中考专题30 尺规作图问题1.尺规作图的定义:只用不带刻度的直尺和圆规通过有限次操作,完成画图的一种作图方法.尺规作图可以要求写作图步骤,也可以要求不一定要写作图步骤,但必须保留作图痕迹。
2.尺规作图的五种基本情况(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)作已知线段的垂直平分线;(4)作已知角的角平分线;(5)过一点作已知直线的垂线。
3.对尺规作图题解法写出已知,求作,作法(不要求写出证明过程)并能给出合情推理。
4.中考专题要求(1)能完成以下基本作图:作一条线段等于已知线段,作一个角等于已知角,作角的平分线,作线段的垂直平分线.(2)能利用基本作图作三角形:已知三边作三角形;已知两边及其夹角作三角形;已知两角及其夹边作三角形;已知底边及底边上的高作等腰三角形.(3)能过一点、两点和不在同一直线上的三点作圆.(4)了解尺规作图的步骤,对于尺规作图题,会写已知、求作和作法(不要求证明).【经典例题1】(2020年•台州)如图,已知线段AB ,分别以A ,B 为圆心,大于12AB 同样长为半径画弧,两弧交于点C,D,连接AC,AD,BC,BD,CD,则下列说法错误的是( )A.AB平分∠CAD B.CD平分∠ACB C.AB⊥CD D.AB=CD【标准答案】D【分析】根据作图判断出四边形ACBD是菱形,再根据菱形的性质:菱形的对角线平分一组对角、菱形的对角线互相垂直平分可得出标准答案.【答案剖析】由作图知AC=AD=BC=BD,∴四边形ACBD是菱形,∴AB平分∠CAD、CD平分∠ACB、AB⊥CD,不能判断AB=CD【知识点练习】(2019•丽水模拟题)如图,小红在作线段AB的垂直平分线时,是这样操作的:分别以点A,B为圆心,大于线段AB长度一半的长为半径画弧,相交于点C,D,则直线CD即为所求.连结AC,BC,AD,BD,根据她的作图方法可知,四边形ADBC一定是( )A.矩形B.菱形C.正方形D.等腰梯形【标准答案】B【答案剖析】根据垂直平分线的画法得出四边形ADBC 四边的关系进而得出四边形一定是菱形。
中考数学核心考点强化突破作图问题含解析
中考数学核心考点强化突破:作图问题类型1 尺规作图1.在数学课本上,同学们已经探究过“经过已知直线外一点作这条直线的垂线”的尺规作图过程: 已知:直线l 和l 外一点P.求作:直线l 的垂线,使它经过点P.作法:如图:(1)在直线l 上任取两点A 、B ;(2)分别以点A 、B 为圆心,AP,BP 长为半径画弧,两弧相交于点Q ;(3)作直线PQ.参考以上材料作图的方法,解决以下问题:(1)以上材料作图的依据是:______________________________________________(2)已知:直线l 和l 外一点P.求作:⊙P ,使它与直线l 相切.(尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)解:(1)到线段两端点距离相等的点在这条线段的垂直平分线上(2)如图⊙P 即为所求.2.如图,MN 是⊙O 的直径,MN =4,点A 在⊙O 上,∠AMN=30°,B 为AN ︵的中点,P 是直径MN 上一动点.(1)利用尺规作图,确定当PA +PB 最小时P 点的位置(不写作法,但要保留作图痕迹).(2)求PA +PB 的最小值.解:(1)如图1所示,点P 即为所求;(2)由(1)可知,PA +PB 的最小值即为A′B 的长,连接OA′、OB 、OA,∵A′点为点A 关直线MN 的对称点,∠AMN=30°,∴∠AON=∠A′ON=2∠AMN=2×30°=60°,又∵B 为AN ︵的中点,∴AB ︵=BN ︵,∴∠BON=∠AOB=12∠AON=30°,∴∠A′OB=60°+30°=90°,又∵MN=4,∴OA′=OB =12MN =12×4=2.∴在Rt △A′OB 中,A′B=22,∴PA+PB 的最小值为2 2.3.如图,已知△ABC ,∠B=40°.(1)在图中,用尺规作出△ABC 的内切圆O,并标出⊙O 与边AB,BC,AC 的切点D,E,F(保留痕迹,不必写作法);(2)连接EF,DF,求∠EFD 的度数.解:(1)如图1,⊙O 即为所求.(2)如图2,连接OD,OE,∴OD⊥AB ,OE⊥BC ,∴∠ODB=∠OEB=90°,∵∠B=40°,∴∠DOE=140°,∴∠EFD=70°.4.小明在“课外新世界”中遇到这样一道题:如图1,已知∠AOB=30°与线段a,你能作出边长为a 的等边三角形△COD 吗?小明的做法是:如图2,以O 为圆心,线段a 为半径画弧,分别交OA,OB 于点M,N,在弧MN 上任取一点P,以点M 为圆心,MP 为半径画弧,交弧CD 于点C,同理以点N 为圆心,NP 为半径画弧,交弧CD 于点D,连结CD,即△COD 就是所求的等边三角形.(1)请写出小明这种做法的理由;(2)在此基础上请你作如下操作和探究(如图3):连结MN,MN 是否平行于CD ?为什么?(3)点P 在什么位置时,MN∥CD?请用小明的作图方法在图1中作出图形(不写作法,保留作图痕迹).解:(1)如图2,连结OP,由题意可得MC ︵=MP ︵,∴∠COM=∠POM ,PN ︵=DN ︵,∴∠PON=∠DON ,∴∠POM+∠PON=∠COM+∠DON=30°,∴∠COD=2∠MON=60°,∴△OCD 是等边三角形;(2)不一定,只有当∠COM=15°,CD∥MN ,理由:∵∠COM=15°,∠MON=30°,∴∠CON=45°,∵∠C=60°,∴∠OEC=75°,∵ON=OM,∴∠ONM=∠OMN=75°,∴∠OEC=∠ONM ,∴CD∥MN;(3)当P 是MN ︵的中点时,MN∥CD;如图3所示.类型2 网格作图和其他5.如图,在网格(每个小正方形的边长均为1)中选取9个格点(格线的交点称为格点),如果以A 为圆心,r 为半径画圆,选取的格点中除点A 外恰好有3个在圆内,则r 的取值范围为( B )A .22<r <17B .17<r <3 2C .17<r <5D .5<r <29解:给各点标上字母,如图所示.AB =22+22=22,AC =AD =42+12=17,AE =32+32=32,AF =52+22=29,AG =AM =AN =42+32=5,∴17<r <32时,除点A 外恰好有3个在圆内.6.我们约定,若一个三角形(记为△A 1)是由另一个三角形(记为△A)通过一次平移,或绕其任一边的中点旋转180°得到的,则称△A 1是由△A 复制的.以下的操作中每一个三角形只可以复制一次,复制过程可以一直进行下去.如图1,由△A 复制出△A 1,又由△A 1复制出△A 2,再由△A 2复制出△A 3,形成了一个大三角形,记作△B.以下各题中的复制均是由△A 开始的,通过复制形成的多边形中的任意相邻两个小三角形(指与△A 全等的三角形)之间既无缝隙也无重叠.(1)图1中标出的是一种可能的复制结果,小明发现△A∽△B ,其相似比为__1∶2__.在图1的基础上继续复制下去得到△C,若△C的一条边上恰有11个小三角形(指有一条边在该边上的小三角形),则△C中含有__121__个小三角形;(2)若△A是正三角形,你认为通过复制能形成的正多边形是__正三角形或正六边形__;(3)请你用两次旋转和一次平移复制形成一个四边形,在图2的方框内画出草图,并仿照图1作出标记.解析:(1)△A-△A1是经过旋转所得,△A1-△A2是经过旋转所得,△A2-△A3是经过平移所得.由于△B 是由4个△A组成,因此S△B=4S△A,因此相似比为2∶1.当△C的一条边上有11个小三角形时,那么它们的相似比为11∶1,面积比121∶1,即△C中有121个这样的小三角形;故答案为:1∶2,121.(2)正三角形或正六边形.(3)如图.7.阅读理解:如图①,在四边形ABCD的边AB上任取一点E(点E不与点A、点B重合),分别连接ED、EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,我们就把点E叫做四边形ABCD的边AB上的相似点;如果这三个三角形都相似,我们就把点E叫做四边形ABCD的边AB上的强相似点.解决问题:(1)如图①,∠A=∠B=∠DEC=55°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由;(2)如图②,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图②中画出矩形ABCD的边AB上的一个强相似点E;拓展探究:(3)如图③,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处,若点E恰好是四边形ABCM的边AB上的一个强相似点,试探究AB和BC的数量关系.解:(1)点E是四边形ABCD的边AB上的相似点.理由:∵∠A=55°,∴∠ADE+∠DEA=125°,∵∠DEC =55°,∴∠BEC+∠DEA=125°,∴∠ADE=∠BEC.∵∠A=∠B,∴△ADE∽△BEC.∴点E是四边形ABCD的AB 边上的相似点.(2)如图如下:(3)∵点E 是四边形ABCD 的边AB 上的一个强相似点,∴△AEM∽△BCE∽△ECM ,∴∠BCE=∠ECM=∠AEM ,由折叠可知:△ECM≌△DCM ,∴∠ECM=∠D CM,CE =CD,∴∠BCE=13∠BCD=30°,∴BE=12CE =12AB.在Rt △BCE 中,tan ∠BCE=BEBC =tan 30°,∴BE BC =33,∴AB BC =233.。
初中数学最值问题
最值问题“最值"问题大都归于两类基本模型: Ⅰ、归于函数模型:即利用一次函数的增减性和二次函数的对称性及增减性,确定某范围内函数的最大或最小值 Ⅱ、归于几何模型,这类模型又分为两种情况:(1)归于“两点之间的连线中,线段最短”。
凡属于求“变动的两线段之和的最小值”时,大都应用这一模型。
(2)归于“三角形两边之差小于第三边”凡属于求“变动的两线段之差的最大值”时,大都应用这一模型.一、利用函数模型求最值例1、如图,一边靠学校院墙,其它三边用40米长的篱笆围成一个矩形花圃ABCD ,设AB=x 米,由于实际需要矩形的宽只能在4m 和7m 之间.设花圃面积为y 平方米.求y 与x 之间的函数关系式和y 的最值.例2、如图(1),平行四边形ABCD 中,AB=4,BC=3,∠BAD=120°,E 为BC 上一动点(不与B 重合),作EF ⊥AB 于F ,设BE=x ,△DEF 的面积为S 当E 运动到何处时,S 有最大值,最大值为多少?二、利用几何模型求最值例3、如图所示,已知AB 是⊙O 中一条长为4的弦,P 是⊙O 上一动点,且cos ∠APB =31,求△APB 的面积的最大值?例4、如图,已知Rt △ABC ≌Rt △DEF ,∠C=∠F=30°,AB=DE=a 。
当两三角形沿着直线FC 移动时,求图中阴影部分的面积的最大值。
ABCEFAOxyDCB 三、归入“两点之间的连线中,线段最短”思路:不管在什么背景下,有关线段之和最短问题,总是化归到“两点之间的所有连线中,线段最短",而例5、(1)如图所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD+PE 的和最小,则这个最小值为( ) A 。
23 B.26 C.3 D 。
6 (2)如图,AB 、CD 是半径为5的⊙O 的两条弦,AB=8,CD=6,MN 是直径,AB ⊥MN 于点E ,CD ⊥MN 于点F ,P 为EF 上的任意一点,则PA+PC 的最小值为___________.例6、几何模型:条件:如下左图,A 、B 是直线l 同旁的两个定点. 问题:在直线l 上确定一点P ,使PA PB +的值最小.方法:作点A 关于直线l 的对称点A ',连结A B '交l 于点P ,则PA PB A B '+=的值最小(不必证明). 模型应用:(1)如图1,正方形ABCD 的边长为2,E 为AB 的中点,P 是AC 上一动点.连结BD ,由正方形对称性可知,B 与D 关于直线AC 对称.连结ED 交AC 于P ,则PB PE +的最小值是___________.(2)如图2,O ⊙的半径为2,点A B C 、、在O ⊙上,OA OB ⊥,60AOC ∠=°,P 是OB 上一动点,求PA PC +的最小值___________.(3)如图3,45AOB ∠=°,P 是AOB ∠内一点,10PO =,Q R 、分别是OA OB 、上的动点,求PQR△周长的最小值___________. 例7、如图,锐角△ABC 的边AB=42,∠BAC=45°,∠BAC 的平分线交BC 于点D ,M ,N 分别是AD 和AB 上的动点,则BM+MN 的最小值是___________.例8、如图(1),直线23+-=x y 与x 轴交于点C,与y 轴交于点B ,点A 为y 轴正半轴上的一点,⊙A 经过点B 和点O ,直线BC 交⊙A 于点D 。
中考数学复习《最值问题》
解:如图,∵高为 12 cm,底面周长为 10 cm,在容器内壁离容器底部 3 cm 的 点 B 处有一饭粒,此时蚂蚁正好在容器外壁,离容器上沿 3 cm 与饭粒相对的点 A 处,∴A′D=5 cm,BD=12-3+AE=12(cm),∴将容器侧面展开,作 A 关 于 EF 的对称点 A′,连结 A′B,则 A′B 即为最短距离,A′B= A′D2+BD2= 52+122=13(cm)
解:(1)如图所示 (2)如图,即为所求
(3)作点 C 关于 y 轴的对称点 C′,连结 CP,B1C′交 y 轴于点 P, 则点 P 即为所求.设直线 B1C′的解析式为 y=kx+b(k≠0),
-2k+b=-2, k=2, ∵B1(-2,-2),C′(1,4),∴ 解得 k+b=4, b=2,
7.图1、图2为同一长方体房间的示意图 ,图3为该长方体的表面展开 图.
(1)蜘蛛在顶点A′处.
①苍蝇在顶点B处时,试在图1中画出蜘蛛为捉住苍蝇,沿墙面爬行的 最近路线;
②苍蝇在顶点C处时,图2中画出了蜘蛛捉住苍蝇的两条路线,往天花
板ABCD爬行的最近路线A′GC和往墙面BB′C′C爬行的最近路线A′HC,试通 过计算判断哪条路线更近;
两点距离之差的绝对值最大时,点P在直线AB上.先运用待定系数法求出直
线AB的解析式,再令y=0,求出x的值即可.
解:由题意可知,当点 P 到 A,B 两点距离之差的绝对值最大时, 点 P 在直线 AB 上.设直线 AB 的解析式为 y=kx+b,
b=1, k=1, ∵A(0,1),B(1,2),∴ 解得 ∴y=x+1, k+b=2, b=1,
令 y=0,得 0=x+1,解得 x=-1,∴点 P 的坐标是(-1,0)
将军饮马系列---最值问题
1.两点之间,线段最短.2.点到直线的距离,垂线段最短.3.三角形两边之和大于第三边,两边之差小鱼第三边.4.A B 、分别为同一圆心O 半径不等的两个圆上的一点,R r AB R r -≤≤+ 当且仅当A B O 、、三点共线时能取等号.古希腊亚里山大里亚城有一位久负盛名的学者,名叫海伦.有一天,有位将军不远千里专程前来向海伦求教一个百思不得其解的问题:如图,将军从A 出发到河边饮马,然后再到B 地军营视察,显然有许多走法.问怎样走路线最短呢?精通数理的海伦稍加思索,便作了完善的回答.这个问题后来被人们称作“将军饮马”问题.下面我们来看看数学家是怎样解决的.海伦发现这是一个求折线和最短的数学问题. 根据公理:连接两点的所有线中,线段最短.若A B 、在河流的异侧,直接连接AB ,AB 与l 的交点即为所求. 若A B 、在河流的同侧,根据两点间线段最短,那么显然要把折线变成直线再解.“将军饮马”系列最值问题知识回顾知识讲解海伦解决本问题时,是利用作对称点把折线问题转化成直线现在人们把凡是用对称点来实现解题的思想方法叫对称原理,即轴对称思想轴对称及其性质:把一个图形沿某一条直线折叠,如果直线两旁的部分能够互相重合,那么这个图形就叫做轴对称图形.这条直线就是它的对称轴.这时我们就说这个图形关于这条直线(或轴)对称.如等腰ABC ∆是轴对称图形.把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就是说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.如下图,ABC ∆与'''A B C ∆关于直线l 对称,l 叫做对称轴.A 和'A ,B 和'B ,C 和'C 是对称点.轴对称的两个图形有如下性质:①关于某条直线对称的两个图形是全等形; ②对称轴是任何一对对应点所连线的垂直平分线;③两个图形关于某条直线对称,如果他们的对应线段或延长线相交,那么交点在对称轴上.线段垂直平分线:垂直平分线上点到线段两个端点的距离相等; 到线段两个端点距离相等的点在线段的垂直平分线上.当已知条件出现了等腰三角形、角平分线、高,或者求几条折线段的最小值等情况,通常考虑作轴对称变换,以“补齐”图形,集中条件。
尺规作图专题
探索10:如图,在一组平行线 1、 2两侧各有两点 、 ,在 1、 2间找一条线段MN,使 ⊥ 1并且使得AM+MN+NB之和最短.
2【解析】
(1)问题描述
已知:直线MN外一点P
求作:直线a,使得点P在直线a上,且垂直于直线MN
(2)作法提要
(3)基本原理
5.尺规作图5-------过直线外一点做已知直线的平行线(选学)
(1)问题描述
已知:直线MN外一点P
求作:直线a,使得点P在直线a上,且平行于直线MN
(2)作法提要
(3)基本原理
专题2————与三角形有关的“心”
(1)原理分析
(2)应用举例
如图,三条公路两两相交,交点分别为A,B,C.现计划修建一个油库,要求到三条公路的居理想等,请你说出可以选择的地址
2到点的距离相等
(1)原理分析
(2)应用举例
如图,在公路l的同旁有两座城市A,B,为了方便市民就医治疗,政府决定在公路边建一所医院,这所医院应该建在什么位置,能使这两座城市到这个医院的距离相等?作图说明。
八年级上册尺规作图专题
专题1————尺规作图
1.尺规作图1------做线段等于已知线段
(1)问题描述
已知:线段AB
求作:线段CD,CD=AB
(2)作法提要
(3)基本原理
2.尺规作图2------做三角形与已知三角形全等
(1)问题描述
已知:三角形ABC
求作:三角形DEF,使得ABC DEF
(3)作法提要
使 的周长最小.
【解析】
探索7:如图,点 在锐角 的内部,在 边上求作一点 ,在 边上求作一点 ,
使 最小.
【解析】
第二十三讲 平面几何的定值与最值问题(含解答)-
第二十三讲平面几何的定值与最值问题【趣题引路】传说从前有一个虔诚的信徒,他是集市上的一个小贩.••每天他都要从家所在的点A出发,到集市点B,但是,到集市之前他必须先拐弯到圆形古堡朝拜阿波罗神像.古堡是座圣城,阿波罗像供奉在古堡的圆心点O,•而周围上的点都是供信徒朝拜的顶礼地点如图1.这个信徒想,我怎样选择朝拜点,才能使从家到朝拜点,•然后再到集市的路程最短呢?(1) (2)解析在圆周上选一点P,过P作⊙O的切线MN,使得∠APK=∠BPK,即α=β.那么朝圣者沿A→P→B的路线去走,距离最短.证明如图2,在圆周上除P点外再任选一点P′.连结BP•′与切线MN•交于R,AR+BR>AP+BP.∵RP′+AP′>AR.∴AP′+BP′=AP′+RP′+RB>AR+BP>AP+BP.不过,用尺规作图法求点P的位置至今没有解决.•“古堡朝圣问题”属于数学上“最短路线问题”,解决它的方法是采用“等角原理”.【知识延伸】平面几何中的定值问题,是指变动的图形中某些几何元素的几何量保持不变,或几何元素间的某些几何性质或位置关系不变的一类问题.•所谓几何定值问题就是要求出这个定值.在解决这类问题的过程中,可以直接通过计算来求出定值;也可以先考虑某一个特殊情形下的该相关值,然后证明当相应几何元素变化时,此值保持不变.例1如果△ABC的外接圆半径R一定,求证: abcS是定值.(S表示△ABC的面积)解析由三角形面积S=12absinC和正弦定理sincC=2R,∴c=2RsinC.∴abcS=2sincC=4sinsinR CC=4R是定值.点评通过正弦定理和三角形面积公式经过变形,计算出结果是4R,即为定值.平面几何中不仅有等量关系,还有不等关系,例如在变动一些几何元素时,•某一相关的值保持不大于(或不小于)某个定值,如果这个定值在某个情形下可以取得,•这就是一个几何极值.确定几何极值的问题称为几何极值问题,解决这些问题总要证明相关的几何不等式,并指明不等式成为等式的情形(或者至少证明不等式可以成为等式).例2 如图,已知⊙O的半径R=33,A为⊙O上一点,过A作一半径为r=3的⊙O′,问OO′何时最长?最长值是多少?OO′何时最短?最短值是多少?解析当O′落在OA的连线段上(即⊙A与线段OA的交点B时)OO′最短,且最短长度为33-3 ;当O′落在OA的延长线上(即⊙O与OA的延长线交点C时)OO′最长,且最长的长度为33+3 .点评⊙O′是一个动圆,满足条件的⊙O′有无数个,但由于⊙O′过A点,所以⊙O′的圆心O′在以A为圆心半径为3的⊙A上.【好题妙解】佳题新题品味例1 如图,已知P为定角O的角平分线上的定点,过O、P•两点任作一圆与角的两边分别交于A、B两点.求证:OA+OB是定值.证明连结AP、BP,由于它们为有相同圆周角的弦,AP=PB,不妨记为r.•另记x1=OA,x2=OB.对△POA应用余弦定理,得x12+OP2-2OP·cos∠AOP·x1=r2.故x1为方程x2-2OP·cos 12∠AOB·x+(O P2-r2)=0的根,同理x2亦为其根.因此x1,x2为此方程的两根,由韦达定理,得x1+x2=2OP(12∠AOB)是定值.点评当x 1=x 2时,x 1+x 2为此定值,事实上此时OP 一定是直径.例2 如图,在矩形ABCD 中,AB=8,BC=9,⊙O 与外切,且⊙O 与AB 、BC•相切.⊙O ′与AD 、CD 相切,设⊙O 的半径为x,⊙O 与⊙O ′的面积的和为S,求S•的最大值和最小值. 解析 设⊙O ′的半径为y,过O 与O ′分别作CD 与BC 的垂线OH,O ′F,•垂足分别为H,F,OH 、O ′F 交于点E,则有:O ′E=8-(x+y),OE=9-(x+y) 由勾股定理可得:(x+y)2=[8-(x+y)]2+[9-(x+y)]2. 整理,得(x+y-29)(x+y-5)=0,由题意知1≤x ≤4,∴x+y=5,y=-x+5,∴S=πx+πy=π(2x-10x+25),=2π[(x-52)2+254], 故当x=52时,S min =252π; 当x=4时,S=17π.点评先由已知求出⊙O ′的半径也⊙O 的半径x 之间的关系,然后再根据面积公式写出S 与x 之间的关系,这个关系就是一个函数关系,再通过函数的性质得解.中考真题欣赏例 (南京市中考题)如图,⊙O 1与⊙O 2内切于点P,又⊙O 1切⊙O 2•的直径BE 于点C,连结PC 并延长交⊙O 2于点A,设⊙O 1,⊙O 2的半径分别为r 、R,且R ≥2r.•求证:PC ·AC 是定值.解析 若放大⊙O 1,使⊙O 1切⊙O 2的直径于点O 2(如图), 显然此时有PC ·AC=PO 2·AO 2=2r ·R(定值). 再证明如图的情况:连结C O 1,PO 2,• 则PO 2•必过点O 1,•且O 1C ⊥BE,得CO 2=22121O O O C -=22R Rr -,从而BC=R+22R Rr -,EC=R-22R Rr -.所以PC ·AC=EC ·BC=2Rr,故PC ·AC 是定值. 点评解答几何定值问题时,可先在符合题目条件的前提下用运动的观点,从特殊位置入手,找出相应定值,然后可借助特殊位置为桥梁,完成一般情况的证明.竞赛样题展示例1 (第十五届江苏省初中数学竞赛题)如图,正方形ABCD的边长为1,•点P为边BC 上任意一点(可与点B或点C重合),分别过点B、C、D作射线AP的垂线,•垂足分别为点B′、C′、D′.求BB′+CC′+DD′的最大值和最小值.解析∵S△DPC= S△APC =12 AP·CC′,得S 四边形BCDA= S△ABP+ S△ADP+ S△DPC= 12AP(BB′+DD′+CC′),于是BB′+CC′+DD′=2 AP.又1≤AP≤2,故2≤BB′+CC′+DD•′≤2,∴BB′+CC′+DD′的最小值为2,最大值为2.点评本题涉及垂线可考虑用面积法来求.例2 (2000年“新世纪杯”广西竞赛题)已知△ABC内接于⊙O,D是BC•或其延长线上一点,AE是△ABC外接圆的一条弦,若∠BAE=∠CAD.求证:AD.AE为定值.证明如图 (1),当点D是BC上任意一点且∠BAE=∠CAD时,连结BE,则∠E=∠C,∠BAE=∠CAD,∴△ABE∽△ADC.∴AB AEAD AC=,即AD·AE=AB·AC为定值.如图 (2),当点D在BC的延长线上时,∠BAE=∠CAD.此时,∠ACD=∠AEB.∴△AEB∽△ACD,∴AB AE AD AC=即AD·AE=AB·AC为定值.综上所述,当点D在BC边上或其延长线上时,只要∠CAD=∠BAE,总有AD·AE为定值. 点评先探求定值,当AD⊥BC,AE为圆的直径时,满足∠BAE=∠CAD这一条件,•不难发现△ACD ∽△AEB,所以AD·AE=AB·AC,因为已知AB,AC均为定值.•再就一般情况分点D•在BC上,点D在BC的延长线上两种情况分别证明.全能训练A级1.已知MN是⊙O的切线,AB是⊙O的直径.求证:点A、B与MN的距离的和为定值.2.已知:⊙O与⊙O1外切于C,P是⊙O上任一点,PT与⊙O1相切于点T.求证:PC:PT是定值.3.⊙O 1与⊙O 2相交于P 、Q 两点,过P 作任一直线交⊙O 1于点E,交⊙O 2于点F.求证:∠EQF 为定值.4.以O 为圆心,1为半径的圆内有一定点A,过A 引互相垂直的弦PQ,RS.求PQ+RS 的最大值和最小值.5.如图,已知△ABC 的周长为2p,在AB 、AC 上分别取点M 和N,使MN•∥BC,•且MN 与△ABC 的内切圆相切.求:MN 的最值.CABMNA 级(答案)1.定长为圆的直径;2.利用特殊位置探求定值(当PC 构成直径时)是两圆的半径). 3.因∠E,∠F 为定角(大小固定)易得∠EQF 为定值.4.如图,设OA=a(定值),过O 作OB ⊥PQ,OC ⊥RS,B 、C 为垂足, 设OB=x,OC=y,0≤x ≤a,(0≤y ≤a),且x 2+y 2=a 2. 所以所以∴(PQ+RS)2=4(2-a 2+而x 2y 2=x 2(a 2-x 2)=-(x 2-22a )2+44a . 当x 2=22a 时,(x 2y 2)最大值=44a .此时;当x 2=0或x 2=a 2时,(x 2y 2)最小值=0,此时(PQ+RS )最小值=2(). 5.设BC=a,BC 边上的高为h,内切圆半径为r. ∵△AMN ∽△ABC,2MN h r BC h -=,MN=a(1-2rh),• 由S △ABC =rp,∴r=2ABC S ahp p∆=, ∴MN=a(1-a p )=p ·a p (1-a p )≤p 2(1)2aa p p⎡⎤+-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦=4p ,当且仅当a p =1-a p ,即a=2p 时,取等号,∴MN 的最大值为4p.B级1.如图1,已知正方形ABCD的边长为3,点E在BC上,且BE=2,点P在BD上,则PE+PC的最小值为( )A.23B. 13C. 14D.15E D CAB PSQA B PM(1) (2) (3)2.用四条线段a=14,b=13,c=9,d=7.作为四条边构成一个梯形,•则在所构成的梯形中,中位线长的最大值是__________.3.如图2,⊙O的半径为2,A、B两点在⊙O上,切线AQ和BQ相交于Q,P是AB•延长线上任一点,QS⊥OP于S,则OP·OS=_______.4.已知,如图3,线段AB上有任一点M,分别以AM,BM为边长作正方形AMFE•、•MBCD.正方形AMFE、MBCD的外接圆⊙O、⊙O′交于M、N两点,则直线MN的情况是( •)A.定直线B.经过定点C.一定不过定点D.以上都有可能5.如图,已知⊙O的半径为R,以⊙O上一点A为圆心,以r为半径作⊙A,•又PQ与⊙A 相切,切点为D,且交⊙O于P、Q.求证:AP·AQ为定值.6.如图,⊙O 1与⊙O 2相交于A 、B 两点,经过点B•的一直线和两圆分别相交于点C 和D,设此两圆的半径为R 1,R 2.求证:AC:AD=R 1:R 2.B 级(答案)1.B.∵A 、C 关于BD 对称,连结AE 交BD 于P,此时PE+PC=AE 最短.2.11.5 (1)当上底为7,下底分别为14,13,9时,中位线长分别为10.5,10,8; (2)当上底为9和13时,均构不成梯形.3.连结OQ 交AB 于M,则OQ ⊥AB.连结OA,则OA ⊥AQ. ∵∠QMP=∠QSP=90°,∴S,P,•Q,M 四点共圆,故OS ·OP=OM ·OQ. 又∵OM ·OQ=OA 2=2,∴OS ·OP=2.4.B.由图可知直线MN 可看作⊙O 和⊙O ′的割线, 当M 在点A 时,直线MN 变为⊙O•′的切线, 当M 在点B 时,直线MN 变为⊙O 的切线.这两种情况是以AB•为直角边的等腰直角三角形的两直角边所在的直线,交点是第三个顶点M.M 是AB 的中点时,MN 是AB•的垂直平分线,也过第三个顶点,所以选B. 5.如图,作⊙O 的直径AB,连结AD. ∵PQ 切⊙A 于D,∴AD ⊥PQ, ∴AP ·AQ=AD ·AB.•而AD=r,AB=2R,∴AP ·AQ=2Rr 为定值.6.作AN ⊥CD,垂足为点N,连结AB,有AC.AB=AN.2R1,① AB ·AD=AN ·2R 2 .② ①÷②,得12R AC AD R ,∴AC:A D=R 1:R 2.。
中考数学知识点复习:尺规作图全面版
如何利用尺规作图解决最值问题?
最值问题的求解
最值问题是一类求解最优解的问题,可以利用尺规作图来解决。例如,在几何、代数等领域中,经常需要使用尺规作 图来求解最值问题。
作图方法
利用尺规作图求解最值问题,需要先了解问题的具体内容,然后根据问题内容进行尺规作图。在作图过程中,需要注 意图形绘制的准确性和规范性,以保证求解的准确性。
03
多边形的尺规作图
作已知线段的垂线
01
总结词:通过一个已知点,作 已知线段的垂线,是尺规作图
的基础。
02
详细描述
03
04
1. 分别以线段的两个端点为 圆心,以大于线段的一半为半 径画圆弧,得到两个交点。
2. 连接两个交点,得到的直 线即为已知线段的垂线。
已知二线段平行的垂线段的中垂线
总结词:找到一个已知的平行线段的中垂线,是尺规作 图的进阶技能。
1. 以平行线段的一个端点为圆心,以适当长度为半径画 圆弧,与平行线段相交于两点。
详细描述
2. 连接这两个交点得到的直线即为已知平行线段的中垂 线。
作已知直线的平行线
01
总结词:通过一个已知点,作已知直线的平行线,是尺规作图的基本 技能之一。
02
详细描述
03
1. 以已知点为圆心,以适当长度为半径画圆弧,与直线相交于两点。
04
2. 连接这两个交点得到的直线即为已知直线的平行线。
作已知二线段的中垂线
01 总结词:通过两个已知点,作已知二线段 的中垂线,是尺规作图的高级技能。
02
详细描述
Hale Waihona Puke 031. 以两个已知点为圆心,以适当长度为半 径画圆弧,得到两个交点。
04
专题01 尺规作图(解析版)--2020年中考数学保A必刷压轴题(广东广州专版)
专题01 尺规作图一.解答题(共8小题)1.(2019秋•龙华区期末)如图,已知四边形ABCD,请用尺规按下列要求作图.(1)延长BC到E,使CE=CD;(2)在平面内找到一点P,使P到A、B、C、D四点的距离之和最短.【分析】(1)延长BC到E,使CE=CD即可;(2)使点P、D、E共圆在平面内找到一点P,使P到A、B、C、D四点的距离之和最短【解答】解:(1)如图,延长BC到E,使CE=CD;(2)如图,点P即为所求作的点.【点评】本题考查了作图﹣复杂作图,解决本题的关键是准确找到点P.2.(2020•市南区校级模拟)已知△ABC,在△ABC中作一半圆满足以下要求:①圆心在边BC上;②该半圆面积最大.【分析】根据角平分线上的点到角的两边距离相等即可画出满足要求的半圆.【解答】解:根据题意作图,如图,圆O在三角形ABC内部的半圆即为所求.【点评】本题考查了作图﹣复杂作图,解决本题的关键是掌握角平分线的性质.3.(2020•德城区一模)已知:如图,在△ABC中,AD⊥BC.求作:在AD上求作点E,使得点E到AB的距离EF等于DE.(要求:尺规作图,不写作法,保留作图痕迹.)(1)作图的依据是到角两边距离相等的点在这个角的角平分线上;(2)在作图的基础上,若∠ABC=45°,AB⊥AC,DE=1,求CD的长.【分析】(1)作∠ABC的角平分线交AD于E,过点E作EF⊥AB于F,线段EF即为所求.(2)证明△AEF是等腰直角三角形,求出AE即可解决问题.【解答】解:(1)如图线段EF即为所求.作图的依据是:到角两边距离相等的点在这个角的角平分线上.故答案为:到角两边距离相等的点在这个角的角平分线上.(2)∵BE平分∠边长,ED⊥BC,EF⊥AB,∴ED=EF=1,∵AD⊥BC,∠ABC=45°,∴AF=EF=1,∴AE===,∴AD=AE+DE=+1.【点评】本题考查作图﹣复杂作图,等腰直角三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4.(2019秋•碑林区校级期末)如图,△ABC中,AB=6,AC=8,点D在AB上,AD=3,在边AC上求作一点E使得△DAE的周长为11.(要求:尺规作图,不写作法,保留作图痕迹)【分析】连接CD,作CD的垂直平分线,交AC于E,则CE=DE,依据AD=3,AC=AE+CE=8,即可得到△DAE的周长为3+8=11.【解答】解:如图所示,点E即为所求.【点评】本题主要考查了复杂作图,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.5.(2019秋•包河区期末)如图,已知△ABC.(1)画出△ABC的高AD;(2)尺规作出△ABC的角平分线BE(要求保留作图痕迹,不用证明).【分析】(1)根据过直线外一点作已知直线的垂线的尺规作图可得;(2)根据角平分线的尺规作图可得.【解答】解:(1)如图,AD即为△ABC的高.(2)如图,BE即为△ABC的角平分线.【点评】本题主要考查作图﹣复杂作图,解题的关键是掌握过直线外一点作已知直线的垂线及角平分线的尺规作图.6.(2017秋•聊城期中)已知:如图,直线l极其同侧两点A,B.(1)在图1直线l上求一点P,使到A、B两点距离之和最短;(不要求尺规作图)(2)在图2直线l上求一点O,使OA=OB.(尺规作图,保留作图痕迹)【分析】(1)直接利用对称点求最短路线方法作图即可;(2)结合线段垂直平分线的性质与作法分析得出答案.【解答】解:(1)如图1所示:点P即为所求;(2)如图1所示:点O即为所求.【点评】此题主要考查了基本作图、最短路线问题以及线段垂直平分线的性质,正确掌握相关性质是解题关键.7.(2017秋•滨海新区期末)如图,在△ABC中,AB=3,AC=4,BC=5,EF是BC的垂直平分线,P是直线EF上的任意一点.(Ⅰ)P A+PB的最小值为4;(Ⅱ)在直线EF上找一点P,使得∠APE=∠CPE,画图,并简要说明画图方法.(保留画图痕迹,不要求证明)【分析】(Ⅰ)根据题意知点B关于直线EF的对称点为点C,故当点P为AC与EF的交点时,AP+BP 的最小值,依据AC的长度即可得到结论.(Ⅱ)先作射线BA与直线EF的交点即为点P的位置.【解答】解:(Ⅰ)∵EF是BC中垂线,∴点B关于直线EF的对称点为C,当点P为AC与EF的交点时,P A+PB取得最小值,最小值为P A+PC=AC=4,故答案为:4.(Ⅱ)如图所示,延长BA交直线EF于P,连接CP,则∠APE=∠CPE.理由:∵EF是BC的垂直平分线,∴PB=PC,又∵PE⊥BC,∴等腰△PBC中,PE平分∠BPC,∴∠APE=∠CPE.【点评】本题考查基本作图、轴对称变换、最短距离问题等知识,解题的关键是学会利用轴对称,根据两点之间线段最短解决最短问题.凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.8.(2019秋•惠山区校级期中)如图,C为线段BD上一动点,分别过点B、D作AB⊥BD、ED⊥BD,连结AC、EC.已知AB=6,DE=2,BD=15,设CD=x.(1)用含x的代数式表示AC+CE的值;(写出过程)(2)请问点C满足条件点C与点A和B在同一条直线上时,AC+CE的值最小;(3)根据(2)中的结论,画图并标上数据,求代数式的最小值.【分析】(1)根据勾股定理用含x的代数式表示AC+CE的值即可;(2)根据两点之间线段最短可知:点C满足条件与点A、E在同一条直线上时,AC+CE的值最小;(3)根据(2)中的结论,画图并标上数据,即可求代数式的最小值.【解答】解:(1)∵AB=6,DE=2,BD=15,设CD=x则BC=15﹣x,根据勾股定理,得AC+CE=+=+(2)根据两点之间线段最短可知:当点C与点A和点E在同一条直线上时,AC+CE的值最小;故答案为:点C与点A和点E在同一条直线上.(3)如图所示:∵AB⊥BD、ED⊥BD,∴AB∥DE,∴=,即=,解得x=,则4﹣x=,=+=5答:代数式的最小值为5.【点评】本题考查了作图﹣基本作图、列代数式、轴对称﹣最短路线问题,解决本题的关键是求x的值.。
中考尺规作图专题练习
(1)在图1中,画一个与△ABC面积相等,且以BC为边的平行四边形,顶点在格点上;
(2)在图2中,画一个与△ABC面积相等,且以点C为其中一个顶点的正方形,顶点也在格点上.
19.如图,在△ABC中,AB=AC=1,∠A=36°,▱EFGH的顶点F,G,H分别在AC,AB,BC边上,且FC=CH.
(1)点B到OM的距离等于;
(2)当点P在线段OM上运动,且使PA2+PB2取得最小值时,请借助网格和无刻度的直尺,在给定的网格中画出点P的位置,并简要说明你是怎么画的.
25.如图,菱形ABCD中,
(1)若半径为1的⊙O经过点A、B、D,且∠A=60°,求此时菱形的边长;
(2)若点P为AB上一点,把菱形ABCD沿过点P的直线a折叠,使点D落在BC边上,利用无刻度的直尺和圆规作出直线a.(保留作图痕迹,不必说明作法和理由)
12.如图,在正方形ABCD中,点M是BC边上任意一点,请你仅用无刻度直尺,用连线的方法,在图中按要求作图(保留作图痕迹,不写作法),在AB边上求一点N,连接CN,使CN=AM,并说明理由.
13.七年级我们学过三角形的相关知识,在动手实践的过程中,发现了一个基本事实:三角形的三条高(或三条高所在直线)相交于一点.其实,有很多八年级、九年级的问题均可用此结论解决.运用如图1,已知:△ABC的高AD与高BE相交于点F,且∠ABC=45°,过点F作FG∥BC交AB于点G,求证:FG+CD=BD.小方同学在解答此题时,利用了上述结论,她的方法如下:连接CF并延长,交AB于点M,∵△ABC的高AD与高BE相交于点F,∴CM为△ABC的高.(请你在下面的空白处完成小方的证明过程.)
中考培优竞赛专题经典讲义第9讲最值问题之将军饮马问题
第10讲 最值问题之将军饮马问题最值问题是老师们最爱考的热门题型之一,综合性较强,需要一定的基本功,一般考察时一般放在压 轴位置。
模型讲解【基本模型】问题:在直线I 上找一点P ,使得FA + PB 的值最小 解析:连接AB ,与直线I 交点即为点P (两点之间线段最短)【拓展模型1】问题:在直线/上找一点P ,使得PA + PB 的值最小【练习】1、尺规作图:在直线 MN 上找一点P ,使得/ APN = Z BPN .(保留作图痕迹)A■甘 ----------------------- jV【模型拓展2】1、如图,已知点 P 为定点,定长线段 AB 在直线MN 上运动,在什么位置时,PA = PB 最小? JF M /V T ! y打 M. 弋厂一'青 ◎…皿 ----------------- ° * f;/思维转化:将线段 AB 移动,点P 不动,理解为线段 AB 不动,点P 在直线CD 上移动,将模型转化为 最基本模型【模型拓展3】问题:/ J MON 内一定点A ,点P 、Q 分别为0M 、ON 上的动点,求△ APQ 周长的最小值.PA + PB 的最小值即为线段 BA 的长度.I 的交点即为点P ,此时基本结论:① 厶A 1OA 2必为等腰三角形,且腰长等于线段 OA 的长.② / A I OA 2= 2/ MON .四边形ABPQ 周长最小的模型,最小值即为线段 AB + A' B'的长度和.【模型拓展4】问题:求AB + BC + CD 的最小值问题解析:作点A 关于ON 的对称点A',点D 关于OM 的对称点D ',连接A' D ',最小值即为线段 A' D' 的长度.(作点A 和点D 的对称点的过程中,也可以直接将 OM 、ON 整个对称过去,使得图形更加完整)【模型拓展5】MN 垂直两平行线,求 AM + MN + NB 的最小值模型.A l 、A 2,连接A I A 2,与ON 、OM 交点即为Q 、P ,线段A I A 2的长度即为△ APQ 周长的最小值.其中MN为定值,故只需求AM + NB的最小值,将点A向下平移MN的长度得到A:连接A'B,线段A'B的长度即为AM + NB的最小值直线I上有一长度不变线段MN移动,求AM + MN + NB最小值的模型.将A点向右平移MN的长度,以此转化为基本模型,最小值即为MN + A2B【例题讲解】例题1、如图,在平面直角坐标系中,Rt△ OAB的顶点A在x轴的正半轴上,顶点B的坐标为(3 , 3), 点C的坐标为(1, 0),点P为斜边0B上的一动点,贝U PA + PC的最小值为________________ .解:作A关于0B的对称点D,连接CD交0B于P,连接AP,过D作DN丄0A于N, 则此时PA + PC的值最小,•/ DP = FA,A PA+ PC= PD + PC = CD , v B(3 , 3),二AB = 3 , 0A= 3,•/ tan/A0B = AB= 3A0B = 30°,「. 0B = 2AB= 2 3 ,0A 311 3 3由三角形面积公式得:1X 0A X AB= 1X 0B X AM AM = 3AD = 2X 3= 3,2 2 2 2v/ AMB = 90°,/B= 60 ° ,A/ BAM = 30°,v/BA0 = 90°,「./ 0AM = 60°,•/ DN 丄OA ,•••/ NDA = 30 °,「. AN= 1 AD = 3,由勾股定理得:DN= 33 ,2 2 2v C( 1, 0) ,• CN = 3 - 1- 3= 1,在Rt △ DNC 中,由勾股定理得:DC = 31,2 2 2 2即PA + PC 的最小值是 31 . 2【思考】若把题中条件点“ C 的坐标为(1 , 0) ”改为“点C 为OA 边上一动点”,其它条件不变,那么此时 2PA + PC 最小值又是多少呢?解答:••• PA + PC = PC + PD = CD > DN = 3 3 ,二 PA + PC 的最小值为 3 3 .2 2例题2、某长方体的长、宽、高分别为4、3、5, (1) 如图1,点A 、B 分别为该长方体的两个顶点,已知蚂蚁从点A 沿长方体侧面爬到点B ,则最短路线 长是多少? (2) 如图2,点A 、C 分别为该长方体的两个顶点,如果用一根细线从点到达点C ,那么所用细线最短长度是 ____________ .(3) 如图2,点A 、C 分别为该长方体的两个顶点,如果用一根细线从点到达点C ,那么所用细线最短长度是 ____________ . (4) 如图3,已知圆柱高4米,底面周长1米•如果用花圈从上往下均匀缠绕圆柱3 旋形花圈的长至少 米.A 开始经过 A 开始经过4个侧面缠绕一圈 4个侧面缠绕三圈圈(如图),那么螺 答案:(1) ⑵ ⑶ 74 221 1789 16例题3、如图, BC 、 ABCDE 中,/ BAE = 120°,/ B =Z E = 90°, AB = BC = 1 , AE = DE = 2,在在五边形 DE 上分别找一点 M 、N .(1) 当厶AMN 的周长最小时,/ AMN + / ANM =(2) 求厶AMN 的周长最小值.E解:作A关于BC和ED的对称点A: A〃,连接A'A〃,交BC于M,交ED于N,则A'A〃即为△ AMN的周长最小值.⑴作EA 延长线的垂线,垂足为H,/ BAE = 120 °, •/ AA'A〃 + / AA 〃A'= 60°,/ AAA〃=/ A AM , / AA〃A'=/ EAN,.・./ CAN = 120。
重庆市2019届中考数学一轮复习《5.4尺规作图》讲解含答案.doc
第四节尺规作图课标呈现——指引方向1.能用尺规完成以下基本作图:作一条线段等于已知线段;作一个角等于已知角;作一个角的平分线;作一条线段的垂直平分线:过一点作已知直线的垂线.2.会利用基本作图作三角形:已知三边、两边及其夹角、两角及其夹边作三角形:已知底边及底边上的高线作等腰三角形:已知一直角边和斜边作直角三角形.3.会利用基本作图完成:过不在同一直线上的三点作圆:作三角形的外接圆、内切圆:作圆的内接正方形和正六边形.4.在尺规作图中,了解作图的原理,保留作图的痕迹,不要求写出作法,考点梳理——夯实基础1.格作图:利用平移、旋转、轴对称、中心对称、位似在格中作图称为格作图2.尺规作图(1)尺规作图的定义:在几何里把限定用没有刻度的直尺和圆规来画图,称为尺规作图,最基本最常用的尺规作图,称为基本作图.(2)五种基本尺规作图:①作一条线段等于已知线段;②作一个角等于已知角:③作一个角的角平分线:④作线段的垂直平分线:⑤经过一点作已知直线的垂线.(3)尺规作图的步骤:①已知:写出已知的线段和角,画出图形:②求作:求作什么图形,它符合什么条件,一一具体化:③作法:应用五种基本作图,叙述时不需要重述基本作图的过程,但图中必须保留基本作图的痕迹:④证明:为了验证所作图形的正确性,把图作出后,根据有关的定义、定理等并结合作法证明所作图形完全符合题设条件,⑤对所作图形下结论.(4)作三角形:①已知三边作三角形;②已知两边及其夹角作三角形:③已知两角及其夹边作三角形:④已知底边及底边上的高作等腰三角形.(5)探究如何过一点、两点和不在同一直线上的三点作圆.考点精析——专题突破【例1】(2019四川巴中)如图,方格中,每个小正方形的边长都是单位1,△ABC在平面直角坐标系中的位置如图,请根据条件画出变换后的三角形.(1)将△ABC向有平移2个单位得到△A1B1C1;(2)与△ABC关于x轴对称的图形△A2B2C2.(3)与△ABC关于原点对称的图形△A3B3C3.【答案】解题点拨:作图平移变换、轴对称、中心对称,图略【例2】(2019四川凉山州)如图,在边长为1的正方形格中,△ABC的顶点均在格点上,点A、B的坐标分别是A(4,3)、B(4,1),把△ABC绕点C逆时针旋转90°后得到△A1 B1C.(1)画出△A 1B 1C ,直接写出点A 1、B 1的坐标;(2)求在旋转过程中,△ABC 所扫过的面积.【答案】解题点拨:(1)根据旋转中心方向及角度找出点A 、B 的对应点A 1、B 1的位置,然后顺次连接即可,根据A 、B 的坐标建立坐标系,据此写出点A 1、B 1的坐标;(2)利用勾股定理求出AC 酌长,根据△ABC 扫过的面积等于扇形CAA 1的面积与△ABC 的面积和,然后列式进行计算即可.解:(1)所求作△A 1B 1C 如图所示:由A(4,3)、B(4,1)可建立如图所示坐标系,则点Ai 的坐标为(-1,4),点Bi 的坐标为(1,4); (2)∵AC=22222313AB BC +=+=,∠ACA 1=90°∴在旋转过程中,△ABC 所扫过的面积为:S 扇形CAA 1+S△ABC 290(13)1323602π⋅=+⨯⨯ 1334π=+【例3】(2019育才)两个城镇A 、B 与两条公路ME ,MF 位置如图所示,其中ME 是东西方向的公路.现电信部门需在C 处修建一座信号发射塔,要求发射塔到两个城镇A 、B 的距离必须相等,到两条公路ME ,MF 的距离也必须相等,且在∠FME 的内部,那么点C 应选在何处?请在图中,用尺规作图找出符合条件的点C .(不写已知、求作、作法,只保留作图痕迹)【答案】解题点拨:此题考查了尺规作图,正确的作出图形是解答本题的关键.到A、B距离相等则作线段AB的垂直平分线,到ME、MF距离相等则作∠FME的角平分线,它们的交点即为所求.解:答案如图:1.(2019浙江舟山)数掌活动课上,四位同学围绕作图问题:“如图,已知直线l和l外一点P,用直尺和规作直线PQ,使PQ⊥l于点Q”.分别作出了下列四个图形.其中作法错误的是 ( )【答案】A2.(2019湖北宜昌)任意一条线段EF,其垂直平分线的尺规作图痕迹如图所示,若连接EH、HF、FG,GE,则下列结论中,不一定正确的是 ( )A.△EGH为等腰三角形 B.△EGF为等边三角形C.四边形EGFH为菱形 D.△EHF为等腰三角形第2题【答案】B3.(2019吉林长春)如图,在△ABC中,AB>AC,按以下步骤作图:分别以点B和点C为圆心,大于BC 一半的长为半径作圆弧,两弧相交于点M和点N,作直线MN交AB于点D;连结CD.若AB=6,AC=4,则△ACD 的周长为.第3题【答案】104.已知:如图,∠α,∠β,线段m.求作:△ABC,使∠A=∠α,∠B=∠β,AB=m.第4题【答案】解:如图所示,△ABC即为所求.第4题答案图A组基础训练一、选择题1.(2019河北)如图,已知△ABC(AC<BC),用尺规在BC上确定一点P,使PA+PC=BC,则符合要求的作图痕迹是 ( )第1题【答案】B2.(2019重庆育才)用直尺和圆规作一个角等于已知角,如图,能得出∠A'O'B′=∠AOB的依据是( )A.SAS B.ASA C.SSS D.AAS第2题【答案】C3.(2019西大附中)如图,小红在作线段AB的垂直平分线时,是这样操作的:分别以点A,B为圆心,大于线段AB长度一半的长为半径画弧,相交于点C,D,则直线CD即为所求.连结AC,BC,AD,BD,根据她的作图方法可知,四边形ADBC一定是 ( )A.矩形 B.菱形 C.正方形 D.等腰梯形第3题【答案】B4.(2019河北)如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹,步骤1:以C 为圆心,CA 为半径画弧①;步骤2:以B 为圆心,BA 为半径画弧②,与弧①交于点D ;步骤3:连接AD ,交BC 延长线于点H 。
最值问题
最值问题1、如图(1):若点A、B在直线m同侧,在直线m上找一点P,使A P+BP的值最小,做法如下:作点B关于直线m的对称点B′,连接AB′,与直线m的交点就是所求的点P,线段AB′的长度即为AP+BP的最小值.如图(2):在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小,做法如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这点就是所求的点P,故BP+PE的最小值为.(2)实践运用如图(3):已知⊙O的直径CD为2,的度数为60°,点B是的中点,在直径CD上作出点P,使BP+AP的值最小,则BP+AP的值最小,则BP+AP的最小值为.(3)拓展延伸如图(4):点P是四边形ABCD内一点,分别在边AB、BC上作出点M,点N,使PM+PN的值最小,保留作图痕迹,不写作法.(4)如图5,在矩形ABCD中,AB=4,BC=6,G为边AD的中点,若E,F为边AB上的两个动点,点E在点F左侧,且EF=1,当四边形CGEF的周长最小时,请你在图c中确定点E,F的位置(尺规作图,保留作图痕迹,不写作法),并求出四边形CGEF周长的最小值.(5)如图6,∠AOB=45°,角内一点P,PO=10,两边上各有点Q,R (均不同于O),则△PQR的周长的最小值为______.(6)如图,在锐角△ABC中,AB=四倍根号二,∠BAC=45°∠BAC的平分线交BC于D.M,N分别是AD和AB上的动点,则BM+MN,的最小值是————(7)在四边形ABCD的对角线AC上找一点P使∠APB=∠APD.(2014年张家口二模)(1)如图1、图2,点P是⊙O外一点,作直线OP,交⊙O于点M、N,则有结论:①点M是点P到⊙O的最近点;②点N是点P到⊙O的最远点.请你从①和②中选择一个进行证明。
(注:图1和图2中的虚线为辅助线,可以直接利用)(2)如图,已知,点A、B分别是直角∠XOY的两边上的动点,并且线段AB=4,如果点T是线段AB的中点,则线段TO的长等于______,所以,当点A和B在直角∠XOY的两边上运动时,点O一定在以点______为圆心,以线段______为直径的圆上.(3)如图,△ABC的等边三角形,AB=4,直角∠XOY的两边OX,OY 分别经过点A和点B(点O与点A、点B都不重合),连接OC,求OC 的最大值与最小值.(4)如图,在直角坐标系xOy中,点A、B分别是x轴与y轴上的动点,并且线段AB等于4为一定值.以AB为边作正方形ABCD,连接OC,则OC的最大值与最小值的乘积等于______.3、阅读下面材料:小伟遇到这样一个问题:如图1,在正三角形ABC内有一点P,且PA=3,PB=4,PC=5,求∠APB的度数.小伟是这样思考的:如图2,利用旋转和全等的知识构造△AP′C,连接PP′,得到两个特殊的三角形,从而将问题解决.请你回答:图1中∠APB的度数等于______.参考小伟同学思考问题的方法,解决下列问题:(1)如图3,在正方形ABCD内有一点P,且PA=,PB=1,PD=,则∠APB的度数等于______,正方形的边长为______;(2)如图4,在正六边形ABCDEF内有一点P,且PA=2,PB=1,PF=,则∠APB的度数等于______,正六边形的边长为______.4、2012延庆二模)阅读下面的材料:小伟遇到这样一个问题:如图1,在△ABC(其中∠BAC是一个可以变化的角)中,AB=2,AC=4,以BC为边在BC的下方作等边△PBC,求AP的最大值。
关于最值问题
这类模型又分为两种情况: Ⅱ、归于几何模型:这类模型又分为两种情况: 归于几何模型 这类模型又分为两种情况 (1)归于“两点之间的连线中,线段最短”。凡属 )归于“两点之间的连线中,线段最短” 两线段之和的最小值” 于求“变动的两线段之和的最小值 于求“变动的两线段之和的最小值”时,大都应用这 一模型。 一模型。
(2)归于“三角形两边之差小于第三 )归于“ 凡属于求“ 边”凡属于求“变动的两线段之差的最 大值” 大都应用这一模型。 大值”时,大都应用这一模型。
杭州) 中心对称, (2011杭州)图形既关于点 中心对称,又关于直线 杭州 图形既关于点O中心对称 AC,BD对称,AC=10,BD=6,已知点 ,M是线段 对称, , 对称 , ,已知点E, 是线段 AB上的动点(不与端点重合),点O到EF,MN的距 上的动点( ),点 到 , 上的动点 不与端点重合), 的距 离分别为h 离分别为 1,h2,△OEF与△OGH组成的图形称为蝶 与 组成的图形称为蝶 形. 的最大值; (1)求蝶形面积 的最大值; )求蝶形面积S的最大值 2)当以EH为直径的圆与以 为直径的圆与以MQ为直径的圆重合时 为直径的圆重合时, (2)当以EH为直径的圆与以MQ为直径的圆重合时, 满足的关系式,并求h 的取值范围. 求h1与h2满足的关系式,并求 1的取值范围.
C
G
E
A F O B x
如图所示,在一笔直的公路 的同一旁有两个新开发区A、 如图所示,在一笔直的公路MN的同一旁有两个新开发区 、 的同一旁有两个新开发区 B,已知 千米, ,已知AB=10千米,直线与公路的夹角∠AON=30°,新开 千米 ° 发区B到公路 到公路MN的距离 的距离BC=3千米。 千米。 发区 到公路 的距离 千米 到公路MN的距离; 的距离; (1)求新开发区 到公路 )求新开发区A到公路 的距离 上某点P处向新开发区 修两条公路, (2)现从 )现从MN上某点 处向新开发区 、B修两条公路,使 上某点 处向新开发区A、 修两条公路 到新开发区A、 的距离之和最短 的距离之和最短, 点P到新开发区 、B的距离之和最短,请用尺规作图在图 到新开发区 中找出点P的位置 不用证明,不写作法, 的位置( 中找出点 的位置(不用证明,不写作法,保留作图痕 ),并求出此时 并求出此时PA+PB的值。 的值。 迹),并求出此时 的值 A B N C O M
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、先尺规作图,后进行计算:
如图,△ABC中,∠A=105°.
(1)试求作一点P,使得点P到B、C两点的距离相等,并且到∠ABC两边的距离相等(尺规作图,不写作法,保留作图痕迹).
(2)在(1)的条件下,若∠ACP=30°,则∠PBC的度数为15°.
2、如图,依据尺规作图的痕迹,计算∠α=()
A.56°B.68°C.28°D.34°
3、如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交
AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交B于点D,则下列说法中正确的个数是()
①AD是∠BAC的平分线;
②∠ADC=60°;
③点D在AB的中垂线上;
④S△DAC:S△ABC=1:3.
A.1B.2C.3D.4
4、如图的△ABC中,AB>AC>BC,且D为BC上一点.今打算在AB上找一点P,在AC
上找一点Q,使得△APQ与△PDQ全等,以下是甲、乙两人的作法:
(甲)连接AD,作AD的中垂线分别交AB、AC于P点、Q点,则P、Q两点即为所求(乙)过D作与AC平行的直线交AB于P点,过D作与AB平行的直线交AC于Q点,则P、Q两点即为所求
对于甲、乙两人的作法,下列判断何者正确?()
A.两人皆正确B.两人皆错误
C.甲正确,乙错误D.甲错误,乙正确
最值问题
1、如图,在锐角△ABC中,AC=10,S△ABC=25,∠BAC的平分线交BC于点D,点M,
N分别是AD和AB上的动点,则BM+MN的最小值是()
A.4B.C.5D.6
2、如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一
个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是.
3、如图,OM⊥ON.已知边长为2的正三角形ABC,两顶点A、B分别在射线OM,ON上
滑动,滑动过程中,连接OC,则OC的长的最大值是.
4、如图,在边长为2的等边△ABC中,D为BC的中点,E是AC边上一点,则BE+DE的
最小值为.
5、如图,有一张矩形纸条ABCD,AB=5cm,BC=2cm,点M,N分别在边AB,CD上,
CN=1cm.现将四边形BCNM沿MN折叠,使点B,C分别落在点B',C'上.当点B'恰好落在边CD上时,线段BM的长为cm;在点M从点A运动到点B的过程中,若边MB'与边CD交于点E,则点E相应运动的路径长为cm.
6、如图,在△ABC中,∠ABC=90°,∠A=30°,BC=1,M、N分别是AB、AC上的任
意一点,求MN+NB的最小值为()
A.1.5B.2C.D.
7、如图,△ABC中,∠ACB=90°,以AC为底边在△ABC外作等腰△ACD,过点D作∠
ADC的平分线分别交AB、AC于点E、F.若AC=12cm,BC=5cm,点P是直线DE上的一个动点,则△PBC的周长的最小值是cm.
8、如图,在锐角△ABC中,AC=10,S△ABC=25,∠BAC的平分线交BC于点D,点M,
N分别是AD和AB上的动点,则BM+MN的最小值是()
A.4B.C.5D.6
9、在锐角△ABC中,BC=8,∠ABC=30°,BD平分∠ABC,M、N分别是BD、BC上的
动点,则CM+MN的最小值是.。