实验一 MATLAB验证抽样定理

合集下载

用matlab 频谱分析与采样定理

用matlab 频谱分析与采样定理

频谱分析与采样定理
一、实验目的
1.观察模拟信号经理想采样后的频谱变化关系。

2.验证采样定理,观察欠采样时产生的频谱混叠现象
3.加深对DFT算法原理和基本性质的理解
4.熟悉FFT算法原理和FFT的应用
二、实验原理
根据采样定理,对给定信号确定采样频率,观察信号的频谱
三、实验内容和步骤
实验内容
在给定信号为:
1.x(t)=cos(100*π*at)
2.x(t)=exp(-at)
3.x(t)=exp(-at)cos(100*π*at)
其中a为实验者的学号,记录上述各信号的频谱,表明采样条件,分析比较上述信号频谱的区别。

实验步骤
1.复习采样理论、DFT的定义、性质和用DFT作谱分析的有关内容。

2.复习FFT算法原理和基本思想。

3.确定实验给定信号的采样频率,编制对采样后信号进行频谱分析的程序四、实验设备
计算机、Matlab软件
五、实验报告要求
1.整理好经过运行并证明是正确的程序,并且加上详细的注释。

2.对比不同采样频率下的频谱,作出分析报告。

matlab采样定理

matlab采样定理

采样定理是数字信号处理中的一个基本理论,它说明了如何从离散样本中无失真地恢复连续信号。

在MATLAB中,采样定理的实现可以通过以下步骤完成:
1.确定信号的最高频率:首先需要确定待处理的信号的最高频率。

这可以通过分析信号的频谱来确
定。

2.选择采样频率:根据采样定理,采样频率应该至少是信号最高频率的两倍。

在MATLAB中,可
以使用fs = 2*fmax来计算采样频率。

3.采样信号:使用MATLAB中的fft函数对信号进行快速傅里叶变换,得到信号的频谱。

4.判断是否满足采样定理:如果采样频率大于信号最高频率的两倍,则满足采样定理,可以无失真
地恢复原信号。

否则,会产生频谱混叠现象,无法无失真地恢复原信号。

5.恢复原信号:如果满足采样定理,可以使用MATLAB中的ifft函数对频谱进行逆快速傅里叶变
换,恢复原信号。

需要注意的是,在实际应用中,可能还需要对信号进行滤波、降噪等预处理操作,以提高采样的质量。

同时,也需要考虑其他因素,如硬件设备的限制、信号的动态范围等,以确保采样的准确性。

MATLAB实现抽样定理探讨及仿真

MATLAB实现抽样定理探讨及仿真

MATLAB实现抽样定理探讨及仿真抽样定理,也被称为Nyquist定理或香农定理,是一种关于信号采样的基本理论。

它的核心观点是:如果对信号进行合适的采样,并且采样频率大于信号中最高频率的两倍,那么原始信号可以从采样信号中完全或几乎完全地恢复。

在MATLAB中,我们可以实现抽样定理的探讨和仿真。

下面将详细介绍如何进行这样的实现。

首先,我们可以通过使用MATLAB内置的函数来生成一个连续时间的信号。

例如,我们可以使用sinc函数生成一个带宽有限的信号,其频率范围为[-F/2, F/2],其中F是信号的最大频率。

以下是一个示例代码:```MATLABFs=100;%采样率Ts=1/Fs;%采样周期t=-1:Ts:1;%连续时间序列f_max = 10; % 信号最大频率signal = sinc(2*f_max*t); % 生成带宽有限的信号```然后,我们可以使用MATLAB的plot函数来显示生成的信号。

以下是一个示例代码:```MATLABplot(t, signal);xlabel('时间');ylabel('信号幅度');title('连续时间信号');```生成的图形将显示带宽有限的信号在连续时间域中的波形。

接下来,我们需要对信号进行离散化采样。

根据抽样定理,理想情况下,采样频率应大于信号中最高频率的两倍。

我们可以使用MATLAB的resample函数来进行采样。

以下是一个示例代码:```MATLABFs_new = 2*f_max; % 新的采样率Ts_new = 1/Fs_new; % 新的采样周期t_new = -1:Ts_new:1; % 新的时间序列signal_sampled = resample(signal, Fs_new, Fs); % 信号采样```然后,我们可以使用MATLAB的stem函数来显示采样后的信号。

以下是一个示例代码:```MATLABstem(t_new, signal_sampled);xlabel('时间');ylabel('信号幅度');title('离散时间信号');```生成的图形将显示采样后的信号在离散时间域中的序列。

MATLAB抽样定理验证

MATLAB抽样定理验证
title('重建信号与原余弦信号的绝对误差')
end
本文来自CSDN博客,转载请标明出处:/zhaojianghan888/archive/2009/09/26/4596154.aspx
要求(画出6幅图):
当TS<TN时:
1、在一幅图中画原连续信号f(t)和抽样信号fS(t)。f(t)是包络线,fS(t)是离散信号。
2、画出重构的信号y(t)。
3、画出误差图,即error=abs(f(t)-y(t))的波形。
当TS>TN时同样可画出3幅图。
%a
wm=40*pi;
wc=1.2*wm; %理想低通截止频率
2、确定Nyquist抽样间隔TN。选定两个抽样时间:TS<TN,TS>TN。
3、MATLAB的理想抽样为
n=-200:200;nTs=n*Ts;或nTs=-0.04:Ts:0.04
4、抽样信号通过理想低通滤波器的响应
理想低通滤波器的冲激响应为
系统响应为
由于
所以
MATLAB计算为
ft=fs*Ts*wc/pi*sinc((wc/pi)*(ones(length(nTs),1)*t-nTs'*ones(1,length(t))));
Ts=[0.02 0.03];
N=length(Ts);
for k=1:N;
n=-100:100;
nTs=n*Ts(k);
fs=(cos(8*pi*nTs)+2*sin(40*pi*nTs)+cos(24*pi*nTs)).*(u(nTs+pi)-u(nTs-pi));
t=-0.25:0.001:0.25;
ft=fs*Ts(k)*wc/pi*sinc((wc/pi)*(ones(length(nTs),1)*t-nTs'*ones(1,length(t))));

(完整)抽样定理实验

(完整)抽样定理实验

抽样定理实验
一、实验目的:
学会利用MATLAB软件对抽样定理仿真。

通过实验提高学生实际动手能力和编程能力,为日后从事通信工作奠定良好的基础。

二、实验内容
(1)抽样:输入信号为10Hz的正弦波,观察对于同一输入信号有不同的抽样频率时,恢复信号的不同形态。

(要求显示原始信号波形、脉冲抽样信号波形、抽样后信号波形、恢复的信号波形)
(a)当抽样频率大于信号频率的两倍。

(b)当抽样频率小于信号频率的两倍。

三、simulink仿真框图:
图1 simulink仿真框图
四、实验结果分析:
(1)实验结果
图2 抽样频率为200Hz
图3抽样频率为1Hz
(2)分析
>=2f(20Hz),而Simulink中正弦信号发生器无法设置要想使信号无失真的输出,必须满足f
s
f=10Hz,如果将脉冲抽样器中设置为0.05会出现混叠现象,如图4所示,因此频率应当设置的大一些以避免混叠现象。

图4抽样频率为20Hz。

通信原理MATLAB验证低通抽样定理实验报告

通信原理MATLAB验证低通抽样定理实验报告

通信原理实验报告一、实验名称MATLAB验证低通抽样定理二、实验目的1、掌握抽样定理的工作原理。

2、通过MATLAB编程实现对抽样定理的验证,加深抽样定理的理解。

同时训练应用计算机分析问题的能力。

3、了解MATLAB软件,学习应用MATLAB软件的仿真技术。

它主要侧重于某些理论知识的灵活运用,以及一些关键命令的掌握,理解,分析等。

4、计算在临界采样、过采样、欠采样三种不同条件下恢复信号的误差,并由此总结采样频率对信号恢复产生误差的影响,从而验证时域采样定理。

三、实验步骤及原理1、对连续信号进行等间隔采样形成采样信号,采样信号的频谱是原连续信号的频谱以采样频率为周期进行周期性的延拓形成的。

2、设连续信号的的最高频率为Fmax,如果采样频率Fs>2Fmax,那么采样信号可以唯一的恢复出原连续信号,否则Fs<=2Fmax会造成采样信号中的频谱混叠现象,不可能无失真地恢复原连续信号。

四、实验内容1、画出连续时间信号的时域波形及其幅频特性曲线,信号为x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t)2、对信号进行采样,得到采样序列,画出采样频率分别为10Hz,20 Hz,50 Hz时的采样序列波形;3、对不同采样频率下的采样序列进行频谱分析,绘制其幅频曲线,对比各频率下采样序列和的幅频曲线有无差别。

4、对信号进行谱分析,观察与3中结果有无差别。

5、由采样序列恢复出连续时间信号,画出其时域波形,对比与原连续时间信号的时域波形。

五、实验仿真图(1) x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t)的时域波形及幅频特性曲线。

clear;close all;dt=0.05;t=-2:dt:2x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t);N=length(t);Y=fft(x)/N*2;fs=1/dt;df=fs/(N-1);f=(0:N-1)*df;plot(t,x)title('抽样时域波形')xlabel('t')grid;subplot(2,1,2)plot(f,abs(Y));title('抽样频域信号 |Y|');xlabel('f');grid;(2)采样频率分别为10Hz时的采样序列波形, 幅频特性曲线,以及由采样序列恢复出连续时间信号时域、频域波形;clear;close all;dt=0.1;t0=-2:0.01:2t=-2:dt:2ts1=0.01x0=cos(4*pi*t0)+1.5*sin(6*pi*t0)+0.5*cos(20*pi*t0);x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t);B=length(t0);Y2=fft(x0)/B*2;fs2=1/0.01;df2=fs2/(B-1);f2=(0:B-1)*df2;N=length(t);Y=fft(x)/N*2;fs=1/dt;df=fs/(N-1);f=(0:N-1)*df;tm=-50:ts1:50gt=sinc(fs*tm)st=sigexpand(x,dt/ts1)x3=conv(st,gt)A=length(tm(5001:5401));Y1=fft(x3(5001:5401))/A*2;fs1=1/ts1;df1=fs1/(A-1);f1=(0:A-1)*df1;subplot(3,2,1)plot(t0,x0)title('原始时域波形')xlabel('t')subplot(3,2,2)title('原始频域波形')xlabel('t')subplot(3,2,3)plot(t,x)title('抽样时域波形')xlabel('t')grid;subplot(3,2,4)plot(f,abs(Y));title('抽样频域信号 |Y|');xlabel('f');subplot(3,2,5)plot(t0,x3(5001:5401))title('恢复后的信号');xlabel('tm')subplot(3,2,6)plot(f1,abs(Y1));title('恢复频域信号 |Y1|');xlabel('f1');grid;(3)采样频率分别为20 Hz时的采样序列波形,幅频特性曲线,以及由采样序列恢复出连续时间信号时域、频域波形;clear;close all;dt=0.05;t0=-2:0.01:2t=-2:dt:2ts1=0.01x0=cos(4*pi*t0)+1.5*sin(6*pi*t0)+0.5*cos(20*pi*t0); x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t);B=length(t0);Y2=fft(x0)/B*2;fs2=1/0.01;df2=fs2/(B-1);f2=(0:B-1)*df2;N=length(t);Y=fft(x)/N*2;fs=1/dt;df=fs/(N-1);f=(0:N-1)*df;tm=-50:ts1:50gt=sinc(fs*tm)st=sigexpand(x,dt/ts1)x3=conv(st,gt)A=length(tm(5001:5401));Y1=fft(x3(5001:5401))/A*2;fs1=1/ts1;df1=fs1/(A-1);f1=(0:A-1)*df1;subplot(3,2,1)plot(t0,x0)title('原始时域波形')xlabel('t')subplot(3,2,2)plot(f2,abs(Y2))title('原始频域波形')xlabel('t')subplot(3,2,3)plot(t,x)title('抽样时域波形')xlabel('t')grid;subplot(3,2,4)plot(f,abs(Y));title('抽样频域信号 |Y|');xlabel('f');subplot(3,2,5)plot(t0,x3(5001:5401))title('恢复后的信号');xlabel('tm')subplot(3,2,6)plot(f1,abs(Y1));title('恢复频域信号 |Y1|');xlabel('f1');grid;(4)采样频率分别为50 Hz时的采样序列波形,幅频特性曲线,以及由采样序列恢复出连续时间信号时域、频域波形;;clear;close all;dt=0.02;t0=-2:0.01:2t=-2:dt:2ts1=0.01x0=cos(4*pi*t0)+1.5*sin(6*pi*t0)+0.5*cos(20*pi*t0);x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t);B=length(t0);Y2=fft(x0)/B*2;fs2=1/0.01;df2=fs2/(B-1);f2=(0:B-1)*df2;N=length(t);Y=fft(x)/N*2;fs=1/dt;df=fs/(N-1);f=(0:N-1)*df;tm=-50:ts1:50gt=sinc(fs*tm)st=sigexpand(x,dt/ts1)x3=conv(st,gt)A=length(tm(5001:5401));Y1=fft(x3(5001:5401))/A*2; fs1=1/ts1;df1=fs1/(A-1);f1=(0:A-1)*df1;subplot(3,2,1)plot(t0,x0)title('原始时域波形') xlabel('t')subplot(3,2,2)plot(f2,abs(Y2))title('原始频域波形') xlabel('t')subplot(3,2,3)plot(t,x)title('抽样时域波形') xlabel('t')grid;subplot(3,2,4)plot(f,abs(Y));title('抽样频域信号 |Y|'); xlabel('f');subplot(3,2,5)plot(t0,x3(5001:5401)) title('恢复后的信号'); xlabel('tm')subplot(3,2,6)plot(f1,abs(Y1));title('恢复频域信号 |Y1|'); xlabel('f1');grid;六、实验结论实验中对模拟信号进行采样,需要根据最高截止频率Fmax,按照采样定理的要求选择采样频率的两倍,即 Fs>2Fmax。

MATLAB实现抽样定理探讨及仿真

MATLAB实现抽样定理探讨及仿真

应用 MATLAB 实现抽样定理探讨及仿真一. 课程设计的目的利用MATLAB ,仿模信号抽样与恢复系统的实际实现,探讨过抽样和欠抽样的信号以及抽样与恢复系统的性能。

二. 课程设计的原理模拟信号经过 (A/D) 变换转换为数字信号的过程称为采样,信号采样后其频谱产生了周期延拓,每隔一个采样频率 fs ,重复出现一次。

为保证采样后信号的频谱形状不失真,采样频率必须大于信号中最高频率成分的两倍,这称之为采样定理。

时域采样定理从采样信号恢复原信号必需满足两个条件: (1)必须是带限信号,其频谱函数在>各处为零;(对信号的要求,即只有带限信号才能适用采样定理。

)(2) 取样频率不能过低,必须>2(或>2)。

(对取样频率的要求,即取样频率要足够大,采得的样值要足够多,才能恢复原信号。

)如果采样频率大于或等于,即(为连续信号的有限频谱),则采样离散信号能无失真地恢复到原来的连续信号 。

一个频谱在区间(-,)以外为零的频带有限信号,可唯一地由其在均匀间隔(<)上的样点值所确定。

根据时域与频域的对称性,可以由时域采样定理直接推出频域采样定理。

(a))(t f )()(t t s S T δ=)(t f s 连续信号取样脉冲信号抽样信号)(ωj H )(0t f 理想低通滤波器恢复信号(b)(c)图2.1抽样定理a)等抽样频率时的抽样信号及频谱(不混叠)b)高抽样频率时的抽样信号及频谱(不混叠)c) 低抽样频率时的抽样信号及频谱(混叠)2.1信号采样如图1所示,给出了信号采样原理图信号采样原理图(a)由图1可见,)()()(ttftfsTsδ⋅=,其中,冲激采样信号)(ts Tδ的表达式为:∑∞-∞=-=nsTnTtts)()(δδ其傅立叶变换为∑∞-∞=-nssn)(ωωδω,其中ss Tπω2=。

设)(ωjF,)(ωjFs分别为)(tf,)(tfs的傅立叶变换,由傅立叶变换的频域卷积定理,可得∑∑∞-∞=∞-∞=-=-=nssnsssnjFTnjFjF)]([1)(*)(21)(ωωωωδωωπω若设)(tf是带限信号,带宽为mω,)(t f经过采样后的频谱)(ωjFs就是将)(ωjF在频率轴上搬移至,,,,,02nsssωωω±±±处(幅度为原频谱的sT1倍)。

实验一 MATLAB验证抽样定理

实验一 MATLAB验证抽样定理

实验一MATLAB验证抽样定理一、实验目的1、掌握脉冲编码调制(PCM)的工作原理。

2、通过MATLAB编程实现对时域抽样定理的验证,加深抽样定理的理解。

同时训练应用计算机分析问题的能力。

二、实验预习要求1、复习《现代通信原理》中有关PCM的章节;2、复习《现代通信原理》中有关ADPCM的章节;;3、认真阅读本实验内容,熟悉实验步骤。

4、预习附录中的杂音计,失真度仪的使用。

三、实验环境PC电脑,MA TLAB软件四、实验原理1、概述脉冲编码(PCM)技术已经在数字通信系统中得到了广泛的应用。

十多年来,由于超大规模集成技术的发展,PCM通信设备在缩小体积、减轻重量、降低功耗、简化调试以及方便维护等方面都有了显著的改进。

目前,数字电话终端机的关键部件,如编译码器(Codec)和话路滤波器等都实现了集成化。

本实验是以这些产品编排的PCM编译码系统实验,以期让实验者了解通信专用大规模集成电路在通信系统中应用的新技术。

PCM数字电话终端机的构成原理如图3-1所示。

实验只包括虚线框内的部分,故名PCM 编译码实验。

混合装置V oice发滤波器波器收滤编码器器码译分路路合发收图3-1 PCM 数字电话终端机的结构示意图ADPCM 是在DPCM 基础上逐步发展起来的,DPCM 的工作原理请参阅教材有关章节。

它在实现上采用预测基数减少量化编码器输入信号多余度,将差值信号编码以提高效率、降低编码信号速率,这广泛应用于语音和图像信号数字化。

ADPCM 中的量化器与预测器均采用自适应方式,即量化器与预测器的参数能根据输入信号的统计特性自适应于最佳式接近于最佳参数状态。

通常,人们把低于64Kbps 数码率的语音编码方法称为语音压缩编码技术,语音压缩编码方法很多,ADPCM 是语音压缩编码种复杂程度较低的一种方法。

它能在32Kbps 数码率上达到符合64Kbps 数码率的语音质量要求,也就是符合长途电话的质量要求。

2、 实验原理(1) PCM 编译码原理PCM 编译码系统由定时部分和PCM 编译码器构成,如图3-2所示图3-2 PCM 调制原理框图PCM 主要包括抽样、量化与编码三个过程。

MATLAB实现抽样定理探讨及仿真

MATLAB实现抽样定理探讨及仿真

MATLAB实现抽样定理探讨及仿真抽样定理是信号处理与通信领域中的一个重要定理,它指出在进行信号采样时,为了避免失真和信息丢失,采样频率必须至少为信号带宽的两倍。

抽样定理还提供了信号的重构方法,可以从采样信号中恢复出原始信号的全部信息。

在这篇文章中,我们将使用MATLAB对抽样定理进行探讨,并进行相关的仿真实验。

首先,我们将介绍抽样定理的基本原理。

在信号处理中,信号可以被表示为时域函数或频域函数。

在时域中,信号可以用冲激函数的线性组合来表示,而在频域中,信号可以被表示为复指数函数的线性组合。

信号的带宽是指信号中包含的频率的范围,通常用赫兹(Hz)来表示。

根据抽样定理,为了准确地恢复信号,采样频率必须至少是信号带宽的两倍。

接下来,我们将使用MATLAB对抽样定理进行仿真实验。

首先,我们将生成一个具有限带宽的信号,并对其进行采样。

然后,我们将根据抽样定理的要求重新构建信号,以验证定理的有效性。

假设我们有一个信号x(t),其频率范围为0至10赫兹,并且我们以20赫兹的采样频率对其进行采样。

我们可以使用MATLAB生成这个信号,并进行采样,代码如下所示:```matlabFs=20;%采样频率t=0:1/Fs:1-1/Fs;%1秒内的采样时刻x = sin(2*pi*10*t); % 10赫兹的正弦波信号stem(t,x);xlabel('时间(秒)');ylabel('幅度');title('原始信号');```接下来,我们将使用抽样定理的频率限制条件对信号进行重构,并绘制重构后的信号。

我们将使用插值的方法对采样信号进行重构,代码如下所示:```matlabt_recon = 0:1/(2*Fs):1-1/(2*Fs); % 重新构建信号时的采样时刻x_recon = interp1(t,x,t_recon); % 插值重构信号stem(t_recon,x_recon);xlabel('时间(秒)');ylabel('幅度');title('重构信号');```通过对原始信号和重构信号的比较,我们可以看到抽样定理的有效性。

抽样定理分析实验报告

抽样定理分析实验报告

一、实验目的1. 深入理解抽样定理的基本原理和适用条件。

2. 通过MATLAB仿真实验,验证抽样定理的正确性。

3. 分析不同采样频率对信号恢复的影响,探讨采样频率对信号质量的影响。

4. 掌握利用MATLAB进行信号处理和频谱分析的方法。

二、实验原理抽样定理是信号与系统理论中的一个重要概念,它指出:如果一个带限信号(即其频谱在有限频率范围内非零)以高于其最高频率两倍(或更高)的频率进行采样,则采样后的信号可以无失真地恢复原信号。

三、实验仪器与软件1. 实验仪器:无。

2. 实验软件:MATLAB。

四、实验步骤1. 生成一个带限信号,如正弦波信号。

2. 设置不同的采样频率,如最高频率的两倍、四倍、六倍等。

3. 对信号进行采样,得到采样序列。

4. 对采样序列进行频谱分析,绘制其幅频曲线。

5. 将采样序列通过逆采样操作恢复原信号。

6. 对恢复的信号进行频谱分析,观察与原信号的频谱是否一致。

五、实验结果与分析1. 不同采样频率对信号恢复的影响实验结果显示,当采样频率低于信号最高频率的两倍时,恢复的信号与原信号存在较大差异,信号失真严重。

当采样频率等于信号最高频率的两倍时,恢复的信号与原信号基本一致,信号失真很小。

当采样频率高于信号最高频率的两倍时,恢复的信号与原信号仍然一致,但信号质量略有提高。

2. 采样频率对信号质量的影响从实验结果可以看出,采样频率越高,恢复的信号质量越好。

这是因为采样频率越高,采样点越密集,能够更准确地反映信号的波形。

但是,采样频率过高也会导致数据量增加,增加存储和传输负担。

3. 抽样定理的验证实验结果验证了抽样定理的正确性。

当采样频率高于信号最高频率的两倍时,采样后的信号可以无失真地恢复原信号。

六、实验结论1. 抽样定理是信号与系统理论中的一个重要概念,对于信号处理和通信领域具有重要意义。

2. 采样频率对信号恢复的质量有重要影响,采样频率越高,恢复的信号质量越好。

3. 利用MATLAB进行信号处理和频谱分析是有效的方法,可以方便地验证抽样定理。

matlab验证时域采样定理

matlab验证时域采样定理

目录第1章摘要 (1)第2章基本原理 (2)第3章实验步骤 (5)第4章MATLAB实现编程 (5)第5章实验结果与分析 (8)5.1 程序分析 (8)5.2 信号的波形及幅度频谱 (8)5.3 结果分析 (9)第6章总结 (12)参考文献 (13)第1章摘要一、数字信号处理数字信号处理是将信号以数字方式表示并处理的理论和技术。

数字信号处理与模拟信号处理是信号处理的子集。

数字信号处理的目的是对真实世界的连续模拟信号进行测量或滤波。

因此在进行数字信号处理之前需要将信号从模拟域转换到数字域,这通常通过模数转换器实现。

而数字信号处理的输出经常也要变换到模拟域,这是通过数模转换器实现的。

数字信号处理的算法需要利用计算机或专用处理设备。

数字信号处理技术及设备具有灵活、精确、抗干扰强、设备尺寸小、造价低、速度快等突出优点,这些都是模拟信号处理技术与设备所无法比拟的。

数字信号处理的核心算法是离散傅立叶变换(DFT),是DFT使信号在数字域和频域都实现了离散化,从而可以用通用计算机处理离散信号。

而使数字信号处理从理论走向实用的是快速傅立叶变换(FFT) ,FFT的出现大大减少了DFT 的运算量,使实时的数字信号处理成为可能、极大促进了该学科的发展。

随着大规模集成电路以及数字计算机的飞速发展,加之从60年代末以来数字信号处理理论和技术的成熟和完善,用数字方法来处理信号,即数字信号处理,已逐渐取代模拟信号处理。

随着信息时代、数字世界的到来,数字信号处理已成为一门极其重要的学科和技术领域。

二、实验目的本次课程设计应用MATLA验证时域采样定理。

了解MATLA软件,学习应用MATLA软件的仿真技术。

它主要侧重于某些理论知识的灵活运用,以及一些关键命令的掌握,理解,分析等。

初步掌握线性系统的设计方法,培养独立工作能力。

加深理解时域采样定理的概念,掌握利用MATLA分析系统频率响应的方法和掌握利用MATLA实现连续信号采样、频谱分析和采样信号恢复的方法。

MATLAB实现抽样定理探讨及仿真

MATLAB实现抽样定理探讨及仿真

应用 MATLAB 实现抽样定理探讨及仿真一. 课程设计的目的利用MATLAB ,仿模信号抽样与恢复系统的实际实现,探讨过抽样和欠抽样的信号以及抽样与恢复系统的性能。

二. 课程设计的原理模拟信号经过 (A/D) 变换转换为数字信号的过程称为采样,信号采样后其频谱产生了周期延拓,每隔一个采样频率 fs ,重复出现一次。

为保证采样后信号的频谱形状不失真,采样频率必须大于信号中最高频率成分的两倍,这称之为采样定理。

时域采样定理从采样信号恢复原信号必需满足两个条件: (1)必须是带限信号,其频谱函数在>各处为零;(对信号的要求,即只有带限信号才能适用采样定理。

)(2) 取样频率不能过低,必须>2(或>2)。

(对取样频率的要求,即取样频率要足够大,采得的样值要足够多,才能恢复原信号。

)如果采样频率大于或等于,即(为连续信号的有限频谱),则采样离散信号能无失真地恢复到原来的连续信号 。

一个频谱在区间(-,)以外为零的频带有限信号,可唯一地由其在均匀间隔(<)上的样点值所确定。

根据时域与频域的对称性,可以由时域采样定理直接推出频域采样定理。

(a))(t f )()(t t s S T δ=)(t f s 连续信号取样脉冲信号抽样信号)(ωj H )(0t f 理想低通滤波器恢复信号(b)(c)图2.1抽样定理a)等抽样频率时的抽样信号及频谱(不混叠)b)高抽样频率时的抽样信号及频谱(不混叠)c) 低抽样频率时的抽样信号及频谱(混叠)2.1信号采样如图1所示,给出了信号采样原理图信号采样原理图(a)由图1可见,)()()(ttftfsTsδ⋅=,其中,冲激采样信号)(ts Tδ的表达式为:∑∞-∞=-=nsTnTtts)()(δδ其傅立叶变换为∑∞-∞=-nssn)(ωωδω,其中ss Tπω2=。

设)(ωjF,)(ωjFs分别为)(tf,)(tfs的傅立叶变换,由傅立叶变换的频域卷积定理,可得∑∑∞-∞=∞-∞=-=-=nssnsssnjFTnjFjF)]([1)(*)(21)(ωωωωδωωπω若设)(tf是带限信号,带宽为mω,)(t f经过采样后的频谱)(ωjFs就是将)(ωjF在频率轴上搬移至,,,,,02nsssωωω±±±处(幅度为原频谱的sT1倍)。

基于matlab的采样定理验证

基于matlab的采样定理验证

基于Matlab 的采样定理验证一. 实验目的● 了解信号恢复的方法● 验证采样定理二. 实验环境● Matlab 应用软件三. 实验原理● 时域采样定理对连续信号进行等间隔采样形成采样信号,采样信号的频谱是原连续信号的频谱以采样频率为周期进行周期延拓形成的。

设连续信号的最高频为f max ,如果采样频率f s ≥2f max ,那么采样信号可以唯一恢复出原连续信号;否则会出现频谱混叠,信号无法完全恢复。

● 设计原理图● 时域采样与频域分析对一连续信号f (t )进行理想采样可以表示为f s t =f t s t =f (nT )δ(t −nT )∞n =−∞其中f s t 为f t 的理想采样,s (t )为周期脉冲信号,即s t =δ(t −nT )∞n =−∞由频域卷积定理,f s t 的傅立叶变换为F s jω =1T F j ω−nΩ ∞n =−∞其中Ω=2π/T ,F (jω)为f (t )的傅立叶变换。

上式表明,F s jω 为F (jω)的周期延拓。

只有满足采样定理时,才不会发生频率混叠失真。

在实际计算中,常采用如下等价的公式进行计算F s jω =f (nT )e −jnΩT ∞n =−∞● 信号恢复这里信号恢复是指由f s t 经过函数内插,恢复原始信号f (t )的过程,具体而言即f t =f s t ∗h (t )其中插值函数h t =TωcπSa (ωc t ) 其中ωc 为低通滤波器的截止频率。

将f s t 和ℎ t 代入恢复公式,即得f t =f s t ∗h t =T ωcπ f nT Sa (ωc (t −nT ))∞n =−∞上式即信号恢复的基本公式。

内插公式表明模拟信号f (t )等于各采样点数值乘以对应内插函数的总和,只要采样频率高于信号频率的两倍,模拟信号就可以用它的采样值表示,而不丢失任何信息。

四. 预习内容● 采样定理五. 实验内容● 画出连续时间信号的时域波形,信号为f t =sin 120 π t +cos 50 π t +cos⁡(60 π t )● 对信号进行采样,得到采样序列,画出采样频率分别为80Hz 、120 Hz 、150 Hz 时的采样序列波形。

matlab信号抽样与恢复

matlab信号抽样与恢复

实验一 信号抽样与恢复一、实验目的学会用MATLAB 实现连续信号的采样和重建二、实验原理1.抽样定理若)(t f 是带限信号,带宽为m ω, )(t f 经采样后的频谱)(ωs F 就是将)(t f 的频谱 )(ωF 在频率轴上以采样频率s ω为间隔进行周期延拓。

因此,当s ω≥m ω时,不会发生频率混叠;而当 s ω<m ω 时将发生频率混叠。

2.信号重建经采样后得到信号)(t f s 经理想低通)(t h 则可得到重建信号)(t f ,即:)(t f =)(t f s *)(t h其中:)(t f s =)(t f ∑∞∞--)(s nT t δ=∑∞∞--)()(s s nT t nT f δ所以:)(t f =)(t f s *)(t h =∑∞∞--)()(s s nT t nT f δ*)(t Sa T c c sωπω =πωc s T ∑∞∞--)]([)(s c snT t Sa nT f ω上式表明,连续信号可以展开成抽样函数的无穷级数。

利用MATLAB 中的t t t c ππ)sin()(sin =来表示)(t Sa ,有 )(sin )(πt c t Sa =,所以可以得到在MATLAB 中信号由)(s nT f 重建)(t f 的表达式如下:)(t f =πωc s T ∑∞∞--)]([sin )(s c s nT t c nT f πω 我们选取信号)(t f =)(t Sa 作为被采样信号,当采样频率s ω=2m ω时,称为临界采样。

我们取理想低通的截止频率c ω=m ω。

下面程序实现对信号)(t f =)(t Sa 的采样及由该采样信号恢复重建)(t Sa :三、上机实验内容1.验证实验原理中所述的相关程序;2.设f(t)=0.5*(1+cost)*(u(t+pi)-u(t-pi)) ,由于不是严格的频带有限信号,但其频谱大部分集中在[0,2]之间,带宽wm 可根据一定的精度要求做一些近似。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一MATLAB验证抽样定理一、实验目的1、掌握脉冲编码调制(PCM)的工作原理。

2、通过MATLAB编程实现对时域抽样定理的验证,加深抽样定理的理解。

同时训练应用计算机分析问题的能力。

二、实验预习要求1、复习《现代通信原理》中有关PCM的章节;2、复习《现代通信原理》中有关ADPCM的章节;;3、认真阅读本实验内容,熟悉实验步骤。

4、预习附录中的杂音计,失真度仪的使用。

三、实验环境PC电脑,MA TLAB软件四、实验原理1、概述脉冲编码(PCM)技术已经在数字通信系统中得到了广泛的应用。

十多年来,由于超大规模集成技术的发展,PCM通信设备在缩小体积、减轻重量、降低功耗、简化调试以及方便维护等方面都有了显著的改进。

目前,数字电话终端机的关键部件,如编译码器(Codec)和话路滤波器等都实现了集成化。

本实验是以这些产品编排的PCM编译码系统实验,以期让实验者了解通信专用大规模集成电路在通信系统中应用的新技术。

PCM数字电话终端机的构成原理如图3-1所示。

实验只包括虚线框内的部分,故名PCM 编译码实验。

混合装置V oice发滤波器波器收滤编码器器码译分路路合发收图3-1 PCM 数字电话终端机的结构示意图ADPCM 是在DPCM 基础上逐步发展起来的,DPCM 的工作原理请参阅教材有关章节。

它在实现上采用预测基数减少量化编码器输入信号多余度,将差值信号编码以提高效率、降低编码信号速率,这广泛应用于语音和图像信号数字化。

ADPCM 中的量化器与预测器均采用自适应方式,即量化器与预测器的参数能根据输入信号的统计特性自适应于最佳式接近于最佳参数状态。

通常,人们把低于64Kbps 数码率的语音编码方法称为语音压缩编码技术,语音压缩编码方法很多,ADPCM 是语音压缩编码种复杂程度较低的一种方法。

它能在32Kbps 数码率上达到符合64Kbps 数码率的语音质量要求,也就是符合长途电话的质量要求。

2、 实验原理(1) PCM 编译码原理PCM 编译码系统由定时部分和PCM 编译码器构成,如图3-2所示图3-2 PCM 调制原理框图PCM 主要包括抽样、量化与编码三个过程。

抽样是把时间连续的模拟信号转换成时间离散、幅度连续的抽样信号;量化是把时间离散、幅度连续的抽样信号转换成时间离散、幅度离散的数字信号;编码是将量化后的信号编码形成一个二进制码组输出。

国际标准化的PCM 码组(电话语音)是用八位码组代表一个抽样值。

编码后的PCM 码组,经数字信道传输,在接收端,用二进制码组重建模拟信号,在解调过程中,一般采用抽样保持电路。

预滤波是为了把原始语音信号的频带限制在300Hz ~3400Hz 左右,所以预滤波会引入一定的频带失真。

在整个PCM 系统中,重建信号的失真主要来源于量化以及信道传输误码。

通常,用信号与量化噪声的功率比,即信噪比S/N 来表示。

国际电报电话咨询委员会(ITU-T )详细规定了它的指标,还规定比特率为64kbps ,使用A 律或μ律编码律。

下面将详细介绍PCM 编码的整个过程,由于抽样原理已在前面实验中详细讨论过,故在此只讲述量化及编码的原理。

(1)量化从数学上来看,量化就是把一个连续幅度值的无限数集合映射成一个离散幅度值的有限数集合。

如图3-3所示,量化器Q 输出L 个量化值k y ,k=1,2,3,…,L 。

k y 常称为重建电平或量化电平。

当量化器输入信号幅度x 落在k x 与1+k x 之间时,量化器输出电平为k y 。

这个量化过程可以表达为:{}1(),1,2,3,,k k k y Q x Q x x x y k L +==<≤==这里k x 称为分层电平或判决阈值。

通常k k k x x -=∆+1称为量化间隔。

图3-3 模拟信号的量化模拟信号的量化分为均匀量化和非均匀量化,我们先讨论均匀量化。

把输入模拟信号的取值域按等距离分割的量化称为均匀量化。

在均匀量化中,每个量化区间的量化电平均取在各区间的中点,如图3-4所示。

其量化间隔(量化台阶)v ∆取决于输入信号的变化范围和量化电平数。

当输入信号的变化范围和量化电平数确定后,量化间隔也被确定。

例如,输入信号的最小值和最大值分用a 和b 表示,量化电平数为M ,那么,均匀量化的量化间隔为:Mab v -=∆ 量化器输出q m 为:,q i m q = 当1i i m m m -<≤式中i m 为第i 个量化区间的终点,可写成 v i a m i ∆+=i q 为第i 个量化区间的量化电平,可表示为1,122i i i m m q i M -+==、、、上述均匀量化的主要缺点是,无论抽样值大小如何,量化噪声的均方根值都固定不变。

因此,当信号()m t 较小时,则信号量化噪声功率比也就很小,这样,对于弱信号时的量化信噪比就难以达到给定的要求。

通常,把满足信噪比要求的输入信号取值范围定义为动态范围,可见,均匀量化时的信号动态范围将受到较大的限制。

为了克服这个缺点,实际中,往往采用非均匀量化。

图3-4 均匀量化过程示意图非均匀量化是根据信号的不同区间来确定量化间隔的。

对于信号取值小的区间,其量化间隔v ∆也小;反之,量化间隔就大。

它与均匀量化相比,有两个突出的优点。

首先,当输入量化器的信号具有非均匀分布的概率密度(实际中常常是这样)时,非均匀量化器的输出端可以得到较高的平均信号量化噪声功率比;其次,非均匀量化时,量化噪声功率的均方根值基本上与信号抽样值成比例。

因此量化噪声对大、小信号的影响大致相同,即改善了小信号时的量化信噪比。

实际中,非均匀量化的实际方法通常是将抽样值通过压缩再进行均匀量化。

通常使用的压缩器中,大多采用对数式压缩。

广泛采用的两种对数压缩律是μ压缩律和A 压缩律。

美国采用μ压缩律,我国和欧洲各国均采用A 压缩律,因此,本实验模块采用的PCM 编码方式也是A 压缩律。

所谓A 压缩律也就是压缩器具有如下特性的压缩律:1,01ln Ax y X A A=<<+11,ln 1ln 1<≤++=X AA Ax yA 律压扩特性是连续曲线,A 值不同压扩特性亦不同,在电路上实现这样的函数规律是相当复杂的。

实际中,往往都采用近似于A 律函数规律的13折线(A=87.6)的压扩特性。

这样,它基本上保持了连续压扩特性曲线的优点,又便于用数字电路实现,本实验模块中所用到的PCM 编码芯片TP3067正是采用这种压扩特性来进行编码的。

图3-5示出了这种压扩特性。

图3-5 13折线示意图表3-1列出了13折线时的x 值与计算x 值的比较。

表 3-1 13折线时的x 值与计算x 值的比较y0 81 82 83 84 85 86 87 1 x0 1281 6.601 6.301 4.151 79.71 93.31 98.11 1 按折线 分段时的x 0 1281 641 321 161 81 41 21 1段落12345678斜率 16 16 8 4 2 121 41表中第二行的x 值是根据87.6A =时计算得到的,第三行的x 值是13折线分段时的值。

可见,13折线各段落的分界点与87.6A =曲线十分逼近,同时x 按2的幂次分割有利于数字化。

(2)编码所谓编码就是把量化后的信号变换成二进制码,其相反的过程称为译码。

当然,这里的编码和译码与差错控制编码和译码是完全不同的,前者是属于信源编码的范畴。

在现有的编码方法中,若按编码的速度来分,大致可分为两大类:低速编码和高速编码。

通信中一般都采用第二类。

编码器的种类大体上可以归结为三类:逐次比较型、折叠级联型、混合型。

本实验模块中的编码芯片TP3067采用的是逐次比较型。

在逐次比较型编码方式中,无论采用几位码,一般均按极性码、段落码、段内码的顺序排列。

下面结合13折线的量化来加以说明。

在13折线法中,无论输入信号是正是负,均按8段折线(8个段落)进行编码。

若用8位折叠二进制码来表示输入信号的抽样量化值,其中用第一位表示量化值的极性,其余七位(第二位至第八位)则表示抽样量化值的绝对大小。

具体的做法是:用第二至第四位表示段落码,它的8种可能状态来分别代表8个段落的起点电平。

其它四位表示段内码,它的16种可能状态来分别代表每一段落的16个均匀划分的量化级。

这样处理的结果,8个段落被划分成27=128个量化级。

段落码和8个段落之间的关系如表3-2所示;段内码与16个量化级之间的关系见表3-3。

可见,上述编码方法是把压缩、量化和编码合为一体的方法。

表3-2 段落码表3-3 段内码(2)PCM编译码器简介本实验采用大规模集成电路TP3067对语音信号进行PCM编、解码。

TP3067在一个芯片内部集成了编码电路和译码电路,是一个单路编译码器。

其编码速率为2.048MHz,每一帧数据为8位,帧同步信号为8KHz。

模拟信号在编码电路中,经过抽样、量化、编码,最后得到PCM编码信号。

在单路编译码器中,经变换后的PCM码是在一个时隙中被发送出去的,在其他的时隙中编译码器是没有输出的,即对一个单路编译码器来说,它在一个PCM 帧(32个时隙)里,只在一个特定的时隙中发送编码信号。

同样,译码电路也只是在一个特定的时隙(此时隙应与发送时隙相同,否则接收不到PCM编码信号)里才从外部接收PCM 编码信号,然后进行译码,经过带通滤波器、放大器后输出。

下面对PCM编译码专用集成电路TP3067芯片做一些简单的介绍。

图3-6为TP3067的内部结构方框图,图3-7是TP3067的管脚排列图。

图3-6 TP3067逻辑方框图44图3-7 TP3067管脚排列图五实验任务:连续信号f(t)=cos(8*pi*t)+2*sin(40*pi*t)+cos(24*pi*t),经过理想抽样后得到抽样信号fs(t),通过理想低通滤波器后重构信号f(t)。

六、实验方法和步骤:1、确定f(t)的最高频率fm。

对于无限带宽信号,确定最高频率fm的方法:设其频谱的模降到10-5左右时的频率为fm。

2、确定Nyquist抽样间隔T N。

选定两个抽样时间:T S<T N,T S>T N。

3、MATLAB的理想抽样为n=-200:200;nTs=n*Ts; 或 nTs=-0.04:Ts:0.04 (注意:上式表示n的范围为-200到200,步长为1,其余类似)4、抽样信号通过理想低通滤波器的响应根据原理和公式,MATLAB计算为ft=fs*Ts*wc/pi*sinc((wc/pi)*(ones(length(nTs),1)*t-nTs'*ones(1,length (t))));八、要求(画出6幅图):当TS <TN时:1、在一幅图中画原连续信号f(t)和抽样信号f S(t)。

相关文档
最新文档