简支梁正截面抗弯承载力计算表格
钢筋混凝土(结构设计原理)T型截面梁算例
钢筋混凝土T形梁桥主梁设计资料⒈某公路钢筋混凝土简支梁桥主梁结构尺寸。
标准跨径:20.00m;计算跨径:19.50m;主梁全长:19.96m;梁的截面尺寸如下图(单位mm):⒉计算内力⑴使用阶段的内力跨中截面计算弯矩(标准值)结构重力弯矩:M1/2恒=759.45kN-m;汽车荷载弯矩:M1/2汽=697.28kN-m(未计入冲击系数);人群荷载弯矩:M1/2人=55.30kN-m;1/4跨截面计算弯矩(设计值)M d,1/4=1687kN-m;(已考虑荷载安全系数)支点截面弯矩M d0=0,支点截面计算剪力(标准值)结构重力剪力:V0恒=139.75kN;汽车荷载剪力:V0汽=142.80kN(未计入冲击系数);人群荷载剪力:V0人=11.33kN;跨中截面计算剪力(设计值)跨中设计剪力:V d=84kN(已考虑荷载安全系数);,1/2主梁使用阶段处于一般大气条件的环境中。
结构安全等级为二级。
汽车冲击系数,汽车冲击系数1+μ=1.292。
⑵施工阶段的内力简支梁在吊装时,其吊点设在距梁端a=400mm处,而梁自重在跨中截面的弯矩标准值M k=505.69kN—m,吊点的剪力标准值V0=105.57kN。
,1/2⒊材料主筋用HRB335级钢筋f sd=280N/mm2;f sk=335N/mm2;E s=2.0×105N/mm2。
箍筋用R235级钢筋f sd=195N/mm2;f sk=235N/mm2;E s=2.1×105N/mm2。
采用焊接平面钢筋骨架混凝土为30号f cd=13.8N/mm2;f ck=20.1N/mm2;f td=1.39N/mm2;f tk=2.01N/mm2;E c=3.00×104N/mm2。
作用效应组合主梁正截面承载力计算主梁斜截面承载力计算全梁承载力校核施工阶段的应力验算使用阶段裂缝宽度和变形验算纵向构造钢筋、架立钢筋及骨架构造钢筋长度计算钢筋明细表及钢筋总表第1章 作用效应组合§1.1 承载力极限状态计算时作用效应组合 根据《公路桥涵设计通用规范》(JTG D60—2004)4·1·6条规定:按承载力极限状态计算时采用的基本组合为永久作用的设计值效应与可变作用设计值效应相组合,其效应组合表达式为:)(211100∑∑==++=nj QjK Qj C K Q Q m i GiK Gi ud S S S S γψγγγγ跨中截面设计弯矩M d =γG M 恒+γq M 汽+γq M 人=1.2×759.45+1.4×1.292×697.28+1.4×55.30=2250.00kN -m 支点截面设计剪力V d =γG V 恒+γG1V 汽+γG2V 人=1.2×142.80+1.4×1.292×139.75+1.4×11.33=440.00kN §1.2 正常使用极限状态设计时作用效应组合 根据《公路桥涵设计通用规范》(JTG D60—2004)4·1·7条规定:公路桥涵结 构按正常使用极限状态设计时,应根据不同的设计要求,分别采用不同效应组合 ⑴作用效应短期组合作用效应短期组合为永久作用标准值效应与可变作用频遇值效应相组合,其效应 组合表达式为:∑∑==+=nj Qjk j mi Gik sd S S S 111ψM sd =M gk +ψ11M 11+ψ12M 12=759.45+0.7×697.28+1.0×55.30=1302.85kN -m ⑵作用长期效应组合作用长期效应组合为永久作用标准值效应与可变作用准永久值效应相组合,其效应组合表达式为:∑∑==+=nj Qjk j mi Gik ld S S S 1211ψM ld =M gk +ψ21M 11+ψ22M 12=759.45+0.4×697.28+0.4×55.30=1060.48kN -m第2章 主梁正截面承载力计算§2.1 配筋计算⑴翼缘板的计算宽度b ′f根据《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62—2004)第4·2·2条规定:T 形截面受弯构件位于受压区的翼缘计算宽度,应按下列三者中最小值取用。
【免费工程实用表格】梁正截面抗弯承载力计算表
x=
79
受压区高度 x=ξ *h0
Mu= 148.55 (kN-m) 支座抗弯承载力 Mu
凝土强度及弹性模量
C20 9.6 1.1
25500
C25 11.9 1.27 28000
C30 14.3 1.43 30000
C35 16.7 1.57 31500
HPB235HRB335HRB400 210 300 360
ρ=
0.56%
纵筋配筋率 ρ =As/(b*h0)
ρ max
2.18%
最大配筋率 ρ max=ξ b*(α 1*fc)/fy
ρ min
0.20%
最小配筋率 ρ min=max(0.45ft/fy,0.2%)
注意:ρ min<ρ <ρ max,将继续计算!
ξ = 0.140 (mm) 相对受压区高度 ξ =ρ *fy/(α 1*fc)
Es= 200000 (N/mm2)
α 1= β 1= ξ b= α E=
1.00 0.80 0.55 7.14
1.0<C50<内插<C80<0.94 0.8<C50<内插<C80<0.74 ξ b=β 1/(1+fy/0.0033Es) α E=Es/Ec
混凝土强度及弹性模
强度 类型 fc N/mm2 ft N/mm2 Ec N/mm2
强度 类型 fy N/mm2 Es N/mm2
梁截面尺寸
b=
300 (mm)
h=
600 (mm)
ca=
35 (mm)
h0=
565 (mm)
纵向钢筋:3φ20
梁宽度 b 梁高度 h 梁保护层厚度 ca 梁有效高度 h0=h-ca
20m装配式钢筋混凝土简支T梁
20m装配式钢筋混凝土简支T梁大连理工大学网络教育学院装配式钢筋混凝土简支T型梁桥课程设计学习中心:云南思茅奥鹏学习中心[17]B专业:土木工程(道桥方向)姓名:李斌终身学习卡号:101410019370设计时间:2011-0620m装配式钢筋混凝土简支T梁计算一、设计资料1.桥面净空净—16m(行车道)+2×0.75(人行道)+2×0.25(栏杆)2.主梁路径和全长标准路径:=l20.00m(墩中心距离);b计算跨径:=l19.50 m(支座中心距离);主梁全长:=l19.96 m(主梁预制长度)。
全3.设计荷载公路-I级,人群荷载为3.52mkN4.材料钢筋:直径≥12mm采用Ⅱ级钢筋,直径<12mm采用Ⅰ级热轧光面钢筋。
混凝土:主梁用C40,人行道、栏杆及桥面铺装用C25。
5.计算方法极限状态设计法6.结构尺寸参考原有标准图尺寸,选用如图l所示,其中横梁用五根。
7.设计依据236.3721301301813018121⎪⎭⎫ ⎝⎛-⨯⨯+⨯⨯+424103574.77357401m cm -⨯==T 形截面抗矩惯柑近似等于各个矩形截面的抗扭惯矩之和,即:TXI =3ii i t b c ∑式中: ic ——为矩形截面抗任刚度系数(查表);ib 、it ——为相应各矩形的宽度与厚度。
查表可知:055.00.211.011==t ,11=c151.0)11.03.1(18.022=-=t ,301.02=c故:43331098.218.0)11.03.1(301.011.0231m ITX-⨯=⨯-⨯+⨯⨯=单位抗弯及抗扭惯矩xJ 和TxJ :cm m b I J X X 442106787.3103574.7--⨯=⨯==cmm I J TX TX 4531049.12001098.2--⨯=⨯==(2)横梁抗弯及抗扭惯矩 翼板有效宽度λ计算(图3):横梁长度取为两边主梁的轴线间距,即: m b L 0.8244=⨯=⋅= ()m c 345.216.085.421=-= cmh 100=',cm m b 1616.0==' 293.00.8345.2==l c根据l c 比值可查附表○1求得c λ=0.548 所以λ=0.548×C=0.548×2.345=1.285m 求横梁截面重心位置b h h h b h h h ay''+'⋅'⋅'+⋅⋅=1112222λλm2158.00.116.011.0285.120.116.021211.0285.1222=⨯+⨯⨯⨯⨯+⨯⨯=横梁的抗弯和抗扭惯矩yI 和TyI :yI =121⨯2λ×h 31+22'''3''211)2(121)2(y y a h h b h b h a h -++-λ2323)2158.02.1(0.116.00.116.0121)211.02158.0(11.0285.1211.0285.12121-⨯⨯+⨯⨯+-⨯⨯⨯+⨯⨯⨯=421070.3m -⨯=32223111h b c h b c I Ty +=1.0031.085.411.011<==b h ,查表得,311=c 但由于连续桥面板的单宽抗扭惯矩只有独立宽扁板者的一半,可取c 611=298.0,1798.0)11.000.1/(16.0222==-=c b h 查表得故3316.0)11.01(298.085.411.061⨯-⨯+⨯⨯=TyJ图3=433310162.210086.110076.1m ---⨯=⨯+⨯单位抗弯及抗扭惯矩yJ和TyJcmmb I J y y 442110763.010085.1070.3--⨯=⨯⨯==m b I J Ty Ty 453110446.010085.410162.2--⨯=⨯⨯==(3)计算抗弯参数θ和扭弯参数α:684.010763.0106787.35.190.94444=⨯⨯==--y x PJ J l B θ式中:B ——桥宽的一半;Pl ——计算跨径。
钢筋混凝土受弯构件正截面承载力计算—单筋矩形截面梁计算
受压混凝土的应力-应变关系
计算原则
2)等效矩形应力图
简化原则:受压区混凝土的合力大小不变;受压区混凝土的合力作用点不变。
等效矩形应力图形的混凝土受压区高度 x 1xn ,等效矩形应力图形的应力值 为 1 fc, 1、1 的值见下表。
表 1、1 值
混凝土强 度等级
≤C50
C55
C60
C65
C70
C75
(2)求跨中截面的最大弯矩设计值。
因仅有一个可变荷载,故弯矩设计值应有取下列两者中的较大值:
M 1 1.2g 1.4q l 2
8
1 1.2 5 1.4 10 5.02 62.5
8
M 1 1.35g 1.4 0.7q l 2
8
1 1.35 5 1.4 0.7 10 5.02 51.7
需要加固、补强
计算原则
1)基本假定
01 平截面假定。
02
钢筋的应力 s 等于钢筋应变 s 与其弹性模量 Es 的乘积,但不得大
于其强度设计值 fy,即
s sEs fv
03 不考虑截面受拉区混凝土的抗拉强度。
计算原则
04
受压混凝土采用理想化的应力-应变关系,当混凝土强度等级为
C50及以下时,混凝土极限压应变 cu=0.0033。
(1)受拉钢筋为4 25,As=1964 mm2; (2)受拉钢筋为3 18,As=763 mm²。
单筋矩形截面梁计算
解 查表得:
fc 9.6N/mm2
ft 1.10N/mm2
f y 300N/mm2 c 1.0
b 0.550
c 30mm
单筋矩形截面梁计算
(1)
d
25
h0 h c 2 450 30 2 408
钢筋混凝土梁正截面抗弯承载力计算表
C20 13.4 1.54 9.6 1.1 25500
HPB23 强度 类型 5 fyv N/mm2 210
HPB23
强度 类型 5
fy N/mm2 210
Es N/mm2 210000
直径
8~20
梁截面尺寸
b=
300 (mm)
h=
600 (mm)
c=
35 (mm)
h0=
565 (mm)
l0=
3.000 (m)
300 )(N/mm2 纵筋抗拉压强度设计值 fy
200000 )
1.00
1.0<C50<内插<C80<0.94
0.80
0.8<C50<内插<C80<0.74
0.55
ξb=β1/(1+fy/0.0033Es)
7.14
αE=Es/Ec
混凝土强度及弹性模量
强度 类型 fck N/mm2 ftk N/mm2 fc N/mm2 ft N/mm2 Ec N/mm2
1.27 )(N/mm2 混凝土抗拉强度设计值 ft
28000 )
混凝土弹性模量 Ec
HPB fyv=
235 (HNP/Bm(m2325,335,400) 箍筋强度等级
210 )
箍筋抗拉压强度设计值 fyv
HRB fy= Es= α1= β1= ξb= αE=
335 (HNR/mB(m2325,335,400) 纵筋强度等级
Nj= φj=
dj=
2 6 (mm) 200 (mm)
ρj=
0.283
跨中正筋直径 φz 跨中正筋面积 Asz 跨中正筋配筋率 ρz
箍筋肢数 Nj 箍筋直径 φj 箍筋间距 dj 配箍率 ρj
钢筋混凝土梁(深梁和短梁)抗弯承载力计算表
C30 14.3 1.43 30000
HPB23 HRB33 HRB40
5
5
0
210 300 360
210000 200000 200000
C35 16.7 1.57 31500
C40 19.1 1.71 32500
C45 21.1 1.8 33500
C50 23.1 1.89 34500
C55 25.3 1.96 35500
HRB
335 HRB(235,335,400) 纵筋强度等级
fy= Es= α1= β1= ξb= αE=
300 (N/mm2
200000 1.00
)(N/mm2 )
纵筋抗拉压强度设计值 fy 1.0<C50<内插<C80<0.94
0.80
0.8<C50<内插<C80<0.74
0.55
ξb=β1/(1+fy/0.0033Es)
《钢筋混凝土深梁设计规范》(CECS39:92)公式:
z= 9.066 (m)
深梁的内力臂 z (根据截面位置和l0/h取值)
Mu= 64080 (kN-m) 抗弯承载力 Mu=fy*As*z
《混ha0s凝==土结构111设3828计00 ((规mm范mm))》GB混值梁50凝)有01土效0保高20护度02层公h厚0式=度h-:aass (根据截面位置和l0/h取
l0/h= 1.368
l0/h≤5时,按深受弯构件计算
l0/h ≤ 5,属于深受弯构件,请继续输入数据!
a= 5.730 (m)
剪跨 a (若为均布荷载请输入0)
λ= 0.434
剪跨比 λ=a/h(集中力) 或 l0/4(均布荷载)
简支梁正截面抗弯承载力计算表格
13m简支梁桥钢筋砼主梁正截面抗弯承载力计算表
Ⅰ、基本参数 编号 一 1 2 3 4 5 6 7 8 9 梁高 梁(腹板)宽 受压翼缘板宽 受压翼缘板厚 受弯构件计算跨径 预筋和钢筋合力至拉区边缘 钢筋合力至拉区边缘距离 挖空圆的直径 毛截面积型心至底边 参数名称 几何参数 符号 单位 数值 编号 二 参数名称 材料性能参数 砼轴心抗压强度设计值 箍筋抗拉强度设计值 预应力抗拉强度设计值 砼弹性模量 钢筋弹性模量 预应力弹性模量 主筋抗拉强度设计值 符号 单位 数值 编号 三 参数名称 计算系数及其他参数 桥梁结构的重要性系数 符号 单位 数值
h b b'f h'f L a as D Yx
mm mm mm mm mm mm mm mm mm
600 280 990 125 12600 39 39 350 300
1 2 3 4 5 6 7 8 9
fcd fsd fpd Ec Es Ep fsd
MPa MPa MPa MPa MPa MPa MPa
13.8 1951 2 3γ源自o ES Epmm2
1 6.666667 0 0.01169 6381
钢筋与砼的弹性模量比 α 预筋与砼的弹性模量比 α 纵向受拉钢预筋配筋率 受拉钢筋截面积
31500 210000
4 5 6
ρ As A Ao Yo
280
7 8
毛截面积 换算截面积 换算截面积型心至底边
mm2 mm2 mm
ho=h-a
x值由下式确定: fsd As+fpd A p = fcd b'f x ;但若x>b'f ,则
h'f-x=
34
x值由下式确定: fsd As+fpd A p = fcd[ b x+(b'f-b)h'f] ;且x≤0.4ho(预砼)或x≤0.56ho(钢筋砼)
梁正截面抗弯承载力计算
hf=
120 (mm)
bf=
1000 (mm)
支座负弯矩钢筋:5φ22
φf=
22 (mm)
Asf= ρf=
1901 (mm2) 1.121%
跨中正弯矩钢筋:4φ20
Nz=
4
φz=
20 (mm)
Asz= ρz=
1257 (mm2) 0.741%
箍筋:φ6@200
Nj=
2
φj=
6 (mm)
钢筋和混凝土指标
C fck= ftk=
fc= ft= Ec=
25 (CN?/(m20m,225,30,35,40,45,50,55) 混凝土等级
16.7 )(N/mm2 混凝土抗压强度标准值 fck
1.78 )(N/mm2 混凝土抗拉强度标准值 ftk
11.9 )(N/mm2 混凝土抗压强度设计值 fck
dj= ρj=
200 (mm) 0.283
梁宽度 b 梁高度 h 梁保护层厚度 c 梁有效高度 h0 梁计算跨度 l0 梁净距 Sn 梁翼缘高度 hf 梁支座负弯矩截面宽度 bf
支座负弯矩钢筋直径 φf 支座负弯矩钢筋面积 Asf 支座负弯矩钢筋配筋率 ρf
跨中正弯矩钢筋根数 Nz 跨中正弯矩钢筋直径 φz 跨中正弯矩钢筋面积 Asz 跨中正弯矩钢筋配筋率 ρz
300 )(N/mm2 纵筋抗拉压强度设计值 fy
200000 )
1.00
1.0<C50<内插<C80<0.94
0.80
0.8<C50<内插<C80<0.74
0.55
ξb=β1/(1+fy/0.0033Es)
简支梁正截面抗弯承载力计算公式.docx
桥梁承载力计算用表Ⅰ、基本参数编号参数名称符号一几何参数1梁高h2梁(腹板)宽b3受压翼缘板宽b'f4受压翼缘板厚h'f5受弯构件计算跨径L6预筋和钢筋合力至拉区边缘a7钢筋合力至拉区边缘距离a s8挖空圆的直径D9毛截面积型心至底边Y x Ⅱ、计算参数13m简支梁桥钢筋砼主梁正截面抗弯承载力计算表单位数值编号参数名称符号单位数值编号参数名称二材料性能参数三计算系数及其他参数mm5001砼轴心抗压强度设计值f cd MPa13.81桥梁结构的重要性系数mm2802箍筋抗拉强度设计值f sd MPa1952钢筋与砼的弹性模量比mm9903预应力抗拉强度设计值f pd MPa3预筋与砼的弹性模量比mm754砼弹性模量E c MPa315004纵向受拉钢预筋配筋率mm126005钢筋弹性模量E s MPa2100005受拉钢筋截面积mm396预应力弹性模量E p MPa6mm397主筋抗拉强度设计值f sd MPa2807毛截面积mm35088换算截面积mm2509板的铰缝截面积mm 29换算截面积型心至底边符号单位数值γo-1αES- 6.666667αEp-0ρ-0.0142792A s mm6381A mm 2446894A o mm 2483055Y o mm257编号计算参数名称符号单位1截面有效高度h o mm 2中性轴x mm 或中性轴x mm判断(ξ h o)mm结论:取值为x mm Ⅲ、计算结果1正截面抗弯承载力M d kn.mkn.m结论:取值为kn.m 数值计算公式及说明461h o=h-a91x 值由下式确定:f sd A s+f pd A p= f cd b'f x;但若x>b'f,则h'f -x=(16) 132x值由下式确定: f sd A s+f pd A p = f cd[ b x+( b'f-b)h'f] ;且 x≤0.4h o(预砼 )或x≤0.56h o(钢筋砼)18491517当 x≤ b'f,则 Md=f cd b’f oγox (h -x / 2) /457当 x> b'f,则 Md=f cd[ b x (h o-x / 2)+( b'f-b)h'f ( h o-h'f/ 2) ] / γo517第 1 页,共 1 页杭州市萧山区交通规划设计处。
抗弯矩形截面承载力计算表格
fy= Es= α1= β1= ξb= αE=
300 200000
(N/mm2 )(N/mm2
纵筋抗拉压强度设计值 fy
1.00 )
1.0<C50<内插<C80内插<C80<0.74
0.55
ξb=β1/(1+fy/0.0033Es)
6.67
αE=Es/Ec
混凝土强度及弹性模
C45 21.1 1.8 33500
C50 23.1 1.89 34500
C55 25.3 1.96 35500
ξ=
0.117
相对受压区高度 ξ=ρ*fy/(α1*fc)
x= Mu=
66 (mm) 受压区高度 x=ξ*h0 150.43 (kN-m) 抗弯承载力 Mu
说明: 1。若ξ>ξb,则说明纵筋超筋,需要减少纵筋面积再进行计算! 2。若 x < 2ca,则说明当压区混凝土达到极限压应变是受压钢筋还未屈 服,这时取 x=2ca近似计算!
φ=
20 (mm) 纵筋直径 φ
As= ρ=
942 (mm2) 纵筋面积 As=N*(Pi*φ^2/4)
0.56%
纵筋配筋率 ρ=As/(b*h0)
ρmax
2.62%
最大配筋率 ρmax=ξb*(α1*fc)/fy
ρmin
0.21%
最小配筋率 ρmin=max(0.45ft/fy,0.2%)
注意:ρmin<ρ<ρmax,将继续计算!
强度 类型 fc N/mm2 ft N/mm2 Ec N/mm2
强度 类型
fy N/mm2 Es N/mm2
梁截面尺寸
b=
300 (mm)
3.2正截面承载力计算
3.2-正截面承载力计算3.2 正截面承载力计算钢筋混凝土受弯构件通常承受弯矩和剪力共同作用,其破坏有两种可能:一种是由弯矩引起的,破坏截面与构件的纵轴线垂直,称为沿正截面破坏;另一种是由弯矩和剪力共同作用引起的,破坏截面是倾斜的,称为沿斜截面破坏。
所以,设计受弯构件时,需进行正截面承载力和斜截面承载力计算。
一、单筋矩形截面1.单筋截面受弯构件沿正截面的破坏特征钢筋混凝土受弯构件正截面的破坏形式与钢筋和混凝土的强度以及纵向受拉钢筋配筋率ρ有关。
ρ用纵向受拉钢筋的截面面积与正截面的有效面积的比值来表示,即ρ=As/(bh0),其中A s为受拉钢筋截面面积;b为梁的截面宽度;h0为梁的截面有效高度。
根据梁纵向钢筋配筋率的不同,钢筋混凝土梁可分为适筋梁、超筋梁和少筋梁三种类型,不同类型梁的具有不同破坏特征。
①适筋梁配置适量纵向受力钢筋的梁称为适筋梁。
适筋梁从开始加载到完全破坏,其应力变化经历了三个阶段,如图3.2.1。
第I阶段(弹性工作阶段):荷载很小时,混凝土的压应力及拉应力都很小,应力和应变几乎成直线关系,如图3.2.1a。
当弯矩增大时,受拉区混凝土表现出明显的塑性特征,应力和应变不再呈直线关系,应力分布呈曲线。
当受拉边缘纤维的应变达到混凝土的极限拉应变εtu时,截面处于将裂未裂的极限状态,即第Ⅰ阶段末,用Ⅰa表示,此时截面所能承担的弯矩称抗裂弯矩M cr,如图3.2.1b。
Ⅰa阶段的应力状态是抗裂验算的依据。
第Ⅱ阶段(带裂缝工作阶段):当弯矩继续增加时,受拉区混凝土的拉应变超过其极限拉应变εtu,受拉区出现裂缝,截面即进入第Ⅱ阶段。
裂缝出现后,在裂缝截面处,受拉区混凝土大部分退出工作,拉力几乎全部由受拉钢筋承担。
随着弯矩的不断增加,裂缝逐渐向上扩展,中和轴逐渐上移,受压区混凝土呈现出一定的塑性特征,应力图形呈曲线形,如图3.2.1c。
第Ⅱ阶段的应力状态是裂缝宽度和变形验算的依据。
当弯矩继续增加,钢筋应力达到屈服强度f y,这时截面所能承担的弯矩称为屈服弯矩M y。
钢筋混凝土矩形截面受弯构件正截面受弯承载力计算系数表
d≦25d=28-40
C15 2.49 1.49 1.63
1.32C20 3.22 1.93
2.11
1.71C25 3.95
2.37 2.59
2.1C30 4.82 2.9
3.16 2.56
≦C350.40.20.15一二三四
中柱和边柱10.80.70.6
角柱、框支柱 1.210.90.8
0.2
分类
轴心受压构件的全部钢筋
偏心受压及偏心受拉构件的受压
钢筋
钢筋混凝土受弯构件最大配筋百分率%
混凝土强度等级Ⅰ级 Ⅱ级
Ⅲ级混凝土构件中纵向受力钢筋的最小配筋率% C40-C600.40.2柱截面纵向钢筋的最小总配筋率百分比 表2—7—3
类别抗震等级
受弯构件、偏心受压构件、大偏
心受拉构件的受拉钢筋及小偏心
受拉构件每一侧的受拉钢筋
全部纵向钢筋一侧纵向钢筋钢筋种类纵向受拉钢筋水平分布钢筋竖向分布钢筋HPB2350.250.250.2HRB335\HRB400\RRB4000.20.20.16 最小配箍率:ρsv.min=0.02*fc/fyv 混凝土构件中纵向受力钢筋的最小配筋率% 表2—7—1
受压构件受力类型 最小配筋百分率
0.6
0.2
受弯构件、偏心受拉、轴心受拉构件一侧的受拉钢筋
0.2和45ft/fy中的较大值深梁中钢筋的最小配筋百分率 表2—7—2。
混凝土结构的受弯构件正截面承载力计算
求:Mu≥M 未知数:x 和Mu两个未知数,有唯一解 求解过程:应用基本公式和公式的条件
(2)当 >b时,Mu=?
取M1 s,max 1 fcbh02
(3)当x<2a’时,Mu =?
可偏于安全的按下式计算
Mu f y As (h0 a)
As
As
1 fc
fy
b h0
2
M
1 fcbh02 (1
f y (h0 a)
0.5 )
为使As 、 As’的总量最小,必须使
d ( As As )
d
0
a'
0.5(1 ) 0.55 故取 = b h0 即取 M1 s,max 1 fcbh02
(注:为提高破坏时的延性也可取 = 0.8b)
4.5 正截面受弯承载力计算
1、双筋矩形截面的概念 双筋截面是指同时配置受拉和受压钢筋的情况。
受压钢筋 (不是架立筋)
A s'
As
受拉钢筋
4.5 正截面受弯承载力计算
第四章 受弯构件正截面承载力
2、双筋矩形截面的应用场合---即何时使用?
(一般来说采用双筋是不经济的,工程中通常仅在以下情 况下采用)
▲ 当 M>s,max 1fcbh02 ,而截面尺寸和材料强度受建
4.5 正截面受弯承载力计算
第四章 受弯构件正截面承载力
▲经济配筋率的取值
梁: =(0.5~1.6)% 板: =(0.4~0.8)%
▲由经济配筋率计算截面尺寸
M
f y As (h0
x) 2
fybh02(1 0.5)
h0
1
梁正截面抗弯承载力计算表
h0=
565 (mm) 梁有效高度 h0
l0= 3.000 (m) 梁计算跨 梁净距 Sn
hf=
120 (mm) 梁翼缘高度 hf
bf=
1000 (mm) 梁跨中弯矩截面宽度 bf
支座负弯矩钢筋:5φ22
Nf=
5
支座负筋根数 Nf
φf=
22 (mm) 支座负筋直径 φf
ftk=
1.78 (N/mm2)混凝土抗拉强度标准值 ftk ftk N/mm2 1.54 1.78 2.01 2.2 2.39 2.51 2.64
fc=
11.9 (N/mm2)混凝土抗压强度设计值 fck fc N/mm2 9.6 11.9 14.3 16.7 19.1 21.1 23.1
ft=
1.27 (N/mm2)混凝土抗拉强度设计值 ft ft N/mm2 1.1 1.27 1.43 1.57 1.71 1.8 1.89
2025303540455055混凝土等级fck混凝土抗压强度标准值fckftk混凝土抗拉强度标准值ftkfc混凝土抗压强度设计值fckft混凝土抗拉强度设计值ftec混凝土弹性模量echpb235335400箍筋强度等级fyv箍筋抗拉压强度设计值fyvhrb235335400纵筋强度等级fy纵筋抗拉压强度设计值fyesh0梁有效高度h0l0梁计算跨度l0snsnhf梁翼缘高度hfbf梁跨中弯矩截面宽度bf支座负弯矩钢筋
钢筋和混凝土指标
混凝土强度及弹性模量
C
25 C?(20,25,30,35,40,45,50,55) 混凝强土度等级类型 C20 C25 C30 C35 C40 C45 C50
fck=
16.7 (N/mm2)混凝土抗压强度标准值 fck fck N/mm2 13.4 16.7 20.1 23.4 26.8 29.6 32.4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4 砼弹性模量
5 钢筋弹性模量
6 预应力弹性模量
7 主筋抗拉强度设计值
8
9 板的铰缝截面积
fcd MPa 13.8 fsd MPa 195 fpd MPa Ec MPa 31500 Es MPa 210000 Ep MPa fsd MPa 280
mm2
三 计算系数及其他参数
1 桥梁结构的重要性系数 γo 2 钢筋与砼的弹性模量比 αES 3 预筋与砼的弹性模量比 αEp 4 纵向受拉钢预筋配筋率 ρ
桥梁承载力计算用表
Ⅰ、基本参数
编号
参数名称
13m简支梁桥钢筋砼主梁正截面抗弯承载力计算表
符号 单位 数值 编号
参数名称
符号 单位 数值 编号
参数名称
符号 单位 数值
一
几何参数
1 梁高
2 梁(腹板)宽
3 受压翼缘板宽
4 受压翼缘板厚
5 受弯构件计算跨径
6 预筋和钢筋合力至拉区边缘
7 钢筋合力至拉区边缘距离
224
91
641 当x≤b'f,则Md=fcdb’f x (ho-x /2) / γo 792 当x>b'f,则Md=fcd[ b x (ho-x /2)+(b'f-b)h'f(ho-h'f/2)] / γo
641
第 1 页,共 1 页
杭州市萧山区交通规划设计处
-
1
- 6.666667
-
0
- 0.01169
5 受拉钢筋截面积
As mm2 6381
6
7 毛截面积
A mm2 545894
8 换算截面积
Ao mm2 582055
9 换算截面积型心至底边 Yo mm 303
编号
计算参数名称
符号 单位
1 截面有效高度 2 中性轴
ho mm x mm
或中性轴
x mm
判断(ξho)
mm
结论:取值为
x mm
Ⅲ、计算结果
1 正截面抗弯承载力
Md kn.m
kn.m
结论:取值为
kn.m
数值
计算公式及说明
561 ho=h-a
91 x值由下式确定: fsd As+fpd A p = fcd b'f x ;但若x>b'f ,则
h'sd As+fpd A p = fcd[ b x+(b'f-b)h'f] ;且x≤0.4ho(预砼)或x≤0.56ho(钢筋砼)
8 挖空圆的直径
9 毛截面积型心至底边
Ⅱ、计算参数
h mm b mm b'f mm h'f mm L mm a mm as mm D mm Yx mm
600 280 990 125 12600 39 39 350 300
二
材料性能参数
1 砼轴心抗压强度设计值
2 箍筋抗拉强度设计值
3 预应力抗拉强度设计值